40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
...), or (e) of this section. (c) Whole vehicle refueling durability demonstration. The following procedures must be used when conducting a whole vehicle durability demonstration: (1) Mileage accumulation... available fuels, including the Tier 2 requirement to include alcohol fuel; (3) Vibration of components; (4...
40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
...), or (e) of this section. (c) Whole vehicle refueling durability demonstration. The following procedures must be used when conducting a whole vehicle durability demonstration: (1) Mileage accumulation... available fuels, including the Tier 2 requirement to include alcohol fuel; (3) Vibration of components; (4...
40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (c) Whole vehicle refueling durability demonstration. The following procedures must be used when conducting a whole vehicle durability demonstration: (1) Mileage accumulation must be conducted using the SRC... Tier 2 requirement to include alcohol fuel; (3) Vibration of components; (4) Deterioration of hoses...
40 CFR 86.1825-01 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Durability demonstration procedures for refueling emissions. 86.1825-01 Section 86.1825-01 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance...
40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Durability demonstration procedures for refueling emissions. 86.1825-08 Section 86.1825-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance...
40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Durability demonstration procedures for evaporative emissions. This section applies to gasoline-, methanol... constituents. (iv) For flexible-fueled, dual-fueled, multi-fueled, ethanol-fueled and methanol-fueled vehicles... obtained under §§ 86.1845-01, 86.1846-01, 86.1847-01 or from other sources shall be used by the...
40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Durability demonstration procedures for evaporative emissions. This section applies to gasoline-, methanol... constituents. (iv) For flexible-fueled, dual-fueled, multi-fueled, ethanol-fueled and methanol-fueled vehicles... obtained under §§ 86.1845-01, 86.1846-01, 86.1847-01 or from other sources shall be used by the...
40 CFR 86.1825-08 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... specified in § 86.1805, or (ii) At least 75 percent of the full useful life mileage. In which case, the... Durability demonstration procedures for refueling emissions. This section applies to 2008 and later model... emission levels and deterioration in actual use over the full useful life of candidate in-use vehicles of...
40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Discussion of the manufacturer's in-use verification procedures including testing performed, vehicle... performed should also be documented in the manufacturer's submission. The in-use verification program shall...), the Alternate Service Accumulation Durability Program described in § 86.094-13(e) or the Standard Self...
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... delivers the appropriate exhaust flow, exhaust constituents, and exhaust temperature to the face of the... vehicles. (2) This data set must consist of randomly procured vehicles from actual customer use. The... equivalency factor. (C) The manufacturer must submit an analysis which evaluates whether the durability...
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... judgement, a catalyst aging bench that follows the SBC and delivers the appropriate exhaust flow, exhaust... set must consist of randomly procured vehicles from actual customer use. The vehicles selected for... submit an analysis which evaluates whether the durability objective will be achieved for the vehicle...
40 CFR 86.1824-07 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In-Use Light-Duty Vehicles, Light-Duty Trucks, and Complete Otto-Cycle Heavy-Duty Vehicles § 86.1824-07...
Code of Federal Regulations, 2010 CFR
2010-07-01
... DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a) Maintenance during the durability evaluation can best be considered in three separate categories: (1) Normal... durability evaluation in this program will probably have considerable mileage accumulation and unknown...
Carroll, Thomas L; Dezube, Aaron; Bauman, Laura A; Mallur, Pavan S
2018-02-01
Clinical indications for vocal fold injection augmentation (VFI) are expanding. Prior studies demonstrate the benefit of trial VFI for select causes of glottic insufficiency. No studies have examined trial VFI for glottic insufficiency resulting from true vocal fold (TVF) scar. Retrospective chart review of patients who underwent trial VFI for a dominant pathology of TVF scar causing dysphonia. Patients who subsequently underwent durable augmentation were identified. The primary study outcome was the difference in Voice Handicap Index-10 (VHI-10) score from pretrial VFI to post-durable augmentation. Twenty-eight patients underwent trial VFI for TVF scar, 22 of whom reported a positive response. Fifteen of 22 subjects who underwent durable augmentation had viable data for analysis. Mean VHI-10 improved from 26.9 to 18.6 ( P < .05), for a delta VHI-10 of 8.3, or 30.9% improvement. Twelve of the 15 (80%) showed a clinically significant improvement (delta VHI-10 >5). A trial VFI is a potentially useful, low-risk procedure that appears to help the patient and clinician identify when global augmentation might improve the voice when vocal fold scar is present. Patients who reported successful trial VFI often demonstrated significant improvement in their VHI-10 after subsequent durable augmentation.
40 CFR 86.1825-01 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... shall use good engineering judgment in determining this process. (a) Service accumulation method. (1.... The manufacturer shall use good engineering judgement in developing this method. (2) The manufacturers... programs, all emission control components and systems (including both hardware and software) must be...
[GERD: endoscopic antireflux therapies].
Caca, K
2006-08-02
A couple of minimally-invasive, endoscopic antireflux procedures have been developed during the last years. Beside endoscopic suturing these included injection/implantation technique of biopolymers and application of radiofrequency. Radiofrequency (Stretta) has proved only a very modest effect, while implantation techniques have been abandoned due to lack of long-term efficacy (Gatekeeper) or serious side effects (Enteryx). While first generation endoluminal suturing techniques (EndoCinch, ESD) demonstrated a proof of principle their lack of durability, due to suture loss, led to the development of a potentially durable transmural plication technique (Plicator). In a prospective-randomized, sham-controlled trial the Plicator procedure proved superiority concerning reflux symptoms, medication use and esophageal acid exposure (24-h-pH-metry). While long-term data have to be awaited to draw final conclusions, technical improvements will drive innovation in this field.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Acceptable Exhaust Regeneration Durability-Data Test Schedule for Diesel Cycle Vehicles Equipped With... Appendix XV to Part 86—Procedure for Determining an Acceptable Exhaust Regeneration Durability-Data Test... = Total number of regeneration emission tests. (Subscript “s” refers to standard test schedule) 5. Refer...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Acceptable Exhaust Regeneration Durability-Data Test Schedule for Diesel Cycle Vehicles Equipped With... Appendix XV to Part 86—Procedure for Determining an Acceptable Exhaust Regeneration Durability-Data Test... = Total number of regeneration emission tests. (Subscript “s” refers to standard test schedule) 5. Refer...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Acceptable Exhaust Regeneration Durability-Data Test Schedule for Diesel Cycle Vehicles Equipped With... Appendix XV to Part 86—Procedure for Determining an Acceptable Exhaust Regeneration Durability-Data Test... = Total number of regeneration emission tests. (Subscript “s” refers to standard test schedule) 5. Refer...
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... deterioration rate and emission level that effectively represents a significant majority of the distribution of... stabilize the permeability of all non-metallic fuel and evaporative system components to the mileage... permeability of evaporative and fuel system components. The manufacturer must also provide information...
40 CFR 86.1825-01 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... life. The manufacturer shall use good engineering judgment in determining this process. (a) Service... full useful life. The manufacturer shall use good engineering judgement in developing this method. (2... accumulation programs, all emission control components and systems (including both hardware and software) must...
40 CFR 86.1825-01 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... life. The manufacturer shall use good engineering judgment in determining this process. (a) Service... full useful life. The manufacturer shall use good engineering judgement in developing this method. (2... accumulation programs, all emission control components and systems (including both hardware and software) must...
40 CFR 86.1825-01 - Durability demonstration procedures for refueling emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... life. The manufacturer shall use good engineering judgment in determining this process. (a) Service... full useful life. The manufacturer shall use good engineering judgement in developing this method. (2... accumulation programs, all emission control components and systems (including both hardware and software) must...
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... § 86.1801. Eligible small volume manufacturers or small volume test groups may optionally meet the...
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... § 86.1801. Eligible small volume manufacturers or small volume test groups may optionally meet the...
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for evaporative emissions. Eligible small-volume manufacturers or small-volume test groups may...-based measurements except the bleed emission test. The standard for bleed emissions applies for the full... manufacturer must conduct at least one evaporative emission test at each of the five different mileage points...
40 CFR 86.1824-08 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the applicability provisions of § 86.1801. Eligible small volume manufacturers or small volume test... manufacturer must conduct at least one evaporative emission test at each of the five different mileage points... the highest mileage point run during mileage accumulation (e.g. the full useful life mileage...
40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... over their full useful life. The manufacturer shall use good engineering judgment in determining this... actual use over its full useful life. The manufacturer shall use good engineering judgement in developing... hardware and software) must be installed and operating for the entire mileage accumulation period. (ii...
40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... over their full useful life. The manufacturer shall use good engineering judgment in determining this... actual use over its full useful life. The manufacturer shall use good engineering judgement in developing... hardware and software) must be installed and operating for the entire mileage accumulation period. (ii...
40 CFR 86.1824-01 - Durability demonstration procedures for evaporative emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... their full useful life. The manufacturer shall use good engineering judgment in determining this process... actual use over its full useful life. The manufacturer shall use good engineering judgement in developing... hardware and software) must be installed and operating for the entire mileage accumulation period. (ii...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability tests. The Administrator may determine that a device under evaluation will require durability testing in...
40 CFR 610.33 - Durability tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... applied. After identification of a potential failure mode, durability tests may be conducted to... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Durability tests. 610.33 Section 610... RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.33 Durability...
40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (including both hardware and software) must be installed and operating for the entire mileage accumulation... decimal places) from the regression analysis; the result shall be rounded to three-decimal places of... less than one shall be changed to one for the purposes of this paragraph. (2) An additive DF will be...
40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... intermediate useful life and shall be consistent with good engineering judgment. The Administrator will approve... (including both hardware and software) must be installed and operating for the entire mileage accumulation... according to the provisions of § 86.1839-01 using good engineering judgment. (2) For the 2001, 2002, and...
40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... intermediate useful life and shall be consistent with good engineering judgment. The Administrator will approve... (including both hardware and software) must be installed and operating for the entire mileage accumulation... according to the provisions of § 86.1839-01 using good engineering judgment. (2) For the 2001, 2002, and...
40 CFR 86.1823-01 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... useful life and shall be consistent with good engineering judgment. The Administrator will approve the... (including both hardware and software) must be installed and operating for the entire mileage accumulation... according to the provisions of § 86.1839-01 using good engineering judgment. (2) For the 2001, 2002, and...
Durability of geosynthetics for highway applications
DOT National Transportation Integrated Search
2001-01-01
The research results described in this TechBrief are from four volumes on the subject of durability of geosynthetics for highway applications. Various aspects of geosynthetic durability were addressed in order to develop procedures that could be used...
Durability of geosynthetics for highway applications : Tech brief.
DOT National Transportation Integrated Search
2000-01-01
The research results described herein are included in four volumes on the : subject of Durability of Geosynthetics for Highway Applications. Various : aspects of geosynthetic durability were addressed in order to develop : procedures that could be us...
40 CFR 86.1823-08 - Durability demonstration procedures for exhaust emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... volume test groups may optionally meet the requirements of §§ 86.1838-01 and 86.1826-01 in lieu of the...
The Effect of Joint Control Training on the Acquisition and Durability of a Sequencing Task
ERIC Educational Resources Information Center
DeGraaf, Allison; Schlinger, Henry D., Jr.
2012-01-01
Gutierrez (2006) experimentally demonstrated the effects of joint control and particularly the role of response mediation in the sequencing behavior of adults using an unfamiliar language. The purpose of the current study was to replicate and extend the procedures used by Gutierrez by comparing the effects of joint control training with the…
40 CFR 85.2114 - Basis of certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... an alternative, the aftermarket part manufacturer may use a different durability procedure if it can..., appendix IV. As an alternative, the aftermarket part manufacturer may use a different durability procedure..., appendix IV can be used. As an alternative, the aftermarket part manufacturer may use a different...
Peroral endoscopic myotomy: An emerging minimally invasive procedure for achalasia
Vigneswaran, Yalini; Ujiki, Michael B
2015-01-01
Peroral endoscopic myotomy (POEM) is an emerging minimally invasive procedure for the treatment of achalasia. Due to the improvements in endoscopic technology and techniques, this procedure allows for submucosal tunneling to safely endoscopically create a myotomy across the hypertensive lower esophageal sphincter. In the hands of skilled operators and experienced centers, the most common complications of this procedure are related to insufflation and accumulation of gas in the chest and abdominal cavities with relatively low risks of devastating complications such as perforation or delayed bleeding. Several centers worldwide have demonstrated the feasibility of this procedure in not only early achalasia but also other indications such as redo myotomy, sigmoid esophagus and spastic esophagus. Short-term outcomes have showed great clinical efficacy comparable to laparoscopic Heller myotomy (LHM). Concerns related to postoperative gastroesophageal reflux remain, however several groups have demonstrated comparable clinical and objective measures of reflux to LHM. Although long-term outcomes are necessary to better understand durability of the procedure, POEM appears to be a promising new procedure. PMID:26468336
40 CFR 86.1728-99 - Compliance with emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... part to test for irregular data from a durability-data set. If any data point is identified as a... apply both the outlier procedure and averaging to the same data set, the outlier procedure shall be... shall be determined from the exhaust emission results of the durability-data vehicle(s) for each engine...
40 CFR 86.1728-99 - Compliance with emission standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... part to test for irregular data from a durability-data set. If any data point is identified as a... apply both the outlier procedure and averaging to the same data set, the outlier procedure shall be... shall be determined from the exhaust emission results of the durability-data vehicle(s) for each engine...
40 CFR 86.1728-99 - Compliance with emission standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... part to test for irregular data from a durability-data set. If any data point is identified as a... apply both the outlier procedure and averaging to the same data set, the outlier procedure shall be... shall be determined from the exhaust emission results of the durability-data vehicle(s) for each engine...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Procedure for Determining an Acceptable Exhaust Regeneration Durability-Data Test Schedule for Diesel Cycle Vehicles Equipped With... Schedule for Diesel Cycle Vehicles Equipped With Periodically Regenerating Trap Oxidizer Systems Certifying...
Legemate, Jaap D; Kamphuis, Guido M; Freund, Jan Erik; Baard, Joyce; Zanetti, Stefano P; Catellani, Michele; Oussoren, Harry W; de la Rosette, Jean J
2018-03-10
Flexible ureteroscopy is an established treatment modality for evaluating and treating abnormalities in the upper urinary tract. Reusable ureteroscope (USC) durability is a significant concern. To evaluate the durability of the latest generation of digital and fiber optic reusable flexible USCs and the factors affecting it. Six new flexible USCs from Olympus and Karl Storz were included. The primary endpoint for each USC was its first repair. Data on patient and treatment characteristics, accessory device use, ureteroscopy time, image quality, USC handling, disinfection cycles, type of damage, and deflection loss were collected prospectively. Ureteroscopy. USC durability was measured as the total number of uses and ureteroscopy time before repair. USC handling and image quality were scored. After every procedure, maximal ventral and dorsal USC deflection were documented on digital images. A total of 198 procedures were performed. The median number of procedures was 27 (IQR 16-48; 14h) for the six USCs overall, 27 (IQR 20-56; 14h) for the digital USCs, and 24 (range 10-37; 14h) for the fiber optic USCs. Image quality remained high throughout the study for all six USCs. USC handling and the range of deflection remained good under incremental use. Damage to the distal part of the shaft and shaft coating was the most frequent reason for repair, and was related to intraoperative manual forcing. A limitation of this study is its single-center design. The durability of the latest reusable flexible USCs in the current study was limited to 27 uses (14h). Damage to the flexible shaft was the most important limitation to the durability of the USCs evaluated. Prevention of intraoperative manual forcing of flexible USCs maximizes their overall durability. Current flexible ureteroscopes proved to be durable. Shaft vulnerability was the most important limiting factor affecting durability. Copyright © 2018 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Programming "loose training" as a strategy to facilitate language generalization.
