Science.gov

Sample records for duplicated gene family

  1. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    PubMed

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  2. Evolution of the vertebrate paralemmin gene family: ancient origin of gene duplicates suggests distinct functions.

    PubMed

    Hultqvist, Greta; Ocampo Daza, Daniel; Larhammar, Dan; Kilimann, Manfred W

    2012-01-01

    Paralemmin-1 is a protein implicated in plasma membrane dynamics, the development of filopodia, neurites and dendritic spines, as well as the invasiveness and metastatic potential of cancer cells. However, little is known about its mode of action, or about the biological functions of the other paralemmin isoforms: paralemmin-2, paralemmin-3 and palmdelphin. We describe here evolutionary analyses of the paralemmin gene family in a broad range of vertebrate species. Our results suggest that the four paralemmin isoform genes (PALM1, PALM2, PALM3 and PALMD) arose by quadruplication of an ancestral gene in the two early vertebrate genome duplications. Paralemmin-1 and palmdelphin were further duplicated in the teleost fish specific genome duplication. We identified a unique sequence motif common to all paralemmins, consisting of 11 highly conserved residues of which four are invariant. A single full-length paralemmin homolog with this motif was identified in the genome of the sea lamprey Petromyzon marinus and an isolated putative paralemmin motif could be detected in the genome of the lancelet Branchiostoma floridae. This allows us to conclude that the paralemmin gene family arose early and has been maintained throughout vertebrate evolution, suggesting functional diversification and specific biological roles of the paralemmin isoforms. The paralemmin genes have also maintained specific features of gene organisation and sequence. This includes the occurrence of closely linked downstream genes, initially identified as a readthrough fusion protein with mammalian paralemmin-2 (Palm2-AKAP2). We have found evidence for such an arrangement for paralemmin-1 and -2 in several vertebrate genomes, as well as for palmdelphin and paralemmin-3 in teleost fish genomes, and suggest the name paralemmin downstream genes (PDG) for this new gene family. Thus, our findings point to ancient roles for paralemmins and distinct biological functions of the gene duplicates. PMID:22855693

  3. Duplication of OsHAP family genes and their association with heading date in rice

    PubMed Central

    Li, Qiuping; Yan, Wenhao; Chen, Huaxia; Tan, Cong; Han, Zhongmin; Yao, Wen; Li, Guangwei; Yuan, Mengqi; Xing, Yongzhong

    2016-01-01

    Heterotrimeric Heme Activator Protein (HAP) family genes are involved in the regulation of flowering in plants. It is not clear how many HAP genes regulate heading date in rice. In this study, we identified 35 HAP genes, including seven newly identified genes, and performed gene duplication and candidate gene-based association analyses. Analyses showed that segmental duplication and tandem duplication are the main mechanisms of HAP gene duplication. Expression profiling and functional identification indicated that duplication probably diversifies the functions of HAP genes. A nucleotide diversity analysis revealed that 13 HAP genes underwent selection. A candidate gene-based association analysis detected four HAP genes related to heading date. An investigation of transgenic plants or mutants of 23 HAP genes confirmed that overexpression of at least four genes delayed heading date under long-day conditions, including the previously cloned Ghd8/OsHAP3H. Our results indicate that the large number of HAP genes in rice was mainly produced by gene duplication, and a few HAP genes function to regulate heading date. Selection of HAP genes is probably caused by their diverse functions rather than regulation of heading. PMID:26798026

  4. Duplication, divergence and persistence in the Phytochrome photoreceptor gene family of cottons (Gossypium spp.)

    PubMed Central

    2010-01-01

    Background Phytochromes are a family of red/far-red photoreceptors that regulate a number of important developmental traits in cotton (Gossypium spp.), including plant architecture, fiber development, and photoperiodic flowering. Little is known about the composition and evolution of the phytochrome gene family in diploid (G. herbaceum, G. raimondii) or allotetraploid (G. hirsutum, G. barbadense) cotton species. The objective of this study was to obtain a preliminary inventory and molecular-evolutionary characterization of the phytochrome gene family in cotton. Results We used comparative sequence resources to design low-degeneracy PCR primers that amplify genomic sequence tags (GSTs) for members of the PHYA, PHYB/D, PHYC and PHYE gene sub-families from A- and D-genome diploid and AD-genome allotetraploid Gossypium species. We identified two paralogous PHYA genes (designated PHYA1 and PHYA2) in diploid cottons, the result of a Malvaceae-specific PHYA gene duplication that occurred approximately 14 million years ago (MYA), before the divergence of the A- and D-genome ancestors. We identified a single gene copy of PHYB, PHYC, and PHYE in diploid cottons. The allotetraploid genomes have largely retained the complete gene complements inherited from both of the diploid genome ancestors, with at least four PHYA genes and two genes encoding PHYB, PHYC and PHYE in the AD-genomes. We did not identify a PHYD gene in any cotton genomes examined. Conclusions Detailed sequence analysis suggests that phytochrome genes retained after duplication by segmental duplication and allopolyploidy appear to be evolving independently under a birth-and-death-process with strong purifying selection. Our study provides a preliminary phytochrome gene inventory that is necessary and sufficient for further characterization of the biological functions of each of the cotton phytochrome genes, and for the development of 'candidate gene' markers that are potentially useful for cotton improvement via

  5. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    PubMed

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  6. Duplications and losses in gene families of rust pathogens highlight putative effectors

    PubMed Central

    Pendleton, Amanda L.; Smith, Katherine E.; Feau, Nicolas; Martin, Francis M.; Grigoriev, Igor V.; Hamelin, Richard; Nelson, C. Dana; Burleigh, J. Gordon; Davis, John M.

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity. PMID:25018762

  7. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    PubMed

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome.

  8. Age distribution of human gene families shows significant roles of both large- and small-scale duplications in vertebrate evolution.

    PubMed

    Gu, Xun; Wang, Yufeng; Gu, Jianying

    2002-06-01

    The classical (two-round) hypothesis of vertebrate genome duplication proposes two successive whole-genome duplication(s) (polyploidizations) predating the origin of fishes, a view now being seriously challenged. As the debate largely concerns the relative merits of the 'big-bang mode' theory (large-scale duplication) and the 'continuous mode' theory (constant creation by small-scale duplications), we tested whether a significant proportion of paralogous genes in the contemporary human genome was indeed generated in the early stage of vertebrate evolution. After an extensive search of major databases, we dated 1,739 gene duplication events from the phylogenetic analysis of 749 vertebrate gene families. We found a pattern characterized by two waves (I, II) and an ancient component. Wave I represents a recent gene family expansion by tandem or segmental duplications, whereas wave II, a rapid paralogous gene increase in the early stage of vertebrate evolution, supports the idea of genome duplication(s) (the big-bang mode). Further analysis indicated that large- and small-scale gene duplications both make a significant contribution during the early stage of vertebrate evolution to build the current hierarchy of the human proteome. PMID:12032571

  9. bMERB domains are bivalent Rab8 family effectors evolved by gene duplication.

    PubMed

    Rai, Amrita; Oprisko, Anastasia; Campos, Jeremy; Fu, Yangxue; Friese, Timon; Itzen, Aymelt; Goody, Roger S; Gazdag, Emerich Mihai; Müller, Matthias P

    2016-01-01

    In their active GTP-bound form, Rab proteins interact with proteins termed effector molecules. In this study, we have thoroughly characterized a Rab effector domain that is present in proteins of the Mical and EHBP families, both known to act in endosomal trafficking. Within our study, we show that these effectors display a preference for Rab8 family proteins (Rab8, 10, 13 and 15) and that some of the effector domains can bind two Rab proteins via separate binding sites. Structural analysis allowed us to explain the specificity towards Rab8 family members and the presence of two similar Rab binding sites that must have evolved via gene duplication. This study is the first to thoroughly characterize a Rab effector protein that contains two separate Rab binding sites within a single domain, allowing Micals and EHBPs to bind two Rabs simultaneously, thus suggesting previously unknown functions of these effector molecules in endosomal trafficking. PMID:27552051

  10. bMERB domains are bivalent Rab8 family effectors evolved by gene duplication.

    PubMed

    Rai, Amrita; Oprisko, Anastasia; Campos, Jeremy; Fu, Yangxue; Friese, Timon; Itzen, Aymelt; Goody, Roger S; Gazdag, Emerich Mihai; Müller, Matthias P

    2016-08-23

    In their active GTP-bound form, Rab proteins interact with proteins termed effector molecules. In this study, we have thoroughly characterized a Rab effector domain that is present in proteins of the Mical and EHBP families, both known to act in endosomal trafficking. Within our study, we show that these effectors display a preference for Rab8 family proteins (Rab8, 10, 13 and 15) and that some of the effector domains can bind two Rab proteins via separate binding sites. Structural analysis allowed us to explain the specificity towards Rab8 family members and the presence of two similar Rab binding sites that must have evolved via gene duplication. This study is the first to thoroughly characterize a Rab effector protein that contains two separate Rab binding sites within a single domain, allowing Micals and EHBPs to bind two Rabs simultaneously, thus suggesting previously unknown functions of these effector molecules in endosomal trafficking.

  11. The current excitement about copy-number variation: how it relates to gene duplication and protein families

    PubMed Central

    Korbel, Jan O.; Kim, Philip M.; Chen, Xueying; Urban, Alexander Eckehart; Weissman, Sherman; Snyder, Michael; Gerstein, Mark B.

    2008-01-01

    Following recent technological advances there has been an increasing interest in genome structural variation, in particular copy-number variants (CNVs) – large-scale duplications and deletions – in the human genome. Although not immediately evident, CNV surveys make a conceptual connection between the fields of population genetics and protein families, in particular with regard to the stability and expandability of families. The mechanisms giving rise to CNVs can be considered as fundamental processes underlying gene duplication and loss; duplicated genes being the results of “successful” copies, fixed and maintained in the population. Conversely, many “unsuccessful” duplicates remain in the genome as pseudogenes. Here, we survey studies on CNVs, highlighting issues related to protein families. In particular, CNVs tend to affect specific gene functional categories, such as those associated with environmental response, and are depleted in genes related to basic cellular processes. Furthermore, CNVs occur more often at the periphery of the protein interaction network. Thereby, functional categories associated with successful duplicates and unsuccessful duplicates are clearly distinguishable. These trends are likely reflective of CNV formation biases and natural selection, both of which differentially influence distinct protein families. PMID:18511261

  12. Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalization and redundancy.

    PubMed

    Guo, Hai-Song; Zhang, Yan-Mei; Sun, Xiao-Qin; Li, Mi-Mi; Hang, Yue-Yu; Xue, Jia-Yu

    2016-04-01

    Very long-chain fatty acids (VLCFAs) play an important role in the survival and development of plants, and VLCFA synthesis is regulated by β-ketoacyl-CoA synthases (KCSs), which catalyze the condensation of an acyl-CoA with malonyl-CoA. Here, we present a genome-wide survey of the genes encoding these enzymes, KCS genes, in 28 species (26 genomes and two transcriptomes), which represents a large phylogenetic scale, and also reconstruct the evolutionary history of this gene family. KCS genes were initially single-copy genes in the green plant lineage; duplication resulted in five ancestral copies in land plants, forming five fundamental monophyletic groups in the phylogenetic tree. Subsequently, KCS genes duplicated to generate 11 genes of angiosperm origin, expanding up to 20-30 members in further-diverged angiosperm species. During this process, tandem duplications had only a small contribution, whereas polyploidy events and large-scale segmental duplications appear to be the main driving force. Accompanying this expansion were variations that led to the sub- and neofunctionalization of different members, resulting in specificity that is likely determined by the 3-D protein structure. Novel functions involved in other physiological processes emerged as well, though redundancy is also observed, largely among recent duplications. Conserved sites and variable sites of KCS proteins are also identified by statistical analysis. The variable sites are likely to be involved in the emergence of product specificity and catalytic power, and conserved sites are possibly responsible for the preservation of fundamental function.

  13. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    PubMed Central

    2012-01-01

    Background Plant polyphenol oxidases (PPOs) are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss) and Glycine max (soybean) each had 11 genes. Populus trichocarpa (poplar) contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae) genomes or Arabidopsis (A. lyrata and A. thaliana). We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic relationships based on

  14. Duplication, selection and gene conversion in a Drosophila mojavensis female reproductive protein family.

    PubMed

    Kelleher, Erin S; Markow, Therese A

    2009-04-01

    Protein components of the Drosophila male ejaculate, several of which evolve rapidly, are critical modulators of reproductive success. Recent studies of female reproductive tract proteins indicate they also are extremely divergent between species, suggesting that reproductive molecules may coevolve between the sexes. Our current understanding of intersexual coevolution, however, is severely limited by the paucity of genetic and evolutionary studies on the female molecules involved. Physiological evidence of ejaculate-female coadaptation, paired with a promiscuous mating system, makes Drosophila mojavensis an exciting model system in which to study the evolution of reproductive proteins. Here we explore the evolutionary dynamics of a five-paralog gene family of female reproductive proteases within populations of D. mojavensis and throughout the repleta species group. We show that the proteins have experienced ongoing gene duplication and adaptive evolution and further exhibit dynamic patterns of pseudogenation, copy number variation, gene conversion, and selection within geographically isolated populations of D. mojavensis. The integration of these patterns in a single gene family has never before been documented in a reproductive protein.

  15. Duplication, Selection and Gene Conversion in a Drosophila mojavensis Female Reproductive Protein Family

    PubMed Central

    Kelleher, Erin S.; Markow, Therese A.

    2009-01-01

    Protein components of the Drosophila male ejaculate, several of which evolve rapidly, are critical modulators of reproductive success. Recent studies of female reproductive tract proteins indicate they also are extremely divergent between species, suggesting that reproductive molecules may coevolve between the sexes. Our current understanding of intersexual coevolution, however, is severely limited by the paucity of genetic and evolutionary studies on the female molecules involved. Physiological evidence of ejaculate–female coadaptation, paired with a promiscuous mating system, makes Drosophila mojavensis an exciting model system in which to study the evolution of reproductive proteins. Here we explore the evolutionary dynamics of a five-paralog gene family of female reproductive proteases within populations of D. mojavensis and throughout the repleta species group. We show that the proteins have experienced ongoing gene duplication and adaptive evolution and further exhibit dynamic patterns of pseudogenation, copy number variation, gene conversion, and selection within geographically isolated populations of D. mojavensis. The integration of these patterns in a single gene family has never before been documented in a reproductive protein. PMID:19204376

  16. bMERB domains are bivalent Rab8 family effectors evolved by gene duplication

    PubMed Central

    Rai, Amrita; Oprisko, Anastasia; Campos, Jeremy; Fu, Yangxue; Friese, Timon; Itzen, Aymelt; Goody, Roger S; Gazdag, Emerich Mihai; Müller, Matthias P

    2016-01-01

    In their active GTP-bound form, Rab proteins interact with proteins termed effector molecules. In this study, we have thoroughly characterized a Rab effector domain that is present in proteins of the Mical and EHBP families, both known to act in endosomal trafficking. Within our study, we show that these effectors display a preference for Rab8 family proteins (Rab8, 10, 13 and 15) and that some of the effector domains can bind two Rab proteins via separate binding sites. Structural analysis allowed us to explain the specificity towards Rab8 family members and the presence of two similar Rab binding sites that must have evolved via gene duplication. This study is the first to thoroughly characterize a Rab effector protein that contains two separate Rab binding sites within a single domain, allowing Micals and EHBPs to bind two Rabs simultaneously, thus suggesting previously unknown functions of these effector molecules in endosomal trafficking. DOI: http://dx.doi.org/10.7554/eLife.18675.001 PMID:27552051

  17. Gene Duplication, Lineage-Specific Expansion, and Subfunctionalization in the MADF-BESS Family Patterns the Drosophila Wing Hinge

    PubMed Central

    Shukla, Vallari; Habib, Farhat; Kulkarni, Apurv; Ratnaparkhi, Girish S.

    2014-01-01

    Gene duplication, expansion, and subsequent diversification are features of the evolutionary process. Duplicated genes can be lost, modified, or altered to generate novel functions over evolutionary timescales. These features make gene duplication a powerful engine of evolutionary change. In this study, we explore these features in the MADF-BESS family of transcriptional regulators. In Drosophila melanogaster, the family contains 16 similar members, each containing an N-terminal, DNA-binding MADF domain and a C-terminal, protein-interacting, BESS domain. Phylogenetic analysis shows that members of the MADF-BESS family are expanded in the Drosophila lineage. Three members, which we name hinge1, hinge2, and hinge3 are required for wing development, with a critical role in the wing hinge. hinge1 is a negative regulator of Winglesss expression and interacts with core wing-hinge patterning genes such as teashirt, homothorax, and jing. Double knockdowns along with heterologous rescue experiments are used to demonstrate that members of the MADF-BESS family retain function in the wing hinge, in spite of expansion and diversification for over 40 million years. The wing hinge connects the blade to the thorax and has critical roles in fluttering during flight. MADF-BESS family genes appear to retain redundant functions to shape and form elements of the wing hinge in a robust and fail-safe manner. PMID:24336749

  18. Diversification of the light-harvesting complex gene family via intra- and intergenic duplications in the coral symbiotic alga Symbiodinium.

    PubMed

    Maruyama, Shinichiro; Shoguchi, Eiichi; Satoh, Nori; Minagawa, Jun

    2015-01-01

    The light-harvesting complex (LHC) is an essential component in light energy capture and transduction to facilitate downstream photosynthetic reactions in plant and algal chloroplasts. The unicellular dinoflagellate alga Symbiodinium is an endosymbiont of cnidarian animals, including corals and sea anemones, and provides carbohydrates generated through photosynthesis to host animals. Although Symbiodinium possesses a unique LHC gene family, called chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC), its genome-level diversity and evolutionary trajectories have not been investigated. Here, we describe a phylogenetic analysis revealing that many of the LHCs are encoded by highly duplicated genes with multi-subunit polyprotein structures in the nuclear genome of Symbiodinium minutum. This analysis provides an extended list of the LHC gene family in a single organism, including 80 loci encoding polyproteins composed of 145 LHC subunits recovered in the phylogenetic tree. In S. minutum, 5 phylogenetic groups of the Lhcf-type gene family, which is exclusively conserved in algae harboring secondary plastids of red algal origin, were identified. Moreover, 5 groups of the Lhcr-type gene family, of which members are known to be associated with PSI in red algal plastids and secondary plastids of red algal origin, were identified. Notably, members classified within a phylogenetic group of the Lhcf-type (group F1) are highly duplicated, which may explain the presence of an unusually large number of LHC genes in this species. Some gene units were homologous to other units within single loci of the polyprotein genes, whereas intergenic homologies between separate loci were conspicuous in other cases, implying that gene unit 'shuffling' by gene conversion and/or genome rearrangement might have been a driving force for diversification. These results suggest that vigorous intra- and intergenic gene duplication events have resulted in the genomic framework of

  19. The role of gene duplication and unconstrained selective pressures in the melanopsin gene family evolution and vertebrate circadian rhythm regulation.

    PubMed

    Borges, Rui; Johnson, Warren E; O'Brien, Stephen J; Vasconcelos, Vitor; Antunes, Agostinho

    2012-01-01

    Melanopsin is a photosensitive cell protein involved in regulating circadian rhythms and other non-visual responses to light. The melanopsin gene family is represented by two paralogs, OPN4x and OPN4m, which originated through gene duplication early in the emergence of vertebrates. Here we studied the melanopsin gene family using an integrated gene/protein evolutionary approach, which revealed that the rhabdomeric urbilaterian ancestor had the same amino acid patterns (DRY motif and the Y and E conterions) as extant vertebrate species, suggesting that the mechanism for light detection and regulation is similar to rhabdomeric rhodopsins. Both OPN4m and OPN4x paralogs are found in vertebrate genomic paralogons, suggesting that they diverged following this duplication event about 600 million years ago, when the complex eye emerged in the vertebrate ancestor. Melanopsins generally evolved under negative selection (ω = 0.171) with some minor episodes of positive selection (proportion of sites = 25%) and functional divergence (θ(I) = 0.349 and θ(II) = 0.126). The OPN4m and OPN4x melanopsin paralogs show evidence of spectral divergence at sites likely involved in melanopsin light absorbance (200F, 273S and 276A). Also, following the teleost lineage-specific whole genome duplication (3R) that prompted the teleost fish radiation, type I divergence (θ(I) = 0.181) and positive selection (affecting 11% of sites) contributed to amino acid variability that we related with the photo-activation stability of melanopsin. The melanopsin intracellular regions had unexpectedly high variability in their coupling specificity of G-proteins and we propose that Gq/11 and Gi/o are the two G-proteins most-likely to mediate the melanopsin phototransduction pathway. The selection signatures were mainly observed on retinal-related sites and the third and second intracellular loops, demonstrating the physiological plasticity of the melanopsin protein group. Our results provide new insights on

  20. The Role of Gene Duplication and Unconstrained Selective Pressures in the Melanopsin Gene Family Evolution and Vertebrate Circadian Rhythm Regulation

    PubMed Central

    Borges, Rui; Johnson, Warren E.; O’Brien, Stephen J.; Vasconcelos, Vitor; Antunes, Agostinho

    2012-01-01

    Melanopsin is a photosensitive cell protein involved in regulating circadian rhythms and other non-visual responses to light. The melanopsin gene family is represented by two paralogs, OPN4x and OPN4m, which originated through gene duplication early in the emergence of vertebrates. Here we studied the melanopsin gene family using an integrated gene/protein evolutionary approach, which revealed that the rhabdomeric urbilaterian ancestor had the same amino acid patterns (DRY motif and the Y and E conterions) as extant vertebrate species, suggesting that the mechanism for light detection and regulation is similar to rhabdomeric rhodopsins. Both OPN4m and OPN4x paralogs are found in vertebrate genomic paralogons, suggesting that they diverged following this duplication event about 600 million years ago, when the complex eye emerged in the vertebrate ancestor. Melanopsins generally evolved under negative selection (ω = 0.171) with some minor episodes of positive selection (proportion of sites = 25%) and functional divergence (θI = 0.349 and θII = 0.126). The OPN4m and OPN4x melanopsin paralogs show evidence of spectral divergence at sites likely involved in melanopsin light absorbance (200F, 273S and 276A). Also, following the teleost lineage-specific whole genome duplication (3R) that prompted the teleost fish radiation, type I divergence (θI = 0.181) and positive selection (affecting 11% of sites) contributed to amino acid variability that we related with the photo-activation stability of melanopsin. The melanopsin intracellular regions had unexpectedly high variability in their coupling specificity of G-proteins and we propose that Gq/11 and Gi/o are the two G-proteins most-likely to mediate the melanopsin phototransduction pathway. The selection signatures were mainly observed on retinal-related sites and the third and second intracellular loops, demonstrating the physiological plasticity of the melanopsin protein group. Our results provide

  1. Tandem Duplication Events in the Expansion of the Small Heat Shock Protein Gene Family in Solanum lycopersicum (cv. Heinz 1706)

    PubMed Central

    Krsticevic, Flavia J.; Arce, Débora P.; Ezpeleta, Joaquín; Tapia, Elizabeth

    2016-01-01

    In plants, fruit maturation and oxidative stress can induce small heat shock protein (sHSP) synthesis to maintain cellular homeostasis. Although the tomato reference genome was published in 2012, the actual number and functionality of sHSP genes remain unknown. Using a transcriptomic (RNA-seq) and evolutionary genomic approach, putative sHSP genes in the Solanum lycopersicum (cv. Heinz 1706) genome were investigated. A sHSP gene family of 33 members was established. Remarkably, roughly half of the members of this family can be explained by nine independent tandem duplication events that determined, evolutionarily, their functional fates. Within a mitochondrial class subfamily, only one duplicated member, Solyc08g078700, retained its ancestral chaperone function, while the others, Solyc08g078710 and Solyc08g078720, likely degenerated under neutrality and lack ancestral chaperone function. Functional conservation occurred within a cytosolic class I subfamily, whose four members, Solyc06g076570, Solyc06g076560, Solyc06g076540, and Solyc06g076520, support ∼57% of the total sHSP RNAm in the red ripe fruit. Subfunctionalization occurred within a new subfamily, whose two members, Solyc04g082720 and Solyc04g082740, show heterogeneous differential expression profiles during fruit ripening. These findings, involving the birth/death of some genes or the preferential/plastic expression of some others during fruit ripening, highlight the importance of tandem duplication events in the expansion of the sHSP gene family in the tomato genome. Despite its evolutionary diversity, the sHSP gene family in the tomato genome seems to be endowed with a core set of four homeostasis genes: Solyc05g014280, Solyc03g082420, Solyc11g020330, and Solyc06g076560, which appear to provide a baseline protection during both fruit ripening and heat shock stress in different tomato tissues. PMID:27565886

  2. Duplication within the SEPT9 gene associated with a founder effect in North American families with hereditary neuralgic amyotrophy.

    PubMed

    Landsverk, Megan L; Ruzzo, Elizabeth K; Mefford, Heather C; Buysse, Karen; Buchan, Jillian G; Eichler, Evan E; Petty, Elizabeth M; Peterson, Esther A; Knutzen, Dana M; Barnett, Karen; Farlow, Martin R; Caress, Judy; Parry, Gareth J; Quan, Dianna; Gardner, Kathy L; Hong, Ming; Simmons, Zachary; Bird, Thomas D; Chance, Phillip F; Hannibal, Mark C

    2009-04-01

    Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with recurrent episodes of focal neuropathy primarily affecting the brachial plexus. Point mutations in the SEPT9 gene have been previously identified as the molecular basis of HNA in some pedigrees. However in many families, including those from North America demonstrating a genetic founder haplotype, no sequence mutations have been detected. We report an intragenic 38 Kb SEPT9 duplication that is linked to HNA in 12 North American families that share the common founder haplotype. Analysis of the breakpoints showed that the duplication is identical in all pedigrees, and molecular analysis revealed that the duplication includes the 645 bp exon in which previous HNA mutations were found. The SEPT9 transcript variants that span this duplication contain two in-frame repeats of this exon, and immunoblotting demonstrates larger molecular weight SEPT9 protein isoforms. This exon also encodes for a majority of the SEPT9 N-terminal proline rich region suggesting that this region plays a role in the pathogenesis of HNA.

  3. Phylogenetic and Evolutionary Analyses of the Frizzled Gene Family in Common Carp (Cyprinus carpio) Provide Insights into Gene Expansion from Whole-Genome Duplications.

    PubMed

    Dong, Chuanju; Jiang, Likun; Peng, Wenzhu; Xu, Jian; Mahboob, Shahid; Al-Ghanim, Khalid A; Sun, Xiaowen; Xu, Peng

    2015-01-01

    In humans, the frizzled (FZD) gene family encodes 10 homologous proteins that commonly localize to the plasma membrane. Besides being associated with three main signaling pathways for cell development, most FZDs have different physiological effects and are major determinants in the development process of vertebrates and. Here, we identified and annotated the FZD genes in the whole-genome of common carp (Cyprinus carpio), a teleost fish, and determined their phylogenetic relationships to FZDs in other vertebrates. Our analyses revealed extensive gene duplications in the common carp that have led to the 26 FZD genes that we detected in the common carp genome. All 26 FZD genes were assigned orthology to the 10 FZD genes of on-land vertebrates, with none of genes being specific to the fish lineage. We postulated that the expansion of the FZD gene family in common carp was the result of an additional whole genome duplication event and that the FZD gene family in other teleosts has been lost in their evolution history with the reason that the functions of genes are redundant and conservation. Through the expression profiling of FZD genes in common carp, we speculate that the ancestral gene was likely capable of performing all functions and was expressed broadly, while some descendant duplicate genes only performed partial functions and were specifically expressed at certain stages of development. PMID:26675214

  4. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer.

    PubMed

    Lin, Zhenguo; Kong, Hongzhi; Nei, Masatoshi; Ma, Hong

    2006-07-01

    The bacterial recA gene and its eukaryotic homolog RAD51 are important for DNA repair, homologous recombination, and genome stability. Members of the recA/RAD51 family have functions that have differentiated during evolution. However, the evolutionary history and relationships of these members remains unclear. Homolog searches in prokaryotes and eukaryotes indicated that most eubacteria contain only one recA. However, many archaeal species have two recA/RAD51 homologs (RADA and RADB), and eukaryotes possess multiple members (RAD51, RAD51B, RAD51C, RAD51D, DMC1, XRCC2, XRCC3, and recA). Phylogenetic analyses indicated that the recA/RAD51 family can be divided into three subfamilies: (i) RADalpha, with highly conserved functions; (ii) RADbeta, with relatively divergent functions; and (iii) recA, functioning in eubacteria and eukaryotic organelles. The RADalpha and RADbeta subfamilies each contain archaeal and eukaryotic members, suggesting that a gene duplication occurred before the archaea/eukaryote split. In the RADalpha subfamily, eukaryotic RAD51 and DMC1 genes formed two separate monophyletic groups when archaeal RADA genes were used as an outgroup. This result suggests that another duplication event occurred in the early stage of eukaryotic evolution, producing the DMC1 clade with meiosis-specific genes. The RADbeta subfamily has a basal archaeal clade and five eukaryotic clades, suggesting that four eukaryotic duplication events occurred before animals and plants diverged. The eukaryotic recA genes were detected in plants and protists and showed strikingly high levels of sequence similarity to recA genes from proteobacteria or cyanobacteria. These results suggest that endosymbiotic transfer of recA genes occurred from mitochondria and chloroplasts to nuclear genomes of ancestral eukaryotes.

  5. Phylogenetic relationships among Perissodactyla: secretoglobin 1A1 gene duplication and triplication in the Equidae family.

    PubMed

    Côté, Olivier; Viel, Laurent; Bienzle, Dorothee

    2013-12-01

    Secretoglobin family 1A member 1 (SCGB 1A1) is a small anti-inflammatory and immunomodulatory protein that is abundantly secreted in airway surface fluids. We recently reported the existence of three distinct SCGB1A1 genes in the domestic horse genome as opposed to the single gene copy consensus present in other mammals. The origin of SCGB1A1 gene triplication and the evolutionary relationship of the three genes amongst Equidae family members are unknown. For this study, SCGB1A1 genomic data were collected from various Equus individuals including E. caballus, E. przewalskii, E. asinus, E. grevyi, and E. quagga. Three SCGB1A1 genes in E. przewalskii, two SCGB1A1 genes in E. asinus, and a single SCGB1A1 gene in E. grevyi and E. quagga were identified. Sequence analysis revealed that the non-synonymous nucleotide substitutions between the different equid genes coded for 17 amino acid changes. Most of these changes localized to the SCGB 1A1 central cavity that binds hydrophobic ligands, suggesting that this area of SCGB 1A1 evolved to accommodate diverse molecular interactions. Three-dimensional modeling of the proteins revealed that the size of the SCGB 1A1 central cavity is larger than that of SCGB 1A1A. Altogether, these findings suggest that evolution of the SCGB1A1 gene may parallel the separation of caballine and non-caballine species amongst Equidae, and may indicate an expansion of function for SCGB1A1 gene products.

  6. Discrimination of Deletion and Duplication Subtypes of the Deleted in Azoospermia Gene Family in the Context of Frequent Interloci Gene Conversion

    PubMed Central

    Vaszkó, Tibor; Papp, János; Krausz, Csilla; Casamonti, Elena; Géczi, Lajos; Olah, Edith

    2016-01-01

    Due to its palindromic setup, AZFc (Azoospermia Factor c) region of chromosome Y is one of the most unstable regions of the human genome. It contains eight gene families expressed mainly in the testes. Several types of rearrangement resulting in changes in the cumulative copy number of the gene families were reported to be associated with diseases such as male infertility and testicular germ cell tumors. The best studied AZFc rearrangement is gr/gr deletion. Its carriers show widespread phenotypic variation from azoospermia to normospermia. This phenomenon was initially attributed to different gr/gr subtypes that would eliminate distinct members of the affected gene families. However, studies conducted to confirm this hypothesis have brought controversial results, perhaps, in part, due to the shortcomings of the utilized subtyping methodology. This proof-of-concept paper is meant to introduce here a novel method aimed at subtyping AZFc rearrangements. It is able to differentiate the partial deletion and partial duplication subtypes of the Deleted in Azoospermia (DAZ) gene family. The keystone of the method is the determination of the copy number of the gene family member-specific variant(s) in a series of sequence family variant (SFV) positions. Most importantly, we present a novel approach for the correct interpretation of the variant copy number data to determine the copy number of the individual DAZ family members in the context of frequent interloci gene conversion.Besides DAZ1/DAZ2 and DAZ3/DAZ4 deletions, not yet described rearrangements such as DAZ2/DAZ4 deletion and three duplication subtypes were also found by the utilization of the novel approach. A striking feature is the extremely high concordance among the individual data pointing to a certain type of rearrangement. In addition to being able to identify DAZ deletion subtypes more reliably than the methods used previously, this approach is the first that can discriminate DAZ duplication subtypes as well

  7. Molecular evolution of the vertebrate TLR1 gene family - a complex history of gene duplication, gene conversion, positive selection and co-evolution

    PubMed Central

    2011-01-01

    Background The Toll-like receptors represent a large superfamily of type I transmembrane glycoproteins, some common to a wide range of species and others are more restricted in their distribution. Most members of the Toll-like receptor superfamily have few paralogues; the exception is the TLR1 gene family with four closely related genes in mammals TLR1, TLR2, TLR6 and TLR10, and four in birds TLR1A, TLR1B, TLR2A and TLR2B. These genes were previously thought to have arisen by a series of independent gene duplications. To understand the evolutionary pattern of the TLR1 gene family in vertebrates further, we cloned the sequences of TLR1A, TLR1B, TLR2A and TLR2B in duck and turkey, constructed phylogenetic trees, predicted codons under positive selection and identified co-evolutionary amino acid pairs within the TLR1 gene family using sequences from 4 birds, 28 mammals, an amphibian and a fish. Results This detailed phylogenetic analysis not only clarifies the gene gains and losses within the TLR1 gene family of birds and mammals, but also defines orthologues between these vertebrates. In mammals, we predict amino acid sites under positive selection in TLR1, TLR2 and TLR6 but not TLR10. We detect co-evolution between amino acid residues in TLR2 and the other members of this gene family predicted to maintain their ability to form functional heterodimers. In birds, we predict positive selection in the TLR2A and TLR2B genes at functionally significant amino acid residues. We demonstrate that the TLR1 gene family has mostly been subject to purifying selection but has also responded to directional selection at a few sites, possibly in response to pathogen challenge. Conclusions Our phylogenetic and structural analyses of the vertebrate TLR1 family have clarified their evolutionary origins and predict amino acid residues likely to be important in the host's defense against invading pathogens. PMID:21619680

  8. Evolution by leaps: gene duplication in bacteria

    PubMed Central

    2009-01-01

    Background Sequence related families of genes and proteins are common in bacterial genomes. In Escherichia coli they constitute over half of the genome. The presence of families and superfamilies of proteins suggest a history of gene duplication and divergence during evolution. Genome encoded protein families, their size and functional composition, reflect metabolic potentials of the organisms they are found in. Comparing protein families of different organisms give insight into functional differences and similarities. Results Equivalent enzyme families with metabolic functions were selected from the genomes of four experimentally characterized bacteria belonging to separate genera. Both similarities and differences were detected in the protein family memberships, with more similarities being detected among the more closely related organisms. Protein family memberships reflected known metabolic characteristics of the organisms. Differences in divergence of functionally characterized enzyme family members accounted for characteristics of taxa known to differ in those biochemical properties and capabilities. While some members of the gene families will have been acquired by lateral exchange and other former family members will have been lost over time, duplication and divergence of genes and functions appear to have been a significant contributor to the functional diversity of today’s microbes. Conclusions Protein families seem likely to have arisen during evolution by gene duplication and divergence where the gene copies that have been retained are the variants that have led to distinct bacterial physiologies and taxa. Thus divergence of the duplicate enzymes has been a major process in the generation of different kinds of bacteria. Reviewers This article was reviewed by Drs. Iyer Aravind, Ardcady Mushegian, and Pierre Pontarotti. PMID:19930658

  9. Gene Duplication in SACCHAROMYCES CEREVISIAE

    PubMed Central

    Hansche, P. E.; Beres, V.; Lange, P.

    1978-01-01

    Five indepdendent duplications of the acid-phosphatase (aphtase) structural gene (acp1) were recovered from chemostat populations of S. cerevisiae that were subject to selection for in vivo hyper-aphtase activity. Two of the duplications arose spontaneously. Three of them were induced by UV. All five of the duplication events involved the transpositioning of the aphtase structural gene, acp1, and all known genes distal to acp1 on the right arm of chromosome II, to the terminus of an arm of other unknown chromosomes. One of the five duplicated regions of the right arm of chromosome II was found to be transmitted mitotically and meiotically with very high fidelity. The other four duplicated regions of the right arm of chromosome II were found to be unstable, being lost at a rate of about 2% per mitosis. However, selection for increased fidelity of mitotic transmission was effective in one of these strains. No tandem duplications of the aphtase structural gene were found. PMID:348562

  10. Primate segmental duplication creates novel promoters for the LRRC37 gene family within the 17q21.31 inversion polymorphism region

    PubMed Central

    Bekpen, Cemalettin; Tastekin, Ibrahim; Siswara, Priscillia; Akdis, Cezmi A.; Eichler, Evan E.

    2012-01-01

    The LRRC37 gene family maps to a complex region of the human genome and has been subjected to multiple rounds of segmental duplication. We investigate the expression and regulation of this gene family in multiple tissues and organisms and show a testis-specific expression of this gene family in mouse but a more ubiquitous pattern of expression among primates. Evolutionary and phylogenetic analyses support a model in which new alternative promoters have been acquired during primate evolution. We identify two promoters, Cl8 and particularly Cl3, both of which are highly active in the cerebellum and fetal brain in human and have been duplicated from a promoter region of two unrelated genes, BPTF and DND1, respectively. Two of these more broadly expressed gene family members, LRRC37A1 and A4, define the boundary of a common human inversion polymorphism mapping to chromosome 17q21.31 (the MAPT locus)—a region associated with risk for frontal temporal dementia, Parkinsonism, and intellectual disability. We propose that the regulation of the LRRC37 family occurred in a stepwise manner, acquiring foreign promoters from BPTF and DND1 via segmental duplication. This unusual evolutionary trajectory altered the regulation of the LRRC37 family, leading to increased expression in the fetal brain and cerebellum. PMID:22419166

  11. Functional requirements driving the gene duplication in 12 Drosophila species

    PubMed Central

    2013-01-01

    Background Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. Results In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. Conclusions This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila. PMID:23945147

  12. Evolutionary analysis of multidrug resistance genes in fungi - impact of gene duplication and family conservation.

    PubMed

    Gossani, Cristiani; Bellieny-Rabelo, Daniel; Venancio, Thiago M

    2014-11-01

    Although the emergence of bacterial drug resistance is of great concern to the scientific community, few studies have evaluated this phenomenon systematically in fungi by using genome-wide datasets. In the present study, we assembled a large compendium of Saccharomyces cerevisiae chemical genetic data to study the evolution of multidrug resistance genes (MDRs) in the fungal lineage. We found that MDRs typically emerge in widely conserved families, most of which containing homologs from pathogenic fungi, such as Candida albicans and Coccidioides immitis, which could favor the evolution of drug resistance in those species. By integrating data from chemical genetics with protein family conservation, genetic and protein interactions, we found that gene families rarely have more than one MDR, indicating that paralogs evolve asymmetrically with regard to multidrug resistance roles. Furthermore, MDRs have more genetic and protein interaction partners than non-MDRs, supporting their participation in complex biochemical systems underlying the tolerance to multiple bioactive molecules. MDRs share more chemical genetic interactions with other MDRs than with non-MDRs, regardless of their evolutionary affinity. These results suggest the existence of an intricate system involved in the global drug tolerance phenotypes. Finally, MDRs are more likely to be hit repeatedly by mutations in laboratory evolution experiments, indicating that they have great adaptive potential. The results presented here not only reveal the main genomic features underlying the evolution of MDRs, but also shed light on the gene families from which drug resistance is more likely to emerge in fungi.

  13. Organization of the prolamin gene family provides insight into the evolution of the maize genome and gene duplications in grass species

    PubMed Central

    Xu, Jian-Hong; Messing, Joachim

    2008-01-01

    Zea mays, commonly known as corn, is perhaps the most greatly produced crop in terms of tonnage and a major food, feed, and biofuel resource. Here we analyzed its prolamin gene family, encoding the major seed storage proteins, as a model for gene evolution by syntenic alignments with sorghum and rice, two genomes that have been sequenced recently. Because a high-density gene map has been constructed for maize inbred B73, all prolamin gene copies can be identified in their chromosomal context. Alignment of respective chromosomal regions of these species via conserved genes allow us to identify the pedigree of prolamin gene copies in space and time. Its youngest and largest gene family, the alpha prolamins, arose about 22–26 million years ago (Mya) after the split of the Panicoideae (including maize, sorghum, and millet) from the Pooideae (including wheat, barley, and oats) and Oryzoideae (rice). The first dispersal of alpha prolamin gene copies occurred before the split of the progenitors of maize and sorghum about 11.9 Mya. One of the two progenitors of maize gained a new alpha zein locus, absent in the other lineage, to form a nonduplicated locus in maize after allotetraplodization about 4.8 Mya. But dispersed copies gave rise to tandem duplications through uneven expansion and gene silencing of this gene family in maize and sorghum, possibly because of maize's greater recombination and mutation rates resulting from its diploidization process. Interestingly, new gene loci in maize represent junctions of ancestral chromosome fragments and sites of new centromeres in sorghum and rice. PMID:18794528

  14. Independent gene duplications of the YidC/Oxa/Alb3 family enabled a specialized cotranslational function

    PubMed Central

    Funes, Soledad; Hasona, Adnan; Bauerschmitt, Heike; Grubbauer, Caroline; Kauff, Frank; Collins, Ryan; Crowley, Paula J.; Palmer, Sara R.; Brady, L. Jeannine; Herrmann, Johannes M.

    2009-01-01

    YidC/Oxa/Alb3 family proteins catalyze the insertion of integral membrane proteins in bacteria, mitochondria, and chloroplasts, respectively. Unlike gram-negative organisms, gram-positive bacteria express 2 paralogs of this family, YidC1/SpoIIIJ and YidC2/YgjG. In Streptococcus mutans, deletion of yidC2 results in a stress-sensitive phenotype similar to that of mutants lacking the signal recognition particle (SRP) protein translocation pathway, while deletion of yidC1 has a less severe phenotype. In contrast to eukaryotes and gram-negative bacteria, SRP-deficient mutants are viable in S. mutans; however, double SRP-yidC2 mutants are severely compromised. Thus, YidC2 may enable loss of the SRP by playing an independent but overlapping role in cotranslational protein insertion into the membrane. This is reminiscent of the situation in mitochondria that lack an SRP pathway and where Oxa1 facilitates cotranslational membrane protein insertion by binding directly to translation-active ribosomes. Here, we show that OXA1 complements a lack of yidC2 in S. mutans. YidC2 also functions reciprocally in oxa1-deficient Saccharomyces cerevisiae mutants and mediates the cotranslational insertion of mitochondrial translation products into the inner membrane. YidC2, like Oxa1, contains a positively charged C-terminal extension and associates with translating ribosomes. Our results are consistent with a gene-duplication event in gram-positive bacteria that enabled the specialization of a YidC isoform that mediates cotranslational activity independent of an SRP pathway. PMID:19366667

  15. Subcellular Relocalization and Positive Selection Play Key Roles in the Retention of Duplicate Genes of Populus Class III Peroxidase Family[W][OPEN

    PubMed Central

    Ren, Lin-Ling; Liu, Yan-Jing; Liu, Hai-Jing; Qian, Ting-Ting; Qi, Li-Wang; Wang, Xiao-Ru; Zeng, Qing-Yin

    2014-01-01

    Gene duplication is the primary source of new genes and novel functions. Over the course of evolution, many duplicate genes lose their function and are eventually removed by deletion. However, some duplicates have persisted and evolved diverse functions. A particular challenge is to understand how this diversity arises and whether positive selection plays a role. In this study, we reconstructed the evolutionary history of the class III peroxidase (PRX) genes from the Populus trichocarpa genome. PRXs are plant-specific enzymes that play important roles in cell wall metabolism and in response to biotic and abiotic stresses. We found that two large tandem-arrayed clusters of PRXs evolved from an ancestral cell wall type PRX to vacuole type, followed by tandem duplications and subsequent functional specification. Substitution models identified seven positively selected sites in the vacuole PRXs. These positively selected sites showed significant effects on the biochemical functions of the enzymes. We also found that positive selection acts more frequently on residues adjacent to, rather than directly at, a critical active site of the enzyme, and on flexible regions rather than on rigid structural elements of the protein. Our study provides new insights into the adaptive molecular evolution of plant enzyme families. PMID:24934172

  16. Has gene duplication impacted the evolution of Eutherian longevity?

    PubMed

    Doherty, Aoife; de Magalhães, João Pedro

    2016-10-01

    One of the greatest unresolved questions in aging biology is determining the genetic basis of interspecies longevity variation. Gene duplication is often the key to understanding the origin and evolution of important Eutherian phenotypes. We systematically identified longevity-associated genes in model organisms that duplicated throughout Eutherian evolution. Longevity-associated gene families have a marginally significantly higher rate of duplication compared to non-longevity-associated gene families. Anti-longevity-associated gene families have significantly increased rate of duplication compared to pro-longevity gene families and are enriched in neurodegenerative disease categories. Conversely, duplicated pro-longevity-associated gene families are enriched in cell cycle genes. There is a cluster of longevity-associated gene families that expanded solely in long-lived species that is significantly enriched in pathways relating to 3-UTR-mediated translational regulation, metabolism of proteins and gene expression, pathways that have the potential to affect longevity. The identification of a gene cluster that duplicated solely in long-lived species involved in such fundamental processes provides a promising avenue for further exploration of Eutherian longevity evolution. PMID:27378378

  17. Recipient gene duplication during generalized transduction.

    PubMed

    Stodolsky, M

    1974-11-01

    An Hfr13 Delta(proA-lac) deletion recipient, -Delta(proA-lac)-F-purE(+)-, has been utilized in a study of the origins of duplications formed during chromosome fragment integration. Among the Pro(-)Lac(+) transductants, some have duplications spanning the F locus. These transductants are, or segregate, strains with F' episomes carrying genes of the duplication. Some of the duplications include purE(+), a gene which is not coinherited with lac(+) during bacteriophage P1-mediated transduction. Thus recipient genes have been duplicated during recombinant formation. Crossing-over models including replication steps provide a basis for explaining the duplication process.

  18. Genomic evidence for adaptation by gene duplication.

    PubMed

    Qian, Wenfeng; Zhang, Jianzhi

    2014-08-01

    Gene duplication is widely believed to facilitate adaptation, but unambiguous evidence for this hypothesis has been found in only a small number of cases. Although gene duplication may increase the fitness of the involved organisms by doubling gene dosage or neofunctionalization, it may also result in a simple division of ancestral functions into daughter genes, which need not promote adaptation. Hence, the general validity of the adaptation by gene duplication hypothesis remains uncertain. Indeed, a genome-scale experiment found similar fitness effects of deleting pairs of duplicate genes and deleting individual singleton genes from the yeast genome, leading to the conclusion that duplication rarely results in adaptation. Here we contend that the above comparison is unfair because of a known duplication bias among genes with different fitness contributions. To rectify this problem, we compare homologous genes from the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. We discover that simultaneously deleting a duplicate gene pair in S. cerevisiae reduces fitness significantly more than deleting their singleton counterpart in S. pombe, revealing post-duplication adaptation. The duplicates-singleton difference in fitness effect is not attributable to a potential increase in gene dose after duplication, suggesting that the adaptation is owing to neofunctionalization, which we find to be explicable by acquisitions of binary protein-protein interactions rather than gene expression changes. These results provide genomic evidence for the role of gene duplication in organismal adaptation and are important for understanding the genetic mechanisms of evolutionary innovation. PMID:24904045

  19. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    PubMed

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling. PMID:24716518

  20. Expansion of banana (Musa acuminata) gene families involved in ethylene biosynthesis and signalling after lineage-specific whole-genome duplications.

    PubMed

    Jourda, Cyril; Cardi, Céline; Mbéguié-A-Mbéguié, Didier; Bocs, Stéphanie; Garsmeur, Olivier; D'Hont, Angélique; Yahiaoui, Nabila

    2014-05-01

    Whole-genome duplications (WGDs) are widespread in plants, and three lineage-specific WGDs occurred in the banana (Musa acuminata) genome. Here, we analysed the impact of WGDs on the evolution of banana gene families involved in ethylene biosynthesis and signalling, a key pathway for banana fruit ripening. Banana ethylene pathway genes were identified using comparative genomics approaches and their duplication modes and expression profiles were analysed. Seven out of 10 banana ethylene gene families evolved through WGD and four of them (1-aminocyclopropane-1-carboxylate synthase (ACS), ethylene-insensitive 3-like (EIL), ethylene-insensitive 3-binding F-box (EBF) and ethylene response factor (ERF)) were preferentially retained. Banana orthologues of AtEIN3 and AtEIL1, two major genes for ethylene signalling in Arabidopsis, were particularly expanded. This expansion was paralleled by that of EBF genes which are responsible for control of EIL protein levels. Gene expression profiles in banana fruits suggested functional redundancy for several MaEBF and MaEIL genes derived from WGD and subfunctionalization for some of them. We propose that EIL and EBF genes were co-retained after WGD in banana to maintain balanced control of EIL protein levels and thus avoid detrimental effects of constitutive ethylene signalling. In the course of evolution, subfunctionalization was favoured to promote finer control of ethylene signalling.

  1. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms.

    PubMed

    Li, Zhen; Defoort, Jonas; Tasdighian, Setareh; Maere, Steven; Van de Peer, Yves; De Smet, Riet

    2016-02-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of "gene duplicability" is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes.

  2. Gene Duplicability of Core Genes Is Highly Consistent across All Angiosperms[OPEN

    PubMed Central

    Li, Zhen; Van de Peer, Yves; De Smet, Riet

    2016-01-01

    Gene duplication is an important mechanism for adding to genomic novelty. Hence, which genes undergo duplication and are preserved following duplication is an important question. It has been observed that gene duplicability, or the ability of genes to be retained following duplication, is a nonrandom process, with certain genes being more amenable to survive duplication events than others. Primarily, gene essentiality and the type of duplication (small-scale versus large-scale) have been shown in different species to influence the (long-term) survival of novel genes. However, an overarching view of “gene duplicability” is lacking, mainly due to the fact that previous studies usually focused on individual species and did not account for the influence of genomic context and the time of duplication. Here, we present a large-scale study in which we investigated duplicate retention for 9178 gene families shared between 37 flowering plant species, referred to as angiosperm core gene families. For most gene families, we observe a strikingly consistent pattern of gene duplicability across species, with gene families being either primarily single-copy or multicopy in all species. An intermediate class contains gene families that are often retained in duplicate for periods extending to tens of millions of years after whole-genome duplication, but ultimately appear to be largely restored to singleton status, suggesting that these genes may be dosage balance sensitive. The distinction between single-copy and multicopy gene families is reflected in their functional annotation, with single-copy genes being mainly involved in the maintenance of genome stability and organelle function and multicopy genes in signaling, transport, and metabolism. The intermediate class was overrepresented in regulatory genes, further suggesting that these represent putative dosage-balance-sensitive genes. PMID:26744215

  3. Tandem duplication within a neurofibromatosis type 1 (NF1) gene exon in a family with features of Watson syndrome and Noonan syndrome.

    PubMed Central

    Tassabehji, M; Strachan, T; Sharland, M; Colley, A; Donnai, D; Harris, R; Thakker, N

    1993-01-01

    Type 1 neurofibromatosis (NF1), Watson syndrome (WS), and Noonan syndrome (NS) show some overlap in clinical manifestations. In addition, WS has been shown to be linked to markers flanking the NF1 locus and a deletion at the NF1 locus demonstrated in a WS patient. This suggests either that WS and NF1 are allelic or that phenotypes arise from mutations in very closely linked genes. Here we provide evidence for the former by demonstrating a mutation in the NF1 gene in a family with features of both WS and NS. The mutation is an almost perfect in-frame tandem duplication of 42 bases in exon 28 of the NF1 gene. Unlike the mutations previously described in classical NF1, which show a preponderance of null alleles, the mutation in this family would be expected to result in a mutant neurofibromin product. Images Figure 1 Figure 2 PMID:8317503

  4. A Homozygous TPO Gene Duplication (c.1184_1187dup4) Causes Congenital Hypothyroidism in Three Siblings Born to a Consanguineous Family.

    PubMed

    Cangul, Hakan; Aydin, Banu K; Bas, Firdevs

    2015-12-01

    Congenital hypothyroidism (CH) is the most common neonatal endocrine disease, and germ-line mutations in the TPO gene cause the inherited form of the disease. Our aim in this study was to determine the genetic basis of congenital hypothyroidism in three affected children coming from a consanguineous Turkish family. Because CH is usually inherited in autosomal recessive manner in consanguineous/multicase families, we adopted a two-stage strategy of genetic linkage studies and targeted sequencing of the candidate genes. First, we investigated the potential genetic linkage of the family to any known CH locus, using microsatellite markers, and then screened for mutations in linked-gene by conventional sequencing. The family showed potential linkage to the TPO gene and we detected a homozygous duplication (c.1184_1187dup4) in all cases. The mutation segregated with disease status in the family. This study confirms the pathogenicity of the c.1184_1187dup4 mutation in the TPO gene and helps establish a genotype/phenotype correlation associated with this mutation. It also highlights the importance of molecular genetic studies in the definitive diagnosis and accurate classification of CH. PMID:27617131

  5. Gene duplication in the evolution of sexual dimorphism.

    PubMed

    Wyman, Minyoung J; Cutter, Asher D; Rowe, Locke

    2012-05-01

    Males and females share most of the same genes, so selection in one sex will typically produce a correlated response in the other sex. Yet, the sexes have evolved to differ in a multitude of behavioral, morphological, and physiological traits. How did this sexual dimorphism evolve despite the presence of a common underlying genome? We investigated the potential role of gene duplication in the evolution of sexual dimorphism. Because duplication events provide extra genetic material, the sexes each might use this redundancy to facilitate sex-specific gene expression, permitting the evolution of dimorphism. We investigated this hypothesis at the genome-wide level in Drosophila melanogaster, using the presence of sex-biased expression as a proxy for the sex-specific specialization of gene function. We expected that if sexually antagonistic selection is a potent force acting upon individual genes, duplication will result in paralog families whose members differ in sex-biased expression. Gene members of the same duplicate family can have different expression patterns in males versus females. In particular, duplicate pairs containing a male-biased gene are found more frequently than expected, in agreement with previous studies. Furthermore, when the singleton ortholog is unbiased, duplication appears to allow one of the paralog copies to acquire male-biased expression. Conversely, female-biased expression is not common among duplicates; fewer duplicate genes are expressed in the female-soma and ovaries than in the male-soma and testes. Expression divergence exists more in older than in younger duplicates pairs, but expression divergence does not correlate with protein sequence divergence. Finally, genomic proximity may have an effect on whether paralogs differ in sex-biased expression. We conclude that the data are consistent with a role of gene duplication in fostering male-biased, but not female-biased, gene expression, thereby aiding the evolution of sexual dimorphism.

  6. Neofunctionalization of young duplicate genes in Drosophila.

    PubMed

    Assis, Raquel; Bachtrog, Doris

    2013-10-22

    Gene duplication is a key source of genetic innovation that plays a role in the evolution of phenotypic complexity. Although several evolutionary processes can result in the long-term retention of duplicate genes, their relative contributions in nature are unknown. Here we develop a phylogenetic approach for comparing genome-wide expression profiles of closely related species to quantify the roles of conservation, neofunctionalization, subfunctionalization, and specialization in the preservation of duplicate genes. Application of our method to pairs of young duplicates in Drosophila shows that neofunctionalization, the gain of a novel function in one copy, accounts for the retention of almost two-thirds of duplicate genes. Surprisingly, novel functions nearly always originate in younger (child) copies, whereas older (parent) copies possess functions similar to those of ancestral genes. Further examination of such pairs reveals a strong bias toward RNA-mediated duplication events, implicating asymmetric duplication and positive selection in the evolution of new functions. Moreover, we show that young duplicate genes are expressed primarily in testes and that their expression breadth increases over evolutionary time. This finding supports the "out-of-testes" hypothesis, which posits that testes are a catalyst for the emergence of new genes that ultimately evolve functions in other tissues. Thus, our study highlights the importance of neofunctionalization and positive selection in the retention of young duplicates in Drosophila and illustrates how duplicates become incorporated into novel functional networks over evolutionary time.

  7. Sequencing of Pax6 loci from the elephant shark reveals a family of Pax6 genes in vertebrate genomes, forged by ancient duplications and divergences.

    PubMed

    Ravi, Vydianathan; Bhatia, Shipra; Gautier, Philippe; Loosli, Felix; Tay, Boon-Hui; Tay, Alice; Murdoch, Emma; Coutinho, Pedro; van Heyningen, Veronica; Brenner, Sydney; Venkatesh, Byrappa; Kleinjan, Dirk A

    2013-01-01

    family of Pax6 genes, forged by ancient duplication events and by independent, lineage-specific gene losses. PMID:23359656

  8. Clinical characterization and identification of duplication breakpoints in a Japanese family with Xq28 duplication syndrome including MECP2.

    PubMed

    Fukushi, Daisuke; Yamada, Kenichiro; Nomura, Noriko; Naiki, Misako; Kimura, Reiko; Yamada, Yasukazu; Kumagai, Toshiyuki; Yamaguchi, Kumiko; Miyake, Yoshishige; Wakamatsu, Nobuaki

    2014-04-01

    Xq28 duplication syndrome including MECP2 is a neurodevelopmental disorder characterized by axial hypotonia at infancy, severe intellectual disability, developmental delay, mild characteristic facial appearance, epilepsy, regression, and recurrent infections in males. We identified a Japanese family of Xq28 duplications, in which the patients presented with cerebellar ataxia, severe constipation, and small feet, in addition to the common clinical features. The 488-kb duplication spanned from L1CAM to EMD and contained 17 genes, two pseudo genes, and three microRNA-coding genes. FISH and nucleotide sequence analyses demonstrated that the duplication was tandem and in a forward orientation, and the duplication breakpoints were located in AluSc at the EMD side, with a 32-bp deletion, and LTR50 at the L1CAM side, with "tc" and "gc" microhomologies at the duplication breakpoints, respectively. The duplicated segment was completely segregated from the grandmother to the patients. These results suggest that the duplication was generated by fork-stalling and template-switching at the AluSc and LTR50 sites. This is the first report to determine the size and nucleotide sequences of the duplicated segments at Xq28 of three generations of a family and provides the genotype-phenotype correlation of the patients harboring the specific duplicated segment. PMID:24478188

  9. Simulating evolution by gene duplication.

    PubMed

    Ohta, T

    1987-01-01

    By considering the recent finding that unequal crossing over and other molecular interactions are contributing to the evolution of multigene families, a model of the origin of repetitive genes was studied by Monte Carlo simulations. Starting from a single gene copy, how genetic systems evolve was examined under unequal crossing over, random drift and natural selection. Both beneficial and deteriorating mutations were incorporated, and the latter were assumed to occur ten times more frequently than the former. Positive natural selection favors those chromosomes with more beneficial mutations in redundant copies than others in the population, but accumulation of deteriorating mutations (pseudogenes) have no effect on fitness so long as there remains a functional gene. The results imply the following: Positive natural selection is needed in order to acquire gene families with new functions. Without it, too many pseudogenes accumulate before attaining a functional gene family. There is a large fluctuation in the outcome even if parameters are the same. When unequal crossing over occurs more frequently, the system evolves more rapidly. It was also shown, under realistic values of parameters, that the genetic load for acquiring a new gene is not as large as J.B.S. Haldane suggested, but not so small as in a model in which a system for selection started from already redundant genes. PMID:3557113

  10. Life-threatening Arrhythmias in a Becker Muscular Dystrophy Family due to the Duplication of Exons 3-4 of the Dystrophin Gene.

    PubMed

    Ishizaki, Masatoshi; Fujimoto, Akiko; Ueyama, Hidetsugu; Nishida, Yasuto; Imamura, Shigehiro; Uchino, Makoto; Ando, Yukio

    2015-01-01

    We herein present a report of three patients with Becker muscular dystrophy in the same family who developed complete atrioventricular block or ventricular tachycardia with severe cardiomyopathy. Our cases became unable to walk in their teens, and were introduced to mechanical ventilation due to respiratory muscle weakness in their twenties and thirties. In all three cases, a medical device such as a permanent cardiac pacemaker or an implantable cardiac defibrillator was considered to be necessary. The duplication of exons 3-4 in the dystrophin gene was detected in two of the patients. In patients with Becker muscular dystrophy, complete atrioventricular block or ventricular tachycardia within a family has rarely been reported. Thus attention should be paid to the possibility of severe arrhythmias in the severe phenotype of Becker muscular dystrophy. PMID:26631896

  11. Divergence of the bZIP Gene Family in Strawberry, Peach, and Apple Suggests Multiple Modes of Gene Evolution after Duplication

    PubMed Central

    Wang, Xiao-Long; Zhong, Yan; Cheng, Zong-Ming; Xiong, Jin-Song

    2015-01-01

    The basic leucine zipper (bZIP) transcription factors are the most diverse members of dimerizing transcription factors. In the present study, 50, 116, and 47 bZIP genes were identified in Malus domestica (apple), Prunus persica (peach), and Fragaria vesca (strawberry), respectively. Species-specific duplication was the main contributor to the large number of bZIPs observed in apple. After WGD in apple genome, orthologous bZIP genes corresponding to strawberry on duplicated regions in apple genome were retained. However, in peach ancestor, these syntenic regions were quickly lost or deleted. Maybe the positive selection contributed to the expansion of clade S to adapt to the development and environment stresses. In addition, purifying selection was mainly responsible for bZIP sequence-specific DNA binding. The analysis of orthologous pairs between chromosomes indicates that these orthologs derived from one gene duplication located on one of the nine ancient chromosomes in the Rosaceae. The comparative analysis of bZIP genes in three species provides information on the evolutionary fate of bZIP genes in apple and peach after they diverged from strawberry. PMID:26770968

  12. Duplication of floral regulatory genes in the Lamiales.

    PubMed

    Aagaard, Jan E; Olmstead, Richard G; Willis, John H; Phillips, Patrick C

    2005-08-01

    Duplication of some floral regulatory genes has occurred repeatedly in angiosperms, whereas others are thought to be single-copy in most lineages. We selected three genes that interact in a pathway regulating floral development conserved among higher tricolpates (LFY/FLO, UFO/FIM, and AP3/DEF) and screened for copy number among families of Lamiales that are closely related to the model species Antirrhinum majus. We show that two of three genes have duplicated at least twice in the Lamiales. Phylogenetic analyses of paralogs suggest that an ancient whole genome duplication shared among many families of Lamiales occurred after the ancestor of these families diverged from the lineage leading to Veronicaceae (including the single-copy species A. majus). Duplication is consistent with previous patterns among angiosperm lineages for AP3/DEF, but this is the first report of functional duplicate copies of LFY/FLO outside of tetraploid species. We propose Lamiales taxa will be good models for understanding mechanisms of duplicate gene preservation and how floral regulatory genes may contribute to morphological diversity. PMID:21646149

  13. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes.

  14. Genome-wide identification and comparative expression analysis reveal a rapid expansion and functional divergence of duplicated genes in the WRKY gene family of cabbage, Brassica oleracea var. capitata.

    PubMed

    Yao, Qiu-Yang; Xia, En-Hua; Liu, Fei-Hu; Gao, Li-Zhi

    2015-02-15

    WRKY transcription factors (TFs), one of the ten largest TF families in higher plants, play important roles in regulating plant development and resistance. To date, little is known about the WRKY TF family in Brassica oleracea. Recently, the completed genome sequence of cabbage (B. oleracea var. capitata) allows us to systematically analyze WRKY genes in this species. A total of 148 WRKY genes were characterized and classified into seven subgroups that belong to three major groups. Phylogenetic and synteny analyses revealed that the repertoire of cabbage WRKY genes was derived from a common ancestor shared with Arabidopsis thaliana. The B. oleracea WRKY genes were found to be preferentially retained after the whole-genome triplication (WGT) event in its recent ancestor, suggesting that the WGT event had largely contributed to a rapid expansion of the WRKY gene family in B. oleracea. The analysis of RNA-Seq data from various tissues (i.e., roots, stems, leaves, buds, flowers and siliques) revealed that most of the identified WRKY genes were positively expressed in cabbage, and a large portion of them exhibited patterns of differential and tissue-specific expression, demonstrating that these gene members might play essential roles in plant developmental processes. Comparative analysis of the expression level among duplicated genes showed that gene expression divergence was evidently presented among cabbage WRKY paralogs, indicating functional divergence of these duplicated WRKY genes. PMID:25481634

  15. Differential selection after duplication in mammalian developmental genes.

    PubMed

    Dermitzakis, E T; Clark, A G

    2001-04-01

    Gene duplication provides the opportunity for subsequent refinement of distinct functions of the duplicated copies. Either through changes in coding sequence or changes in regulatory regions, duplicate copies appear to obtain new or tissue-specific functions. If this divergence were driven by natural selection, we would expect duplicated copies to have differentiated patterns of substitutions. We tested this hypothesis using genes that duplicated before the human/mouse split and whose orthologous relations were clear. The null hypothesis is that the number of amino acid changes between humans and mice was distributed similarly across different paralogs. We used a method modified from Tang and Lewontin to detect heterogeneity in the amino acid substitution pattern between those different paralogs. Our results show that many of the paralogous gene pairs appear to be under differential selection in the human/mouse comparison. The properties that led to diversification appear to have arisen before the split of the human and mouse lineages. Further study of the diverged genes revealed insights regarding the patterns of amino acid substitution that resulted in differences in function and/or expression of these genes. This approach has utility in the study of newly identified members of gene families in genomewide data mining and for contrasting the merits of alternative hypotheses for the evolutionary divergence of function of duplicated genes. PMID:11264407

  16. Evolution of Gene Duplication in Plants1[OPEN

    PubMed Central

    2016-01-01

    Ancient duplication events and a high rate of retention of extant pairs of duplicate genes have contributed to an abundance of duplicate genes in plant genomes. These duplicates have contributed to the evolution of novel functions, such as the production of floral structures, induction of disease resistance, and adaptation to stress. Additionally, recent whole-genome duplications that have occurred in the lineages of several domesticated crop species, including wheat (Triticum aestivum), cotton (Gossypium hirsutum), and soybean (Glycine max), have contributed to important agronomic traits, such as grain quality, fruit shape, and flowering time. Therefore, understanding the mechanisms and impacts of gene duplication will be important to future studies of plants in general and of agronomically important crops in particular. In this review, we survey the current knowledge about gene duplication, including gene duplication mechanisms, the potential fates of duplicate genes, models explaining duplicate gene retention, the properties that distinguish duplicate from singleton genes, and the evolutionary impact of gene duplication. PMID:27288366

  17. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.

    PubMed

    Lin, Yongxiang; Cheng, Ying; Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species. PMID:25047803

  18. Genome duplication and gene loss affect the evolution of heat shock transcription factor genes in legumes.

    PubMed

    Lin, Yongxiang; Cheng, Ying; Jin, Jing; Jin, Xiaolei; Jiang, Haiyang; Yan, Hanwei; Cheng, Beijiu

    2014-01-01

    Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.

  19. Drosophila melanogaster metallothionein genes: Selection for duplications

    SciTech Connect

    Lange, B.W.

    1989-01-01

    The metallothionein genes of Drosophila melanogaster, Mtn and Mto, may play an important role in heavy-metal detoxification. In order to investigate the possibility of increased selection for duplications of these genes in natural populations exposed to high levels of heavy metals, I compared the frequencies of such duplications among flies collected from metal-contaminated and non-contaminated orchards in Pennsylvania, Tennessee, and Georgia. Contaminated of collection sites and of local flies was confirmed by atomic absorption spectrosphotometry. Six-nucleotide-recognizing restriction enzyme analysis was used to screen 1666 wild third chromosomes for Mtn duplications. A subset (327) of these lines was screened for Mto duplications: none were found. Cadmium tolerance test performed on F{sub 2} progeny of wild females failed to detect a difference in tolerance levels between flies from contaminated orchards and flies from control orchards. Estimates of sequence diversity among a subsample (92) of the chromosomes used in the duplication survey, including all 27 Mtn duplication chromosomes, were obtained using four-nucleotide-recognizing restriction enzyme analysis.

  20. Evolutionary preservation of redundant duplicated genes.

    PubMed

    Krakauer, D C; Nowak, M A

    1999-10-01

    Gene duplication events produce both perfect and imperfect copies of genes. Perfect copies are said to be functionally redundant when knockout of one gene produces no 'scoreable', phenotypic effects. Preserving identical, duplicate copies of genes is problematic as all copies are prone to accumulate neutral mutations as pseudogenes, or more rarely, evolve into new genes with novel functions. We summarise theoretical treatments for the invasion and subsequent evolutionary modification of functionally redundant genes. We then consider the preservation of functionally identical copies of a gene over evolutionary time. We present several models for conserving redundancy: asymmetric mutation, asymmetric efficacy, pleiotropy, developmental buffering, allelic competition and regulatory asymmetries. In all cases, some form of symmetry breaking is required to maintain functional redundancy indefinitely.

  1. Duplicate genes increase gene expression diversity within and between species.

    PubMed

    Gu, Zhenglong; Rifkin, Scott A; White, Kevin P; Li, Wen-Hsiung

    2004-06-01

    Using microarray gene expression data from several Drosophila species and strains, we show that duplicated genes, compared with single-copy genes, significantly increase gene expression diversity during development. We show further that duplicate genes tend to cause expression divergences between Drosophila species (or strains) to evolve faster than do single-copy genes. This conclusion is also supported by data from different yeast strains.

  2. Horizontal Transfer, Not Duplication, Drives the Expansion of Protein Families in Prokaryotes

    PubMed Central

    Treangen, Todd J.; Rocha, Eduardo P. C.

    2011-01-01

    Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus), average-sized genomes (Bacillus, Enterobacteriaceae), and large genomes (Pseudomonas, Bradyrhizobiaceae) to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes—xenologs—persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes—paralogs—are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein–protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families. PMID:21298028

  3. Wanda: a database of duplicated fish genes

    PubMed Central

    Van de Peer, Yves; Taylor, John S.; Joseph, Jayabalan; Meyer, Axel

    2002-01-01

    Comparative genomics has shown that ray-finned fish (Actinopterygii) contain more copies of many genes than other vertebrates. A large number of these additional genes appear to have been produced during a genome duplication event that occurred early during the evolution of Actinopterygii (i.e. before the teleost radiation). In addition to this ancient genome duplication event, many lineages within Actinopterygii have experienced more recent genome duplications. Here we introduce a curated database named Wanda that lists groups of orthologous genes with one copy from man, mouse and chicken, one or two from tetraploid Xenopus and two or more ancient copies (i.e. paralogs) from ray-finned fish. The database also contains the sequence alignments and phylogenetic trees that were necessary for determining the correct orthologous and paralogous relationships among genes. Where available, map positions and functional data are also reported. The Wanda database should be of particular use to evolutionary and developmental biologists who are interested in the evolutionary and functional divergence of genes after duplication. Wanda is available at http://www.evolutionsbiologie.uni-konstanz.de/Wanda/. PMID:11752268

  4. Tempo and Mode of Gene Duplication in Mammalian Ribosomal Protein Evolution

    PubMed Central

    Gajdosik, Matthew D.; Simon, Amanda; Nelson, Craig E.

    2014-01-01

    Gene duplication has been widely recognized as a major driver of evolutionary change and organismal complexity through the generation of multi-gene families. Therefore, understanding the forces that govern the evolution of gene families through the retention or loss of duplicated genes is fundamentally important in our efforts to study genome evolution. Previous work from our lab has shown that ribosomal protein (RP) genes constitute one of the largest classes of conserved duplicated genes in mammals. This result was surprising due to the fact that ribosomal protein genes evolve slowly and transcript levels are very tightly regulated. In our present study, we identified and characterized all RP duplicates in eight mammalian genomes in order to investigate the tempo and mode of ribosomal protein family evolution. We show that a sizable number of duplicates are transcriptionally active and are very highly conserved. Furthermore, we conclude that existing gene duplication models do not readily account for the preservation of a very large number of intact retroduplicated ribosomal protein (RT-RP) genes observed in mammalian genomes. We suggest that selection against dominant-negative mutations may underlie the unexpected retention and conservation of duplicated RP genes, and may shape the fate of newly duplicated genes, regardless of duplication mechanism. PMID:25369106

  5. Evolutionary Analysis of Sequence Divergence and Diversity of Duplicate Genes in Aspergillus fumigatus

    PubMed Central

    Yang, Ence; Hulse, Amanda M.; Cai, James J.

    2012-01-01

    Gene duplication as a major source of novel genetic material plays an important role in evolution. In this study, we focus on duplicate genes in Aspergillus fumigatus, a ubiquitous filamentous fungus causing life-threatening human infections. We characterize the extent and evolutionary patterns of the duplicate genes in the genome of A. fumigatus. Our results show that A. fumigatus contains a large amount of duplicate genes with pronounced sequence divergence between two copies, and approximately 10% of them diverge asymmetrically, i.e. two copies of a duplicate gene pair diverge at significantly different rates. We use a Bayesian approach of the McDonald-Kreitman test to infer distributions of selective coefficients γ(=2Nes) and find that (1) the values of γ for two copies of duplicate genes co-vary positively and (2) the average γ for the two copies differs between genes from different gene families. This analysis highlights the usefulness of combining divergence and diversity data in studying the evolution of duplicate genes. Taken together, our results provide further support and refinement to the theories of gene duplication. Through characterizing the duplicate genes in the genome of A. fumigatus, we establish a computational framework, including parameter settings and methods, for comparative study of genetic redundancy and gene duplication between different fungal species. PMID:23225993

  6. Gene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci.

    PubMed Central

    Bailey, G S; Poulter, R T; Stockwell, P A

    1978-01-01

    Several groups of fishes, including salmonids and catastomids, appear to have originated through genome duplication events. However, these two groups retain approximately 50% of the loci examined as functioning duplicates, despite the passage of 50 million years or more of mutation and selection. Although other effects are not excluded, this apparently slow rate of duplicate silencing can be explained in terms of the effects of selection against defective double homozygotes to unlinked duplicates. We have derived a computer simulation of genetic drift that affords direct evaluation of the effects of population size (N), mutation rate (micron), initial allele frequencies, back mutation, fitness, and time on the probability of fixation for null alleles at unlinked duplicate loci. The results show that this probability is approximately linearly related to population size for N greater than or equal to 10(3). Specifically, for naive populations, the time for 50% probability of gene silencing is approximately equal to 15N + micron-3/4 generations. The retention of 50% of the loci as functional duplicates may therefore result from the large effective size of salmonid and catastomid populations. The results also show that, under most conditions for populations of 2000--3000 or larger, unlinked duplicate loci will be sustained in the functional state longer than tandem (linked) duplicates and hence are available for evolution of new functions for a longer time. PMID:281706

  7. Gene duplication within the Green Lineage: the case of TEL genes.

    PubMed

    Charon, Céline; Bruggeman, Quentin; Thareau, Vincent; Henry, Yves

    2012-09-01

    Recent years have witnessed a breathtaking increase in the availability of genome sequence data, providing evidence of the highly duplicate nature of eukaryotic genomes. Plants are exceptional among eukaryotic organisms in that duplicate loci compose a large fraction of their genomes, partly because of the frequent occurrence of polyploidy (or whole-genome duplication) events. Tandem gene duplication and transposition have also contributed to the large number of duplicated genes in plant genomes. Evolutionary analyses allowed the dynamics of duplicate gene evolution to be studied and several models were proposed. It seems that, over time, many duplicated genes were lost and some of those that were retained gained new functions and/or expression patterns (neofunctionalization) or subdivided their functions and/or expression patterns between them (subfunctionalization). Recent studies have provided examples of genes that originated by duplication with successive diversification within plants. In this review, we focused on the TEL (TERMINAL EAR1-like) genes to illustrate such mechanisms. Emerged from the mei2 gene family, these TEL genes are likely to be land plant-specific. Phylogenetic analyses revealed one or two TEL copies per diploid genome. TEL gene degeneration and loss in several Angiosperm species such as in poplar and maize seem to have occurred. In Arabidopsis thaliana, whose genome experienced at least three polyploidy events followed by massive gene loss and genomic reorganization, two TEL genes were retained and two new shorter TEL-like (MCT) genes emerged. Molecular and expression analyses suggest for these genes sub- and neofunctionalization events, but confirmation will come from their functional characterization.

  8. PTGBase: an integrated database to study tandem duplicated genes in plants

    PubMed Central

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54 130 tandem duplicated gene clusters (129 652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available. Database URL: http://ocri-genomics.org/PTGBase/. PMID:25797062

  9. PTGBase: an integrated database to study tandem duplicated genes in plants.

    PubMed

    Yu, Jingyin; Ke, Tao; Tehrim, Sadia; Sun, Fengming; Liao, Boshou; Hua, Wei

    2015-01-01

    Tandem duplication is a wide-spread phenomenon in plant genomes and plays significant roles in evolution and adaptation to changing environments. Tandem duplicated genes related to certain functions will lead to the expansion of gene families and bring increase of gene dosage in the form of gene cluster arrays. Many tandem duplication events have been studied in plant genomes; yet, there is a surprising shortage of efforts to systematically present the integration of large amounts of information about publicly deposited tandem duplicated gene data across the plant kingdom. To address this shortcoming, we developed the first plant tandem duplicated genes database, PTGBase. It delivers the most comprehensive resource available to date, spanning 39 plant genomes, including model species and newly sequenced species alike. Across these genomes, 54 130 tandem duplicated gene clusters (129 652 genes) are presented in the database. Each tandem array, as well as its member genes, is characterized in complete detail. Tandem duplicated genes in PTGBase can be explored through browsing or searching by identifiers or keywords of functional annotation and sequence similarity. Users can download tandem duplicated gene arrays easily to any scale, up to the complete annotation data set for an entire plant genome. PTGBase will be updated regularly with newly sequenced plant species as they become available.

  10. The evolutionary fate and consequences of duplicate genes.

    PubMed

    Lynch, M; Conery, J S

    2000-11-10

    Gene duplication has generally been viewed as a necessary source of material for the origin of evolutionary novelties, but it is unclear how often gene duplicates arise and how frequently they evolve new functions. Observations from the genomic databases for several eukaryotic species suggest that duplicate genes arise at a very high rate, on average 0.01 per gene per million years. Most duplicated genes experience a brief period of relaxed selection early in their history, with a moderate fraction of them evolving in an effectively neutral manner during this period. However, the vast majority of gene duplicates are silenced within a few million years, with the few survivors subsequently experiencing strong purifying selection. Although duplicate genes may only rarely evolve new functions, the stochastic silencing of such genes may play a significant role in the passive origin of new species.

  11. Gene duplication and transfer events in plant mitochondria genome

    SciTech Connect

    Xiong Aisheng Peng Rihe; Zhuang Jing; Gao Feng; Zhu Bo; Fu Xiaoyan; Xue Yong; Jin Xiaofen; Tian Yongsheng; Zhao Wei; Yao Quanhong

    2008-11-07

    Gene or genome duplication events increase the amount of genetic material available to increase the genomic, and thereby phenotypic, complexity of organisms during evolution. Gene duplication and transfer events have been important to molecular evolution in all three domains of life, and may be the first step in the emergence of new gene functions. Gene transfer events have been proposed as another accelerator of evolution. The duplicated gene or genome, mainly nuclear, has been the subject of several recent reviews. In addition to the nuclear genome, organisms have organelle genomes, including mitochondrial genome. In this review, we briefly summarize gene duplication and transfer events in the plant mitochondrial genome.

  12. Natural history and evolutionary principles of gene duplication in fungi.

    PubMed

    Wapinski, Ilan; Pfeffer, Avi; Friedman, Nir; Regev, Aviv

    2007-09-01

    Gene duplication and loss is a powerful source of functional innovation. However, the general principles that govern this process are still largely unknown. With the growing number of sequenced genomes, it is now possible to examine these events in a comprehensive and unbiased manner. Here, we develop a procedure that resolves the evolutionary history of all genes in a large group of species. We apply our procedure to seventeen fungal genomes to create a genome-wide catalogue of gene trees that determine precise orthology and paralogy relations across these species. We show that gene duplication and loss is highly constrained by the functional properties and interacting partners of genes. In particular, stress-related genes exhibit many duplications and losses, whereas growth-related genes show selection against such changes. Whole-genome duplication circumvents this constraint and relaxes the dichotomy, resulting in an expanded functional scope of gene duplication. By characterizing the functional fate of duplicate genes we show that duplicated genes rarely diverge with respect to biochemical function, but typically diverge with respect to regulatory control. Surprisingly, paralogous modules of genes rarely arise, even after whole-genome duplication. Rather, gene duplication may drive the modularization of functional networks through specialization, thereby disentangling cellular systems.

  13. Preservation of duplicate genes by complementary, degenerative mutations.

    PubMed Central

    Force, A; Lynch, M; Pickett, F B; Amores, A; Yan, Y L; Postlethwait, J

    1999-01-01

    The origin of organismal complexity is generally thought to be tightly coupled to the evolution of new gene functions arising subsequent to gene duplication. Under the classical model for the evolution of duplicate genes, one member of the duplicated pair usually degenerates within a few million years by accumulating deleterious mutations, while the other duplicate retains the original function. This model further predicts that on rare occasions, one duplicate may acquire a new adaptive function, resulting in the preservation of both members of the pair, one with the new function and the other retaining the old. However, empirical data suggest that a much greater proportion of gene duplicates is preserved than predicted by the classical model. Here we present a new conceptual framework for understanding the evolution of duplicate genes that may help explain this conundrum. Focusing on the regulatory complexity of eukaryotic genes, we show how complementary degenerative mutations in different regulatory elements of duplicated genes can facilitate the preservation of both duplicates, thereby increasing long-term opportunities for the evolution of new gene functions. The duplication-degeneration-complementation (DDC) model predicts that (1) degenerative mutations in regulatory elements can increase rather than reduce the probability of duplicate gene preservation and (2) the usual mechanism of duplicate gene preservation is the partitioning of ancestral functions rather than the evolution of new functions. We present several examples (including analysis of a new engrailed gene in zebrafish) that appear to be consistent with the DDC model, and we suggest several analytical and experimental approaches for determining whether the complementary loss of gene subfunctions or the acquisition of novel functions are likely to be the primary mechanisms for the preservation of gene duplicates. For a newly duplicated paralog, survival depends on the outcome of the race between

  14. Further Examples of Evolution by Gene Duplication Revealed through DNA Sequence Comparisons

    PubMed Central

    Ohta, T.

    1994-01-01

    To test the theory that evolution by gene duplication occurs as a result of positive Darwinian selection that accompanies the acceleration of mutant substitutions, DNA sequences of recent duplication were analyzed by estimating the numbers of synonymous and nonsynonymous substitutions. For the troponin C family, at the period of differentiation of the fast and slow isoforms, amino acid substitutions were shown to have been accelerated relative to synonymous substitutions. Comparison of the first exon of α-actin genes revealed that amino acid substitutions were accelerated when the smooth muscle, skeletal and cardiac isoforms differentiated. Analysis of members of the heat shock protein 70 gene family of mammals indicates that heat shock responsive genes including duplicated copies are evolving rapidly, contrary to the cognitive genes which have been evolutionarily conservative. For the α(1)-antitrypsin reactive center, the acceleration of amino acid substitution has been found for gene pairs of recent duplication. PMID:7896112

  15. Duplicate gene divergence by changes in microRNA binding sites in Arabidopsis and Brassica.

    PubMed

    Wang, Sishuo; Adams, Keith L

    2015-03-01

    Gene duplication provides large numbers of new genes that can lead to the evolution of new functions. Duplicated genes can diverge by changes in sequences, expression patterns, and functions. MicroRNAs play an important role in the regulation of gene expression in many eukaryotes. After duplication, two paralogs may diverge in their microRNA binding sites, which might impact their expression and function. Little is known about conservation and divergence of microRNA binding sites in duplicated genes in plants. We analyzed microRNA binding sites in duplicated genes in Arabidopsis thaliana and Brassica rapa. We found that duplicates are more often targeted by microRNAs than singletons. The vast majority of duplicated genes in A. thaliana with microRNA binding sites show divergence in those sites between paralogs. Analysis of microRNA binding sites in genes derived from the ancient whole-genome triplication in B. rapa also revealed extensive divergence. Paralog pairs with divergent microRNA binding sites show more divergence in expression patterns compared with paralog pairs with the same microRNA binding sites in Arabidopsis. Close to half of the cases of binding site divergence are caused by microRNAs that are specific to the Arabidopsis genus, indicating evolutionarily recent gain of binding sites after target gene duplication. We also show rapid evolution of microRNA binding sites in a jacalin gene family. Our analyses reveal a dynamic process of changes in microRNA binding sites after gene duplication in Arabidopsis and highlight the role of microRNA regulation in the divergence and contrasting evolutionary fates of duplicated genes.

  16. Duplicate gene divergence by changes in microRNA binding sites in Arabidopsis and Brassica.

    PubMed

    Wang, Sishuo; Adams, Keith L

    2015-03-01

    Gene duplication provides large numbers of new genes that can lead to the evolution of new functions. Duplicated genes can diverge by changes in sequences, expression patterns, and functions. MicroRNAs play an important role in the regulation of gene expression in many eukaryotes. After duplication, two paralogs may diverge in their microRNA binding sites, which might impact their expression and function. Little is known about conservation and divergence of microRNA binding sites in duplicated genes in plants. We analyzed microRNA binding sites in duplicated genes in Arabidopsis thaliana and Brassica rapa. We found that duplicates are more often targeted by microRNAs than singletons. The vast majority of duplicated genes in A. thaliana with microRNA binding sites show divergence in those sites between paralogs. Analysis of microRNA binding sites in genes derived from the ancient whole-genome triplication in B. rapa also revealed extensive divergence. Paralog pairs with divergent microRNA binding sites show more divergence in expression patterns compared with paralog pairs with the same microRNA binding sites in Arabidopsis. Close to half of the cases of binding site divergence are caused by microRNAs that are specific to the Arabidopsis genus, indicating evolutionarily recent gain of binding sites after target gene duplication. We also show rapid evolution of microRNA binding sites in a jacalin gene family. Our analyses reveal a dynamic process of changes in microRNA binding sites after gene duplication in Arabidopsis and highlight the role of microRNA regulation in the divergence and contrasting evolutionary fates of duplicated genes. PMID:25644246

  17. Adaptive evolution of young gene duplicates in mammals

    PubMed Central

    Han, Mira V.; Demuth, Jeffery P.; McGrath, Casey L.; Casola, Claudio; Hahn, Matthew W.

    2009-01-01

    Duplicate genes act as a source of genetic material from which new functions arise. They exist in large numbers in every sequenced eukaryotic genome and may be responsible for many differences in phenotypes between species. However, recent work searching for the targets of positive selection in humans has largely ignored duplicated genes due to complications in orthology assignment. Here we find that a high proportion of young gene duplicates in the human, macaque, mouse, and rat genomes have experienced adaptive natural selection. Approximately 10% of all lineage-specific duplicates show evidence for positive selection on their protein sequences, larger than any reported amount of selection among single-copy genes in these lineages using similar methods. We also find that newly duplicated genes that have been transposed to new chromosomal locations are significantly more likely to have undergone positive selection than the ancestral copy. Human-specific duplicates evolving under adaptive natural selection include a surprising number of genes involved in neuronal and cognitive functions. Our results imply that genome scans for selection that ignore duplicated loci are missing a large fraction of all adaptive substitutions. The results are also in agreement with the classical model of evolution by gene duplication, supporting a common role for neofunctionalization in the long-term maintenance of gene duplicates. PMID:19411603

  18. Expression of tandem gene duplicates is often greater than twofold

    PubMed Central

    Loehlin, David W.; Carroll, Sean B.

    2016-01-01

    Tandem gene duplication is an important mutational process in evolutionary adaptation and human disease. Hypothetically, two tandem gene copies should produce twice the output of a single gene, but this expectation has not been rigorously investigated. Here, we show that tandem duplication often results in more than double the gene activity. A naturally occurring tandem duplication of the Alcohol dehydrogenase (Adh) gene exhibits 2.6-fold greater expression than the single-copy gene in transgenic Drosophila. This tandem duplication also exhibits greater activity than two copies of the gene in trans, demonstrating that it is the tandem arrangement and not copy number that is the cause of overactivity. We also show that tandem duplication of an unrelated synthetic reporter gene is overactive (2.3- to 5.1-fold) at all sites in the genome that we tested, suggesting that overactivity could be a general property of tandem gene duplicates. Overactivity occurs at the level of RNA transcription, and therefore tandem duplicate overactivity appears to be a previously unidentified form of position effect. The increment of surplus gene expression observed is comparable to many regulatory mutations fixed in nature and, if typical of other genomes, would shape the fate of tandem duplicates in evolution. PMID:27162370

  19. The probability of duplicate gene preservation by subfunctionalization.

    PubMed Central

    Lynch, M; Force, A

    2000-01-01

    It has often been argued that gene-duplication events are most commonly followed by a mutational event that silences one member of the pair, while on rare occasions both members of the pair are preserved as one acquires a mutation with a beneficial function and the other retains the original function. However, empirical evidence from genome duplication events suggests that gene duplicates are preserved in genomes far more commonly and for periods far in excess of the expectations under this model, and whereas some gene duplicates clearly evolve new functions, there is little evidence that this is the most common mechanism of duplicate-gene preservation. An alternative hypothesis is that gene duplicates are frequently preserved by subfunctionalization, whereby both members of a pair experience degenerative mutations that reduce their joint levels and patterns of activity to that of the single ancestral gene. We consider the ways in which the probability of duplicate-gene preservation by such complementary mutations is modified by aspects of gene structure, degree of linkage, mutation rates and effects, and population size. Even if most mutations cause complete loss-of-subfunction, the probability of duplicate-gene preservation can be appreciable if the long-term effective population size is on the order of 10(5) or smaller, especially if there are more than two independently mutable subfunctions per locus. Even a moderate incidence of partial loss-of-function mutations greatly elevates the probability of preservation. The model proposed herein leads to quantitative predictions that are consistent with observations on the frequency of long-term duplicate gene preservation and with observations that indicate that a common fate of the members of duplicate-gene pairs is the partitioning of tissue-specific patterns of expression of the ancestral gene. PMID:10629003

  20. Drosophila duplicate genes evolve new functions on the fly.

    PubMed

    Assis, Raquel

    2014-01-01

    Gene duplication is thought to play a key role in phenotypic innovation. While several processes have been hypothesized to drive the retention and functional evolution of duplicate genes, their genomic contributions have never been determined. We recently developed the first genome-wide method to classify these processes by comparing distances between expression profiles of duplicate genes and their ancestral single-copy orthologs. Application of our approach to spatial gene expression profiles in two Drosophila species revealed that a majority of young duplicate genes possess new functions, and that new functions are acquired rapidly-often within a few million years. Surprisingly, new functions tend to arise in younger copies of duplicate gene pairs. Moreover, we found that young duplicates are often specifically expressed in testes, whereas old duplicates are broadly expressed across several tissues, providing strong support for the hypothetical "out-of-testes" origin of new genes. In this Extra View, I discuss our findings in the context of theoretical predictions about gene duplication, with a particular emphasis on the importance of natural selection in the evolution of novel phenotypes.

  1. Dating and functional characterization of duplicated genes in the apple (Malus domestica Borkh.) by analyzing EST data

    PubMed Central

    2010-01-01

    Background Gene duplication is central to genome evolution. In plants, genes can be duplicated through small-scale events and large-scale duplications often involving polyploidy. The apple belongs to the subtribe Pyrinae (Rosaceae), a diverse lineage that originated via allopolyploidization. Both small-scale duplications and polyploidy may have been important mechanisms shaping the genome of this species. Results This study evaluates the gene duplication and polyploidy history of the apple by characterizing duplicated genes in this species using EST data. Overall, 68% of the apple genes were clustered into families with a mean copy-number of 4.6. Analysis of the age distribution of gene duplications supported a continuous mode of small-scale duplications, plus two episodes of large-scale duplicates of vastly different ages. The youngest was consistent with the polyploid origin of the Pyrinae 37-48 MYBP, whereas the older may be related to γ-triplication; an ancient hexapolyploidization previously characterized in the four sequenced eurosid genomes and basal to the eurosid-asterid divergence. Duplicated genes were studied for functional diversification with an emphasis on young paralogs; those originated during or after the formation of the Pyrinae lineage. Unequal assignment of single-copy genes and gene families to Gene Ontology categories suggested functional bias in the pattern of gene retention of paralogs. Young paralogs related to signal transduction, metabolism, and energy pathways have been preferentially retained. Non-random retention of duplicated genes seems to have mediated the expansion of gene families, some of which may have substantially increased their members after the origin of the Pyrinae. The joint analysis of over-duplicated functional categories and phylogenies, allowed evaluation of the role of both polyploidy and small-scale duplications during this process. Finally, gene expression analysis indicated that 82% of duplicated genes

  2. Multiple Routes to Subfunctionalization and Gene Duplicate Specialization

    PubMed Central

    Proulx, Stephen R.

    2012-01-01

    Gene duplication is arguably the most significant source of new functional genetic material. A better understanding of the processes that lead to the stable incorporation of gene duplications into the genome is important both because it relates to interspecific differences in genome composition and because it can shed light on why some classes of gene are more prone to duplication than others. Typically, models of gene duplication consider the periods before duplication, during the spread and fixation of a new duplicate, and following duplication as distinct phases without a common underlying selective environment. I consider a scenario where a gene that is initially expressed in multiple contexts can undergo mutations that alter its expression profile or its functional coding sequence. The selective regime that acts on the functional output of the allele copies carried by an individual is constant. If there is a potential selective benefit to having different coding sequences expressed in each context, then, regardless of the constraints on functional variation at the single-locus gene, the waiting time until a gene duplication is incorporated goes down as population size increases. PMID:22143920

  3. Protein Subcellular Relocalization Increases the Retention of Eukaryotic Duplicate Genes

    PubMed Central

    Byun, S. Ashley; Singh, Sarabdeep

    2013-01-01

    Gene duplication is widely accepted as a key evolutionary process, leading to new genes and novel protein functions. By providing the raw genetic material necessary for functional expansion, the mechanisms that involve the retention and functional diversification of duplicate genes are one of the central topics in evolutionary and comparative genomics. One proposed source of retention and functional diversification is protein subcellular relocalization (PSR). PSR postulates that changes in the subcellular location of eukaryotic duplicate proteins can positively modify function and therefore be beneficial to the organism. As such, PSR would promote retention of those relocalized duplicates and result in significantly lower death rates compared with death rates of nonrelocalized duplicate pairs. We surveyed both relocalized and nonrelocalized duplicate proteins from the available genomes and proteomes of 59 eukaryotic species and compared their relative death rates over a Ks range between 0 and 1. Using the Cox proportional hazard model, we observed that the death rates of relocalized duplicate pairs were significantly lower than the death rates of the duplicates without relocalization in most eukaryotic species examined in this study. These observations suggest that PSR significantly increases retention of duplicate genes and that it plays an important, but currently underappreciated, role in the evolution of eukaryotic genomes. PMID:24265504

  4. Whole Genome and Tandem Duplicate Retention Facilitated Glucosinolate Pathway Diversification in the Mustard Family

    PubMed Central

    Hofberger, Johannes A.; Lyons, Eric; Edger, Patrick P.; Chris Pires, J.; Eric Schranz, M.

    2013-01-01

    Plants share a common history of successive whole-genome duplication (WGD) events retaining genomic patterns of duplicate gene copies (ohnologs) organized in conserved syntenic blocks. Duplication was often proposed to affect the origin of novel traits during evolution. However, genetic evidence linking WGD to pathway diversification is scarce. We show that WGD and tandem duplication (TD) accelerated genetic versatility of plant secondary metabolism, exemplified with the glucosinolate (GS) pathway in the mustard family. GS biosynthesis is a well-studied trait, employing at least 52 biosynthetic and regulatory genes in the model plant Arabidopsis. In a phylogenomics approach, we identified 67 GS loci in Aethionema arabicum of the tribe Aethionemae, sister group to all mustard family members. All but one of the Arabidopsis GS gene families evolved orthologs in Aethionema and all but one of the orthologous sequence pairs exhibit synteny. The 45% fraction of duplicates among all protein-coding genes in Arabidopsis was increased to 95% and 97% for Arabidopsis and Aethionema GS pathway inventory, respectively. Compared with the 22% average for all protein-coding genes in Arabidopsis, 52% and 56% of Aethionema and Arabidopsis GS loci align to ohnolog copies dating back to the last common WGD event. Although 15% of all Arabidopsis genes are organized in tandem arrays, 45% and 48% of GS loci in Arabidopsis and Aethionema descend from TD, respectively. We describe a sequential combination of TD and WGD events driving gene family extension, thereby expanding the evolutionary playground for functional diversification and thus potential novelty and success. PMID:24171911

  5. Evidence for an early gene duplication event in the evolution of the mitochondrial transcription factor B family and maintenance of rRNA methyltransferase activity in human mtTFB1 and mtTFB2.

    PubMed

    Cotney, Justin; Shadel, Gerald S

    2006-11-01

    Most metazoans have two nuclear genes encoding orthologues of the well-characterized Saccharomyces cerevisiae mitochondrial transcription factor B (sc-mtTFB). This class of transcription factors is homologous to the bacterial KsgA family of rRNA methyltransferases, which in Escherichia coli dimethylates adjacent adenine residues in a stem-loop of the 16S rRNA. This posttranscriptional modification is conserved in most metazoan cytoplasmic and mitochondrial rRNAs. Homo sapiens mitochondrial transcription factor B1 (h-mtTFB1) possesses this enzymatic activity, implicating it as a dual-function protein involved in mitochondrial transcription and translation. Here we demonstrate that h-mtTFB2 also has rRNA methyltransferase activity but is a less efficient enzyme than h-mtTFB1. In contrast, sc-mtTFB has no detectable rRNA methyltransferase activity, correlating with the lack of the corresponding modification in the mitochondrial rRNA of budding yeast. Based on these results, and reports that Drosophila melanogaster mtTFB1 and mtTFB2 do not have completely overlapping functions, we propose a model for human mtDNA regulation that takes into account h-mtTFB1 and h-mtTFB2 likely having partially redundant transcription factor and rRNA methyltransferase functions. Finally, phylogenetic analyses of this family of proteins strongly suggest that the presence of two mtTFB homologues in metazoans is the result of a gene duplication event that occurred early in eukaryotic evolution prior to the divergence of fungi and metazoans. This model suggests that, after the gene duplication event, differential selective pressures on the rRNA methyltransferase and transcription factor activities of mtTFB genes occurred, with extreme cases culminating in the loss of one of the paralogous genes in certain species.

  6. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution

    PubMed Central

    Clarke, Thomas H.; Garb, Jessica E.; Hayashi, Cheryl Y.; Arensburger, Peter; Ayoub, Nadia A.

    2015-01-01

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae). PMID:26058392

  7. Spider Transcriptomes Identify Ancient Large-Scale Gene Duplication Event Potentially Important in Silk Gland Evolution.

    PubMed

    Clarke, Thomas H; Garb, Jessica E; Hayashi, Cheryl Y; Arensburger, Peter; Ayoub, Nadia A

    2015-06-08

    The evolution of specialized tissues with novel functions, such as the silk synthesizing glands in spiders, is likely an influential driver of adaptive success. Large-scale gene duplication events and subsequent paralog divergence are thought to be required for generating evolutionary novelty. Such an event has been proposed for spiders, but not tested. We de novo assembled transcriptomes from three cobweb weaving spider species. Based on phylogenetic analyses of gene families with representatives from each of the three species, we found numerous duplication events indicative of a whole genome or segmental duplication. We estimated the age of the gene duplications relative to several speciation events within spiders and arachnids and found that the duplications likely occurred after the divergence of scorpions (order Scorpionida) and spiders (order Araneae), but before the divergence of the spider suborders Mygalomorphae and Araneomorphae, near the evolutionary origin of spider silk glands. Transcripts that are expressed exclusively or primarily within black widow silk glands are more likely to have a paralog descended from the ancient duplication event and have elevated amino acid replacement rates compared with other transcripts. Thus, an ancient large-scale gene duplication event within the spider lineage was likely an important source of molecular novelty during the evolution of silk gland-specific expression. This duplication event may have provided genetic material for subsequent silk gland diversification in the true spiders (Araneomorphae).

  8. Histone modification pattern evolution after yeast gene duplication

    PubMed Central

    2012-01-01

    Background Gene duplication and subsequent functional divergence especially expression divergence have been widely considered as main sources for evolutionary innovations. Many studies evidenced that genetic regulatory network evolved rapidly shortly after gene duplication, thus leading to accelerated expression divergence and diversification. However, little is known whether epigenetic factors have mediated the evolution of expression regulation since gene duplication. In this study, we conducted detailed analyses on yeast histone modification (HM), the major epigenetics type in this organism, as well as other available functional genomics data to address this issue. Results Duplicate genes, on average, share more common HM-code patterns than random singleton pairs in their promoters and open reading frames (ORF). Though HM-code divergence between duplicates in both promoter and ORF regions increase with their sequence divergence, the HM-code in ORF region evolves slower than that in promoter region, probably owing to the functional constraints imposed on protein sequences. After excluding the confounding effect of sequence divergence (or evolutionary time), we found the evidence supporting the notion that in yeast, the HM-code may co-evolve with cis- and trans-regulatory factors. Moreover, we observed that deletion of some yeast HM-related enzymes increases the expression divergence between duplicate genes, yet the effect is lower than the case of transcription factor (TF) deletion or environmental stresses. Conclusions Our analyses demonstrate that after gene duplication, yeast histone modification profile between duplicates diverged with evolutionary time, similar to genetic regulatory elements. Moreover, we found the evidence of the co-evolution between genetic and epigenetic elements since gene duplication, together contributing to the expression divergence between duplicate genes. PMID:22776110

  9. A familial 7q36.3 duplication associated with agenesis of the corpus callosum.

    PubMed

    Wong, Keith; Moldrich, Randal; Hunter, Matthew; Edwards, Matthew; Finlay, David; O'Donnell, Sheridan; MacDougall, Tom; Bain, Nicole; Kamien, Benjamin

    2015-09-01

    Small chromosomal duplications involving 7q36.3 have rarely been reported. This clinical report describes four individuals from a three-generation family with agenesis of the corpus callosum (ACC) and a 0.73 Mb duplication of 7q36.3 detected by array CGH. The 7q36.3 duplication involves two genes: RNA Binding Motif Protein 33 (RBM33) and Sonic Hedgehog (SHH). Most affected family members had mild intellectual disability or borderline intellectual functioning, macrocephaly, a broad forehead, and widely spaced eyes. Two individuals had a Chiari type I malformation. This is the first family reported with ACC associated with a small duplication of these genes. While we cannot establish causation for the relationship between any single gene and the ACC in this family, there is a role for SHH in the formation of the corpus callosum through correct patterning and assembly of the commissural plate, and these data concur with vertebrate studies showing that a gain of SHH expands the facial primordium.

  10. Gene duplication and the evolution of moonlighting proteins

    PubMed Central

    Espinosa-Cantú, Adriana; Ascencio, Diana; Barona-Gómez, Francisco; DeLuna, Alexander

    2015-01-01

    Gene duplication is a recurring phenomenon in genome evolution and a major driving force in the gain of biological functions. Here, we examine the role of gene duplication in the origin and maintenance of moonlighting proteins, with special focus on functional redundancy and innovation, molecular tradeoffs, and genetic robustness. An overview of specific examples-mainly from yeast-suggests a widespread conservation of moonlighting behavior in duplicate genes after long evolutionary times. Dosage amplification and incomplete subfunctionalization appear to be prevalent in the maintenance of multifunctionality. We discuss the role of gene-expression divergence and paralog responsiveness in moonlighting proteins with overlapping biochemical properties. Future studies analyzing multifunctional genes in a more systematic and comprehensive manner will not only enable a better understanding of how this emerging class of protein behavior originates and is maintained, but also provide new insights on the mechanisms of evolution by gene duplication. PMID:26217376

  11. The circadian clock of teleost fish: a comparative analysis reveals distinct fates for duplicated genes.

    PubMed

    Toloza-Villalobos, Jessica; Arroyo, José Ignacio; Opazo, Juan C

    2015-01-01

    The circadian clock is a central oscillator that coordinates endogenous rhythms. Members of six gene families underlie the metabolic machinery of this system. Although this machinery appears to correspond to a highly conserved genetic system in metazoans, it has been recognized that vertebrates possess a more diverse gene inventory than that of non-vertebrates. This difference could have originated in the two successive rounds of whole-genome duplications that took place in the common ancestor of the group. Teleost fish underwent an extra event of whole-genome duplication, which is thought to have provided an abundance of raw genetic material for the biological innovations that facilitated the radiation of the group. In this study, we assessed the relative contributions of whole-genome duplication and small-scale gene duplication to generate the repertoire of genes associated with the circadian clock of teleost fish. To achieve this goal, we annotated genes from six gene families associated with the circadian clock in eight teleost fish species, and we reconstructed their evolutionary history by inferring phylogenetic relationships. Our comparative analysis indicated that teleost species possess a variable repertoire of genes related to the circadian clock gene families and that the actual diversity of these genes has been shaped by a variety of phenomena, such as the complete deletion of ohnologs, the differential retention of genes, and lineage-specific gene duplications. From a functional perspective, the subfunctionalization of two ohnolog genes (PER1a and PER1b) in zebrafish highlights the power of whole-genome duplications to generate biological diversity.

  12. Gene duplication and the origins of morphological complexity in pancrustacean eyes, a genomic approach

    PubMed Central

    2010-01-01

    Background Duplication and divergence of genes and genetic networks is hypothesized to be a major driver of the evolution of complexity and novel features. Here, we examine the history of genes and genetic networks in the context of eye evolution by using new approaches to understand patterns of gene duplication during the evolution of metazoan genomes. We hypothesize that 1) genes involved in eye development and phototransduction have duplicated and are retained at higher rates in animal clades that possess more distinct types of optical design; and 2) genes with functional relationships were duplicated and lost together, thereby preserving genetic networks. To test these hypotheses, we examine the rates and patterns of gene duplication and loss evident in 19 metazoan genomes, including that of Daphnia pulex - the first completely sequenced crustacean genome. This is of particular interest because the pancrustaceans (hexapods+crustaceans) have more optical designs than any other major clade of animals, allowing us to test specifically whether the high amount of disparity in pancrustacean eyes is correlated with a higher rate of duplication and retention of vision genes. Results Using protein predictions from 19 metazoan whole-genome projects, we found all members of 23 gene families known to be involved in eye development or phototransduction and deduced their phylogenetic relationships. This allowed us to estimate the number and timing of gene duplication and loss events in these gene families during animal evolution. When comparing duplication/retention rates of these genes, we found that the rate was significantly higher in pancrustaceans than in either vertebrates or non-pancrustacean protostomes. Comparing patterns of co-duplication across Metazoa showed that while these eye-genes co-duplicate at a significantly higher rate than those within a randomly shuffled matrix, many genes with known functional relationships in model organisms did not co-duplicate more

  13. Maintenance and Loss of Duplicated Genes by Dosage Subfunctionalization.

    PubMed

    Gout, Jean-Francois; Lynch, Michael

    2015-08-01

    Whole-genome duplications (WGDs) have contributed to gene-repertoire enrichment in many eukaryotic lineages. However, most duplicated genes are eventually lost and it is still unclear why some duplicated genes are evolutionary successful whereas others quickly turn to pseudogenes. Here, we show that dosage constraints are major factors opposing post-WGD gene loss in several Paramecium species that share a common ancestral WGD. We propose a model where a majority of WGD-derived duplicates preserve their ancestral function and are retained to produce enough of the proteins performing this same ancestral function. Under this model, the expression level of individual duplicated genes can evolve neutrally as long as they maintain a roughly constant summed expression, and this allows random genetic drift toward uneven contributions of the two copies to total expression. Our analysis suggests that once a high level of imbalance is reached, which can require substantial lengths of time, the copy with the lowest expression level contributes a small enough fraction of the total expression that selection no longer opposes its loss. Extension of our analysis to yeast species sharing a common ancestral WGD yields similar results, suggesting that duplicated-gene retention for dosage constraints followed by divergence in expression level and eventual deterministic gene loss might be a universal feature of post-WGD evolution. PMID:25908670

  14. Recent segmental and gene duplications in the mouse genome

    PubMed Central

    Cheung, Joseph; Wilson, Michael D; Zhang, Junjun; Khaja, Razi; MacDonald, Jeffrey R; Heng, Henry HQ; Koop, Ben F; Scherer, Stephen W

    2003-01-01

    Background The high quality of the mouse genome draft sequence and its associated annotations are an invaluable biological resource. Identifying recent duplications in the mouse genome, especially in regions containing genes, may highlight important events in recent murine evolution. In addition, detecting recent sequence duplications can reveal potentially problematic regions of the genome assembly. We use BLAST-based computational heuristics to identify large (≥ 5 kb) and recent (≥ 90% sequence identity) segmental duplications in the mouse genome sequence. Here we present a database of recently duplicated regions of the mouse genome found in the mouse genome sequencing consortium (MGSC) February 2002 and February 2003 assemblies. Results We determined that 33.6 Mb of 2,695 Mb (1.2%) of sequence from the February 2003 mouse genome sequence assembly is involved in recent segmental duplications, which is less than that observed in the human genome (around 3.5-5%). From this dataset, 8.9 Mb (26%) of the duplication content consisted of 'unmapped' chromosome sequence. Moreover, we suspect that an additional 18.5 Mb of sequence is involved in duplication artifacts arising from sequence misassignment errors in this genome assembly. By searching for genes that are located within these regions, we identified 675 genes that mapped to duplicated regions of the mouse genome. Sixteen of these genes appear to have been duplicated independently in the human genome. From our dataset we further characterized a 42 kb recent segmental duplication of Mater, a maternal-effect gene essential for embryogenesis in mice. Conclusion Our results provide an initial analysis of the recently duplicated sequence and gene content of the mouse genome. Many of these duplicated loci, as well as regions identified to be involved in potential sequence misassignment errors, will require further mapping and sequencing to achieve accuracy. A Genome Browser database was set up to display the

  15. Reconstruction of Ancestral Metabolic Enzymes Reveals Molecular Mechanisms Underlying Evolutionary Innovation through Gene Duplication

    PubMed Central

    Vanneste, Kevin; van der Zande, Elisa; Voet, Arnout; Maere, Steven; Verstrepen, Kevin J.

    2012-01-01

    Gene duplications are believed to facilitate evolutionary innovation. However, the mechanisms shaping the fate of duplicated genes remain heavily debated because the molecular processes and evolutionary forces involved are difficult to reconstruct. Here, we study a large family of fungal glucosidase genes that underwent several duplication events. We reconstruct all key ancestral enzymes and show that the very first preduplication enzyme was primarily active on maltose-like substrates, with trace activity for isomaltose-like sugars. Structural analysis and activity measurements on resurrected and present-day enzymes suggest that both activities cannot be fully optimized in a single enzyme. However, gene duplications repeatedly spawned daughter genes in which mutations optimized either isomaltase or maltase activity. Interestingly, similar shifts in enzyme activity were reached multiple times via different evolutionary routes. Together, our results provide a detailed picture of the molecular mechanisms that drove divergence of these duplicated enzymes and show that whereas the classic models of dosage, sub-, and neofunctionalization are helpful to conceptualize the implications of gene duplication, the three mechanisms co-occur and intertwine. PMID:23239941

  16. Catalytic activity, duplication and evolution of the CYP98 cytochrome P450 family in wheat.

    PubMed

    Morant, Marc; Schoch, Guillaume A; Ullmann, Pascaline; Ertunç, Tanya; Little, Dawn; Olsen, Carl Erik; Petersen, Maike; Negrel, Jonathan; Werck-Reichhart, Danièle

    2007-01-01

    A burst of evolutionary duplication upon land colonization seems to have led to the large superfamily of cytochromes P450 in higher plants. Within this superfamily some clans and families are heavily duplicated. Others, such as genes involved in the phenylpropanoid pathway have led to fewer duplication events. Eight coding sequences belonging to the CYP98 family reported to catalyze the 3-hydroxylation step in this pathway were isolated from Triticum aestivum (wheat) and expressed in yeast. Comparison of the catalytic properties of the recombinant enzymes with those of CYP98s from other plant taxa was coupled to phylogenetic analyses. Our results indicate that the unusually high frequency of gene duplication in the wheat CYP98 family is a direct or indirect result from ploidization. While ancient duplication led to evolution of enzymes with different substrate preferences, most of recent duplicates underwent silencing via degenerative mutations. Three of the eight tested CYP98s from wheat have phenol meta-hydroxylase activity, with p-coumaroylshikimate being the primary substrate for all of these, as it is the case for CYP98s from sweet basil and Arabidopsis thaliana. However, CYP98s from divergent taxa have acquired different additional subsidiary activities. Some of them might be significant in the metabolism of various free or conjugated phenolics in different plant species. One of the most significant is meta-hydroxylation of p-coumaroyltyramine, predominantly by the wheat enzymes, for the synthesis of suberin phenolic monomers. Homology modeling, confirmed by directed mutagenesis, provides information on the protein regions and structural features important for some observed changes in substrate selectivity. They indicate that the metabolism of quinate ester and tyramine amide of p-coumaric acid rely on the same recognition site in the protein. PMID:17160453

  17. Explosive tandem and segmental duplications of multigenic families in Eucalyptus grandis.

    PubMed

    Li, Qiang; Yu, Hong; Cao, Phi Bang; Fawal, Nizar; Mathé, Catherine; Azar, Sahar; Cassan-Wang, Hua; Myburg, Alexander A; Grima-Pettenati, Jacqueline; Marque, Christiane; Teulières, Chantal; Dunand, Christophe

    2015-03-13

    Plant organisms contain a large number of genes belonging to numerous multigenic families whose evolution size reflects some functional constraints. Sequences from eight multigenic families, involved in biotic and abiotic responses, have been analyzed in Eucalyptus grandis and compared with Arabidopsis thaliana. Two transcription factor families APETALA 2 (AP2)/ethylene responsive factor and GRAS, two auxin transporter families PIN-FORMED and AUX/LAX, two oxidoreductase families (ascorbate peroxidases [APx] and Class III peroxidases [CIII Prx]), and two families of protective molecules late embryogenesis abundant (LEA) and DNAj were annotated in expert and exhaustive manner. Many recent tandem duplications leading to the emergence of species-specific gene clusters and the explosion of the gene numbers have been observed for the AP2, GRAS, LEA, PIN, and CIII Prx in E. grandis, while the APx, the AUX/LAX and DNAj are conserved between species. Although no direct evidence has yet demonstrated the roles of these recent duplicated genes observed in E. grandis, this could indicate their putative implications in the morphological and physiological characteristics of E. grandis, and be the key factor for the survival of this nondormant species. Global analysis of key families would be a good criterion to evaluate the capabilities of some organisms to adapt to environmental variations.

  18. Explosive tandem and segmental duplications of multigenic families in Eucalyptus grandis.

    PubMed

    Li, Qiang; Yu, Hong; Cao, Phi Bang; Fawal, Nizar; Mathé, Catherine; Azar, Sahar; Cassan-Wang, Hua; Myburg, Alexander A; Grima-Pettenati, Jacqueline; Marque, Christiane; Teulières, Chantal; Dunand, Christophe

    2015-04-01

    Plant organisms contain a large number of genes belonging to numerous multigenic families whose evolution size reflects some functional constraints. Sequences from eight multigenic families, involved in biotic and abiotic responses, have been analyzed in Eucalyptus grandis and compared with Arabidopsis thaliana. Two transcription factor families APETALA 2 (AP2)/ethylene responsive factor and GRAS, two auxin transporter families PIN-FORMED and AUX/LAX, two oxidoreductase families (ascorbate peroxidases [APx] and Class III peroxidases [CIII Prx]), and two families of protective molecules late embryogenesis abundant (LEA) and DNAj were annotated in expert and exhaustive manner. Many recent tandem duplications leading to the emergence of species-specific gene clusters and the explosion of the gene numbers have been observed for the AP2, GRAS, LEA, PIN, and CIII Prx in E. grandis, while the APx, the AUX/LAX and DNAj are conserved between species. Although no direct evidence has yet demonstrated the roles of these recent duplicated genes observed in E. grandis, this could indicate their putative implications in the morphological and physiological characteristics of E. grandis, and be the key factor for the survival of this nondormant species. Global analysis of key families would be a good criterion to evaluate the capabilities of some organisms to adapt to environmental variations. PMID:25769696

  19. Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition.

    PubMed

    Freeling, Michael

    2009-01-01

    Each mode of gene duplication (tandem, tetraploid, segmental, transpositional) retains genes in a biased manner. A reciprocal relationship exists between plant genes retained postpaleotetraploidy versus genes retained after an ancient tandem duplication. Among the models (C, neofunctionalization, balanced gene drive) and ideas that might explain this relationship, only balanced gene drive predicts reciprocity. The gene balance hypothesis explains that more "connected" genes--by protein-protein interactions in a heteromer, for example--are less likely to be retained as a tandem or transposed duplicate and are more likely to be retained postpaleotetraploidy; otherwise, selectively negative dosage effects are created. Biased duplicate retention is an instant and neutral by-product, a spandrel, of purifying selection. Balanced gene drive expanded plant gene families, including those encoding proteasomal proteins, protein kinases, motors, and transcription factors, with each paleotetraploidy, which could explain trends involving complexity. Balanced gene drive is a saltation mechanism in the mutationist tradition.

  20. Divergence of recently duplicated M{gamma}-type MADS-box genes in Petunia.

    PubMed

    Bemer, Marian; Gordon, Jonathan; Weterings, Koen; Angenent, Gerco C

    2010-02-01

    The MADS-box transcription factor family has expanded considerably in plants via gene and genome duplications and can be subdivided into type I and MIKC-type genes. The two gene classes show a different evolutionary history. Whereas the MIKC-type genes originated during ancient genome duplications, as well as during more recent events, the type I loci appear to experience high turnover with many recent duplications. This different mode of origin also suggests a different fate for the type I duplicates, which are thought to have a higher chance to become silenced or lost from the genome. To get more insight into the evolution of the type I MADS-box genes, we isolated nine type I genes from Petunia, which belong to the Mgamma subclass, and investigated the divergence of their coding and regulatory regions. The isolated genes could be subdivided into two categories: two genes were highly similar to Arabidopsis Mgamma-type genes, whereas the other seven genes showed less similarity to Arabidopsis genes and originated more recently. Two of the recently duplicated genes were found to contain deleterious mutations in their coding regions, and expression analysis revealed that a third paralog was silenced by mutations in its regulatory region. However, in addition to the three genes that were subjected to nonfunctionalization, we also found evidence for neofunctionalization of one of the Petunia Mgamma-type genes. Our study shows a rapid divergence of recently duplicated Mgamma-type MADS-box genes and suggests that redundancy among type I paralogs may be less common than expected.

  1. Divergence of recently duplicated M{gamma}-type MADS-box genes in Petunia.

    PubMed

    Bemer, Marian; Gordon, Jonathan; Weterings, Koen; Angenent, Gerco C

    2010-02-01

    The MADS-box transcription factor family has expanded considerably in plants via gene and genome duplications and can be subdivided into type I and MIKC-type genes. The two gene classes show a different evolutionary history. Whereas the MIKC-type genes originated during ancient genome duplications, as well as during more recent events, the type I loci appear to experience high turnover with many recent duplications. This different mode of origin also suggests a different fate for the type I duplicates, which are thought to have a higher chance to become silenced or lost from the genome. To get more insight into the evolution of the type I MADS-box genes, we isolated nine type I genes from Petunia, which belong to the Mgamma subclass, and investigated the divergence of their coding and regulatory regions. The isolated genes could be subdivided into two categories: two genes were highly similar to Arabidopsis Mgamma-type genes, whereas the other seven genes showed less similarity to Arabidopsis genes and originated more recently. Two of the recently duplicated genes were found to contain deleterious mutations in their coding regions, and expression analysis revealed that a third paralog was silenced by mutations in its regulatory region. However, in addition to the three genes that were subjected to nonfunctionalization, we also found evidence for neofunctionalization of one of the Petunia Mgamma-type genes. Our study shows a rapid divergence of recently duplicated Mgamma-type MADS-box genes and suggests that redundancy among type I paralogs may be less common than expected. PMID:19933156

  2. The Natural History of Class I Primate Alcohol Dehydrogenases Includes Gene Duplication, Gene Loss, and Gene Conversion

    PubMed Central

    Carrigan, Matthew A.; Uryasev, Oleg; Davis, Ross P.; Zhai, LanMin; Hurley, Thomas D.; Benner, Steven A.

    2012-01-01

    Background Gene duplication is a source of molecular innovation throughout evolution. However, even with massive amounts of genome sequence data, correlating gene duplication with speciation and other events in natural history can be difficult. This is especially true in its most interesting cases, where rapid and multiple duplications are likely to reflect adaptation to rapidly changing environments and life styles. This may be so for Class I of alcohol dehydrogenases (ADH1s), where multiple duplications occurred in primate lineages in Old and New World monkeys (OWMs and NWMs) and hominoids. Methodology/Principal Findings To build a preferred model for the natural history of ADH1s, we determined the sequences of nine new ADH1 genes, finding for the first time multiple paralogs in various prosimians (lemurs, strepsirhines). Database mining then identified novel ADH1 paralogs in both macaque (an OWM) and marmoset (a NWM). These were used with the previously identified human paralogs to resolve controversies relating to dates of duplication and gene conversion in the ADH1 family. Central to these controversies are differences in the topologies of trees generated from exonic (coding) sequences and intronic sequences. Conclusions/Significance We provide evidence that gene conversions are the primary source of difference, using molecular clock dating of duplications and analyses of microinsertions and deletions (micro-indels). The tree topology inferred from intron sequences appear to more correctly represent the natural history of ADH1s, with the ADH1 paralogs in platyrrhines (NWMs) and catarrhines (OWMs and hominoids) having arisen by duplications shortly predating the divergence of OWMs and NWMs. We also conclude that paralogs in lemurs arose independently. Finally, we identify errors in database interpretation as the source of controversies concerning gene conversion. These analyses provide a model for the natural history of ADH1s that posits four ADH1 paralogs in

  3. Structure and evolution of vertebrate aldehyde oxidases: from gene duplication to gene suppression.

    PubMed

    Kurosaki, Mami; Bolis, Marco; Fratelli, Maddalena; Barzago, Maria Monica; Pattini, Linda; Perretta, Gemma; Terao, Mineko; Garattini, Enrico

    2013-05-01

    Aldehyde oxidases (AOXs) and xanthine dehydrogenases (XDHs) belong to the family of molybdo-flavoenzymes. Although AOXs are not identifiable in fungi, these enzymes are represented in certain protists and the majority of plants and vertebrates. The physiological functions and substrates of AOXs are unknown. Nevertheless, AOXs are major drug metabolizing enzymes, oxidizing a wide range of aromatic aldehydes and heterocyclic compounds of medical/toxicological importance. Using genome sequencing data, we predict the structures of AOX genes and pseudogenes, reconstructing their evolution. Fishes are the most primitive organisms with an AOX gene (AOXα), originating from the duplication of an ancestral XDH. Further evolution of fishes resulted in the duplication of AOXα into AOXβ and successive pseudogenization of AOXα. AOXβ is maintained in amphibians and it is the likely precursors of reptilian, avian, and mammalian AOX1. Amphibian AOXγ is a duplication of AOXβ and the likely ancestor of reptilian and avian AOX2, which, in turn, gave rise to mammalian AOX3L1. Subsequent gene duplications generated the two mammalian genes, AOX3 and AOX4. The evolution of mammalian AOX genes is dominated by pseudogenization and deletion events. Our analysis is relevant from a structural point of view, as it provides information on the residues characterizing the three domains of each mammalian AOX isoenzyme. We cloned the cDNAs encoding the AOX proteins of guinea pig and cynomolgus monkeys, two unique species as to the evolution of this enzyme family. We identify chimeric RNAs from the human AOX3 and AOX3L1 pseudogenes with potential to encode a novel microRNA.

  4. Simultaneous identification of duplications and lateral gene transfers.

    PubMed

    Tofigh, Ali; Hallett, Michael; Lagergren, Jens

    2011-01-01

    The incongruency between a gene tree and a corresponding species tree can be attributed to evolutionary events such as gene duplication and gene loss. This paper describes a combinatorial model where so-called DTL-scenarios are used to explain the differences between a gene tree and a corresponding species tree taking into account gene duplications, gene losses, and lateral gene transfers (also known as horizontal gene transfers). The reasonable biological constraint that a lateral gene transfer may only occur between contemporary species leads to the notion of acyclic DTL-scenarios. Parsimony methods are introduced by defining appropriate optimization problems. We show that finding most parsimonious acyclic DTL-scenarios is NP-hard. However, by dropping the condition of acyclicity, the problem becomes tractable, and we provide a dynamic programming algorithm as well as a fixed-parameter tractable algorithm for finding most parsimonious DTL-scenarios.

  5. Almost all human genes resulted from ancient duplication.

    PubMed

    Britten, Roy J

    2006-12-12

    Results of protein sequence comparison at open criterion show a very large number of relationships that have, up to now, gone unreported. The relationships suggest many ancient events of gene duplication. It is well known that gene duplication has been a major process in the evolution of genomes. A collection of human genes that have known functions have been examined for a history of gene duplications detected by means of amino acid sequence similarity by using BLASTp with an expectation of two or less (open criterion). Because the collection of genes in build 35 includes sets of transcript variants, all genes of known function were collected, and only the longest transcription variant was included, yielding a 13,298-member library called KGMV (for known genes maximum variant). When all lengths of matches are accepted, >97% of human genes show significant matches to each other. Many form matches with a large number of other different proteins, showing that most genes are made up from parts of many others as a result of ancient events of duplication. To support the use of the open criterion, all of the members of the KGMV library were twice replaced with random protein sequences of the same length and average composition, and all were compared with each other with BLASTp at expectation two or less. The set of matches averaged 0.35% of that observed for the KGMV set of proteins. PMID:17146051

  6. Concomitant Duplications of Opioid Peptide and Receptor Genes before the Origin of Jawed Vertebrates

    PubMed Central

    Sundström, Görel; Dreborg, Susanne; Larhammar, Dan

    2010-01-01

    Background The opioid system is involved in reward and pain mechanisms and consists in mammals of four receptors and several peptides. The peptides are derived from four prepropeptide genes, PENK, PDYN, PNOC and POMC, encoding enkephalins, dynorphins, orphanin/nociceptin and beta-endorphin, respectively. Previously we have described how two rounds of genome doubling (2R) before the origin of jawed vertebrates formed the receptor family. Methodology/Principal Findings Opioid peptide gene family members were investigated using a combination of sequence-based phylogeny and chromosomal locations of the peptide genes in various vertebrates. Several adjacent gene families were investigated similarly. The results show that the ancestral peptide gene gave rise to two additional copies in the genome doublings. The fourth member was generated by a local gene duplication, as the genes encoding POMC and PNOC are located on the same chromosome in the chicken genome and all three teleost genomes that we have studied. A translocation has disrupted this synteny in mammals. The PDYN gene seems to have been lost in chicken, but not in zebra finch. Duplicates of some peptide genes have arisen in the teleost fishes. Within the prepropeptide precursors, peptides have been lost or gained in different lineages. Conclusions/Significance The ancestral peptide and receptor genes were located on the same chromosome and were thus duplicated concomitantly. However, subsequently genetic linkage has been lost. In conclusion, the system of opioid peptides and receptors was largely formed by the genome doublings that took place early in vertebrate evolution. PMID:20463905

  7. Assessment and Reconstruction of Novel HSP90 Genes: Duplications, Gains and Losses in Fungal and Animal Lineages

    PubMed Central

    Pantzartzi, Chrysoula N.; Drosopoulou, Elena; Scouras, Zacharias G.