Campbell, C R; Stremel-Campbell, K
1982-01-01
This study investigated the generalization of spontaneous complex language behavior across a nontraining setting and the durability of generalization as a result of programming and "loose training" strategy. A within-subject, across-behaviors multiple-baseline design was used to examine the performance of two moderately retarded students in the use of is/are across three syntactic structures (i.e., "wh" questions, "yes/no" reversal questions, and statements). The language training procedure used in this study represented a functional example of programming "loose training." The procedure involved conducting concurrent language training within the context of an academic training task, and establishing a functional reduction in stimulus control by permitting the student to initiate a language response based on a wide array of naturally occurring stimulus events. Concurrent probes were conducted in the free play setting to assess the immediate generalization and the durability of the language behaviors. The results demonstrated that "loose training" was effective in establishing a specific set of language responses with the participants of this investigation. Further, both students demonstrated spontaneous use of the language behavior in the free play generalization setting and a trend was clearly evident for generalization to continue across time. Thus, the methods used appear to be successful for training the use of is/are in three syntactic structures. PMID:7118759
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2001-01-01
This report includes the results of a research in which the COmposite Durability STRuctural ANalysis (CODSTRAN) computational simulation capabilities were augmented and applied to various structures for demonstration of the new features and verification. The first chapter of this report provides an introduction to the computational simulation or virtual laboratory approach for the assessment of damage and fracture progression characteristics in composite structures. The second chapter outlines the details of the overall methodology used, including the failure criteria and the incremental/iterative loading procedure with the definitions of damage, fracture, and equilibrium states. The subsequent chapters each contain an augmented feature of the code and/or demonstration examples. All but one of the presented examples contains laminated composite structures with various fiber/matrix constituents. For each structure simulated, damage initiation and progression mechanisms are identified and the structural damage tolerance is quantified at various degradation stages. Many chapters contain the simulation of defective and defect free structures to evaluate the effects of existing defects on structural durability.
Advances in Thin Film Thermocouple Durability Under High Temperature and Pressure Testing Conditions
NASA Technical Reports Server (NTRS)
Martin, Lisa C.; Fralick, Gustave C.; Taylor, Keith F.
1999-01-01
Thin film thermocouples for measuring material surface temperature have been previously demonstrated on several material systems and in various hostile test environments. A well-developed thin film fabrication procedure utilizing shadow masking for patterning the sensors elements had produced thin films with sufficient durability for applications in high temperature and pressure environments that exist in air-breathing and hydrogen-fueled burner rig and engine test facilities. However, while shadow masking had been a reliable method for specimens with flat and gently curved surfaces, it had not been consistently reliable for use on test components with sharp contours. This work reports on the feasibility of utilizing photolithography processing for patterning thin film thermocouples. Because this patterning process required changes in the thin film deposition process from that developed for shadow masking, the effect of these changes on thin film adherence during burner rig testing was evaluated. In addition to the results of changing the patterning method, the effects on thin film adherence of other processes used in the thin film fabrication procedure is also presented.
Manufacturing of Low Cost, Durable Membrane Electrode Assemblies Engineered for Rapid Conditioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busby, Colin
Over the past 20 years significant progress in membrane-electrode assembly (MEA) technology development for polymer electrolyte fuel cells (PEMFCs) has resulted in the PEMFC technology approaching a commercial reality for transportation applications. However, there remain two primary technical challenges to be addressed in the MEA. First and foremost is meeting the automotive cost targets: Producing a fuel cell stack cost competitive with today’s internal combustion engine. In addition to the material cost, MEA (and other components) and stack assembly production methods must be amenable for use in low cost, high speed, automotive assembly line. One impediment to this latter goalmore » is that stack components must currently go through a long and tedious conditioning procedure before they produce optimal power. This so-called “break-in” can take many hours, and can involve quite complex voltage, temperature and/or pressure steps. These break-in procedures must be simplified and the time required reduced if fuel cells are to become a viable automotive engine. The second challenge is to achieve the durability targets in real-world automotive duty cycle operations. Significant improvements in cost, break-in time, and durability for the key component of fuel cell stacks, MEAs were achieved in this project. Advanced modeling was used to guide design of the new MEA to maximize performance and durability. A new, innovative process and manufacturing approach utilizing direct in-line coating using scalable, cost-competitive, continuous high volume 3-layer rolled-good manufacturing processes was developed and validated by single cell and short stack testing. In addition, the direct coating methods employed were shown to reduce the cost for sacrificial films. Furthermore, Gore has demonstrated a 10 µm reinforced membrane that is used in the new low-cost process and can meet automotive power density and durability targets. Across a wide range of operating conditions, the direct-coated MEA outperformed the commercial baseline MEA, and did so through a process that delivers MEAs at $92.35/m2 at a volume of 500,000 systems per year, according to Strategic Analysis (SA) estimates.« less
40 CFR 610.51 - Mileage accumulation procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Mileage accumulation procedure. 610.51 Section 610.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.51...
40 CFR 610.51 - Mileage accumulation procedure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Mileage accumulation procedure. 610.51 Section 610.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.51...
40 CFR 610.51 - Mileage accumulation procedure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Mileage accumulation procedure. 610.51 Section 610.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.51...
40 CFR 610.51 - Mileage accumulation procedure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Mileage accumulation procedure. 610.51 Section 610.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.51...
40 CFR 610.51 - Mileage accumulation procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Mileage accumulation procedure. 610.51 Section 610.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.51...
Faries, Peter; Jaff, Michael; Peeters, Patrick; Khatib, Yazan; Roberts, David; Bosiers, Marc; Malik, Rajesh; Ravin, Reid; Rundback, John
2018-04-17
The DURABILITY Iliac clinical study evaluated the safety and effectiveness of two nitinol self-expanding stents for the treatment of atherosclerotic common and external iliac artery lesions up to 10 cm in length and >50% stenosis in subjects with Rutherford Classification peripheral arterial disease stages 2-4. DURABILITY Iliac was a prospective, multicenter, core lab adjudicated, nonrandomized clinical study enrolling 75 subjects from 15 sites in the United States and Europe. Clinical follow-up visits were at 30 days, 9 months, and 1, 2, and 3 years post procedure. The primary outcome measured was the major adverse event rate (MAE) at 9 months, defined as a composite of periprocedural death, in-hospital myocardial infarction (MI), clinically-driven target lesion revascularization (CD-TLR), and amputation of the treated limb through 9 months post-procedure. Secondary outcomes included primary patency rate at 9 months, clinically-driven target vessel revascularization (CD-TVR), change in ankle-brachial index, and change in Walking Impairment Questionnaire score at 30 days and 9 months. Device success was defined as the ability to deploy the stent as intended at the treatment site. The MAE rate at 9 months was 1.3% (1/75), with 1 subject experiencing a CD-TLR. No periprocedural deaths, myocardial infarctions, or amputations were reported. Primacy patency at 9 months was 95.8%. Freedom from CD-TVR was 98.6% at 9 months. Subjects improved in Walking Impairment Questionnaire scores for all categories (walking impairment, walking speed, walking distance, and stair climbing) at the 30-day and 9-month visit. Device success was 100%. The 9-month results of the DURABILITY Iliac study demonstrate the safety and effectiveness of 2 nitinol self-expanding stents for the treatment of atherosclerotic lesions of the common and external iliac arteries. Copyright © 2018. Published by Elsevier Inc.
New types of time domain reflectometry sensing waveguides for bridge scour monitoring
NASA Astrophysics Data System (ADS)
Lin, Chih-Ping; Wang, Kai; Chung, Chih-Chung; Weng, Yu-Wen
2017-07-01
Scour is a major threat to bridge safety, especially in harsh fluvial environments. Real-time monitoring of bridge scour is still very limited due to the lack of robust and economic scour monitoring device. Time domain reflectometry (TDR) is an emerging waveguide-based technique holding great promise to develop more durable scour monitoring devices. This study presents new types of TDR sensing waveguides in forms of either sensing rod or sensing wire, taking into account of the measurement range, durability, and ease of field installation. The sensing rod is composed of a hollow grooved steel rod paired up with a metal strip on the insulating groove, while the sensing wire consists of two steel strands with one of them coated with an insulating jacket. The measurement sensitivity is inevitably sacrificed when other properties such as the measurement range, field durability, and installation easiness are enhanced. Factors affecting the measurement sensitivity were identified and experimentally evaluated for better arranging the waveguide conductors. A data reduction method for scour-depth estimation without the need for identifying the sediment/water reflection and a two-step calibration procedure for rating propagation velocities were proposed to work with the new types of TDR sensing waveguides. Both the calibration procedure and the data reduction method were experimentally validated. The test results indicated that the new TDR sensing waveguide provides accurate scour depth measurements regardless of the sacrificed sensitivity. The insulating coating of the new TDR sensing waveguide was also demonstrated to be effective in extending the measurement range up to at least 15 m.
40 CFR 610.61 - Engine dynamometer tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...
40 CFR 610.61 - Engine dynamometer tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...
40 CFR 610.61 - Engine dynamometer tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...
40 CFR 610.61 - Engine dynamometer tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...
40 CFR 610.61 - Engine dynamometer tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... dynamometer durability test procedures used by research organizations in government, the oil industry, engine... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Engine dynamometer tests. 610.61... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Special Test Procedures § 610.61 Engine...
Evidence-based outcomes of holmium laser enucleation of the prostate.
Large, Tim; Krambeck, Amy E
2018-05-01
Holmium laser enucleation of the prostate (HoLEP) has been a mainstay therapy for the treatment of lower urinary tract symptoms (LUTS) secondary to benign prostate hyperplasia (BPH) for nearly 20 years. We briefly review current and sentinel publications that provide outcomes data after HoLEP. Current literature continues to support HoLEP as a versatile and durable surgical option for men with LUTS secondary to BPH. Despite evidence supporting durable symptom relief beyond 10 years even in large prostate glands, HoLEP is still not widely available to all patients. Concerns surrounding the learning curve of the procedure, high rates of retrograde ejaculation, and transient urinary incontinence seem to persist and limit the adoption of HoLEP by established urologists and residency training programs. Recent publications continue to show excellent short-term and long-term outcomes after HoLEP, in the categories of voiding function and patient satisfaction. Continued attempts to demonstrate equivalent outcomes of alternate-BPH surgical techniques are being met with renewed efforts by those performing HoLEP to demonstrate equivalent outcomes and patient safety during the learning phase of HoLEP for both mentored and self-directed surgical training.
The Effect of Airborne Contaminants on Fuel Cell Performance and Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
St-Pierre, Jean; Pasaogullari, Ugur; Cheng, Tommy
The impact of contaminants on fuel cell performance was examined to document air filter specifications (prevention) and devise recovery procedures (maintenance) that are effective at the system level. Eight previously undocumented airborne contaminants were selected for detailed studies and characterization data was used to identify operating conditions that intensifying contamination effects. The use of many and complementary electrochemical, chemical and physical characterization methods and the derivation of several mathematical models supported the formulation of contamination mechanisms and the development of recovery procedures. The complexity of these contamination mechanisms suggests a shift to prevention and generic maintenance measures. Only two ofmore » the selected contaminants led to cell voltage losses after injection was interrupted. Proposed recovery procedures for calcium ions, a component of road de-icers, dessicants, fertilizers and soil conditioners, were either ineffective or partly effective, whereas for bromomethane, a fumigant, the cell voltage was recovered to its initial value before contamination by manipulating and sequencing operating conditions. However, implementation for a fuel cell stack and system remains to be demonstrated. Contamination mechanisms also led to the identification of membrane durability stressors. All 8 selected contaminants promote the formation of hydrogen peroxide, a known agent that can produce radicals that attack the ionomer and membrane molecular structure whereas the dehydrating effect of calcium ions on the ionomer and membrane increases their brittleness and favors the creation of pinholes under mechanical stresses. Data related to acetylene, acetonitrile and calcium ions are emphasized in the report.« less
Facile preparation of super durable superhydrophobic materials.
Wu, Lei; Zhang, Junping; Li, Bucheng; Fan, Ling; Li, Lingxiao; Wang, Aiqin
2014-10-15
The low stability, complicated and expensive fabrication procedures seriously hinder practical applications of superhydrophobic materials. Here we report an extremely simple method for preparing super durable superhydrophobic materials, e.g., textiles and sponges, by dip coating in fluoropolymers (FPs). The morphology, surface chemical composition, mechanical, chemical and environmental stabilities of the superhydrophobic textiles were investigated. The results show how simple the preparation of super durable superhydrophobic textiles can be! The superhydrophobic textiles outperform their natural counterparts and most of the state-of-the-art synthetic superhydrophobic materials in stability. The intensive mechanical abrasion, long time immersion in various liquids and repeated washing have no obvious influence on the superhydrophobicity. Water drops are spherical in shape on the samples and could easily roll off after these harsh stability tests. In addition, this simple dip coating approach is applicable to various synthetic and natural textiles and can be easily scaled up. Furthermore, the results prove that a two-tier roughness is helpful but not essential with regard to the creation of super durable superhydrophobic textiles. The combination of microscale roughness of textiles and materials with very low surface tension is enough to form super durable superhydrophobic textiles. According to the same procedure, superhydrophobic polyurethane sponges can be prepared, which show high oil absorbency, oil/water separation efficiency and stability. Copyright © 2014 Elsevier Inc. All rights reserved.
Rogo-Gupta, Lisa; Baxter, Z Chad; Le, Ngoc-Bich; Raz, Shlomo; Rodríguez, Larissa V
2012-11-01
We report on the long-term outcomes of the distal urethral polypropylene sling for stress urinary incontinence in a patient cohort that was closely followed and whose outcomes were reported at 1 and 5 years after surgery. We performed a prospective study of all consecutive patients who underwent a distal urethral polypropylene sling procedure between November 1999 and April 2000. The 1 and 5-year outcomes for this particular patient cohort were previously reported. At the minimum 11-year followup, outcome was determined by patient self-assessment including validated questionnaires. A total of 69 patients were followed prospectively and followup was obtained for 30. Of those lost to followup 10 were deceased and 5 were cognitively impaired. Mean patient age at followup was 73 years (range 40 to 97). More than 11 years after surgery 48% of patients reported no stress urinary incontinence symptoms and 63% were never bothered by stress urinary incontinence. Patients reported a mean overall symptom improvement of 64% compared to 81% at 5 years. Overall 82% of patients met the criteria for treatment success by symptom scores and 80% met the criteria by bother scores. The distal urethral polypropylene sling procedure has excellent long-term durability in the treatment of stress urinary incontinence, in addition to low morbidity and low cost as previously described. Eleven years after the procedure the majority of patients report symptom improvement. Nevertheless, many older patients are unable to participate in followup. When choosing an anti-incontinence procedure, durability should be considered in light of patient age given that the theoretical advantages of long-term durability are limited by cognitive decline and mortality. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Starnes, James H., Jr.; Shuart, Mark J.
2003-01-01
Aerospace vehicles are designed to be durable and damage tolerant. Durability is largely an economic life-cycle design consideration whereas damage tolerance directly addresses the structural airworthiness (safety) of the vehicle. However, both durability and damage tolerance design methodologies must address the deleterious effects of changes in material properties and the initiation and growth of microstructural damage that may occur during the service lifetime of the vehicle. Durability and damage tolerance design and certification requirements are addressed for commercial transport aircraft and NASA manned spacecraft systems. The state-of-the-art in advanced design and analysis methods is illustrated by discussing the results of several recently completed NASA technology development programs. These programs include the NASA Advanced Subsonic Technology Program demonstrating technologies for large transport aircraft and the X-33 hypersonic test vehicle demonstrating technologies for a single-stage-to-orbit space launch vehicle.
Economic impact of minimally invasive lumbar surgery.
Hofstetter, Christoph P; Hofer, Anna S; Wang, Michael Y
2015-03-18
Cost effectiveness has been demonstrated for traditional lumbar discectomy, lumbar laminectomy as well as for instrumented and noninstrumented arthrodesis. While emerging evidence suggests that minimally invasive spine surgery reduces morbidity, duration of hospitalization, and accelerates return to activites of daily living, data regarding cost effectiveness of these novel techniques is limited. The current study analyzes all available data on minimally invasive techniques for lumbar discectomy, decompression, short-segment fusion and deformity surgery. In general, minimally invasive spine procedures appear to hold promise in quicker patient recovery times and earlier return to work. Thus, minimally invasive lumbar spine surgery appears to have the potential to be a cost-effective intervention. Moreover, novel less invasive procedures are less destabilizing and may therefore be utilized in certain indications that traditionally required arthrodesis procedures. However, there is a lack of studies analyzing the economic impact of minimally invasive spine surgery. Future studies are necessary to confirm the durability and further define indications for minimally invasive lumbar spine procedures.