    2013-01-01

    Hsp90s, members of the Heat Shock Protein class, protect the structure and function of proteins and play a significant task in cellular homeostasis and signal transduction. In order to determine the number of hsp90 gene copies and encoded proteins in fungal and animal lineages and through that key duplication events that this family has undergone, we collected and evaluated Hsp90 protein sequences and corresponding Expressed Sequence Tags and analyzed available genomes from various taxa. We provide evidence for duplication events affecting either single species or wider taxonomic groups. With regard to Fungi, duplicated genes have been detected in several lineages. In invertebrates, we demonstrate key duplication events in certain clades of Arthropoda and Mollusca, and a possible gene loss event in a hymenopteran family. Finally, we infer that the duplication event responsible for the two (a and b) isoforms in vertebrates occurred probably shortly after the split of Hyperoartia and Gnathostomata. PMID:24066039

  8. Evidence of duplicated Hox genes in the most recent common ancestor of extant scorpions.

    PubMed

    Sharma, Prashant P; Santiago, Marc A; González-Santillán, Edmundo; Monod, Lionel; Wheeler, Ward C

    2015-01-01

    Scorpions (order Scorpiones) are unusual among arthropods, both for the extreme heteronomy of their bauplan and for the high gene family turnover exhibited in their genomes. These phenomena appear to be correlated, as two scorpion species have been shown to possess nearly twice the number of Hox genes present in most arthropods. Segmentally offset anterior expression boundaries of a subset of Hox paralogs have been shown to correspond to transitions in segmental identities in the scorpion posterior tagmata, suggesting that posterior heteronomy in scorpions may have been achieved by neofunctionalization of Hox paralogs. However, both the first scorpion genome sequenced and the developmental genetic data are based on exemplars of Buthidae, one of 19 families of scorpions. It is therefore not known whether Hox paralogy is limited to Buthidae or widespread among scorpions. We surveyed 24 high throughput transcriptomes and the single whole genome available for scorpions, in order to test the prediction that Hox gene duplications are common to the order. We used gene tree parsimony to infer whether the paralogy was consistent with a duplication event in the scorpion common ancestor. Here we show that duplicated Hox genes in non-buthid scorpions occur in six of the ten Hox classes. Gene tree topologies and parsimony-based reconciliation of the gene trees are consistent with a duplication event in the most recent common ancestor of scorpions. These results suggest that a Hox paralogy, and by extension the model of posterior patterning established in a buthid, can be extended to non-Buthidae scorpions.

  9. Gene duplication and divergence of long wavelength-sensitive opsin genes in the guppy, Poecilia reticulata.

    PubMed

    Watson, Corey T; Gray, Suzanne M; Hoffmann, Margarete; Lubieniecki, Krzysztof P; Joy, Jeffrey B; Sandkam, Ben A; Weigel, Detlef; Loew, Ellis; Dreyer, Christine; Davidson, William S; Breden, Felix

    2011-02-01

    Female preference for male orange coloration in the genus Poecilia suggests a role for duplicated long wavelength-sensitive (LWS) opsin genes in facilitating behaviors related to mate choice in these species. Previous work has shown that LWS gene duplication in this genus has resulted in expansion of long wavelength visual capacity as determined by microspectrophotometry (MSP). However, the relationship between LWS genomic repertoires and expression of LWS retinal cone classes within a given species is unclear. Our previous study in the related species, Xiphophorus helleri, was the first characterization of the complete LWS opsin genomic repertoire in conjunction with MSP expression data in the family Poeciliidae, and revealed the presence of four LWS loci and two distinct LWS cone classes. In this study we characterized the genomic organization of LWS opsin genes by BAC clone sequencing, and described the full range of cone cell types in the retina of the colorful Cumaná guppy, Poecilia reticulata. In contrast to X. helleri, MSP data from the Cumaná guppy revealed three LWS cone classes. Comparisons of LWS genomic organization described here for Cumaná to that of X. helleri indicate that gene divergence and not duplication was responsible for the evolution of a novel LWS haplotype in the Cumaná guppy. This lineage-specific divergence is likely responsible for a third additional retinal cone class not present in X. helleri, and may have facilitated the strong sexual selection driven by female preference for orange color patterns associated with the genus Poecilia.

  10. The Zebrafish Annexin Gene Family

    PubMed Central

    Farber, Steven A.; De Rose, Robert A.; Olson, Eric S.; Halpern, Marnie E.

    2003-01-01

    The Annexins (ANXs) are a family of calcium- and phospholipid-binding proteins that have been implicated in many cellular processes, including channel formation, membrane fusion, vesicle transport, and regulation of phospholipase A2 activity. As a first step toward understanding in vivo function, we have cloned 11 zebrafish anx genes. Four genes (anx1a, anx2a, anx5,and anx11a) were identified by screening a zebrafish cDNA library with a Xenopus anx2 fragment. For these genes, full-length cDNA sequences were used to cluster 212 EST sequences generated by the Zebrafish Genome Resources Project. The EST analysis revealed seven additional anx genes that were subsequently cloned. The genetic map positions of all 11 genes were determined by using a zebrafish radiation hybrid panel. Sequence and syntenic relationships between zebrafish and human genes indicate that the 11 genes represent orthologs of human anx1,2,4,5,6,11,13,and suggest that several zebrafish anx genes resulted from duplications that arose after divergence of the zebrafish and mammalian genomes. Zebrafish anx genes are expressed in a wide range of tissues during embryonic and larval stages. Analysis of the expression patterns of duplicated genes revealed both redundancy and divergence, with the most similar genes having almost identical tissue-specific patterns of expression and with less similar duplicates showing no overlap. The differences in gene expression of recently duplicated anx genes could explain why highly related paralogs were maintained in the genome and did not rapidly become pseudogenes. PMID:12799347

  11. Paralogue Interference Affects the Dynamics after Gene Duplication.

    PubMed

    Kaltenegger, Elisabeth; Ober, Dietrich

    2015-12-01

    Proteins tend to form homomeric complexes of identical subunits, which act as functional units. By definition, the subunits are encoded from a single genetic locus. When such a gene is duplicated, the gene products are suggested initially to cross-interact when coexpressed, thus resulting in the phenomenon of paralogue interference. In this opinion article, we explore how paralogue interference can shape the fate of a duplicated gene. One important outcome is a prolonged time window in which both copies remain under selection increasing the chance to accumulate mutations and to develop new properties. Thereby, paralogue interference can mediate the coevolution of duplicates and here we illustrate the potential of this phenomenon in light of recent new studies. PMID:26638775

  12. Duplicated Hox genes in the spider Cupiennius salei

    PubMed Central

    Schwager, Evelyn E; Schoppmeier, Michael; Pechmann, Matthias; Damen, Wim GM

    2007-01-01

    Background Hox genes are expressed in specific domains along the anterior posterior body axis and define the regional identity. In most animals these genes are organized in a single cluster in the genome and the order of the genes in the cluster is correlated with the anterior to posterior expression of the genes in the embryo. The conserved order of the various Hox gene orthologs in the cluster among most bilaterians implies that such a Hox cluster was present in their last common ancestor. Vertebrates are the only metazoans so far that have been shown to contain duplicated Hox clusters, while all other bilaterians seem to possess only a single cluster. Results We here show that at least three Hox genes of the spider Cupiennius salei are present as two copies in this spider. In addition to the previously described duplicated Ultrabithorax gene, we here present sequence and expression data of a second Deformed gene, and of two Sex comb reduced genes. In addition, we describe the sequence and expression of the Cupiennius proboscipedia gene. The spider Cupiennius salei is the first chelicerate for which orthologs of all ten classes of arthropod Hox genes have been described. The posterior expression boundary of all anterior Hox genes is at the tagma border of the prosoma and opisthosoma, while the posterior boundary of the posterior Hox genes is at the posterior end of the embryo. Conclusion The presence of at least three duplicated Hox genes points to a major duplication event in the lineage to this spider, perhaps even of the complete Hox cluster as has taken place in the lineage to the vertebrates. The combined data of all Cupiennius Hox genes reveal the existence of two distinct posterior expression boundaries that correspond to morphological tagmata boundaries. PMID:17355624

  13. Prevalent role of gene features in determining evolutionary fates of whole-genome duplication duplicated genes in flowering plants.

    PubMed

    Jiang, Wen-kai; Liu, Yun-long; Xia, En-hua; Gao, Li-zhi

    2013-04-01

    The evolution of genes and genomes after polyploidization has been the subject of extensive studies in evolutionary biology and plant sciences. While a significant number of duplicated genes are rapidly removed during a process called fractionation, which operates after the whole-genome duplication (WGD), another considerable number of genes are retained preferentially, leading to the phenomenon of biased gene retention. However, the evolutionary mechanisms underlying gene retention after WGD remain largely unknown. Through genome-wide analyses of sequence and functional data, we comprehensively investigated the relationships between gene features and the retention probability of duplicated genes after WGDs in six plant genomes, Arabidopsis (Arabidopsis thaliana), poplar (Populus trichocarpa), soybean (Glycine max), rice (Oryza sativa), sorghum (Sorghum bicolor), and maize (Zea mays). The results showed that multiple gene features were correlated with the probability of gene retention. Using a logistic regression model based on principal component analysis, we resolved evolutionary rate, structural complexity, and GC3 content as the three major contributors to gene retention. Cluster analysis of these features further classified retained genes into three distinct groups in terms of gene features and evolutionary behaviors. Type I genes are more prone to be selected by dosage balance; type II genes are possibly subject to subfunctionalization; and type III genes may serve as potential targets for neofunctionalization. This study highlights that gene features are able to act jointly as primary forces when determining the retention and evolution of WGD-derived duplicated genes in flowering plants. These findings thus may help to provide a resolution to the debate on different evolutionary models of gene fates after WGDs.

  14. Multiple bursts of pancreatic ribonuclease gene duplication in insect-eating bats.

    PubMed

    Xu, Huihui; Liu, Yang; Meng, Fanxing; He, Beibei; Han, Naijian; Li, Gang; Rossiter, Stephen J; Zhang, Shuyi

    2013-09-10

    Pancreatic ribonuclease gene (RNASE1) was previously shown to have undergone duplication and adaptive evolution related to digestive efficiency in several mammalian groups that have evolved foregut fermentation, including ruminants and some primates. RNASE1 gene duplications thought to be linked to diet have also been recorded in some carnivores. Of all mammals, bats have evolved the most diverse dietary specializations, mainly including frugivory and insectivory. Here we cloned, sequenced and analyzed RNASE1 gene sequences from a range of bat species to determine whether their dietary adaptation is mirrored by molecular adaptation. We found that seven insect-eating members of the families Vespertilionidae and Molossidae possessed two or more duplicates, and we also detected three pseudogenes. Reconstructed RNASE1 gene trees based on both Bayesian and maximum likelihood methods supported independent duplication events in these two families. Selection tests revealed that RNASE1 gene duplicates have undergone episodes of positive selection indicative of functional modification, and lineage-specific tests revealed strong adaptive evolution in the Tadarida β clade. However, unlike the RNASE1 duplicates that function in digestion in some mammals, the bat RNASE1 sequences were found to be characterized by relatively high isoelectric points, a feature previously suggested to promote defense against viruses via the breakdown of double-stranded RNA. Taken together, our findings point to an adaptive diversification of RNASE1 in these two bat families, although we find no clear evidence that this was driven by diet. Future experimental assays are needed to resolve the functions of these enzymes in bats. PMID:23644026

  15. Alternative Transposition Generates New Chimeric Genes and Segmental Duplications at the Maize p1 Locus.

    PubMed

    Wang, Dafang; Yu, Chuanhe; Zuo, Tao; Zhang, Jianbo; Weber, David F; Peterson, Thomas

    2015-11-01

    The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize. PMID:26434719

  16. Alternative Transposition Generates New Chimeric Genes and Segmental Duplications at the Maize p1 Locus.

    PubMed

    Wang, Dafang; Yu, Chuanhe; Zuo, Tao; Zhang, Jianbo; Weber, David F; Peterson, Thomas

    2015-11-01

    The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize.

  17. Alternative Transposition Generates New Chimeric Genes and Segmental Duplications at the Maize p1 Locus

    PubMed Central

    Wang, Dafang; Yu, Chuanhe; Zuo, Tao; Zhang, Jianbo; Weber, David F.; Peterson, Thomas

    2015-01-01

    The maize Ac/Ds transposon family was the first transposable element system identified and characterized by Barbara McClintock. Ac/Ds transposons belong to the hAT family of class II DNA transposons. We and others have shown that Ac/Ds elements can undergo a process of alternative transposition in which the Ac/Ds transposase acts on the termini of two separate, nearby transposons. Because these termini are present in different elements, alternative transposition can generate a variety of genome alterations such as inversions, duplications, deletions, and translocations. Moreover, Ac/Ds elements transpose preferentially into genic regions, suggesting that structural changes arising from alternative transposition may potentially generate chimeric genes at the rearrangement breakpoints. Here we identified and characterized 11 independent cases of gene fusion induced by Ac alternative transposition. In each case, a functional chimeric gene was created by fusion of two linked, paralogous genes; moreover, each event was associated with duplication of the ∼70-kb segment located between the two paralogs. An extant gene in the maize B73 genome that contains an internal duplication apparently generated by an alternative transposition event was also identified. Our study demonstrates that alternative transposition-induced duplications may be a source for spontaneous creation of diverse genome structures and novel genes in maize. PMID:26434719

  18. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders.

    PubMed

    Haney, Robert A; Clarke, Thomas H; Gadgil, Rujuta; Fitzpatrick, Ryan; Hayashi, Cheryl Y; Ayoub, Nadia A; Garb, Jessica E

    2016-01-01

    Gene duplication and positive selection can be important determinants of the evolution of venom, a protein-rich secretion used in prey capture and defense. In a typical model of venom evolution, gene duplicates switch to venom gland expression and change function under the action of positive selection, which together with further duplication produces large gene families encoding diverse toxins. Although these processes have been demonstrated for individual toxin families, high-throughput multitissue sequencing of closely related venomous species can provide insights into evolutionary dynamics at the scale of the entire venom gland transcriptome. By assembling and analyzing multitissue transcriptomes from the Western black widow spider and two closely related species with distinct venom toxicity phenotypes, we do not find that gene duplication and duplicate retention is greater in gene families with venom gland biased expression in comparison with broadly expressed families. Positive selection has acted on some venom toxin families, but does not appear to be in excess for families with venom gland biased expression. Moreover, we find 309 distinct gene families that have single transcripts with venom gland biased expression, suggesting that the switching of genes to venom gland expression in numerous unrelated gene families has been a dominant mode of evolution. We also find ample variation in protein sequences of venom gland-specific transcripts, lineage-specific family sizes, and ortholog expression among species. This variation might contribute to the variable venom toxicity of these species. PMID:26733576

  19. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders

    PubMed Central

    Haney, Robert A.; Clarke, Thomas H.; Gadgil, Rujuta; Fitzpatrick, Ryan; Hayashi, Cheryl Y.; Ayoub, Nadia A.; Garb, Jessica E.

    2016-01-01

    Gene duplication and positive selection can be important determinants of the evolution of venom, a protein-rich secretion used in prey capture and defense. In a typical model of venom evolution, gene duplicates switch to venom gland expression and change function under the action of positive selection, which together with further duplication produces large gene families encoding diverse toxins. Although these processes have been demonstrated for individual toxin families, high-throughput multitissue sequencing of closely related venomous species can provide insights into evolutionary dynamics at the scale of the entire venom gland transcriptome. By assembling and analyzing multitissue transcriptomes from the Western black widow spider and two closely related species with distinct venom toxicity phenotypes, we do not find that gene duplication and duplicate retention is greater in gene families with venom gland biased expression in comparison with broadly expressed families. Positive selection has acted on some venom toxin families, but does not appear to be in excess for families with venom gland biased expression. Moreover, we find 309 distinct gene families that have single transcripts with venom gland biased expression, suggesting that the switching of genes to venom gland expression in numerous unrelated gene families has been a dominant mode of evolution. We also find ample variation in protein sequences of venom gland–specific transcripts, lineage-specific family sizes, and ortholog expression among species. This variation might contribute to the variable venom toxicity of these species. PMID:26733576

  20. Effects of Gene Duplication, Positive Selection, and Shifts in Gene Expression on the Evolution of the Venom Gland Transcriptome in Widow Spiders.

    PubMed

    Haney, Robert A; Clarke, Thomas H; Gadgil, Rujuta; Fitzpatrick, Ryan; Hayashi, Cheryl Y; Ayoub, Nadia A; Garb, Jessica E

    2016-01-05

    Gene duplication and positive selection can be important determinants of the evolution of venom, a protein-rich secretion used in prey capture and defense. In a typical model of venom evolution, gene duplicates switch to venom gland expression and change function under the action of positive selection, which together with further duplication produces large gene families encoding diverse toxins. Although these processes have been demonstrated for individual toxin families, high-throughput multitissue sequencing of closely related venomous species can provide insights into evolutionary dynamics at the scale of the entire venom gland transcriptome. By assembling and analyzing multitissue transcriptomes from the Western black widow spider and two closely related species with distinct venom toxicity phenotypes, we do not find that gene duplication and duplicate retention is greater in gene families with venom gland biased expression in comparison with broadly expressed families. Positive selection has acted on some venom toxin families, but does not appear to be in excess for families with venom gland biased expression. Moreover, we find 309 distinct gene families that have single transcripts with venom gland biased expression, suggesting that the switching of genes to venom gland expression in numerous unrelated gene families has been a dominant mode of evolution. We also find ample variation in protein sequences of venom gland-specific transcripts, lineage-specific family sizes, and ortholog expression among species. This variation might contribute to the variable venom toxicity of these species.

  1. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR.

    PubMed Central

    Inoue, K.; Osaka, H.; Sugiyama, N.; Kawanishi, C.; Onishi, H.; Nezu, A.; Kimura, K.; Yamada, Y.; Kosaka, K.

    1996-01-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10%-25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP gene duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be a important genetic abnormality in PMD and affect myelin formation. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8659540

  2. A duplicated PLP gene causing Pelizaeus-Merzbacher disease detected by comparative multiplex PCR

    SciTech Connect

    Inoue, K.; Sugiyama, N.; Kawanishi, C.

    1996-07-01

    Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused by abnormalities in the proteolipid protein (PLP) gene, which is essential for oligodendrocyte differentiation and CNS myelin formation. Although linkage analysis has shown the homogeneity at the PLP locus in patients with PMD, exonic mutations in the PLP gene have been identified in only 10% - 25% of all cases, which suggests the presence of other genetic aberrations, including gene duplication. In this study, we examined five families with PMD not carrying exonic mutations in PLP gene, using comparative multiplex PCR (CM-PCR) as a semiquantitative assay of gene dosage. PLP gene duplications were identified in four families by CM-PCR and confirmed in three families by densitometric RFLP analysis. Because a homologous myelin protein gene, PMP22, is duplicated in the majority of patients with Charcot-Marie-Tooth 1A, PLP gene overdosage may be an important genetic abnormality in PMD and affect myelin formation. 38 ref., 5 figs., 2 tabs.

  3. Compensatory Drift and the Evolutionary Dynamics of Dosage-Sensitive Duplicate Genes.

    PubMed

    Thompson, Ammon; Zakon, Harold H; Kirkpatrick, Mark

    2016-02-01

    Dosage-balance selection preserves functionally redundant duplicates (paralogs) at the optimum for their combined expression. Here we present a model of the dynamics of duplicate genes coevolving under dosage-balance selection. We call this the compensatory drift model. Results show that even when strong dosage-balance selection constrains total expression to the optimum, expression of each duplicate can diverge by drift from its original level. The rate of divergence slows as the strength of stabilizing selection, the size of the mutation effect, and/or the size of the population increases. We show that dosage-balance selection impedes neofunctionalization early after duplication but can later facilitate it. We fit this model to data from sodium channel duplicates in 10 families of teleost fish; these include two convergent lineages of electric fish in which one of the duplicates neofunctionalized. Using the model, we estimated the strength of dosage-balance selection for these genes. The results indicate that functionally redundant paralogs still may undergo radical functional changes after a prolonged period of compensatory drift.

  4. PGDD: a database of gene and genome duplication in plants

    PubMed Central

    Lee, Tae-Ho; Tang, Haibao; Wang, Xiyin; Paterson, Andrew H.

    2013-01-01

    Genome duplication (GD) has permanently shaped the architecture and function of many higher eukaryotic genomes. The angiosperms (flowering plants) are outstanding models in which to elucidate consequences of GD for higher eukaryotes, owing to their propensity for chromosomal duplication or even triplication in a few cases. Duplicated genome structures often require both intra- and inter-genome alignments to unravel their evolutionary history, also providing the means to deduce both obvious and otherwise-cryptic orthology, paralogy and other relationships among genes. The burgeoning sets of angiosperm genome sequences provide the foundation for a host of investigations into the functional and evolutionary consequences of gene and GD. To provide genome alignments from a single resource based on uniform standards that have been validated by empirical studies, we built the Plant Genome Duplication Database (PGDD; freely available at http://chibba.agtec.uga.edu/duplication/), a web service providing synteny information in terms of colinearity between chromosomes. At present, PGDD contains data for 26 plants including bryophytes and chlorophyta, as well as angiosperms with draft genome sequences. In addition to the inclusion of new genomes as they become available, we are preparing new functions to enhance PGDD. PMID:23180799

  5. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data

    PubMed Central

    Tiley, George P.; Ané, Cécile; Burleigh, J. Gordon

    2016-01-01

    Whole-genome duplications (WGDs) have helped shape the genomes of land plants, and recent evidence suggests that the genomes of all angiosperms have experienced at least two ancient WGDs. In plants, WGDs often are followed by rapid fractionation, in which many homeologous gene copies are lost. Thus, it can be extremely difficult to identify, let alone characterize, ancient WGDs. In this study, we use a new maximum likelihood estimator to test for evidence of ancient WGDs in land plants and estimate the fraction of new genes copies that are retained following a WGD using gene count data, the number of gene copies in gene families. We identified evidence of many putative ancient WGDs in land plants and found that the genome fractionation rates vary tremendously among ancient WGDs. Analyses of WGDs within Brassicales also indicate that background gene duplication and loss rates vary across land plants, and different gene families have different probabilities of being retained following a WGD. Although our analyses are largely robust to errors in duplication and loss rates and the choice of priors, simulations indicate that this method can have trouble detecting multiple WGDs that occur on the same branch, especially when the gene retention rates for ancient WGDs are very low. They also suggest that we should carefully evaluate evidence for some ancient plant WGD hypotheses. PMID:26988251

  6. Functional divergence in tandemly duplicated Arabidopsis thaliana trypsin inhibitor genes.

    PubMed Central

    Clauss, M J; Mitchell-Olds, T

    2004-01-01

    In multigene families, variation among loci and alleles can contribute to trait evolution. We explored patterns of functional and genetic variation in six duplicated Arabidopsis thaliana trypsin inhibitor (ATTI) loci. We demonstrate significant variation in constitutive and herbivore-induced transcription among ATTI loci that show, on average, 65% sequence divergence. Significant variation in ATTI expression was also found between two molecularly defined haplotype classes. Population genetic analyses for 17 accessions of A. thaliana showed that six ATTI loci arranged in tandem within 10 kb varied 10-fold in nucleotide diversity, from 0.0009 to 0.0110, and identified a minimum of six recombination events throughout the tandem array. We observed a significant peak in nucleotide and indel polymorphism spanning ATTI loci in the interior of the array, due primarily to divergence between the two haplotype classes. Significant deviation from the neutral equilibrium model for individual genes was interpreted within the context of intergene linkage disequilibrium and correlated patterns of functional differentiation. In contrast to the outcrosser Arabidopsis lyrata for which recombination is observed even within ATTI loci, our data suggest that response to selection was slowed in the inbreeding, annual A. thaliana because of interference among functionally divergent ATTI loci. PMID:15082560

  7. Root hairs, trichomes and the evolution of duplicate genes.

    PubMed

    Kellogg, E A

    2001-12-01

    The MYB-class proteins WEREWOLF and GLABRA1 are functionally interchangeable, even though one is normally expressed solely in roots and the other only in shoots. This shows that their different functions are the result of the modification of cis-regulatory sequences over evolutionary time. The two genes thus provide an example of morphological diversification created by gene duplication and changes in regulation.

  8. Gene duplication of the human peptide YY gene (PYY) generated the pancreatic polypeptide gene (PPY) on chromosome 17q21.1

    SciTech Connect

    Hort, Y.; Shine, J.; Herzog, H.

    1995-03-01

    Neuropeptide Y (NPY), peptide YY (PYY), and pancreatic polypeptide (PP) are structurally related but functionally diverse peptides, encoded by separate genes and expressed in different tissues. Although the human NPY gene has been mapped to chromosome 7, the authors demonstrate here that the genes for human PYY and PP (PPY) are localized only 10 kb apart from each another on chromosome 17q21.1. The high degree of homology between the members of this gene family, both in primary sequence and exon/intron structure, suggests that the NYP and the PYY genes arose from an initial gene duplication event, with a subsequent tandem duplication of the PYY gene being responsible for the creation of the PPY gene. A second weaker hybridization signal also found on chromosome 17q11 and results obtained by Southern blot analysis suggest that the entire PYY-PPY region has undergone a further duplication event. 27 refs., 5 figs.

  9. Species-specific duplications of NBS-encoding genes in Chinese chestnut (Castanea mollissima)

    PubMed Central

    Zhong, Yan; Li, Yingjun; Huang, Kaihui; Cheng, Zong-Ming

    2015-01-01

    The disease resistance (R) genes play an important role in protecting plants from infection by diverse pathogens in the environment. The nucleotide-binding site (NBS)-leucine-rich repeat (LRR) class of genes is one of the largest R gene families. Chinese chestnut (Castanea mollissima) is resistant to Chestnut Blight Disease, but relatively little is known about the resistance mechanism. We identified 519 NBS-encoding genes, including 374 NBS-LRR genes and 145 NBS-only genes. The majority of Ka/Ks were less than 1, suggesting the purifying selection operated during the evolutionary history of NBS-encoding genes. A minority (4/34) of Ka/Ks in non-TIR gene families were greater than 1, showing that some genes were under positive selection pressure. Furthermore, Ks peaked at a range of 0.4 to 0.5, indicating that ancient duplications arose during the evolution. The relationship between Ka/Ks and Ks indicated greater selective pressure on the newer and older genes with the critical value of Ks = 0.4–0.5. Notably, species-specific duplications were detected in NBS-encoding genes. In addition, the group of RPW8-NBS-encoding genes clustered together as an independent clade located at a relatively basal position in the phylogenetic tree. Many cis-acting elements related to plant defense responses were detected in promoters of NBS-encoding genes. PMID:26559332

  10. Six Subgroups and Extensive Recent Duplications Characterize the Evolution of the Eukaryotic Tubulin Protein Family

    PubMed Central

    Findeisen, Peggy; Mühlhausen, Stefanie; Dempewolf, Silke; Hertzog, Jonny; Zietlow, Alexander; Carlomagno, Teresa; Kollmar, Martin

    2014-01-01

    Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog–paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other. PMID:25169981

  11. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family.

    PubMed

    Findeisen, Peggy; Mühlhausen, Stefanie; Dempewolf, Silke; Hertzog, Jonny; Zietlow, Alexander; Carlomagno, Teresa; Kollmar, Martin

    2014-09-01

    Tubulins belong to the most abundant proteins in eukaryotes providing the backbone for many cellular substructures like the mitotic and meiotic spindles, the intracellular cytoskeletal network, and the axonemes of cilia and flagella. Homologs have even been reported for archaea and bacteria. However, a taxonomically broad and whole-genome-based analysis of the tubulin protein family has never been performed, and thus, the number of subfamilies, their taxonomic distribution, and the exact grouping of the supposed archaeal and bacterial homologs are unknown. Here, we present the analysis of 3,524 tubulins from 504 species. The tubulins formed six major subfamilies, α to ζ. Species of all major kingdoms of the eukaryotes encode members of these subfamilies implying that they must have already been present in the last common eukaryotic ancestor. The proposed archaeal homologs grouped together with the bacterial TubZ proteins as sister clade to the FtsZ proteins indicating that tubulins are unique to eukaryotes. Most species contained α- and/or β-tubulin gene duplicates resulting from recent branch- and species-specific duplication events. This shows that tubulins cannot be used for constructing species phylogenies without resolving their ortholog-paralog relationships. The many gene duplicates and also the independent loss of the δ-, ε-, or ζ-tubulins, which have been shown to be part of the triplet microtubules in basal bodies, suggest that tubulins can functionally substitute each other.

  12. Duplications of hox gene clusters and the emergence of vertebrates.

    PubMed

    Soshnikova, Natalia; Dewaele, Romain; Janvier, Philippe; Krumlauf, Robb; Duboule, Denis

    2013-06-15

    The vertebrate body plan is characterized by an increased complexity relative to that of all other chordates and large-scale gene amplifications have been associated with key morphological innovations leading to their remarkable evolutionary success. Here, we use compound full Hox clusters deletions to investigate how Hox genes duplications may have contributed to the emergence of vertebrate-specific innovations. We show that the combined deletion of HoxA and HoxB leads to an atavistic heart phenotype, suggesting that the ancestral HoxA/B cluster was co-opted to help in diversifying the complex organ in vertebrates. Other phenotypic effects observed seem to illustrate the resurgence of ancestral (plesiomorphic) features. This indicates that the duplications of Hox clusters were associated with the recruitment or formation of novel cis-regulatory controls, which were key to the evolution of many vertebrate features and hence to the evolutionary radiation of this group.

  13. Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disorders

    PubMed Central

    2014-01-01

    Background Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study. Methods From the AGP CNV genomic screen in 2,147 ASD individuals, we selected for characterization an ANXA1 gene duplication that was absent in 4,964 population-based controls. We further screened the duplication in a follow-up sample including 1,496 patients and 410 controls, and evaluated clinical correlations and family segregation. Sequencing of exonic/downstream ANXA1 regions was performed in 490 ASD patients for identification of additional variants. Results The ANXA1 duplication, overlapping the last four exons and 3’UTR region, had an overall prevalence of 11/3,643 (0.30%) in unrelated ASD patients but was not identified in 5,374 controls. Duplication carriers presented no distinctive clinical phenotype. Family analysis showed neuropsychiatric deficits and ASD traits in multiple relatives carrying the duplication, suggestive of a complex genetic inheritance. Sequencing of exonic regions and the 3’UTR identified 11 novel changes, but no obvious variants with clinical significance. Conclusions We provide multilevel evidence for a role of ANXA1 in ASD etiology. Given its important role as mediator of glucocorticoid function in a wide variety of brain processes, including neuroprotection, apoptosis, and control of the neuroendocrine system, the results add ANXA1 to the growing list of rare candidate genetic etiological factors for ASD. PMID:24720851

  14. The large soybean (Glycine max) WRKY TF family expanded by segmental duplication events and subsequent divergent selection among subgroups

    PubMed Central

    2013-01-01

    Background WRKY genes encode one of the most abundant groups of transcription factors in higher plants, and its members regulate important biological process such as growth, development, and responses to biotic and abiotic stresses. Although the soybean genome sequence has been published, functional studies on soybean genes still lag behind those of other species. Results We identified a total of 133 WRKY members in the soybean genome. According to structural features of their encoded proteins and to the phylogenetic tree, the soybean WRKY family could be classified into three groups (groups I, II, and III). A majority of WRKY genes (76.7%; 102 of 133) were segmentally duplicated and 13.5% (18 of 133) of the genes were tandemly duplicated. This pattern was not apparent in Arabidopsis or rice. The transcriptome atlas revealed notable differential expression in either transcript abundance or in expression patterns under normal growth conditions, which indicated wide functional divergence in this family. Furthermore, some critical amino acids were detected using DIVERGE v2.0 in specific comparisons, suggesting that these sites have contributed to functional divergence among groups or subgroups. In addition, site model and branch-site model analyses of positive Darwinian selection (PDS) showed that different selection regimes could have affected the evolution of these groups. Sites with high probabilities of having been under PDS were found in groups I, II c, II e, and III. Together, these results contribute to a detailed understanding of the molecular evolution of the WRKY gene family in soybean. Conclusions In this work, all the WRKY genes, which were generated mainly through segmental duplication, were identified in the soybean genome. Moreover, differential expression and functional divergence of the duplicated WRKY genes were two major features of this family throughout their evolutionary history. Positive selection analysis revealed that the different groups have

  15. Gene family size conservation is a good indicator of evolutionary rates.

    PubMed

    Chen, Feng-Chi; Chen, Chiuan-Jung; Li, Wen-Hsiung; Chuang, Trees-Juen

    2010-08-01

    The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human-chimpanzee-macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.

  16. Hox gene duplications correlate with posterior heteronomy in scorpions.

    PubMed

    Sharma, Prashant P; Schwager, Evelyn E; Extavour, Cassandra G; Wheeler, Ward C

    2014-10-01

    The evolutionary success of the largest animal phylum, Arthropoda, has been attributed to tagmatization, the coordinated evolution of adjacent metameres to form morphologically and functionally distinct segmental regions called tagmata. Specification of regional identity is regulated by the Hox genes, of which 10 are inferred to be present in the ancestor of arthropods. With six different posterior segmental identities divided into two tagmata, the bauplan of scorpions is the most heteronomous within Chelicerata. Expression domains of the anterior eight Hox genes are conserved in previously surveyed chelicerates, but it is unknown how Hox genes regionalize the three tagmata of scorpions. Here, we show that the scorpion Centruroides sculpturatus has two paralogues of all Hox genes except Hox3, suggesting cluster and/or whole genome duplication in this arachnid order. Embryonic anterior expression domain boundaries of each of the last four pairs of Hox genes (two paralogues each of Antp, Ubx, abd-A and Abd-B) are unique and distinguish segmental groups, such as pectines, book lungs and the characteristic tail, while maintaining spatial collinearity. These distinct expression domains suggest neofunctionalization of Hox gene paralogues subsequent to duplication. Our data reconcile previous understanding of Hox gene function across arthropods with the extreme heteronomy of scorpions.

  17. Hox gene duplications correlate with posterior heteronomy in scorpions

    PubMed Central

    Sharma, Prashant P.; Schwager, Evelyn E.; Extavour, Cassandra G.; Wheeler, Ward C.

    2014-01-01

    The evolutionary success of the largest animal phylum, Arthropoda, has been attributed to tagmatization, the coordinated evolution of adjacent metameres to form morphologically and functionally distinct segmental regions called tagmata. Specification of regional identity is regulated by the Hox genes, of which 10 are inferred to be present in the ancestor of arthropods. With six different posterior segmental identities divided into two tagmata, the bauplan of scorpions is the most heteronomous within Chelicerata. Expression domains of the anterior eight Hox genes are conserved in previously surveyed chelicerates, but it is unknown how Hox genes regionalize the three tagmata of scorpions. Here, we show that the scorpion Centruroides sculpturatus has two paralogues of all Hox genes except Hox3, suggesting cluster and/or whole genome duplication in this arachnid order. Embryonic anterior expression domain boundaries of each of the last four pairs of Hox genes (two paralogues each of Antp, Ubx, abd-A and Abd-B) are unique and distinguish segmental groups, such as pectines, book lungs and the characteristic tail, while maintaining spatial collinearity. These distinct expression domains suggest neofunctionalization of Hox gene paralogues subsequent to duplication. Our data reconcile previous understanding of Hox gene function across arthropods with the extreme heteronomy of scorpions. PMID:25122224

  18. Evidence of duplicated Hox genes in the most recent common ancestor of extant scorpions.

    PubMed

    Sharma, Prashant P; Santiago, Marc A; González-Santillán, Edmundo; Monod, Lionel; Wheeler, Ward C

    2015-01-01

    Scorpions (order Scorpiones) are unusual among arthropods, both for the extreme heteronomy of their bauplan and for the high gene family turnover exhibited in their genomes. These phenomena appear to be correlated, as two scorpion species have been shown to possess nearly twice the number of Hox genes present in most arthropods. Segmentally offset anterior expression boundaries of a subset of Hox paralogs have been shown to correspond to transitions in segmental identities in the scorpion posterior tagmata, suggesting that posterior heteronomy in scorpions may have been achieved by neofunctionalization of Hox paralogs. However, both the first scorpion genome sequenced and the developmental genetic data are based on exemplars of Buthidae, one of 19 families of scorpions. It is therefore not known whether Hox paralogy is limited to Buthidae or widespread among scorpions. We surveyed 24 high throughput transcriptomes and the single whole genome available for scorpions, in order to test the prediction that Hox gene duplications are common to the order. We used gene tree parsimony to infer whether the paralogy was consistent with a duplication event in the scorpion common ancestor. Here we show that duplicated Hox genes in non-buthid scorpions occur in six of the ten Hox classes. Gene tree topologies and parsimony-based reconciliation of the gene trees are consistent with a duplication event in the most recent common ancestor of scorpions. These results suggest that a Hox paralogy, and by extension the model of posterior patterning established in a buthid, can be extended to non-Buthidae scorpions. PMID:26492826

  19. Origin and evolution of eukaryotic chaperonins: phylogenetic evidence for ancient duplications in CCT genes.

    PubMed

    Archibald, J M; Logsdon, J M; Doolittle, W F

    2000-10-01

    Chaperonins are oligomeric protein-folding complexes which are divided into two distantly related structural classes. Group I chaperonins (called GroEL/cpn60/hsp60) are found in bacteria and eukaryotic organelles, while group II chaperonins are present in archaea and the cytoplasm of eukaryotes (called CCT/TriC). While archaea possess one to three chaperonin subunit-encoding genes, eight distinct CCT gene families (paralogs) have been characterized in eukaryotes. We are interested in determining when during eukaryotic evolution the multiple gene duplications producing the CCT subunits occurred. We describe the sequence and phylogenetic analysis of five CCT genes from TRICHOMONAS: vaginalis and seven from GIARDIA: lamblia, representatives of amitochondriate protist lineages thought to have diverged early from other eukaryotes. Our data show that the gene duplications producing the eight CCT paralogs took place prior to the organismal divergence of TRICHOMONAS: and GIARDIA: from other eukaryotes. Thus, these divergent protists likely possess completely hetero-oligomeric CCT complexes like those in yeast and mammalian cells. No close phylogenetic relationship between the archaeal chaperonins and specific CCT subunits was observed, suggesting that none of the CCT gene duplications predate the divergence of archaea and eukaryotes. The duplications producing the CCTdelta and CCTepsilon subunits, as well as CCTalpha, CCTbeta, and CCTeta, are the most recent in the CCT gene family. Our analyses show significant differences in the rates of evolution of archaeal chaperonins compared with the eukaryotic CCTs, as well as among the different CCT subunits themselves. We discuss these results in light of current views on the origin, evolution, and function of CCT complexes.

  20. Impact of whole-genome and tandem duplications in the expansion and functional diversification of the F-box family in legumes (Fabaceae).

    PubMed

    Bellieny-Rabelo, Daniel; Oliveira, Antônia Elenir Amâncio; Venancio, Thiago Motta

    2013-01-01

    F-box proteins constitute a large gene family that regulates processes from hormone signaling to stress response. F-box proteins are the substrate recognition modules of SCF E3 ubiquitin ligases. Here we report very distinct trends in family size, duplication, synteny and transcription of F-box genes in two nitrogen-fixing legumes, Glycine max (soybean) and Medicago truncatula (alfafa). While the soybean FBX genes emerged mainly through segmental duplications (including whole-genome duplications), M. truncatula genome is dominated by locally-duplicated (tandem) F-box genes. Many of these young FBX genes evolved complex transcriptional patterns, including preferential transcription in different tissues, suggesting that they have probably been recruited to important biochemical pathways (e.g. nodulation and seed development).

  1. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate.

    PubMed

    Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P

    2016-05-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. PMID:26920761

  2. Molecular evolution accompanying functional divergence of duplicated genes along the plant starch biosynthesis pathway

    PubMed Central

    2014-01-01

    Background Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. Results We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. Conclusions The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called “Escape from Adaptive Conflict

  3. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes

    PubMed Central

    Ye, Fei; Lan, Xu-e; Zhu, Wen-bo; You, Ping

    2016-01-01

    Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects. PMID:27157299

  4. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): rearrangement, duplication, and reassignment of tRNA genes.

    PubMed

    Ye, Fei; Lan, Xu-E; Zhu, Wen-Bo; You, Ping

    2016-01-01

    Insect mitochondrial genomes (mitogenomes) contain a conserved set of 37 genes for an extensive diversity of lineages. Previously reported dictyopteran mitogenomes share this conserved mitochondrial gene arrangement, although surprisingly little is known about the mitogenome of Mantodea. We sequenced eight mantodean mitogenomes including the first representatives of two families: Hymenopodidae and Liturgusidae. Only two of these genomes retain the typical insect gene arrangement. In three Liturgusidae species, the trnM genes have translocated. Four species of mantis (Creobroter gemmata, Mantis religiosa, Statilia sp., and Theopompa sp.-HN) have multiple identical tandem duplication of trnR, and Statilia sp. additionally includes five extra duplicate trnW. These extra trnR and trnW in Statilia sp. are erratically arranged and form another novel gene order. Interestingly, the extra trnW is converted from trnR by the process of point mutation at anticodon, which is the first case of tRNA reassignment for an insect. Furthermore, no significant differences were observed amongst mantodean mitogenomes with variable copies of tRNA according to comparative analysis of codon usage. Combined with phylogenetic analysis, the characteristics of tRNA only possess limited phylogenetic information in this research. Nevertheless, these features of gene rearrangement, duplication, and reassignment provide valuable information toward understanding mitogenome evolution in insects. PMID:27157299

  5. Evolutionary Diversification of Plant Shikimate Kinase Gene Duplicates

    PubMed Central

    Fucile, Geoffrey; Falconer, Shannon; Christendat, Dinesh

    2008-01-01

    Shikimate kinase (SK; EC 2.7.1.71) catalyzes the fifth reaction of the shikimate pathway, which directs carbon from the central metabolism pool to a broad range of secondary metabolites involved in plant development, growth, and stress responses. In this study, we demonstrate the role of plant SK gene duplicate evolution in the diversification of metabolic regulation and the acquisition of novel and physiologically essential function. Phylogenetic analysis of plant SK homologs resolves an orthologous cluster of plant SKs and two functionally distinct orthologous clusters. These previously undescribed genes, shikimate kinase-like 1 (SKL1) and -2 (SKL2), do not encode SK activity, are present in all major plant lineages, and apparently evolved under positive selection following SK gene duplication over 400 MYA. This is supported by functional assays using recombinant SK, SKL1, and SKL2 from Arabidopsis thaliana (At) and evolutionary analyses of the diversification of SK-catalytic and -substrate binding sites based on theoretical structure models. AtSKL1 mutants yield albino and novel variegated phenotypes, which indicate SKL1 is required for chloroplast biogenesis. Extant SKL2 sequences show a strong genetic signature of positive selection, which is enriched in a protein–protein interaction module not found in other SK homologs. We also report the first kinetic characterization of plant SKs and show that gene expression diversification among the AtSK inparalogs is correlated with developmental processes and stress responses. This study examines the functional diversification of ancient and recent plant SK gene duplicates and highlights the utility of SKs as scaffolds for functional innovation. PMID:19057671

  6. Gene duplications in prokaryotes can be associated with environmental adaptation

    PubMed Central

    2010-01-01

    Background Gene duplication is a normal evolutionary process. If there is no selective advantage in keeping the duplicated gene, it is usually reduced to a pseudogene and disappears from the genome. However, some paralogs are retained. These gene products are likely to be beneficial to the organism, e.g. in adaptation to new environmental conditions. The aim of our analysis is to investigate the properties of paralog-forming genes in prokaryotes, and to analyse the role of these retained paralogs by relating gene properties to life style of the corresponding prokaryotes. Results Paralogs were identified in a number of prokaryotes, and these paralogs were compared to singletons of persistent orthologs based on functional classification. This showed that the paralogs were associated with for example energy production, cell motility, ion transport, and defence mechanisms. A statistical overrepresentation analysis of gene and protein annotations was based on paralogs of the 200 prokaryotes with the highest fraction of paralog-forming genes. Biclustering of overrepresented gene ontology terms versus species was used to identify clusters of properties associated with clusters of species. The clusters were classified using similarity scores on properties and species to identify interesting clusters, and a subset of clusters were analysed by comparison to literature data. This analysis showed that paralogs often are associated with properties that are important for survival and proliferation of the specific organisms. This includes processes like ion transport, locomotion, chemotaxis and photosynthesis. However, the analysis also showed that the gene ontology terms sometimes were too general, imprecise or even misleading for automatic analysis. Conclusions Properties described by gene ontology terms identified in the overrepresentation analysis are often consistent with individual prokaryote lifestyles and are likely to give a competitive advantage to the organism

  7. Familial partial duplication (1)(p21p31)

    SciTech Connect

    Hoechstetter, L.; Soukup, S.; Schorry, E.K.

    1995-11-20

    A partial duplication (1)(p21p31), resulting from a maternal direct insertion (13,1) (q22p21p31), was found in a 30-year-old woman with mental retardation, cleft palate, and multiple minor anomalies. Two other affected and deceased relatives were presumed to have the same chromosome imbalance. Duplication 1p cases are reviewed. 8 refs., 5 figs., 1 tab.

  8. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes1[OPEN

    PubMed Central

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C.; Fan, Chuanzhu

    2016-01-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella. Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  9. Evolutionary Fates and Dynamic Functionalization of Young Duplicate Genes in Arabidopsis Genomes.

    PubMed

    Wang, Jun; Tao, Feng; Marowsky, Nicholas C; Fan, Chuanzhu

    2016-09-01

    Gene duplication is a primary means to generate genomic novelties, playing an essential role in speciation and adaptation. Particularly in plants, a high abundance of duplicate genes has been maintained for significantly long periods of evolutionary time. To address the manner in which young duplicate genes were derived primarily from small-scale gene duplication and preserved in plant genomes and to determine the underlying driving mechanisms, we generated transcriptomes to produce the expression profiles of five tissues in Arabidopsis thaliana and the closely related species Arabidopsis lyrata and Capsella rubella Based on the quantitative analysis metrics, we investigated the evolutionary processes of young duplicate genes in Arabidopsis. We determined that conservation, neofunctionalization, and specialization are three main evolutionary processes for Arabidopsis young duplicate genes. We explicitly demonstrated the dynamic functionalization of duplicate genes along the evolutionary time scale. Upon origination, duplicates tend to maintain their ancestral functions; but as they survive longer, they might be likely to develop distinct and novel functions. The temporal evolutionary processes and functionalization of plant duplicate genes are associated with their ancestral functions, dynamic DNA methylation levels, and histone modification abundances. Furthermore, duplicate genes tend to be initially expressed in pollen and then to gain more interaction partners over time. Altogether, our study provides novel insights into the dynamic retention processes of young duplicate genes in plant genomes. PMID:27485883

  10. Duplication is more common among laterally transferred genes than among indigenous genes

    PubMed Central

    Hooper, Sean D; Berg, Otto G

    2003-01-01

    Background Recent developments in the understanding of paralogous evolution have prompted a focus not only on obviously advantageous genes, but also on genes that can be considered to have a weak or sporadic impact on the survival of the organism. Here we examine the duplicative behavior of a category of genes that can be considered to be mostly transient in the genome, namely laterally transferred genes. Using both a compositional method and a gene-tree approach, we identify a number of proposed laterally transferred genes and study their nucleotide composition and frequency of duplication. Results It is found that duplications are significantly overrepresented among potential laterally transferred genes compared to the indigenous ones. Furthermore, the GC3 distribution of potential laterally transferred genes was found to be largely uniform in some genomes, suggesting an import from a broad range of donors. Conclusions The results are discussed not in a context of strongly optimized established genes, but rather of genes with weak or ancillary functions. The importance of duplication may therefore depend on the variability and availability of weak genes for which novel functions may be discovered. Therefore, lateral transfer may accelerate the evolutionary process of duplication by bringing foreign genes that have mainly weak or no function into the genome. PMID:12914657

  11. A Limited Role for Gene Duplications in the Evolution of Platypus Venom

    PubMed Central

    Wong, Emily S. W.; Papenfuss, Anthony T.; Whittington, Camilla M.; Warren, Wesley C.; Belov, Katherine

    2012-01-01

    Gene duplication followed by adaptive selection is believed to be the primary driver of venom evolution. However, to date, no studies have evaluated the importance of gene duplications for venom evolution using a genomic approach. The availability of a sequenced genome and a venom gland transcriptome for the enigmatic platypus provides a unique opportunity to explore the role that gene duplication plays in venom evolution. Here, we identify gene duplication events and correlate them with expressed transcripts in an in-season venom gland. Gene duplicates (1,508) were identified. These duplicated pairs (421), including genes that have undergone multiple rounds of gene duplications, were expressed in the venom gland. The majority of these genes are involved in metabolism and protein synthesis not toxin functions. Twelve secretory genes including serine proteases, metalloproteinases, and protease inhibitors likely to produce symptoms of envenomation such as vasodilation and pain were detected. Only 16 of 107 platypus genes with high similarity to known toxins evolved through gene duplication. Platypus venom C-type natriuretic peptides and nerve growth factor do not possess lineage-specific gene duplicates. Extensive duplications, believed to increase the potency of toxic content and promote toxin diversification, were not found. This is the first study to take a genome-wide approach in order to examine the impact of gene duplication on venom evolution. Our findings support the idea that adaptive selection acts on gene duplicates to drive the independent evolution and functional diversification of similar venom genes in venomous species. However, gene duplications alone do not explain the “venome” of the platypus. Other mechanisms, such as alternative splicing and mutation, may be important in venom innovation. PMID:21816864

  12. Gene duplication and speciation in Drosophila: evidence from the Odysseus locus.

    PubMed

    Ting, Chau-Ti; Tsaur, Shun-Chern; Sun, Sha; Browne, William E; Chen, Yung-Chia; Patel, Nipam H; Wu, Chung-I

    2004-08-17

    The importance of gene duplication in evolution has long been recognized. Because duplicated genes are prone to diverge in function, gene duplication could plausibly play a role in species differentiation. However, experimental evidence linking gene duplication with speciation is scarce. Here, we show that a hybrid-male sterility gene, Odysseus (OdsH), arose by gene duplication in the Drosophila genome. OdsH has evolved at a very high rate, whereas its most immediate paralog, unc-4, is nearly identical among species in the Drosophila melanogaster subgroup. The disparity in their sequence evolution is echoed by the divergence in their expression patterns in both soma and reproductive tissues. We suggest that duplicated genes that have yet to evolve a stable function at the time of speciation may be candidates for "speciation genes," which is broadly defined as genes that contribute to differential adaptation between species.

  13. Patterns of Gene Conversion in Duplicated Yeast Histones Suggest Strong Selection on a Coadapted Macromolecular Complex

    PubMed Central

    Scienski, Kathy; Fay, Justin C.; Conant, Gavin C.

    2015-01-01

    We find evidence for interlocus gene conversion in five duplicated histone genes from six yeast species. The sequences of these duplicated genes, surviving from the ancient genome duplication, show phylogenetic patterns inconsistent with the well-resolved orthology relationships inferred from a likelihood model of gene loss after the genome duplication. Instead, these paralogous genes are more closely related to each other than any is to its nearest ortholog. In addition to simulations supporting gene conversion, we also present evidence for elevated rates of radical amino acid substitutions along the branches implicated in the conversion events. As these patterns are similar to those seen in ribosomal proteins that have undergone gene conversion, we speculate that in cases where duplicated genes code for proteins that are a part of tightly interacting complexes, selection may favor the fixation of gene conversion events in order to maintain high protein identities between duplicated copies. PMID:26560339

  14. Impact of duplicate gene copies on phylogenetic analysis and divergence time estimates in butterflies

    PubMed Central

    Pohl, Nélida; Sison-Mangus, Marilou P; Yee, Emily N; Liswi, Saif W; Briscoe, Adriana D

    2009-01-01

    Background The increase in availability of genomic sequences for a wide range of organisms has revealed gene duplication to be a relatively common event. Encounters with duplicate gene copies have consequently become almost inevitable in the context of collecting gene sequences for inferring species trees. Here we examine the effect of incorporating duplicate gene copies evolving at different rates on tree reconstruction and time estimation of recent and deep divergences in butterflies. Results Sequences from ultraviolet-sensitive (UVRh), blue-sensitive (BRh), and long-wavelength sensitive (LWRh) opsins,EF-1α and COI were obtained from 27 taxa representing the five major butterfly families (5535 bp total). Both BRh and LWRh are present in multiple copies in some butterfly lineages and the different copies evolve at different rates. Regardless of the phylogenetic reconstruction method used, we found that analyses of combined data sets using either slower or faster evolving copies of duplicate genes resulted in a single topology in agreement with our current understanding of butterfly family relationships based on morphology and molecules. Interestingly, individual analyses of BRh and LWRh sequences also recovered these family-level relationships. Two different relaxed clock methods resulted in similar divergence time estimates at the shallower nodes in the tree, regardless of whether faster or slower evolving copies were used, with larger discrepancies observed at deeper nodes in the phylogeny. The time of divergence between the monarch butterfly Danaus plexippus and the queen D. gilippus (15.3–35.6 Mya) was found to be much older than the time of divergence between monarch co-mimic Limenitis archippus and red-spotted purple L. arthemis (4.7–13.6 Mya), and overlapping with the time of divergence of the co-mimetic passionflower butterflies Heliconius erato and H. melpomene (13.5–26.1 Mya). Our family-level results are congruent with recent estimates found in

  15. Lineage-specific duplications of Muroidea Faim and Spag6 genes and atypical accelerated evolution of the parental Spag6 gene.

    PubMed

    Qiu, Huan; Gołas, Aniela; Grzmil, Paweł; Wojnowski, Leszek

    2013-09-01

    Gene duplications restricted to single lineage combined with an asymmetric evolution of the resulting genes may play particularly important roles in this lineage's biology. We searched and identified asymmetrical evolution in nine gene families that duplicated exclusively in rodents and are present as single-copies in human, dog, cow, elephant, opossum, chicken, lizard, and Western clawed frog. Among those nine gene families are Fas apoptosis inhibitory molecule (Faim), implicated in apoptosis, and Sperm antigen 6 (Spag6), implicated in sperm mobility. Both genes were duplicated in or before the Muroidea ancestor. Due to the highly asymmetric evolution of the resulting paralogs, the existence of these duplications had been previously overlooked. Interestingly, Spag6, previously regarded and characterized as a single-copy ortholog of human Spag6, turns out to be a Muroidea-specific paralog. Conversely, the newly identified, highly divergent Spag6-BC061194 is in fact the parental gene. In consequence, this gene represents a rare exception from the general rule of rapid evolution of derived rather than parental genes following gene duplication. Unusual genes such as murine Spag6 may help to understand which mechanisms are responsible for this rule.

  16. Expression Divergence of Duplicate Genes in the Protein Kinase Superfamily in Pacific Oyster.

    PubMed

    Gao, Dahai; Ko, Dennis C; Tian, Xinmin; Yang, Guang; Wang, Liuyang

    2015-01-01

    Gene duplication has been proposed to serve as the engine of evolutionary innovation. It is well recognized that eukaryotic genomes contain a large number of duplicated genes that evolve new functions or expression patterns. However, in mollusks, the evolutionary mechanisms underlying the divergence and the functional maintenance of duplicate genes remain little understood. In the present study, we performed a comprehensive analysis of duplicate genes in the protein kinase superfamily using whole genome and transcriptome data for the Pacific oyster. A total of 64 duplicated gene pairs were identified based on a phylogenetic approach and the reciprocal best BLAST method. By analyzing gene expression from RNA-seq data from 69 different developmental and stimuli-induced conditions (nine tissues, 38 developmental stages, eight dry treatments, seven heat treatments, and seven salty treatments), we found that expression patterns were significantly correlated for a number of duplicate gene pairs, suggesting the conservation of regulatory mechanisms following divergence. Our analysis also identified a subset of duplicate gene pairs with very high expression divergence, indicating that these gene pairs may have been subjected to transcriptional subfunctionalization or neofunctionalization after the initial duplication events. Further analysis revealed a significant correlation between expression and sequence divergence (as revealed by synonymous or nonsynonymous substitution rates) under certain conditions. Taken together, these results provide evidence for duplicate gene sequence and expression divergence in the Pacific oyster, accompanying its adaptation to harsh environments. Our results provide new insights into the evolution of duplicate genes and their expression levels in the Pacific oyster.

  17. Gene organization and transcription of duplicated MBP genes of myelin deficient (shi(mld)) mutant mouse.

    PubMed Central

    Okano, H; Tamura, T; Miura, M; Aoyama, A; Ikenaka, K; Oshimura, M; Mikoshiba, K

    1988-01-01

    A hereditary dysmyelinating mutation, named myelin deficient (shi(mld)), is characterized by reduced expression of myelin basic protein (MBP). In shi(mld), the MBP gene is duplicated and its reduced expression is mainly determined by the level of mRNA. We have characterized the structure and function of the promoter regions of the duplicated MBP genes in shi(mld). Among the lambda clones containing promoter regions of the duplicated MBP genes in shi(mld), one (gene 1) had the same restriction enzyme pattern as that in control mice, but another (gene 2) had a rearrangement on a distal part of the promoter. A 712-bp nucleotide sequence upstream of the first exons of both of the duplicated MBP genes of shi(mld) was completely consistent with that of the control. Promoter activities of 1.3-kb 5'-flanking regions from respective genes of shi(mld) measured by in vitro run-off assay using HeLa whole-cell extracts were indistinguishable from that of the control MPB gene. Chromosomal mapping by in situ hybridization suggested that the duplicated MBP genes were located closely to each other at the distal part of chromosome 18. A recombinational event including the inversion seemed to have occurred within gene 1 and its possible relationship to the reduced expression of MBP is discussed. Images PMID:2452084

  18. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    PubMed Central

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342

  19. Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors

    PubMed Central

    Roque, Edelín; Fares, Mario A.; Yenush, Lynne; Rochina, Mari Cruz; Wen, Jiangqi; Mysore, Kirankumar S.; Gómez-Mena, Concepción; Beltrán, José Pío; Cañas, Luis A.

    2016-01-01

    PISTILLATA (PI) is a member of the B-function MADS-box gene family, which controls the identity of both petals and stamens in Arabidopsis thaliana. In Medicago truncatula (Mt), there are two PI-like paralogs, known as MtPI and MtNGL9. These genes differ in their expression patterns, but it is not known whether their functions have also diverged. Describing the evolution of certain duplicated genes, such as transcription factors, remains a challenge owing to the complex expression patterns and functional divergence between the gene copies. Here, we report a number of functional studies, including analyses of gene expression, protein–protein interactions, and reverse genetic approaches designed to demonstrate the respective contributions of each M. truncatula PI-like paralog to the B-function in this species. Also, we have integrated molecular evolution approaches to determine the mode of evolution of Mt PI-like genes after duplication. Our results demonstrate that MtPI functions as a master regulator of B-function in M. truncatula, maintaining the overall ancestral function, while MtNGL9 does not seem to have a role in this regard, suggesting that the pseudogenization could be the functional evolutionary fate for this gene. However, we provide evidence that purifying selection is the primary evolutionary force acting on this paralog, pinpointing the conservation of its biochemical function and, alternatively, the acquisition of a new role for this gene. PMID:26773809

  20. Evolution by gene duplication of Medicago truncatula PISTILLATA-like transcription factors.

    PubMed

    Roque, Edelín; Fares, Mario A; Yenush, Lynne; Rochina, Mari Cruz; Wen, Jiangqi; Mysore, Kirankumar S; Gómez-Mena, Concepción; Beltrán, José Pío; Cañas, Luis A

    2016-03-01

    PISTILLATA (PI) is a member of the B-function MADS-box gene family, which controls the identity of both petals and stamens in Arabidopsis thaliana. In Medicago truncatula (Mt), there are two PI-like paralogs, known as MtPI and MtNGL9. These genes differ in their expression patterns, but it is not known whether their functions have also diverged. Describing the evolution of certain duplicated genes, such as transcription factors, remains a challenge owing to the complex expression patterns and functional divergence between the gene copies. Here, we report a number of functional studies, including analyses of gene expression, protein-protein interactions, and reverse genetic approaches designed to demonstrate the respective contributions of each M. truncatula PI-like paralog to the B-function in this species. Also, we have integrated molecular evolution approaches to determine the mode of evolution of Mt PI-like genes after duplication. Our results demonstrate that MtPI functions as a master regulator of B-function in M. truncatula, maintaining the overall ancestral function, while MtNGL9 does not seem to have a role in this regard, suggesting that the pseudogenization could be the functional evolutionary fate for this gene. However, we provide evidence that purifying selection is the primary evolutionary force acting on this paralog, pinpointing the conservation of its biochemical function and, alternatively, the acquisition of a new role for this gene.

  1. Duplicate gene enrichment and expression pattern diversification in multicellularity

    PubMed Central

    Padawer, Timothy; Leighty, Ralph E.; Wang, Degeng

    2012-01-01

    The enrichment of duplicate genes, and therefore paralogs (proteins coded by duplicate genes), in multicellular versus unicellular organisms enhances genomic functional innovation. This study quantitatively examined relationships among paralog enrichment, expression pattern diversification and multicellularity, aiming to better understand genomic basis of multicellularity. Paralog abundance in specific cells was compared with those in unicellular proteomes and the whole proteomes of multicellular organisms. The budding yeast, Saccharomyces cerevisiae and the nematode, Caenorhabditis elegans, for which the gene sets expressed in specific cells are available, were used as uni and multicellular models, respectively. Paralog count (K) distributions [P(k)] follow a power-law relationship [P(k) ∝ k−α] in the whole proteomes of both species and in specific C. elegans cells. The value of the constant α can be used as a gauge of paralog abundance; the higher the value, the lower the paralog abundance. The α-value is indeed lower in the whole proteome of C. elegans (1.74) than in S. cerevisiae (2.34), quantifying the enrichment of paralogs in multicellular species. We also found that the power-law relationship applies to the proteomes of specific C. elegans cells. Strikingly, values of α in specific cells are higher and comparable to that in S. cerevisiae. Thus, paralog abundance in specific cells is lower and comparable to that in unicellular species. Furthermore, how much the expression level of a gene fluctuates across different C. elegans cells correlates positively with its paralog count, which is further confirmed by human gene-expression patterns across different tissues. Taken together, these results quantitatively and mechanistically establish enrichment of paralogs with diversifying expression patterns as genomic and evolutionary basis of multicellularity. PMID:22645319

  2. Duplication and Diversification of Dipteran Argonaute Genes, and the Evolutionary Divergence of Piwi and Aubergine

    PubMed Central

    Lewis, Samuel H.; Salmela, Heli; Obbard, Darren J.

    2016-01-01

    Genetic studies of Drosophila melanogaster have provided a paradigm for RNA interference (RNAi) in arthropods, in which the microRNA and antiviral pathways are each mediated by a single Argonaute (Ago1 and Ago2) and germline suppression of transposable elements is mediated by a trio of Piwi-subfamily Argonaute proteins (Ago3, Aub, and Piwi). Without a suitable evolutionary context, deviations from this can be interpreted as derived or idiosyncratic. Here we analyze the evolution of Argonaute genes across the genomes and transcriptomes of 86 Dipteran species, showing that variation in copy number can occur rapidly, and that there is constant flux in some RNAi mechanisms. The lability of the RNAi pathways is illustrated by the divergence of Aub and Piwi (182–156 Ma), independent origins of multiple Piwi-family genes in Aedes mosquitoes (less than 25Ma), and the recent duplications of Ago2 and Ago3 in the tsetse fly Glossina morsitans. In each case the tissue specificity of these genes has altered, suggesting functional divergence or innovation, and consistent with the action of dynamic selection pressures across the Argonaute gene family. We find there are large differences in evolutionary rates and gene turnover between pathways, and that paralogs of Ago2, Ago3, and Piwi/Aub show contrasting rates of evolution after duplication. This suggests that Argonautes undergo frequent evolutionary expansions that facilitate functional divergence. PMID:26868596

  3. Evolution history of duplicated smad3 genes in teleost: insights from Japanese flounder, Paralichthys olivaceus

    PubMed Central

    Du, Xinxin; Liu, Yuezhong; Liu, Jinxiang; Zhang, Quanqi

    2016-01-01

    Following the two rounds of whole-genome duplication (WGD) during deuterosome evolution, a third genome duplication occurred in the ray-fined fish lineage and is considered to be responsible for the teleost-specific lineage diversification and regulation mechanisms. As a receptor-regulated SMAD (R-SMAD), the function of SMAD3 was widely studied in mammals. However, limited information of its role or putative paralogs is available in ray-finned fishes. In this study, two SMAD3 paralogs were first identified in the transcriptome and genome of Japanese flounder (Paralichthys olivaceus). We also explored SMAD3 duplication in other selected species. Following identification, genomic structure, phylogenetic reconstruction, and synteny analyses performed by MrBayes and online bioinformatic tools confirmed that smad3a/3b most likely originated from the teleost-specific WGD. Additionally, selection pressure analysis and expression pattern of the two genes performed by PAML and quantitative real-time PCR (qRT-PCR) revealed evidence of subfunctionalization of the two SMAD3 paralogs in teleost. Our results indicate that two SMAD3 genes originate from teleost-specific WGD, remain transcriptionally active, and may have likely undergone subfunctionalization. This study provides novel insights to the evolution fates of smad3a/3b and draws attentions to future function analysis of SMAD3 gene family. PMID:27703851

  4. Evolutionary fate of duplicate genes encoding aspartic proteinases. Nothepsin case study.

    PubMed

    Borrelli, Lucia; De Stasio, Roberta; Filosa, Silvana; Parisi, Elio; Riggio, Marilisa; Scudiero, Rosaria; Trinchella, Francesca

    2006-03-01

    Gene duplication is considered an important evolutionary mechanism leading to new gene functions. According to the classical model, one gene copy arising from gene duplication retains the ancestral function, whilst the other becomes subject to directional selection for some novel functions. Hence, according to this model, long-term persistence of two paralogous genes is possible only with the acquisition of functional innovation. In the absence of neofunctionalization, one of the duplicate genes may be lost following accumulation of deleterious mutations, ultimately leading to the loss of function. Recently, new mechanisms have been proposed according to which both paralogs are maintained without apparent neofunctionalization. In this paper we describe the molecular evolution of the aspartic proteinase gene family, with particular regard for the nothepsin gene, a sex- and tissue-specific form of aspartic proteinase active in fish. The finding of nothepsin in a reptile is indicative of the presence of this gene in organisms other than fish. However, the failure to find any nothepsin-like gene in avian, murine and human genome suggests that the gene has been lost in certain lineages during evolution. At variance with piscine nothepsin expressed exclusively in female liver under the estrogens action, the reptilian counterpart lacks both tissue and sex specificity, as it is constitutively expressed in different tissues of male and female specimens. The expression of the nothepsin gene in fish and lizard is accompanied by the expression of a paralogous gene encoding for cathepsin D. Functional divergence analysis indicates that cathepsin D accumulated amino acid substitutions, whereas nothepsin retained most of the ancestral functions. Phylogenetic analysis shows a preponderance of replacement substitutions compared to silent substitutions in the branch leading to the cathepsin D clade, whilst nothepsin evolves under negative selection. To explain the loss of the

  5. Did homeobox gene duplications contribute to the Cambrian explosion?

    PubMed

    Holland, Peter W H

    2015-01-01

    The Cambrian explosion describes an apparently rapid increase in the diversity of bilaterian animals around 540-515 million years ago. Bilaterian animals explore the world in three-dimensions deploying forward-facing sense organs, a brain, and an anterior mouth; they possess muscle blocks enabling efficient crawling and burrowing in sediments, and they typically have an efficient 'through-gut' with separate mouth and anus to process bulk food and eject waste, even when burrowing in sediment. A variety of ecological, environmental, genetic, and developmental factors have been proposed as possible triggers and correlates of the Cambrian explosion, and it is likely that a combination of factors were involved. Here, I focus on a set of developmental genetic changes and propose these are part of the mix of permissive factors. I describe how ANTP-class homeobox genes, which encode transcription factors involved in body patterning, increased in number in the bilaterian stem lineage and earlier. These gene duplications generated a large array of ANTP class genes, including three distinct gene clusters called NK, Hox, and ParaHox. Comparative data supports the idea that NK genes were deployed primarily to pattern the bilaterian mesoderm, Hox genes coded position along the central nervous system, and ParaHox genes most likely originally specified the mouth, midgut, and anus of the newly evolved through-gut. It is proposed that diversification of ANTP class genes played a role in the Cambrian explosion by contributing to the patterning systems used to build animal bodies capable of high-energy directed locomotion, including active burrowing. PMID:26605046

  6. Structure and origin of a tandem duplication of a Drosophila metallothionein gene

    SciTech Connect

    Otto, E.; Maroni, G.

    1987-01-01

    A strain of cadmium-resistant Drosophila was isolated that contained a chromosomal duplication of the metallothionein gene, Mtn. This duplication was a direct, tandem repeat of 2.2 kilobases of DNA: 228 bases of 5' flanking DNA, the entire transcription unit, and 1.4 kilobases of 3' flanking DNA. The entire duplication was cloned and DNA sequences of the regions relevant to the duplication process were determined. Comparison of the sequences of the 5' and 3' boundaries revealed no extensive regions of similarity, thus indicating that this duplication was formed by nonhomologous breakage and reunion. Recently, results of similar analyses by other investigators have suggested that this process was involved in the origin of three other eukaryotic duplications. The authors have observed a chi-like sequence near one of the boundaries of each duplication, and therefore suggest that this sequence may be important in generating one of the breaks required for duplication formation.

  7. Soybean Cyst Nematode Resistance Emerged via Artificial Selection of Duplicated Serine Hydroxymethyltransferase Genes

    PubMed Central

    Wu, Xiao-Yi; Zhou, Guang-Can; Chen, Yun-Xia; Wu, Ping; Liu, Li-Wei; Ma, Fang-Fang; Wu, Mian; Liu, Cheng-Chen; Zeng, Ying-Jie; Chu, Alexander E.; Hang, Yue-Yu; Chen, Jian-Qun; Wang, Bin

    2016-01-01

    A major soybean (Forrest cultivar) quantitative trait locus (QTL) gene, Rhg4, which controls resistance to soybean cyst nematodes (SCN), encodes the enzyme serine hydroxylmethyltransferase (SHMT). The resistant allele possesses two critical missense mutations (P130R and N358Y) compared to that of the sensitive allele, rhg4. To understand the evolutionary history of this gene, sequences of 117 SHMT family members from 18 representative plant species were used to reconstruct their phylogeny. According to this phylogeny, the plant SHMT gene family can be divided into two groups and four subgroups (Ia, Ib, IIa, and IIb). Belonging to the Subgroup Ia lineage, the rhg4 gene evolved from a recent duplication event in Glycine sp.. To further explore how the SCN-resistant allele emerged, both the rhg4 gene and its closest homolog, the rhg4h gene, were isolated from 33 cultivated and 68 wild soybean varieties. The results suggested that after gene duplication, the soybean rhg4 gene accumulated a higher number of non-synonymous mutations than rhg4h. Although a higher number of segregating sites and gene haplotypes were detected in wild soybeans than in cultivars, the SCN-resistant Rhg4 allele (represented by haplotype 4) was not found in wild varieties. Instead, a very similar allele, haplotype 3, was observed in wild soybeans at a frequency of 7.4%, although it lacked the two critical non-synonymous substitutions. Taken together, these findings support that the SCN-resistant Rhg4 allele likely emerged via artificial selection during the soybean domestication process, based on a SCN-sensitive allele inherited from wild soybeans. PMID:27458476

  8. Soybean Cyst Nematode Resistance Emerged via Artificial Selection of Duplicated Serine Hydroxymethyltransferase Genes.

    PubMed

    Wu, Xiao-Yi; Zhou, Guang-Can; Chen, Yun-Xia; Wu, Ping; Liu, Li-Wei; Ma, Fang-Fang; Wu, Mian; Liu, Cheng-Chen; Zeng, Ying-Jie; Chu, Alexander E; Hang, Yue-Yu; Chen, Jian-Qun; Wang, Bin

    2016-01-01

    A major soybean (Forrest cultivar) quantitative trait locus (QTL) gene, Rhg4, which controls resistance to soybean cyst nematodes (SCN), encodes the enzyme serine hydroxylmethyltransferase (SHMT). The resistant allele possesses two critical missense mutations (P130R and N358Y) compared to that of the sensitive allele, rhg4. To understand the evolutionary history of this gene, sequences of 117 SHMT family members from 18 representative plant species were used to reconstruct their phylogeny. According to this phylogeny, the plant SHMT gene family can be divided into two groups and four subgroups (Ia, Ib, IIa, and IIb). Belonging to the Subgroup Ia lineage, the rhg4 gene evolved from a recent duplication event in Glycine sp.. To further explore how the SCN-resistant allele emerged, both the rhg4 gene and its closest homolog, the rhg4h gene, were isolated from 33 cultivated and 68 wild soybean varieties. The results suggested that after gene duplication, the soybean rhg4 gene accumulated a higher number of non-synonymous mutations than rhg4h. Although a higher number of segregating sites and gene haplotypes were detected in wild soybeans than in cultivars, the SCN-resistant Rhg4 allele (represented by haplotype 4) was not found in wild varieties. Instead, a very similar allele, haplotype 3, was observed in wild soybeans at a frequency of 7.4%, although it lacked the two critical non-synonymous substitutions. Taken together, these findings support that the SCN-resistant Rhg4 allele likely emerged via artificial selection during the soybean domestication process, based on a SCN-sensitive allele inherited from wild soybeans. PMID:27458476

  9. North Carolina macular dystrophy (MCDR1) caused by a novel tandem duplication of the PRDM13 gene

    PubMed Central

    Sullivan, Lori S.; Wheaton, Dianna K.; Locke, Kirsten G.; Jones, Kaylie D.; Koboldt, Daniel C.; Fulton, Robert S.; Wilson, Richard K.; Blanton, Susan H.; Birch, David G.; Daiger, Stephen P.

    2016-01-01

    Purpose To identify the underlying cause of disease in a large family with North Carolina macular dystrophy (NCMD). Methods A large four-generation family (RFS355) with an autosomal dominant form of NCMD was ascertained. Family members underwent comprehensive visual function evaluations. Blood or saliva from six affected family members and three unaffected spouses was collected and DNA tested for linkage to the MCDR1 locus on chromosome 6q12. Three affected family members and two unaffected spouses underwent whole exome sequencing (WES) and subsequently, custom capture of the linkage region followed by next-generation sequencing (NGS). Standard PCR and dideoxy sequencing were used to further characterize the mutation. Results Of the 12 eyes examined in six affected individuals, all but two had Gass grade 3 macular degeneration features. Large central excavation of the retinal and choroid layers, referred to as a macular caldera, was seen in an age-independent manner in the grade 3 eyes. The calderas are unique to affected individuals with MCDR1. Genome-wide linkage mapping and haplotype analysis of markers from the chromosome 6q region were consistent with linkage to the MCDR1 locus. Whole exome sequencing and custom-capture NGS failed to reveal any rare coding variants segregating with the phenotype. Analysis of the custom-capture NGS sequencing data for copy number variants uncovered a tandem duplication of approximately 60 kb on chromosome 6q. This region contains two genes, CCNC and PRDM13. The duplication creates a partial copy of CCNC and a complete copy of PRDM13. The duplication was found in all affected members of the family and is not present in any unaffected members. The duplication was not seen in 200 ethnically matched normal chromosomes. Conclusions The cause of disease in the original family with MCDR1 and several others has been recently reported to be dysregulation of the PRDM13 gene, caused by either single base substitutions in a DNase 1

  10. Gene family evolution across 12 Drosophila genomes.

    PubMed

    Hahn, Matthew W; Han, Mira V; Han, Sang-Gook

    2007-11-01

    Comparison of whole genomes has revealed large and frequent changes in the size of gene families. These changes occur because of high rates of both gene gain (via duplication) and loss (via deletion or pseudogenization), as well as the evolution of entirely new genes. Here we use the genomes of 12 fully sequenced Drosophila species to study the gain and loss of genes at unprecedented resolution. We find large numbers of both gains and losses, with over 40% of all gene families differing in size among the Drosophila. Approximately 17 genes are estimated to be duplicated and fixed in a genome every million years, a rate on par with that previously found in both yeast and mammals. We find many instances of extreme expansions or contractions in the size of gene families, including the expansion of several sex- and spermatogenesis-related families in D. melanogaster that also evolve under positive selection at the nucleotide level. Newly evolved gene families in our dataset are associated with a class of testes-expressed genes known to have evolved de novo in a number of cases. Gene family comparisons also allow us to identify a number of annotated D. melanogaster genes that are unlikely to encode functional proteins, as well as to identify dozens of previously unannotated D. melanogaster genes with conserved homologs in the other Drosophila. Taken together, our results demonstrate that the apparent stasis in total gene number among species has masked rapid turnover in individual gene gain and loss. It is likely that this genomic revolving door has played a large role in shaping the morphological, physiological, and metabolic differences among species.

  11. Definition of minimal duplicated region encompassing the XIAP and STAG2 genes in the Xq25 microduplication syndrome.

    PubMed

    Di Benedetto, Daniela; Musumeci, Sebastiano Antonino; Avola, Emanuela; Alberti, Antonino; Buono, Serafino; Scuderi, Carmela; Grillo, Lucia; Galesi, Ornella; Spalletta, Angela; Giudice, Mariangela Lo; Luciano, Daniela; Vinci, Mirella; Bianca, Sebastiano; Romano, Corrado; Fichera, Marco

    2014-08-01

    Typical Xq25 duplications are large and associated with heterogeneous phenotypes. Recently, small duplications involving this genomic region and encompassing the GRIA3 and STAG2 genes have been reported. These Xq25 microduplications are associated with a recognizable syndrome including intellectual disability and distinctive facial appearance. We report on Xq25 microduplications in two unrelated families identified by array comparative genomic hybridization. In both families, the genomic imbalances segregated with the disease in male individuals, while the phenotypes of the heterozygous females appeared to be modulated by their X-inactivation pattern. These rearrangements of about 600 kb involved only three genes: THOC2, XIAP, and STAG2. Further characterization by FISH analyses showed tandem duplication in the Xq25 locus of these genes. These data refine the Xq25 candidate region, identifying a minimal duplicated region of about 270 kb encompassing the XIAP and STAG2 genes. We discuss the function of the genes in the rearrangements and their involvement in the pathogenesis of this disorder.

  12. Multiple tandem duplication of the phenylalanine ammonia-lyase genes in Cucumis sativus L.

    PubMed

    Shang, Qing-Mao; Li, Liang; Dong, Chun-Juan

    2012-10-01

    Phenylalanine ammonia-lyase (PAL) is the first entry enzyme of the phenylpropanoid pathway, and therefore plays a key role in both plant development and stress defense. In many plants, PAL is encoded by a multi-gene family, and each member is differentially regulated in response to environmental stimuli. In the present study, we report that PAL in cucumber (Cucumis sativus L.) is encoded for by a family of seven genes (designated as CsPAL1-7). All seven CsPALs are arranged in tandem in two duplication blocks, which are located on chromosomes 4 and 6, respectively. The cDNA and protein sequences of the CsPALs share an overall high identity to each other. Homology modeling reveals similarities in their protein structures, besides several slight differences, implying the different activities in conversion of phenylalanine. Phylogenic analysis places CsPAL1-7 in a separate cluster rather than clustering with other plant PALs. Analyses of expression profiles in different cucumber tissues or in response to various stress or plant hormone treatments indicate that CsPAL1-7 play redundant, but divergent roles in cucumber development and stress response. This is consistent with our finding that CsPALs possess overlapping but different cis-elements in their promoter regions. Finally, several duplication events are discussed to explain the evolution of the cucumber PAL genes.

  13. Adaptive Evolution of Genes Duplicated from the Drosophila pseudoobscura neo-X Chromosome

    PubMed Central

    Meisel, Richard P.; Hilldorfer, Benedict B.; Koch, Jessica L.; Lockton, Steven; Schaeffer, Stephen W.

    2010-01-01

    Drosophila X chromosomes are disproportionate sources of duplicated genes, and these duplications are usually the result of retrotransposition of X-linked genes to the autosomes. The excess duplication is thought to be driven by natural selection for two reasons: X chromosomes are inactivated during spermatogenesis, and the derived copies of retroposed duplications tend to be testis expressed. Therefore, autosomal derived copies of retroposed genes provide a mechanism for their X-linked paralogs to “escape” X inactivation. Once these duplications have fixed, they may then be selected for male-specific functions. Throughout the evolution of the Drosophila genus, autosomes have fused with X chromosomes along multiple lineages giving rise to neo-X chromosomes. There has also been excess duplication from the two independent neo-X chromosomes that have been examined—one that occurred prior to the common ancestor of the willistoni species group and another that occurred along the lineage leading to Drosophila pseudoobscura. To determine what role natural selection plays in the evolution of genes duplicated from the D. pseudoobscura neo-X chromosome, we analyzed DNA sequence divergence between paralogs, polymorphism within each copy, and the expression profiles of these duplicated genes. We found that the derived copies of all duplicated genes have elevated nonsynonymous polymorphism, suggesting that they are under relaxed selective constraints. The derived copies also tend to have testis- or male-biased expression profiles regardless of their chromosome of origin. Genes duplicated from the neo-X chromosome appear to be under less constraints than those duplicated from other chromosome arms. We also find more evidence for historical adaptive evolution in genes duplicated from the neo-X chromosome, suggesting that they are under a unique selection regime in which elevated nonsynonymous polymorphism provides a large reservoir of functional variants, some of which are

  14. The glutamine synthetase gene family in Populus

    PubMed Central

    2011-01-01

    Background Glutamine synthetase (GS; EC: 6.3.1.2, L-glutamate: ammonia ligase ADP-forming) is a key enzyme in ammonium assimilation and metabolism of higher plants. The current work was undertaken to develop a more comprehensive understanding of molecular and biochemical features of GS gene family in poplar, and to characterize the developmental regulation of GS expression in various tissues and at various times during the poplar perennial growth. Results The GS gene family consists of 8 different genes exhibiting all structural and regulatory elements consistent with their roles as functional genes. Our results indicate that the family members are organized in 4 groups of duplicated genes, 3 of which code for cytosolic GS isoforms (GS1) and 1 which codes for the choroplastic GS isoform (GS2). Our analysis shows that Populus trichocarpa is the first plant species in which it was observed the complete GS family duplicated. Detailed expression analyses have revealed specific spatial and seasonal patterns of GS expression in poplar. These data provide insights into the metabolic function of GS isoforms in poplar and pave the way for future functional studies. Conclusions Our data suggest that GS duplicates could have been retained in order to increase the amount of enzyme in a particular cell type. This possibility could contribute to the homeostasis of nitrogen metabolism in functions associated to changes in glutamine-derived metabolic products. The presence of duplicated GS genes in poplar could also contribute to diversification of the enzymatic properties for a particular GS isoform through the assembly of GS polypeptides into homo oligomeric and/or hetero oligomeric holoenzymes in specific cell types. PMID:21867507

  15. Evolution of the Vertebrate Resistin Gene Family

    PubMed Central

    Hu, Qingda; Tan, Huanran; Irwin, David M.

    2015-01-01

    Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions. PMID:26076481

  16. Evolution of the Vertebrate Resistin Gene Family.

    PubMed

    Hu, Qingda; Tan, Huanran; Irwin, David M

    2015-01-01

    Resistin (encoded by Retn) was previously identified in rodents as a hormone associated with diabetes; however human resistin is instead linked to inflammation. Resistin is a member of a small gene family that includes the resistin-like peptides (encoded by Retnl genes) in mammals. Genomic searches of available genome sequences of diverse vertebrates and phylogenetic analyses were conducted to determine the size and origin of the resistin-like gene family. Genes encoding peptides similar to resistin were found in Mammalia, Sauria, Amphibia, and Actinistia (coelacanth, a lobe-finned fish), but not in Aves or fish from Actinopterygii, Chondrichthyes, or Agnatha. Retnl originated by duplication and transposition from Retn on the early mammalian lineage after divergence of the platypus, but before the placental and marsupial mammal divergence. The resistin-like gene family illustrates an instance where the locus of origin of duplicated genes can be identified, with Retn continuing to reside at this location. Mammalian species typically have a single copy Retn gene, but are much more variable in their numbers of Retnl genes, ranging from 0 to 9. Since Retn is located at the locus of origin, thus likely retained the ancestral expression pattern, largely maintained its copy number, and did not display accelerated evolution, we suggest that it is more likely to have maintained an ancestral function, while Retnl, which transposed to a new location, displays accelerated evolution, and shows greater variability in gene number, including gene loss, likely evolved new, but potentially lineage-specific, functions. PMID:26076481

  17. Lineage-specific expansion of IFIT gene family: an insight into coevolution with IFN gene family.

    PubMed

    Liu, Ying; Zhang, Yi-Bing; Liu, Ting-Kai; Gui, Jian-Fang

    2013-01-01

    In mammals, IFIT (Interferon [IFN]-induced proteins with Tetratricopeptide Repeat [TPR] motifs) family genes are involved in many cellular and viral processes, which are tightly related to mammalian IFN response. However, little is known about non-mammalian IFIT genes. In the present study, IFIT genes are identified in the genome databases from the jawed vertebrates including the cartilaginous elephant shark but not from non-vertebrates such as lancelet, sea squirt and acorn worm, suggesting that IFIT gene family originates from a vertebrate ancestor about 450 million years ago. IFIT family genes show conserved gene structure and gene arrangements. Phylogenetic analyses reveal that this gene family has expanded through lineage-specific and species-specific gene duplication. Interestingly, IFN gene family seem to share a common ancestor and a similar evolutionary mechanism; the function link of IFIT genes to IFN response is present early since the origin of both gene families, as evidenced by the finding that zebrafish IFIT genes are upregulated by fish IFNs, poly(I:C) and two transcription factors IRF3/IRF7, likely via the IFN-stimulated response elements (ISRE) within the promoters of vertebrate IFIT family genes. These coevolution features creates functional association of both family genes to fulfill a common biological process, which is likely selected by viral infection during evolution of vertebrates. Our results are helpful for understanding of evolution of vertebrate IFN system. PMID:23818968

  18. High time for a roll call: gene duplication and phylogenetic relationships of TCP-like genes in monocots

    PubMed Central

    Mondragón-Palomino, Mariana; Trontin, Charlotte

    2011-01-01

    Background and Aims The TCP family is an ancient group of plant developmental transcription factors that regulate cell division in vegetative and reproductive structures and are essential in the establishment of flower zygomorphy. In-depth research on eudicot TCPs has documented their evolutionary and developmental role. This has not happened to the same extent in monocots, although zygomorphy has been critical for the diversification of Orchidaceae and Poaceae, the largest families of this group. Investigating the evolution and function of TCP-like genes in a wider group of monocots requires a detailed phylogenetic analysis of all available sequence information and a system that facilitates comparing genetic and functional information. Methods The phylogenetic relationships of TCP-like genes in monocots were investigated by analysing sequences from the genomes of Zea mays, Brachypodium distachyon, Oryza sativa and Sorghum bicolor, as well as EST data from several other monocot species. Key Results All available monocot TCP-like sequences are associated in 20 major groups with an average identity ≥64 % and most correspond to well-supported clades of the phylogeny. Their sequence motifs and relationships of orthology were documented and it was found that 67 % of the TCP-like genes of Sorghum, Oryza, Zea and Brachypodium are in microsyntenic regions. This analysis suggests that two rounds of whole genome duplication drove the expansion of TCP-like genes in these species. Conclusions A system of classification is proposed where putative or recognized monocot TCP-like genes are assigned to a specific clade of PCF-, CIN- or CYC/tb1-like genes. Specific biases in sequence data of this family that must be tackled when studying its molecular evolution and phylogeny are documented. Finally, the significant retention of duplicated TCP genes from Zea mays is considered in the context of balanced gene drive. PMID:21444336

  19. Erroneous prenatal diagnosis of congenital adrenal hyperplasia owing to a duplication of the CYP21A2 gene.

    PubMed

    Lekarev, O; Tafuri, K; Lane, A H; Zhu, G; Nakamoto, J M; Buller-Burckle, A M; Wilson, T A; New, M I

    2013-01-01

    Congenital adrenal hyperplasia (CAH) is an autosomal recessive disorder where steroidogenesis in the adrenal cortex is impaired. The most common form is caused by 21-hydroxylase deficiency (21OHD). Classical 21OHD is characterized by glucocorticoid and mineralocorticoid deficiency and by overproduction of adrenal androgens. The diagnosis rests on biochemical and genetic analyses. In families with history of CAH, prenatal genetic diagnosis is offered. We herein present a case of an infant whose parents were identified to carry mutations on the CYP21A2 gene. The fetal DNA analysis demonstrated that the fetus carried a paternal exon 8 (Q318X) mutation and a maternal exon 8 (R356X) mutation. The fetus was presumed to be affected with CAH, yet his clinical presentation at birth was not consistent with the diagnosis. Repeated genetic analysis identified a paternal CYP21A2 gene duplication with Q318X mutation on one copy of CYP21A2. We conclude that a duplication of the CYP21A2 gene should be suspected when clinical and hormonal findings do not support the genetic diagnosis. Furthermore, because individuals with Q318X mutation frequently have a duplication of the CYP21A2 gene, when Q318X is detected, it is important to distinguish the severe point mutation in single gene copy alleles from the non-deficient variant in gene-duplicated alleles.

  20. Consensus properties and their large-scale applications for the gene duplication problem.

    PubMed

    Moon, Jucheol; Lin, Harris T; Eulenstein, Oliver

    2016-06-01

    Solving the gene duplication problem is a classical approach for species tree inference from gene trees that are confounded by gene duplications. This problem takes a collection of gene trees and seeks a species tree that implies the minimum number of gene duplications. Wilkinson et al. posed the conjecture that the gene duplication problem satisfies the desirable Pareto property for clusters. That is, for every instance of the problem, all clusters that are commonly present in the input gene trees of this instance, called strict consensus, will also be found in every solution to this instance. We prove that this conjecture does not generally hold. Despite this negative result we show that the gene duplication problem satisfies a weaker version of the Pareto property where the strict consensus is found in at least one solution (rather than all solutions). This weaker property contributes to our design of an efficient scalable algorithm for the gene duplication problem. We demonstrate the performance of our algorithm in analyzing large-scale empirical datasets. Finally, we utilize the algorithm to evaluate the accuracy of standard heuristics for the gene duplication problem using simulated datasets. PMID:27122201

  1. Buffering by gene duplicates: an analysis of molecular correlates and evolutionary conservation

    PubMed Central

    Hannay, Kevin; Marcotte, Edward M; Vogel, Christine

    2008-01-01

    Background One mechanism to account for robustness against gene knockouts or knockdowns is through buffering by gene duplicates, but the extent and general correlates of this process in organisms is still a matter of debate. To reveal general trends of this process, we provide a comprehensive comparison of gene essentiality, duplication and buffering by duplicates across seven bacteria (Mycoplasma genitalium, Bacillus subtilis, Helicobacter pylori, Haemophilus influenzae, Mycobacterium tuberculosis, Pseudomonas aeruginosa, Escherichia coli), and four eukaryotes (Saccharomyces cerevisiae (yeast), Caenorhabditis elegans (worm), Drosophila melanogaster (fly), Mus musculus (mouse)). Results In nine of the eleven organisms, duplicates significantly increase chances of survival upon gene deletion (P-value ≤ 0.05), but only by up to 13%. Given that duplicates make up to 80% of eukaryotic genomes, the small contribution is surprising and points to dominant roles of other buffering processes, such as alternative metabolic pathways. The buffering capacity of duplicates appears to be independent of the degree of gene essentiality and tends to be higher for genes with high expression levels. For example, buffering capacity increases to 23% amongst highly expressed genes in E. coli. Sequence similarity and the number of duplicates per gene are weak predictors of the duplicate's buffering capacity. In a case study we show that buffering gene duplicates in yeast and worm are somewhat more similar in their functions than non-buffering duplicates and have increased transcriptional and translational activity. Conclusion In sum, the extent of gene essentiality and buffering by duplicates is not conserved across organisms and does not correlate with the organisms' apparent complexity. This heterogeneity goes beyond what would be expected from differences in experimental approaches alone. Buffering by duplicates contributes to robustness in several organisms, but to a small extent

  2. Transcriptome Analysis Indicates Considerable Divergence in Alternative Splicing Between Duplicated Genes in Arabidopsis thaliana

    PubMed Central

    Tack, David C.; Pitchers, William R.; Adams, Keith L.

    2014-01-01

    Gene and genome duplication events have created a large number of new genes in plants that can diverge by evolving new expression profiles and functions (neofunctionalization) or dividing extant ones (subfunctionalization). Alternative splicing (AS) generates multiple types of mRNA from a single type of pre-mRNA by differential intron splicing. It can result in new protein isoforms or downregulation of gene expression by transcript decay. Using RNA-seq, we investigated the degree to which alternative splicing patterns are conserved between duplicated genes in Arabidopsis thaliana. Our results revealed that 30% of AS events in α-whole-genome duplicates and 33% of AS events in tandem duplicates are qualitatively conserved within leaf tissue. Loss of ancestral splice forms, as well as asymmetric gain of new splice forms, may account for this divergence. Conserved events had different frequencies, as only 31% of shared AS events in α-whole-genome duplicates and 41% of shared AS events in tandem duplicates had similar frequencies in both paralogs, indicating considerable quantitative divergence. Analysis of published RNA-seq data from nonsense-mediated decay (NMD) mutants indicated that 85% of α-whole-genome duplicates and 89% of tandem duplicates have diverged in their AS-induced NMD. Our results indicate that alternative splicing shows a high degree of divergence between paralogs such that qualitatively conserved alternative splicing events tend to have quantitative divergence. Divergence in AS patterns between duplicates may be a mechanism of regulating expression level divergence. PMID:25326238

  3. Rapid divergence of gene duplicates on the Drosophila melanogaster X chromosome.

    PubMed

    Thornton, Kevin; Long, Manyuan

    2002-06-01

    The recent sequencing of several eukaryotic genomes has generated considerable interest in the study of gene duplication events. The classical model of duplicate gene evolution is that recurrent mutation ultimately results in one copy becoming a pseudogene, and only rarely will a beneficial new function evolve. Here, we study divergence between coding sequence duplications in Drosophila melanogaster as a function of the linkage relationship between paralogs. The mean K(a)/K(s) between all duplicates in the D. melanogaster genome is 0.2803, indicating that purifying selection is maintaining the structure of duplicate coding sequences. However, the mean K(a)/K(s) between duplicates that are both on the X chromosome is 0.4701, significantly higher than the genome average. Further, the distribution of K(a)/K(s) for these X-linked duplicates is significantly shifted toward higher values when compared with the distributions for paralogs in other linkage relationships. Two models of molecular evolution provide qualitative explanations of these observations-relaxation of selective pressure on the duplicate copies and, more likely, positive selection on recessive adaptations. We also show that there is an excess of X-linked duplicates with low K(s), suggesting a larger proportion of relatively young duplicates on the D. melanogaster X chromosome relative to autosomes.

  4. The Evolutionary Fate of Alternatively Spliced Homologous Exons after Gene Duplication

    PubMed Central

    Abascal, Federico; Tress, Michael L.; Valencia, Alfonso

    2015-01-01

    Alternative splicing and gene duplication are the two main processes responsible for expanding protein functional diversity. Although gene duplication can generate new genes and alternative splicing can introduce variation through alternative gene products, the interplay between the two processes is complex and poorly understood. Here, we have carried out a study of the evolution of alternatively spliced exons after gene duplication to better understand the interaction between the two processes. We created a manually curated set of 97 human genes with mutually exclusively spliced homologous exons and analyzed the evolution of these exons across five distantly related vertebrates (lamprey, spotted gar, zebrafish, fugu, and coelacanth). Most of these exons had an ancient origin (more than 400 Ma). We found examples supporting two extreme evolutionary models for the behaviour of homologous axons after gene duplication. We observed 11 events in which gene duplication was accompanied by splice isoform separation, that is, each paralog specifically conserved just one distinct ancestral homologous exon. At other extreme, we identified genes in which the homologous exons were always conserved within paralogs, suggesting that the alternative splicing event cannot easily be separated from the function in these genes. That many homologous exons fall in between these two extremes highlights the diversity of biological systems and suggests that the subtle balance between alternative splicing and gene duplication is adjusted to the specific cellular context of each gene. PMID:25931610

  5. Gene duplication and divergence affecting drug content in Cannabis sativa.

    PubMed

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency. PMID:26189495

  6. Gene duplication and divergence affecting drug content in Cannabis sativa.

    PubMed

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency.

  7. Exon duplications in the ATP7A gene: Frequency and Transcriptional Behaviour

    PubMed Central

    2011-01-01

    Background Menkes disease (MD) is an X-linked, fatal neurodegenerative disorder of copper metabolism, caused by mutations in the ATP7A gene. Thirty-three Menkes patients in whom no mutation had been detected with standard diagnostic tools were screened for exon duplications in the ATP7A gene. Methods The ATP7A gene was screened for exon duplications using multiplex ligation-dependent probe amplification (MLPA). The expression level of ATP7A was investigated by real-time PCR and detailed analysis of the ATP7A mRNA was performed by RT-PCR followed by sequencing. In order to investigate whether the identified duplicated fragments originated from a single or from two different X-chromosomes, polymorphic markers located in the duplicated fragments were analyzed. Results Partial ATP7A gene duplication was identified in 20 unrelated patients including one patient with Occipital Horn Syndrome (OHS). Duplications in the ATP7A gene are estimated from our material to be the disease causing mutation in 4% of the Menkes disease patients. The duplicated regions consist of between 2 and 15 exons. In at least one of the cases, the duplication was due to an intra-chromosomal event. Characterization of the ATP7A mRNA transcripts in 11 patients revealed that the duplications were organized in tandem, in a head to tail direction. The reading frame was disrupted in all 11 cases. Small amounts of wild-type transcript were found in all patients as a result of exon-skipping events occurring in the duplicated regions. In the OHS patient with a duplication of exon 3 and 4, the duplicated out-of-frame transcript coexists with an almost equally represented wild-type transcript, presumably leading to the milder phenotype. Conclusions In general, patients with duplication of only 2 exons exhibit a milder phenotype as compared to patients with duplication of more than 2 exons. This study provides insight into exon duplications in the ATP7A gene. PMID:22074552

  8. Duplicate gene evolution and expression in the wake of vertebrate allopolyploidization

    PubMed Central

    2008-01-01

    Background The mechanism by which duplicate genes originate – whether by duplication of a whole genome or of a genomic segment – influences their genetic fates. To study events that trigger duplicate gene persistence after whole genome duplication in vertebrates, we have analyzed molecular evolution and expression of hundreds of persistent duplicate gene pairs in allopolyploid clawed frogs (Xenopus and Silurana). We collected comparative data that allowed us to tease apart the molecular events that occurred soon after duplication from those that occurred later on. We also quantified expression profile divergence of hundreds of paralogs during development and in different tissues. Results Our analyses indicate that persistent duplicates generated by allopolyploidization are subjected to strong purifying selection soon after duplication. The level of purifying selection is relaxed compared to a singleton ortholog, but not significantly variable over a period spanning about 40 million years. Despite persistent functional constraints, however, analysis of paralogous expression profiles indicates that quantitative aspects of their expression diverged substantially during this period. Conclusion These results offer clues into how vertebrate transcriptomes are sculpted in the wake of whole genome duplication (WGD), such as those that occurred in our early ancestors. That functional constraints were relaxed relative to a singleton ortholog but not significantly different in the early compared to the later stage of duplicate gene evolution suggests that the timescale for a return to pre-duplication levels is drawn out over tens of millions of years – beyond the age of these tetraploid species. Quantitative expression divergence can occur soon after WGD and with a magnitude that is not correlated with the rate of protein sequence divergence. On a coarse scale, quantitative expression divergence appears to be more prevalent than spatial and temporal expression

  9. Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development.

    PubMed

    Liu, Zhenlan; Adams, Keith L

    2007-10-01

    Allopolyploidy has been a prominent mode of speciation and a recurrent process during plant evolution and has contributed greatly to the large number of duplicated genes in plant genomes [1-4]. Polyploidy often leads to changes in genome organization and gene expression [5-9]. The expression of genes that are duplicated by polyploidy (termed homeologs) can be partitioned between the duplicates so that one copy is expressed and functions only in some organs and the other copy is expressed only in other organs, indicative of subfunctionalization [10]. To determine how homeologous-gene expression patterns change during organ development and in response to abiotic stress conditions, we have examined expression of the alcohol dehydrogenase gene AdhA in allopolyploid cotton (Gossypium hirsutum). Expression ratios of the two homeologs vary considerably during the development of organs from seedlings and fruits. Abiotic stress treatments, including cold, dark, and water submersion, altered homeologous-gene expression. Most notably, only one copy is expressed in hypocotyls during a water-submersion treatment, and only the other copy is expressed during cold stress. These results imply that subfunctionalization of genes duplicated by polyploidy has occurred in response to abiotic stress conditions. Partitioning of duplicate gene expression in response to environmental stress may lead to duplicate gene retention during subsequent evolution. PMID:17825563

  10. Preservation of Gene Duplication Increases the Regulatory Spectrum of Ribosomal Protein Genes and Enhances Growth under Stress.

    PubMed

    Parenteau, Julie; Lavoie, Mathieu; Catala, Mathieu; Malik-Ghulam, Mustafa; Gagnon, Jules; Abou Elela, Sherif

    2015-12-22

    In baker's yeast, the majority of ribosomal protein genes (RPGs) are duplicated, and it was recently proposed that such duplications are preserved via the functional specialization of the duplicated genes. However, the origin and nature of duplicated RPGs' (dRPGs) functional specificity remain unclear. In this study, we show that differences in dRPG functions are generated by variations in the modality of gene expression and, to a lesser extent, by protein sequence. Analysis of the sequence and expression patterns of non-intron-containing RPGs indicates that each dRPG is controlled by specific regulatory sequences modulating its expression levels in response to changing growth conditions. Homogenization of dRPG sequences reduces cell tolerance to growth under stress without changing the number of expressed genes. Together, the data reveal a model where duplicated genes provide a means for modulating the expression of ribosomal proteins in response to stress. PMID:26686636

  11. FGF: a web tool for Fishing Gene Family in a whole genome database.

    PubMed

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong; Li, Yuan; Vang, Søren; Fan, Wei; Wang, Junyi; Zhang, Zhang; Wang, Wen; Kristiansen, Karsten; Wang, Jun

    2007-07-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) program to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF is freely available on a web server at http://fgf.genomics.org.cn/

  12. Genesis of the vertebrate FoxP subfamily member genes occurred during two ancestral whole genome duplication events.

    PubMed

    Song, Xiaowei; Tang, Yezhong; Wang, Yajun

    2016-08-22

    The vertebrate FoxP subfamily genes play important roles in the construction of essential functional modules involved in physiological and developmental processes. To explore the adaptive evolution of functional modules associated with the FoxP subfamily member genes, it is necessary to study the gene duplication process. We detected four member genes of the FoxP subfamily in sea lampreys (a representative species of jawless vertebrates) through genome screenings and phylogenetic analyses. Reliable paralogons (i.e. paralogous chromosome segments) have rarely been detected in scaffolds of FoxP subfamily member genes in sea lampreys due to the considerable existence of HTH_Tnp_Tc3_2 transposases. However, these transposases did not alter gene numbers of the FoxP subfamily in sea lampreys. The coincidence between the "1-4" gene duplication pattern of FoxP subfamily genes from invertebrates to vertebrates and two rounds of ancestral whole genome duplication (1R- and 2R-WGD) events reveal that the FoxP subfamily of vertebrates was quadruplicated in the 1R- and 2R-WGD events. Furthermore, we deduced that a synchronous gene duplication process occurred for the FoxP subfamily and for three linked gene families/subfamilies (i.e. MIT family, mGluR group III and PLXNA subfamily) in the 1R- and 2R-WGD events using phylogenetic analyses and mirror-dendrogram methods (i.e. algorithms to test protein-protein interactions). Specifically, the ancestor of FoxP1 and FoxP3 and the ancestor of FoxP2 and FoxP4 were generated in 1R-WGD event. In the subsequent 2R-WGD event, these two ancestral genes were changed into FoxP1, FoxP2, FoxP3 and FoxP4. The elucidation of these gene duplication processes shed light on the phylogenetic relationships between functional modules of the FoxP subfamily member genes.

  13. Gene duplication in the major insecticide target site, Rdl, in Drosophila melanogaster

    PubMed Central

    Remnant, Emily J.; Good, Robert T.; Schmidt, Joshua M.; Lumb, Christopher; Robin, Charles; Daborn, Phillip J.; Batterham, Philip

    2013-01-01

    The Resistance to Dieldrin gene, Rdl, encodes a GABA-gated chloride channel subunit that is targeted by cyclodiene and phenylpyrazole insecticides. The gene was first characterized in Drosophila melanogaster by genetic mapping of resistance to the cyclodiene dieldrin. The 4,000-fold resistance observed was due to a single amino acid replacement, Ala301 to Ser. The equivalent change was subsequently identified in Rdl orthologs of a large range of resistant insect species. Here, we report identification of a duplication at the Rdl locus in D. melanogaster. The 113-kb duplication contains one WT copy of Rdl and a second copy with two point mutations: an Ala301 to Ser resistance mutation and Met360 to Ile replacement. Individuals with this duplication exhibit intermediate dieldrin resistance compared with single copy Ser301 homozygotes, reduced temperature sensitivity, and altered RNA editing associated with the resistant allele. Ectopic recombination between Roo transposable elements is involved in generating this genomic rearrangement. The duplication phenotypes were confirmed by construction of a transgenic, artificial duplication integrating the 55.7-kb Rdl locus with a Ser301 change into an Ala301 background. Gene duplications can contribute significantly to the evolution of insecticide resistance, most commonly by increasing the amount of gene product produced. Here however, duplication of the Rdl target site creates permanent heterozygosity, providing unique potential for adaptive mutations to accrue in one copy, without abolishing the endogenous role of an essential gene. PMID:23959864

  14. dbDNV: a resource of duplicated gene nucleotide variants in human genome.

    PubMed

    Ho, Meng-Ru; Tsai, Kuo-Wang; Chen, Chun-houh; Lin, Wen-chang

    2011-01-01

    Gene duplications are scattered widely throughout the human genome. A single-base difference located in nearly identical duplicated segments may be misjudged as a single nucleotide polymorphism (SNP) from individuals. This imperfection is undistinguishable in current genotyping methods. As the next-generation sequencing technologies become more popular for sequence-based association studies, numerous ambiguous SNPs are rapidly accumulated. Thus, analyzing duplication variations in the reference genome to assist in preventing false positive SNPs is imperative. We have identified >10% of human genes associated with duplicated gene loci (DGL). Through meticulous sequence alignments of DGL, we systematically designated 1,236,956 variations as duplicated gene nucleotide variants (DNVs). The DNV database (dbDNV) (http://goods.ibms.sinica.edu.tw/DNVs/) has been established to promote more accurate variation annotation. Aside from the flat file download, users can explore the gene-related duplications and the associated DNVs by DGL and DNV searches, respectively. In addition, the dbDNV contains 304,110 DNV-coupled SNPs. From DNV-coupled SNP search, users observe which SNP records are also variants among duplicates. This is useful while ∼58% of exonic SNPs in DGL are DNV-coupled. Because of high accumulation of ambiguous SNPs, we suggest that annotating SNPs with DNVs possibilities should improve association studies of these variants with human diseases.

  15. Involvement of AlpV, a New Member of the Streptomyces Antibiotic Regulatory Protein Family, in Regulation of the Duplicated Type II Polyketide Synthase alp Gene Cluster in Streptomyces ambofaciens

    PubMed Central

    Aigle, Bertrand; Pang, Xiuhua; Decaris, Bernard; Leblond, Pierre

    2005-01-01

    A type II polyketide synthase gene cluster located in the terminal inverted repeats of Streptomyces ambofaciens ATCC 23877 was shown to be responsible for the production of an orange pigment and alpomycin, a new antibiotic probably belonging to the angucycline/angucyclinone class. Remarkably, this alp cluster contains five potential regulatory genes, three of which (alpT, alpU, and alpV) encode proteins with high similarity to members of the Streptomyces antibiotic regulatory protein (SARP) family. Deletion of the two copies of alpV (one in each alp cluster located at the two termini) abolished pigment and antibiotic production, suggesting that AlpV acts as a transcriptional activator of the biosynthetic genes. Consistent with this idea, the transcription of alpA, which encodes a ketosynthase essential for orange pigment and antibiotic production, was impaired in the alpV mutant, while the expression of alpT, alpU, and alpZ, another regulatory gene encoding a γ-butyrolactone receptor, was not significantly affected. Real-time PCR experiments showed that transcription of alpV in the wild-type strain increases dramatically after entering the transition phase. This induction precedes that of alpA, suggesting that AlpV needs to reach a threshold level to activate the expression of the structural genes. When introduced into an S. coelicolor mutant with deletions of actII-ORF4 and redD, the SARP-encoding genes regulating the biosynthesis of actinorhodin and undecylprodigiosin, respectively, alpV was able to restore actinorhodin production only. However, actII-ORF4 did not complement the alpV mutant, suggesting that AlpV and ActII-ORF4 may act in a different way. PMID:15774892

  16. Gene-Family Extension Measures and Correlations

    PubMed Central

    Carmi, Gon; Bolshoy, Alexander

    2016-01-01

    The existence of multiple copies of genes is a well-known phenomenon. A gene family is a set of sufficiently similar genes, formed by gene duplication. In earlier works conducted on a limited number of completely sequenced and annotated genomes it was found that size of gene family and size of genome are positively correlated. Additionally, it was found that several atypical microbes deviated from the observed general trend. In this study, we reexamined these associations on a larger dataset consisting of 1484 prokaryotic genomes and using several ranking approaches. We applied ranking methods in such a way that genomes with lower numbers of gene copies would have lower rank. Until now only simple ranking methods were used; we applied the Kemeny optimal aggregation approach as well. Regression and correlation analysis were utilized in order to accurately quantify and characterize the relationships between measures of paralog indices and genome size. In addition, boxplot analysis was employed as a method for outlier detection. We found that, in general, all paralog indexes positively correlate with an increase of genome size. As expected, different groups of atypical prokaryotic genomes were found for different types of paralog quantities. Mycoplasmataceae and Halobacteria appeared to be among the most interesting candidates for further research of evolution through gene duplication. PMID:27527218

  17. Simpson-Golabi-Behmel syndrome type 1 and hepatoblastoma in a patient with a novel exon 2-4 duplication of the GPC3 gene.

    PubMed

    Mateos, María Elena; Beyer, Katrin; López-Laso, Eduardo; Siles, Juan López; Pérez-Navero, Juan Luis; Peña, María José; Guzmán, Juana; Matas, Juliana

    2013-05-01

    Mutations in the gene encoding glypican (GPC) 3 appear to be responsible for most cases of Simpson-Golabi-Behmel syndrome type 1. Duplication of the GPC4 gene has also been associated to this syndrome; however, no duplications involving GPC3 have been related. We describe a family that harbors a novel exon 2-4 duplication event leading to a truncating germline mutation of the GPC3 gene that, to our knowledge, has not been previously reported. GPC3 transcripts that carry this duplication bear non-functional proteins making its pathogenic role highly probable. The absence of a functional GPC3 may alter the normal differentiation of embryonal mesodermal tissues predisposing to the development of embryonal tumors, as the index case studied who developed a hepatoblastoma at age 9 months. PMID:23463737

  18. Simpson-Golabi-Behmel syndrome type 1 and hepatoblastoma in a patient with a novel exon 2-4 duplication of the GPC3 gene.

    PubMed

    Mateos, María Elena; Beyer, Katrin; López-Laso, Eduardo; Siles, Juan López; Pérez-Navero, Juan Luis; Peña, María José; Guzmán, Juana; Matas, Juliana

    2013-05-01

    Mutations in the gene encoding glypican (GPC) 3 appear to be responsible for most cases of Simpson-Golabi-Behmel syndrome type 1. Duplication of the GPC4 gene has also been associated to this syndrome; however, no duplications involving GPC3 have been related. We describe a family that harbors a novel exon 2-4 duplication event leading to a truncating germline mutation of the GPC3 gene that, to our knowledge, has not been previously reported. GPC3 transcripts that carry this duplication bear non-functional proteins making its pathogenic role highly probable. The absence of a functional GPC3 may alter the normal differentiation of embryonal mesodermal tissues predisposing to the development of embryonal tumors, as the index case studied who developed a hepatoblastoma at age 9 months.

  19. beta. amyloid gene duplication in Alzheimer's disease and karyotypically normal Down syndrome

    SciTech Connect

    Delabar, J.; Goldgaber, D.; Lamour, Y.; Nicole, A.; Huret, J.; De Groucy, J.; Brown, P.; Gajdusek, D.C.; Sinet, P.

    1987-03-13

    With the recently cloned complementary DNA probe, lambdaAm4 for the chromosome 21 gene encoding brain amyloid polypeptide (..beta.. amyloid protein) of Alzheimer's disease, leukocyte DNA from three patients with sporadic Alzheimer's disease and two patients with karyotypically normal Down syndrome was found to contain three copies of this bene. Because a small region of chromosome 21 containing the ets-2 gene is duplicated in patients with Alzheimer's disease, as well as in karyotypically normal Down syndrome, duplication of a subsection of the critical segment of chromosome 21 that is duplicated in Down syndrome may be the genetic defect in Alzeimer's disease.

  20. Extensive horizontal gene transfer, duplication, and loss of chlorophyll synthesis genes in the algae

    DOE PAGES

    Hunsperger, Heather M.; Randhawa, Tejinder; Cattolico, Rose Ann

    2015-02-10

    Two non-homologous, isofunctional enzymes catalyze the penultimate step of chlorophyll a synthesis in oxygenic photosynthetic organisms such as cyanobacteria, eukaryotic algae and land plants: the light independent (LIPOR) and light-dependent (POR) protochlorophyllide oxidoreductases. Whereas the distribution of these enzymes in cyanobacteria and land plants is well understood, the presence, loss, duplication, and replacement of these genes have not been surveyed in the polyphyletic and remarkably diverse eukaryotic algal lineages.

  1. Restriction and Recruitment—Gene Duplication and the Origin and Evolution of Snake Venom Toxins

    PubMed Central

    Hargreaves, Adam D.; Swain, Martin T.; Hegarty, Matthew J.; Logan, Darren W.; Mulley, John F.

    2014-01-01

    Snake venom has been hypothesized to have originated and diversified through a process that involves duplication of genes encoding body proteins with subsequent recruitment of the copy to the venom gland, where natural selection acts to develop or increase toxicity. However, gene duplication is known to be a rare event in vertebrate genomes, and the recruitment of duplicated genes to a novel expression domain (neofunctionalization) is an even rarer process that requires the evolution of novel combinations of transcription factor binding sites in upstream regulatory regions. Therefore, although this hypothesis concerning the evolution of snake venom is very unlikely and should be regarded with caution, it is nonetheless often assumed to be established fact, hindering research into the true origins of snake venom toxins. To critically evaluate this hypothesis, we have generated transcriptomic data for body tissues and salivary and venom glands from five species of venomous and nonvenomous reptiles. Our comparative transcriptomic analysis of these data reveals that snake venom does not evolve through the hypothesized process of duplication and recruitment of genes encoding body proteins. Indeed, our results show that many proposed venom toxins are in fact expressed in a wide variety of body tissues, including the salivary gland of nonvenomous reptiles and that these genes have therefore been restricted to the venom gland following duplication, not recruited. Thus, snake venom evolves through the duplication and subfunctionalization of genes encoding existing salivary proteins. These results highlight the danger of the elegant and intuitive “just-so story” in evolutionary biology. PMID:25079342

  2. A novel KCNQ4 mutation and a private IMMP2L-DOCK4 duplication segregating with nonsyndromic hearing loss in a Brazilian family

    PubMed Central

    Uehara, Daniela T; Freitas, Érika L; Alves, Leandro U; Mazzeu, Juliana F; Auricchio, Maria TBM; Tabith, Alfredo; Monteiro, Mário LR; Rosenberg, Carla; Mingroni-Netto, Regina C

    2015-01-01

    Here we describe a novel missense variant in the KCNQ4 gene and a private duplication at 7q31.1 partially involving two genes (IMMP2L and DOCK4). Both mutations segregated with nonsyndromic hearing loss in a family with three affected individuals. Initially, we identified the duplication in a screening of 132 unrelated cases of hearing loss with a multiplex ligation-dependent probe amplification panel of genes that are candidates to have a role in hearing, including IMMP2L. Mapping of the duplication by array-CGH revealed that the duplication also encompassed the 3′-end of DOCK4. Subsequently, whole-exome sequencing identified the breakpoint of the rearrangement, thereby confirming the existence of a fusion IMMP2L-DOCK4 gene. Transcription products of the fusion gene were identified, indicating that they escaped nonsense-mediated messenger RNA decay. A missense substitution (c.701A>T) in KCNQ4 (a gene at the DFNA2A locus) was also identified by whole-exome sequencing. Because the substitution is predicted to be probably damaging and KCNQ4 has been implicated in hearing loss, this mutation might explain the deafness in the affected individuals, although a hypothetical effect of the product of the fusion gene on hearing cannot be completely ruled out. PMID:27081546

  3. Evolution of Vertebrate Adam Genes; Duplication of Testicular Adams from Ancient Adam9/9-like Loci.

    PubMed

    Bahudhanapati, Harinath; Bhattacharya, Shashwati; Wei, Shuo

    2015-01-01

    Members of the disintegrin metalloproteinase (ADAM) family have important functions in regulating cell-cell and cell-matrix interactions as well as cell signaling. There are two major types of ADAMs: the somatic ADAMs (sADAMs) that have a significant presence in somatic tissues, and the testicular ADAMs (tADAMs) that are expressed predominantly in the testis. Genes encoding tADAMs can be further divided into two groups: group I (intronless) and group II (intron-containing). To date, tAdams have only been reported in placental mammals, and their evolutionary origin and relationship to sAdams remain largely unknown. Using phylogenetic and syntenic tools, we analyzed the Adam genes in various vertebrates ranging from fishes to placental mammals. Our analyses reveal duplication and loss of some sAdams in certain vertebrate species. In particular, there exists an Adam9-like gene in non-mammalian vertebrates but not mammals. We also identified putative group I and group II tAdams in all amniote species that have been examined. These tAdam homologues are more closely related to Adams 9 and 9-like than to other sAdams. In all amniote species examined, group II tAdams lie in close vicinity to Adam9 and hence likely arose from tandem duplication, whereas group I tAdams likely originated through retroposition because of their lack of introns. Clusters of multiple group I tAdams are also common, suggesting tandem duplication after retroposition. Therefore, Adam9/9-like and some of the derived tAdam loci are likely preferred targets for tandem duplication and/or retroposition. Consistent with this hypothesis, we identified a young retroposed gene that duplicated recently from Adam9 in the opossum. As a result of gene duplication, some tAdams were pseudogenized in certain species, whereas others acquired new expression patterns and functions. The rapid duplication of Adam genes has a major contribution to the diversity of ADAMs in various vertebrate species. PMID:26308360

  4. Evolution of Vertebrate Adam Genes; Duplication of Testicular Adams from Ancient Adam9/9-like Loci

    PubMed Central

    Wei, Shuo

    2015-01-01

    Members of the disintegrin metalloproteinase (ADAM) family have important functions in regulating cell-cell and cell-matrix interactions as well as cell signaling. There are two major types of ADAMs: the somatic ADAMs (sADAMs) that have a significant presence in somatic tissues, and the testicular ADAMs (tADAMs) that are expressed predominantly in the testis. Genes encoding tADAMs can be further divided into two groups: group I (intronless) and group II (intron-containing). To date, tAdams have only been reported in placental mammals, and their evolutionary origin and relationship to sAdams remain largely unknown. Using phylogenetic and syntenic tools, we analyzed the Adam genes in various vertebrates ranging from fishes to placental mammals. Our analyses reveal duplication and loss of some sAdams in certain vertebrate species. In particular, there exists an Adam9-like gene in non-mammalian vertebrates but not mammals. We also identified putative group I and group II tAdams in all amniote species that have been examined. These tAdam homologues are more closely related to Adams 9 and 9-like than to other sAdams. In all amniote species examined, group II tAdams lie in close vicinity to Adam9 and hence likely arose from tandem duplication, whereas group I tAdams likely originated through retroposition because of their lack of introns. Clusters of multiple group I tAdams are also common, suggesting tandem duplication after retroposition. Therefore, Adam9/9-like and some of the derived tAdam loci are likely preferred targets for tandem duplication and/or retroposition. Consistent with this hypothesis, we identified a young retroposed gene that duplicated recently from Adam9 in the opossum. As a result of gene duplication, some tAdams were pseudogenized in certain species, whereas others acquired new expression patterns and functions. The rapid duplication of Adam genes has a major contribution to the diversity of ADAMs in various vertebrate species. PMID:26308360

  5. The MDM2 gene family.

    PubMed

    Mendoza, Michael; Mandani, Garni; Momand, Jamil

    2014-03-01

    MDM2 is an oncoprotein that blocks p53 tumor suppressor-mediated transcriptional transactivation, escorts p53 from the cell nucleus to the cytoplasm, and polyubiquitylates p53. Polyubiquitylated p53 is rapidly degraded in the cytoplasm by the 26S proteasome. MDM2 is abnormally upregulated in several types of cancers, especially those of mesenchymal origin. MDM4 is a homolog of MDM2 that also inhibits p53 by blocking p53-mediated transactivation. MDM4 is required for MDM2-mediated polyubiquitylated of p53 and is abnormally upregulated in several cancer types. MDM2 and MDM4 genes have been detected in all vertebrates to date and only a single gene homolog, named MDM, has been detected in some invertebrates. MDM2, MDM4, and MDM have similar gene structures, suggesting that MDM2 and MDM4 arose through a duplication event more than 440 million years ago. All members of this small MDM2 gene family contain a single really interesting new gene (RING) domain (with the possible exception of lancelet MDM) which places them in the RING-domain superfamily. Similar to MDM2, the vast majority of proteins with RING domains are E3 ubiquitin ligases. Other RING domain E3 ubiquitin ligases that target p53 are COP1, Pirh2, and MSL2. In this report, we present evidence that COP1, Pirh2, and MSL2 evolved independently of MDM2 and MDM4. We also show, through structure homology models of invertebrate MDM RING domains, that MDM2 is more evolutionarily conserved than MDM4. PMID:25372739

  6. Human-specific evolution of novel SRGAP2 genes by incomplete segmental duplication

    PubMed Central

    Dennis, Megan Y.; Nuttle, Xander; Sudmant, Peter H.; Antonacci, Francesca; Graves, Tina A.; Nefedov, Mikhail; Rosenfeld, Jill A.; Sajjadian, Saba; Malig, Maika; Kotkiewicz, Holland; Curry, Cynthia J.; Shafer, Susan; Shaffer, Lisa G.; de Jong, Pieter J.; Wilson, Richard K.; Eichler, Evan E.

    2012-01-01

    SUMMARY Gene duplication is an important source of phenotypic change and adaptive evolution. We use a novel genomic approach to identify highly identical sequence missing from the reference genome, confirming the cortical development gene Slit-Robo Rho GTPase activating protein 2 (SRGAP2) duplicated three times in humans. We show that the promoter and first nine exons of SRGAP2 duplicated from 1q32.1 (SRGAP2A) to 1q21.1 (SRGAP2B) ~3.4 million years ago (mya). Two larger duplications later copied SRGAP2B to chromosome 1p12 (SRGAP2C) and to proximal 1q21.1 (SRGAP2D), ~2.4 and ~1 mya, respectively. Sequence and expression analysis shows SRGAP2C is the most likely duplicate to encode a functional protein and among the most fixed human-specific duplicate genes. Our data suggest a mechanism where incomplete duplication created a novel function —at birth, antagonizing parental SRGAP2 function 2–3 mya a time corresponding to the transition from Australopithecus to Homo and the beginning of neocortex expansion. PMID:22559943

  7. Contribution of nonohnologous duplicated genes to high habitat variability in mammals.

    PubMed

    Tamate, Satoshi C; Kawata, Masakado; Makino, Takashi

    2014-07-01

    The mechanism by which genetic systems affect environmental adaptation is a focus of considerable attention in the fields of ecology, evolution, and conservation. However, the genomic characteristics that constrain adaptive evolution have remained unknown. A recent study showed that the proportion of duplicated genes in whole Drosophila genomes correlated with environmental variability within habitat, but it remains unclear whether the correlation is observed even in vertebrates whose genomes including a large number of duplicated genes generated by whole-genome duplication (WGD). Here, we focus on fully sequenced mammalian genomes that experienced WGD in early vertebrate lineages and show that the proportion of small-scale duplication (SSD) genes in the genome, but not that of WGD genes, is significantly correlated with habitat variability. Moreover, species with low habitat variability have a higher proportion of lost duplicated genes, particularly SSD genes, than those with high habitat variability. These results indicate that species that inhabit variable environments may maintain more SSD genes in their genomes and suggest that SSD genes are important for adapting to novel environments and surviving environmental changes. These insights may be applied to predicting invasive and endangered species. PMID:24714078

  8. Evolution of CONSTANS Regulation and Function after Gene Duplication Produced a Photoperiodic Flowering Switch in the Brassicaceae

    PubMed Central

    Simon, Samson; Rühl, Mark; de Montaigu, Amaury; Wötzel, Stefan; Coupland, George

    2015-01-01

    Environmental control of flowering allows plant reproduction to occur under optimal conditions and facilitates adaptation to different locations. At high latitude, flowering of many plants is controlled by seasonal changes in day length. The photoperiodic flowering pathway confers this response in the Brassicaceae, which colonized temperate latitudes after divergence from the Cleomaceae, their subtropical sister family. The CONSTANS (CO) transcription factor of Arabidopsis thaliana, a member of the Brassicaceae, is central to the photoperiodic flowering response and shows characteristic patterns of transcription required for day-length sensing. CO is believed to be widely conserved among flowering plants; however, we show that it arose after gene duplication at the root of the Brassicaceae followed by divergence of transcriptional regulation and protein function. CO has two close homologs, CONSTANS-LIKE1 (COL1) and COL2, which are related to CO by tandem duplication and whole-genome duplication, respectively. The single CO homolog present in the Cleomaceae shows transcriptional and functional features similar to those of COL1 and COL2, suggesting that these were ancestral. We detect cis-regulatory and codon changes characteristic of CO and use transgenic assays to demonstrate their significance in the day-length-dependent activation of the CO target gene FLOWERING LOCUS T. Thus, the function of CO as a potent photoperiodic flowering switch evolved in the Brassicaceae after gene duplication. The origin of CO may have contributed to the range expansion of the Brassicaceae and suggests that in other families CO genes involved in photoperiodic flowering arose by convergent evolution. PMID:25972346

  9. Gene duplication, population genomics, and species-level differentiation within a tropical mountain shrub.

    PubMed

    Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C

    2014-10-01

    Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. PMID:25223767

  10. Gene Duplication, Population Genomics, and Species-Level Differentiation within a Tropical Mountain Shrub

    PubMed Central

    Mastretta-Yanes, Alicia; Zamudio, Sergio; Jorgensen, Tove H.; Arrigo, Nils; Alvarez, Nadir; Piñero, Daniel; Emerson, Brent C.