2012-05-01
Effects of Hydro-processed Renewable Jet (HRJ) blended at 50% with petroleum JP-8 on a Navistar Maxxforce D10 9.3L Engine 5a. CONTRACT NUMBER...report will be used to assess the effect of the HRJP-8 fuel on engine performance and durability as compared to JP-8. This evaluation requires that two...Hour Durability). Modifications to this procedure are primarily increases to the operating temperatures of the engine coolant, combustion air and
Gurvitch, R; Wood, D A; Tay, E L; Leipsic, J; Ye, J; Lichtenstein, S V; Thompson, C R; Carere, R G; Wijesinghe, N; Nietlispach, F; Boone, R H; Lauck, S; Cheung, A; Webb, J G
2010-09-28
Although short- and medium-term outcomes after transcatheter aortic valve implantation are encouraging, long-term data on valve function and clinical outcomes are limited. Consecutive high-risk patients who had been declined as surgical candidates because of comorbidities but who underwent successful transcatheter aortic valve implantation with a balloon-expandable valve between January 2005 and December 2006 and survived past 30 days were assessed. Clinical, echocardiographic, and computed tomographic follow-up examinations were performed. Seventy patients who underwent successful procedures and survived longer than 30 days were evaluated at a minimum follow-up of 3 years. At a median follow-up of 3.7 years (interquartile range 3.4 to 4.3 years), survival was 57%. Survival at 1, 2, and 3 years was 81%, 74%, and 61%, respectively. Freedom from reoperation was 98.5% (1 patient with endocarditis). During this early procedural experience, 11 patients died within 30 days, and 8 procedures were unsuccessful. When these patients were included, overall survival was 51%. Transaortic pressure gradients increased from 10.0 mm Hg (interquartile range 8.0 to 12.0 mm Hg) immediately after the procedure to 12.1 mm Hg (interquartile range 8.6 to 16.0 mm Hg) after 3 years (P=0.03). Bioprosthetic valve area decreased from a mean of 1.7±0.4 cm(2) after the procedure to 1.4±0.3 cm(2) after 3 years (P<0.01). Aortic incompetence after implantation was trivial or mild in 84% of cases and remained unchanged or improved over time. There were no cases of structural valvular deterioration, stent fracture, deformation, or valve migration. Transcatheter aortic valve implantation demonstrates good medium- to long-term durability and preserved hemodynamic function, with no evidence of structural failure. The procedure appears to offer an adequate and lasting resolution of aortic stenosis in selected patients.
Sliding durability of candidate seal fiber materials in hydrogen from 25 to 900 C
NASA Technical Reports Server (NTRS)
Dellacorte, Christopher; Steinetz, Bruce M.
1992-01-01
Sliding durability studies of candidate ceramic fibers were conducted in hydrogen to support the high temperature seal development program at NASA LeRC. Pin-on-disk tests were used to measure the friction and durability of a tow or bundle of ceramic fibers in sliding against a superalloy disk. This procedure was used previously to test candidate fibers in an air environment. The fibers based upon mullite (Al2O3-SiO2) chemistry (Nextel 550, 440, and 312) exhibited better durability in hydrogen than in air. HPZ, a complex silicon carboxynitride fiber which showed good durabilty in air, however, showed a significant loss of durability in hot hydrogen. These results are consistent with recent thermodynamic and experimental studies of ceramic compatibility with hydrogen at elevated temperatures. These research results indicate that only oxide fibers display good durability in both air and hydrogen environments. Also, simple, low cost testing in air can provide an adequate data base for initial seal material screening and selection, especially for oxide fiber candidates. The findings of this research provide critical input to the seal design team.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Maintenance. 610.52 Section 610.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Maintenance. 610.52 Section 610.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Maintenance. 610.52 Section 610.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Maintenance. 610.52 Section 610.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.52 Maintenance. (a...
Partial-depth repair of jointed PCC pavements : cast-in-place and precast procedures.
DOT National Transportation Integrated Search
1977-01-01
The installation of durable patches on jointed portland cement concrete pavement using several types of cast-in-place concrete, is described. The recommended procedures for pavement preparation and patch installation are given, and additional mainten...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linard, Joshua; Hall, Steve
9.1 Compliance Summary The Lakeview, Oregon, Uranium Mill Tailings Radiation Control Act (UMTRCA) Title I Disposal Site was inspected September 16 and 17, 2015. Other than some ongoing concern with erosion-control rock riprap degradation, the disposal cell was in good condition. Some minor fence repairs and vegetation removal, and minor erosion repair work along the west site fence is planned. Inspectors identified no other maintenance needs or cause for a follow-up or contingency inspection. Disposal cell riprap is evaluated annually to ensure continued long-term protection of the cell from erosion during a severe precipitation event. Degradation of the rock riprapmore » was first observed at the site in the mid-1990s. Rock gradation monitoring of the riprap on the west side slope has been performed as part of the annual inspection since 1997 to determine the mean diameter (D 50) value. As prescribed by the monitoring procedure, the rock monitoring is routinely conducted at random locations. However, at the U.S. Nuclear Regulatory Commission’s (NRC’s) request, the 2015 rock monitoring approach deviated from the normal procedure by using a pre-established monitoring grid in a subset area of the west side slope. This changed the monitoring approach from random sampling to biased sampling. The D 50 value measured during the 2015 gradation monitoring is 2.39 inches, which falls below the original D 50 design size range of 2.7–3.9 inches for the Type B size side slope riprap. At NRC’s request, rock durability monitoring was added to the gradation monitoring in 2009 to monitor durability by rock type. Results of the 2015 durability monitoring showed that74 percent of the total rock sampled is durability class code A rock with an assigned durability class of “highly durable” or durability class code B “durable” rock, and that over 90 percent of the 3-inch or larger rock is durability class code A or B. The rock durability classifications are further explained in Section 9.4.2.2.« less
Er, Nilay; Alkan, Alper; Ilday, Serim; Bengu, Erman
2018-06-01
The dental implant drilling procedure is an essential step for implant surgery, and frictional heat in bone during drilling is a key factor affecting the success of an implant. The aim of this study was to increase the dental implant drill lifetime and performance by using heat- and wear-resistant protective coatings to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling was performed on bovine femoral cortical bone under the conditions mimicking clinical practice. Tests were performed under water-assisted cooling and under the conditions when no cooling was applied. Coated drill performances and durabilities were compared with those of three commonly used commercial drills with surfaces made from zirconia, black diamond. and stainless steel. Protective coatings with boron nitride, titanium boron nitride, and diamond-like carbon have significantly improved drill performance and durability. In particular, boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even when no cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat- and wear-resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can improve the surgical procedure and the postsurgical healing period. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.
Maurer, Tilman; Kuck, Karl-Heinz
2017-08-01
Atrial fibrillation is the most common cardiac arrhythmia and represents a growing clinical, social and economic challenge. Catheter ablation for symptomatic atrial fibrillation has evolved from an experimental procedure into a widespread therapy and offers a safe and effective treatment option. A prerequisite for durable PVI are transmural and contiguous circumferential lesions around the pulmonary veins. However, electrical reconnection of initially isolated pulmonary veins remains a primary concern and is a dominant factor for arrhythmia recurrence during long-term follow up. Areas covered: This article discusses the physiology of lesion formation using radiofrequency-, cryo- or laser- energy for pulmonary vein isolation and provides a detailed review of recent technological advancements in the field of radiofrequency catheters and balloon devices. Finally, future directions and upcoming developments for the interventional treatment of atrial fibrillation are discussed. Expert commentary: Durable conduction block across deployed myocardial lesions is mandatory not only for PVI but for any other cardiac ablation strategy as well. A major improvement urgently expected is the intraprocedural real-time distinction of durable lesions from interposed gaps with only transiently impaired electrical conduction. Furthermore, a simplification of ablation tools used for PVI is required to reduce the high technical complexity of the procedure.
40 CFR 610.50 - Test configurations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Test configurations. 610.50 Section 610.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test...
Martin, Caitlin; Sun, Wei
2015-01-01
Transcatheter aortic valve (TAV) intervention is now the standard-of-care treatment for inoperable patients and a viable alternative treatment option for high-risk patients with symptomatic aortic stenosis. While the procedure is associated with lower operative risk and shorter recovery times than traditional surgical aortic valve (SAV) replacement, TAV intervention is still not considered for lower-risk patients due in part to concerns about device durability. It is well known that bioprosthetic SAVs have limited durability, and TAVs are generally assumed to have even worse durability, yet there is little long-term data to confirm this suspicion. In this study, TAV and SAV leaflet fatigue due to cyclic loading was investigated through finite element analysis by implementing a computational soft tissue fatigue damage model to describe the behavior of the pericardial leaflets. Under identical loading conditions and with identical leaflet tissue properties, the TAV leaflets sustained higher stresses, strains, and fatigue damage compared to the SAV leaflets. The simulation results suggest that the durability of TAVs may be significantly reduced compared to SAVs to about 7.8 years. The developed computational framework may be useful in optimizing TAV design parameters to improve leaflet durability, and assessing the effects of underexpanded, elliptical, or non-uniformly expanded stent deployment on TAV durability. PMID:26294354
2012-05-31
inherently shock-absorbent, and more durable than conventional materials. Despite these initial demonstration successes, there are still barriers that need...to deliver boats that are stronger, lighter, inherently shock‐absorbent, and more durable than those manufactured with conventional materials...and more durable than conventional materials (e.g. aluminum). Further, prior research by the University of Maine, Virginia Tech, and others has
40 CFR 610.50 - Test configurations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D. Subsequently...
40 CFR 610.50 - Test configurations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D. Subsequently...
40 CFR 610.50 - Test configurations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D. Subsequently...
40 CFR 610.50 - Test configurations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Test configurations. 610.50 Section... ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Durability Test Procedures § 610.50 Test... the same test sequence for fuel economy and exhaust emissions as specified in subpart D. Subsequently...
NASA Astrophysics Data System (ADS)
Liu, Hanzhou; Lv, Ming; Deng, Bo; Li, Jingye; Yu, Ming; Huang, Qing; Fan, Chunhai
2014-08-01
To improve the laundering durability of the silver functionalized antibacterial cotton fabrics, a radiation-induced coincident reduction and graft polymerization is reported herein where a pomegranate-shaped silver nanoparticle aggregations up to 500 nm can be formed due to the coordination forces between amino group and silver and the wrapping procedure originated from the coincident growth of the silver nanoparticles and polymer graft chains. This pomegranate-shaped silver NPAs functionalized cotton fabric exhibits outstanding antibacterial activities and also excellent laundering durability, where it can inactivate higher than 90% of both E. coli and S. aureus even after 50 accelerated laundering cycles, which is equivalent to 250 commercial or domestic laundering cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Qafoku, Nikolla; Brown, Christopher F.
2013-10-01
Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. This goal of this campaign was study the durability of the FBSR mineral product and the mineral product encapsulated in a monolith to meet compressive strength requirements. This paper gives anmore » overview of results obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Qafoku, Nikolla P.; Peterson, Reid A.
2013-07-01
Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) have been evaluated. One such immobilization technology is the Fluidized Bed Steam Reforming (FBSR) granular product. The FBSR granular product is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals. Production of the FBSR mineral product has been demonstrated both at the industrial and laboratory scale. Pacific Northwest National Laboratory (PNNL) was involved in an extensive characterization campaign. The goal of this campaign was to study the durability of the FBSR mineral product and the encapsulated FBSR product in a geo-polymer monolith. This paper gives an overview of resultsmore » obtained using the ASTM C 1285 Product Consistency Test (PCT), the EPA Test Method 1311 Toxicity Characteristic Leaching Procedure (TCLP), and the ASTMC 1662 Single-Pass Flow-Through (SPFT) test. Along with these durability tests an overview of the characteristics of the waste form has been collected using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), microwave digestions for chemical composition, and surface area from Brunauer, Emmett, and Teller (BET) theory. (authors)« less
NASA Astrophysics Data System (ADS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-09-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
NASA Technical Reports Server (NTRS)
Tong, H.; Snow, G. C.; Chu, E. K.; Chang, R. L. S.; Angwin, M. J.; Pessagno, S. L.
1981-01-01
Durable catalytic reactors for advanced gas turbine engines were developed. Objectives were: to evaluate furnace aging as a cost effective catalytic reactor screening test, measure reactor degradation as a function of furnace aging, demonstrate 1,000 hours of combustion durability, and define a catalytic reactor system with a high probability of successful integration into an automotive gas turbine engine. Fourteen different catalytic reactor concepts were evaluated, leading to the selection of one for a durability combustion test with diesel fuel for combustion conditions. Eight additional catalytic reactors were evaluated and one of these was successfully combustion tested on propane fuel. This durability reactor used graded cell honeycombs and a combination of noble metal and metal oxide catalysts. The reactor was catalytically active and structurally sound at the end of the durability test.
Aortic root repair for thoracic aorta false aneurysm following Bentall procedure.
Kumar, Sanjay; Jones, Steve; Sivananthan, U M; McGoldrick, J P
2008-08-01
The Bentall procedure for aortic root replacement in Marfan's syndrome is safe and durable. We describe successful repair of periprosthetic valvular leak, 12 years following Bentall repair with composite graft. The aim of this report is to analyse and evaluate technical factors leading to this unusual occurrence.
Determination of the critical plane and durability estimation for a multiaxial cyclic loading
NASA Astrophysics Data System (ADS)
Burago, N. G.; Nikitin, A. D.; Nikitin, I. S.; Yakushev, V. L.
2018-03-01
An analytical procedure is proposed to determine the critical plane orientation according to the Findley criterion for the multiaxial cyclic loading. The cases of in-phase and anti-phase cyclic loading are considered. Calculations of the stress state are carried out for the system of the gas turbine engine compressor disk and blades for flight loading cycles. The formulas obtained are used for estimations of the fatigue durability of this essential element of structure.
Aryana, Arash; Singh, Sheldon M; Mugnai, Giacomo; de Asmundis, Carlo; Kowalski, Marcin; Pujara, Deep K; Cohen, Andrew I; Singh, Steve K; Fuenzalida, Charles E; Prager, Nelson; Bowers, Mark R; O'Neill, Padraig Gearoid; Brugada, Pedro; d'Avila, André; Chierchia, Gian-Battista
2016-12-01
Catheter ablation of atrial fibrillation (CAAF) using the cryoballoon has emerged as an alternate strategy to point-by-point radiofrequency. However, there is little comparative data on long-term durability of pulmonary vein (PV) isolation comparing these two modalities. In this multicenter, retrospective analysis, the incidences/patterns of late PV reconnection following an index CAAF using the second-generation cryoballoon versus open-irrigated, non-force-sensing radiofrequency were examined. Of the 2002 patients who underwent a first-time CAAF, 186/1126 patients (16.5 %) ablated using cryoballoon and 174/876 patients (19.9 %) with non-contact force-guided radiofrequency required a repeat procedure at 11 ± 5 months. During follow-up, the incidence of atrial flutters/tachycardias was lower (19.9 vs. 32.8 %; p = 0.005) and fewer patients exhibited PV reconnection (47.3 vs. 60.9 %; p = 0.007) with cryoballoon versus radiofrequency. Additionally, fewer PVs had reconnected with cryoballoon versus radiofrequency (18.8 vs. 34.6 %; p < 0.001). With cryoballoon, the right inferior (p < 0.001) and left common (p = 0.039) PVs were more likely to exhibit late reconnection, versus the left superior PV with radiofrequency (p = 0.012). However, when comparing the two strategies, the left common PV was more likely to exhibit reconnection with cryoballoon, whereas all other PVs with the exception of the right inferior PV demonstrated a lower reconnection rate with cryoballoon versus radiofrequency. Lastly, in a logistic regression multivariate analysis, cryoballoon ablation and PV ablation time emerged as significant predictors of durable PV isolation at repeat procedure. In this large multicenter, retrospective analysis, CAAF using the second-generation cryoballoon was associated with improved durability of PV isolation compared to open-irrigated, non-force-sensing radiofrequency.
Shapey, I M; Agrawal, S; Peacock, A; Super, P
2015-01-01
Laparoscopic partial fundoplication for gastro-oesophageal reflux disease (GORD) is reported to have fewer side effects when compared to Nissen fundoplication, but doubts remain over its long term durability in controlling reflux. The aim of this study was to assess outcome of symptoms for all patients presenting with GORD undergoing routine laparoscopic subtotal Lind fundoplication. All patients undergoing laparoscopic fundoplication between August, 1999 and November, 2007 performed by a single surgeon were included in the study. The anti-reflux procedure studied was laparoscopic Lind (300°) fundoplication with crural repair in all cases. Patients completed pre and post-operative questionnaires containing validated scoring systems for heartburn, gas bloat, dysphagia and overall patient satisfaction. Over the 100-month period, 320 consecutive patients underwent laparoscopic subtotal Lind fundoplication. Of these, 256 (80%) replied to the questionnaire at a mean of 31 months (range 3-96 months) following surgery. 91.4% of respondents had an improvement in heartburn symptom score with a significant reduction in score from 7.74 preoperatively to 1.25 postoperatively (p<0.001). There was also a significant reduction of mean modified Visick score for reflux control (heartburn and regurgitation) from 3.49 preoperatively to 1.48 after surgery (p<0.001). In total, 22 patients developed recurrent reflux symptoms with half of these reporting their recurrence within two years following surgery. Because of this all were tested with post-operative pH testing, yet only one had a 24-h pH time outside the normal range. Overall patient satisfaction was high with a visual analogue score of 9 and 88% of the patients claimed they would have the operation again. Laparoscopic Lind fundoplication demonstrates excellent reflux control when performed routinely for all patients presenting with GORD. This technique is both durable and efficacious in controlling reflux symptoms. Copyright © 2014 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Durability of Waste Glass Flax Fiber Reinforced Mortar
NASA Astrophysics Data System (ADS)
Aly, M.; Hashmi, M. S. J.; Olabi, A. G.; Messeiry, M.