    2014-01-01

    Gene duplication leads to paralogy, which complicates the de novo assembly of genotyping-by-sequencing (GBS) data. The issue of paralogous genes is exacerbated in plants, because they are particularly prone to gene duplication events. Paralogs are normally filtered from GBS data before undertaking population genomics or phylogenetic analyses. However, gene duplication plays an important role in the functional diversification of genes and it can also lead to the formation of postzygotic barriers. Using populations and closely related species of a tropical mountain shrub, we examine 1) the genomic differentiation produced by putative orthologs, and 2) the distribution of recent gene duplication among lineages and geography. We find high differentiation among populations from isolated mountain peaks and species-level differentiation within what is morphologically described as a single species. The inferred distribution of paralogs among populations is congruent with taxonomy and shows that GBS could be used to examine recent gene duplication as a source of genomic differentiation of nonmodel species. PMID:25223767

  11. Ancestry Influences the Fate of Duplicated Genes Millions of Years After Polyploidization of Clawed Frogs (Xenopus)

    PubMed Central

    Evans, Ben J.

    2007-01-01

    Allopolyploid species form through the fusion of two differentiated genomes and, in the earliest stages of their evolution, essentially all genes in the nucleus are duplicated. Because unique mutations occur in each ancestor prior to allopolyploidization, duplicate genes in these species potentially are not interchangeable, and this could influence their genetic fates. This study explores evolution and expression of a simple duplicated complex—a heterodimer between RAG1 and RAG2 proteins in clawed frogs (Xenopus). Results demonstrate that copies of RAG1 degenerated in different polyploid species in a phylogenetically biased fashion, predominately in only one lineage of closely related paralogs. Surprisingly, as a result of an early deletion of one RAG2 paralog, it appears that in many species RAG1/RAG2 heterodimers are composed of proteins that were encoded by unlinked paralogs. If the tetraploid ancestor of extant species of Xenopus arose through allopolyploidization and if recombination between paralogs was rare, then the genes that encode functional RAG1 and RAG2 proteins in many polyploid species were each ultimately inherited from different diploid progenitors. These observations are consistent with the notion that ancestry can influence the fate of duplicate genes millions of years after duplication, and they uncover a dimension of natural selection in allopolyploid genomes that is distinct from other genetic phenomena associated with polyploidization or segmental duplication. PMID:17435227

  12. Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity.

    PubMed

    Freeling, Michael; Thomas, Brian C

    2006-07-01

    Controversy surrounds the apparent rising maximums of morphological complexity during eukaryotic evolution, with organisms increasing the number and nestedness of developmental areas as evidenced by morphological elaborations reflecting area boundaries. No "predictable drive" to increase this sort of complexity has been reported. Recent genetic data and theory in the general area of gene dosage effects has engendered a robust "gene balance hypothesis," with a theoretical base that makes specific predictions as to gene content changes following different types of gene duplication. Genomic data from both chordate and angiosperm genomes fit these predictions: Each type of duplication provides a one-way injection of a biased set of genes into the gene pool. Tetraploidies and balanced segments inject bias for those genes whose products are the subunits of the most complex biological machines or cascades, like transcription factors (TFs) and proteasome core proteins. Most duplicate genes are removed after tetraploidy. Genic balance is maintained by not removing those genes that are dose-sensitive, which tends to leave duplicate "functional modules" as the indirect products (spandrels) of purifying selection. Functional modules are the likely precursors of coadapted gene complexes, a unit of natural selection. The result is a predictable drive mechanism where "drive" is used rigorously, as in "meiotic drive." Rising morphological gain is expected given a supply of duplicate functional modules. All flowering plants have survived at least three large-scale duplications/diploidizations over the last 300 million years (Myr). An equivalent period of tetraploidy and body plan evolution may have ended for animals 500 million years ago (Mya). We argue that "balanced gene drive" is a sufficient explanation for the trend that the maximums of morphological complexity have gone up, and not down, in both plant and animal eukaryotic lineages.

  13. Evolution dynamics of a model for gene duplication under adaptive conflict

    NASA Astrophysics Data System (ADS)

    Ancliff, Mark; Park, Jeong-Man

    2014-06-01

    We present and solve the dynamics of a model for gene duplication showing escape from adaptive conflict. We use a Crow-Kimura quasispecies model of evolution where the fitness landscape is a function of Hamming distances from two reference sequences, which are assumed to optimize two different gene functions, to describe the dynamics of a mixed population of individuals with single and double copies of a pleiotropic gene. The evolution equations are solved through a spin coherent state path integral, and we find two phases: one is an escape from an adaptive conflict phase, where each copy of a duplicated gene evolves toward subfunctionalization, and the other is a duplication loss of function phase, where one copy maintains its pleiotropic form and the other copy undergoes neutral mutation. The phase is determined by a competition between the fitness benefits of subfunctionalization and the greater mutational load associated with maintaining two gene copies. In the escape phase, we find a dynamics of an initial population of single gene sequences only which escape adaptive conflict through gene duplication and find that there are two time regimes: until a time t* single gene sequences dominate, and after t* double gene sequences outgrow single gene sequences. The time t* is identified as the time necessary for subfunctionalization to evolve and spread throughout the double gene sequences, and we show that there is an optimum mutation rate which minimizes this time scale.

  14. Evolutionary analyses of non-family genes in plants

    SciTech Connect

    Ye, Chuyu; Li, Ting; Yin, Hengfu; Weston, David; Tuskan, Gerald A; Tschaplinski, Timothy J; Yang, Xiaohan

    2013-01-01

    There are a large number of non-family (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94 000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae wide, angiosperm specific, monocot specific, dicot specific, and those that were species specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both lowcopy- number families (LF; 3 10 copies per genome) and high-copy-number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g. photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein protein interaction network revealed that hub proteins with the top 10% most connections were over-represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.

  15. Evolutionary analyses of non-family genes in plants

    SciTech Connect

    Ye, Chuyu; Li, Ting; Yin, Hengfu; Weston, David; Tuskan, Gerald A; Tschaplinski, Timothy J; Yang, Xiaohan

    2013-03-01

    There are a large number of non-family (NF) genes that do not cluster into families with three or more members per genome. While gene families have been extensively studied, a systematic analysis of NF genes has not been reported. We performed comparative studies on NF genes in 14 plant species. Based on the clustering of protein sequences, we identified ~94,000 NF genes across these species that were divided into five evolutionary groups: Viridiplantae-wide, angiosperm-specific, monocot-specific, dicot-specific, and those that were species-specific. Our analysis revealed that the NF genes resulted largely from less frequent gene duplications and/or a higher rate of gene loss after segmental duplication relative to genes in both low-copy-number families (LF; 3 10 copies per genome) and high-copy-number families (HF; >10 copies). Furthermore, we identified functions enriched in the NF gene set as compared with the HF genes. We found that NF genes were involved in essential biological processes shared by all plant lineages (e.g., photosynthesis and translation), as well as gene regulation and stress responses associated with phylogenetic diversification. In particular, our analysis of an Arabidopsis protein-protein interaction network revealed that hub proteins with the top 10% most connections were over-represented in the NF set relative to the HF set. This research highlights the roles that NF genes may play in evolutionary and functional genomics research.

  16. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates.

    PubMed

    Kulmuni, J; Wurm, Y; Pamilo, P

    2013-06-01

    Gene duplications can have a major role in adaptation, and gene families underlying chemosensation are particularly interesting due to their essential role in chemical recognition of mates, predators and food resources. Social insects add yet another dimension to the study of chemosensory genomics, as the key components of their social life rely on chemical communication. Still, chemosensory gene families are little studied in social insects. Here we annotated chemosensory protein (CSP) genes from seven ant genomes and studied their evolution. The number of functional CSP genes ranges from 11 to 21 depending on species, and the estimated rates of gene birth and death indicate high turnover of genes. Ant CSP genes include seven conservative orthologous groups present in all the ants, and a group of genes that has expanded independently in different ant lineages. Interestingly, the expanded group of genes has a differing mode of evolution from the orthologous groups. The expanded group shows rapid evolution as indicated by a high dN/dS (nonsynonymous to synonymous changes) ratio, several sites under positive selection and many pseudogenes, whereas the genes in the seven orthologous groups evolve slowly under purifying selection and include only one pseudogene. These results show that adaptive changes have played a role in ant CSP evolution. The expanded group of ant-specific genes is phylogenetically close to a conservative orthologous group CSP7, which includes genes known to be involved in ant nestmate recognition, raising an interesting possibility that the expanded CSPs function in ant chemical communication.

  17. Comparative genomics of chemosensory protein genes reveals rapid evolution and positive selection in ant-specific duplicates.

    PubMed

    Kulmuni, J; Wurm, Y; Pamilo, P

    2013-06-01

    Gene duplications can have a major role in adaptation, and gene families underlying chemosensation are particularly interesting due to their essential role in chemical recognition of mates, predators and food resources. Social insects add yet another dimension to the study of chemosensory genomics, as the key components of their social life rely on chemical communication. Still, chemosensory gene families are little studied in social insects. Here we annotated chemosensory protein (CSP) genes from seven ant genomes and studied their evolution. The number of functional CSP genes ranges from 11 to 21 depending on species, and the estimated rates of gene birth and death indicate high turnover of genes. Ant CSP genes include seven conservative orthologous groups present in all the ants, and a group of genes that has expanded independently in different ant lineages. Interestingly, the expanded group of genes has a differing mode of evolution from the orthologous groups. The expanded group shows rapid evolution as indicated by a high dN/dS (nonsynonymous to synonymous changes) ratio, several sites under positive selection and many pseudogenes, whereas the genes in the seven orthologous groups evolve slowly under purifying selection and include only one pseudogene. These results show that adaptive changes have played a role in ant CSP evolution. The expanded group of ant-specific genes is phylogenetically close to a conservative orthologous group CSP7, which includes genes known to be involved in ant nestmate recognition, raising an interesting possibility that the expanded CSPs function in ant chemical communication. PMID:23403962

  18. Does lack of recombination enhance asymmetric evolution among duplicate genes? Insights from the Drosophila melanogaster genome.

    PubMed

    Clément, Yves; Tavares, Raquel; Marais, Gabriel A B

    2006-12-30

    Gene duplication has different outcomes: pseudogenization (death of one of the two copies), gene amplification (both copies remain the same), sub-functionalization (both copies are required to perform the ancestral function) and neo-functionalization (one copy acquires a new function). Asymmetric evolution (one copy evolves faster than the other) is usually seen as a signature of neo-functionalization. However, it has been proposed that sub-functionalization could also generate asymmetric evolution among duplicate genes when they experience different local recombination rates. Indeed, the low recombination copy is expected to evolve faster because of Hill-Robertson effects. Here we tested this idea with about 100 pairs of young duplicates from the Drosophila melanogaster genome. Looking only at young duplicates allowed us to compare recombination rates and evolutionary rates on a similar time-scale contrary to previous work. We found that dispersed pairs tend to evolve more asymmetrically than tandem ones. Among dispersed copies, the low recombination copy tends to be the fast-evolving one. We also tested the possibility that all this was explained by a confounding factor (expression level) but found no evidence for it. In conclusion, our results do support the idea that asymmetric evolution among duplicates is enhanced by restricted recombination. However, further work is needed to clearly distinguish between sub-functionalization and neo-functionalization for the asymmetrically-evolving duplicate pairs that we found.

  19. High divergence in primate-specific duplicated regions: Human and chimpanzee Chorionic Gonadotropin Beta genes

    PubMed Central

    2008-01-01

    Background Low nucleotide divergence between human and chimpanzee does not sufficiently explain the species-specific morphological, physiological and behavioral traits. As gene duplication is a major prerequisite for the emergence of new genes and novel biological processes, comparative studies of human and chimpanzee duplicated genes may assist in understanding the mechanisms behind primate evolution. We addressed the divergence between human and chimpanzee duplicated genomic regions by using Luteinizing Hormone Beta (LHB)/Chorionic Gonadotropin Beta (CGB) gene cluster as a model. The placental CGB genes that are essential for implantation have evolved from an ancestral pituitary LHB gene by duplications in the primate lineage. Results We shotgun sequenced and compared the human (45,165 bp) and chimpanzee (39,876 bp) LHB/CGB regions and hereby present evidence for structural variation resulting in discordant number of CGB genes (6 in human, 5 in chimpanzee). The scenario of species-specific parallel duplications was supported (i) as the most parsimonious solution requiring the least rearrangement events to explain the interspecies structural differences; (ii) by the phylogenetic trees constructed with fragments of intergenic regions; (iii) by the sequence similarity calculations. Across the orthologous regions of LHB/CGB cluster, substitutions and indels contributed approximately equally to the interspecies divergence and the distribution of nucleotide identity was correlated with the regional repeat content. Intraspecies gene conversion may have shaped the LHB/CGB gene cluster. The substitution divergence (1.8–2.59%) exceeded two-three fold the estimates for single-copy loci and the fraction of transversional mutations was increased compared to the unique sequences (43% versus ~30%). Despite the high sequence identity among LHB/CGB genes, there are signs of functional differentiation among the gene copies. Estimates for dn/ds rate ratio suggested a purifying

  20. Molecular evolution of the duplicated TFIIAγ genes in Oryzeae and its relatives

    PubMed Central

    2010-01-01

    Background Gene duplication provides raw genetic materials for evolutionary novelty and adaptation. The evolutionary fate of duplicated transcription factor genes is less studied although transcription factor gene plays important roles in many biological processes. TFIIAγ is a small subunit of TFIIA that is one of general transcription factors required by RNA polymerase II. Previous studies identified two TFIIAγ-like genes in rice genome and found that these genes either conferred resistance to rice bacterial blight or could be induced by pathogen invasion, raising the question as to their functional divergence and evolutionary fates after gene duplication. Results We reconstructed the evolutionary history of the TFIIAγ genes from main lineages of angiosperms and demonstrated that two TFIIAγ genes (TFIIAγ1 and TFIIAγ5) arose from a whole genome duplication that happened in the common ancestor of grasses. Likelihood-based analyses with branch, codon, and branch-site models showed no evidence of positive selection but a signature of relaxed selective constraint after the TFIIAγ duplication. In particular, we found that the nonsynonymous/synonymous rate ratio (ω = dN/dS) of the TFIIAγ1 sequences was two times higher than that of TFIIAγ5 sequences, indicating highly asymmetric rates of protein evolution in rice tribe and its relatives, with an accelerated rate of TFIIAγ1 gene. Our expression data and EST database search further indicated that after whole genome duplication, the expression of TFIIAγ1 gene was significantly reduced while TFIIAγ5 remained constitutively expressed and maintained the ancestral role as a subunit of the TFIIA complex. Conclusion The evolutionary fate of TFIIAγ duplicates is not consistent with the neofunctionalization model that predicts that one of the duplicated genes acquires a new function because of positive Darwinian selection. Instead, we suggest that subfunctionalization might be involved in TFIIAγ evolution in grasses

  1. Partial duplications of the ATRX gene cause the ATR-X syndrome.

    PubMed

    Thienpont, Bernard; de Ravel, Thomy; Van Esch, Hilde; Van Schoubroeck, Dominique; Moerman, Philippe; Vermeesch, Joris Robert; Fryns, Jean-Pierre; Froyen, Guy; Lacoste, Caroline; Badens, Catherine; Devriendt, Koen

    2007-10-01

    ATR-X syndrome is a rare syndromic X-linked mental retardation disorder. We report that some of the patients suspected of ATR-X carry large intragenic duplications in the ATRX gene, leading to an absence of ATRX mRNA and of the protein. These findings underscore the need for including quantitative analyses to mutation analysis of the ATRX gene.

  2. Familial 1.3-Mb 11p15.5p15.4 Duplication in Three Generations Causing Silver-Russell and Beckwith-Wiedemann Syndromes

    PubMed Central

    Vals, Mari-Anne; Kahre, Tiina; Mee, Pille; Muru, Kai; Kallas, Eha; Žilina, Olga; Tillmann, Vallo; Õunap, Katrin

    2015-01-01

    Silver-Russell syndrome (SRS) and Beckwith-Wiedemann syndrome (BWS) are 2 opposite growth-affecting disorders. The common molecular cause for both syndromes is an abnormal regulation of genes in chromosomal region 11p15, where 2 imprinting control regions (ICR) control fetal and postnatal growth. Also, many submicroscopic chromosomal disturbances like duplications in 11p15 have been described among SRS and BWS patients. Duplications involving both ICRs cause SRS or BWS, depending on which parent the aberration is inherited from. We describe to our knowledge the smallest familial pure 1.3-Mb duplication in chromosomal region 11p15.5p15.4 that involves both ICRs and is present in 3 generations causing an SRS or BWS phenotype. PMID:26732610

  3. A phylogenetic model for understanding the effect of gene duplication on cancer progression.

    PubMed

    Ma, Qin; Reeves, Jaxk H; Liberles, David A; Yu, Lili; Chang, Zheng; Zhao, Jing; Cui, Juan; Xu, Ying; Liu, Liang

    2014-03-01

    As biotechnology advances rapidly, a tremendous amount of cancer genetic data has become available, providing an unprecedented opportunity for understanding the genetic mechanisms of cancer. To understand the effects of duplications and deletions on cancer progression, two genomes (normal and tumor) were sequenced from each of five stomach cancer patients in different stages (I, II, III and IV). We developed a phylogenetic model for analyzing stomach cancer data. The model assumes that duplication and deletion occur in accordance with a continuous time Markov Chain along the branches of a phylogenetic tree attached with five extended branches leading to the tumor genomes. Moreover, coalescence times of the phylogenetic tree follow a coalescence process. The simulation study suggests that the maximum likelihood approach can accurately estimate parameters in the phylogenetic model. The phylogenetic model was applied to the stomach cancer data. We found that the expected number of changes (duplication and deletion) per gene for the tumor genomes is significantly higher than that for the normal genomes. The goodness-of-fit test suggests that the phylogenetic model with constant duplication and deletion rates can adequately fit the duplication data for the normal genomes. The analysis found nine duplicated genes that are significantly associated with stomach cancer. PMID:24371277

  4. A phylogenetic model for understanding the effect of gene duplication on cancer progression

    PubMed Central

    Ma, Qin; Reeves, Jaxk H.; Liberles, David A.; Yu, Lili; Chang, Zheng; Zhao, Jing; Cui, Juan; Xu, Ying; Liu, Liang

    2014-01-01

    As biotechnology advances rapidly, a tremendous amount of cancer genetic data has become available, providing an unprecedented opportunity for understanding the genetic mechanisms of cancer. To understand the effects of duplications and deletions on cancer progression, two genomes (normal and tumor) were sequenced from each of five stomach cancer patients in different stages (I, II, III and IV). We developed a phylogenetic model for analyzing stomach cancer data. The model assumes that duplication and deletion occur in accordance with a continuous time Markov Chain along the branches of a phylogenetic tree attached with five extended branches leading to the tumor genomes. Moreover, coalescence times of the phylogenetic tree follow a coalescence process. The simulation study suggests that the maximum likelihood approach can accurately estimate parameters in the phylogenetic model. The phylogenetic model was applied to the stomach cancer data. We found that the expected number of changes (duplication and deletion) per gene for the tumor genomes is significantly higher than that for the normal genomes. The goodness-of-fit test suggests that the phylogenetic model with constant duplication and deletion rates can adequately fit the duplication data for the normal genomes. The analysis found nine duplicated genes that are significantly associated with stomach cancer. PMID:24371277

  5. Heterogeneous expression pattern of tandem duplicated sHsps genes during fruit ripening in two tomato species

    NASA Astrophysics Data System (ADS)

    Arce, DP; Krsticevic, FJ; Ezpeleta, J.; Ponce, SD; Pratta, GR; Tapia, E.

    2016-04-01

    The small heat shock proteins (sHSPs) have been found to play a critical role in physiological stress conditions in protecting proteins from irreversible aggregation. To characterize the gene expression profile of four sHsps with a tandem gene structure arrangement in the domesticated Solanum lycopersicum (Heinz 1706) genome and its wild close relative Solanum pimpinellifolium (LA1589), differential gene expression analysis using RNA-Seq was conducted in three ripening stages in both cultivars fruits. Gene promoter analysis was performed to explain the heterogeneous pattern of gene expression found for these tandem duplicated sHsps. In silico analysis results contribute to refocus wet experiment analysis in tomato sHsp family proteins.

  6. Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes.

    PubMed

    Lundqvist, E; Johansson, I; Ingelman-Sundberg, M

    1999-01-21

    The polymorphic CYP2D6 gene determines the rates at which several different classes of clinically important drugs are metabolized in vivo. A specific phenotype whereby a subject metabolizes drugs very rapidly (ultrarapid metabolizer, UM) has been shown to be caused by the presence of multiple active CYP2D6 genes on one allele. Hitherto, individuals with 1, 2, 3, 4, 5, or 13 CYP2D6 genes in tandem have been described for various ethnic groups. In the present investigation, we present results from restriction mapping of the CYP2D loci of individuals with two or more consecutive CYP2D6 genes, along with sequence analysis of this gene (CYP2D6*2). Our results indicate that alleles with duplicated or multiduplicated genes have occurred through unequal crossover at a specific breakpoint in the 3'-flanking region of the CYP2D6*2B allele with a specific repetitive sequence. In contrast, alleles with 13 copies of the gene are proposed to have been formed by unequal segregation and extrachromosomal replication of the acentric DNA. We present a rapid and efficient PCR-based allele-specific method for the detection of duplicated, multiduplicated, or amplified CYP2D6 genes.

  7. Lineage-Specific Gene Duplication and Loss in Human and Great Ape Evolution

    PubMed Central

    MacLaren, Erik; Marshall, Kriste; Hahn, Gretchen; Meltesen, Lynne; Brenton, Matthew; Hink, Raquel; Burgers, Sonya; Hernandez-Boussard, Tina; Karimpour-Fard, Anis; Glueck, Deborah; McGavran, Loris; Berry, Rebecca

    2004-01-01

    Given that gene duplication is a major driving force of evolutionary change and the key mechanism underlying the emergence of new genes and biological processes, this study sought to use a novel genome-wide approach to identify genes that have undergone lineage-specific duplications or contractions among several hominoid lineages. Interspecies cDNA array-based comparative genomic hybridization was used to individually compare copy number variation for 39,711 cDNAs, representing 29,619 human genes, across five hominoid species, including human. We identified 1,005 genes, either as isolated genes or in clusters positionally biased toward rearrangement-prone genomic regions, that produced relative hybridization signals unique to one or more of the hominoid lineages. Measured as a function of the evolutionary age of each lineage, genes showing copy number expansions were most pronounced in human (134) and include a number of genes thought to be involved in the structure and function of the brain. This work represents, to our knowledge, the first genome-wide gene-based survey of gene duplication across hominoid species. The genes identified here likely represent a significant majority of the major gene copy number changes that have occurred over the past 15 million years of human and great ape evolution and are likely to underlie some of the key phenotypic characteristics that distinguish these species. PMID:15252450

  8. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution

    PubMed Central

    Flagel, Lex; Udall, Joshua; Nettleton, Dan; Wendel, Jonathan

    2008-01-01

    Background Polyploidy has played a prominent role in shaping the genomic architecture of the angiosperms. Through allopolyploidization, several modern Gossypium (cotton) species contain two divergent, although largely redundant genomes. Owing to this redundancy, these genomes can play host to an array of evolutionary processes that act on duplicate genes. Results We compared homoeolog (genes duplicated by polyploidy) contributions to the transcriptome of a natural allopolyploid and a synthetic interspecific F1 hybrid, both derived from a merger between diploid species from the Gossypium A-genome and D-genome groups. Relative levels of A- and D-genome contributions to the petal transcriptome were determined for 1,383 gene pairs. This comparison permitted partitioning of homoeolog expression biases into those arising from genomic merger and those resulting from polyploidy. Within allopolyploid Gossypium, approximately 24% of the genes with biased (unequal contributions from the two homoeologous copies) expression patterns are inferred to have arisen as a consequence of genomic merger, indicating that a substantial fraction of homoeolog expression biases occur instantaneously with hybridization. The remaining 76% of biased homoeologs reflect long-term evolutionary forces, such as duplicate gene neofunctionalization and subfunctionalization. Finally, we observed a greater number of genes biased toward the paternal D-genome and that expression biases have tended to increases during allopolyploid evolution. Conclusion Our results indicate that allopolyploidization entails significant homoeolog expression modulation, both immediately as a consequence of genomic merger, and secondarily as a result of long-term evolutionary transformations in duplicate gene expression. PMID:18416842

  9. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences.

    PubMed

    Freeling, Michael; Scanlon, Michael J; Fowler, John E

    2015-12-01

    A gene's duplication relaxes selection. Loss of duplicate, low-function DNA (fractionation) sometimes follows, mostly by deletion in plants, but mostly via the pseudogene pathway in fish and other clades with smaller population sizes. Subfunctionalization--the founding term of the Xfunctionalization lexicon--while not the general cause of differences in duplicate gene retention, becomes primary as the number of a gene's cis-regulatory sites increases. Balanced gene drive explains retention for the average gene. Both maintenance-of-balance and subfunctionalization drive gene content nonrandomly, and currently fall outside of our accepted Theory of Evolution. The 'typical' mutation encountered by a gene duplicate is not a neutral loss-of-function; dominant mutations (Muller's lexicon; these are not neutral) abound, and confound X functionalization terms like 'neofunctionalization'. Confusion of words may cause confusion of thought. As with many plants, fish tetraploidies provide a higher throughput surrogate-genetic method to infer function from human and other vertebrate ENCODE-like regulatory sites.

  10. Crystal structure of human glyoxalase I--evidence for gene duplication and 3D domain swapping.

    PubMed Central

    Cameron, A D; Olin, B; Ridderström, M; Mannervik, B; Jones, T A

    1997-01-01

    The zinc metalloenzyme glyoxalase I catalyses the glutathione-dependent inactivation of toxic methylglyoxal. The structure of the dimeric human enzyme in complex with S-benzyl-glutathione has been determined by multiple isomorphous replacement (MIR) and refined at 2.2 A resolution. Each monomer consists of two domains. Despite only low sequence homology between them, these domains are structurally equivalent and appear to have arisen by a gene duplication. On the other hand, there is no structural homology to the 'glutathione binding domain' found in other glutathione-linked proteins. 3D domain swapping of the N- and C-terminal domains has resulted in the active site being situated in the dimer interface, with the inhibitor and essential zinc ion interacting with side chains from both subunits. Two structurally equivalent residues from each domain contribute to a square pyramidal coordination of the zinc ion, rarely seen in zinc enzymes. Comparison of glyoxalase I with other known structures shows the enzyme to belong to a new structural family which includes the Fe2+-dependent dihydroxybiphenyl dioxygenase and the bleomycin resistance protein. This structural family appears to allow members to form with or without domain swapping. PMID:9218781

  11. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies

    PubMed Central

    2014-01-01

    Background Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited. Results A total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies. Conclusion This study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have

  12. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep

    PubMed Central

    Norris, Belinda J.; Whan, Vicki A.

    2008-01-01

    Agouti signaling protein (ASIP) functions to regulate pigmentation in mice, while its role in many other animals and in humans has not been fully determined. In this study, we identify a 190-kb tandem duplication encompassing the ovine ASIP and AHCY coding regions and the ITCH promoter region as the genetic cause of white coat color of dominant white/tan (AWt) agouti sheep. The duplication 5′ breakpoint is located upstream of the ASIP coding sequence. Ubiquitous expression of a second copy of the ASIP coding sequence regulated by a duplicated copy of the nearby ITCH promoter causes the white sheep phenotype. A single copy ASIP gene with a silenced ASIP promoter occurs in recessive black sheep. In contrast, a single copy functional wild-type (A+) ASIP is responsible for the ancient Barbary sheep coat color phenotype. The gene duplication was facilitated by homologous recombination between two non-LTR SINE sequences flanking the duplicated segment. This is the first sheep trait attributable to gene duplication and shows nonallelic homologous recombination and gene conversion events at the ovine ASIP locus could have an important role in the evolution of sheep pigmentation. PMID:18493018

  13. Preservation of genetic and regulatory robustness in ancient gene duplicates of Saccharomyces cerevisiae

    PubMed Central

    Keane, Orla M.; Toft, Christina; Carretero-Paulet, Lorenzo; Jones, Gary W.

    2014-01-01

    Biological systems remain robust against certain genetic and environmental challenges. Robustness allows the exploration of ecological adaptations. It is unclear what factors contribute to increasing robustness. Gene duplication has been considered to increase genetic robustness through functional redundancy, accelerating the evolution of novel functions. However, recent findings have questioned the link between duplication and robustness. In particular, it remains elusive whether ancient duplicates still bear potential for innovation through preserved redundancy and robustness. Here we have investigated this question by evolving the yeast Saccharomyces cerevisiae for 2200 generations under conditions allowing the accumulation of deleterious mutations, and we put mechanisms of mutational robustness to a test. S. cerevisiae declined in fitness along the evolution experiment, but this decline decelerated in later passages, suggesting functional compensation of mutated genes. We resequenced 28 genomes from experimentally evolved S. cerevisiae lines and found more mutations in duplicates—mainly small-scale duplicates—than in singletons. Genetically interacting duplicates evolved similarly and fixed more amino acid–replacing mutations than expected. Regulatory robustness of the duplicates was supported by a larger enrichment for mutations at the promoters of duplicates than at those of singletons. Analyses of yeast gene expression conditions showed a larger variation in the duplicates’ expression than that of singletons under a range of stress conditions, sparking the idea that regulatory robustness allowed a wider range of phenotypic responses to environmental stresses, hence faster adaptations. Our data support the persistence of genetic and regulatory robustness in ancient duplicates and its role in adaptations to stresses. PMID:25149527

  14. Familial 5q11.2 → q13.3 Segmental Duplication Cosegregating With Multiple Anomalies, Including Schizophrenia

    PubMed Central

    McGillivray, Barbara C.; Bassett, Anne S.; Langlois, Sylvie; Pantzar, Tapio; Wood, Stephen

    2011-01-01

    We report on 2 relatives with a segmental duplication of 5q11.2 → 13.3. The phenotype is surprisingly limited for the degree of chromosome imbalance, the propositus presenting with schizophrenia. Using RFLP markers, we have shown that the gene for HEXB lies within the duplicated region. We suggest this region as a candidate region for the location of a single major gene which predisposes to schizophrenia and which may be assessed by linkage analysis. PMID:1967903

  15. Gene duplication as a mechanism of genomic adaptation to a changing environment

    PubMed Central

    Kondrashov, Fyodor A.

    2012-01-01

    A subject of extensive study in evolutionary theory has been the issue of how neutral, redundant copies can be maintained in the genome for long periods of time. Concurrently, examples of adaptive gene duplications to various environmental conditions in different species have been described. At this point, it is too early to tell whether or not a substantial fraction of gene copies have initially achieved fixation by positive selection for increased dosage. Nevertheless, enough examples have accumulated in the literature that such a possibility should be considered. Here, I review the recent examples of adaptive gene duplications and make an attempt to draw generalizations on what types of genes may be particularly prone to be selected for under certain environmental conditions. The identification of copy-number variation in ecological field studies of species adapting to stressful or novel environmental conditions may improve our understanding of gene duplications as a mechanism of adaptation and its relevance to the long-term persistence of gene duplications. PMID:22977152

  16. Multispecies Analysis of Expression Pattern Diversification in the Recently Expanded Insect Ly6 Gene Family

    PubMed Central

    Tanaka, Kohtaro; Hazbun, Alexis; Hijazi, Assia; Vreede, Barbara; Sucena, Élio

    2015-01-01

    Gene families often consist of members with diverse expression domains reflecting their functions in a wide variety of tissues. However, how the expression of individual members, and thus their tissue-specific functions, diversified during the course of gene family expansion is not well understood. In this study, we approached this question through the analysis of the duplication history and transcriptional evolution of a rapidly expanding subfamily of insect Ly6 genes. We analyzed different insect genomes and identified seven Ly6 genes that have originated from a single ancestor through sequential duplication within the higher Diptera. We then determined how the original embryonic expression pattern of the founding gene diversified by characterizing its tissue-specific expression in the beetle Tribolium castaneum, the butterfly Bicyclus anynana, and the mosquito Anopheles stephensi and those of its duplicates in three higher dipteran species, representing various stages of the duplication history (Megaselia abdita, Ceratitis capitata, and Drosophila melanogaster). Our results revealed that frequent neofunctionalization episodes contributed to the increased expression breadth of this subfamily and that these events occurred after duplication and speciation events at comparable frequencies. In addition, at each duplication node, we consistently found asymmetric expression divergence. One paralog inherited most of the tissue-specificities of the founder gene, whereas the other paralog evolved drastically reduced expression domains. Our approach attests to the power of combining a well-established duplication history with a comprehensive coverage of representative species in acquiring unequivocal information about the dynamics of gene expression evolution in gene families. PMID:25743545

  17. Genome-wide analysis of homeobox genes from Mesobuthus martensii reveals Hox gene duplication in scorpions.

    PubMed

    Di, Zhiyong; Yu, Yao; Wu, Yingliang; Hao, Pei; He, Yawen; Zhao, Huabin; Li, Yixue; Zhao, Guoping; Li, Xuan; Li, Wenxin; Cao, Zhijian

    2015-06-01

    Homeobox genes belong to a large gene group, which encodes the famous DNA-binding homeodomain that plays a key role in development and cellular differentiation during embryogenesis in animals. Here, one hundred forty-nine homeobox genes were identified from the Asian scorpion, Mesobuthus martensii (Chelicerata: Arachnida: Scorpiones: Buthidae) based on our newly assembled genome sequence with approximately 248 × coverage. The identified homeobox genes were categorized into eight classes including 82 families: 67 ANTP class genes, 33 PRD genes, 11 LIM genes, five POU genes, six SINE genes, 14 TALE genes, five CUT genes, two ZF genes and six unclassified genes. Transcriptome data confirmed that more than half of the genes were expressed in adults. The homeobox gene diversity of the eight classes is similar to the previously analyzed Mandibulata arthropods. Interestingly, it is hypothesized that the scorpion M. martensii may have two Hox clusters. The first complete genome-wide analysis of homeobox genes in Chelicerata not only reveals the repertoire of scorpion, arachnid and chelicerate homeobox genes, but also shows some insights into the evolution of arthropod homeobox genes.

  18. Positive selection and ancient duplications in the evolution of class B floral homeotic genes of orchids and grasses

    PubMed Central

    Mondragón-Palomino, Mariana; Hiese, Luisa; Härter, Andrea; Koch, Marcus A; Theißen, Günter

    2009-01-01

    Background Positive selection is recognized as the prevalence of nonsynonymous over synonymous substitutions in a gene. Models of the functional evolution of duplicated genes consider neofunctionalization as key to the retention of paralogues. For instance, duplicate transcription factors are specifically retained in plant and animal genomes and both positive selection and transcriptional divergence appear to have played a role in their diversification. However, the relative impact of these two factors has not been systematically evaluated. Class B MADS-box genes, comprising DEF-like and GLO-like genes, encode developmental transcription factors essential for establishment of perianth and male organ identity in the flowers of angiosperms. Here, we contrast the role of positive selection and the known divergence in expression patterns of genes encoding class B-like MADS-box transcription factors from monocots, with emphasis on the family Orchidaceae and the order Poales. Although in the monocots these two groups are highly diverse and have a strongly canalized floral morphology, there is no information on the role of positive selection in the evolution of their distinctive flower morphologies. Published research shows that in Poales, class B-like genes are expressed in stamens and in lodicules, the perianth organs whose identity might also be specified by class B-like genes, like the identity of the inner tepals of their lily-like relatives. In orchids, however, the number and pattern of expression of class B-like genes have greatly diverged. Results The DEF-like genes from Orchidaceae form four well-supported, ancient clades of orthologues. In contrast, orchid GLO-like genes form a single clade of ancient orthologues and recent paralogues. DEF-like genes from orchid clade 2 (OMADS3-like genes) are under less stringent purifying selection than the other orchid DEF-like and GLO-like genes. In comparison with orchids, purifying selection was less stringent in DEF

  19. Independent and Parallel Evolution of New Genes by Gene Duplication in Two Origins of C4 Photosynthesis Provides New Insight into the Mechanism of Phloem Loading in C4 Species

    PubMed Central

    Emms, David M.; Covshoff, Sarah; Hibberd, Julian M.; Kelly, Steven

    2016-01-01

    C4 photosynthesis is considered one of the most remarkable examples of evolutionary convergence in eukaryotes. However, it is unknown whether the evolution of C4 photosynthesis required the evolution of new genes. Genome-wide gene-tree species-tree reconciliation of seven monocot species that span two origins of C4 photosynthesis revealed that there was significant parallelism in the duplication and retention of genes coincident with the evolution of C4 photosynthesis in these lineages. Specifically, 21 orthologous genes were duplicated and retained independently in parallel at both C4 origins. Analysis of this gene cohort revealed that the set of parallel duplicated and retained genes is enriched for genes that are preferentially expressed in bundle sheath cells, the cell type in which photosynthesis was activated during C4 evolution. Furthermore, functional analysis of the cohort of parallel duplicated genes identified SWEET-13 as a potential key transporter in the evolution of C4 photosynthesis in grasses, and provides new insight into the mechanism of phloem loading in these C4 species. Key words: C4 photosynthesis, gene duplication, gene families, parallel evolution. PMID:27016024

  20. Chaperonin genes on the rise: new divergent classes and intense duplication in human and other vertebrate genomes

    PubMed Central

    2010-01-01

    Background Chaperonin proteins are well known for the critical role they play in protein folding and in disease. However, the recent identification of three diverged chaperonin paralogs associated with the human Bardet-Biedl and McKusick-Kaufman Syndromes (BBS and MKKS, respectively) indicates that the eukaryotic chaperonin-gene family is larger and more differentiated than previously thought. The availability of complete genome sequences makes possible a definitive characterization of the complete set of chaperonin sequences in human and other species. Results We identified fifty-four chaperonin-like sequences in the human genome and similar numbers in the genomes of the model organisms mouse and rat. In mammal genomes we identified, besides the well-known CCT chaperonin genes and the three genes associated with the MKKS and BBS pathological conditions, a newly-defined class of chaperonin genes named CCT8L, represented in human by the two sequences CCT8L1 and CCT8L2. Comparative analyses from several vertebrate genomes established the monophyletic origin of chaperonin-like MKKS and BBS genes from the CCT8 lineage. The CCT8L gene originated from a later duplication also in the CCT8 lineage at the onset of mammal evolution and duplicated in primate genomes. The functionality of CCT8L genes in different species was confirmed by evolutionary analyses and in human by expression data. Detailed sequence analysis and structural predictions of MKKS, BBS and CCT8L proteins strongly suggested that they conserve a typical chaperonin-like core structure but that they are unlikely to form a CCT-like oligomeric complex. The characterization of many newly-discovered chaperonin pseudogenes uncovered the intense duplication activity of eukaryotic chaperonin genes. Conclusions In vertebrates, chaperonin genes, driven by intense duplication processes, have diversified into multiple classes and functionalities that extend beyond their well-known protein-folding role as part of the

  1. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies.

    PubMed

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D

    2016-01-01

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes-and that the butterfly proboscis is involved in digestive enzyme production. PMID:27553646

  2. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies.

    PubMed

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D

    2016-09-02

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes-and that the butterfly proboscis is involved in digestive enzyme production.

  3. Transcriptional divergence of the duplicated oxidative stress-responsive genes in the Arabidopsis genome.

    PubMed

    Stanley Kim, H; Yu, Yan; Snesrud, Erik C; Moy, Linda P; Linford, Lara D; Haas, Brian J; Nierman, William C; Quackenbush, John

    2005-01-01

    Previous studies have indicated that Arabidopsis thaliana experienced a genome-wide duplication event shortly before its divergence from Brassica followed by extensive chromosomal rearrangements and deletions. While a large number of the duplicated genes have significantly diverged or lost their sister genes, we found 4222 pairs that are still highly conserved, and as a result had similar functional assignments during the annotation of the genome sequence. Using whole-genome DNA microarrays, we identified 906 duplicated gene pairs in which at least one member exhibited a significant response to oxidative stress. Among these, only 117 pairs were up- or down-regulated in both pairs and many of these exhibited dissimilar patterns of expression. Examination of the expression patterns of PAL1 and PAL2, ACD1 and ACD2, genes coding for two Hsp20s, various P450s, and electron transfer flavoproteins suggests Arabidopsis evolved a number of distinct oxidative stress response mechanisms using similar gene sets following the duplication of its genome.

  4. Amyloid beta-protein gene duplication is not common in Alzheimer's disease: analysis by polymorphic restriction fragments.

    PubMed

    Furuya, H; Sasaki, H; Goto, I; Wong, C W; Glenner, G G; Sakaki, Y

    1988-01-15

    The amyloid beta-protein(BP) is an important component of amyloid fibrils of both Alzheimer's disease(AD) and adult Down syndrome(DS). It has been hypothesized that sporadic AD may involve the duplication of a subregion of chromosome 21 containing the BP locus. However, an improved method for detection of the BP gene duplication using polymorphic Hind III fragments led us to a conclusion that BP gene duplication is rare, if any, in (Japanese) sporadic AD patients, indicating that the duplication of the BP gene itself is not the common underlying genetic defect in AD.

  5. Becker Muscular Dystrophy (BMD) caused by duplication of exons 3-6 of the dystrophin gene presenting as dilated cardiomyopathy

    SciTech Connect

    Tsai, A.C.; Allingham-Hawkins, D.J.; Becker, L.

    1994-09-01

    X-linked dilated cardiomyopathy (XLCM) is a progressive myocardial disease presenting with congestive heart failure in teenage males without clinical signs of skeletal myopathy. Tight linkage of XLCM to the DMD locus has been demonstrated; it has been suggested that, at least in some families, XLCM is a {open_quotes}dystrophinopathy.{close_quotes} We report a 14-year-old boy who presented with acute heart failure due to dilated cardiomyopathy. He had no history of muscle weakness, but physical examination revealed pseudohypertrophy of the calf muscles. He subsequently received a heart transplantation. Family history was negative. Serum CK level at the time of diagnosis was 10,416. Myocardial biopsy showed no evidence of carditis. Dystrophin staining of cardiac and skeletal muscle with anti-sera to COOH and NH{sub 2}termini showed a patchy distribution of positivity suggestive of Becker muscular dystrophy. Analysis of 18 of the 79 dystrophin exons detected a duplication that included exons 3-6. The proband`s mother has an elevated serum CK and was confirmed to be a carrier of the same duplication. A mutation in the muscle promotor region of the dystrophin gene has been implicated in the etiology of SLCM. However, Towbin et al. (1991) argued that other 5{prime} mutations in the dystrophin gene could cause selective cardiomyopathy. The findings in our patient support the latter hypothesis. This suggests that there are multiple regions in the dystrophin gene which, when disrupted, can cause isolated dilated cardiomyopathy.

  6. Segmental duplication, microinversion, and gene loss associated with a complex inversion breakpoint region in Drosophila.

    PubMed

    Calvete, Oriol; González, Josefa; Betrán, Esther; Ruiz, Alfredo

    2012-07-01

    Chromosomal inversions are usually portrayed as simple two-breakpoint rearrangements changing gene order but not gene number or structure. However, increasing evidence suggests that inversion breakpoints may often have a complex structure and entail gene duplications with potential functional consequences. Here, we used a combination of different techniques to investigate the breakpoint structure and the functional consequences of a complex rearrangement fixed in Drosophila buzzatii and comprising two tandemly arranged inversions sharing the middle breakpoint: 2m and 2n. By comparing the sequence in the breakpoint regions between D. buzzatii (inverted chromosome) and D. mojavensis (noninverted chromosome), we corroborate the breakpoint reuse at the molecular level and infer that inversion 2m was associated with a duplication of a ~13 kb segment and likely generated by staggered breaks plus repair by nonhomologous end joining. The duplicated segment contained the gene CG4673, involved in nuclear transport, and its two nested genes CG5071 and CG5079. Interestingly, we found that other than the inversion and the associated duplication, both breakpoints suffered additional rearrangements, that is, the proximal breakpoint experienced a microinversion event associated at both ends with a 121-bp long duplication that contains a promoter. As a consequence of all these different rearrangements, CG5079 has been lost from the genome, CG5071 is now a single copy nonnested gene, and CG4673 has a transcript ~9 kb shorter and seems to have acquired a more complex gene regulation. Our results illustrate the complex effects of chromosomal rearrangements and highlight the need of complementing genomic approaches with detailed sequence-level and functional analyses of breakpoint regions if we are to fully understand genome structure, function, and evolutionary dynamics.

  7. Gene duplication and divergence produce divergent MHC genotypes without disassortative mating.

    PubMed

    Dearborn, Donald C; Gager, Andrea B; McArthur, Andrew G; Gilmour, Morgan E; Mandzhukova, Elena; Mauck, Robert A

    2016-09-01

    Genes of the major histocompatibility complex (MHC) exhibit heterozygote advantage in immune defence, which in turn can select for MHC-disassortative mate choice. However, many species lack this expected pattern of MHC-disassortative mating. A possible explanation lies in evolutionary processes following gene duplication: if two duplicated MHC genes become functionally diverged from each other, offspring will inherit diverse multilocus genotypes even under random mating. We used locus-specific primers for high-throughput sequencing of two expressed MHC Class II B genes in Leach's storm-petrels, Oceanodroma leucorhoa, and found that exon 2 alleles fall into two gene-specific monophyletic clades. We tested for disassortative vs. random mating at these two functionally diverged Class II B genes, using multiple metrics and different subsets of exon 2 sequence data. With good statistical power, we consistently found random assortment of mates at MHC. Despite random mating, birds had MHC genotypes with functionally diverged alleles, averaging 13 amino acid differences in pairwise comparisons of exon 2 alleles within individuals. To test whether this high MHC diversity in individuals is driven by evolutionary divergence of the two duplicated genes, we built a phylogenetic permutation model. The model showed that genotypic diversity was strongly impacted by sequence divergence between the most common allele of each gene, with a smaller additional impact of monophyly of the two genes. Divergence of allele sequences between genes may have reduced the benefits of actively seeking MHC-dissimilar mates, in which case the evolutionary history of duplicated genes is shaping the adaptive landscape of sexual selection. PMID:27376487

  8. Gene Duplication and Gene Expression Changes Play a Role in the Evolution of Candidate Pollen Feeding Genes in Heliconius Butterflies

    PubMed Central

    Smith, Gilbert; Macias-Muñoz, Aide; Briscoe, Adriana D.

    2016-01-01

    Heliconius possess a unique ability among butterflies to feed on pollen. Pollen feeding significantly extends their lifespan, and is thought to have been important to the diversification of the genus. We used RNA sequencing to examine feeding-related gene expression in the mouthparts of four species of Heliconius and one nonpollen feeding species, Eueides isabella. We hypothesized that genes involved in morphology and protein metabolism might be upregulated in Heliconius because they have longer proboscides than Eueides, and because pollen contains more protein than nectar. Using de novo transcriptome assemblies, we tested these hypotheses by comparing gene expression in mouthparts against antennae and legs. We first looked for genes upregulated in mouthparts across all five species and discovered several hundred genes, many of which had functional annotations involving metabolism of proteins (cocoonase), lipids, and carbohydrates. We then looked specifically within Heliconius where we found eleven common upregulated genes with roles in morphology (CPR cuticle proteins), behavior (takeout-like), and metabolism (luciferase-like). Closer examination of these candidates revealed that cocoonase underwent several duplications along the lineage leading to heliconiine butterflies, including two Heliconius-specific duplications. Luciferase-like genes also underwent duplication within lepidopterans, and upregulation in Heliconius mouthparts. Reverse-transcription PCR confirmed that three cocoonases, a peptidase, and one luciferase-like gene are expressed in the proboscis with little to no expression in labial palps and salivary glands. Our results suggest pollen feeding, like other dietary specializations, was likely facilitated by adaptive expansions of preexisting genes—and that the butterfly proboscis is involved in digestive enzyme production. PMID:27553646

  9. A possible role of DNA methylation in functional divergence of a fast evolving duplicate gene encoding odorant binding protein 11 in the honeybee.

    PubMed

    Kucharski, R; Maleszka, J; Maleszka, R

    2016-06-29

    Although gene duplication is seen as the main path to evolution of new functions, molecular mechanisms by which selection favours the gain versus loss of newly duplicated genes and minimizes the fixation of pseudo-genes are not well understood. Here, we investigate in detail a duplicate honeybee gene obp11 belonging to a fast evolving insect gene family encoding odorant binding proteins (OBPs). We report that obp11 is expressed only in female bees in rare antennal sensilla basiconica in contrast to its tandem partner obp10 that is expressed in the brain in both females and males (drones). Unlike all other obp genes in the honeybee, obp11 is methylated suggesting that functional diversification of obp11 and obp10 may have been driven by an epigenetic mechanism. We also show that increased methylation in drones near one donor splice site that correlates with higher abundance of a transcript variant encoding a truncated OBP11 protein is one way of controlling its contrasting expression. Our data suggest that like in mammals and plants, DNA methylation in insects may contribute to functional diversification of proteins produced from duplicated genes, in particular to their subfunctionalization by generating complementary patterns of expression.

  10. A possible role of DNA methylation in functional divergence of a fast evolving duplicate gene encoding odorant binding protein 11 in the honeybee.

    PubMed

    Kucharski, R; Maleszka, J; Maleszka, R

    2016-06-29

    Although gene duplication is seen as the main path to evolution of new functions, molecular mechanisms by which selection favours the gain versus loss of newly duplicated genes and minimizes the fixation of pseudo-genes are not well understood. Here, we investigate in detail a duplicate honeybee gene obp11 belonging to a fast evolving insect gene family encoding odorant binding proteins (OBPs). We report that obp11 is expressed only in female bees in rare antennal sensilla basiconica in contrast to its tandem partner obp10 that is expressed in the brain in both females and males (drones). Unlike all other obp genes in the honeybee, obp11 is methylated suggesting that functional diversification of obp11 and obp10 may have been driven by an epigenetic mechanism. We also show that increased methylation in drones near one donor splice site that correlates with higher abundance of a transcript variant encoding a truncated OBP11 protein is one way of controlling its contrasting expression. Our data suggest that like in mammals and plants, DNA methylation in insects may contribute to functional diversification of proteins produced from duplicated genes, in particular to their subfunctionalization by generating complementary patterns of expression. PMID:27358363

  11. The polycystic kidney disease 1 gene lies in a duplicated genomic region

    SciTech Connect

    Ward, C.J.; Hughes, J.; Peral, B. |

    1994-09-01

    The polycystic kidney disease 1 (PKD1) gene is situated in chromosomal band 16p13.3 and encodes a 14 kb transcript. The 5{prime} region of the PKD1 gene is located within a 40-50 kb stretch of genomic DNA which is duplicated several times in the more proximal region, 16p13.1. This proximal area gives rise to at least three transcripts designated homologous gene A (HG-A; 21 kb), HG-B (17 kb) and HG-C (8.5 kb). These three transcripts share substantial homology with each other and the PKD1 transcript. However, the 3{prime} 3.8 kb section of the PKD1 transcript is unique because it is encoded by a region of the gene that lies outside the duplicated area. The presence of the duplicate transcripts in all tissues analyzed has hampered attempts to clone and sequence the bone fide PKD1 gene. Comparison of cDNAs known to arise from the PKD1 transcript to those from the HG transcripts reveals that divergence of 2-3% has occurred between these sequences. To overcome the problem of the duplication, a large 15 kb section of genomic DNA has been sequenced together with several large HG cDNAs. Utilizing a radiation hybrid which contains only the 16p13.3 region and expresses low levels of the PKD1 transcript, we are now attempting to clone the duplicated part of the PKD1 gene by exon linking.

  12. Expansion of transducin subunit gene families in early vertebrate tetraploidizations.

    PubMed

    Lagman, David; Sundström, Görel; Ocampo Daza, Daniel; Abalo, Xesús M; Larhammar, Dan

    2012-10-01

    Hundreds of gene families expanded in the early vertebrate tetraploidizations including many gene families in the phototransduction cascade. We have investigated the evolution of the heterotrimeric G-proteins of photoreceptors, the transducins, in relation to these events using both phylogenetic analyses and synteny comparisons. Three alpha subunit genes were identified in amniotes and the coelacanth, GNAT1-3; two of these were identified in amphibians and teleost fish, GNAT1 and GNAT2. Most tetrapods have four beta genes, GNB1-4, and teleosts have additional duplicates. Finally, three gamma genes were identified in mammals, GNGT1, GNG11 and GNGT2. Of these, GNGT1 and GNGT2 were found in the other vertebrates. In frog and zebrafish additional duplicates of GNGT2 were identified. Our analyses show all three transducin families expanded during the early vertebrate tetraploidizations and the beta and gamma families gained additional copies in the teleost-specific genome duplication. This suggests that the tetraploidizations contributed to visual specialisations. PMID:22814267

  13. Differential gene transfers and gene duplications in primary and secondary endosymbioses

    PubMed Central

    Zauner, Stefan; Lockhart, Peter; Stoebe-Maier, Bettina; Gilson, Paul; McFadden, Geoffrey I; Maier, Uwe G

    2006-01-01

    Background Most genes introduced into phototrophic eukaryotes during the process of endosymbiosis are either lost or relocated into the host nuclear genome. In contrast, groEL homologues are found in different genome compartments among phototrophic eukaryotes. Comparative sequence analyses of recently available genome data, have allowed us to reconstruct the evolutionary history of these genes and propose a hypothesis that explains the unusual genome distribution of groEL homologues. Results Our analyses indicate that while two distinct groEL genes were introduced into eukaryotes by a progenitor of plastids, these particular homologues have not been maintained in all evolutionary lineages. This is of significant interest, because two chaperone proteins always co-occur in oxygenic photosynthetic organisms. We infer strikingly different lineage specific processes of evolution involving deletion, duplication and targeting of groEL proteins. Conclusion The requirement of two groEL homologues for chaperon function in phototrophs has provided a constraint that has shaped convergent evolutionary scenarios in divergent evolutionary lineages. GroEL provides a general evolutionary model for studying gene transfers and convergent evolutionary processes among eukaryotic lineages. PMID:16640777

  14. Gene acquisition, duplication and metabolic specification: the evolution of fungal methylisocitrate lyases.

    PubMed

    Müller, Sebastian; Fleck, Christian B; Wilson, Duncan; Hummert, Christian; Hube, Bernhard; Brock, Matthias

    2011-06-01

    Gene duplication represents an evolutionary mechanism for expanding metabolic potential. Here we analysed the evolutionary relatedness of isocitrate and methylisocitrate lyases, which are key enzymes of the glyoxylate and methylcitrate cycle respectively. Phylogenetic analyses imply that ancient eukaryotes acquired an isocitrate lyase gene from a prokaryotic source, but it was lost in some eukaryotic lineages. However, protists, oomycetes and most fungi maintained this gene and successfully integrated the corresponding enzyme into the glyoxylate cycle. A second gene, encoding a highly related enzyme, is present in fungi, but absent from other eukaryotes. This methylisocitrate lyase is specifically involved in propionyl-CoA degradation via the methylcitrate cycle. Although bacteria possess methylisocitrate lyases with a structural fold similar to that of isocitrate lyases, their sequence identity to fungal methylisocitrate lyases is low. Phylogenetic analyses imply that fungal methylisocitrate lyases arose from gene duplication of an ancient isocitrate lyase gene from the basidiomycete lineage. Mutagenesis of active-site residues of a bacterial and fungal isocitrate lyase, which have been predicted to direct the substrate specificity of iso- and methylisocitrate lyases, experimentally confirmed the possibility of direct evolution of methylisocitrate lyases from isocitrate lyases. Thus, gene duplication has increased the metabolic capacity of fungi.

  15. Ascorbate peroxidase-related (APx-R) is not a duplicable gene

    PubMed Central

    Dunand, Christophe; Mathé, Catherine; Lazzarotto, Fernanda; Margis, Rogério; Margis-Pinheiro, Marcia

    2011-01-01

    Phylogenetic, genomic and functional analyses have allowed the identification of a new class of putative heme peroxidases, so called APx-R (APx-Related). These new class, mainly present in the green lineage (including green algae and land plants), can also be detected in other unicellular chloroplastic organisms. Except for recent polyploid organisms, only single-copy of APx-R gene was detected in each genome, suggesting that the majority of the APx-R extra-copies were lost after chromosomal or segmental duplications. In a similar way, most APx-R co-expressed genes in Arabidopsis genome do not have conserved extra-copies after chromosomal duplications and are predicted to be localized in organelles, as are the APx-R. The member of this gene network can be considered as unique gene, well conserved through the evolution due to a strong negative selection pressure and a low evolution rate. PMID:22231200

  16. Differential expression of duplicated opsin genes in two eyetypes of ostracod crustaceans.

    PubMed

    Oakley, Todd H; Huber, Daniel R

    2004-08-01

    In the first molecular study of ostracod (Crustacea) vision, we present partial cDNA sequences of ostracod visual pigment genes (opsins). We found strong support for differential expression of opsins in ostracod median and compound eyes and suggest that photoreceptor specific expression may be a general phenomenon in organisms with multiple receptors. We infer that eye-specific expression predates the divergence of the two species examined, Skogsbergia lerneri and Vargula hilgendorfii, because eye-specific opsin orthologs are present in both species. We found multiple opsin loci in ostracods, estimating that at least eight are present in Skogsbergia lerneri. All opsins from both ostracod species examined are more closely related to each other than to any other known opsin sequences. Because we find no evidence for gene conversion or alternative splicing, we suggest the occurrence of many recent gene duplications. Why ostracods may have retained multiple recent opsin gene duplicates is unknown, but we discuss several possible hypotheses.

  17. The sequence of rice chromosomes 11 and 12, rich in disease resistance genes and recent gene duplications

    PubMed Central

    2005-01-01

    Background Rice is an important staple food and, with the smallest cereal genome, serves as a reference species for studies on the evolution of cereals and other grasses. Therefore, decoding its entire genome will be a prerequisite for applied and basic research on this species and all other cereals. Results We have determined and analyzed the complete sequences of two of its chromosomes, 11 and 12, which total 55.9 Mb (14.3% of the entire genome length), based on a set of overlapping clones. A total of 5,993 non-transposable element related genes are present on these chromosomes. Among them are 289 disease resistance-like and 28 defense-response genes, a higher proportion of these categories than on any other rice chromosome. A three-Mb segment on both chromosomes resulted from a duplication 7.7 million years ago (mya), the most recent large-scale duplication in the rice genome. Paralogous gene copies within this segmental duplication can be aligned with genomic assemblies from sorghum and maize. Although these gene copies are preserved on both chromosomes, their expression patterns have diverged. When the gene order of rice chromosomes 11 and 12 was compared to wheat gene loci, significant synteny between these orthologous regions was detected, illustrating the presence of conserved genes alternating with recently evolved genes. Conclusion Because the resistance and defense response genes, enriched on these chromosomes relative to the whole genome, also occur in clusters, they provide a preferred target for breeding durable disease resistance in rice and the isolation of their allelic variants. The recent duplication of a large chromosomal segment coupled with the high density of disease resistance gene clusters makes this the most recently evolved part of the rice genome. Based on syntenic alignments of these chromosomes, rice chromosome 11 and 12 do not appear to have resulted from a single whole-genome duplication event as previously suggested. PMID:16188032

  18. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    PubMed

    Tsujimura, Taro; Hosoya, Tomohiro; Kawamura, Shoji

    2010-12-16

    A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio) have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs) in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC) clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR) upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  19. New Alleles of the Yeast MPS1 Gene Reveal Multiple Requirements in Spindle Pole Body Duplication

    PubMed Central

    Schutz, Amy R.; Winey, Mark

    1998-01-01

    In Saccharomyces cerevisiae, the Mps1p protein kinase is critical for both spindle pole body (SPB) duplication and the mitotic spindle assembly checkpoint. The mps1–1 mutation causes failure early in SPB duplication, and because the spindle assembly checkpoint is also compromised, mps1–1 cells proceed with a monopolar mitosis and rapidly lose viability. Here we report the genetic and molecular characterization of mps1–1 and five new temperature-sensitive alleles of MPS1. Each of the six alleles contains a single point mutation in the region of the gene encoding the protein kinase domain. The mutations affect several residues conserved among protein kinases, most notably the invariant glutamate in subdomain III. In vivo and in vitro kinase activity of the six epitope-tagged mutant proteins varies widely. Only two display appreciable in vitro activity, and interestingly, this activity is not thermolabile under the assay conditions used. While five of the six alleles cause SPB duplication to fail early, yielding cells with a single SPB, mps1–737 cells proceed into SPB duplication and assemble a second SPB that is structurally defective. This phenotype, together with the observation of intragenic complementation between this unique allele and two others, suggests that Mps1p is required for multiple events in SPB duplication. PMID:9529376

  20. Gene evolution and gene expression after whole genome duplication in fish: the PhyloFish database.

    PubMed

    Pasquier, Jeremy; Cabau, Cédric; Nguyen, Thaovi; Jouanno, Elodie; Severac, Dany; Braasch, Ingo; Journot, Laurent; Pontarotti, Pierre; Klopp, Christophe; Postlethwait, John H; Guiguen, Yann; Bobe, Julien

    2016-01-01

    With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts. PMID:27189481

  1. A Novel Approach for Characterizing Expression Levels of Genes Duplicated by Polyploidy

    PubMed Central

    Udall, Joshua A.; Swanson, Jordan M.; Nettleton, Dan; Percifield, Ryan J.; Wendel, Jonathan F.

    2006-01-01

    Studying gene expression in polyploids is complicated by genomewide gene duplication and the problem of distinguishing transcript pools derived from each of the two homeologous genomes such as the A- and D-genomes of allotetraploid Gossypium. Short oligonucleotide probes designed to specifically target several hundred homeologous gene pairs of Gossypium were printed on custom NimbleGen microarrays. These results demonstrate that relative expression levels of homeologous genes may be measured by microarrays and that deviation from equal expression levels of homeologous loci may be common in the allotetraploid nucleus of Gossypium. PMID:16702424

  2. The dynamics of gene duplication and transposons in microbial genome evolution

    NASA Astrophysics Data System (ADS)

    Chia, Nicholas; Goldenfeld, Nigel

    2010-03-01

    Evidence indicates that new functional genes emerge from a process of gene duplication coupled with selection for a novel function. Recently, Bergthorsson et al. proposed a model of continuous selection in order to describe this process. Here, we examine their proposed evolutionary scheme, by modeling gene evolution using a stochastic simulation. Our results indicate that this model, and a related one that includes horizontal gene transfer, can account for the distribution of transposons in microbial genomes, and reproduce the observed environmentally-driven spatial dependence of transposon density in marine bacteria.

  3. Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning.

    PubMed

    Chang, Yi-Cheng; Pai, Chih-Yu; Chen, Yi-Chih; Ting, Hsiu-Chi; Martinez, Pedro; Telford, Maximilian J; Yu, Jr-Kai; Su, Yi-Hsien

    2016-02-01

    The spatially opposed expression of Antidorsalizing morphogenetic protein (Admp) and BMP signals controls dorsoventral (DV) polarity across Bilateria and hence represents an ancient regulatory circuit. Here, we show that in addition to the conserved admp1 that constitutes the ancient circuit, a second admp gene (admp2) is present in Ambulacraria (Echinodermata+Hemichordata) and two marine worms belonging to Xenoturbellida and Acoelomorpha. The phylogenetic distribution implies that the two admp genes were duplicated in the Bilaterian common ancestor and admp2 was subsequently lost in chordates and protostomes. We show that the ambulacrarian admp1 and admp2 are under opposite transcriptional control by BMP signals and knockdown of Admps in sea urchins impaired their DV polarity. Over-expression of either Admps reinforced BMP signaling but resulted in different phenotypes in the sea urchin embryo. Our study provides an excellent example of signaling circuit rewiring and protein functional changes after gene duplications. PMID:26719126

  4. Regulatory circuit rewiring and functional divergence of the duplicate admp genes in dorsoventral axial patterning.

    PubMed

    Chang, Yi-Cheng; Pai, Chih-Yu; Chen, Yi-Chih; Ting, Hsiu-Chi; Martinez, Pedro; Telford, Maximilian J; Yu, Jr-Kai; Su, Yi-Hsien

    2016-02-01

    The spatially opposed expression of Antidorsalizing morphogenetic protein (Admp) and BMP signals controls dorsoventral (DV) polarity across Bilateria and hence represents an ancient regulatory circuit. Here, we show that in addition to the conserved admp1 that constitutes the ancient circuit, a second admp gene (admp2) is present in Ambulacraria (Echinodermata+Hemichordata) and two marine worms belonging to Xenoturbellida and Acoelomorpha. The phylogenetic distribution implies that the two admp genes were duplicated in the Bilaterian common ancestor and admp2 was subsequently lost in chordates and protostomes. We show that the ambulacrarian admp1 and admp2 are under opposite transcriptional control by BMP signals and knockdown of Admps in sea urchins impaired their DV polarity. Over-expression of either Admps reinforced BMP signaling but resulted in different phenotypes in the sea urchin embryo. Our study provides an excellent example of signaling circuit rewiring and protein functional changes after gene duplications.

  5. Mitochondrial Genomes of Kinorhyncha: trnM Duplication and New Gene Orders within Animals

    PubMed Central

    Popova, Olga V.; Mikhailov, Kirill V.; Nikitin, Mikhail A.; Logacheva, Maria D.; Penin, Aleksey A.; Muntyan, Maria S.; Kedrova, Olga S.; Petrov, Nikolai B.; Panchin, Yuri V.

    2016-01-01

    Many features of mitochondrial genomes of animals, such as patterns of gene arrangement, nucleotide content and substitution rate variation are extensively used in evolutionary and phylogenetic studies. Nearly 6,000 mitochondrial genomes of animals have already been sequenced, covering the majority of animal phyla. One of the groups that escaped mitogenome sequencing is phylum Kinorhyncha—an isolated taxon of microscopic worm-like ecdysozoans. The kinorhynchs are thought to be one of the early-branching lineages of Ecdysozoa, and their mitochondrial genomes may be important for resolving evolutionary relations between major animal taxa. Here we present the results of sequencing and analysis of mitochondrial genomes from two members of Kinorhyncha, Echinoderes svetlanae (Cyclorhagida) and Pycnophyes kielensis (Allomalorhagida). Their mitochondrial genomes are circular molecules approximately 15 Kbp in size. The kinorhynch mitochondrial gene sequences are highly divergent, which precludes accurate phylogenetic inference. The mitogenomes of both species encode a typical metazoan complement of 37 genes, which are all positioned on the major strand, but the gene order is distinct and unique among Ecdysozoa or animals as a whole. We predict four types of start codons for protein-coding genes in E. svetlanae and five in P. kielensis with a consensus DTD in single letter code. The mitochondrial genomes of E. svetlanae and P. kielensis encode duplicated methionine tRNA genes that display compensatory nucleotide substitutions. Two distant species of Kinorhyncha demonstrate similar patterns of gene arrangements in their mitogenomes. Both genomes have duplicated methionine tRNA genes; the duplication predates the divergence of two species. The kinorhynchs share a few features pertaining to gene order that align them with Priapulida. Gene order analysis reveals that gene arrangement specific of Priapulida may be ancestral for Scalidophora, Ecdysozoa, and even Protostomia

  6. The large-scale evolution by generating new genes from gene duplication; similarity and difference between monoploid and diploid organisms.

    PubMed

    Otsuka, Jinya

    2011-06-01

    On the basis of the concept of biological activity, the large-scale evolution by generating new genes from gene duplication is theoretically compared between the monoploid organism and the diploid organism. The comparison is carried out not only for the process of generating one new gene but also for the process of generating two or more kinds of new genes from successive gene duplication. This comparison reveals the following difference in evolutionary pattern between the monoploids and diploids. The monoploid organism is more suitable to generate one or two new genes step by step but its successive gene duplication is obliged to generate smaller sizes of genes by the severer lowering of biological activity or self-reproducing rate. This is consistent with the evolutionary pattern of prokaryotes having steadily developed chemical syntheses, O₂-releasing photosynthesis and O₂-respiration in the respective lineages. On the other hand, the diploid organism with the plural number of homologous chromosome pairs has a chance to get together many kinds of new genes by the hybridization of variants having experienced different origins of gene duplication. Although this strategy of hybridization avoids the severe lowering of biological activity, it takes the longer time to establish the homozygotes of the more kinds of new genes. During this long period, furthermore different types of variants are accumulated in the population, and their successive hybridization sometimes yields various styles of new organisms. This evolutionary pattern explains the explosive divergence of body plans that has occasionally occurred in the diploid organisms, because the cell differentiation is a representative character exhibited by many kinds of genes and its evolution to the higher hierarchy constructs body plans.

  7. Adaptive evolution of recently duplicated accessory gland protein genes in desert Drosophila.

    PubMed

    Wagstaff, Bradley J; Begun, David J

    2007-10-01

    The relationship between animal mating system variation and patterns of protein polymorphism and divergence is poorly understood. Drosophila provides an excellent system for addressing this issue, as there is abundant interspecific mating system variation. For example, compared to D. melanogaster subgroup species, repleta group species have higher remating rates, delayed sexual maturity, and several other interesting differences. We previously showed that accessory gland protein genes (Acp's) of Drosophila mojavensis and D. arizonae evolve more rapidly than Acp's in the D. melanogaster subgroup and that adaptive Acp protein evolution is likely more common in D. mojavensis/D. arizonae than in D. melanogaster/D. simulans. These findings are consistent with the idea that greater postcopulatory selection results in more adaptive evolution of seminal fluid proteins in the repleta group flies. Here we report another interesting evolutionary difference between the repleta group and the D. melanogaster subgroup Acp's. Acp gene duplications are present in D. melanogaster, but their high sequence divergence indicates that the fixation rate of duplicated Acp's has been low in this lineage. Here we report that D. mojavensis and D. arizonae genomes contain several very young duplicated Acp's and that these Acp's have experienced very rapid, adaptive protein divergence. We propose that rapid remating of female desert Drosophila generates selection for continuous diversification of the male Acp complement to improve male fertilization potential. Thus, mating system variation may be associated with adaptive protein divergence as well as with duplication of Acp's in Drosophila.

  8. Duplication 16p13.3 and the CREBBP gene: confirmation of the phenotype.

    PubMed

    Demeer, Bénédicte; Andrieux, Joris; Receveur, Aline; Morin, Gilles; Petit, Florence; Julia, Sophie; Plessis, Ghislaine; Martin-Coignard, Dominique; Delobel, Bruno; Firth, Helen V; Thuresson, Ann C; Lanco Dosen, Sandrine; Sjörs, Kerstin; Le Caignec, Cedric; Devriendt, Koenraad; Mathieu-Dramard, Michèle

    2013-01-01

    The introduction of molecular karyotyping technologies into the diagnostic work-up of patients with congenital disorders permitted the identification and delineation of novel microdeletion and microduplication syndromes. Interstitial 16p13.3 duplication, encompassing the CREBBP gene, which is mutated or deleted in the Rubinstein-Taybi syndrome, have been proposed to cause a recognisable syndrome with variable intellectual disability, normal growth, mild facial dysmorphism, mild anomalies of the extremities, and occasional findings such as developmental defects of the heart, genitalia, palate or the eyes. We here report the phenotypic and genotypic delineation of 9 patients carrying a submicroscopic 16p13.3 duplication, including the smallest 16p13.3 duplication reported so far. Careful clinical assessment confirms the distinctive clinical phenotype and also defines frequent associated features : marked speech problems, frequent ocular region involvement with upslanting of the eyes, narrow palpebral fissures, ptosis and strabismus, frequent proximal implantation of thumbs, cleft palate/bifid uvula and inguinal hernia. It also confirms that CREBBP is the critical gene involved in the duplication 16p13.3 syndrome.

  9. A 1-bp duplication in TGFB2 in three family members with a syndromic form of thoracic aortic aneurysm.

    PubMed

    Leutermann, Ruth; Sheikhzadeh, Sara; Brockstädt, Lars; Rybczynski, Meike; van Rahden, Vanessa; Kutsche, Kerstin; von Kodolitsch, Yskert; Rosenberger, Georg

    2014-07-01

    A number of autosomal dominantly inherited disorders, such as Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS), are associated with predisposition to thoracic aortic aneurysms and dissections (TAADs). In the majority of cases, mutations in genes encoding components of the transforming growth factor-β (TGF-β) signaling pathway, such as FBN1, TGFBR1, TGFBR2 and SMAD3, underlie the disease. Recently, a familial syndromic form of TAAD with other clinical features that overlap the MFS-LDS spectrum has been described to be caused by heterozygous loss-of-function mutations in TGFB2, encoding the TGF-β2 ligand of TGF-β serine/threonine kinase receptors (TGFBRs). We analyzed the TGFB2 gene by sequencing in a cohort of 88 individuals with a Marfan-like phenotype and/or TAAD, who did not have mutations in known genes causing thoracic aortic disease. We identified the novel heterozygous c.1165dupA mutation in exon 7 of TGFB2 in three members of a family, a 51-year-old male, his brother and nephew with aortic aneurysms, cervical arterial tortuosity and/or skeletal abnormalities as well as craniofacial dysmorphisms. The 1-bp duplication causes a frameshift leading to a stable transcript with a premature stop codon after seven TGF-β2-unrelated amino acids (p.Ser389Lysfs*8). As the resulting protein is unlikely functional and by considering data from the literature, we support the notion that functional haploinsufficiency for TGF-β2 predisposes to thoracic aortic disease. Taken together, TGFB2 is a rarely mutated gene in patients with syndromic TAAD, and the clinical features of our TGFB2 mutation-positive individuals fit in the scheme of LDS, rather than MFS-related disorders.

  10. Enzymatic, expression and structural divergences among carboxyl O-methyltransferases after gene duplication and speciation in Nicotiana.

    PubMed

    Hippauf, Frank; Michalsky, Elke; Huang, Ruiqi; Preissner, Robert; Barkman, Todd J; Piechulla, Birgit

    2010-02-01

    Methyl salicylate and methyl benzoate have important roles in a variety of processes including pollinator attraction and plant defence. These compounds are synthesized by salicylic acid, benzoic acid and benzoic acid/salicylic acid carboxyl methyltransferases (SAMT, BAMT and BSMT) which are members of the SABATH gene family. Both SAMT and BSMT were isolated from Nicotiana suaveolens, Nicotiana alata, and Nicotiana sylvestris allowing us to discern levels of enzyme divergence resulting from gene duplication in addition to species divergence. Phylogenetic analyses showed that Nicotiana SAMTs and BSMTs evolved in separate clades and the latter can be differentiated into the BSMT1 and the newly established BSMT2 branch. Although SAMT and BSMT orthologs showed minimal change coincident with species divergences, substantial evolutionary change of enzyme activity and expression patterns occurred following gene duplication. After duplication, the BSMT enzymes evolved higher preference for benzoic acid (BA) than salicylic acid (SA) whereas SAMTs maintained ancestral enzymatic preference for SA over BA. Expression patterns are largely complementary in that BSMT transcripts primarily accumulate in flowers, leaves and stems whereas SAMT is expressed mostly in roots. A novel enzyme, nicotinic acid carboxyl methyltransferase (NAMT), which displays a high degree of activity with nicotinic acid was discovered to have evolved in N. gossei from an ancestral BSMT. Furthermore a SAM-dependent synthesis of methyl anthranilate via BSMT2 is reported and contrasts with alternative biosynthetic routes previously proposed. While BSMT in flowers is clearly involved in methyl benzoate synthesis to attract pollinators, its function in other organs and tissues remains obscure.

  11. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications.

    PubMed

    Brown, J R; Doolittle, W F

    1995-03-28

    Universal trees based on sequences of single gene homologs cannot be rooted. Iwabe et al. [Iwabe, N., Kuma, K.-I., Hasegawa, M., Osawa, S. & Miyata, T. (1989) Proc. Natl. Acad. Sci. USA 86, 9355-9359] circumvented this problem by using ancient gene duplications that predated the last common ancestor of all living things. Their separate, reciprocally rooted gene trees for elongation factors and ATPase subunits showed Bacteria (eubacteria) as branching first from the universal tree with Archaea (archaebacteria) and Eucarya (eukaryotes) as sister groups. Given its topical importance to evolutionary biology and concerns about the appropriateness of the ATPase data set, an evaluation of the universal tree root using other ancient gene duplications is essential. In this study, we derive a rooting for the universal tree using aminoacyl-tRNA synthetase genes, an extensive multigene family whose divergence likely preceded that of prokaryotes and eukaryotes. An approximately 1600-bp conserved region was sequenced from the isoleucyl-tRNA synthetases of several species representing deep evolutionary branches of eukaryotes (Nosema locustae), Bacteria (Aquifex pyrophilus and Thermotoga maritima) and Archaea (Pyrococcus furiosus and Sulfolobus acidocaldarius). In addition, a new valyl-tRNA synthetase was characterized from the protist Trichomonas vaginalis. Different phylogenetic methods were used to generate trees of isoleucyl-tRNA synthetases rooted by valyl- and leucyl-tRNA synthetases. All isoleucyl-tRNA synthetase trees showed Archaea and Eucarya as sister groups, providing strong confirmation for the universal tree rooting reported by Iwabe et al. As well, there was strong support for the monophyly (sensu Hennig) of Archaea. The valyl-tRNA synthetase gene from Tr. vaginalis clustered with other eukaryotic ValRS genes, which may have been transferred from the mitochondrial genome to the nuclear genome, suggesting that this amitochondrial trichomonad once harbored an

  12. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events.

    PubMed

    Das, Malay; Haberer, Georg; Panda, Arup; Das Laha, Shayani; Ghosh, Tapas Chandra; Schäffner, Anton R

    2016-08-01

    The identification of functionally equivalent, orthologous genes (functional orthologs) across genomes is necessary for accurate transfer of experimental knowledge from well-characterized organisms to others. This frequently relies on automated, coding sequence-based approaches such as OrthoMCL, Inparanoid, and KOG, which usually work well for one-to-one homologous states. However, this strategy does not reliably work for plants due to the occurrence of extensive gene/genome duplication. Frequently, for one query gene, multiple orthologous genes are predicted in the other genome, and it is not clear a priori from sequence comparison and similarity which one preserves the ancestral function. We have studied 11 organ-dependent and stress-induced gene expression patterns of 286 Arabidopsis lyrata duplicated gene groups and compared them with the respective Arabidopsis (Arabidopsis thaliana) genes to predict putative expressologs and nonexpressologs based on gene expression similarity. Promoter sequence divergence as an additional tool to substantiate functional orthology only partially overlapped with expressolog classification. By cloning eight A. lyrata homologs and complementing them in the respective four Arabidopsis loss-of-function mutants, we experimentally proved that predicted expressologs are indeed functional orthologs, while nonexpressologs or nonfunctionalized orthologs are not. Our study demonstrates that even a small set of gene expression data in addition to sequence homologies are instrumental in the assignment of functional orthologs in the presence of multiple orthologs. PMID:27303025

  13. The effect of functional compensation among duplicate genes can constrain their evolutionary divergence.

    PubMed

    Bozorgmehr, Joseph Esfandiar Hannon

    2012-01-01

    Gene duplicates have the inherent property of initially being functionally redundant. This means that they can compensate for the effect of deleterious variation occurring at one or more sister sites. Here, I present data bearing on evolutionary theory that illustrates the manner in which any functional adaptation in duplicate genes is markedly constrained because of the compensatory utility provided by a sustained genetic redundancy. Specifically, a two-locus epistatic model of paralogous genes was simulated to investigate the degree of purifying selection imposed, and whether this would serve to impede any possible biochemical innovation. Three population sizes were considered to see if, as expected, there was a significant difference in any selection for robustness. Interestingly, physical linkage between tandem duplicates was actually found to increase the probability of any neofunctionalization and the efficacy of selection, contrary to what is expected in the case of singleton genes. The results indicate that an evolutionary trade-off often exists between any functional change under either positive or relaxed selection and the need to compensate for failures due to degenerative mutations, thereby guaranteeing the reliability of protein production. PMID:22546821

  14. Molecular Evolution of MDM1, a “Duplication-Resistant” Gene in Vertebrates

    PubMed Central

    Leung, Yuk Fai; Yang, Jer-Yen

    2016-01-01

    Background The mouse double minute 1 (Mdm1) gene was first reported and cloned in mouse tumor cell lines as an oncogene candidate. Later, it was found that mutation of Mdm1 might cause age-related retinal degeneration 2 in mice by genetic linkage analysis. Additionally, the MDM1 protein was found to be expressed in the centrosomes, cilia, and the nucleus of multiciliated tracheal epithelial cells in mice. These observations suggest that MDM1 may have some basal functions in cell physiology. However, the evolutionary history of this gene and its expression during embryonic development remain largely unexplored. Results Using molecular phylogenetic analysis, we found that the MDM1 gene encoded an evolutionarily conserved protein across all metazoans. We also found that the MDM1 gene was in a conserved synteny in vertebrates. In almost all the species that were analyzed, there was only one MDM1 gene based on current genome annotations. Since vertebrate genomes underwent two to three rounds of whole-genome duplications around the origin of the vertebrates, it is interesting that only one MDM1 ohnolog was retained. This observation implies that other MDM1 ohnologs were lost after the whole-genome duplications. Furthermore, using whole-mount in situ hybridization, we found that mdm1 was expressed in the forebrain, nephric ducts, and tail buds during zebrafish early embryonic development. Conclusion MDM1 is an evolutionary conserved gene, and its homologous genes can be traced back to basal metazoan lineages. In vertebrates, the MDM1 gene is in a conserved synteny and there is only one MDM1 ohnolog suggesting it is a “duplication-resistant” gene. Its expression patterns in early zebrafish embryos indicate that mdm1 may play important roles in the development of the central nervous system, kidneys, and hematopoietic system. PMID:27658201

  15. The fate of recent duplicated genes following a fourth-round whole genome duplication in a tetraploid fish, common carp (Cyprinus carpio)

    PubMed Central

    Li, Jiong-Tang; Hou, Guang-Yuan; Kong, Xiang-Fei; Li, Chun-Yan; Zeng, Jian-Ming; Li, Heng-De; Xiao, Gui-Bao; Li, Xiao-Min; Sun, Xiao-Wen

    2015-01-01

    Whole genome duplication (WGD) results in extensive genetic redundancy. In plants and yeast, WGD is followed by rapid gene deletions and intense expression differentiation with slow functional divergence. However, the early evolution of the gene differentiation processes is poorly understood in vertebrates because almost all studied WGDs are extremely ancient, and the genomes have returned to a diploid status. Common carp had a very recent fourth round of WGD dated to 8 million years ago. It therefore constitutes an ideal model to study early-stage functional divergence and expression differentiation in vertebrates. We identified 1,757 pairs of recently duplicated genes (RDGs) originating from this specific WGD and found that most ancestral genes were retained in duplicate. Most RDGs were conserved and under selective pressure. Gene expression analysis across six tissues revealed that 92.5% of RDG pairs were co-expressed in at least one tissue and that the expression of nearly half pairs ceased to be strongly correlated, indicating slow spatial divergence but rapid expression dissociation. Functional comparison revealed that 25% of pairs had functional divergence, of which neo- and sub-functionalization were the main outcomes. Our analysis revealed slow gene loss but rapid and intense expression and function differentiation after WGD. PMID:25645996

  16. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint

    PubMed Central

    1996-01-01

    M-phase checkpoints inhibit cell division when mitotic spindle function is perturbed. Here we show that the Saccharomyces cerevisiae MPS1 gene product, an essential protein kinase required for spindle pole body (SPB) duplication (Winey et al., 1991; Lauze et al., 1995), is also required for M-phase check-point function. In cdc31-2 and mps2-1 mutants, conditional failure of SPB duplication results in cell cycle arrest with high p34CDC28 kinase activity that depends on the presence of the wild-type MAD1 checkpoint gene, consistent with checkpoint arrest of mitosis. In contrast, mps1 mutant cells fail to duplicate their SPBs and do not arrest division at 37 degrees C, exhibiting a normal cycle of p34CDC28 kinase activity despite the presence of a monopolar spindle. Double mutant cdc31-2, mps1-1 cells also fail to arrest mitosis at 37 degrees C, despite having SPB structures similar to cdc31-2 single mutants as determined by EM analysis. Arrest of mitosis upon microtubule depolymerization by nocodazole is also conditionally absent in mps1 strains. This is observed in mps1 cells synchronized in S phase with hydroxyurea before exposure to nocodazole, indicating that failure of checkpoint function in mps1 cells is independent of SPB duplication failure. In contrast, hydroxyurea arrest and a number of other cdc mutant arrest phenotypes are unaffected by mps1 alleles. We propose that the essential MPS1 protein kinase functions both in SPB duplication and in a mitotic checkpoint monitoring spindle integrity. PMID:8567717

  17. The butterfly plant arms-race escalated by gene and genome duplications.

    PubMed

    Edger, Patrick P; Heidel-Fischer, Hanna M; Bekaert, Michaël; Rota, Jadranka; Glöckner, Gernot; Platts, Adrian E; Heckel, David G; Der, Joshua P; Wafula, Eric K; Tang, Michelle; Hofberger, Johannes A; Smithson, Ann; Hall, Jocelyn C; Blanchette, Matthieu; Bureau, Thomas E; Wright, Stephen I; dePamphilis, Claude W; Eric Schranz, M; Barker, Michael S; Conant, Gavin C; Wahlberg, Niklas; Vogel, Heiko; Pires, J Chris; Wheat, Christopher W

    2015-07-01

    Coevolutionary interactions are thought to have spurred the evolution of key innovations and driven the diversification of much of life on Earth. However, the genetic and evolutionary basis of the innovations that facilitate such interactions remains poorly understood. We examined the coevolutionary interactions between plants (Brassicales) and butterflies (Pieridae), and uncovered evidence for an escalating evolutionary arms-race. Although gradual changes in trait complexity appear to have been facilitated by allelic turnover, key innovations are associated with gene and genome duplications. Furthermore, we show that the origins of both chemical defenses and of molecular counter adaptations were associated with shifts in diversification rates during the arms-race. These findings provide an important connection between the origins of biodiversity, coevolution, and the role of gene and genome duplications as a substrate for novel traits.

  18. The butterfly plant arms-race escalated by gene and genome duplications

    PubMed Central

    Edger, Patrick P.; Heidel-Fischer, Hanna M.; Bekaert, Michaël; Rota, Jadranka; Glöckner, Gernot; Platts, Adrian E.; Heckel, David G.; Der, Joshua P.; Wafula, Eric K.; Tang, Michelle; Hofberger, Johannes A.; Smithson, Ann; Hall, Jocelyn C.; Blanchette, Matthieu; Bureau, Thomas E.; Wright, Stephen I.; dePamphilis, Claude W.; Eric Schranz, M.; Barker, Michael S.; Conant, Gavin C.; Wahlberg, Niklas; Vogel, Heiko; Pires, J. Chris; Wheat, Christopher W.

    2015-01-01

    Coevolutionary interactions are thought to have spurred the evolution of key innovations and driven the diversification of much of life on Earth. However, the genetic and evolutionary basis of the innovations that facilitate such interactions remains poorly understood. We examined the coevolutionary interactions between plants (Brassicales) and butterflies (Pieridae), and uncovered evidence for an escalating evolutionary arms-race. Although gradual changes in trait complexity appear to have been facilitated by allelic turnover, key innovations are associated with gene and genome duplications. Furthermore, we show that the origins of both chemical defenses and of molecular counter adaptations were associated with shifts in diversification rates during the arms-race. These findings provide an important connection between the origins of biodiversity, coevolution, and the role of gene and genome duplications as a substrate for novel traits. PMID:26100883

  19. Adaptations to endosymbiosis in a cnidarian-dinoflagellate association: differential gene expression and specific gene duplications.

    PubMed

    Ganot, Philippe; Moya, Aurélie; Magnone, Virginie; Allemand, Denis; Furla, Paola; Sabourault, Cécile

    2011-07-01

    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K-dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the

  20. Adaptations to Endosymbiosis in a Cnidarian-Dinoflagellate Association: Differential Gene Expression and Specific Gene Duplications

    PubMed Central

    Magnone, Virginie; Allemand, Denis; Furla, Paola; Sabourault, Cécile

    2011-01-01

    Trophic endosymbiosis between anthozoans and photosynthetic dinoflagellates forms the key foundation of reef ecosystems. Dysfunction and collapse of symbiosis lead to bleaching (symbiont expulsion), which is responsible for the severe worldwide decline of coral reefs. Molecular signals are central to the stability of this partnership and are therefore closely related to coral health. To decipher inter-partner signaling, we developed genomic resources (cDNA library and microarrays) from the symbiotic sea anemone Anemonia viridis. Here we describe differential expression between symbiotic (also called zooxanthellate anemones) or aposymbiotic (also called bleached) A. viridis specimens, using microarray hybridizations and qPCR experiments. We mapped, for the first time, transcript abundance separately in the epidermal cell layer and the gastrodermal cells that host photosynthetic symbionts. Transcriptomic profiles showed large inter-individual variability, indicating that aposymbiosis could be induced by different pathways. We defined a restricted subset of 39 common genes that are characteristic of the symbiotic or aposymbiotic states. We demonstrated that transcription of many genes belonging to this set is specifically enhanced in the symbiotic cells (gastroderm). A model is proposed where the aposymbiotic and therefore heterotrophic state triggers vesicular trafficking, whereas the symbiotic and therefore autotrophic state favors metabolic exchanges between host and symbiont. Several genetic pathways were investigated in more detail: i) a key vitamin K–dependant process involved in the dinoflagellate-cnidarian recognition; ii) two cnidarian tissue-specific carbonic anhydrases involved in the carbon transfer from the environment to the intracellular symbionts; iii) host collagen synthesis, mostly supported by the symbiotic tissue. Further, we identified specific gene duplications and showed that the cnidarian-specific isoform was also up-regulated both in the

  1. The Discoidin I Gene Family of Dictyostelium Discoideum Is Linked to Genes Regulating Its Expression

    PubMed Central

    Welker, D. L.

    1988-01-01

    The discoidin I protein has been studied extensively as a marker of early development in the cellular slime mold Dictyostelium discoideum. However, like most other developmentally regulated proteins in this system, no reliable information was available on the linkage of the discoidin genes to other known genes. Analysis of the linkage of the discoidin I genes by use of restriction fragment length polymorphisms revealed that all three discoidin I genes as well as a pseudogene are located on linkage group II. This evidence is consistent with the discoidin I genes forming a gene cluster that may be under the control of a single regulatory element. The discoidin I genes are linked to three genetic loci (disA, motA, daxA) that affect the expression of the discoidin I protein. Linkage of the gene family members to regulatory loci may be important in the coordinate maintenance of the gene family and regulatory loci. A duplication affecting the entire discoidin gene family is also linked to group II; this appears to be a small tandem duplication. This duplication was mapped using a DNA polymorphism generated by insertion of the Tdd-3 mobile genetic element into a Tdd-2 element flanking the γ gene. A probe for Tdd-2 identified a restriction fragment length polymorphism in strain AX3K that was consistent with generation by a previously proposed Tdd-3 insertion event. A putative duplication or rearrangement of a second Tdd-2 element on linkage group IV of strain AX3K was also identified. This is the first linkage information available for mobile genetic elements in D. discoideum. PMID:3402731

  2. Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts.

    PubMed

    Martínez-Alberola, Fernando; Del Campo, Eva M; Lázaro-Gimeno, David; Mezquita-Claramonte, Sergio; Molins, Arantxa; Mateu-Andrés, Isabel; Pedrola-Monfort, Joan; Casano, Leonardo M; Barreno, Eva

    2013-01-01

    Completely sequenced plastomes provide a valuable source of information about the duplication, loss, and transfer events of chloroplast genes and phylogenetic data for resolving relationships among major groups of plants. Moreover, they can also be useful for exploiting chloroplast genetic engineering technology. Ericales account for approximately six per cent of eudicot diversity with 11,545 species from which only three complete plastome sequences are currently available. With the aim of increasing the number of ericalean complete plastome sequences, and to open new perspectives in understanding Mediterranean plant adaptations, a genomic study on the basis of the complete chloroplast genome sequencing of Arbutus unedo and an updated phylogenomic analysis of Asteridae was implemented. The chloroplast genome of A. unedo shows extensive rearrangements but a medium size (150,897 nt) in comparison to most of angiosperms. A number of remarkable distinct features characterize the plastome of A. unedo: five-fold dismissing of the SSC region in relation to most angiosperms; complete loss or pseudogenization of a number of essential genes; duplication of the ndhH-D operon and its location within the two IRs; presence of large tandem repeats located near highly re-arranged regions and pseudogenes. All these features outline the primary evolutionary split between Ericaceae and other ericalean families. The newly sequenced plastome of A. unedo with the available asterid sequences allowed the resolution of some uncertainties in previous phylogenies of Asteridae. PMID:24260278

  3. Gene duplication in Mimulus underlies parallel floral evolution via independent trans-regulatory changes.

    PubMed

    Cooley, Arielle M; Modliszewski, Jennifer L; Rommel, Megan L; Willis, John H

    2011-04-26

    Identifying the genetic basis of parallelism reveals the means by which evolution repeats itself and shows what aspects-if any-may be predictable. The recently tetraploid luteus group of Mimulus contains five species native to central Chile, three of which have evolved extensive red floral pigmentation using at least two distinct loci . Here we show that the parallel evolution of petal lobe anthocyanin (PLA) pigmentation in M. cupreus and M. luteus var. variegatus occurred via separate yet strikingly similar mechanisms. In each case, a dominant, single-locus gain of pigmentation maps to a genomic region (pla1 and pla2, respectively) containing adjacent, apparently recently duplicated paralogs of MYB anthocyanin-regulating transcription factors. Interestingly, candidate genes in pla1 and pla2 are themselves related by an older duplication. In both cases, pla genotype cosegregates with expression of multiple genes in the anthocyanin biosynthetic pathway, revealing a mechanism of coordinated trans-regulatory expression changes across functionally related enzyme-encoding genes. We conclude that in this instance, evolution has repeated itself with marked consistency. Duplication has enabled that repetition to occur using two physically independent but functionally similar loci, highlighting the importance of genomic complexity to the evolutionary process. PMID:21474312

  4. Duplication in the microtubule-actin cross-linking factor 1 gene causes a novel neuromuscular condition.

    PubMed

    Jørgensen, Louise H; Mosbech, Mai-Britt; Færgeman, Nils J; Graakjaer, Jesper; Jacobsen, Søren V; Schrøder, Henrik D

    2014-06-05

    Spectrins and plakins are important communicators linking cytoskeletal components to each other and to cellular junctions. Microtubule-actin cross-linking factor 1 (MACF1) belongs to the spectraplakin family and is involved in control of microtubule dynamics. Complete knock out of MACF1 in mice is associated with developmental retardation and embryonic lethality. Here we present a family with a novel neuromuscular condition. Genetic analyses show a heterozygous duplication resulting in reduced MACF1 gene product. The functional consequence is affected motility observed as periodic hypotonia, lax muscles and diminished motor skills, with heterogeneous presentation among the affected family members. To corroborate these findings we used RNA interference to knock down the VAB-10 locus containing the MACF1 homologue in C. elegans, and we could show that this also causes movement disturbances. These findings suggest that changes in the MACF1 gene is implicated in this neuromuscular condition, which is an important observation since MACF1 has not previously been associated with any human disease and thus presents a key to understanding the essential nature of this gene.

  5. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila.

    PubMed

    Dyer, Kelly A; White, Brooke E; Bray, Michael J; Piqué, Daniel G; Betancourt, Andrea J

    2011-03-01

    In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining

  6. Transcriptomic Identification of Iron-Regulated and Iron-Independent Gene Copies within the Heavily Duplicated Trichomonas vaginalis Genome

    PubMed Central

    Tang, Petrus; Tachezy, Jan

    2012-01-01

    Gene duplication is an important evolutionary mechanism and no eukaryote has more duplicated gene families than the parasitic protist Trichomonas vaginalis. Iron is an essential nutrient for Trichomonas and plays a pivotal role in the establishment of infection, proliferation, and virulence. To gain insight into the role of iron in T. vaginalis gene expression and genome evolution, we screened iron-regulated genes using an oligonucleotide microarray for T. vaginalis and by comparative EST (expressed sequence tag) sequencing of cDNA libraries derived from trichomonads cultivated under iron-rich (+Fe) and iron-restricted (−Fe) conditions. Among 19,000 ESTs from both libraries, we identified 336 iron-regulated genes, of which 165 were upregulated under +Fe conditions and 171 under −Fe conditions. The microarray analysis revealed that 195 of 4,950 unique genes were differentially expressed. Of these, 117 genes were upregulated under +Fe conditions and 78 were upregulated under −Fe conditions. The results of both methods were congruent concerning the regulatory trends and the representation of gene categories. Under +Fe conditions, the expression of proteins involved in carbohydrate metabolism, particularly in the energy metabolism of hydrogenosomes, and in methionine catabolism was increased. The iron–sulfur cluster assembly machinery and certain cysteine proteases are of particular importance among the proteins upregulated under −Fe conditions. A unique feature of the T. vaginalis genome is the retention during evolution of multiple paralogous copies for a majority of all genes. Although the origins and reasons for this gene expansion remain unclear, the retention of multiple gene copies could provide an opportunity to evolve differential expression during growth in variable environmental conditions. For genes whose expression was affected by iron, we found that iron influenced the expression of only some of the paralogous copies, whereas the expression of

  7. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes

    PubMed Central

    Danchin, Etienne G. J.; Rosso, Marie-Noëlle; Vieira, Paulo; de Almeida-Engler, Janice; Coutinho, Pedro M.; Henrissat, Bernard; Abad, Pierre

    2010-01-01

    Lateral gene transfer from prokaryotes to animals is poorly understood, and the scarce documented examples generally concern genes of uncharacterized role in the receiver organism. In contrast, in plant-parasitic nematodes, several genes, usually not found in animals and similar to bacterial homologs, play essential roles for successful parasitism. Many of these encode plant cell wall-degrading enzymes that constitute an unprecedented arsenal in animals in terms of both abundance and diversity. Here we report that independent lateral gene transfers from different bacteria, followed by gene duplications and early gain of introns, have shaped this repertoire. We also show protein immunolocalization data that suggest additional roles for some of these cell wall-degrading enzymes in the late stages of these parasites’ life cycle. Multiple functional acquisitions of exogenous genes that provide selective advantage were probably crucial for the emergence and proficiency of plant parasitism in nematodes. PMID:20876108

  8. Comparative Transcriptome Analyses Reveal Core Parasitism Genes and Suggest Gene Duplication and Repurposing as Sources of Structural Novelty

    PubMed Central

    Yang, Zhenzhen; Wafula, Eric K.; Honaas, Loren A.; Zhang, Huiting; Das, Malay; Fernandez-Aparicio, Monica; Huang, Kan; Bandaranayake, Pradeepa C.G.; Wu, Biao; Der, Joshua P.; Clarke, Christopher R.; Ralph, Paula E.; Landherr, Lena; Altman, Naomi S.; Timko, Michael P.; Yoder, John I.; Westwood, James H.; dePamphilis, Claude W.

    2015-01-01

    The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative “parasitism genes.” Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria. PMID:25534030

  9. Comparative transcriptome analyses reveal core parasitism genes and suggest gene duplication and repurposing as sources of structural novelty.

    PubMed

    Yang, Zhenzhen; Wafula, Eric K; Honaas, Loren A; Zhang, Huiting; Das, Malay; Fernandez-Aparicio, Monica; Huang, Kan; Bandaranayake, Pradeepa C G; Wu, Biao; Der, Joshua P; Clarke, Christopher R; Ralph, Paula E; Landherr, Lena; Altman, Naomi S; Timko, Michael P; Yoder, John I; Westwood, James H; dePamphilis, Claude W

    2015-03-01

    The origin of novel traits is recognized as an important process underlying many major evolutionary radiations. We studied the genetic basis for the evolution of haustoria, the novel feeding organs of parasitic flowering plants, using comparative transcriptome sequencing in three species of Orobanchaceae. Around 180 genes are upregulated during haustorial development following host attachment in at least two species, and these are enriched in proteases, cell wall modifying enzymes, and extracellular secretion proteins. Additionally, about 100 shared genes are upregulated in response to haustorium inducing factors prior to host attachment. Collectively, we refer to these newly identified genes as putative "parasitism genes." Most of these parasitism genes are derived from gene duplications in a common ancestor of Orobanchaceae and Mimulus guttatus, a related nonparasitic plant. Additionally, the signature of relaxed purifying selection and/or adaptive evolution at specific sites was detected in many haustorial genes, and may play an important role in parasite evolution. Comparative analysis of gene expression patterns in parasitic and nonparasitic angiosperms suggests that parasitism genes are derived primarily from root and floral tissues, but with some genes co-opted from other tissues. Gene duplication, often taking place in a nonparasitic ancestor of Orobanchaceae, followed by regulatory neofunctionalization, was an important process in the origin of parasitic haustoria.

  10. An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes.

    PubMed

    Shao, Mingfu; Lin, Yu; Moret, Bernard M E

    2015-05-01

    Computing the edit distance between two genomes is a basic problem in the study of genome evolution. The double-cut-and-join (DCJ) model has formed the basis for most algorithmic research on rearrangements over the last few years. The edit distance under the DCJ model can be computed in linear time for genomes without duplicate genes, while the problem becomes NP-hard in the presence of duplicate genes. In this article, we propose an integer linear programming (ILP) formulation to compute the DCJ distance between two genomes with duplicate genes. We also provide an efficient preprocessing approach to simplify the ILP formulation while preserving optimality. Comparison on simulated genomes demonstrates that our method outperforms MSOAR in computing the edit distance, especially when the genomes contain long duplicated segments. We also apply our method to assign orthologous gene pairs among human, mouse, and rat genomes, where once again our method outperforms MSOAR.

  11. Digital gene expression analysis with sample multiplexing and PCR duplicate detection: A straightforward protocol.

    PubMed

    Rozenberg, Andrey; Leese, Florian; Weiss, Linda C; Tollrian, Ralph

    2016-01-01

    Tag-Seq is a high-throughput approach used for discovering SNPs and characterizing gene expression. In comparison to RNA-Seq, Tag-Seq eases data processing and allows detection of rare mRNA species using only one tag per transcript molecule. However, reduced library complexity raises the issue of PCR duplicates, which distort gene expression levels. Here we present a novel Tag-Seq protocol that uses the least biased methods for RNA library preparation combined with a novel approach for joint PCR template and sample labeling. In our protocol, input RNA is fragmented by hydrolysis, and poly(A)-bearing RNAs are selected and directly ligated to mixed DNA-RNA P5 adapters. The P5 adapters contain i5 barcodes composed of sample-specific (moderately) degenerate base regions (mDBRs), which later allow detection of PCR duplicates. The P7 adapter is attached via reverse transcription with individual i7 barcodes added during the amplification step. The resulting libraries can be sequenced on an Illumina sequencer. After sample demultiplexing and PCR duplicate removal with a free software tool we designed, the data are ready for downstream analysis. Our protocol was tested on RNA samples from predator-induced and control Daphnia microcrustaceans. PMID:27401671

  12. Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms.

    PubMed Central

    Kramer, Elena M; Jaramillo, M Alejandra; Di Stilio, Verónica S

    2004-01-01

    Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG-like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity. PMID:15020484

  13. Intron gain by tandem genomic duplication: a novel case in a potato gene encoding RNA-dependent RNA polymerase

    PubMed Central

    Ma, Ming-Yue; Lan, Xin-Ran

    2016-01-01

    The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relatives among other Solanum plants. The duplicated sequence crosses the intron-exon boundary of the first intron and the second exon. A new intron was detected at this duplicated region, and it includes a small previously exonic segment of the upstream copy of the duplicated sequence and the intronic segment of the downstream copy of the duplicated sequence. The donor site of this new intron was directly obtained from the small previously exonic segment. Most of the splicing signals were inherited directly from the parental intron/exon structure, including a putative branch site, the polypyrimidine tract, the 3′ splicing site, two putative exonic splicing enhancers, and the GC contents differed between the intron and exon. In the widely cited model of intron gain by tandem genomic duplication, the duplication of an AGGT-containing exonic segment provides the GT and AG splicing sites for the new intron. Our results illustrate that the tandem duplication model of intron gain should be diverse in terms of obtaining the proper splicing signals. PMID:27547574

  14. Intron gain by tandem genomic duplication: a novel case in a potato gene encoding RNA-dependent RNA polymerase.

    PubMed

    Ma, Ming-Yue; Lan, Xin-Ran; Niu, Deng-Ke

    2016-01-01

    The origin and subsequent accumulation of spliceosomal introns are prominent events in the evolution of eukaryotic gene structure. However, the mechanisms underlying intron gain remain unclear because there are few proven cases of recently gained introns. In an RNA-dependent RNA polymerase (RdRp) gene, we found that a tandem duplication occurred after the divergence of potato and its wild relatives among other Solanum plants. The duplicated sequence crosses the intron-exon boundary of the first intron and the second exon. A new intron was detected at this duplicated region, and it includes a small previously exonic segment of the upstream copy of the duplicated sequence and the intronic segment of the downstream copy of the duplicated sequence. The donor site of this new intron was directly obtained from the small previously exonic segment. Most of the splicing signals were inherited directly from the parental intron/exon structure, including a putative branch site, the polypyrimidine tract, the 3' splicing site, two putative exonic splicing enhancers, and the GC contents differed between the intron and exon. In the widely cited model of intron gain by tandem genomic duplication, the duplication of an AGGT-containing exonic segment provides the GT and AG splicing sites for the new intron. Our results illustrate that the tandem duplication model of intron gain should be diverse in terms of obtaining the proper splicing signals. PMID:27547574

  15. Dynamics of gene duplication and transposons in microbial genomes following a sudden environmental change

    NASA Astrophysics Data System (ADS)

    Chia, Nicholas; Goldenfeld, Nigel

    2011-02-01

    A variety of genome transformations can occur as a microbial population adapts to a large environmental change. In particular, genomic surveys indicate that, following the transition to an obligate, host-dependent symbiont, the density of transposons first rises, then subsequently declines over evolutionary time. Here we show that these observations can be accounted for by a class of generic stochastic models for the evolution of genomes in the presence of continuous selection and gene duplication. The models use a fitness function that allows for partial contributions from multiple gene copies, is an increasing but bounded function of copy number, and is optimal for one fully adapted gene copy. We use Monte Carlo simulation to show that the dynamics result in an initial rise in gene copy number followed by a subsequent falloff due to adaptation to the new environmental parameters. These results are robust for reasonable gene duplication and mutation parameters when adapting to a novel target sequence. Our model provides a generic explanation for the dynamics of microbial transposon density following a large environmental change such as host restriction.

  16. Identification of genes that are essential to restrict genome duplication to once per cell division

    PubMed Central

    Vassilev, Alex; Lee, Chrissie Y.; Vassilev, Boris; Zhu, Wenge; Ormanoglu, Pinar; Martin, Scott E.; DePamphilis, Melvin L.

    2016-01-01

    Nuclear genome duplication is normally restricted to once per cell division, but aberrant events that allow excess DNA replication (EDR) promote genomic instability and aneuploidy, both of which are characteristics of cancer development. Here we provide the first comprehensive identification of genes that are essential to restrict genome duplication to once per cell division. An siRNA library of 21,584 human genes was screened for those that prevent EDR in cancer cells with undetectable chromosomal instability. Candidates were validated by testing multiple siRNAs and chemical inhibitors on both TP53+ and TP53- cells to reveal the relevance of this ubiquitous tumor suppressor to preventing EDR, and in the presence of an apoptosis inhibitor to reveal the full extent of EDR. The results revealed 42 genes that prevented either DNA re-replication or unscheduled endoreplication. All of them participate in one or more of eight cell cycle events. Seventeen of them have not been identified previously in this capacity. Remarkably, 14 of the 42 genes have been shown to prevent aneuploidy in mice. Moreover, suppressing a gene that prevents EDR increased the ability of the chemotherapeutic drug Paclitaxel to induce EDR, suggesting new opportunities for synthetic lethalities in the treatment of human cancers. PMID:27144335

  17. Differential expression of duplicated VAL-opsin genes in the developing zebrafish.

    PubMed

    Kojima, Daisuke; Torii, Masaki; Fukada, Yoshitaka; Dowling, John E

    2008-03-01

    Non-visual opsins mediate various light-dependent physiological events. Our previous search for non-visual opsin genes in zebrafish led to the discovery of VAL-opsin (VAL-opsinA) in deep brain cells and retinal horizontal cells of the adult fish. In this study, we report the identification and characterization of its duplicated gene, VAL-opsinB, in zebrafish. A molecular phylogenetic analysis indicates that VAL-opsinB is orthologous to a previously reported salmon gene and that the duplication of the VAL-opsin gene occurred in the teleost lineage. The recombinant protein of zebrafish VAL-opsinB forms a green-sensitive photopigment when reconstituted with 11-cis-retinal. VAL-opsinB expression was detected in a limited number of cells of the brain and the eye, and the expression pattern is distinct from that of the VAL-opsinA gene. Such a differential expression pattern suggests that VAL-opsinA and VAL-opsinB are involved in different physiological events in zebrafish.

  18. Concerted Evolution of Duplicate Control Regions in the Mitochondria of Species of the Flatfish Family Bothidae (Teleostei: Pleuronectiformes).

    PubMed

    Li, Dong-He; Shi, Wei; Munroe, Thomas A; Gong, Li; Kong, Xiao-Yu

    2015-01-01

    Mitogenomes of flatfishes (Pleuronectiformes) exhibit the greatest diversity of gene rear-rangements in teleostean fishes. Duplicate control regions (CRs) have been found in the mito-genomes of two flatfishes, Samariscus latus (Samaridae) and Laeops lanceolata (Bothidae), which is rare in teleosts. It has been reported that duplicate CRs have evolved in a concerted fashion in fishes and other animals, however, whether concerted evo-lution exists in flatfishes remains unknown. In this study, based on five newly sequenced and six previously reported mitogenomes of lefteye flounders in the Bothidae, we explored whether duplicate CRs and concerted evolution exist in these species. Results based on the present study and previous reports show that four out of eleven bothid species examined have duplicate CRs of their mitogenomes. The core regions of the duplicate CRs of mitogenomes in the same species have identical, or nearly identical, sequences when compared to each other. This pattern fits the typical characteristics of concerted evolution. Additionally, phylogenetic and ancestral state reconstruction analysis also provided evidence to support the hypothesis that duplicate CRs evolved concertedly. The core region of concerted evolution is situated at the conserved domains of the CR of the mitogenome from the termination associated sequences (TASs) to the conserved sequence blocks (CSBs). Commonly, this region is con-sidered to regulate mitochondrial replication and transcription. Thus, we hypothesize that the cause of concerted evolution of the duplicate CRs in the mtDNAs of these four bothids may be related to some function of the conserved sequences of the CRs during mitochondrial rep-lication and transcription. We hope our results will provide fresh insight into the molecular mechanisms related to replication and evolution of mitogenomes.

  19. Sucrose metabolism gene families and their biological functions.

    PubMed

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-11-30

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions.

  20. Sucrose metabolism gene families and their biological functions

    PubMed Central

    Jiang, Shu-Ye; Chi, Yun-Hua; Wang, Ji-Zhou; Zhou, Jun-Xia; Cheng, Yan-Song; Zhang, Bao-Lan; Ma, Ali; Vanitha, Jeevanandam; Ramachandran, Srinivasan

    2015-01-01

    Sucrose, as the main product of photosynthesis, plays crucial roles in plant development. Although studies on general metabolism pathway were well documented, less information is available on the genome-wide identification of these genes, their expansion and evolutionary history as well as their biological functions. We focused on four sucrose metabolism related gene families including sucrose synthase, sucrose phosphate synthase, sucrose phosphate phosphatase and UDP-glucose pyrophosphorylase. These gene families exhibited different expansion and evolutionary history as their host genomes experienced differentiated rates of the whole genome duplication, tandem and segmental duplication, or mobile element mediated gene gain and loss. They were evolutionarily conserved under purifying selection among species and expression divergence played important roles for gene survival after expansion. However, we have detected recent positive selection during intra-species divergence. Overexpression of 15 sorghum genes in Arabidopsis revealed their roles in biomass accumulation, flowering time control, seed germination and response to high salinity and sugar stresses. Our studies uncovered the molecular mechanisms of gene expansion and evolution and also provided new insight into the role of positive selection in intra-species divergence. Overexpression data revealed novel biological functions of these genes in flowering time control and seed germination under normal and stress conditions. PMID:26616172

  1. Rapid diversification of FoxP2 in teleosts through gene duplication in the teleost-specific whole genome duplication event.

    PubMed

    Song, Xiaowei; Wang, Yajun; Tang, Yezhong

    2013-01-01

    As one of the most conserved genes in vertebrates, FoxP2 is widely involved in a number of important physiological and developmental processes. We systematically studied the evolutionary history and functional adaptations of FoxP2 in teleosts. The duplicated FoxP2 genes (FoxP2a and FoxP2b), which were identified in teleosts using synteny and paralogon analysis on genome databases of eight organisms, were probably generated in the teleost-specific whole genome duplication event. A credible classification with FoxP2, FoxP2a and FoxP2b in phylogenetic reconstructions confirmed the teleost-specific FoxP2 duplication. The unavailability of FoxP2b in Danio rerio suggests that the gene was deleted through nonfunctionalization of the redundant copy after the Otocephala-Euteleostei split. Heterogeneity in evolutionary rates among clusters consisting of FoxP2 in Sarcopterygii (Cluster 1), FoxP2a in Teleostei (Cluster 2) and FoxP2b in Teleostei (Cluster 3), particularly between Clusters 2 and 3, reveals asymmetric functional divergence after the gene duplication. Hierarchical cluster analyses of hydrophobicity profiles demonstrated significant structural divergence among the three clusters with verification of subsequent stepwise discriminant analysis, in which FoxP2 of Leucoraja erinacea and Lepisosteus oculatus were classified into Cluster 1, whereas FoxP2b of Salmo salar was grouped into Cluster 2 rather than Cluster 3. The simulated thermodynamic stability variations of the forkhead box domain (monomer and homodimer) showed remarkable divergence in FoxP2, FoxP2a and FoxP2b clusters. Relaxed purifying selection and positive Darwinian selection probably were complementary driving forces for the accelerated evolution of FoxP2 in ray-finned fishes, especially for the adaptive evolution of FoxP2a and FoxP2b in teleosts subsequent to the teleost-specific gene duplication.

  2. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome.

    PubMed

    Opazo, Juan C; Lee, Alison P; Hoffmann, Federico G; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F

    2015-07-01

    Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about

  3. Ancient Duplications and Expression Divergence in the Globin Gene Superfamily of Vertebrates: Insights from the Elephant Shark Genome and Transcriptome

    PubMed Central

    Opazo, Juan C.; Toloza-Villalobos, Jessica; Burmester, Thorsten; Venkatesh, Byrappa; Storz, Jay F.

    2015-01-01

    Comparative analyses of vertebrate genomes continue to uncover a surprising diversity of genes in the globin gene superfamily, some of which have very restricted phyletic distributions despite their antiquity. Genomic analysis of the globin gene repertoire of cartilaginous fish (Chondrichthyes) should be especially informative about the duplicative origins and ancestral functions of vertebrate globins, as divergence between Chondrichthyes and bony vertebrates represents the most basal split within the jawed vertebrates. Here, we report a comparative genomic analysis of the vertebrate globin gene family that includes the complete globin gene repertoire of the elephant shark (Callorhinchus milii). Using genomic sequence data from representatives of all major vertebrate classes, integrated analyses of conserved synteny and phylogenetic relationships revealed that the last common ancestor of vertebrates possessed a repertoire of at least seven globin genes: single copies of androglobin and neuroglobin, four paralogous copies of globin X, and the single-copy progenitor of the entire set of vertebrate-specific globins. Combined with expression data, the genomic inventory of elephant shark globins yielded four especially surprising findings: 1) there is no trace of the neuroglobin gene (a highly conserved gene that is present in all other jawed vertebrates that have been examined to date), 2) myoglobin is highly expressed in heart, but not in skeletal muscle (reflecting a possible ancestral condition in vertebrates with single-circuit circulatory systems), 3) elephant shark possesses two highly divergent globin X paralogs, one of which is preferentially expressed in gonads, and 4) elephant shark possesses two structurally distinct α-globin paralogs, one of which is preferentially expressed in the brain. Expression profiles of elephant shark globin genes reveal distinct specializations of function relative to orthologs in bony vertebrates and suggest hypotheses about

  4. Duplication and amplification of antibiotic resistance genes enable increased resistance in isolates of multidrug-resistant Salmonella Typhimurium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During normal bacterial DNA replication, gene duplication and amplification (GDA) events occur randomly at a low frequency in the genome throughout a population. In the absence of selection, GDA events that increase the number of copies of a bacterial gene (or a set of genes) are lost. Antibiotic ...

  5. An ace-1 gene duplication resorbs the fitness cost associated with resistance in Anopheles gambiae, the main malaria mosquito

    PubMed Central

    Assogba, Benoît S.; Djogbénou, Luc S.; Milesi, Pascal; Berthomieu, Arnaud; Perez, Julie; Ayala, Diego; Chandre, Fabrice; Makoutodé, Michel; Labbé, Pierrick; Weill, Mylène

    2015-01-01

    Widespread resistance to pyrethroids threatens malaria control in Africa. Consequently, several countries switched to carbamates and organophophates insecticides for indoor residual spraying. However, a mutation in the ace-1 gene conferring resistance to these compounds (ace-1R allele), is already present. Furthermore, a duplicated allele (ace-1D) recently appeared; characterizing its selective advantage is mandatory to evaluate the threat. Our data revealed that a unique duplication event, pairing a susceptible and a resistant copy of the ace-1 gene spread through West Africa. Further investigations revealed that, while ace-1D confers less resistance than ace-1R, the high fitness cost associated with ace-1R is almost completely suppressed by the duplication for all traits studied. ace-1 duplication thus represents a permanent heterozygote phenotype, selected, and thus spreading, due to the mosaic nature of mosquito control. It provides malaria mosquito with a new evolutionary path that could hamper resistance management. PMID:26434951

  6. Gene duplication and the evolution of hemoglobin isoform differentiation in birds.

    PubMed

    Grispo, Michael T; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E; Storz, Jay F

    2012-11-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the α(A)-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the α(D)-globin gene). The α(D)-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O(2) affinity in the presence of allosteric effectors such as organic phosphates and Cl(-) ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O(2) affinity stems primarily from changes in the O(2) association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the α(D)-globin gene that is shared with the embryonic α-like globin gene.

  7. Gene Duplication and the Evolution of Hemoglobin Isoform Differentiation in Birds*

    PubMed Central

    Grispo, Michael T.; Natarajan, Chandrasekhar; Projecto-Garcia, Joana; Moriyama, Hideaki; Weber, Roy E.; Storz, Jay F.

    2012-01-01

    The majority of bird species co-express two functionally distinct hemoglobin (Hb) isoforms in definitive erythrocytes as follows: HbA (the major adult Hb isoform, with α-chain subunits encoded by the αA-globin gene) and HbD (the minor adult Hb isoform, with α-chain subunits encoded by the αD-globin gene). The αD-globin gene originated via tandem duplication of an embryonic α-like globin gene in the stem lineage of tetrapod vertebrates, which suggests the possibility that functional differentiation between the HbA and HbD isoforms may be attributable to a retained ancestral character state in HbD that harkens back to a primordial, embryonic function. To investigate this possibility, we conducted a combined analysis of protein biochemistry and sequence evolution to characterize the structural and functional basis of Hb isoform differentiation in birds. Functional experiments involving purified HbA and HbD isoforms from 11 different bird species revealed that HbD is characterized by a consistently higher O2 affinity in the presence of allosteric effectors such as organic phosphates and Cl− ions. In the case of both HbA and HbD, analyses of oxygenation properties under the two-state Monod-Wyman-Changeux allosteric model revealed that the pH dependence of Hb-O2 affinity stems primarily from changes in the O2 association constant of deoxy (T-state)-Hb. Ancestral sequence reconstructions revealed that the amino acid substitutions that distinguish the adult-expressed Hb isoforms are not attributable to the retention of an ancestral (pre-duplication) character state in the αD-globin gene that is shared with the embryonic α-like globin gene. PMID:22962007

  8. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response.

    PubMed

    Wang, Yu; Wang, Qianqian; Zhao, Yang; Han, Guomin; Zhu, Suwen

    2015-07-15

    Class III peroxidases (PRXs) are plant-specific enzymes that play key roles in the responses to biotic and abiotic stress during plant growth and development. In this study, we identified 119 nonredundant PRX genes (designated ZmPRXs). These PRX genes were divided into 18 groups based on their phylogenetic relationships. We performed systematic bioinformatics analysis of the PRX genes, including analysis of gene structures, conserved motifs, phylogenetic relationships and gene expression profiles. The ZmPRXs are unevenly distributed on the 10 maize chromosomes. In addition, these genes have undergone 16 segmental duplication and 12 tandem duplication events, indicating that both segmental and tandem duplication were the main contributors to the expansion of the maize PRX family. Ka/Ks analysis suggested that most duplicated ZmPRXs experienced purifying selection, with limited functional divergence during the duplication events, and comparative analysis among maize, sorghum and rice revealed that there were independent duplication events besides the whole-genome duplication of the maize genome. Furthermore, microarray analysis indicated that most highly expressed genes might play significant roles in root. We examined the expression of five candidate ZmPRXs under H2O2, SA, NaCl and PEG stress conditions using quantitative real-time PCR (qRT-PCR), revealing differential expression patterns. This study provides useful information for further functional analysis of the PRX gene family in maize.

  9. Functional specialization of duplicated AP3-like genes in Medicago truncatula.

    PubMed

    Roque, Edelín; Serwatowska, Joanna; Cruz Rochina, M; Wen, Jiangqi; Mysore, Kirankumar S; Yenush, Lynne; Beltrán, José Pío; Cañas, Luis A

    2013-02-01

    The B-class of MADS box genes has been studied in a wide range of plant species, but has remained largely uncharacterized in legumes. Here we investigate the evolutionary fate of the duplicated AP3-like genes of a legume species. To obtain insight into the extent to which B-class MADS box gene functions are conserved or have diversified in legumes, we isolated and characterized the two members of the AP3 lineage in Medicago truncatula: MtNMH7 and MtTM6 (euAP3 and paleoAP3 genes, respectively). A non-overlapping and complementary expression pattern of both genes was observed in petals and stamens. MtTM6 was expressed predominantly in the outer cell layers of both floral organs, and MtNMH7 in the inner cell layers of petals and stamens. Functional analyses by reverse genetics approaches (RNAi and Tnt1 mutagenesis) showed that the contribution of MtNMH7 to petal identity is more important than that of MtTM6, whereas MtTM6 plays a more important role in stamen identity than its paralog MtNMH7. Our results suggest that the M. truncatula AP3-like genes have undergone a functional specialization process associated with complete partitioning of gene expression patterns of the ancestral gene lineage. We provide information regarding the similarities and differences in petal and stamen development among core eudicots.

  10. Correlating traits of gene retention, sequence divergence, duplicability and essentiality in vertebrates, arthropods, and fungi.

    PubMed

    Waterhouse, Robert M; Zdobnov, Evgeny M; Kriventseva, Evgenia V

    2011-01-01

    Delineating ancestral gene relations among a large set of sequenced eukaryotic genomes allowed us to rigorously examine links between evolutionary and functional traits. We classified 86% of over 1.36 million protein-coding genes from 40 vertebrates, 23 arthropods, and 32 fungi into orthologous groups and linked over 90% of them to Gene Ontology or InterPro annotations. Quantifying properties of ortholog phyletic retention, copy-number variation, and sequence conservation, we examined correlations with gene essentiality and functional traits. More than half of vertebrate, arthropod, and fungal orthologs are universally present across each lineage. These universal orthologs are preferentially distributed in groups with almost all single-copy or all multicopy genes, and sequence evolution of the predominantly single-copy orthologous groups is markedly more constrained. Essential genes from representative model organisms, Mus musculus, Drosophila melanogaster, and Saccharomyces cerevisiae, are significantly enriched in universal orthologs within each lineage, and essential-gene-containing groups consistently exhibit greater sequence conservation than those without. This study of eukaryotic gene repertoire evolution identifies shared fundamental principles and highlights lineage-specific features, it also confirms that essential genes are highly retained and conclusively supports the "knockout-rate prediction" of stronger constraints on essential gene sequence evolution. However, the distinction between sequence conservation of single- versus multicopy orthologs is quantitatively more prominent than between orthologous groups with and without essential genes. The previously underappreciated difference in the tolerance of gene duplications and contrasting evolutionary modes of "single-copy control" versus "multicopy license" may reflect a major evolutionary mechanism that allows extended exploration of gene sequence space.

  11. The GapA/B gene duplication marks the origin of Streptophyta (charophytes and land plants).

    PubMed

    Petersen, Jörn; Teich, René; Becker, Burkhard; Cerff, Rüdiger; Brinkmann, Henner

    2006-06-01

    Independent evidence from morphological, ultrastructural, biochemical, and molecular data have shown that land plants originated from charophycean green algae. However, the branching order within charophytes is still unresolved, and contradictory phylogenies about, for example,the position of the unicellular green alga Mesostigma viride are difficult to reconcile. A comparison of nuclear-encoded Calvin cycle glyceraldehyde-3-phosphate dehydrogenases (GAPDH) indicates that a crucial duplication of the GapA gene occurred early in land plant evolution. The duplicate called GapB acquired a characteristic carboxy-terminal extension (CTE) from the general regulator of the Calvin cycle CP12. This CTE is responsible for thioredoxin-dependent light/dark regulation. In this work, we established GapA, GapB, and CP12 sequences from bryophytes, all orders of charophyte as well as chlorophyte green algae, and the glaucophyte Cyanophora paradoxa. Comprehensive phylogenetic analyses of all available plastid GAPDH sequences suggest that glaucophytes and green plants are sister lineages and support a positioning of Mesostigma basal to all charophycean algae. The exclusive presence of GapB in terrestrial plants, charophytes, and Mesostigma dates the GapA/B gene duplication to the common ancestor of Streptophyta. The conspicuously high degree of GapB sequence conservation suggests an important metabolic role of the newly gained regulatory function. Because the GapB-mediated protein aggregation most likely ensures the complete blockage of the Calvin cycle at night, we propose that this mechanism is also crucial for efficient starch mobilization. This innovation may be one prerequisite for the development of storage tissues in land plants.

  12. Familial short stature due to a 5q22.1-q23.2 duplication refines the 5q duplication spectrum.

    PubMed

    Zahnleiter, Diana; Trautmann, Udo; Ekici, Arif B; Goehring, Ina; Reis, André; Dörr, Helmuth-Günther; Rauch, Anita; Thiel, Christian T

    2011-01-01

    We identified a maternally inherited 14.2Mb duplication 5q22.1-q23.2 in two female siblings and their mother by molecular karyotyping. Both siblings were small for gestational age and presented with pronounced postnatal growth retardation, mild motor delay, congenital heart disease in one of the siblings, and distinct facial dysmorphism. As this duplication is one of the smallest reported 5q duplications, short stature and facial dysmorphism can be attributed to duplications of 5q22, whereas severe mental retardation is not part of the phenotypic spectrum of the 5q22.1-q23.2 region. Congenital heart defects, as observed in other 5q duplications, have a variable penetrance. We compared the facial features of patients with 5q duplications and found some consistent features such as high arched eyebrows, bulbous nasal tip and small lips with thin vermilion border. PMID:21777705

  13. Partial duplication and point mutations of the ornithine carbamoyl transferase (OCT) gene in congenital hyperammonaemia

    SciTech Connect

    Gilbert-Dussardier, B.; Rozet, J.M.; Seques, B.; Munnich, A.