2011-01-01
The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performance of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.
Moisture Durability with Vapor-Permeable Insulating Sheathing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lepage, R.; Lstiburek, J.
2013-09-01
Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range ofmore » different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.« less
Durability of ITO-MgF2 Films for Space-Inflatable Polymer Structures
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Waters, Deborah L.; Schieman, David A.; Hambourger, Paul D.
2003-01-01
This paper presents results from ITO-MgF2 film durability evaluations that included tape peel, fold, thermal cycle, and AO exposure testing. Polymer coupon preparation is described as well as ITO-MgF2 film deposition equipment, procedures and film characterization. Durability testing methods are also described. The pre- and post-test condition of the films is assessed visually, microscopically, and electrically. Results show that at 500 ITO - 9 vol% MgF2 film is suitable to protect polymer surfaces, such as those used in space-inflatable structures of the PowerSphere microsatellite concept, during a 1-year Earth orbiting mission. Future plans for ground-based and orbital testing of this film are also discussed.
Progressive fracture of fiber composites
NASA Technical Reports Server (NTRS)
Irvin, T. B.; Ginty, C. A.
1983-01-01
Refined models and procedures are described for determining progressive composite fracture in graphite/epoxy angleplied laminates. Lewis Research Center capabilities are utilized including the Real Time Ultrasonic C Scan (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. The CODSTRAN computer code is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites.
Five-level sub-axial cervical vertebrectomy and reconstruction: technical report.
Reig, Adam; Parker, Scott L; McGirt, Matthew J
2014-05-01
Regardless of the etiology, severe cervical deformities can be extremely debilitating and are a challenge to correct. Often a multi-modality team approach is required to safely and effectively reduce the deformity, provide adequate decompression, and ensure solid fixation and fusion. In cases of iatrogenic cervical deformity necessitating five-level corpectomy and fixation, the feasibility, safety, and durability of this procedure remains unknown. We describe a patient who presented with debilitating pain and inability to eat due to an iatrogenic chin-on-chest cervical kyphotic deformity. The patient underwent a back-front-back staged procedure requiring five-level cervical vertebrectomy, C3-T1 anterior fixation, and occipital to T5 posterior fusion, resulting in successful reduction of cervical kyphosis from 75 to 0 degrees. At 6 months post-operatively, the patient demonstrated marked improvement in neurologic function and reported substantial improvements in neck pain-specific disability (NDI) and quality of life (SF-12 and EQ-5D). The feasibility and safety of five-level vertebrectomy and reconstruction for chin-on-chest deformity remains poorly described. The current case suggests that thoughtful planning that involves maximizing the patient's health status, judicious use of traction under direct neurological examination, staged circumferential release, and design of a construct that provides anterior and posterior column support with several points of fixation beyond the axis of rotation will attenuate the risk of peri-operative morbidity and potentiate the durability of deformity correction.
Durability of hardboard siding
Anton TenWolde; Charles Carll
2004-01-01
In response to concerns about hardboard siding failures, a study was performed to assess if performance in a current hardboard industry quality assurance test procedure correlated with in-service performance and how well this performance might be predicted by use of alternative or additional test procedures. A variety of laboratory tests were performed on a large...
Development of an engineered cementitious composite to enhance bridge approach slab durability.
DOT National Transportation Integrated Search
2013-06-01
The strength and durability of highway bridges are two of the key components in maintaining a : high level of freight transportation capacity on the nations highways. : The CFIRE project 04-09 demonstrated the feasibility of a new hybrid engineered...
Experimental research on durability of recycled aggregate concrete under freeze- thaw cycles
NASA Astrophysics Data System (ADS)
Cheng, Yanqiu; Shang, Xiaoyu; Zhang, Youjia
2017-07-01
The freeze-thaw durability of recycled aggregate concrete has significance for the concrete buildings in the cold region. In this paper, the rapid freezing and thawing cycles experience on recycle aggregate concrete was conducted to study on the effects of recycle aggregate amount, water-binder ratio and fly ash on freeze-thaw durability of recycle aggregate concrete. The results indicates that recycle aggregate amount makes the significant influence on the freeze-thaw durability. With the increase of recycled aggregates amount, the freeze-thaw resistance for recycled aggregate concrete decreases. Recycled aggregate concrete with lower water cement ratio demonstrates better performance of freeze-thaw durability. It is advised that the amount of fly ash is less than 30% for admixture of recycled aggregates in the cold region.
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.
1991-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures are outlined.
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.; Hiel, C. C.
1990-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures is outlined.
Fatigue behaviour analysis for the durability prequalification of strengthening mortars
NASA Astrophysics Data System (ADS)
Bocca, P.; Grazzini, A.; Masera, D.
2011-07-01
An innovative laboratory procedure used as a preliminary design stage for the pre-qualification of strengthening mortars applied to historical masonry buildings is described. In the analysis of the behaviour of masonry structures and their constituent materials, increasing importance has been assumed by the study of the long-term evolution of deformation and mechanical characteristics, which may be affected by both loading and environmental conditions. Through static and fatigue tests on mixed specimens historical brick-reinforced mortar it has been possible to investigate the durability of strengthening materials, in order to select, from a range of alternatives, the most suitable for the historical masonry. Cyclic fatigue stress has been applied to accelerate the static creep and to forecast the corresponding creep behaviour of the historical brick-strengthening mortar system under static long-time loading. This methodology has proved useful in avoiding the errors associated with materials that are not mechanically compatible and guarantees the durability of strengthening work. The experimental procedure has been used effectively in the biggest restoration building site in Europe, the Royal Palace of Venaria, and it is in progress of carrying out at the Special Natural Reserve of the Sacro Monte di Varallo, in Piedmont (Italy).
Electrical design for origami solar panels and a small spacecraft test mission
NASA Astrophysics Data System (ADS)
Drewelow, James; Straub, Jeremy
2017-05-01
Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.
Code of Federal Regulations, 2013 CFR
2013-07-01
... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...
Code of Federal Regulations, 2011 CFR
2011-07-01
... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...
Code of Federal Regulations, 2012 CFR
2012-07-01
... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...
Code of Federal Regulations, 2014 CFR
2014-07-01
... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...
Code of Federal Regulations, 2010 CFR
2010-07-01
... to the vacuum unit to achieve full diaphragm displacement. Seal vacuum source to unit. There shall be no visible loss of diaphragm displacement or drop in vacuum gauge reading after a 15 second observation. Vacuum purge system and diaphragm displacement adjusting screw holes should be temporarily sealed...
40 CFR 610.62 - Driveability tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... be conducted at zero device-miles for all vehicles included in the durability fleet, and at approximately zero device-miles at low ambient temperatures (0 °F-20 °F). Driveability evaluation procedures...
Durable crystalline Si photovoltaic modules based on silicone-sheet encapsulants
NASA Astrophysics Data System (ADS)
Hara, Kohjiro; Ohwada, Hiroto; Furihata, Tomoyoshi; Masuda, Atsushi
2018-02-01
Crystalline Si photovoltaic (PV) modules were fabricated with sheets of poly(dimethylsiloxane) (silicone) as an encapsulant. The long-term durability of the silicone-encapsulated PV modules was experimentally investigated. The silicone-based modules enhanced the long-term durability against potential-induced degradation (PID) and a damp-heat (DH) condition at 85 °C with 85% relative humidity (RH). In addition, we designed and fabricated substrate-type Si PV modules based on the silicone encapsulant and an Al-alloy plate as the substratum, which demonstrated high impact resistance and high incombustible performance. The high chemical stability, high volume resistivity, rubber-like elasticity, and incombustibility of the silicone encapsulant resulted in the high durability of the modules. Our results indicate that silicone is an attractive encapsulation material, as it improves the long-term durability of crystalline Si PV modules.
Durability of waste glass flax fiber reinforced mortar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aly, M.; Hashmi, M. S. J.; Olabi, A. G.
2011-01-17
The main concern for natural fibre reinforced mortar composites is the durability of the fibres in the alkaline environment of cement. The composites may undergo a reduction in strength as a result of weakening of the fibres by a combination of alkali attack and fibre mineralisation. In order to enhance the durability of natural fiber reinforced cement composites several approaches have been studied including fiber impregnation, sealing of the matrix pore system and reduction of matrix alkalinity through the use of pozzolanic materials. In this study waste glass powder was used as a pozzolanic additive to improve the durability performancemore » of flax fiber reinforced mortar (FFRM). The durability of the FFRM was studied by determining the effects of ageing in water and exposure to wetting and drying cycles; on the microstructures and flexural behaviour of the composites. The mortar tests demonstrated that the waste glass powder has significant effect on improving the durability of FFRM.« less
Shrinkage and durability study of bridge deck concrete.
DOT National Transportation Integrated Search
2010-12-01
The Mississippi Department of Transportation is incorporating changes to material : specifications and construction procedures for bridge decks in an effort to reduce shrinkage : cracking. These changes are currently being implemented into a limited ...
Ceramic thermal protective coating withstands hostile environment of rotating turbine blades
NASA Technical Reports Server (NTRS)
Liebert, C. H.; Stecura, S.
1975-01-01
Ceramic coatings have low thermal conductivity. They provide potential for increased engine performance, reduced fuel consumption, use of less costly materials or construction procedures, and increased life and durability.
A study of the durability of beryllium rocket engines. [space shuttle reaction control system
NASA Technical Reports Server (NTRS)
Paster, R. D.; French, G. C.
1974-01-01
An experimental test program was performed to demonstrate the durability of a beryllium INTEREGEN rocket engine when operating under conditions simulating the space shuttle reaction control system. A vibration simulator was exposed to the equivalent of 100 missions of X, Y, and Z axes random vibration to demonstrate the integrity of the recently developed injector-to-chamber braze joint. An off-limits engine was hot fired under extreme conditions of mixture ratio, chamber pressure, and orifice plugging. A durability engine was exposed to six environmental cycles interspersed with hot-fire tests without intermediate cleaning, service, or maintenance. Results from this program indicate the ability of the beryllium INTEREGEN engine concept to meet the operational requirements of the space shuttle reaction control system.
Degradation mechanisms and accelerated testing in PEM fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borup, Rodney L; Mukundan, Rangachary
2010-01-01
The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise frommore » component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.« less
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Smith, Daniela C.
1999-01-01
Solar-dynamic space power systems require durable, high-emittance surfaces on a number of critical components, such as heat receiver interior surfaces and parasitic load radiator (PLR) elements. An alumina-titania coating, which has been evaluated for solar-dynamic heat receiver canister applications, has been chosen for a PLR application (an electrical sink for excess power from the turboalternator/compressor) because of its demonstrated high emittance and high-temperature durability in vacuum. Under high vacuum conditions (+/- 10(exp -6) torr), the alumina-titania coating was found to be durable at temperatures of 1520 F (827 C) for approx. 2700 hours with no degradation in optical properties. This coating has been successfully applied to the 2-kW solar-dynamic ground test demonstrator at the NASA Lewis Research Center, to the 500 thermal-energy-storage containment canisters inside the heat receiver and to the PLR radiator. The solar-dynamic demonstrator has successfully operated for over 800 hours in Lewis large thermal/vacuum space environment facility, demonstrating the feasibility of solar-dynamic power generation for space applications.
Evaluation of alternative snowplowable markers and snowplowing procedures.
DOT National Transportation Integrated Search
2013-06-01
The objectives of this study were to investigate viable alternatives to the currently approved snowplowable raised pavement marker and alternative methods and equipment used to snowplow roadways. The study included evaluating any potential durable an...
Enhancements to pavement marking testing procedures.
DOT National Transportation Integrated Search
2010-08-01
The Oregon Department of Transportation (ODOT) requires performance and durability testing of all pavement : marking materials before they can be applied on construction projects on state highways. Manufacturers apply materials : on a two-year test d...
Behavior Therapy for Pediatric Trichotillomania: A Randomized Controlled Trial
ERIC Educational Resources Information Center
Franklin, Martin E.; Edson, Aubrey L.; Ledley, Deborah A.; Cahill, Shawn P.
2011-01-01
Objective: To examine the efficacy and durability of a behavioral therapy (BT) protocol for pediatric TTM compared with a minimal attention control (MAC) condition. It was hypothesized that the BT condition would be superior to MAC at the end of acute treatment, and would also demonstrate durability of gains through the maintenance treatment…
Collagenase injections for treatment of Dupuytren disease.
Hentz, Vincent R
2014-02-01
Palmodigital fasciectomy remains the gold standard. The initial outcome is, in my experience, far more predictable than either NA or enzyme fasciotomy (EF). It is also a more durable treatment. NA and EF can be conceptualized as similar procedures--one uses a needle and the other an enzyme to weaken a cord sufficient to be able to rupture it and thus straighten a contracted joint. Both are less invasive and the hand is quick to recover. Both procedures are equally initially effective. CHH seems to offer greater durability. Today’s patients are often better educated and seek a specific type of treatment, in particular, effective nonoperative treatment. Pharmaceutical companies now market directly and effectively to patients, and this strategy and Internet use have already resulted in an increase in the number of patients searching for practitioners willing to administer and capable of administering collagenase treatment. Copyright © 2014 Elsevier Inc. All rights reserved.
Tremaroli, Valentina; Karlsson, Fredrik; Werling, Malin; Ståhlman, Marcus; Kovatcheva-Datchary, Petia; Olbers, Torsten; Fändriks, Lars; le Roux, Carel W.; Nielsen, Jens; Bäckhed, Fredrik
2015-01-01
Summary Bariatric surgery is currently the most effective procedure for the treatment of obesity. Given the role of the gut microbiota in regulating host metabolism and adiposity, we investigated the long-term effects of bariatric surgery on the microbiome of patients randomized to Roux-en-Y gastric bypass or vertical banded gastroplasty and matched for weight and fat mass loss. The two surgical procedures induced similar and durable changes on the gut microbiome that were not dependent on body mass index and resulted in altered levels of fecal and circulating metabolites compared with obese controls. By colonizing germ-free mice with stools from the patients, we demonstrated that the surgically altered microbiota promoted reduced fat deposition in recipient mice. These mice also had a lower respiratory quotient, indicating decreased utilization of carbohydrates as fuel. Our results suggest that the gut microbiota may play a direct role in the reduction of adiposity observed after bariatric surgery. PMID:26244932
A green and bio-inspired process to afford durable anti-biofilm properties to stainless steel.
Faure, E; Vreuls, C; Falentin-Daudré, C; Zocchi, G; Van de Weerdt, C; Martial, J; Jérôme, C; Duwez, A-S; Detrembleur, C
2012-01-01
A bio-inspired durable anti-biofilm coating was developed for industrial stainless steel (SS) surfaces. Two polymers inspired from the adhesive and cross-linking properties of mussels were designed and assembled from aqueous solutions onto SS surfaces to afford durable coatings. Trypsin, a commercially available broad spectrum serine protease, was grafted as the final active layer of the coating. Its proteolytic activity after long immersion periods was demonstrated against several substrata, viz. a synthetic molecule, N-α-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA), a protein, FTC-casein, and Gram-positive biofilm forming bacterium Staphylococcus epidermidis.
Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna
2015-01-01
Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining. PMID:26482559
NASA Astrophysics Data System (ADS)
Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; Howell, Caitlin; Ahanotu, Onye; Aizenberg, Joanna
2015-10-01
Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extreme temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. To illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.
Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments.
Calado, Carlos; Camões, Aires; Monteiro, Eliana; Helene, Paulo; Barkokébas, Béda
2015-03-27
Self-compacting concrete (SCC) demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC). This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle.