    1994-09-01

    ACT deficiency is an enzymopathy of the urea cycle inherited as a partially dominant X-linked trait. Affected males often die during the neonatal period with untractable hyperammonaemic coma but may sometimes present with a late onset disease. Heterozygous females are sometimes symptomatic. Twenty-two unrelated patients (18 males and 4 females) were studied by single strand conformational polymorphism (SSCP) analysis followed by direct sequencing of the OCT exons. Nine of them were found to carry point mutations already reported by others (G50Z, E87K, L88N, R827, R141Z, P225L) or by our group (R277W, 2 patients). A duplication (4 bp) in exon 5 (nt177-XTCACTCAC Xnt178) was found in a male patient with a severe neonatal OCT deficiency. This change led to a frameshift mutation with no in-frame stop codon. To our knowledge, this is the first duplication reported in OCT deficiency. Eight novel missense mutations were found in 12 additional patients: R40H (exon 2, 3 patients), C109S (exon 4, 1 patient), T125M (exon 5, 1 patient), R129Q (exon 5, 3 patients), G188R (exon 6, 1 patient), A209V (exon 6, 1 patient), H302L (exon 9, 2 patients). Four of these mutations occurred in CpG doublets and all of them involved conserved regions of the gene. No such alterations were found in 70 control genes. Phenotype-genotype correlations will be discussed.

  14. Evolution of C, D and S-type cystatins in mammals: an extensive gene duplication in primates.

    PubMed

    de Sousa-Pereira, Patrícia; Abrantes, Joana; Pinheiro, Ana; Colaço, Bruno; Vitorino, Rui; Esteves, Pedro J

    2014-01-01

    Cystatins are a family of inhibitors of cysteine peptidases that comprises the salivary cystatins (D and S-type cystatins) and cystatin C. These cystatins are encoded by a multigene family (CST3, CST5, CST4, CST1 and CST2) organized in tandem in the human genome. Their presence and functional importance in human saliva has been reported, however the distribution of these proteins in other mammals is still unclear. Here, we performed a proteomic analysis of the saliva of several mammals and studied the evolution of this multigene family. The proteomic analysis detected S-type cystatins (S, SA, and SN) in human saliva and cystatin D in rat saliva. The evolutionary analysis showed that the cystatin C encoding gene is present in species of the most representative mammalian groups, i.e. Artiodactyla, Rodentia, Lagomorpha, Carnivora and Primates. On the other hand, D and S-type cystatins are mainly retrieved from Primates, and especially the evolution of S-type cystatins seems to be a dynamic process as seen in Pongo abelii genome where several copies of CST1-like gene (cystatin SN) were found. In Rodents, a group of cystatins previously identified as D and S has also evolved. Despite the high divergence of the amino acid sequence, their position in the phylogenetic tree and their genome organization suggests a common origin with those of the Primates. These results suggest that the D and S type cystatins have emerged before the mammalian radiation and were retained only in Primates and Rodents. Although the mechanisms driving the evolution of cystatins are unknown, it seems to be a dynamic process with several gene duplications evolving according to the birth-and-death model of evolution. The factors that led to the appearance of a group of saliva-specific cystatins in Primates and its rapid evolution remain undetermined, but may be associated with an adaptive advantage. PMID:25329717

  15. Evolution of C, D and S-type cystatins in mammals: an extensive gene duplication in primates.

    PubMed

    de Sousa-Pereira, Patrícia; Abrantes, Joana; Pinheiro, Ana; Colaço, Bruno; Vitorino, Rui; Esteves, Pedro J

    2014-01-01

    Cystatins are a family of inhibitors of cysteine peptidases that comprises the salivary cystatins (D and S-type cystatins) and cystatin C. These cystatins are encoded by a multigene family (CST3, CST5, CST4, CST1 and CST2) organized in tandem in the human genome. Their presence and functional importance in human saliva has been reported, however the distribution of these proteins in other mammals is still unclear. Here, we performed a proteomic analysis of the saliva of several mammals and studied the evolution of this multigene family. The proteomic analysis detected S-type cystatins (S, SA, and SN) in human saliva and cystatin D in rat saliva. The evolutionary analysis showed that the cystatin C encoding gene is present in species of the most representative mammalian groups, i.e. Artiodactyla, Rodentia, Lagomorpha, Carnivora and Primates. On the other hand, D and S-type cystatins are mainly retrieved from Primates, and especially the evolution of S-type cystatins seems to be a dynamic process as seen in Pongo abelii genome where several copies of CST1-like gene (cystatin SN) were found. In Rodents, a group of cystatins previously identified as D and S has also evolved. Despite the high divergence of the amino acid sequence, their position in the phylogenetic tree and their genome organization suggests a common origin with those of the Primates. These results suggest that the D and S type cystatins have emerged before the mammalian radiation and were retained only in Primates and Rodents. Although the mechanisms driving the evolution of cystatins are unknown, it seems to be a dynamic process with several gene duplications evolving according to the birth-and-death model of evolution. The factors that led to the appearance of a group of saliva-specific cystatins in Primates and its rapid evolution remain undetermined, but may be associated with an adaptive advantage.

  16. The impact of gene duplication, insertion, deletion, lateral gene transfer and sequencing error on orthology inference: a simulation study.

    PubMed

    Dalquen, Daniel A; Altenhoff, Adrian M; Gonnet, Gaston H; Dessimoz, Christophe

    2013-01-01

    The identification of orthologous genes, a prerequisite for numerous analyses in comparative and functional genomics, is commonly performed computationally from protein sequences. Several previous studies have compared the accuracy of orthology inference methods, but simulated data has not typically been considered in cross-method assessment studies. Yet, while dependent on model assumptions, simulation-based benchmarking offers unique advantages: contrary to empirical data, all aspects of simulated data are known with certainty. Furthermore, the flexibility of simulation makes it possible to investigate performance factors in isolation of one another.Here, we use simulated data to dissect the performance of six methods for orthology inference available as standalone software packages (Inparanoid, OMA, OrthoInspector, OrthoMCL, QuartetS, SPIMAP) as well as two generic approaches (bidirectional best hit and reciprocal smallest distance). We investigate the impact of various evolutionary forces (gene duplication, insertion, deletion, and lateral gene transfer) and technological artefacts (ambiguous sequences) on orthology inference. We show that while gene duplication/loss and insertion/deletion are well handled by most methods (albeit for different trade-offs of precision and recall), lateral gene transfer disrupts all methods. As for ambiguous sequences, which might result from poor sequencing, assembly, or genome annotation, we show that they affect alignment score-based orthology methods more strongly than their distance-based counterparts.

  17. Recommended nomenclature for five mammalian carboxylesterase gene families: human, mouse, and rat genes and proteins.

    PubMed

    Holmes, Roger S; Wright, Matthew W; Laulederkind, Stanley J F; Cox, Laura A; Hosokawa, Masakiyo; Imai, Teruko; Ishibashi, Shun; Lehner, Richard; Miyazaki, Masao; Perkins, Everett J; Potter, Phillip M; Redinbo, Matthew R; Robert, Jacques; Satoh, Tetsuo; Yamashita, Tetsuro; Yan, Bingfan; Yokoi, Tsuyoshi; Zechner, Rudolf; Maltais, Lois J

    2010-10-01

    Mammalian carboxylesterase (CES or Ces) genes encode enzymes that participate in xenobiotic, drug, and lipid metabolism in the body and are members of at least five gene families. Tandem duplications have added more genes for some families, particularly for mouse and rat genomes, which has caused confusion in naming rodent Ces genes. This article describes a new nomenclature system for human, mouse, and rat carboxylesterase genes that identifies homolog gene families and allocates a unique name for each gene. The guidelines of human, mouse, and rat gene nomenclature committees were followed and "CES" (human) and "Ces" (mouse and rat) root symbols were used followed by the family number (e.g., human CES1). Where multiple genes were identified for a family or where a clash occurred with an existing gene name, a letter was added (e.g., human CES4A; mouse and rat Ces1a) that reflected gene relatedness among rodent species (e.g., mouse and rat Ces1a). Pseudogenes were named by adding "P" and a number to the human gene name (e.g., human CES1P1) or by using a new letter followed by ps for mouse and rat Ces pseudogenes (e.g., Ces2d-ps). Gene transcript isoforms were named by adding the GenBank accession ID to the gene symbol (e.g., human CES1_AB119995 or mouse Ces1e_BC019208). This nomenclature improves our understanding of human, mouse, and rat CES/Ces gene families and facilitates research into the structure, function, and evolution of these gene families. It also serves as a model for naming CES genes from other mammalian species.

  18. The plant ADH gene family.

    PubMed

    Strommer, Judith

    2011-04-01

    The structures, evolution and functions of alcohol dehydrogenase gene families and their products have been scrutinized for half a century. Our understanding of the enzyme structure and catalytic activity of plant alcohol dehydrogenase (ADH-P) is based on the vast amount of information available for its animal counterpart. The probable origins of the enzyme from a simple β-coil and eventual emergence from a glutathione-dependent formaldehyde dehydrogenase have been well described. There is compelling evidence that the small ADH gene families found in plants today are the survivors of multiple rounds of gene expansion and contraction. To the probable original function of their products in the terminal reaction of anaerobic fermentation have been added roles in yeast-like aerobic fermentation and the production of characteristic scents that act to attract animals that serve as pollinators or agents of seed dispersal and to protect against herbivores.

  19. Sgs1 and Exo1 suppress targeted chromosome duplication during ends-in and ends-out gene targeting.

    PubMed

    Štafa, Anamarija; Miklenić, Marina; Zunar, Bojan; Lisnić, Berislav; Symington, Lorraine S; Svetec, Ivan-Krešimir

    2014-10-01

    Gene targeting is extremely efficient in the yeast Saccharomyces cerevisiae. It is performed by transformation with a linear, non-replicative DNA fragment carrying a selectable marker and containing ends homologous to the particular locus in a genome. However, even in S. cerevisiae, transformation can result in unwanted (aberrant) integration events, the frequency and spectra of which are quite different for ends-out and ends-in transformation assays. It has been observed that gene replacement (ends-out gene targeting) can result in illegitimate integration, integration of the transforming DNA fragment next to the target sequence and duplication of a targeted chromosome. By contrast, plasmid integration (ends-in gene targeting) is often associated with multiple targeted integration events but illegitimate integration is extremely rare and a targeted chromosome duplication has not been reported. Here we systematically investigated the influence of design of the ends-out assay on the success of targeted genetic modification. We have determined transformation efficiency, fidelity of gene targeting and spectra of all aberrant events in several ends-out gene targeting assays designed to insert, delete or replace a particular sequence in the targeted region of the yeast genome. Furthermore, we have demonstrated for the first time that targeted chromosome duplications occur even during ends-in gene targeting. Most importantly, the whole chromosome duplication is POL32 dependent pointing to break-induced replication (BIR) as the underlying mechanism. Moreover, the occurrence of duplication of the targeted chromosome was strikingly increased in the exo1Δ sgs1Δ double mutant but not in the respective single mutants demonstrating that the Exo1 and Sgs1 proteins independently suppress whole chromosome duplication during gene targeting. PMID:25089886

  20. Gene Family Expansions in Aphids Maintained by Endosymbiotic and Nonsymbiotic Traits

    PubMed Central

    Duncan, Rebecca P.; Feng, Honglin; Nguyen, Douglas M.; Wilson, Alex C. C.

    2016-01-01

    Facilitating the evolution of new gene functions, gene duplication is a major mechanism driving evolutionary innovation. Gene family expansions relevant to host/symbiont interactions are increasingly being discovered in eukaryotes that host endosymbiotic microbes. Such discoveries entice speculation that gene duplication facilitates the evolution of novel, endosymbiotic relationships. Here, using a comparative transcriptomic approach combined with differential gene expression analysis, we investigate the importance of endosymbiosis in retention of amino acid transporter paralogs in aphid genomes. To pinpoint the timing of amino acid transporter duplications we inferred gene phylogenies for five aphid species and three outgroups. We found that while some duplications arose in the aphid common ancestor concurrent with endosymbiont acquisition, others predate aphid divergence from related insects without intracellular symbionts, and still others appeared during aphid diversification. Interestingly, several aphid-specific paralogs have conserved enriched expression in bacteriocytes, the insect cells that host primary symbionts. Conserved bacteriocyte enrichment suggests that the transporters were recruited to the aphid/endosymbiont interface in the aphid common ancestor, consistent with a role for gene duplication in facilitating the evolution of endosymbiosis in aphids. In contrast, the temporal variability of amino acid transporter duplication indicates that endosymbiosis is not the only trait driving selection for retention of amino acid transporter paralogs in sap-feeding insects. This study cautions against simplistic interpretations of the role of gene family expansion in the evolution of novel host/symbiont interactions by further highlighting that multiple complex factors maintain gene family paralogs in the genomes of eukaryotes that host endosymbiotic microbes. PMID:26878871

  1. Gene Family Expansions in Aphids Maintained by Endosymbiotic and Nonsymbiotic Traits.

    PubMed

    Duncan, Rebecca P; Feng, Honglin; Nguyen, Douglas M; Wilson, Alex C C

    2016-02-15

    Facilitating the evolution of new gene functions, gene duplication is a major mechanism driving evolutionary innovation. Gene family expansions relevant to host/symbiont interactions are increasingly being discovered in eukaryotes that host endosymbiotic microbes. Such discoveries entice speculation that gene duplication facilitates the evolution of novel, endosymbiotic relationships. Here, using a comparative transcriptomic approach combined with differential gene expression analysis, we investigate the importance of endosymbiosis in retention of amino acid transporter paralogs in aphid genomes. To pinpoint the timing of amino acid transporter duplications we inferred gene phylogenies for five aphid species and three outgroups. We found that while some duplications arose in the aphid common ancestor concurrent with endosymbiont acquisition, others predate aphid divergence from related insects without intracellular symbionts, and still others appeared during aphid diversification. Interestingly, several aphid-specific paralogs have conserved enriched expression in bacteriocytes, the insect cells that host primary symbionts. Conserved bacteriocyte enrichment suggests that the transporters were recruited to the aphid/endosymbiont interface in the aphid common ancestor, consistent with a role for gene duplication in facilitating the evolution of endosymbiosis in aphids. In contrast, the temporal variability of amino acid transporter duplication indicates that endosymbiosis is not the only trait driving selection for retention of amino acid transporter paralogs in sap-feeding insects. This study cautions against simplistic interpretations of the role of gene family expansion in the evolution of novel host/symbiont interactions by further highlighting that multiple complex factors maintain gene family paralogs in the genomes of eukaryotes that host endosymbiotic microbes.

  2. Evolution of a Novel Antiviral Immune-Signaling Interaction by Partial-Gene Duplication

    PubMed Central

    Korithoski, Bryan; Kolaczkowski, Oralia; Mukherjee, Krishanu; Kola, Reema; Earl, Chandra; Kolaczkowski, Bryan

    2015-01-01

    The RIG-like receptors (RLRs) are related proteins that identify viral RNA in the cytoplasm and activate cellular immune responses, primarily through direct protein-protein interactions with the signal transducer, IPS1. Although it has been well established that the RLRs, RIG-I and MDA5, activate IPS1 through binding between the twin caspase activation and recruitment domains (CARDs) on the RLR and a homologous CARD on IPS1, it is less clear which specific RLR CARD(s) are required for this interaction, and almost nothing is known about how the RLR-IPS1 interaction evolved. In contrast to what has been observed in the presence of immune-modulating K63-linked polyubiquitin, here we show that—in the absence of ubiquitin—it is the first CARD domain of human RIG-I and MDA5 (CARD1) that binds directly to IPS1 CARD, and not the second (CARD2). Although the RLRs originated in the earliest animals, both the IPS1 gene and the twin-CARD domain architecture of RIG-I and MDA5 arose much later in the deuterostome lineage, probably through a series of tandem partial-gene duplication events facilitated by tight clustering of RLRs and IPS1 in the ancestral deuterostome genome. Functional differentiation of RIG-I CARD1 and CARD2 appears to have occurred early during this proliferation of RLR and related CARDs, potentially driven by adaptive coevolution between RIG-I CARD domains and IPS1 CARD. However, functional differentiation of MDA5 CARD1 and CARD2 occurred later. These results fit a general model in which duplications of protein-protein interaction domains into novel gene contexts could facilitate the expansion of signaling networks and suggest a potentially important role for functionally-linked gene clusters in generating novel immune-signaling pathways. PMID:26356745

  3. Evolutionary History of Chordate PAX Genes: Dynamics of Change in a Complex Gene Family

    PubMed Central

    Paixão-Côrtes, Vanessa Rodrigues; Salzano, Francisco Mauro; Bortolini, Maria Cátira

    2013-01-01

    Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory. PMID:24023886

  4. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.

    PubMed

    Paixão-Côrtes, Vanessa Rodrigues; Salzano, Francisco Mauro; Bortolini, Maria Cátira

    2013-01-01

    Paired box (PAX) genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory. PMID:24023886

  5. Maize anthocyanin regulatory gene pl is a duplicate of c1 that functions in the plant.

    PubMed

    Cone, K C; Cocciolone, S M; Burr, F A; Burr, B

    1993-12-01

    Genetic studies in maize have identified several regulatory genes that control the tissue-specific synthesis of purple anthocyanin pigments in the plant. c1 regulates pigmentation in the aleurone layer of the kernel, whereas pigmentation in the vegetative and floral tissues of the plant body depends on pl. c1 encodes a protein with the structural features of eukaryotic transcription factors and functions to control the accumulation of transcripts for the anthocyanin biosynthetic genes. Previous genetic and molecular observations have prompted the hypothesis that c1 and pl are functionally duplicate, in that they control the same set of anthocyanin structural genes but in distinct parts of the plant. Here, we show that this proposed functional similarity is reflected by DNA sequence homology between c1 and pl. Using a c1 DNA fragment as a hybridization probe, genomic and cDNA clones for pl were isolated. Comparison of pl and c1 cDNA sequences revealed that the genes encode proteins with 90% or more amino acid identity in the amino- and carboxyl-terminal domains that are known to be important for the regulatory function of the C1 protein. Consistent with the idea that the pl gene product also acts as a transcriptional activator is our finding that a functional pl allele is required for the transcription of at least three structural genes in the anthocyanin biosynthetic pathway. PMID:8305872

  6. Duplication of the NPHP1 gene in patients with autism spectrum disorder and normal intellectual ability: a case series.

    PubMed

    Yasuda, Yuka; Hashimoto, Ryota; Fukai, Ryoko; Okamoto, Nobuhiko; Hiraki, Yoko; Yamamori, Hidenaga; Fujimoto, Michiko; Ohi, Kazutaka; Taniike, Masako; Mohri, Ikuko; Nakashima, Mitsuko; Tsurusaki, Yoshinori; Saitsu, Hirotomo; Matsumoto, Naomichi; Miyake, Noriko; Takeda, Masatoshi

    2014-01-01

    Autism spectrum disorder is a neurodevelopmental disorder characterized by impairments in social interactions, reduced verbal communication abilities, stereotyped repetitive behaviors, and restricted interests. It is a complex condition caused by genetic and environmental factors; the high heritability of this disorder supports the presence of a significant genetic contribution. Many studies have suggested that copy-number variants contribute to the etiology of autism spectrum disorder. Recently, copy-number variants of the nephronophthisis 1 gene have been reported in patients with autism spectrum disorder. To the best of our knowledge, only six autism spectrum disorder cases with duplications of the nephronophthisis 1 gene have been reported. These patients exhibited intellectual dysfunction, including verbal dysfunction in one patient, below-average verbal intellectual ability in one patient, and intellectual disability in four patients. In this study, we identified nephronophthisis 1 duplications in two unrelated Japanese patients with autism spectrum disorder using a high-resolution single-nucleotide polymorphism array. This report is the first to describe a nephronophthisis 1 duplication in an autism spectrum disorder patient with an average verbal intelligence quotient and an average performance intelligence quotient. However, the second autism spectrum disorder patient with a nephronophthisis 1 duplication had a below-average performance intelligence quotient. Neither patient exhibited physical dysfunction, motor developmental delay, or neurological abnormalities. This study supports the clinical observation of nephronophthisis 1 duplication in autism spectrum disorder cases and might contribute to our understanding of the clinical phenotype that arises from this duplication.

  7. Chromosome 15q11-13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number

    PubMed Central

    Hogart, Amber; Leung, Karen N.; Wang, Nicholas J.; Wu, David J.; Driscoll, Jennette; Vallero, Roxanne O.; Schanen, N. Carolyn

    2008-01-01

    Background Chromosome 15q11-13 contains a cluster of imprinted genes essential for normal mammalian neurodevelopment. Deficiencies in paternal or maternal 15q11-13 alleles result in Prader-Willi or Angelman syndromes, respectively, and maternal duplications lead to a distinct condition that often includes autism. Overexpression of maternally expressed imprinted genes is predicted to cause 15q11-13-associated autism, but a link between gene dosage and expression has not been experimentally determined in brain. Methods Post-mortem brain tissue was obtained from a male with 15q11-13 hexasomy and a female with 15q11-13 tetrasomy. Quantitative RT-PCR was used to measure ten 15q11-13 transcripts in maternal 15q11-13 duplication, Prader-Willi syndrome, and control brain samples. Southern blot, bisulfite sequencing and fluorescence in situ hybridization were used to investigate epigenetic mechanisms of gene regulation. Results Gene expression and DNA methylation correlated with parental gene dosage in the male 15q11-13 duplication sample with severe cognitive impairment and seizures. Strikingly, the female with autism and milder Prader-Willi-like characteristics demonstrated unexpected deficiencies in the paternally expressed transcripts SNRPN, NDN, HBII85, and HBII52 and unchanged levels of maternally expressed UBE3A compared to controls. Paternal expression abnormalities in the female duplication sample were consistent with elevated DNA methylation of the 15q11-13 imprinting control region (ICR). Expression of nonimprinted 15q11-13 GABA receptor subunit genes was significantly reduced specifically in the female 15q11-13 duplication brain without detectable GABRB3 methylation differences. Conclusion Our findings suggest that genetic copy number changes combined with additional genetic or environmental influences on epigenetic mechanisms impact outcome and clinical heterogeneity of 15q11-13 duplication syndromes. PMID:18835857

  8. Family expansion and gene rearrangements contributed to the functional specialization of PRDM genes in vertebrates

    PubMed Central

    Fumasoni, Irene; Meani, Natalia; Rambaldi, Davide; Scafetta, Gaia; Alcalay, Myriam; Ciccarelli, Francesca D

    2007-01-01

    Background Progressive diversification of paralogs after gene expansion is essential to increase their functional specialization. However, mode and tempo of this divergence remain mostly unclear. Here we report the comparative analysis of PRDM genes, a family of putative transcriptional regulators involved in human tumorigenesis. Results Our analysis assessed that the PRDM genes originated in metazoans, expanded in vertebrates and further duplicated in primates. We experimentally showed that fast-evolving paralogs are poorly expressed, and that the most recent duplicates, such as primate-specific PRDM7, acquire tissue-specificity. PRDM7 underwent major structural rearrangements that decreased the number of encoded Zn-Fingers and modified gene splicing. Through internal duplication and activation of a non-canonical splice site (GC-AG), PRDM7 can acquire a novel intron. We also detected an alternative isoform that can retain the intron in the mature transcript and that is predominantly expressed in human melanocytes. Conclusion Our findings show that (a) molecular evolution of paralogs correlates with their expression pattern; (b) gene diversification is obtained through massive genomic rearrangements; and (c) splicing modification contributes to the functional specialization of novel genes. PMID:17916234

  9. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates. PMID:22210164

  10. The carboxylesterase/cholinesterase gene family in invertebrate deuterostomes.

    PubMed

    Johnson, Glynis; Moore, Samuel W

    2012-06-01

    Carboxylesterase/cholinesterase family members are responsible for controlling the nerve impulse, detoxification and various developmental functions, and are a major target of pesticides and chemical warfare agents. Comparative structural analysis of these enzymes is thus important. The invertebrate deuterostomes (phyla Echinodermata and Hemichordata and subphyla Urochordata and Cephalochordata) lie in the transition zone between invertebrates and vertebrates, and are thus of interest to the study of evolution. Here we have investigated the carboxylesterase/cholinesterase gene family in the sequenced genomes of Strongylocentrotus purpuratus (Echinodermata), Saccoglossus kowalevskii (Hemichordata), Ciona intestinalis (Urochordata) and Branchiostoma floridae (Cephalochordata), using sequence analysis of the catalytic apparatus and oligomerisation domains, and phylogenetic analysis. All four genomes show blurring of structural boundaries between cholinesterases and carboxylesterases, with many intermediate enzymes. Non-enzymatic proteins are well represented. The Saccoglossus and Branchiostoma genomes show evidence of extensive gene duplication and retention. There is also evidence of domain shuffling, resulting in multidomain proteins consisting either of multiple carboxylesterase domains, or of carboxylesterase/cholinesterase domains linked to other domains, including RING finger, chitin-binding, immunoglobulin, fibronectin type 3, CUB, cysteine-rich-Frizzled, caspase activation and 7tm-1, amongst others. Such gene duplication and domain shuffling in the carboxylesterase/cholinesterase family appears to be unique to the invertebrate deuterostomes, and we hypothesise that these factors may have contributed to the evolution of the morphological complexity, particularly of the nervous system and neural crest, of the vertebrates.

  11. Subfunctionalization of duplicate mitf genes associated with differential degeneration of alternative exons in fish.

    PubMed Central

    Altschmied, Joachim; Delfgaauw, Jacqueline; Wilde, Brigitta; Duschl, Jutta; Bouneau, Laurence; Volff, Jean-Nicolas; Schartl, Manfred

    2002-01-01

    The microphthalmia-associated transcription factor (MITF) exists in at least four isoforms. These are generated in higher vertebrates using alternative 5' exons and promoters from a single gene. Two separate genes (mitf-m and mitf-b), however, are present in different teleost fish species including the poeciliid Xiphophorus, the pufferfishes Fugu rubripes and Tetraodon nigroviridis, and the zebrafish Danio rerio. Fish proteins MITF-m and MITF-b correspond at both the structural and the expression levels to one particular bird/mammalian MITF isoform. In the teleost lineage subfunctionalization of mitf genes after duplication at least 100 million years ago is associated with the degeneration of alternative exons and, probably, regulatory elements and promoters. For example, a remnant of the first exon specific for MITF-m is detected within the pufferfish gene encoding MITF-b. Retracing the evolutionary history of mitf genes in vertebrates uncovered the differential recruitment of new introns specific for either the teleost or the bird/mammalian lineage. PMID:12019239

  12. LINE-1-like retrotransposons contribute to RNA-based gene duplication in dicots.

    PubMed

    Zhu, Zhenglin; Tan, Shengjun; Zhang, Yaqiong; Zhang, Yong E

    2016-01-01

    RNA-based duplicated genes or functional retrocopies (retrogenes) are known to drive phenotypic evolution. Retrogenes emerge via retroposition, which is mainly mediated by long interspersed nuclear element 1 (LINE-1 or L1) retrotransposons in mammals. By contrast, long terminal repeat (LTR) retrotransposons appear to be the major player in plants, although an L1-like mechanism has also been hypothesized to be involved in retroposition. We tested this hypothesis by searching for young retrocopies, as these still retain the sequence features associated with the underlying retroposition mechanism. Specifically, we identified polymorphic retrocopies (retroCNVs) by analyzing public Arabidopsis (Arabidopsis thaliana) resequencing data. Furthermore, we searched for recently originated retrocopies encoded by the reference genome of Arabidopsis and Manihot esculenta. Across these two datasets, we found cases with L1-like hallmarks, namely, the expected target site sequence, a polyA tail and target site duplications. Such data suggest that an L1-like mechanism could operate in plants, especially dicots. PMID:27098918

  13. Spotting and validation of a genome wide oligonucleotide chip with duplicate measurement of each gene

    SciTech Connect

    Thomassen, Mads . E-mail: mads.thomassen@ouh.fyns-amt.dk; Skov, Vibe; Eiriksdottir, Freyja; Tan, Qihua; Jochumsen, Kirsten; Fritzner, Niels; Brusgaard, Klaus; Dahlgaard, Jesper; Kruse, Torben A.

    2006-06-16

    The quality of DNA microarray based gene expression data relies on the reproducibility of several steps in a microarray experiment. We have developed a spotted genome wide microarray chip with oligonucleotides printed in duplicate in order to minimise undesirable biases, thereby optimising detection of true differential expression. The validation study design consisted of an assessment of the microarray chip performance using the MessageAmp and FairPlay labelling kits. Intraclass correlation coefficient (ICC) was used to demonstrate that MessageAmp was significantly more reproducible than FairPlay. Further examinations with MessageAmp revealed the applicability of the system. The linear range of the chips was three orders of magnitude, the precision was high, as 95% of measurements deviated less than 1.24-fold from the expected value, and the coefficient of variation for relative expression was 13.6%. Relative quantitation was more reproducible than absolute quantitation and substantial reduction of variance was attained with duplicate spotting. An analysis of variance (ANOVA) demonstrated no significant day-to-day variation.

  14. Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium.

    PubMed

    Zhang, Jingbo; Li, Bo; Yang, Yang; Hu, Wenran; Chen, Fangyuan; Xie, Lixia; Fan, Ling

    2016-01-01

    Superoxide dismutase (SOD) as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton. PMID:27660755

  15. Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium

    PubMed Central

    Zhang, Jingbo; Li, Bo; Yang, Yang; Hu, Wenran; Chen, Fangyuan; Xie, Lixia

    2016-01-01

    Superoxide dismutase (SOD) as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton.

  16. Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium

    PubMed Central

    Zhang, Jingbo; Li, Bo; Yang, Yang; Hu, Wenran; Chen, Fangyuan; Xie, Lixia

    2016-01-01

    Superoxide dismutase (SOD) as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton. PMID:27660755

  17. Duplication and Remolding of tRNA Genes in the Mitochondrial Genome of Reduvius tenebrosus (Hemiptera: Reduviidae).

    PubMed

    Jiang, Pei; Li, Hu; Song, Fan; Cai, Yao; Wang, Jianyun; Liu, Jinpeng; Cai, Wanzhi

    2016-01-01

    Most assassin bugs are predators that act as important natural enemies of insect pests. Mitochondrial (mt) genomes of these insects are double-strand circular DNAs that encode 37 genes. In the present study, we explore the duplication and rearrangement of tRNA genes in the mt genome of Reduvius tenebrosus, the first mt genome from the subfamily Reduviinae. The gene order rearranges from CR (control region)-trnI-trnQ-trnM-ND2 to CR-trnQ-trnI2-trnI1-trnM-ND2. We identified 23 tRNA genes, including 22 tRNAs commonly found in insects and an additional trnI (trnI2), which has high sequence similarity to trnM. We found several pseudo genes, such as pseudo-trnI, pseudo-CR, and pseudo-ND2, in the hotspot region of gene rearrangement (between the control region and ND2). These features provided evidence that this novel gene order could be explained by the tandem duplication/random loss (TDRL) model. The tRNA duplication/anticodon mutation mechanism further explains the presence of trnI2, which is remolded from a duplicated trnM in the TDRL process (through an anticodon mutation of CAT to GAT). Our study also raises new questions as to whether the two events proceed simultaneously and if the remolded tRNA gene is fully functional. Significantly, the duplicated tRNA gene in the mitochondrial genome has evolved independently at least two times within assassin bugs. PMID:27322247

  18. Duplication and Remolding of tRNA Genes in the Mitochondrial Genome of Reduvius tenebrosus (Hemiptera: Reduviidae)

    PubMed Central

    Jiang, Pei; Li, Hu; Song, Fan; Cai, Yao; Wang, Jianyun; Liu, Jinpeng; Cai, Wanzhi

    2016-01-01

    Most assassin bugs are predators that act as important natural enemies of insect pests. Mitochondrial (mt) genomes of these insects are double-strand circular DNAs that encode 37 genes. In the present study, we explore the duplication and rearrangement of tRNA genes in the mt genome of Reduvius tenebrosus, the first mt genome from the subfamily Reduviinae. The gene order rearranges from CR (control region)-trnI-trnQ-trnM-ND2 to CR-trnQ-trnI2-trnI1-trnM-ND2. We identified 23 tRNA genes, including 22 tRNAs commonly found in insects and an additional trnI (trnI2), which has high sequence similarity to trnM. We found several pseudo genes, such as pseudo-trnI, pseudo-CR, and pseudo-ND2, in the hotspot region of gene rearrangement (between the control region and ND2). These features provided evidence that this novel gene order could be explained by the tandem duplication/random loss (TDRL) model. The tRNA duplication/anticodon mutation mechanism further explains the presence of trnI2, which is remolded from a duplicated trnM in the TDRL process (through an anticodon mutation of CAT to GAT). Our study also raises new questions as to whether the two events proceed simultaneously and if the remolded tRNA gene is fully functional. Significantly, the duplicated tRNA gene in the mitochondrial genome has evolved independently at least two times within assassin bugs. PMID:27322247

  19. Evolutionary dynamism of the primate LRRC37 gene family

    PubMed Central

    Giannuzzi, Giuliana; Siswara, Priscillia; Malig, Maika; Marques-Bonet, Tomas; Mullikin, James C.; Ventura, Mario; Eichler, Evan E.

    2013-01-01

    Core duplicons in the human genome represent ancestral duplication modules shared by the majority of intrachromosomal duplication blocks within a given chromosome. These cores are associated with the emergence of novel gene families in the hominoid lineage, but their genomic organization and gene characterization among other primates are largely unknown. Here, we investigate the genomic organization and expression of the core duplicon on chromosome 17 that led to the expansion of LRRC37 during primate evolution. A comparison of the LRRC37 gene family organization in human, orangutan, macaque, marmoset, and lemur genomes shows the presence of both orthologous and species-specific gene copies in all primate lineages. Expression profiling in mouse, macaque, and human tissues reveals that the ancestral expression of LRRC37 was restricted to the testis. In the hominid lineage, the pattern of LRRC37 became increasingly ubiquitous, with significantly higher levels of expression in the cerebellum and thymus, and showed a remarkable diversity of alternative splice forms. Transfection studies in HeLa cells indicate that the human FLAG-tagged recombinant LRRC37 protein is secreted after cleavage of a transmembrane precursor and its overexpression can induce filipodia formation. PMID:23064749

  20. Gene duplication, loss and selection in the evolution of saxitoxin biosynthesis in alveolates.

    PubMed

    Murray, Shauna A; Diwan, Rutuja; Orr, Russell J S; Kohli, Gurjeet S; John, Uwe

    2015-11-01

    A group of marine dinoflagellates (Alveolata, Eukaryota), consisting of ∼10 species of the genus Alexandrium, Gymnodinium catenatum and Pyrodinium bahamense, produce the toxin saxitoxin and its analogues (STX), which can accumulate in shellfish, leading to ecosystem and human health impacts. The genes, sxt, putatively involved in STX biosynthesis, have recently been identified, however, the evolution of these genes within dinoflagellates is not clear. There are two reasons for this: uncertainty over the phylogeny of dinoflagellates; and that the sxt genes of many species of Alexandrium and other dinoflagellate genera are not known. Here, we determined the phylogeny of STX-producing and other dinoflagellates based on a concatenated eight-gene alignment. We determined the presence, diversity and phylogeny of sxtA, domains A1 and A4 and sxtG in 52 strains of Alexandrium, and a further 43 species of dinoflagellates and thirteen other alveolates. We confirmed the presence and high sequence conservation of sxtA, domain A4, in 40 strains (35 Alexandrium, 1 Pyrodinium, 4 Gymnodinium) of 8 species of STX-producing dinoflagellates, and absence from non-producing species. We found three paralogs of sxtA, domain A1, and a widespread distribution of sxtA1 in non-STX producing dinoflagellates, indicating duplication events in the evolution of this gene. One paralog, clade 2, of sxtA1 may be particularly related to STX biosynthesis. Similarly, sxtG appears to be generally restricted to STX-producing species, while three amidinotransferase gene paralogs were found in dinoflagellates. We investigated the role of positive (diversifying) selection following duplication in sxtA1 and sxtG, and found negative selection in clades of sxtG and sxtA1, clade 2, suggesting they were functionally constrained. Significant episodic diversifying selection was found in some strains in clade 3 of sxtA1, a clade that may not be involved in STX biosynthesis, indicating pressure for diversification

  1. Differential expression of duplicated peroxidase genes in the allotetraploid Brassica napus.

    PubMed

    Zhao, Jianwei; Buchwaldt, Lone; Rimmer, S Roger; Brkic, Myrtle; Bekkaoui, Diana; Hegedus, Dwayne

    2009-07-01

    Gene redundancy due to polyploidization provides a selective advantage for plant adaptation. We examined the expression patterns of two peroxidase genes (BnPOX1 and BnPOX2) in the natural allotetraploid Brassica napus and the model diploid progenitors Brassica rapa (Br) and Brassica oleracea (Bo) in response to the fungal pathogen Sclerotinia sclerotiorum. We demonstrated that the Bo homeolog of BnPOX1 was up-regulated after infection, while both BnPOX2 homeologs were down-regulated. A bias toward reciprocal expression of the homeologs of BnPOX1 in different organs in the natural allotetraploid of B. napus was also observed. These results suggest that subfunctionalization of the duplicated BnPOX genes after B. napus polyploidization as well as subneofunctionalization of the homeologs in response to this specific biotic stress has occurred. Retention of expression patterns in the diploid progenitors and the natural allotetraploid in some organs indicates that the function of peroxidase genes has been conserved during evolution.

  2. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution

    PubMed Central

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A.; Holland, Peter W.H.

    2016-01-01

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically. PMID:26865071

  3. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution.

    PubMed

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A; Holland, Peter W H

    2016-03-01

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically. PMID:26865071

  4. Differential expression of duplicated peroxidase genes in the allotetraploid Brassica napus.

    PubMed

    Zhao, Jianwei; Buchwaldt, Lone; Rimmer, S Roger; Brkic, Myrtle; Bekkaoui, Diana; Hegedus, Dwayne

    2009-07-01

    Gene redundancy due to polyploidization provides a selective advantage for plant adaptation. We examined the expression patterns of two peroxidase genes (BnPOX1 and BnPOX2) in the natural allotetraploid Brassica napus and the model diploid progenitors Brassica rapa (Br) and Brassica oleracea (Bo) in response to the fungal pathogen Sclerotinia sclerotiorum. We demonstrated that the Bo homeolog of BnPOX1 was up-regulated after infection, while both BnPOX2 homeologs were down-regulated. A bias toward reciprocal expression of the homeologs of BnPOX1 in different organs in the natural allotetraploid of B. napus was also observed. These results suggest that subfunctionalization of the duplicated BnPOX genes after B. napus polyploidization as well as subneofunctionalization of the homeologs in response to this specific biotic stress has occurred. Retention of expression patterns in the diploid progenitors and the natural allotetraploid in some organs indicates that the function of peroxidase genes has been conserved during evolution. PMID:19345111

  5. Conservation, Duplication, and Divergence of Five Opsin Genes in Insect Evolution.

    PubMed

    Feuda, Roberto; Marlétaz, Ferdinand; Bentley, Michael A; Holland, Peter W H

    2016-02-09

    Opsin proteins covalently bind to small molecular chromophores and each protein-chromophore complex is sensitive to particular wavelengths of light. Multiple opsins with different wavelength absorbance peaks are required for color vision. Comparing opsin responses is challenging at low light levels, explaining why color vision is often lost in nocturnal species. Here, we investigated opsin evolution in 27 phylogenetically diverse insect species including several transitions between photic niches (nocturnal, diurnal, and crepuscular). We find widespread conservation of five distinct opsin genes, more than commonly considered. These comprise one c-opsin plus four r-opsins (long wavelength sensitive or LWS, blue sensitive, ultra violet [UV] sensitive and the often overlooked Rh7 gene). Several recent opsin gene duplications are also detected. The diversity of opsin genes is consistent with color vision in diurnal, crepuscular, and nocturnal insects. Tests for positive selection in relation to photic niche reveal evidence for adaptive evolution in UV-sensitive opsins in day-flying insects in general, and in LWS opsins of day-flying Lepidoptera specifically.

  6. Positionally biased gene loss after whole genome duplication: Evidence from human, yeast, and plant

    PubMed Central

    Makino, Takashi; McLysaght, Aoife

    2012-01-01

    Whole genome duplication (WGD) has made a significant contribution to many eukaryotic genomes including yeast, plants, and vertebrates. Following WGD, some ohnologs (WGD paralogs) remain in the genome arranged in blocks of conserved gene order and content (paralogons). However, the most common outcome is loss of one of the ohnolog pair. It is unclear what factors, if any, govern gene loss from paralogons. Recent studies have reported physical clustering (genetic linkage) of functionally linked (interacting) genes in the human genome and propose a biological significance for the clustering of interacting genes such as coexpression or preservation of epistatic interactions. Here we conduct a novel test of a hypothesis that functionally linked genes in the same paralogon are preferentially retained in cis after WGD. We compare the number of protein–protein interactions (PPIs) between linked singletons within a paralogon (defined as cis-PPIs) with that of PPIs between singletons across paralogon pairs (defined as trans-PPIs). We find that paralogons in which the number of cis-PPIs is greater than that of trans-PPIs are significantly enriched in human and yeast. The trend is similar in plants, but it is difficult to assess statistical significance due to multiple, overlapping WGD events. Interestingly, human singletons participating in cis-PPIs tend to be classified into “response to stimulus.” We uncover strong evidence of biased gene loss after WGD, which further supports the hypothesis of biologically significant gene clusters in eukaryotic genomes. These observations give us new insight for understanding the evolution of genome structure and of protein interaction networks. PMID:22835904

  7. Open and closed evolutionary paths for drastic morphological changes, involving serial gene duplication, sub-functionalization, and selection.

    PubMed

    Abe, Gembu; Lee, Shu-Hua; Li, Ing-Jia; Chang, Chun-Ju; Tamura, Koji; Ota, Kinya G

    2016-01-01

    Twin-tail goldfish strains are examples of drastic morphological alterations that emerged through domestication. Although this mutation is known to be caused by deficiency of one of two duplicated chordin genes, it is unknown why equivalent mutations have not been observed in other domesticated fish species. Here, we compared the chordin gene morphant phenotypes of single-tail goldfish and common carp (close relatives, both of which underwent chordin gene duplication and domestication). Morpholino-induced knockdown depleted chordin gene expression in both species; however, while knockdown reproduced twin-tail morphology in single-tail goldfish, it had no effect on common carp morphology. This difference can be explained by the observation that expression patterns of the duplicated chordin genes overlap completely in common carp, but are sub-functionalized in goldfish. Our finding implies that goldfish drastic morphological changes might be enhanced by the subsequent occurrence of three different types of evolutionary event (duplication, sub-functionalization, and selection) in a certain order. PMID:27220684

  8. Open and closed evolutionary paths for drastic morphological changes, involving serial gene duplication, sub-functionalization, and selection

    PubMed Central

    Abe, Gembu; Lee, Shu-Hua; Li, Ing-Jia; Chang, Chun-Ju; Tamura, Koji; Ota, Kinya G.

    2016-01-01

    Twin-tail goldfish strains are examples of drastic morphological alterations that emerged through domestication. Although this mutation is known to be caused by deficiency of one of two duplicated chordin genes, it is unknown why equivalent mutations have not been observed in other domesticated fish species. Here, we compared the chordin gene morphant phenotypes of single-tail goldfish and common carp (close relatives, both of which underwent chordin gene duplication and domestication). Morpholino-induced knockdown depleted chordin gene expression in both species; however, while knockdown reproduced twin-tail morphology in single-tail goldfish, it had no effect on common carp morphology. This difference can be explained by the observation that expression patterns of the duplicated chordin genes overlap completely in common carp, but are sub-functionalized in goldfish. Our finding implies that goldfish drastic morphological changes might be enhanced by the subsequent occurrence of three different types of evolutionary event (duplication, sub-functionalization, and selection) in a certain order. PMID:27220684

  9. The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize

    PubMed Central

    Hughes, Thomas E.; Langdale, Jane A.

    2014-01-01

    Whole-genome duplications are a widespread feature of plant genome evolution, having been detected in all flowering plant lineages. Despite the prevalence of these events, the extent to which duplicated genes (homeolog gene pairs) functionally diverge (neofunctionalization) is unclear. We present a genome-wide analysis of molecular evolution and regulatory neofunctionalization in maize (Zea mays L.). We demonstrate that 13% of all homeolog gene pairs in maize are regulatory neofunctionalized in leaves, and that regulatory neofunctionalized genes experience enhanced purifying selection. We show that significantly more genes have been regulatory neofunctionalized in foliar leaves than in husk leaves and that both leaf types have experienced selection for distinct functional roles. Furthermore, we demonstrate that biased subgenome expression dominance occurs only in the presence of regulatory neofunctionalization and that in nonregulatory neofunctionalized genes subgenome dominance is progressively acquired during development. Taken together, our study reveals several novel insights into the evolution of maize, genes, and gene expression, and provides a general model for gene evolution following whole-genome duplication in plants. PMID:24788921

  10. Diversification of Genes Encoding Granule-Bound Starch Synthase in Monocots and Dicots Is Marked by Multiple Genome-Wide Duplication Events

    PubMed Central

    Qiu, Wen-Ming; Li, Jing; Zhou, Hui; Zhang, Qiong; Guo, Wenwu; Zhu, Tingting; Peng, Junhua; Sun, Fengjie; Li, Shaohua; Korban, Schuyler S.; Han, Yuepeng

    2012-01-01

    Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS), which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ∼251 million years ago (MYA) to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ∼165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ∼126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots. PMID:22291904

  11. Diversification of genes encoding granule-bound starch synthase in monocots and dicots is marked by multiple genome-wide duplication events.

    PubMed

    Cheng, Jun; Khan, Muhammad Awais; Qiu, Wen-Ming; Li, Jing; Zhou, Hui; Zhang, Qiong; Guo, Wenwu; Zhu, Tingting; Peng, Junhua; Sun, Fengjie; Li, Shaohua; Korban, Schuyler S; Han, Yuepeng

    2012-01-01

    Starch is one of the major components of cereals, tubers, and fruits. Genes encoding granule-bound starch synthase (GBSS), which is responsible for amylose synthesis, have been extensively studied in cereals but little is known about them in fruits. Due to their low copy gene number, GBSS genes have been used to study plant phylogenetic and evolutionary relationships. In this study, GBSS genes have been isolated and characterized in three fruit trees, including apple, peach, and orange. Moreover, a comprehensive evolutionary study of GBSS genes has also been conducted between both monocots and eudicots. Results have revealed that genomic structures of GBSS genes in plants are conserved, suggesting they all have evolved from a common ancestor. In addition, the GBSS gene in an ancestral angiosperm must have undergone genome duplication ∼251 million years ago (MYA) to generate two families, GBSSI and GBSSII. Both GBSSI and GBSSII are found in monocots; however, GBSSI is absent in eudicots. The ancestral GBSSII must have undergone further divergence when monocots and eudicots split ∼165 MYA. This is consistent with expression profiles of GBSS genes, wherein these profiles are more similar to those of GBSSII in eudicots than to those of GBSSI genes in monocots. In dicots, GBSSII must have undergone further divergence when rosids and asterids split from each other ∼126 MYA. Taken together, these findings suggest that it is GBSSII rather than GBSSI of monocots that have orthologous relationships with GBSS genes of eudicots. Moreover, diversification of GBSS genes is mainly associated with genome-wide duplication events throughout the evolutionary course of history of monocots and eudicots. PMID:22291904

  12. Functional analysis of duplicated Symbiosis Receptor Kinase (SymRK) genes during nodulation and mycorrhizal infection in soybean (Glycine max).

    PubMed

    Indrasumunar, Arief; Wilde, Julia; Hayashi, Satomi; Li, Dongxue; Gresshoff, Peter M

    2015-03-15

    Association between legumes and rhizobia results in the formation of root nodules, where symbiotic nitrogen fixation occurs. The early stages of this association involve a complex of signalling events between the host and microsymbiont. Several genes dealing with early signal transduction have been cloned, and one of them encodes the leucine-rich repeat (LRR) receptor kinase (SymRK; also termed NORK). The Symbiosis Receptor Kinase gene is required by legumes to establish a root endosymbiosis with Rhizobium bacteria as well as mycorrhizal fungi. Using degenerate primer and BAC sequencing, we cloned duplicated SymRK homeologues in soybean called GmSymRKα and GmSymRKβ. These duplicated genes have high similarity of nucleotide (96%) and amino acid sequence (95%). Sequence analysis predicted a malectin-like domain within the extracellular domain of both genes. Several putative cis-acting elements were found in promoter regions of GmSymRKα and GmSymRKβ, suggesting a participation in lateral root development, cell division and peribacteroid membrane formation. The mutant of SymRK genes is not available in soybean; therefore, to know the functions of these genes, RNA interference (RNAi) of these duplicated genes was performed. For this purpose, RNAi construct of each gene was generated and introduced into the soybean genome by Agrobacterium rhizogenes-mediated hairy root transformation. RNAi of GmSymRKβ gene resulted in an increased reduction of nodulation and mycorrhizal infection than RNAi of GmSymRKα, suggesting it has the major activity of the duplicated gene pair. The results from the important crop legume soybean confirm the joint phenotypic action of GmSymRK genes in both mycorrhizal and rhizobial infection seen in model legumes.

  13. Evolution of an Expanded Mannose Receptor Gene Family

    PubMed Central

    Staines, Karen; Hunt, Lawrence G.; Young, John R.; Butter, Colin

    2014-01-01

    Sequences of peptides from a protein specifically immunoprecipitated by an antibody, KUL01, that recognises chicken macrophages, identified a homologue of the mammalian mannose receptor, MRC1, which we called MRC1L-B. Inspection of the genomic environment of the chicken gene revealed an array of five paralogous genes, MRC1L-A to MRC1L-E, located between conserved flanking genes found either side of the single MRC1 gene in mammals. Transcripts of all five genes were detected in RNA from a macrophage cell line and other RNAs, whose sequences allowed the precise definition of spliced exons, confirming or correcting existing bioinformatic annotation. The confirmed gene structures were used to locate orthologues of all five genes in the genomes of two other avian species and of the painted turtle, all with intact coding sequences. The lizard genome had only three genes, one orthologue of MRC1L-A and two orthologues of the MRC1L-B antigen gene resulting from a recent duplication. The Xenopus genome, like that of most mammals, had only a single MRC1-like gene at the corresponding locus. MRC1L-A and MRC1L-B genes had similar cytoplasmic regions that may be indicative of similar subcellular migration and functions. Cytoplasmic regions of the other three genes were very divergent, possibly indicating the evolution of a new functional repertoire for this family of molecules, which might include novel interactions with pathogens. PMID:25390371

  14. Alu-alu recombination results in a duplication of seven exons in the lysyl hydroxylase gene in a patient with the type VI variant of Ethlers-Danlos syndrome

    SciTech Connect

    Pousi, B.; Hautala, T.; Heikkinen, J.; Pajunen, L.; Kivirikko, K.I.; Myllylae, R.

    1994-11-01

    The type VI variant of the Ethlers-Danlos syndrome (EDS) is a recessively inherited connective-tissue disorder. The characteristic features of the variant are muscular hyptonia, kyphoscoliosis, ocular manifestations, joint hypermobility, skin fragility and hyperextensibility, and other signs of connective-tissue involvement. The biochemical defect in most but not all patients is a deficiency in lysyl hydroxylase activity. Lysyl hydroxylase is an enzyme that catalyzes the formation of hydroxylysine in collagens and other proteins with collagen-like amino acid sequences. We have recently reported an apparently homozygous large-duplication rearrangement in the gene for lysyl hydroxylase, leading to the type VI variant of EDS in two siblings. We now report an identical, apparently homozygous large duplication in an unrelated 49-year-old female originally analyzed by Sussman et al. Our simple-sequence-repeat-polymorphism analysis does not support uniparental isodisomy inheritance for either of the two duplications. Furthermore, we indicate in this study that the duplication in the lysyl hydroxylase gene is caused by an Alu-Alu recombination in both families. Cloning of the junction fragment of the duplication has allowed synthesis of appropriate primers for rapid screening for this rearrangement in other families with the type VI variant of EDS. 38 refs., 6 figs.

  15. Comparative Mitogenomics of Leeches (Annelida: Clitellata): Genome Conservation and Placobdella-Specific trnD Gene Duplication

    PubMed Central

    Moya, Andrés; Siddall, Mark E.; Latorre, Amparo

    2016-01-01

    Mitochondrial DNA sequences, often in combination with nuclear markers and morphological data, are frequently used to unravel the phylogenetic relationships, population dynamics and biogeographic histories of a plethora of organisms. The information provided by examining complete mitochondrial genomes also enables investigation of other evolutionary events such as gene rearrangements, gene duplication and gene loss. Despite efforts to generate information to represent most of the currently recognized groups, some taxa are underrepresented in mitochondrial genomic databases. One such group is leeches (Annelida: Hirudinea: Clitellata). Herein, we expand our knowledge concerning leech mitochondrial makeup including gene arrangement, gene duplication and the evolution of mitochondrial genomes by adding newly sequenced mitochondrial genomes for three bloodfeeding species: Haementeria officinalis, Placobdella lamothei and Placobdella parasitica. With the inclusion of three new mitochondrial genomes of leeches, a better understanding of evolution for this organelle within the group is emerging. We found that gene order and genomic arrangement in the three new mitochondrial genomes is identical to previously sequenced members of Clitellata. Interestingly, within Placobdella, we recovered a genus-specific duplication of the trnD gene located between cox2 and atp8. We performed phylogenetic analyses using 12 protein-coding genes and expanded our taxon sampling by including GenBank sequences for 39 taxa; the analyses confirm the monophyletic status of Clitellata, yet disagree in several respects with other phylogenetic hypotheses based on morphology and analyses of non-mitochondrial data. PMID:27176910

  16. Comparative Mitogenomics of Leeches (Annelida: Clitellata): Genome Conservation and Placobdella-Specific trnD Gene Duplication.

    PubMed

    Oceguera-Figueroa, Alejandro; Manzano-Marín, Alejandro; Kvist, Sebastian; Moya, Andrés; Siddall, Mark E; Latorre, Amparo

    2016-01-01

    Mitochondrial DNA sequences, often in combination with nuclear markers and morphological data, are frequently used to unravel the phylogenetic relationships, population dynamics and biogeographic histories of a plethora of organisms. The information provided by examining complete mitochondrial genomes also enables investigation of other evolutionary events such as gene rearrangements, gene duplication and gene loss. Despite efforts to generate information to represent most of the currently recognized groups, some taxa are underrepresented in mitochondrial genomic databases. One such group is leeches (Annelida: Hirudinea: Clitellata). Herein, we expand our knowledge concerning leech mitochondrial makeup including gene arrangement, gene duplication and the evolution of mitochondrial genomes by adding newly sequenced mitochondrial genomes for three bloodfeeding species: Haementeria officinalis, Placobdella lamothei and Placobdella parasitica. With the inclusion of three new mitochondrial genomes of leeches, a better understanding of evolution for this organelle within the group is emerging. We found that gene order and genomic arrangement in the three new mitochondrial genomes is identical to previously sequenced members of Clitellata. Interestingly, within Placobdella, we recovered a genus-specific duplication of the trnD gene located between cox2 and atp8. We performed phylogenetic analyses using 12 protein-coding genes and expanded our taxon sampling by including GenBank sequences for 39 taxa; the analyses confirm the monophyletic status of Clitellata, yet disagree in several respects with other phylogenetic hypotheses based on morphology and analyses of non-mitochondrial data.

  17. Comparative Mitogenomics of Leeches (Annelida: Clitellata): Genome Conservation and Placobdella-Specific trnD Gene Duplication.

    PubMed

    Oceguera-Figueroa, Alejandro; Manzano-Marín, Alejandro; Kvist, Sebastian; Moya, Andrés; Siddall, Mark E; Latorre, Amparo

    2016-01-01

    Mitochondrial DNA sequences, often in combination with nuclear markers and morphological data, are frequently used to unravel the phylogenetic relationships, population dynamics and biogeographic histories of a plethora of organisms. The information provided by examining complete mitochondrial genomes also enables investigation of other evolutionary events such as gene rearrangements, gene duplication and gene loss. Despite efforts to generate information to represent most of the currently recognized groups, some taxa are underrepresented in mitochondrial genomic databases. One such group is leeches (Annelida: Hirudinea: Clitellata). Herein, we expand our knowledge concerning leech mitochondrial makeup including gene arrangement, gene duplication and the evolution of mitochondrial genomes by adding newly sequenced mitochondrial genomes for three bloodfeeding species: Haementeria officinalis, Placobdella lamothei and Placobdella parasitica. With the inclusion of three new mitochondrial genomes of leeches, a better understanding of evolution for this organelle within the group is emerging. We found that gene order and genomic arrangement in the three new mitochondrial genomes is identical to previously sequenced members of Clitellata. Interestingly, within Placobdella, we recovered a genus-specific duplication of the trnD gene located between cox2 and atp8. We performed phylogenetic analyses using 12 protein-coding genes and expanded our taxon sampling by including GenBank sequences for 39 taxa; the analyses confirm the monophyletic status of Clitellata, yet disagree in several respects with other phylogenetic hypotheses based on morphology and analyses of non-mitochondrial data. PMID:27176910

  18. Identification and genetic effect of a variable duplication in the promoter region of the cattle ADIPOQ gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ADIPOQ gene of cattle, is located in the vicinity of the quantitative trait locus (QTL) wich effects marbling, the rib eye muscle area and fat thickness on BTA1. In our study, a novel variable duplication (NW_003103812.1:g.9232067_9232133 dup) in the bovine ADIPOQ promoter region was identified ...

  19. Niemeyer Virus: A New Mimivirus Group A Isolate Harboring a Set of Duplicated Aminoacyl-tRNA Synthetase Genes

    PubMed Central

    Boratto, Paulo V. M.; Arantes, Thalita S.; Silva, Lorena C. F.; Assis, Felipe L.; Kroon, Erna G.; La Scola, Bernard; Abrahão, Jônatas S.

    2015-01-01

    It is well recognized that gene duplication/acquisition is a key factor for molecular evolution, being directly related to the emergence of new genetic variants. The importance of such phenomena can also be expanded to the viral world, with impacts on viral fitness and environmental adaptations. In this work we describe the isolation and characterization of Niemeyer virus, a new mimivirus isolate obtained from water samples of an urban lake in Brazil. Genomic data showed that Niemeyer harbors duplicated copies of three of its four aminoacyl-tRNA synthetase genes (cysteinyl, methionyl, and tyrosyl RS). Gene expression analysis showed that such duplications allowed significantly increased expression of methionyl and tyrosyl aaRS mRNA by Niemeyer in comparison to APMV. Remarkably, phylogenetic data revealed that Niemeyer duplicated gene pairs are different, each one clustering with a different group of mimivirus strains. Taken together, our results raise new questions about the origins and selective pressures involving events of aaRS gain and loss among mimiviruses. PMID:26635738

  20. Fifteen million years of evolution in the Oryza genus shows extensive gene family expansion.

    PubMed

    Jacquemin, Julie; Ammiraju, Jetty S S; Haberer, Georg; Billheimer, Dean D; Yu, Yeisoo; Liu, Liana C; Rivera, Luis F; Mayer, Klaus; Chen, Mingsheng; Wing, Rod A

    2014-04-01

    In analyzing gene families in the whole-genome sequences available for O. sativa (AA), O. glaberrima (AA), and O. brachyantha (FF), we observed large size expansions in the AA genomes compared to FF genomes for the super-families F-box and NB-ARC, and five additional families: the Aspartic proteases, BTB/POZ proteins (BTB), Glutaredoxins, Trypsin α-amylase inhibitor proteins, and Zf-Dof proteins. Their evolutionary dynamic was investigated to understand how and why such important size variations are observed between these closely related species. We show that expansions resulted from both amplification, largely by tandem duplications, and contraction by gene losses. For the F-box and NB-ARC gene families, the genes conserved in all species were under strong purifying selection while expanded orthologous genes were under more relaxed purifying selection. In F-box, NB-ARC, and BTB, the expanded groups were enriched in genes with little evidence of expression, in comparison with conserved groups. We also detected 87 loci under positive selection in the expanded groups. These results show that most of the duplicated copies in the expanded groups evolve neutrally after duplication because of functional redundancy but a fraction of these genes were preserved following neofunctionalization. Hence, the lineage-specific expansions observed between Oryza species were partly driven by directional selection.

  1. Structure and regulation of the Asr gene family in banana.

    PubMed

    Henry, Isabelle M; Carpentier, Sebastien C; Pampurova, Suzana; Van Hoylandt, Anais; Panis, Bart; Swennen, Rony; Remy, Serge

    2011-10-01

    Abscisic acid, stress, ripening proteins (ASR) are a family of plant-specific small hydrophilic proteins. Studies in various plant species have highlighted their role in increased resistance to abiotic stress, including drought, but their specific function remains unknown. As a first step toward their potential use in crop improvement, we investigated the structure and regulation of the Asr gene family in Musa species (bananas and plantains). We determined that the Musa Asr gene family contained at least four members, all of which exhibited the typical two exons, one intron structure of Asr genes and the "ABA/WDS" (abscisic acid/water deficit stress) domain characteristic of Asr genes. Phylogenetic analyses determined that the Musa Asr genes were closely related to each other, probably as the product of recent duplication events. For two of the four members, two versions corresponding to the two sub-genomes of Musa, acuminata and balbisiana were identified. Gene expression and protein analyses were performed and Asr expression could be detected in meristem cultures, root, pseudostem, leaf and cormus. In meristem cultures, mAsr1 and mAsr3 were induced by osmotic stress and wounding, while mAsr3 and mAsr4 were induced by exposure to ABA. mASR3 exhibited the most variation both in terms of amino acid sequence and expression pattern, making it the most promising candidate for further functional study and use in crop improvement. PMID:21630042

  2. Analysis of the Prefoldin Gene Family in 14 Plant Species.

    PubMed

    Cao, Jun

    2016-01-01

    Prefoldin is a hexameric molecular chaperone complex present in all eukaryotes and archaea. The evolution of this gene family in plants is unknown. Here, I identified 140 prefoldin genes in 14 plant species. These prefoldin proteins were divided into nine groups through phylogenetic analysis. Highly conserved gene organization and motif distribution exist in each prefoldin group, implying their functional conservation. I also observed the segmental duplication of maize prefoldin gene family. Moreover, a few functional divergence sites were identified within each group pairs. Functional network analyses identified 78 co-expressed genes, and most of them were involved in carrying, binding and kinase activity. Divergent expression profiles of the maize prefoldin genes were further investigated in different tissues and development periods and under auxin and some abiotic stresses. I also found a few cis-elements responding to abiotic stress and phytohormone in the upstream sequences of the maize prefoldin genes. The results provided a foundation for exploring the characterization of the prefoldin genes in plants and will offer insights for additional functional studies.

  3. Analysis of the Prefoldin Gene Family in 14 Plant Species

    PubMed Central

    Cao, Jun

    2016-01-01

    Prefoldin is a hexameric molecular chaperone complex present in all eukaryotes and archaea. The evolution of this gene family in plants is unknown. Here, I identified 140 prefoldin genes in 14 plant species. These prefoldin proteins were divided into nine groups through phylogenetic analysis. Highly conserved gene organization and motif distribution exist in each prefoldin group, implying their functional conservation. I also observed the segmental duplication of maize prefoldin gene family. Moreover, a few functional divergence sites were identified within each group pairs. Functional network analyses identified 78 co-expressed genes, and most of them were involved in carrying, binding and kinase activity. Divergent expression profiles of the maize prefoldin genes were further investigated in different tissues and development periods and under auxin and some abiotic stresses. I also found a few cis-elements responding to abiotic stress and phytohormone in the upstream sequences of the maize prefoldin genes. The results provided a foundation for exploring the characterization of the prefoldin genes in plants and will offer insights for additional functional studies. PMID:27014333

  4. Evolutionary characterization of pig interferon-inducible transmembrane gene family and member expression dynamics in tracheobronchial lymph nodes of pigs infected with influenza A virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have found that a cluster of duplicated gene loci encoding the interferon-inducible transmembrane proteins (IFITMs) family have antiviral activity against several viruses, including influenza A virus (IAV). Whether the duplicated members have selective viral targets, recognition patterns and...