Durability Indicators Comparison for SCC and CC in Tropical Coastal Environments
Calado, Carlos; Camões, Aires; Monteiro, Eliana; Helene, Paulo; Barkokébas, Béda
2015-01-01
Self-compacting concrete (SCC) demands more studies of durability at higher temperatures when subjected to more aggressive environments in comparison to the conventional vibrated concrete (CC). This work aims at presenting results of durability indicators of SCC and CC, having the same water/binder relations and constituents. The applied methodologies were electrical resistivity, diffusion of chloride ions and accelerated carbonation experiments, among others, such as microstructure study, scanning electron microscope and microtomography experiments. The tests were performed in a research laboratory and at a construction site of the Pernambuco Arena. The obtained results shows that the SCC presents an average electrical resistivity 11.4% higher than CC; the average chloride ions diffusion was 63.3% of the CC; the average accelerated carbonation penetration was 45.8% of the CC; and the average open porosity was 55.6% of the CC. As the results demonstrated, the SCC can be more durable than CC, which contributes to elucidate the aspects related to its durability and consequent prolonged life cycle. PMID:28788012
Tesler, Alexander B.; Kim, Philseok; Kolle, Stefan; ...
2015-10-20
Formation of unwanted deposits on steels during their interaction with liquids is an inherent problem that often leads to corrosion, biofouling and results in reduction in durability and function. Here we report a new route to form anti-fouling steel surfaces by electrodeposition of nanoporous tungsten oxide (TO) films. TO-modified steels are as mechanically durable as bare steel and highly tolerant to compressive and tensile stresses due to chemical bonding to the substrate and island-like morphology. When inherently superhydrophilic TO coatings are converted to superhydrophobic, they remain non-wetting even after impingement with yttria-stabilized-zirconia particles, or exposure to ultraviolet light and extrememore » temperatures. Upon lubrication, these surfaces display omniphobicity against highly contaminating media retaining hitherto unseen mechanical durability. Furthermore, to illustrate the applicability of such a durable coating in biofouling conditions, we modified naval construction steels and surgical instruments and demonstrated significantly reduced marine algal film adhesion, Escherichia coli attachment and blood staining.« less
Hou, Huidan; Xu, Qingkai; Pang, Yaokun; Li, Lei; Wang, Jiulin; Zhang, Chi; Sun, Chunwen
2017-08-01
Storing energy harvested by triboelectric nanogenerators (TENGs) from ambient mechanical motion is still a great challenge for achieving low-cost and environmental benign power sources. Here, an all-solid-state Na-ion battery with safe and durable performance used for efficient storing pulsed energy harvested by the TENG is demonstrated. The solid-state sodium-ion batteries are charged by galvanostatic mode and pulse mode with the TENG, respectively. The all-solid-state sodium-ion battery displays excellent cyclic performance up to 1000 cycles with a capacity retention of about 85% even at a high charge and discharge current density of 48 mA g -1 . When charged by the TENG, an energy conversion efficiency of 62.3% is demonstrated. The integration of TENGs with the safe and durable all-solid-state sodium-ion batteries is potential for providing more stable power output for self-powered systems.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Pastel, Robert T.
2007-01-01
Advanced thermal and environmental barrier coatings are being developed for Si3N4 components for turbine engine propulsion applications. High pressure burner rig testing was used to evaluate the coating system performance and durability. Test results demonstrated the feasibility and durability of the coating component systems under the simulated engine environments.
NASA Astrophysics Data System (ADS)
Musaramthota, Vishal
Advanced composite materials have enabled the conventional aircraft structures to reduce weight, improve fuel efficiency and offer superior mechanical properties. In the past, materials such as aluminum, steel or titanium have been used to manufacture aircraft structures for support of heavy loads. Within the last decade or so, demand for advanced composite materials have been emerging that offer significant advantages over the traditional metallic materials. Of particular interest in the recent years, there has been an upsurge in scientific significance in the usage of adhesively bonded composite joints (ABCJ's). ABCJ's negate the introduction of stress risers that are associated with riveting or other classical techniques. In today's aircraft transportation market, there is a push to increase structural efficiency by promoting adhesive bonding to primary joining of aircraft structures. This research is focused on the issues associated with the durability and related failures in bonded composite joints that continue to be a critical hindrance to the universal acceptance of ABCJ's. Of particular interest are the short term strength, contamination and long term durability of ABCJ's. One of the factors that influence bond performance is contamination and in this study the influence of contamination on composite-adhesive bond quality was investigated through the development of a repeatable and scalable surface contamination procedure. Results showed an increase in the contaminant coverage area decreases the overall bond strength significantly. A direct correlation between the contaminant coverage area and the fracture toughness of the bonded joint was established. Another factor that influences bond performance during an aircraft's service life is its long term strength upon exposure to harsh environmental conditions or when subjected to severe mechanical loading. A test procedure was successfully developed in order to evaluate durability of ABCJ's comprising severe environmental conditioning, fatiguing in ambient air and a combination of both. The bonds produced were durable enough to sustain the tests cases mentioned above when conditioned for 8 weeks and did not experience any loss in strength. Specimens that were aged for 80 weeks showed a degradation of 10% in their fracture toughness when compared to their baseline datasets. The effect of various exposure times needs to be further evaluated to establish the relationship of durability that is associated with the fracture toughness of ABCJ's.
Gulino, Simona; Barbanti, Marco; Deste, Wanda; Immè, Sebastiano; Aruta, Patrizia; Bottari, Vera; Benvenuto, Emanuele; Tamburino, Claudia; Di Landro, Alessio; Liberto, Daria; Santonoceto, Letizia; Sicuso, Rita; Di Stefano, Daniele; Todaro, Denise; Di Simone, Emanuela; Indelicato, Antonino; Giannazzo, Daniela; Sgroi, Carmelo; Tamburino, Corrado
2016-10-10
Long-term data on the durability of currently available transcatheter heart valves are limited. We sought to assess four-year clinical and echocardiographic outcomes in patients undergoing transcatheter aortic valve implantation (TAVI) with the CoreValve prosthesis. Between June 2007 and February 2014, 450 consecutive patients with symptomatic severe aortic stenosis underwent TAVI in our institution. For the purposes of this study, we included only those patients undergoing successful TAVI with the CoreValve prosthesis who had a minimum follow-up of four years (n=125). Survival rates at one, two, three and four years were 83.2, 76.8, 73.6 and 66.3%, respectively. Aortic regurgitation was a common finding after the procedure, especially due to paravalvular regurgitation (PVR), which was observed in the majority of patients (71.5%), mostly mild (52.0%). Progression from mild acute PVR to moderate PVR at four-year follow-up was reported in three patients. No cases of severe PVR were observed. Prosthetic valve failure was reported in four patients (3.2%). Our study demonstrates that favourable outcomes after successful TAVI are associated with sustained clinical and functional cardiovascular benefits up to four-year follow-up. Signs of moderate prosthetic valve failure are present only in a small percentage of patients.
Fouling and long-term durability of an integrated forward osmosis and membrane distillation system.
Husnain, T; Mi, B; Riffat, R
2015-01-01
An integrated forward osmosis (FO) and membrane distillation (MD) system has great potential for sustainable wastewater reuse. However, the fouling and long-term durability of the system remains largely unknown. This study investigates the fouling behaviour and efficiency of cleaning procedures of FO and MD membranes used for treating domestic wastewater. Results showed that a significant decline in flux of both FO and MD membranes were observed during treatment of wastewater with organic foulants. However, shear force generated by the increased cross-flow physically removed the loosely attached foulants from the FO membrane surface and resulted in 86-88% recovery of flux by cleaning with tap water. For the MD membrane, almost no flux recovery was achieved due to adsorption of organic foulants on the hydrophobic membrane surface, thus indicating significant irreversible fouling/wetting, which may not be effectively cleaned even with chemical reagents. Long-term (10 d) tests showed consistent performance of the FO membrane by rejecting the contaminants. However, organic foulants reduced the hydrophobicity of the MD membrane, caused wetting problems and allowed contaminants to pass through. The results demonstrate that combination of the FO and MD processes can effectively reduce irreversible membrane fouling and solve the wetting problem of the MD membrane.
Durability of an inorganic polymer concrete coating
NASA Astrophysics Data System (ADS)
Wasserman, Kenneth
The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.
Performance and durability of high emittance heat receiver surfaces for solar dynamic power systems
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Roig, David M.; Burke, Christopher A.; Shah, Dilipkumar R.
1994-01-01
Haynes 188, a cobalt-based superalloy, will be used to make thermal energy storage (TES) containment canisters for a 2 kW solar dynamic ground test demonstrator (SD GTD). Haynes 188 containment canisters with a high thermal emittance (epsilon) are desired for radiating heat away from local hot spots, improving the heating distribution, which will in turn improve canister service life. In addition to needing a high emittance, the surface needs to be durable in an elevated temperature, high vacuum environment for an extended time period. Thirty-five Haynes 188 samples were exposed to 14 different types of surface modification techniques for emittance and vacuum heat treatment (VHT) durability enhancement evaluation. Optical properties were obtained for the modified surfaces. Emittance enhanced samples were exposed to VHT for up to 2692 hours at 827 C and less than or equal to 10(exp -6) torr with integral thermal cycling. Optical properties were taken intermittently during exposure, and after final VHT exposure. The various surface modification treatments increased the emittance of pristine Haynes 188 from 0.11 up to 0.86. Seven different surface modification techniques were found to provide surfaces which met the SD GTD receiver VHT durability requirement. Of the 7 surface treatments, 2 were found to display excellent VHT durability: an alumina based (AB) coating and a zirconia based coating. The alumina based coating was chosen for the epsilon enhancement surface modification technique for the SD GTD receiver. Details of the performance and vacuum heat treatment durability of this coating and other Haynes 188 emittance surface modification techniques are discussed. Technology from this program will lead to successful demonstration of solar dynamic power for space applications, and has potential for application in other systems requiring high emittance surfaces.
A non-invasive navigation system for retargeting gastroscopic lesions.
Liu, Jiquan; Wang, Bin; Hu, Weiling; Zong, Yun; Si, Jianmin; Duan, Huilong
2014-01-01
Biopsy is a traditional endoscopic surveillance of premalignant gastric lesions, and endoscopic tattooing is used for marking the biopsy's location. However, the tattooing has several disadvantages. For example, the procedure is an invasive operation and may not be durable due to the diffusion. Moreover, it is procedurally cumbersome with an associated risk of technical failure. In this study, a computer aided endoscopic navigation system (CAEN system) was developed for a non-invasive biopsy procedure. The CAEN system consists of a new, designed six degree of freedom (6-DOF) tracking endoscope device and a computer simulated work station. During the procedure, the endoscopist uses the tip of the tracking endoscope to touch the lesion. Then, the lesion's location is recorded in the work station, which then guides the endoscopist in retargeting the lesions in the follow-ups. The clinical experimental results demonstrate that the accuracy at the angularis is 5.2 ± 2.8 mm, at the antral lesser curvature is 7.2 ± 2.0 mm, at the antral greater curvature is 6.3 ± 3.1 mm, at the antral posterior wall is 8.2 ± 1.6 mm, and at the antral anterior wall is 7.9 ± 1.3 mm. The mean accuracy is 7.5 mm, and the P-value is 0.023, which is likely suitable for clinical practice. Furthermore, the proposed CAEN system requires less procedural time than the tattooing.
Follow-up of renal and mesenteric artery revascularization with duplex ultrasonography
Taylor, David C.; Houston, Gordon T.M.; Anderson, Caroline; Jameson, Margot; Popatia, Shelley
1996-01-01
Objective To evaluate the long-term anatomic results of renal revascularization procedures using duplex ultrasonography. Design A case series. Setting A university-affiliated hospital. Patients Twenty-five patients who had undergone renal percutaneous transluminal angioplasty (PTA) (18 arteries), renal bypass (10 arteries) and mesenteric bypass (6 arteries). The mean follow-up was 22 months (range from 3 to 48 months) for those who underwent renal PTA, 23 months (range from 1.5 to 70 months) for those who underwent renal bypass and 34 months (range from 8 to 144 months) for those who underwent mesenteric bypass. Main Outcome Measures Patency rates for the three procedures as assessed by duplex ultrasonography. Results Duplex ultrasonography demonstrated patency without stenosis after renal and mesenteric artery revascularization in 14 arteries subjected to renal PTA, 9 arteries subjected to renal bypass and 6 arteries subjected to mesenteric bypass. Three arteries that had renal PTA had recurrent vessel stenosis and one had occlusion. One artery that had renal bypass showed occlusion. Conclusions Renal PTA, renal bypass and mesenteric bypass are durable procedures at 2 years of follow-up, and duplex ultrasonography is a valuable method for assessing the patency of arteries after renal and mesenteric revascularization. PMID:8599785
Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng
2015-02-25
The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.
Temperature induced effects on the durability of MR fluids
NASA Astrophysics Data System (ADS)
Wiehe, A.; Kieburg, C.; Maas, J.
2013-02-01
Although commercial MR fluids exist for quite some time now and the feasibility as well as the advantages of the MR technology have been demonstrated for several applications by a variety of MR actuator prototypes, a sustainable market break-through of brake and clutch applications utilizing the shear mode is still missing. Essential impediments are the marginal knowledge about the durability of the MR technology. To overcome this situation, a long-term measurement system was developed for the durability analysis of MR fluid formulations within a technical relevant scale with respect to the volume of MR fluid and the transmitted torque. The focus of the presented series of measurements is given to the analysis of temperature induced effects on the durability. In this context four different failure indicators can be distinguished, namely an apparent negative viscosity, deviations in torque data obtained from different measurements as well as a pressure increase and a drop in the on-state torque. The measurement data of the present durability experiments indicate a significant dependency of the attainable energy intake density on the temperature. The aim of such durability tests is to establish a reliable data base for the industry to estimate the life-time of MR devices.
Development and evaluation of endurance test system for ventricular assist devices.
Sumikura, Hirohito; Homma, Akihiko; Ohnuma, Kentaro; Taenaka, Yoshiyuki; Takewa, Yoshiaki; Mukaibayashi, Hiroshi; Katano, Kazuo; Tatsumi, Eisuke
2013-06-01
We developed a novel endurance test system that can arbitrarily set various circulatory conditions and has durability and stability for long-term continuous evaluation of ventricular assist devices (VADs), and we evaluated its fundamental performance and prolonged durability and stability. The circulation circuit of the present endurance test system consisted of a pulsatile pump with a small closed chamber (SCC), a closed chamber, a reservoir and an electromagnetic proportional valve. Two duckbill valves were mounted in the inlet and outlet of the pulsatile pump. The features of the circulation circuit are as follows: (1) the components of the circulation circuit consist of optimized industrial devices, giving durability; (2) the pulsatile pump can change the heart rate and stroke length (SL), as well as its compliance using the SCC. Therefore, the endurance test system can quantitatively reproduce various circulatory conditions. The range of reproducible circulatory conditions in the endurance test circuit was examined in terms of fundamental performance. Additionally, continuous operation for 6 months was performed in order to evaluate the durability and stability. The circulation circuit was able to set up a wide range of pressure and total flow conditions using the SCC and adjusting the pulsatile pump SL. The long-term continuous operation test demonstrated that stable, continuous operation for 6 months was possible without leakage or industrial device failure. The newly developed endurance test system demonstrated a wide range of reproducible circulatory conditions, durability and stability, and is a promising approach for evaluating the basic characteristics of VADs.
Svensson, Lars G; Pillai, Saila T; Rajeswaran, Jeevanantham; Desai, Milind Y; Griffin, Brian; Grimm, Richard; Hammer, Donald F; Thamilarasan, Maran; Roselli, Eric E; Pettersson, Gösta B; Gillinov, A Marc; Navia, Jose L; Smedira, Nicholas G; Sabik, Joseph F; Lytle, Bruce W; Blackstone, Eugene H
2016-03-01
To evaluate long-term results of aortic root procedures combined with ascending aorta replacement for aneurysms, using 4 surgical strategies. From January 1995 to January 2011, 957 patients underwent 1 of 4 aortic root procedures: valve preservation (remodeling or modified reimplantation, n = 261); composite biologic graft (n = 297); composite mechanical graft (n = 156); or allograft root (n = 243). Seven deaths occurred (0.73%), none after valve-preserving procedures, and 13 strokes (1.4%). Composite grafts exhibited higher gradients than allografts or valve preservation, but the latter 2 exhibited more aortic regurgitation (2.7% biologic and 0% mechanical composite grafts vs 24% valve-preserving and 19% allografts at 10 years). Within 2 to 5 years, valve preservation exhibited the least left ventricular hypertrophy, allograft replacement the greatest; however, valve preservation had the highest early risk of reoperation, allograft replacement the lowest. Patients receiving allografts had the highest risk of late reoperation (P < .05), and those receiving composite mechanical grafts and valve preservation had the lowest. Composite bioprosthesis patients had the highest risk of late death (57% at 15 years vs 14%-26% for the remaining procedures, P < .0001), because they were substantially older and had more comorbidities (P < .0001). These 4 aortic root procedures, combined with ascending aorta replacement, provide excellent survival and good durability. Valve-preserving and allograft procedures have the lowest gradients and best ventricular remodeling, but they have more late regurgitation, and likely, less risk of valve-related complications, such as bleeding, hemorrhage, and endocarditis. Despite the early risk of reoperation, we recommend valve-preserving procedures for young patients when possible. Composite bioprostheses are preferable for the elderly. Copyright © 2016 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Discontinuously Stiffened Composite Panel under Compressive Loading
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Rivers, James M.; Chamis, Christos C.; Murthy, Pappu L. N.
1995-01-01
The design of composite structures requires an evaluation of their safety and durability under service loads and possible overload conditions. This paper presents a computational tool that has been developed to examine the response of stiffened composite panels via the simulation of damage initiation, growth, accumulation, progression, and propagation to structural fracture or collapse. The structural durability of a composite panel with a discontinuous stiffener is investigated under compressive loading induced by the gradual displacement of an end support. Results indicate damage initiation and progression to have significant effects on structural behavior under loading. Utilization of an integrated computer code for structural durability assessment is demonstrated.
NASA Astrophysics Data System (ADS)
Li, Leihong
A modular structural design methodology for composite blades is developed. This design method can be used to design composite rotor blades with sophisticate geometric cross-sections. This design method hierarchically decomposed the highly-coupled interdisciplinary rotor analysis into global and local levels. In the global level, aeroelastic response analysis and rotor trim are conduced based on multi-body dynamic models. In the local level, variational asymptotic beam sectional analysis methods are used for the equivalent one-dimensional beam properties. Compared with traditional design methodology, the proposed method is more efficient and accurate. Then, the proposed method is used to study three different design problems that have not been investigated before. The first is to add manufacturing constraints into design optimization. The introduction of manufacturing constraints complicates the optimization process. However, the design with manufacturing constraints benefits the manufacturing process and reduces the risk of violating major performance constraints. Next, a new design procedure for structural design against fatigue failure is proposed. This procedure combines the fatigue analysis with the optimization process. The durability or fatigue analysis employs a strength-based model. The design is subject to stiffness, frequency, and durability constraints. Finally, the manufacturing uncertainty impacts on rotor blade aeroelastic behavior are investigated, and a probabilistic design method is proposed to control the impacts of uncertainty on blade structural performance. The uncertainty factors include dimensions, shapes, material properties, and service loads.
Feitosa, Victor Pinheiro; Bazzocchi, Maria Giulia; Putignano, Angelo; Orsini, Giovanna; Luzi, Arlinda Luzi; Sinhoreti, Mário Alexandre Coelho; Watson, Timothy F; Sauro, Salvatore
2013-11-01
To compare the effects of two etching procedures using meta-phosphoric (MPA) or ortho-phosphoric acid (OPA) on dentine demineralisation, resin-dentine bonds durability and interface nanoleakage/ultra-morphology. Middle-dentine specimens were etched using 37% OPA (15s) or 40% MPA (60s) and submitted to infrared spectroscopy (FTIR) or ultra-morphology dye-assisted (calcium-staining) confocal microscopy (Ca-CLSM). A three-step etch-and-rinse adhesive was formulated, applied onto dentine and light-cured for 30s before composite build-up. After 24h, the dentine-bonded specimens were cut into 1mm(2) beams; half were immediately submitted to microtensile bond strength (μTBS) and half stored in DW for six months. The μTBS results were analysed with repeated-measures ANOVA and Tukey's test (p<0.05). Further teeth were bonded and prepared for interface nanoleakage/ultra-morphology confocal evaluation. FTIR and Ca-CLSM analyses showed dicalcium phosphate dihydrate (Brushite) precipitation in MPA-etched dentine and on the bottom (front of demineralisation) of the OPA-etched dentine. Statistical analysis showed similar μTBS for both etching procedures after 24h. The μTBS of specimens in OPA-group dropped significantly (p<0.05) after six month; the specimens in the MPA group showed no statistically difference (p>0.05). CLSM depicted no evident sign of nanoleakage within the resin-dentine interface of the MPA-treated specimens, while the specimens in OPA-group presented intense nanoleakage and interface degradation. The use of MPA (60s) as an alternative dentine conditioning agent in etch-and-rinse bonding procedures may be a suitable strategy to create more durable resin-dentine bonds. Copyright © 2013 Elsevier Ltd. All rights reserved.
Visual Motion Perception and Visual Information Processing
1993-12-31
tradi- tionally called the "span of apprehension" (Kulpe, 1904; Durable Storage Wundt , 1899). However, a partial-report procedure demon- strates...Gehrig. P. (1992). On the time course Wundt . W. (1899). Zur Kritik tachistoskopischer Versuche [A crit- of perceptual information that results from a
NASA Technical Reports Server (NTRS)
Thesken, John C.; Bowman, Cheryl L.; Arnold, Steven M.
2003-01-01
Successful spaceflight operations require onboard power management systems that reliably achieve mission objectives for a minimal launch weight. Because of their high specific energies and potential for reduced maintenance and logistics, composite flywheels are an attractive alternative to electrochemical batteries. The Rotor Durability Team, which comprises members from the Ohio Aerospace Institute (OAI) and the NASA Glenn Research Center, completed a program of elevated temperature testing at Glenn' s Life Prediction Branch's Fatigue Laboratory. The experiments provided unique design data essential to the safety and durability of flywheel energy storage systems for the International Space Station and other manned spaceflight applications. Analysis of the experimental data (ref. 1) demonstrated that the compressive stress relaxation of composite flywheel rotor material is significantly greater than the commonly available tensile stress relaxation data. Durability analysis of compression preloaded flywheel rotors is required for accurate safe-life predictions for use in the International Space Station.
Durability testing of the AJ10-221 490 N high performance (321 sec Isp) engine
NASA Technical Reports Server (NTRS)
Jassowski, D. M.; Rosenberg, S. D.; Schoenman, L.
1993-01-01
The durability of the 490 N AJ10-221 engine is characterized on the basis of data from 93 tests and a total firing life of 6.3 hr. For the three Ir/Re chambers tested, no limiting conditions were encountered in the 43,379 sec and 229 test thermal cycles. A wide range of off nominal operating conditions was successfully demonstrated.
21 CFR 1002.30 - Records to be maintained by manufacturers.
Code of Federal Regulations, 2010 CFR
2010-04-01
... (CONTINUED) RADIOLOGICAL HEALTH RECORDS AND REPORTS Manufacturers' Records § 1002.30 Records to be maintained... procedures with respect to electronic product radiation safety. (2) Records of the results of tests for... increase electronic product radiation emission, records of the results of tests for durability and...
FR Performance of New Fire-off on PET/CO blend fabrics
NASA Astrophysics Data System (ADS)
Atakan, R.; Çelebi, E.; Ozcan, G.; Soydan, N.; Sarac, A. S.
2017-10-01
This paper represents the investigation on flame retardancy performance and durability of polyester/cotton (P/C) fabrics treated with a novel halogen/formaldehyde free, P-N synergetic FR finishing agent called New Fire-off. 100 % Cotton, 100 % Polyester and three different blend P/C fabrics were chosen in this study. Fabric samples were treated with New Fire-off through pad-dry-cure process. Flammability and thermal properties of the treated samples with New Fire-off were tested according to relevant ISO standard and procedures. The obtained results showed that this new finishing formulation is a good char-forming agent. However, further studies are required to achieve washing durability for the P/C blends.
NASA Technical Reports Server (NTRS)
Brinson, R. F.
1985-01-01
A method for lifetime or durability predictions for laminated fiber reinforced plastics is given. The procedure is similar to but not the same as the well known time-temperature-superposition principle for polymers. The method is better described as an analytical adaptation of time-stress-super-position methods. The analytical constitutive modeling is based upon a nonlinear viscoelastic constitutive model developed by Schapery. Time dependent failure models are discussed and are related to the constitutive models. Finally, results of an incremental lamination analysis using the constitutive and failure model are compared to experimental results. Favorable results between theory and predictions are presented using data from creep tests of about two months duration.
Retention of laparoscopic procedural skills acquired on a virtual-reality surgical trainer.
Maagaard, Mathilde; Sorensen, Jette Led; Oestergaard, Jeanett; Dalsgaard, Torur; Grantcharov, Teodor P; Ottesen, Bent S; Larsen, Christian Rifbjerg
2011-03-01
Virtual-reality (VR) simulator training has been shown to improve surgical performance in laparoscopic procedures in the operating room. We have, in a randomised controlled trial, demonstrated transferability to real operations. The validity of the LapSim virtual-reality simulator as an assessment tool has been demonstrated in several reports. However, an unanswered question regarding simulator training is the durability, or retention, of skills acquired during simulator training. The aim of the present study is to assess the retention of skills acquired using the LapSim VR simulator, 6 and 18 months after an initial training course. The investigation was designed as a 6- and 18-month follow-up on a cohort of participants who earlier participated in a skills training programme on the LapSim VR. The follow-up cohort consisted of trainees and senior consultants allocated to two groups: (1) novices (experience < 5 procedures, n = 9) and (2) experts (experience > 200 procedures during the past 3 years, n = 10). Each participant performed ten sessions. Assessment of skills was based on time, economy of movement and the error parameter "bleeding". The novice group were re-tested after 6 and 18 months, whereas the expert group were only retested once, after 6 months. None of the novices performed laparoscopic surgery in the follow-up period. The experts continued their daily work with laparoscopic surgery. Novices showed retention of skills after 6 months. After 18 months, novices' laparoscopic skills had returned to the pre-training level. This indicates that laparoscopic skills seemed to deteriorate in the period between 6 and 18 months without training. Experts showed consistent performance over time. This information can be included when planning training curricula in minimal invasive surgery.
Araghi, Ali; Woodruff, Robert; Colle, Kyle; Boone, Christopher; Ingham, Lisa; Tomeh, Antoine; Fielding, Louis C
2017-01-01
This report documents six-month results of the first 50 patients treated in a prospective, multi-center study of a minimally invasive (MI) sacroiliac (SI) joint fusion system. This cohort includes 50 patients who had MI SI joint fusion surgery and completed 6 month follow-up. Average age at baseline was 61.5, 58% were female, and SI joint-related pain duration was ≥2yrs in 54.0% of patients. Visual Analog Scale (VAS) SI joint pain, Oswestry Disability Index (ODI), quality of life and opioid use were assessed preoperatively and at 6 months. At 6 months, mean VAS pain demonstrated a significant reduction from 76.2 at baseline to 35.1 (54% reduction, p<0.0001), with 72% of patients attaining the minimal clinically important difference (MCID, ≥20 point improvement). Mean ODI improved from 55.5 to 35.3 at 6 months (p < 0.001), with 56% of patients achieving the MCID (≥15 point improvement). Prior to surgery 33/50 (66%) of patients were taking opioids, but by 6 months the number of patients taking opioids had decreased by 55% to 15/50 (30%). Few procedural complications were reported. Two procedure-related events required hospitalization: a revision procedure (2%) for nerve impingement and one case of ongoing low back pain. Analysis of patients treated with MI SI joint fusion using the SImmetry System demonstrated that the procedure can be performed safely and results in significant improvements in pain, disability, and opioid use at 6 months. Longer term follow-up in this study will determine whether these improvements are durable, as well as the associated radiographic fusion rates.
Tremaroli, Valentina; Karlsson, Fredrik; Werling, Malin; Ståhlman, Marcus; Kovatcheva-Datchary, Petia; Olbers, Torsten; Fändriks, Lars; le Roux, Carel W; Nielsen, Jens; Bäckhed, Fredrik
2015-08-04
Bariatric surgery is currently the most effective procedure for the treatment of obesity. Given the role of the gut microbiota in regulating host metabolism and adiposity, we investigated the long-term effects of bariatric surgery on the microbiome of patients randomized to Roux-en-Y gastric bypass or vertical banded gastroplasty and matched for weight and fat mass loss. The two surgical procedures induced similar and durable changes on the gut microbiome that were not dependent on body mass index and resulted in altered levels of fecal and circulating metabolites compared with obese controls. By colonizing germ-free mice with stools from the patients, we demonstrated that the surgically altered microbiota promoted reduced fat deposition in recipient mice. These mice also had a lower respiratory quotient, indicating decreased utilization of carbohydrates as fuel. Our results suggest that the gut microbiota may play a direct role in the reduction of adiposity observed after bariatric surgery. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grin, A.; Lstiburek, J.
This guide provides information and recommendations to the following groups: insulation contractors; general contractors; builders; home remodelers; mechanical contractors; and homeowners, as a guide to the work that needs to be done. The order of work completed during home construction and retrofit improvements is important. Health and safety issues must be addressed first and are more important than durability issues. And durability issues are more important than saving energy. Not all techniques can apply to all houses. Special conditions will require special action. Some builders or homeowners will wish to do more than the important but basic retrofit strategies outlinedmore » by this guide. The following are best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant items were discussed with the group which are required to make taped insulating sheathing a simple, long term, and durable drainage plane: 1. Horizontal joints should be limited or eliminated wherever possible; 2. Where a horizontal joint exists use superior materials; 3. Frequent installation inspection and regular trade training are required to maintain proper installation. Section 5 of this measure guideline contains the detailed construction procedure for the three recommended methods to effectively seal the joints in exterior insulating sheathing to create a simple, long term, and durable drainage plane.« less
Martin, Caitlin; Sun, Wei
2016-01-01
Transcatheter aortic valve (TAV) implantation within a failed bioprosthetic valve is a growing trend for high-risk patients. The non-compliant stent of the previous prosthesis may prevent full expansion of the TAV, which has been shown to distort the leaflet configuration, and has been hypothesized to adversely affect durability. In this study, TAV leaflet fatigue damage under cyclic pressurization in the setting of stent underexpansion by 0 (fully expanded), 1, 2 and 3 mm was simulated using finite element analysis to test this hypothesis. In the 2 and 3 mm underexpanded devices, the TAV leaflets exhibited severe pin-wheeling during valve closure, which increased leaflet stresses dramatically, and resulted in accelerated fatigue damage of the leaflets. The leaflet fatigue damage in the 1 mm underexpanded case was similar to that in the fully expanded case. Clinically a range of 10% to 15% underexpansion is generally considered acceptable; however, it was observed in this study that ≥2 mm (≥9.1%) underexpansion, will significantly impact device durability. Further study is necessary to determine the impact of various deployment conditions, i.e. non-uniform and non-circular deployments and different implantation heights, on differing TAV devices, but it is clear that the normal TAV leaflet configuration must be preserved in order to preserve durability. PMID:27734178
Roche, Benjamin; Drake, John M.; Brown, Justin; Stallknecht, David E.; Bedford, Trevor; Rohani, Pejman
2014-01-01
Avian influenza viruses (AIVs) have been pivotal to the origination of human pandemic strains. Despite their scientific and public health significance, however, there remains much to be understood about the ecology and evolution of AIVs in wild birds, where major pools of genetic diversity are generated and maintained. Here, we present comparative phylodynamic analyses of human and AIVs in North America, demonstrating (i) significantly higher standing genetic diversity and (ii) phylogenetic trees with a weaker signature of immune escape in AIVs than in human viruses. To explain these differences, we performed statistical analyses to quantify the relative contribution of several potential explanations. We found that HA genetic diversity in avian viruses is determined by a combination of factors, predominantly subtype-specific differences in host immune selective pressure and the ecology of transmission (in particular, the durability of subtypes in aquatic environments). Extending this analysis using a computational model demonstrated that virus durability may lead to long-term, indirect chains of transmission that, when coupled with a short host lifespan, can generate and maintain the observed high levels of genetic diversity. Further evidence in support of this novel finding was found by demonstrating an association between subtype-specific environmental durability and predicted phylogenetic signatures: genetic diversity, variation in phylogenetic tree branch lengths, and tree height. The conclusion that environmental transmission plays an important role in the evolutionary biology of avian influenza viruses—a manifestation of the “storage effect”—highlights the potentially unpredictable impact of wildlife reservoirs for future human pandemics and the need for improved understanding of the natural ecology of these viruses. PMID:25116957
Basalt fiber reinforced polymer composites: Processing and properties
NASA Astrophysics Data System (ADS)
Liu, Qiang
A high efficiency rig was designed and built for in-plane permeability measurement of fabric materials. A new data derivation procedure to acquire the flow fluid pattern in the experiment was developed. The measurement results of the in-plane permeability for basalt twill 31 fabric material showed that a high correlation exists between the two principal permeability values for this fabric at 35% fiber volume fraction. This may be the most important scientific contribution made in this thesis. The results from radial measurements corresponded quite well with those from Unidirectional (UD) measurements, which is a well-established technique. No significant differences in mechanical properties were found between basalt fabric reinforced polymer composites and glass composites reinforced by a fabric of similar weave pattern. Aging results indicate that the interfacial region in basalt composites may be more vulnerable to environmental damage than that in glass composites. However, the basalt/epoxy interface may have been more durable than the glass/epoxy interface in tension-tension fatigue because the basalt composites have significantly longer fatigue life. In this thesis, chapter I reviews the literature on fiber reinforced polymer composites, with concentration on permeability measurement, mechanical properties and durability. Chapter II discusses the design of the new rig for in-plane permeability measurement, the new derivation procedure for monitoring of the fluid flow pattern, and the permeability measurement results. Chapter III compares the mechanical properties and durability between basalt fiber and glass fiber reinforced polymer composites. Lastly, chapter IV gives some suggestions and recommendations for future work.