  5. Host mitochondrial association evolved in the human parasite Toxoplasma gondii via neofunctionalization of a gene duplicate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Toxoplasma gondii, an intracellular parasite of humans and other warm-blooded animals, the ability to associate with host mitochondria (HMA) is driven by a locally expanded gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. The importance of copy number in the e...

  6. Divergent evolutionary and expression patterns between lineage specific new duplicate genes and their parental paralogs in Arabidopsis thaliana.

    PubMed

    Wang, Jun; Marowsky, Nicholas C; Fan, Chuanzhu

    2013-01-01

    Gene duplication is an important mechanism for the origination of functional novelties in organisms. We performed a comparative genome analysis to systematically estimate recent lineage specific gene duplication events in Arabidopsis thaliana and further investigate whether and how these new duplicate genes (NDGs) play a functional role in the evolution and adaption of A. thaliana. We accomplished this using syntenic relationship among four closely related species, A. thaliana, A. lyrata, Capsella rubella and Brassica rapa. We identified 100 NDGs, showing clear origination patterns, whose parental genes are located in syntenic regions and/or have clear orthologs in at least one of three outgroup species. All 100 NDGs were transcribed and under functional constraints, while 24% of the NDGs have differential expression patterns compared to their parental genes. We explored the underlying evolutionary forces of these paralogous pairs through conducting neutrality tests with sequence divergence and polymorphism data. Evolution of about 15% of NDGs appeared to be driven by natural selection. Moreover, we found that 3 NDGs not only altered their expression patterns when compared with parental genes, but also evolved under positive selection. We investigated the underlying mechanisms driving the differential expression of NDGs and their parents, and found a number of NDGs had different cis-elements and methylation patterns from their parental genes. Overall, we demonstrated that NDGs acquired divergent cis-elements and methylation patterns and may experience sub-functionalization or neo-functionalization influencing the evolution and adaption of A. thaliana.

  7. Diverged copies of the seed regulatory Opaque-2 gene by a segmental duplication in the progenitor genome of rice, sorghum, and maize.

    PubMed

    Xu, Jian-Hong; Messing, Joachim

    2008-09-01

    Comparative analyses of the sequence of entire genomes have shown that gene duplications, chromosomal segmental duplications, or even whole genome duplications (WGD) have played prominent roles in the evolution of many eukaryotic species. Here, we used the ancient duplication of a well known transcription factor in maize, encoded by the Opaque-2 (O2) locus, to examine the general features of divergences of chromosomal segmental duplications in a lineage-specific manner. We took advantage of contiguous chromosomal sequence information in rice (Oryza sativa, Nipponbare), sorghum (Sorghum bicolor, Btx623), and maize (Zea mays, B73) that were aligned by conserved gene order (synteny). This analysis showed that the maize O2 locus is contained within a 1.25 million base-pair (Mb) segment on chromosome 7, which was duplicated approximately 56 million years ago (mya) before the split of rice and maize 50 mya. The duplicated region on chromosome 1 is only half the size and contains the maize OHP gene, which does not restore the o2 mutation although it encodes a protein with the same DNA and protein binding properties in endosperm. The segmental duplication is not only found in rice, but also in sorghum, which split from maize 11.9 mya. A detailed analysis of the duplicated regions provided examples for complex rearrangements including deletions, duplications, conversions, inversions, and translocations. Furthermore, the rice and sorghum genomes appeared to be more stable than the maize genome, probably because maize underwent allotetraploidization and then diploidization. PMID:19825579

  8. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    PubMed

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases. PMID:26181593

  9. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes

    PubMed Central

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-01-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined ‘ohnologs’ after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases. PMID:26181593

  10. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.

    PubMed

    Singh, Param Priya; Arora, Jatin; Isambert, Hervé

    2015-07-01

    Whole genome duplications (WGD) have now been firmly established in all major eukaryotic kingdoms. In particular, all vertebrates descend from two rounds of WGDs, that occurred in their jawless ancestor some 500 MY ago. Paralogs retained from WGD, also coined 'ohnologs' after Susumu Ohno, have been shown to be typically associated with development, signaling and gene regulation. Ohnologs, which amount to about 20 to 35% of genes in the human genome, have also been shown to be prone to dominant deleterious mutations and frequently implicated in cancer and genetic diseases. Hence, identifying ohnologs is central to better understand the evolution of vertebrates and their susceptibility to genetic diseases. Early computational analyses to identify vertebrate ohnologs relied on content-based synteny comparisons between the human genome and a single invertebrate outgroup genome or within the human genome itself. These approaches are thus limited by lineage specific rearrangements in individual genomes. We report, in this study, the identification of vertebrate ohnologs based on the quantitative assessment and integration of synteny conservation between six amniote vertebrates and six invertebrate outgroups. Such a synteny comparison across multiple genomes is shown to enhance the statistical power of ohnolog identification in vertebrates compared to earlier approaches, by overcoming lineage specific genome rearrangements. Ohnolog gene families can be browsed and downloaded for three statistical confidence levels or recompiled for specific, user-defined, significance criteria at http://ohnologs.curie.fr/. In the light of the importance of WGD on the genetic makeup of vertebrates, our analysis provides a useful resource for researchers interested in gaining further insights on vertebrate evolution and genetic diseases.

  11. Yeast spindle pole body duplication gene MPS1 encodes an essential dual specificity protein kinase.

    PubMed Central

    Lauzé, E; Stoelcker, B; Luca, F C; Weiss, E; Schutz, A R; Winey, M

    1995-01-01

    The MPS1 gene has been previously identified by a mutant allele that shows defects in spindle pole body (SPB) duplication and cell cycle control. The SPB is the centrosome-equivalent organelle in the yeast Saccharomyces cerevisiae, and it nucleates all the microtubules in the cell. We report the isolation of the MPS1 gene, which encodes an essential protein kinase homolog. The MPS1 open reading frame has been fused to those that encode the LexA protein or the GST protein and both of these constructs function in yeast. The fusion proteins have been affinity-purified from yeast extracts and the GST chimeric protein has been found to be a phosphoprotein. Both proteins have been used to demonstrate intrinsic in vitro protein kinase activity of Mps1p against exogenous substrates and itself (autophosphorylation). A mutation predicted to abolish kinase function not only eliminates in vitro protein kinase activity, but also behaves like a null mutation in vivo, suggesting that kinase activity contributes to the essential function of the protein. Phosphoamino acid analysis of substrates phosphorylated by Mps1p indicates that this kinase can phosphorylate serine, threonine and tyrosine residues, identifying Mps1p as a dual specificity protein kinase. Images PMID:7737118

  12. Collagen duplicate genes of bone and cartilage participate during regeneration of zebrafish fin skeleton.

    PubMed

    Duran, I; Csukasi, F; Taylor, S P; Krakow, D; Becerra, J; Bombarely, A; Marí-Beffa, M

    2015-01-01

    The zebrafish fin is widely used as a model for skeleton regeneration. For years, the nature of the fin skeleton has been controversial as its extracellular matrix shows hybrid characteristics of both bone and cartilage. The presence of co-orthologs genes also increases the complexity of these tissues. In this article, we have identified and described the expression of fibrillar collagens in zebrafish fin skeleton. We found that genes coding for types I, II, V, XI and XXVII collagens are duplicated, showing in several cases, different expression domains. We also identified specific genomic features, such as the presence of type XXIV collagen and the absence of type III collagen in the zebrafish genome. Our study showed that actinotrichia-forming cells and osteoblasts synthesize a wide variety of these fibrillar collagens during fin regeneration. An intertrichial domain expressing most of the collagens was located in the transition between the mesenchyme condensations of actinotrichia and lepidotrichia and may determine an important niche associated with fin skeleton morphogenesis. We also confirmed the hybrid nature of the fin exoskeleton and provided a complete description of those fibrillar collagens expressed during the formation of the fin skeleton. PMID:26256560

  13. Collagen duplicate genes of bone and cartilage participate during regeneration of zebrafish fin skeleton.

    PubMed

    Duran, I; Csukasi, F; Taylor, S P; Krakow, D; Becerra, J; Bombarely, A; Marí-Beffa, M

    2015-01-01

    The zebrafish fin is widely used as a model for skeleton regeneration. For years, the nature of the fin skeleton has been controversial as its extracellular matrix shows hybrid characteristics of both bone and cartilage. The presence of co-orthologs genes also increases the complexity of these tissues. In this article, we have identified and described the expression of fibrillar collagens in zebrafish fin skeleton. We found that genes coding for types I, II, V, XI and XXVII collagens are duplicated, showing in several cases, different expression domains. We also identified specific genomic features, such as the presence of type XXIV collagen and the absence of type III collagen in the zebrafish genome. Our study showed that actinotrichia-forming cells and osteoblasts synthesize a wide variety of these fibrillar collagens during fin regeneration. An intertrichial domain expressing most of the collagens was located in the transition between the mesenchyme condensations of actinotrichia and lepidotrichia and may determine an important niche associated with fin skeleton morphogenesis. We also confirmed the hybrid nature of the fin exoskeleton and provided a complete description of those fibrillar collagens expressed during the formation of the fin skeleton.

  14. Whole-Genome Duplications Spurred the Functional Diversification of the Globin Gene Superfamily in Vertebrates

    PubMed Central

    Hoffmann, Federico G.; Opazo, Juan C.; Storz, Jay F.

    2012-01-01

    It has been hypothesized that two successive rounds of whole-genome duplication (WGD) in the stem lineage of vertebrates provided genetic raw materials for the evolutionary innovation of many vertebrate-specific features. However, it has seldom been possible to trace such innovations to specific functional differences between paralogous gene products that derive from a WGD event. Here, we report genomic evidence for a direct link between WGD and key physiological innovations in the vertebrate oxygen transport system. Specifically, we demonstrate that key globin proteins that evolved specialized functions in different aspects of oxidative metabolism (hemoglobin, myoglobin, and cytoglobin) represent paralogous products of two WGD events in the vertebrate common ancestor. Analysis of conserved macrosynteny between the genomes of vertebrates and amphioxus (subphylum Cephalochordata) revealed that homologous chromosomal segments defined by myoglobin + globin-E, cytoglobin, and the α-globin gene cluster each descend from the same linkage group in the reconstructed proto-karyotype of the chordate common ancestor. The physiological division of labor between the oxygen transport function of hemoglobin and the oxygen storage function of myoglobin played a pivotal role in the evolution of aerobic energy metabolism, supporting the hypothesis that WGDs helped fuel key innovations in vertebrate evolution. PMID:21965344

  15. Genome-Wide Investigation of Hsf Genes in Sesame Reveals Their Segmental Duplication Expansion and Their Active Role in Drought Stress Response

    PubMed Central

    Dossa, Komivi; Diouf, Diaga; Cissé, Ndiaga

    2016-01-01

    Sesame is a survivor crop cultivated for ages in arid areas under high temperatures and limited water conditions. Since its entire genome has been sequenced, revealing evolution, and functional characterization of its abiotic stress genes became a hot topic. In this study, we performed a whole-genome identification and analysis of Hsf gene family in sesame. Thirty genes encoding Hsf domain were found and classified into 3 major classes A, B, and C. The class A members were the most representative one and Hsf genes were distributed in 12 of the 16 linkage groups (except the LG 8, 9, 13, and 16). Evolutionary analysis revealed that, segmental duplication events which occurred around 67 MYA, were the primary force underlying Hsf genes expansion in sesame. Comparative analysis also suggested that sesame has retained most of its Hsf genes while its relatives viz. tomato and potato underwent extensive gene losses during evolution. Continuous purifying selection has played a key role in the maintenance of Hsf genes in sesame. Expression analysis of the Hsf genes in sesame revealed their putative involvement in multiple tissue-/developmental stages. Time-course expression profiling of Hsf genes in response to drought stress showed that 90% Hsfs are drought responsive. We infer that classes B-Hsfs might be the primary regulators of drought response in sesame by cooperating with some class A genes. This is the first insight into this gene family and the results provide some gene resources for future gene cloning and functional studies toward the improvement in stress tolerance of sesame. PMID:27790233

  16. Function of Partially Duplicated Human α7 Nicotinic Receptor Subunit CHRFAM7A Gene

    PubMed Central

    de Lucas-Cerrillo, Ana M.; Maldifassi, M. Constanza; Arnalich, Francisco; Renart, Jaime; Atienza, Gema; Serantes, Rocío; Cruces, Jesús; Sánchez-Pacheco, Aurora; Andrés-Mateos, Eva; Montiel, Carmen

    2011-01-01

    The neuronal α7 nicotinic receptor subunit gene (CHRNA7) is partially duplicated in the human genome forming a hybrid gene (CHRFAM7A) with the novel FAM7A gene. The hybrid gene transcript, dupα7, has been identified in brain, immune cells, and the HL-60 cell line, although its translation and function are still unknown. In this study, dupα7 cDNA has been cloned and expressed in GH4C1 cells and Xenopus oocytes to study the pattern and functional role of the expressed protein. Our results reveal that dupα7 transcript was natively translated in HL-60 cells and heterologously expressed in GH4C1 cells and oocytes. Injection of dupα7 mRNA into oocytes failed to generate functional receptors, but when co-injected with α7 mRNA at α7/dupα7 ratios of 5:1, 2:1, 1:1, 1:5, and 1:10, it reduced the nicotine-elicited α7 current generated in control oocytes (α7 alone) by 26, 53, 75, 93, and 94%, respectively. This effect is mainly due to a reduction in the number of functional α7 receptors reaching the oocyte membrane, as deduced from α-bungarotoxin binding and fluorescent confocal assays. Two additional findings open the possibility that the dominant negative effect of dupα7 on α7 receptor activity observed in vitro could be extrapolated to in vivo situations. (i) Compared with α7 mRNA, basal dupα7 mRNA levels are substantial in human cerebral cortex and higher in macrophages. (ii) dupα7 mRNA levels in macrophages are down-regulated by IL-1β, LPS, and nicotine. Thus, dupα7 could modulate α7 receptor-mediated synaptic transmission and cholinergic anti-inflammatory response. PMID:21047781

  17. A 20-basepair duplication in the human thyroid peroxidase gene results in a total iodide organification defect and congenital hypothyroidism

    SciTech Connect

    Bikker, H.; Hartog, M.T. den; Gons, M.H.; Vulsma, T.; Vijlder, J.J.M. de; Baas, F.

    1994-07-01

    In this study, the authors present the molecular basis of a total iodide organification defect causing severe congenital hypothyroidism. In the thyroid gland of the patient, thyroid peroxidase (TPO) activity and the iodination degree of thyroglobulin were below detection limits, and no TPO messenger ribonucleic acid was detectable by Northern blot analysis. Denaturing gradient gel electrophoretic analysis of the TPO gene of the patient revealed a homozygous mutation in exon 2. Sequence analysis showed the presence of a 20-basepair duplication, 47 basepairs down-stream of the ATG start codon. This duplication generates a frame shift, resulting in a termination signal in exon 3, compatible with the complete absence of TPO. Both parents of the patient are heterozygous for the same duplication, confirming the recessive mode of inheritance of the mutation. 32 refs., 4 figs.

  18. Evidence for repeated gene duplications in Tritrichomonas foetus supported by EST analysis and comparison with the Trichomonas vaginalis genome.

    PubMed

    Oyhenart, Jorge; Breccia, Javier D

    2014-12-15

    Tritrichomonas foetus causes a venereal infection in cattle; the disease has mild or no clinical manifestation in bulls, while cows may present vaginitis, placentitis, pyometra and abortion in the more severe cases. T. foetus has one of the largest known genomes among trichomonads. However molecular data are fragmentary and have minimally contributed to the understanding of the biology and pathogenesis of this protozoan. In a search of new T. foetus genes, a detailed exploration was performed using recently available expressed sequences. Genes involved in the central carbon metabolism (phosphoenol pyruvate carboxykinase, glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphosphate aldolase, thioredoxin peroxidase, alpha and beta chains of succinyl CoA synthetase, malate dehydrogenase, malate oxidoreductase and enolase) as well as in cell structure and motility (actin, α-tubulin and β-tubulin) were found duplicated and, in many cases, repeatedly duplicated. Homology analysis suggested that massive expansions might have occurred in the T. foetus genome in a similar way it was also predicted for Trichomonas vaginalis, while conservation assessment showed that duplications have been acquired after differentiation of the two species. Therefore, gene duplications might be common among these parasitic protozoans.

  19. Evidence for repeated gene duplications in Tritrichomonas foetus supported by EST analysis and comparison with the Trichomonas vaginalis genome.

    PubMed

    Oyhenart, Jorge; Breccia, Javier D

    2014-12-15

    Tritrichomonas foetus causes a venereal infection in cattle; the disease has mild or no clinical manifestation in bulls, while cows may present vaginitis, placentitis, pyometra and abortion in the more severe cases. T. foetus has one of the largest known genomes among trichomonads. However molecular data are fragmentary and have minimally contributed to the understanding of the biology and pathogenesis of this protozoan. In a search of new T. foetus genes, a detailed exploration was performed using recently available expressed sequences. Genes involved in the central carbon metabolism (phosphoenol pyruvate carboxykinase, glyceraldehyde-3-phosphate dehydrogenase, fructose-1,6-bisphosphate aldolase, thioredoxin peroxidase, alpha and beta chains of succinyl CoA synthetase, malate dehydrogenase, malate oxidoreductase and enolase) as well as in cell structure and motility (actin, α-tubulin and β-tubulin) were found duplicated and, in many cases, repeatedly duplicated. Homology analysis suggested that massive expansions might have occurred in the T. foetus genome in a similar way it was also predicted for Trichomonas vaginalis, while conservation assessment showed that duplications have been acquired after differentiation of the two species. Therefore, gene duplications might be common among these parasitic protozoans. PMID:25458117

  20. The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBD5, MBD6, and SETDB1.

    PubMed

    Cukier, Holly N; Lee, Joycelyn M; Ma, Deqiong; Young, Juan I; Mayo, Vera; Butler, Brittany L; Ramsook, Sandhya S; Rantus, Joseph A; Abrams, Alexander J; Whitehead, Patrice L; Wright, Harry H; Abramson, Ruth K; Haines, Jonathan L; Cuccaro, Michael L; Pericak-Vance, Margaret A; Gilbert, John R

    2012-12-01

    The methyl-CpG-binding domain (MBD) gene family was first linked to autism over a decade ago when Rett syndrome, which falls under the umbrella of autism spectrum disorders (ASDs), was revealed to be predominantly caused by MECP2 mutations. Since that time, MECP2 alterations have been recognized in idiopathic ASD patients by us and others. Individuals with deletions across the MBD5 gene also present with ASDs, impaired speech, intellectual difficulties, repetitive behaviors, and epilepsy. These findings suggest that further investigations of the MBD gene family may reveal additional associations related to autism. We now describe the first study evaluating individuals with ASD for rare variants in four autosomal MBD family members, MBD5, MBD6, SETDB1, and SETDB2, and expand our initial screening in the MECP2 gene. Each gene was sequenced over all coding exons and evaluated for copy number variations in 287 patients with ASD and an equal number of ethnically matched control individuals. We identified 186 alterations through sequencing, approximately half of which were novel (96 variants, 51.6%). We identified 17 ASD specific, nonsynonymous variants, four of which were concordant in multiplex families: MBD5 Tyr1269Cys, MBD6 Arg883Trp, MECP2 Thr240Ser, and SETDB1 Pro1067del. Furthermore, a complex duplication spanning of the MECP2 gene was identified in two brothers who presented with developmental delay and intellectual disability. From our studies, we provide the first examples of autistic patients carrying potentially detrimental alterations in MBD6 and SETDB1, thereby demonstrating that the MBD gene family potentially plays a significant role in rare and private genetic causes of autism.

  1. The Expanding Role of MBD Genes in Autism: Identification of a MECP2 Duplication and Novel Alterations in MBD5, MBD6, and SETDB1

    PubMed Central

    Cukier, Holly N.; Lee, Joycelyn M.; Ma, Deqiong; Young, Juan I.; Mayo, Vera; Butler, Brittany L.; Ramsook, Sandhya S.; Rantus, Joseph A.; Abrams, Alexander J.; Whitehead, Patrice L.; Wright, Harry H.; Abramson, Ruth K.; Haines, Jonathan L.; Cuccaro, Michael L.; Pericak-Vance, Margaret A.; Gilbert, John R.

    2012-01-01

    The methyl-CpG-binding domain (MBD) gene family was first linked to autism over a decade ago when Rett syndrome, which falls under the umbrella of autism spectrum disorders (ASDs), was revealed to be predominantly caused by MECP2 mutations. Since that time, MECP2 alterations have been recognized in idiopathic ASD patients by us and others. Individuals with deletions across the MBD5 gene also present with ASDs, impaired speech, intellectual difficulties, repetitive behaviors, and epilepsy. These findings suggest that further investigations of the MBD gene family may reveal additional associations related to autism. We now describe the first study evaluating individuals with ASD for rare variants in four autosomal MBD family members, MBD5, MBD6, SETDB1, and SETDB2, and expand our initial screening in the MECP2 gene. Each gene was sequenced over all coding exons and evaluated for copy number variations in 287 patients with ASD and an equal number of ethnically matched control individuals. We identified 186 alterations through sequencing, approximately half of which were novel (96 variants, 51.6%). We identified seventeen ASD specific, nonsynonymous variants, four of which were concordant in multiplex families: MBD5 Tyr1269Cys, MBD6 Arg883Trp, MECP2 Thr240Ser, and SETDB1 Pro1067del. Furthermore, a complex duplication spanning the MECP2 gene was identified in two brothers who presented with developmental delay and intellectual disability. From our studies, we provide the first examples of autistic patients carrying potentially detrimental alterations in MBD6 and SETDB1, thereby demonstrating that the MBD gene family potentially plays a significant role in rare and private genetic causes of autism. PMID:23055267

  2. Biological consequences of ancient gene acquisition and duplication in the large genome soil bacterium, ""solibacter usitatus"" strain Ellin6076

    SciTech Connect

    Challacombe, Jean F; Eichorst, Stephanie A; Xie, Gary; Kuske, Cheryl R; Hauser, Loren; Land, Miriam

    2009-01-01

    Bacterial genome sizes range from ca. 0.5 to 10Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Sequenced genomes of strains in the phylum Acidobacteria revealed that 'Solibacter usistatus' strain Ellin6076 harbors a 9.9 Mb genome. This large genome appears to have arisen by horizontal gene transfer via ancient bacteriophage and plasmid-mediated transduction, as well as widespread small-scale gene duplications. This has resulted in an increased number of paralogs that are potentially ecologically important (ecoparalogs). Low amino acid sequence identities among functional group members and lack of conserved gene order and orientation in the regions containing similar groups of paralogs suggest that most of the paralogs were not the result of recent duplication events. The genome sizes of cultured subdivision 1 and 3 strains in the phylum Acidobacteria were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 1 were estimated to have smaller genome sizes ranging from ca. 2.0 to 4.8 Mb, whereas members of subdivision 3 had slightly larger genomes, from ca. 5.8 to 9.9 Mb. It is hypothesized that the large genome of strain Ellin6076 encodes traits that provide a selective metabolic, defensive and regulatory advantage in the variable soil environment.

  3. Biological Consequences of Ancient Gene Acquisition and Duplication in the Large Genome of Candidatus Solibacter usitatus Ellin6076

    SciTech Connect

    Challacombe, Jean F; Eichorst, Stephanie A; Hauser, Loren John; Land, Miriam L; Xie, Gary; Kuske, Cheryl R

    2011-01-01

    Members of the bacterial phylum Acidobacteria are widespread in soils and sediments worldwide, and are abundant in many soils. Acidobacteria are challenging to culture in vitro, and many basic features of their biology and functional roles in the soil have not been determined. Candidatus Solibacter usitatus strain Ellin6076 has a 9.9 Mb genome that is approximately 2 5 times as large as the other sequenced Acidobacteria genomes. Bacterial genome sizes typically range from 0.5 to 10 Mb and are influenced by gene duplication, horizontal gene transfer, gene loss and other evolutionary processes. Our comparative genome analyses indicate that the Ellin6076 large genome has arisen by horizontal gene transfer via ancient bacteriophage and/or plasmid-mediated transduction, and widespread small-scale gene duplications, resulting in an increased number of paralogs. Low amino acid sequence identities among functional group members, and lack of conserved gene order and orientation in regions containing similar groups of paralogs, suggest that most of the paralogs are not the result of recent duplication events. The genome sizes of additional cultured Acidobacteria strains were estimated using pulsed-field gel electrophoresis to determine the prevalence of the large genome trait within the phylum. Members of subdivision 3 had larger genomes than those of subdivision 1, but none were as large as the Ellin6076 genome. The large genome of Ellin6076 may not be typical of the phylum, and encodes traits that could provide a selective metabolic, defensive and regulatory advantage in the soil environment.

  4. Speciation of polyploid Cyprinidae fish of common carp, crucian carp, and silver crucian carp derived from duplicated Hox genes.

    PubMed

    Yuan, Jian; He, Zhuzi; Yuan, Xiangnan; Jiang, Xiayun; Sun, Xiaowen; Zou, Shuming

    2010-09-15

    Recent studies on comparative genomics have suggested that a round of fish-specific whole genome duplication (3R) in ray-finned fishes might have occurred around 226-316 Mya. Additional genome duplication, specifically in cyprinids, may have occurred more recently after the divergence of the teleosts. The timing of this event, however, is unknown. To address this question, we sequenced four Hox genes from taxa representing the polyploid Cyprinidae fish, common carp (Cyprinus carpio, 2n=100), crucian carp (Carassius auratus auratus, 2n=100), and silver crucian carp (C. auratus gibelio, 2n=156), and then compared them with known sequences from the diploid Cyprinidae fish, blunt snout bream (Megalobrama amblycephala, 2n=48). Our results showed the presence of two distinct Hox duplicates in the genomes of common and crucian carp. Three distinct Hox sequences, one of them orthologous to a Hox gene in common carp and the other two orthologous to a Hox gene in crucian carp, were isolated in silver crucian carp, indicating a possible hybrid origin of silver crucian carp from crucian and common carp. The gene duplication resulting in the origin of the common ancestor of common and crucian carp likely occurred around 10.9-13.2 Mya. The speciations of common vs. crucian carp and silver crucian vs. crucian carp likely occurred around 8.1-11.4 and 2.3-3.0 Mya, respectively. Finally, nonfunctionalization resulting from point mutations in the coding region is a probable fate for some Hox duplicates. Taken together, these results suggested an evolutionary model for polyploidization in speciation and diversification of polyploid fish.

  5. Genomic organization of duplicated short wave-sensitive and long wave-sensitive opsin genes in the green swordtail, Xiphophorus helleri

    PubMed Central

    2010-01-01

    Background Long wave-sensitive (LWS) opsin genes have undergone multiple lineage-specific duplication events throughout the evolution of teleost fishes. LWS repertoire expansions in live-bearing fishes (family Poeciliidae) have equipped multiple species in this family with up to four LWS genes. Given that color vision, especially attraction to orange male coloration, is important to mate choice within poeciliids, LWS opsins have been proposed as candidate genes driving sexual selection in this family. To date the genomic organization of these genes has not been described in the family Poeciliidae, and little is known about the mechanisms regulating the expression of LWS opsins in any teleost. Results Two BAC clones containing the complete genomic repertoire of LWS opsin genes in the green swordtail fish, Xiphophorus helleri, were identified and sequenced. Three of the four LWS loci identified here were linked in a tandem array downstream of two tightly linked short wave-sensitive 2 (SWS2) opsin genes. The fourth LWS opsin gene, containing only a single intron, was not linked to the other three and is the product of a retrotransposition event. Genomic and phylogenetic results demonstrate that the LWS genes described here share a common evolutionary origin with those previously characterized in other poeciliids. Using qualitative RT-PCR and MSP we showed that each of the LWS and SWS2 opsins, as well as three other cone opsin genes and a single rod opsin gene, were expressed in the eyes of adult female and male X. helleri, contributing to six separate classes of adult retinal cone and rod cells with average λmax values of 365 nm, 405 nm, 459 nm, 499 nm, 534 nm and 568 nm. Comparative genomic analysis identified two candidate teleost opsin regulatory regions containing putative CRX binding sites and hormone response elements in upstream sequences of LWS gene regions of seven teleost species, including X. helleri. Conclusions We report the first complete genomic

  6. The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates.

    PubMed

    Dulai, K S; von Dornum, M; Mollon, J D; Hunt, D M

    1999-07-01

    Trichromacy in all Old World primates is dependent on separate X-linked MW and LW opsin genes that are organized into a head-to-tail tandem array flanked on the upstream side by a locus control region (LCR). The 5' regions of these two genes show homology for only the first 236 bp, although within this region, the differences are conserved in humans, chimpanzees, and two species of cercopithecoid monkeys. In contrast, most New World primates have only a single polymorphic X-linked opsin gene; all males are dichromats and trichromacy is achieved only in those females that possess a different form of this gene on each X chromosome. By sequencing the upstream region of this gene in a New World monkey, the marmoset, we have been able to demonstrate the presence of an LCR in an equivalent position to that in Old World primates. Moreover, the marmoset sequence shows extensive homology from the coding region to the LCR with the upstream sequence of the human LW gene, a distance of >3 kb, whereas homology with the human MW gene is again limited to the first 236 bp, indicating that the divergent MW sequence identifies the site of insertion of the duplicated gene. This is further supported by the presence of an incomplete Alu element on the upstream side of this insertion point in the MW gene of both humans and a cercopithecoid monkey, with additional Alu elements present further upstream. Therefore, these Alu elements may have been involved in the initial gene duplication and may also be responsible for the high frequency of gene loss and gene duplication within the opsin gene array. Full trichromacy is present in one species of New World monkey, the howler monkey, in which separate MW and LW genes are again present. In contrast to the separate genes in humans, however, the upstream sequences of the two howler genes show homology with the marmoset for at least 600 bp, which is well beyond the point of divergence of the human MW and LW genes, and each sequence is associated

  7. An 11q11-q13.3 duplication, including FGF3 and FGF4 genes, in a patient with syndromic multiple craniosynostoses.

    PubMed

    Jehee, Fernanda S; Bertola, Débora R; Yelavarthi, Krishna K; Krepischi-Santos, Ana C V; Kim, Chong; Vianna-Morgante, Angela M; Vermeesch, Joris R; Passos-Bueno, Maria Rita

    2007-08-15

    Interstitial duplications of 11q are very rare and seldom reported. In this paper we describe the first case of a duplication involving bands 11q11 and 11q12. This newly described patient has multiple craniosynostoses, congenital heart defect and developmental delay, and is a carrier of a mosaic duplication: 46,XY,dup(11)(q11-->q13.3)(29)/46,XY(6). The breakpoints were further delimited by comparative genomic hybridization microarray. We also performed fluorescent in situ hybridization analysis to determine the extension of the duplication in a patient described earlier with a duplication 11q13.5-q21. An overlapping region of less than 1.2 Mb was identified and included the duplication of genes FGF3 and FGF4 in both individuals. We discuss the possible implications of dosage effects of these genes in the onset of craniosynostosis.

  8. Diversification of the duplicated Rab1a genes in a hypoxia-tolerant fish, common carp (Cyprinus carpio).

    PubMed

    Zhao, Zi-Xia; Cao, Ding-Chen; Xu, Jian; Xu, Ru; Li, Jiong-Tang; Zhang, Yan; Xu, Peng; Sun, Xiao-Wen

    2015-10-01

    Common carp is a widely cultivated fish with longer than 2,000 years domestication history, due to its strong environmental adaptabilities, especially hypoxia tolerance. The common carp genome has experienced a very recent whole genome duplication (WGD) event. Among a large number of highly similar duplicated genes, a pair of Ras-associated binding-GTPase 1a (Rab1a) genes were found fast diverging. Four analogous Rab1a genes were identified in the common carp genome. Comparisons of gene structures and sequences indicated Rab1a-1 and Rab1a-2 was a pair of fast diverging duplicates, while Rab1a-3 and Rab1a-4 was a pair of less diverged duplicates. All putative Rab1a proteins shared conserved GTPase domain, which enabled the proteins serve as molecular switches for vesicular trafficking. Rab1a-1 and Rab1a-2 proteins varied in their C-terminal sequences, which were generally considered to encode the membrane localization signals. Differential expression patterns were observed between Rab1a-1 and Rab1a-2 genes. In blood, muscle, spleen, and heart, the mRNA level of Rab1a-1 was higher than that of Rab1a-2. In liver and intestine, the mRNA level of Rab1a-2 was higher. Expression of Rab1a-1 and Rab1a-2 showed distinct hypoxia responses. Under severe hypoxia, Rab1a-1 expression was down-regulated in blood, while Rab1a-2 expression was up-regulated in liver. Compared with the less diverged Rab1a-3/4 gene pair, common carp Rab1a-1/2 gene pair exhibited strong characteristics of sub-functionalization, which might contribute to a sophisticated and efficient Ras-dependent regulating network for the hypoxia-tolerant fish. PMID:26129846

  9. Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae

    PubMed Central

    2013-01-01

    Background The sequenced genomes of cucumber, melon and watermelon have relatively few R-genes, with 70, 75 and 55 copies only, respectively. The mechanism for low copy number of R-genes in Cucurbitaceae genomes remains unknown. Results Manual annotation of R-genes in the sequenced genomes of Cucurbitaceae species showed that approximately half of them are pseudogenes. Comparative analysis of R-genes showed frequent loss of R-gene loci in different Cucurbitaceae species. Phylogenetic analysis, data mining and PCR cloning using degenerate primers indicated that Cucurbitaceae has limited number of R-gene lineages (subfamilies). Comparison between R-genes from Cucurbitaceae and those from poplar and soybean suggested frequent loss of R-gene lineages in Cucurbitaceae. Furthermore, the average number of R-genes per lineage in Cucurbitaceae species is approximately 1/3 that in soybean or poplar. Therefore, both loss of lineages and deficient duplications in extant lineages accounted for the low copy number of R-genes in Cucurbitaceae. No extensive chimeras of R-genes were found in any of the sequenced Cucurbitaceae genomes. Nevertheless, one lineage of R-genes from Trichosanthes kirilowii, a wild Cucurbitaceae species, exhibits chimeric structures caused by gene conversions, and may contain a large number of distinct R-genes in natural populations. Conclusions Cucurbitaceae species have limited number of R-gene lineages and each genome harbors relatively few R-genes. The scarcity of R-genes in Cucurbitaceae species was due to frequent loss of R-gene lineages and infrequent duplications in extant lineages. The evolutionary mechanisms for large variation of copy number of R-genes in different plant species were discussed. PMID:23682795

  10. Compound heterozygosity for a dominant glycine substitution and a recessive internal duplication mutation in the type XVII collagen gene results in junctional epidermolysis bullosa and abnormal dentition.

    PubMed

    McGrath, J A; Gatalica, B; Li, K; Dunnill, M G; McMillan, J R; Christiano, A M; Eady, R A; Uitto, J

    1996-06-01

    Junctional epidermolysis bullosa is a heterogeneous autosomal recessively inherited blistering skin disorder associated with fragility at the dermal-epidermal junction. Previously, mutations in this condition have been described in the three genes for the anchoring filament protein laminin 5 (LAMA3, LAMB3, and LAMC2), in the gene encoding the hemidesmosome-associated beta4 integrin (ITGB4), and in the gene for the hemidesmosomal protein type XVII collagen (COL17A1/BPAG2). In this study, we report a patient with a form of junctional epidermolysis bullosa with skin fragility and dental anomalies who is a compound heterozygote for a novel combination of mutations, ie, a glycine substitution mutation in one allele and an internal duplication in the other allele of COL17A1. The patient also has two offspring, both of whom have inherited the glycine substitution mutation, whereas the other COL17A1 allele is normal. The latter individuals show no evidence of skin fragility but have marked dental abnormalities with enamel hypoplasia and pitting. The clinical phenotype of junctional epidermolysis bullosa in the proband in this family probably arises due to a combination of the glycine substitution and the internal duplication in COL17A1, whereas the dental abnormalities of her offspring may be the result of the glycine substitution in COL17A1 alone, resulting in this dominantly inherited clinical phenotype. PMID:8669466

  11. Intrachromosomal tandem duplication and repeat expansion during attempts to inactivate the subtelomeric essential gene GSH1 in Leishmania

    PubMed Central

    Mukherjee, Angana; Langston, Lance D.; Ouellette, Marc

    2011-01-01

    Gamma-glutamylcysteine synthetase encoded by GSH1 is the rate-limiting enzyme in the biosynthesis of glutathione and trypanothione in Leishmania. Attempts to generate GSH1 null mutants by gene disruption failed in Leishmania infantum. Removal of even a single allele invariably led to the generation of an extra copy of GSH1, maintaining two intact wild-type alleles. In the second and even third round of inactivation, the markers integrated at the homologous locus but always preserved two intact copies of GSH1. We probed into the mechanism of GSH1 duplication. GSH1 is subtelomeric on chromosome 18 and Southern blot analysis indicated that a 10-kb fragment flanked by 466-bp direct repeated sequences was duplicated in tandem on the same chromosomal allele each time GSH1 was targeted. Polymerase chain reaction analysis and sequencing confirmed the generation of novel junctions created at the level of the 466-bp repeats consequent to locus duplication. In loss of heterozygosity attempts, the same repeated sequences were utilized for generating extrachromosomal circular amplicons. Our results are consistent with break-induced replication as a mechanism for the generation of this regional polyploidy to compensate for the inactivation of an essential gene. This chromosomal repeat expansion through repeated sequences could be implicated in locus duplication in Leishmania. PMID:21693561

  12. Divergent spatial regulation of duplicated fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Bayır, Mehtap; Bayır, Abdulkadir; Wright, Jonathan M

    2015-06-01

    The increased use of plant oil as a dietary supplement with the resultant high dietary lipid loads challenges the lipid transport, metabolism and storage mechanisms in economically important aquaculture species, such as rainbow trout. Fatty acid-binding proteins (Fabp), ubiquitous in tissues highly active in fatty acid metabolism, participate in lipid uptake and transport, and overall lipid homeostasis. In the present study, searches of nucleotide sequence databases identified mRNA transcripts coded by 14 different fatty acid-binding protein (fabp) genes in rainbow trout (Oncorhynchus mykiss), which include the complete minimal suite of seven distinct fabp genes (fabp1, 2, 3, 6, 7, 10 and 11) discovered thus far in teleost fishes. Phylogenetic analyses suggest that many of these extant fabp genes in rainbow trout exist as duplicates, which putatively arose owing to the teleost-specific whole genome duplication (WGD); three pairs of duplicated fabp genes (fabp2a.1/fabp2a.2, fabp7b.1/fabp7b.2 and fabp10a.1/fabp10a.2) most likely were generated by the salmonid-specific WGD subsequent to the teleost-specific WGD; and fabp3 and fabp6 exist as single copy genes in the rainbow trout genome. Assay of the steady-state levels of fabp gene transcripts by RT-qPCR revealed: (1) steady-state transcript levels differ substantially between fabp genes and, in some instances, by as much as 30×10(4)-fold; (2) some fabp transcripts are widely distributed in many tissues, whereas others are restricted to one or a few tissues; and (3) divergence of regulatory mechanisms that control spatial transcription of duplicated fabp genes in rainbow trout appears related to length of time since their duplication. The suite of fabp genes described here provides the foundation to investigate the role(s) of fatty acid-binding proteins in the uptake, mobilization and storage of fatty acids in cultured fish fed diets differing in lipid content, especially the use of plant oil as a dietary supplement

  13. Ongoing resolution of duplicate gene functions shapes the diversification of a metabolic network

    PubMed Central

    Kuang, Meihua Christina; Hutchins, Paul D; Russell, Jason D; Coon, Joshua J; Hittinger, Chris Todd

    2016-01-01

    The evolutionary mechanisms leading to duplicate gene retention are well understood, but the long-term impacts of paralog differentiation on the regulation of metabolism remain underappreciated. Here we experimentally dissect the functions of two pairs of ancient paralogs of the GALactose sugar utilization network in two yeast species. We show that the Saccharomyces uvarum network is more active, even as over-induction is prevented by a second co-repressor that the model yeast Saccharomyces cerevisiae lacks. Surprisingly, removal of this repression system leads to a strong growth arrest, likely due to overly rapid galactose catabolism and metabolic overload. Alternative sugars, such as fructose, circumvent metabolic control systems and exacerbate this phenotype. We further show that S. cerevisiae experiences homologous metabolic constraints that are subtler due to how the paralogs have diversified. These results show how the functional differentiation of paralogs continues to shape regulatory network architectures and metabolic strategies long after initial preservation. DOI: http://dx.doi.org/10.7554/eLife.19027.001 PMID:27690225

  14. Duplication of the TGFBR1 gene causes features of Loeys-Dietz syndrome.

    PubMed

    Breckpot, Jeroen; Budts, Werner; De Zegher, Francis; Vermeesch, Joris R; Devriendt, Koenraad

    2010-01-01

    Loeys-Dietz syndrome (LDS; OMIM:609192) is an autosomal dominant disorder characterized by hypertelorism, bifid uvula or cleft palate, and arterial tortuosity with widespread vascular aneurysms and a high risk of aortic dissection at an early age. LDS results from mutations in the transforming growth factor beta-receptor I and II (TGFBR1 and TGFBR2) genes, altering the transmission of the subcellular TGF-β signal, mediated by increased activation of Smad2. We report on a 17-year-old boy with pubertas tarda, a bifid uvula, camptodactyly and facial dysmorphic features, suggestive of LDS. Mutation analysis of TGFBR1 and TGFBR2 was normal. By means of molecular karyotyping two previously unreported chromosomal imbalances were detected: a 120 kb deletion on chromosome 22q13.31q13.32, inherited from an unaffected parent, and a de novo 14.6 Mb duplication on chromosome 9q22.32q31.3, comprising TGFBR1. We hypothesize that copy number gain of TGFBR1 contributes to the phenotype. PMID:20813212

  15. Gene Duplication and Phenotypic Changes in the Evolution of Mammalian Metabolic Networks

    PubMed Central

    Bekaert, Michaël; Conant, Gavin C.

    2014-01-01

    Metabolic networks attempt to describe the complete suite of biochemical reactions available to an organism. One notable feature of these networks in mammals is the large number of distinct proteins that catalyze the same reaction. While the existence of these isoenzymes has long been known, their evolutionary significance is still unclear. Using a phylogenetically-aware comparative genomics approach, we infer enzyme orthology networks for sixteen mammals as well as for their common ancestors. We find that the pattern of isoenzymes copy-number alterations (CNAs) in these networks is suggestive of natural selection acting on the retention of certain gene duplications. When further analyzing these data with a machine-learning approach, we found that that the pattern of CNAs is also predictive of several important phenotypic traits, including milk composition and geographic range. Integrating tools from network analyses, phylogenetics and comparative genomics both allows the prediction of phenotypes from genetic data and represents a means of unifying distinct biological disciplines. PMID:24489850

  16. A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants.

    PubMed

    Mathews, Sarah; Clements, Mark D; Beilstein, Mark A

    2010-02-12

    Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence. PMID:20047866

  17. A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants.

    PubMed

    Mathews, Sarah; Clements, Mark D; Beilstein, Mark A

    2010-02-12

    Flowering plants represent the most significant branch in the tree of land plants, with respect to the number of extant species, their impact on the shaping of modern ecosystems and their economic importance. However, unlike so many persistent phylogenetic problems that have yielded to insights from DNA sequence data, the mystery surrounding the origin of angiosperms has deepened with the advent and advance of molecular systematics. Strong statistical support for competing hypotheses and recent novel trees from molecular data suggest that the accuracy of current molecular trees requires further testing. Analyses of phytochrome amino acids using a duplicate gene-rooting approach yield trees that unite cycads and angiosperms in a clade that is sister to a clade in which Gingko and Cupressophyta are successive sister taxa to gnetophytes plus Pinaceae. Application of a cycads + angiosperms backbone constraint in analyses of a morphological dataset yields better resolved trees than do analyses in which extant gymnosperms are forced to be monophyletic. The results have implications both for our assessment of uncertainty in trees from sequence data and for our use of molecular constraints as a way to integrate insights from morphological and molecular evidence.

  18. Extreme variability among mammalian V1R gene families

    PubMed Central

    Young, Janet M.; Massa, Hillary F.; Hsu, Li; Trask, Barbara J.

    2010-01-01

    We report an evolutionary analysis of the V1R gene family across 37 mammalian genomes. V1Rs comprise one of three chemosensory receptor families expressed in the vomeronasal organ, and contribute to pheromone detection. We first demonstrate that Trace Archive data can be used effectively to determine V1R family sizes and to obtain sequences of most V1R family members. Analyses of V1R sequences from trace data and genome assemblies show that species-specific expansions previously observed in only eight species were prevalent throughout mammalian evolution, resulting in “semi-private” V1R repertoires for most mammals. The largest families are found in mouse and platypus, whose V1R repertoires have been published previously, followed by mouse lemur and rabbit (∼215 and ∼160 intact V1Rs, respectively). In contrast, two bat species and dolphin possess no functional V1Rs, only pseudogenes, and suffered inactivating mutations in the vomeronasal signal transduction gene Trpc2. We show that primate V1R decline happened prior to acquisition of trichromatic vision, earlier during evolution than was previously thought. We also show that it is extremely unlikely that decline of the dog V1R repertoire occurred in response to selective pressures imposed by humans during domestication. Functional repertoire sizes in each species correlate roughly with anatomical observations of vomeronasal organ size and quality; however, no single ecological correlate explains the very diverse fates of this gene family in different mammalian genomes. V1Rs provide one of the most extreme examples observed to date of massive gene duplication in some genomes, with loss of all functional genes in other species. PMID:19952141

  19. Extreme variability among mammalian V1R gene families.

    PubMed

    Young, Janet M; Massa, Hillary F; Hsu, Li; Trask, Barbara J

    2010-01-01

    We report an evolutionary analysis of the V1R gene family across 37 mammalian genomes. V1Rs comprise one of three chemosensory receptor families expressed in the vomeronasal organ, and contribute to pheromone detection. We first demonstrate that Trace Archive data can be used effectively to determine V1R family sizes and to obtain sequences of most V1R family members. Analyses of V1R sequences from trace data and genome assemblies show that species-specific expansions previously observed in only eight species were prevalent throughout mammalian evolution, resulting in "semi-private" V1R repertoires for most mammals. The largest families are found in mouse and platypus, whose V1R repertoires have been published previously, followed by mouse lemur and rabbit (approximately 215 and approximately 160 intact V1Rs, respectively). In contrast, two bat species and dolphin possess no functional V1Rs, only pseudogenes, and suffered inactivating mutations in the vomeronasal signal transduction gene Trpc2. We show that primate V1R decline happened prior to acquisition of trichromatic vision, earlier during evolution than was previously thought. We also show that it is extremely unlikely that decline of the dog V1R repertoire occurred in response to selective pressures imposed by humans during domestication. Functional repertoire sizes in each species correlate roughly with anatomical observations of vomeronasal organ size and quality; however, no single ecological correlate explains the very diverse fates of this gene family in different mammalian genomes. V1Rs provide one of the most extreme examples observed to date of massive gene duplication in some genomes, with loss of all functional genes in other species. PMID:19952141

  20. Genome wide in silico characterization of Dof gene families of pigeonpea (Cajanus cajan (L) Millsp.).

    PubMed

    Malviya, N; Gupta, S; Singh, V K; Yadav, M K; Bisht, N C; Sarangi, B K; Yadav, D

    2015-02-01

    The DNA binding with One Finger (Dof) protein is a plant specific transcription factor involved in the regulation of wide range of processes. The analysis of whole genome sequence of pigeonpea has identified 38 putative Dof genes (CcDof) distributed on 8 chromosomes. A total of 17 out of 38 CcDof genes were found to be intronless. A comprehensive in silico characterization of CcDof gene family including the gene structure, chromosome location, protein motif, phylogeny, gene duplication and functional divergence has been attempted. The phylogenetic analysis resulted in 3 major clusters with closely related members in phylogenetic tree revealed common motif distribution. The in silico cis-regulatory element analysis revealed functional diversity with predominance of light responsive and stress responsive elements indicating the possibility of these CcDof genes to be associated with photoperiodic control and biotic and abiotic stress. The duplication pattern showed that tandem duplication is predominant over segmental duplication events. The comparative phylogenetic analysis of these Dof proteins along with 78 soybean, 36 Arabidopsis and 30 rice Dof proteins revealed 7 major clusters. Several groups of orthologs and paralogs were identified based on phylogenetic tree constructed. Our study provides useful information for functional characterization of CcDof genes. PMID:25344821

  1. Lateral Gene Transfer and Gene Duplication Played a Key Role in the Evolution of Mastigamoeba balamuthi Hydrogenosomes

    PubMed Central

    Nývltová, Eva; Stairs, Courtney W.; Hrdý, Ivan; Rídl, Jakub; Mach, Jan; Pačes, Jan; Roger, Andrew J.; Tachezy, Jan

    2015-01-01

    Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition. PMID:25573905

  2. Altitudinal Variation at Duplicated β-Globin Genes in Deer Mice: Effects of Selection, Recombination, and Gene Conversion

    PubMed Central

    Storz, Jay F.; Natarajan, Chandrasekhar; Cheviron, Zachary A.; Hoffmann, Federico G.; Kelly, John K.

    2012-01-01

    Spatially varying selection on a given polymorphism is expected to produce a localized peak in the between-population component of nucleotide diversity, and theory suggests that the chromosomal extent of elevated differentiation may be enhanced in cases where tandemly linked genes contribute to fitness variation. An intriguing example is provided by the tandemly duplicated β-globin genes of deer mice (Peromyscus maniculatus), which contribute to adaptive differentiation in blood–oxygen affinity between high- and low-altitude populations. Remarkably, the two β-globin genes segregate the same pair of functionally distinct alleles due to a history of interparalog gene conversion and alleles of the same functional type are in perfect coupling-phase linkage disequilibrium (LD). Here we report a multilocus analysis of nucleotide polymorphism and LD in highland and lowland mice with different genetic backgrounds at the β-globin genes. The analysis of haplotype structure revealed a paradoxical pattern whereby perfect LD between the two β-globin paralogs (which are separated by 16.2 kb) is maintained in spite of the fact that LD within both paralogs decays to background levels over physical distances of less than 1 kb. The survey of nucleotide polymorphism revealed that elevated levels of altitudinal differentiation at each of the β-globin genes drop away quite rapidly in the external flanking regions (upstream of the 5′ paralog and downstream of the 3′ paralog), but the level of differentiation remains unexpectedly high across the intergenic region. Observed patterns of diversity and haplotype structure are difficult to reconcile with expectations of a two-locus selection model with multiplicative fitness. PMID:22042573

  3. Lateral gene transfer and gene duplication played a key role in the evolution of Mastigamoeba balamuthi hydrogenosomes.

    PubMed

    Nývltová, Eva; Stairs, Courtney W; Hrdý, Ivan; Rídl, Jakub; Mach, Jan; Pačes, Jan; Roger, Andrew J; Tachezy, Jan

    2015-04-01

    Lateral gene transfer (LGT) is an important mechanism of evolution for protists adapting to oxygen-poor environments. Specifically, modifications of energy metabolism in anaerobic forms of mitochondria (e.g., hydrogenosomes) are likely to have been associated with gene transfer from prokaryotes. An interesting question is whether the products of transferred genes were directly targeted into the ancestral organelle or initially operated in the cytosol and subsequently acquired organelle-targeting sequences. Here, we identified key enzymes of hydrogenosomal metabolism in the free-living anaerobic amoebozoan Mastigamoeba balamuthi and analyzed their cellular localizations, enzymatic activities, and evolutionary histories. Additionally, we characterized 1) several canonical mitochondrial components including respiratory complex II and the glycine cleavage system, 2) enzymes associated with anaerobic energy metabolism, including an unusual D-lactate dehydrogenase and acetyl CoA synthase, and 3) a sulfate activation pathway. Intriguingly, components of anaerobic energy metabolism are present in at least two gene copies. For each component, one copy possesses an mitochondrial targeting sequence (MTS), whereas the other lacks an MTS, yielding parallel cytosolic and hydrogenosomal extended glycolysis pathways. Experimentally, we confirmed that the organelle targeting of several proteins is fully dependent on the MTS. Phylogenetic analysis of all extended glycolysis components suggested that these components were acquired by LGT. We propose that the transformation from an ancestral organelle to a hydrogenosome in the M. balamuthi lineage involved the lateral acquisition of genes encoding extended glycolysis enzymes that initially operated in the cytosol and that established a parallel hydrogenosomal pathway after gene duplication and MTS acquisition.

  4. Expression Pattern Similarities Support the Prediction of Orthologs Retaining Common Functions after Gene Duplication Events1[OPEN

    PubMed Central

    Haberer, Georg; Panda, Arup; Das Laha, Shayani; Ghosh, Tapas Chandra; Schäffner, Anton R.

    2016-01-01

    The identification of functionally equivalent, orthologous genes (functional orthologs) across genomes is necessary for accurate transfer of experimental knowledge from well-characterized organisms to others. This frequently relies on automated, coding sequence-based approaches such as OrthoMCL, Inparanoid, and KOG, which usually work well for one-to-one homologous states. However, this strategy does not reliably work for plants due to the occurrence of extensive gene/genome duplication. Frequently, for one query gene, multiple orthologous genes are predicted in the other genome, and it is not clear a priori from sequence comparison and similarity which one preserves the ancestral function. We have studied 11 organ-dependent and stress-induced gene expression patterns of 286 Arabidopsis lyrata duplicated gene groups and compared them with the respective Arabidopsis (Arabidopsis thaliana) genes to predict putative expressologs and nonexpressologs based on gene expression similarity. Promoter sequence divergence as an additional tool to substantiate functional orthology only partially overlapped with expressolog classification. By cloning eight A. lyrata homologs and complementing them in the respective four Arabidopsis loss-of-function mutants, we experimentally proved that predicted expressologs are indeed functional orthologs, while nonexpressologs or nonfunctionalized orthologs are not. Our study demonstrates that even a small set of gene expression data in addition to sequence homologies are instrumental in the assignment of functional orthologs in the presence of multiple orthologs. PMID:27303025

  5. Ultra Large Gene Families: A Matter of Adaptation or Genomic Parasites?

    PubMed Central

    Schiffer, Philipp H.; Gravemeyer, Jan; Rauscher, Martina; Wiehe, Thomas

    2016-01-01

    Gene duplication is an important mechanism of molecular evolution. It offers a fast track to modification, diversification, redundancy or rescue of gene function. However, duplication may also be neutral or (slightly) deleterious, and often ends in pseudo-geneisation. Here, we investigate the phylogenetic distribution of ultra large gene families on long and short evolutionary time scales. In particular, we focus on a family of NACHT-domain and leucine-rich-repeat-containing (NLR)-genes, which we previously found in large numbers to occupy one chromosome arm of the zebrafish genome. We were interested to see whether such a tight clustering is characteristic for ultra large gene families. Our data reconfirm that most gene family inflations are lineage-specific, but we can only identify very few gene clusters. Based on our observations we hypothesise that, beyond a certain size threshold, ultra large gene families continue to proliferate in a mechanism we term “run-away evolution”. This process might ultimately lead to the failure of genomic integrity and drive species to extinction. PMID:27509525

  6. Sporadic Gene Loss After Duplication Is Associated with Functional Divergence of Sirtuin Deacetylases Among Candida Yeast Species

    PubMed Central

    Rupert, Christopher B.; Heltzel, Justin M. H.; Taylor, Derek J.; Rusche, Laura N.

    2016-01-01

    Gene duplication promotes the diversification of protein functions in several ways. Ancestral functions can be partitioned between the paralogs, or a new function can arise in one paralog. These processes are generally viewed as unidirectional. However, paralogous proteins often retain related functions and can substitute for one another. Moreover, in the event of gene loss, the remaining paralog might regain ancestral functions that had been shed. To explore this possibility, we focused on the sirtuin deacetylase SIR2 and its homolog HST1 in the CTG clade of yeasts. HST1 has been consistently retained throughout the clade, whereas SIR2 is only present in a subset of species. These NAD+-dependent deacetylases generate condensed chromatin that represses transcription and stabilizes tandemly repeated sequences. By analyzing phylogenetic trees and gene order, we found that a single duplication of the SIR2/HST1 gene occurred, likely prior to the emergence of the CTG clade. This ancient duplication was followed by at least two independent losses of SIR2. Functional characterization of Sir2 and Hst1 in three species revealed that these proteins have not maintained consistent functions since the duplication. In particular, the rDNA locus is deacetylated by Sir2 in Candida albicans, by Hst1 in C. lusitaniae, and by neither paralog in C. parapsilosis. In addition, the subtelomeres in C. albicans are deacetylated by Sir2 rather than by Hst1, which is orthologous to the sirtuin associated with Saccharomyces cerevisiae subtelomeres. These differences in function support the model that sirtuin deacetylases can regain ancestral functions to compensate for gene loss. PMID:27543294

  7. Directed evolution induces tributyrin hydrolysis in a virulence factor of Xylella fastidiosa using a duplicated gene as a template.

    PubMed

    Gouran, Hossein; Chakraborty, Sandeep; Rao, Basuthkar J; Asgeirsson, Bjarni; Dandekar, Abhaya

    2014-01-01

    Duplication of genes is one of the preferred ways for natural selection to add advantageous functionality to the genome without having to reinvent the wheel with respect to catalytic efficiency and protein stability. The duplicated secretory virulence factors of Xylella fastidiosa (LesA, LesB and LesC), implicated in Pierce's disease of grape and citrus variegated chlorosis of citrus species, epitomizes the positive selection pressures exerted on advantageous genes in such pathogens. A deeper insight into the evolution of these lipases/esterases is essential to develop resistance mechanisms in transgenic plants. Directed evolution, an attempt to accelerate the evolutionary steps in the laboratory, is inherently simple when targeted for loss of function. A bigger challenge is to specify mutations that endow a new function, such as a lost functionality in a duplicated gene. Previously, we have proposed a method for enumerating candidates for mutations intended to transfer the functionality of one protein into another related protein based on the spatial and electrostatic properties of the active site residues (DECAAF). In the current work, we present in vivo validation of DECAAF by inducing tributyrin hydrolysis in LesB based on the active site similarity to LesA. The structures of these proteins have been modeled using RaptorX based on the closely related LipA protein from Xanthomonas oryzae. These mutations replicate the spatial and electrostatic conformation of LesA in the modeled structure of the mutant LesB as well, providing in silico validation before proceeding to the laborious in vivo work. Such focused mutations allows one to dissect the relevance of the duplicated genes in finer detail as compared to gene knockouts, since they do not interfere with other moonlighting functions, protein expression levels or protein-protein interaction. PMID:25717364

  8. Evolutionary expansion, gene structure, and expression of the rice wall-associated kinase gene family.

    PubMed

    Zhang, Shibo; Chen, Calvin; Li, Lei; Meng, Ling; Singh, Jaswinder; Jiang, Ning; Deng, Xing-Wang; He, Zheng-Hui; Lemaux, Peggy G

    2005-11-01

    The wall-associated kinase (WAK) gene family, one of the receptor-like kinase (RLK) gene families in plants, plays important roles in cell expansion, pathogen resistance, and heavy-metal stress tolerance in Arabidopsis (Arabidopsis thaliana). Through a reiterative database search and manual reannotation, we identified 125 OsWAK gene family members from rice (Oryza sativa) japonica cv Nipponbare; 37 (approximately 30%) OsWAKs were corrected/reannotated from earlier automated annotations. Of the 125 OsWAKs, 67 are receptor-like kinases, 28 receptor-like cytoplasmic kinases, 13 receptor-like proteins, 12 short genes, and five pseudogenes. The two-intron gene structure of the Arabidopsis WAK/WAK-Likes is generally conserved in OsWAKs; however, extra/missed introns were observed in some OsWAKs either in extracellular regions or in protein kinase domains. In addition to the 38 OsWAKs with full-length cDNA sequences and the 11 with rice expressed sequence tag sequences, gene expression analyses, using tiling-microarray analysis of the 20 OsWAKs on chromosome 10 and reverse transcription-PCR analysis for five OsWAKs, indicate that the majority of identified OsWAKs are likely expressed in rice. Phylogenetic analyses of OsWAKs, Arabidopsis WAK/WAK-Likes, and barley (Hordeum vulgare) HvWAKs show that the OsWAK gene family expanded in the rice genome due to lineage-specific expansion of the family in monocots. Localized gene duplications appear to be the primary genetic event in OsWAK gene family expansion and the 125 OsWAKs, present on all 12 chromosomes, are mostly clustered. PMID:16286450

  9. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    PubMed

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  10. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    PubMed

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants. PMID:26849139

  11. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.)

    PubMed Central

    Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I–III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants. PMID:26849139

  12. [The origin of novel proteins by gene duplication: what is common in evolution of the color-sensitive pigment proteins and translation termination factors].

    PubMed

    Zhuravleva, G A; Inge-Vechtomov, S G

    2009-01-01

    The review is discussing a role of duplications in evolution, including events from genes to genomes duplications. The important role of duplications is their participation in the block-modular reorganizations leading to a combination of fragments from various genes. Examples of gene duplications leading to occurrence of proteins with divergent functions are shown. For instance, human and Old World monkey trichromatic vision has arisen due to consecutive duplications of the genes encoding color-sensitive pigment proteins, and their subsequent divergence. Many proteins participating in regulation and the control of protein synthesis have resulted from series of gene duplications that has led to origin of modern translation elongation and termination factors. It is supposed, that proteins participating in the control of newly synthesized mRNA quality have arisen also due to duplication of the genes encoding ancient translation elongation factors. Their subsequent divergence has led to the origin of proteins with the new properties, but already unable to participate in the control of translation. PMID:19899624

  13. [The origin of novel proteins by gene duplication: what is common in evolution of the color-sensitive pigment proteins and translation termination factors].

    PubMed

    Zhuravleva, G A; Inge-Vechtomov, S G

    2009-01-01

    The review is discussing a role of duplications in evolution, including events from genes to genomes duplications. The important role of duplications is their participation in the block-modular reorganizations leading to a combination of fragments from various genes. Examples of gene duplications leading to occurrence of proteins with divergent functions are shown. For instance, human and Old World monkey trichromatic vision has arisen due to consecutive duplications of the genes encoding color-sensitive pigment proteins, and their subsequent divergence. Many proteins participating in regulation and the control of protein synthesis have resulted from series of gene duplications that has led to origin of modern translation elongation and termination factors. It is supposed, that proteins participating in the control of newly synthesized mRNA quality have arisen also due to duplication of the genes encoding ancient translation elongation factors. Their subsequent divergence has led to the origin of proteins with the new properties, but already unable to participate in the control of translation.

  14. Gene Expression Variation in Duplicate Lactate dehydrogenase Genes: Do Ecological Species Show Distinct Responses?

    PubMed Central

    Cristescu, Melania E.; Demiri, Bora; Altshuler, Ianina; Crease, Teresa J.

    2014-01-01

    Lactate dehydrogenase (LDH) has been shown to play an important role in adaptation of several aquatic species to different habitats. The genomes of Daphnia pulex, a pond species, and Daphnia pulicaria, a lake inhabitant, encode two L-LDH enzymes, LDHA and LDHB. We estimated relative levels of Ldh gene expression in these two closely related species and their hybrids in four environmental settings, each characterized by one of two temperatures (10°C or 20°C), and one of two concentrations of dissolved oxygen (DO; 6.5–7 mg/l or 2–3 mg/l). We found that levels of LdhA expression were 4 to 48 times higher than LdhB expression (p<0.005) in all three groups (the two parental species and hybrids). Moreover, levels of LdhB expression differed significantly (p<0.05) between D. pulex and D. pulicaria, but neither species differed from the hybrid. Consistently higher expression of LdhA relative to LdhB in both species and the hybrid suggests that the two isozymes could be performing different functions. No significant differences in levels of gene expression were observed among the four combinations of temperature and dissolved oxygen (p>0.1). Given that Daphnia dwell in environmen