2000-12-01
interpretation of the May 7, 1996 meeting with Carl Olson, Tim Hayes, Tom Dreier, Dave Stitcher , and Frances Reid. This procedure of decontamination and proof...with Carl Olson, Tim Hayes, Tom Dreier, Dave Stitcher , and Frances Reid. TASK 33 DECONTAMINATION PROCEDURE AND PROOF OF DECONTAMINATION Decontamination...two of you, Mr. Stitcher and Dr. Estep to share our results and resolve any safety issues. Thanks, and M-3 have a good weekend! John S. Graham John S
Esch, Barbara E; Carr, James E; Michael, Jack
2005-01-01
Many children with autism do not imitate adult vocalizations, an important skill in learning to talk. Pairing adult vocalizations with preferred stimuli has been shown to increase free-operant vocalizations but effects are temporary; thus, direct reinforcement may be necessary to establish durable vocal behaviors. In Experiment 1, directly reinforced echoic responses did not increase following stimulus-stimulus pairings in three children with autism. Similarly, pairings did not increase free-operant vocalizations in Experiment 2, a replication of Miguel et al. (2002). Experiment 3 demonstrated that shaping increased vowel frequency for one participant. Results suggest that variables are yet to be delineated that influence effectiveness of a stimulus-stimulus pairing procedure on vocalization frequency and acquisition of a verbal operant following such pairings. PMID:22477313
Research on the Fatigue Flexural Performance of RC Beams Attacked by Salt Spray
NASA Astrophysics Data System (ADS)
Mao, Jiang-hong; Xu, Fang-yuan; Jin, Wei-liang; Zhang, Jun; Wu, Xi-xi; Chen, Cai-sheng
2018-04-01
The fatigue flexural performance of RC beams attacked by salt spray was studied. A testing method involving electro osmosis, electrical accelerated corrosion and salt spray was proposed. This corrosion process method effectively simulates real-world salt spray and fatigue loading exerted by RC components on sea bridges. Four RC beams that have different stress amplitudes were tested. It is found that deterioration by corrosion and fatigue loading reduces the fatigue life of the RC and decreases the ability of deformation. The fatigue life and deflection ability could be reduced by increasing the stress amplitude and the corrosion duration time. The test result demonstrates that this experimental method can couple corrosion deterioration and fatigue loading reasonably. This procedure may be applied to evaluate the fatigue life and concrete durability of RC components located in a natural salt spray environment.
Prakash, D; Campbell, B; Wajed, S
2018-04-01
Introduction Gastro-oesophageal reflux disease (GORD) is a common, chronic debilitating condition. Surgical management traditionally involves fundoplication. Magnetic sphincter augmentation (MSA) is a new definitive treatment. We describe our experience of introducing this innovative therapy into NHS practice and report the early clinical outcomes. Methods MSA was introduced into NHS practice following successful acceptance of a cost-effective business plan and close observation of National Institute for Health and Care Excellence (NICE) recommendations for new procedures, including a carefully planned prospective data collection over a two-year follow-up period. Results Forty-seven patients underwent MSA over the 40-month period. Reflux health-related quality of life (GERD-HRQL) was significantly improved after the procedure and maintained at one- and two-year (P < 0.0001) follow-up. Drug dependency went from 100% at baseline to 2.6% and 8.7% after one and two years. High levels of patient satisfaction were reported. There were no adverse events. Conclusions MSA is highly effective in the treatment of uncomplicated GORD, with durable results and an excellent safety profile. This laparoscopic, minimally invasive procedure provides a good alternative for patients where surgical anatomy is unaltered. Our experience demonstrates that innovative technology can be incorporated into NHS practice with an acceptable business plan and compliance with NICE recommendations.
Renal denervation in the management of resistant hypertension: current evidence and perspectives.
Jin, Yu; Persu, Alexandre; Staessen, Jan A
2013-09-01
Catheter-based renal denervation has emerged as a novel treatment modality for resistant hypertension. This review summarizes the current evidence on this procedure in treatment of resistant hypertension, limitations of available evidence and questions to be answered. The SYMPLICITY studies showed that renal denervation is feasible in treating resistant hypertension, but failed to provide conclusive evidence on the size and durability of the antihypertensive, renal and sympatholytic effects, as well as the long-term safety. The definition of resistant hypertension was loose in the SYMPLICITY studies and the management of resistant hypertension was suboptimal. Future studies should have a randomized design and enroll truly resistant hypertension patients by excluding secondary hypertension, white-coat hypertension and nonadherent patients. Questions to be addressed by the ongoing and future trials include the long-term efficacy and safety of this procedure, identification of responders and uncovering of the underlying mechanisms. Only well-designed, randomized clinical trials addressing the limitations of the SYMPLICITY studies will be able to demonstrate whether renal denervation is an efficacious treatment modality in resistant hypertension and in which patients. For now, renal denervation remains an experimental procedure and should only be offered to truly resistant hypertensive patients in a research context after careful selection.
Recent advances in the mechanical durability of superhydrophobic materials.
Milionis, Athanasios; Loth, Eric; Bayer, Ilker S
2016-03-01
Large majority of superhydrophobic surfaces have very limited mechanical wear robustness and long-term durability. This problem has restricted their utilization in commercial or industrial applications and resulted in extensive research efforts on improving resistance against various types of wear damage. In this review, advances and developments since 2011 in this field will be covered. As such, we summarize progress on fabrication, design and understanding of mechanically durable superhydrophobic surfaces. This includes an overview of recently published diagnostic techniques for probing and demonstrating tribo-mechanical durability against wear and abrasion as well as other effects such as solid/liquid spray or jet impact and underwater resistance. The review is organized in terms of various types of mechanical wear ranging from substrate adhesion, tangential surface abrasion, and dynamic impact to ultrasonic processing underwater. In each of these categories, we highlight the most successful approaches to produce robust surfaces that can maintain their non-wetting state after the wear or abrasive action. Finally, various recommendations for improvement of mechanical wear durability and its quantitative evaluation are discussed along with potential future directions towards more systematic testing methods which will also be acceptable for industry. Copyright © 2015 Elsevier B.V. All rights reserved.
Funaro, Michael G; King, Alexandra N; Stern, Joel N H; Moldwin, Robert M; Bahlani, Sonia
2018-05-18
To investigate the efficacy of low dose triamcinolone injection for effectiveness and durability in interstitial cystitis/bladder pain syndrome (IC/BPS) patients with Hunner Lesions (HL). Clinical data from patients with HL who underwent endoscopic submucosal injection of triamcinolone were reviewed: Demographics, pre/post operative pain and nocturia scores, and long-term clinical outcomes were assessed. Duration of response was estimated by time to repeat procedure. Kaplan-Meier estimator was used to evaluate time to repeat procedure. 36 patients who received injections of triamcinolone between 2011 and 2015 were included. Median age±SD of patients was 61.5±12.0 years 23; 28 (77.8%) of patients were female and 8 (22.2%) were male. 26 patients (72.2%) received only 1 set of injections, 8 (22.2%) received 2 sets of injections, and 2 (5.56%) received 3 or more sets of injections. Average time between injections in those receiving more than one set of injections was 344.9 days (median: 313.5, range: 77-714). Pre-procedural pain scores were 8.3±1.2 (mean±SD) on Likert pain scale (0-10), and mean post-procedural pain scores at approximately one month were 3.8±2.2 p<0.001. Mean pre-procedural nocturia bother scores were 7.5±2.0 and mean post-procedural nocturia bother scores were 5.1±2.5) p<0.001. Endoscopic submucosal injection of low dose triamcinolone in IC/BPS patients with HL is an effective and durable adjunct to existing treatment modalities. This approach is associated with low morbidity and can be performed on an outpatient basis. Copyright © 2018. Published by Elsevier Inc.
Improved Durability of SOEC Stacks for High Temperature Electrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
James E. O'Brien; Robert C. O'Brien; Xiaoyu Zhang
2013-01-01
High temperature steam electrolysis is a promising technology for efficient and sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology can be realized. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-termmore » durability of SOECs. Electrolyte-supported and electrode-supported SOEC stacks were provided by Ceramatec Inc. and Materials and Systems Research Inc. (MSRI), respectively, for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technologies developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, espectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. Optimization of electrode materials, interconnect coatings, and electrolyte-electrode interface microstructures contribute to better durability of SOEC stacks.« less
Jeong, Ki Heon; Gwak, Min Jae; Moon, Sung Kyung; Lee, Sang Jun; Shin, Min Kyung
2018-06-01
Various hyaluronic acid fillers can be used for facial attenuation and rejuvenation. The efficacy and durability of hyaluronic acid fillers are of major concern to dermatologists and patients. This study aimed to evaluate three-dimensional morphology, tissue distribution, and changes in volume after injection of two different hyaluronic acid fillers. Ten Korean women were enrolled in this study. Each subject was injected with monophasic hyaluronic acid filler in one malar area and biphasic filler in the other. Clinical outcome was measured before and after injection, and after 2, 4, 6, 8, 12, and 24 weeks, using the Global Aesthetic Improvement Scale, photographs and Moire's topography. Facial magnetic resonance imaging (MRI) was performed twice over six months. Both products showed good results after injection and demonstrated good durability over time. MRI was a useful modality for assessing tissue distribution and volume changes. The effects and durability after injection of monophasic hyaluronic acid filler and biphasic hyaluronic acid filler are generally comparable.
High-temperature adult-plant resistance, the key for sustainable control of stripe rust
USDA-ARS?s Scientific Manuscript database
High-temperature adult-plant (HTAP) resistance expresses when plants grow old and the weather becomes warm. This non-race specific and durable type of resistance has been used successfully in control of wheat stripe rust in the U.S. since early 1960s. This article describes practical procedures f...
Brushett, Fikile R; Thorum, Matthew S; Lioutas, Nicholas S; Naughton, Matthew S; Tornow, Claire; Jhong, Huei-Ru Molly; Gewirth, Andrew A; Kenis, Paul J A
2010-09-08
The performance of a novel carbon-supported copper complex of 3,5-diamino-1,2,4-triazole (Cu-tri/C) is investigated as a cathode material using an alkaline microfluidic H(2)/O(2) fuel cell. The absolute Cu-tri/C cathode performance is comparable to that of a Pt/C cathode. Furthermore, at a commercially relevant potential, the measured mass activity of an unoptimized Cu-tri/C-based cathode was significantly greater than that of similar Pt/C- and Ag/C-based cathodes. Accelerated cathode durability studies suggested multiple degradation regimes at various time scales. Further enhancements in performance and durability may be realized by optimizing catalyst and electrode preparation procedures.
Torstrick, F Brennan; Klosterhoff, Brett S; Westerlund, L Erik; Foley, Kevin T; Gochuico, Joanna; Lee, Christopher S D; Gall, Ken; Safranski, David L
2018-05-01
Various surface modifications, often incorporating roughened or porous surfaces, have recently been introduced to enhance osseointegration of interbody fusion devices. However, these topographical features can be vulnerable to damage during clinical impaction. Despite the potential negative impact of surface damage on clinical outcomes, current testing standards do not replicate clinically relevant impaction loading conditions. The purpose of this study was to compare the impaction durability of conventional smooth polyether-ether-ketone (PEEK) cervical interbody fusion devices with two surface-modified PEEK devices that feature either a porous structure or plasma-sprayed titanium coating. A recently developed biomechanical test method was adapted to simulate clinically relevant impaction loading conditions during cervical interbody fusion procedures. Three cervical interbody fusion devices were used in this study: smooth PEEK, plasma-sprayed titanium-coated PEEK, and porous PEEK (n=6). Following Kienle et al., devices were impacted between two polyurethane blocks mimicking vertebral bodies under a constant 200 N preload. The posterior tip of the device was placed at the entrance between the polyurethane blocks, and a guided 1-lb weight was impacted upon the anterior face with a maximum speed of 2.6 m/s to represent the strike force of a surgical mallet. Impacts were repeated until the device was fully impacted. Porous PEEK durability was assessed using micro-computed tomography (µCT) pre- and postimpaction. Titanium-coating coverage pre- and postimpaction was assessed using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy. Changes to the surface roughness of smooth and titanium-coated devices were also evaluated. Porous PEEK and smooth PEEK devices showed minimal macroscopic signs of surface damage, whereas the titanium-coated devices exhibited substantial visible coating loss. Quantification of the porous PEEK deformation demonstrated that the porous structure maintained a high porosity (>65%) following impaction that would be available for bone ingrowth, and exhibited minimal changes to pore size and depth. SEM and energy dispersive X-ray spectroscopy analysis of titanium-coated devices demonstrated substantial titanium coating loss after impaction that was corroborated with a decrease in surface roughness. Smooth PEEK showed minimal signs of damage using SEM, but demonstrated a decrease in surface roughness. Although recent surface modifications to interbody fusion devices are beneficial for osseointegration, they may be susceptible to damage and wear during impaction. The current study found porous PEEK devices to show minimal damage during simulated cervical impaction, whereas titanium-coated PEEK devices lost substantial titanium coverage. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Evaluation of high temperature structural adhesives for extended service
NASA Technical Reports Server (NTRS)
Hill, S. G.; Peters, P. D.; Hendricks, C. L.
1982-01-01
The evaluation, selection, and demonstration of structural adhesive systems for supersonic cruise research applications, and establishment of environmental durability of selected systems for up to 20,000 hours is described. Ten candidate adhesives were initially evaluated. During screening and evaluation, these candidates were narrowed to three of the most promising for environmental durability testing. The three adhesives were LARC-13, PPQ, and NR056X. The LARC-13 was eliminated because of a lack of stability at 505 K. The NRO56X was removed from the market. The LARC-TPI was added after preliminary evaluation and an abbreviated screening test. Only PPQ and LARC-TPI remained as the reasonable candidates late into the durability testing. Large area bond panels were fabricated to demonstrate the processibility of the selected systems. Specifications were prepared to assure control over critical material and process parameters. Surface characterization concentrated primarily upon titanium surface treatments of 10 volt chronic acid anodize, 5 volt chromic acid anodize and PASA-JELL. Failure analysis was conducted on lap shear adhesive bond failures which occurred in PPQ and LARC-13 test specimens after 10,000 hours at 505 K.
Lee, Jiho; Kim, Wonbin; Kim, Woong
2014-08-27
A critical problem with stretchable supercapacitors developed to date has been evaporation of a volatile component of their electrolyte, causing failure. In this work, we demonstrated successful use of an ionic-liquid-based nonvolatile gel (ion-gel) electrolyte in carbon nanotube (CNT)-based stretchable supercapacitors. The CNT/ion-gel supercapacitors showed high capacitance retention (96.6%) over 3000 stretch cycles at 20% strain. The high durability against stretch cycles was achieved by introducing microroughness at the interfaces between different materials. The microroughness was produced by the simple process of imprinting the surface microstructure of office paper onto a poly(dimethylsiloxane) substrate; the surface texture is reproduced in successive current collector and CNT layers. Adhesion between the different layers was strengthened by this roughness and prevented delamination over repeated stretch cycles. The addition of a CNT layer decreased the sensitivity of electrical characteristics to stretching. Moreover, the ion-gel increases the operating voltage window (3 V) and hence the energy density. We believe our demonstration will greatly contribute to the development of flexible and/or stretchable energy-storage devices with high durability.
CleanFleet final report. Volume 3, vehicle maintenance and durability
DOT National Transportation Integrated Search
1995-12-01
The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the con...
NASA Astrophysics Data System (ADS)
Dombrovskis, Johanna K.; Palmqvist, Anders E. C.
2017-07-01
Development of non-precious metal catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells with high activity and durability and with optimal water management properties is of outmost technological importance and highly challenging. Here we study the possibilities offered through judicious selection of small molecular precursors used for the formation of ordered mesoporous carbon-based non-precious metal ORR catalysts. By combining two complementary precursors, we present a one-pot synthesis that leads to a composite material consisting of transition metal ion-chelating ordered mesoporous carbon and multi-walled carbon nanotubes (TM-OMC/CNT). The resulting composite materials show high specific surface areas and a carbon structure that exhibits graphitic signatures. The synthesis procedure allows for tuning of the carbon structure, the surface area, the pore volume and the ratio of the two components of the composite. The TM-OMC/CNT composites were processed into membrane electrode assemblies and evaluated in single cell fuel cell measurements where they showed a combination of good ORR activity and very high durability.
Login, Gary R
2017-07-01
Snap-On Smile (DenMat) appliances are tooth-borne overdentures used for a variety of temporary esthetic applications. However, their benefit can be limited in patients with high smile lines and altered gingival architecture because the teeth look too large. In this report, the author shows the chairside application of a silicone denture reline material used to recreate gingival anatomy on an overdenture fabricated from crystallized acetyl resin, the material used in a Snap-On Smile appliance. The author shows the gingival application's durability of greater than 2 years in a 78-year-old patient with multiple missing teeth and a severe mandibular ridge deformity. The author tested several commonly available denture reline materials and their bonding agents, which are known to bond to acrylic resin but have not been shown to bond to crystallized acetyl resin. The author observed no candida colonization during the 2-year reporting period. The author presents a simple and durable chairside technique to reproduce gingival tissue esthetically on Snap-On Smile appliances. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.
Simulation-To-Flight (STF-1): A Mission to Enable CubeSat Software-Based Validation and Verification
NASA Technical Reports Server (NTRS)
Morris, Justin; Zemerick, Scott; Grubb, Matt; Lucas, John; Jaridi, Majid; Gross, Jason N.; Ohi, Nicholas; Christian, John A.; Vassiliadis, Dimitris; Kadiyala, Anand;
2016-01-01
The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operations/training, verification and validation (V&V), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.
NASA Operational Simulator for Small Satellites (NOS3)
NASA Technical Reports Server (NTRS)
Zemerick, Scott
2015-01-01
The Simulation-to-Flight 1 (STF-1) CubeSat mission aims to demonstrate how legacy simulation technologies may be adapted for flexible and effective use on missions using the CubeSat platform. These technologies, named NASA Operational Simulator (NOS), have demonstrated significant value on several missions such as James Webb Space Telescope, Global Precipitation Measurement, Juno, and Deep Space Climate Observatory in the areas of software development, mission operationstraining, verification and validation (VV), test procedure development and software systems check-out. STF-1 will demonstrate a highly portable simulation and test platform that allows seamless transition of mission development artifacts to flight products. This environment will decrease development time of future CubeSat missions by lessening the dependency on hardware resources. In addition, through a partnership between NASA GSFC, the West Virginia Space Grant Consortium and West Virginia University, the STF-1 CubeSat will hosts payloads for three secondary objectives that aim to advance engineering and physical-science research in the areas of navigation systems of small satellites, provide useful data for understanding magnetosphere-ionosphere coupling and space weather, and verify the performance and durability of III-V Nitride-based materials.
Durability assessments of concrete using electrical properties and acoustic emission testing
NASA Astrophysics Data System (ADS)
Todak, Heather N.
Premature damage deterioration has been observed in pavement joints throughout the Midwestern region of the United States. Over time, severe joint damage creates a transportation safety concern and the necessary repairs can be an extreme economic burden. The deterioration is due in part to freeze-thaw damage associated with fluid accumulation at the pavement joints. This very preventable problem is an indication that current specifications and construction practices for freeze-thaw durability of concrete are inadequate. This thesis serves to create a better understanding of moisture ingress, freeze-thaw damage mechanisms, and the effect of variations in mixture properties on freeze-thaw behavior of concrete. The concepts of the nick point degree of saturation, sorptivity rates, and critical degree of saturation are discussed. These factors contribute to service life, defined in this study as the duration of time a concrete element remains below levels of critical saturation which are required for damage development to initiate. A theoretical model and a simple experimental procedure are introduced which help determine the nick point for a series of 32 concrete mixtures with unique mixture proportions and air entrainment properties. This simple experimental procedure is also presented as a method to measure important electrical properties in order to establish the formation factor, a valuable measure of concrete transport properties. The results of freeze-thaw testing with acoustic emission monitoring are presented to help understand and quantify damage development in concrete specimens when conditioned to various degrees of saturation. This procedure was used to study the relationship between air entrainment properties and the critical degree of saturation. Applying the concepts of degree of saturation and sorptivity, a performance-based model is proposed as a new approach to specifications for freeze-thaw durability. Finally, a conceptual model is presented to illustrate the effect of various changes in mixture proportions and air void properties on service life.
Treatment Effect of Drug-Coated Balloons Is Durable to 3 Years in the Femoropopliteal Arteries
Laird, John R.; Tepe, Gunnar; Brodmann, Marianne; Zeller, Thomas; Scheinert, Dierk; Metzger, Christopher; Micari, Antonio; Sachar, Ravish; Jaff, Michael R.; Wang, Hong; Hasenbank, Melissa S.; Krishnan, Prakash
2018-01-01
Background— Randomized controlled trials have reported favorable 1-year outcomes with drug-coated balloons (DCBs) for the treatment of symptomatic peripheral arterial disease when compared with standard percutaneous transluminal angioplasty (PTA). Evidence remains limited on the durability of the treatment effect with DCBs in the longer term. Methods and Results— IN.PACT SFA is a single-blind, randomized trial (Randomized Trial of IN.PACT Admiral Paclitaxel-Coated Percutaneous Transluminal Angioplasty [PTA] Balloon Catheter vs Standard PTA for the Treatment of Atherosclerotic Lesions in the Superficial Femoral Artery [SFA] and/or Proximal Popliteal Artery [PPA]) that enrolled 331 patients with symptomatic (Rutherford 2–4) femoropopliteal lesions up to 18 cm in length. Patients were randomized 2:1 to receive treatment with DCB or PTA. The 36-month assessments included primary patency, freedom from clinically driven target lesion revascularization, major adverse events, and functional outcomes. At 36 months, primary patency remained significantly higher among patients treated with DCB compared with PTA (69.5% versus 45.1%; log rank P<0.001). The rates of clinically driven target lesion revascularization were 15.2% and 31.1% (P=0.002) for the DCB and PTA groups, respectively. Functional outcomes were similarly improved between treatment groups even though subjects in the DCB group required significantly fewer reinterventions versus those in the PTA group (P<0.001 for target lesion revascularization, P=0.001 for target vessel revascularization). There were no device- or procedure-related deaths as adjudicated by an independent Clinical Events Committee. Conclusions— Three-year results demonstrate a durable and superior treatment effect among patients treated with DCB versus standard PTA, with significantly higher primary patency and lower clinically driven target lesion revascularization, resulting in similar functional improvements with reduced need for repeat interventions. Clinical Trial Registration— URL: http://www.clinicaltrials.gov. Unique identifiers: NCT01175850 for IN.PACT SFA phase I in the European Union and NCT01566461 for IN.PACT SFA phase II in the United States. PMID:29326153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This guide provides information and recommendations to the following groups: Insulation contractors, General contractors, Builders, Home remodelers, Mechanical contractors, and Homeowners as a guide to the work that needs to be done. The order of work completed during home construction and retrofit improvements is important. Health and safety issues must be addressed first and are more important than durability issues. And durability issues are more important than saving energy. Not all techniques can apply to all houses. Special conditions will require special action. Some builders or homeowners will wish to do more than the important but basic retrofit strategies outlinedmore » by this guide. The following are best practice and product recommendations from the interviewed contractors and home builders who collectively have a vast amount of experience. Three significant items were discussed with the group which are required to make taped insulating sheathing a simple, long term, and durable drainage plane: 4. Horizontal joints should be limited or eliminated wherever possible 5. Where a horizontal joint exists use superior materials 6. Frequent installation inspection and regular trade training are required to maintain proper installation Section 5 of this measure guideline contains the detailed construction procedure for the three recommended methods to effectively seal the joints in exterior insulating sheathing to create a simple, long term, and durable drainage plane.« less
Surgical treatment of obesity.
Puzziferri, Nancy; Blankenship, Jeanne; Wolfe, Bruce M
2006-02-01
The surgical treatment of obesity has existed for over 50 yr. Surgical options have evolved from high-risk procedures infrequently performed, to safe, effective procedures increasingly performed. The operations used today provide significant durable weight loss, resolution or marked improvement of obesity-related comorbidities, and enhanced quality of life for the majority of patients. The effect of bariatric surgery on the neurohormonal regulation of energy homeostasis is not fully understood. Despite its effectiveness, less than 1% of obese patients are treated surgically. The perception that obesity surgery is unsafe remains a deterrent to care.
NASA Technical Reports Server (NTRS)
Arnon, N.; Trela, W.
1983-01-01
The objective was to assess current ceramic materials, fabrication processes, reliability prediction, and stator durability when subjected to simulated automotive gas turbine engine operating conditions. Ceramic one-piece stators were fabricated of two materials, silicon nitride and silicon carbide, using two near-net-shape processes, slip casting and injection molding. Non-destructive evaluation tests were conducted on all stators identifying irregularities which could contribute to failures under durability testing. Development of the test rig and automatic control system for repeatably controlling air flow rate and temperature over a highly transient durability duty cycle is discussed. Durability results are presented for repeated thermal cycle testing of the ceramic one-piece stators. Two duty cycles were used, encompassing the temperature ranges of 704 to 1204 C (1300 to 2200 F) and 871 to 1371 C (1600 to 2500 F). Tests were conducted on 28 stators, accumulating 135,551 cycles in 2441 hours of hot testing. Cyclic durability for the ceramic one-piece stator was demonstrated to be in excess of 500 hours, accumulating over 28,850 thermal cycles. Ceramic interface forces were found to be the significant factor in limiting stator life rather than the scatter in material strength properties or the variation in component defects encountered.
The economics of new age arthroplasty: can we afford it?
Sculco, Thomas P
2010-09-07
New technology in joint replacement design and materials adds cost that must be documented by improved outcomes. This is not always the case as the recent metal/metal data has shown. The current economics of arthroplasty have put increasing financial pressure on hospitals and will progress under new health care legislation. New technology must be cost-effective and this will be increasingly difficult in an era of outstanding long-term results with current designs. Cost may necessitate less expensive alternatives, eg, generic implants, in arthroplasty patients. Joint replacement surgery has evolved over the past 4 decades into a highly successful surgical procedure. Earlier designs and materials that demonstrated inferior functional and long-term results have disappeared in a Darwinian fashion. Through this evolutionary process many of the current designs have proven efficacy and durability. Current outcome data indicates that hip and knee designs demonstrate 90% to 95% success rates at 15-year follow-up. Technologic advances are necessary to improve implant design and materials, however, only in an environment of reduced reimbursement to hospitals can the increase cost be justified. Copyright 2010, SLACK Incorporated.
Transparent Conductive Nanofiber Paper for Foldable Solar Cells
Nogi, Masaya; Karakawa, Makoto; Komoda, Natsuki; Yagyu, Hitomi; Nge, Thi Thi
2015-01-01
Optically transparent nanofiber paper containing silver nanowires showed high electrical conductivity and maintained the high transparency, and low weight of the original transparent nanofiber paper. We demonstrated some procedures of optically transparent and electrically conductive cellulose nanofiber paper for lightweight and portable electronic devices. The nanofiber paper enhanced high conductivity without any post treatments such as heating or mechanical pressing, when cellulose nanofiber dispersions were dropped on a silver nanowire thin layer. The transparent conductive nanofiber paper showed high electrical durability in repeated folding tests, due to dual advantages of the hydrophilic affinity between cellulose and silver nanowires, and the entanglement between cellulose nanofibers and silver nanowires. Their optical transparency and electrical conductivity were as high as those of ITO glass. Therefore, using this conductive transparent paper, organic solar cells were produced that achieved a power conversion of 3.2%, which was as high as that of ITO-based solar cells. PMID:26607742
Long-term Outcomes of Bariatric Surgery: A National Institutes of Health Symposium
Courcoulas, Anita P.; Yanovski, Susan Z.; Bonds, Denise; Eggerman, Thomas L.; Horlick, Mary; Staten, Myrlene A.; Arterburn, David E.
2017-01-01
Importance The clinical evidence base demonstrating bariatric surgery’s health benefits is much larger than it was when the NIH last held a Consensus Panel in 1991. Still, it remains unclear whether ongoing studies will address critical questions about long-term complication rates and the sustainability of weight loss and comorbidity control. Objective The National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and the National Heart, Lung, and Blood Institute (NHLBI) convened a multidisciplinary workshop in May 2013 to summarize the current state of knowledge of bariatric surgery, review research findings on the long-term outcomes of bariatric surgery, and establish priorities for future research directions. Evidence Review The evidence presented at the workshop was selected by the planning committee for both its quality and duration of follow up. The data review emphasized RCTs and large observational studies with long-term follow up, with or without a control group. Findings Several small RCTs showed greater weight loss and T2DM remission compared to non-surgical treatments within the first 2 years of follow-up after bariatric surgery. Large, long-term observational studies show durable (>5 years) weight loss, diabetes and lipid improvements with bariatric surgery. Still unclear are predictors of outcomes, long-term complications, long-term survival, micro- and macro-vascular events, mental health outcomes, and costs. The studies needed to address these knowledge gaps would be expensive and logistically difficult to perform. Conclusions and Relevance High-quality evidence shows that bariatric surgical procedures result in greater weight loss than non-surgical treatments and are more effective at inducing initial T2DM remission in obese patients. More information is needed about the long term durability of comorbidity control and complications after bariatric procedures and this evidence will most likely come from carefully designed observational studies. PMID:25271405
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2012 CFR
2012-07-01
.... VII Appendix VII to Part 86—Standard Bench Cycle (SBC) 1. The standard bench aging durability procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which follows the standard bench cycle (SBC) described in this appendix. 2. The SBC requires use of an aging...
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2014 CFR
2014-07-01
... VII to Part 86—Standard Bench Cycle (SBC) 1. The standard bench aging durability procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which follows the standard bench cycle (SBC) described in this appendix. 2. The SBC requires use of an aging bench with an...
40 CFR Appendix Vii to Part 86 - Standard Bench Cycle (SBC)
Code of Federal Regulations, 2013 CFR
2013-07-01
.... VII Appendix VII to Part 86—Standard Bench Cycle (SBC) 1. The standard bench aging durability procedures [Ref. § 86.1823-08(d)] consist of aging a catalyst-oxygen-sensor system on an aging bench which follows the standard bench cycle (SBC) described in this appendix. 2. The SBC requires use of an aging...
Durability of Hardboard Lap Siding
Charles Carll; Charles R. Boardman; Steve P. Verrill
2013-01-01
This paper describes a study that was undertaken to evaluate the degree of correlation between in-service performance of hardboard siding and its performance in the industry standard test procedure for âweatherability of substrate.â The study included 13 different hardboard sidings: 6 noncommercial boards and 7 commercial products. All manufacturing plants operating in...
Code of Federal Regulations, 2011 CFR
2011-04-01
... 19 Customs Duties 1 2011-04-01 2011-04-01 false Car, compartment, and package seals; and... PROCEDURE § 24.13a Car, compartment, and package seals; and fastenings; standards; acceptance by Customs. (a) General standards. The seals and fastenings, together, shall (1) Be strong and durable; (2) Be capable of...
40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...
40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 34 2012-07-01 2012-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...
40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...
40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...
40 CFR 1060.520 - How do I test fuel tanks for permeation emissions?
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false How do I test fuel tanks for... STATIONARY EQUIPMENT Test Procedures § 1060.520 How do I test fuel tanks for permeation emissions? Measure...) Preconditioning durability testing. Take the following steps before an emission test, in any order, if your...
16 CFR 1201.4 - Test procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... rigidity. (ii) The structural framing shall be welded or securely bolted at the corners and braced by one... figure 5 on this section. The bag shall be filled with No. 71/2 chilled lead shot to a total weight of... durability test equipment—(i) Boil test. Two containers of water shall be provided with means to maintain one...
16 CFR 1201.4 - Test procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... rigidity. (ii) The structural framing shall be welded or securely bolted at the corners and braced by one... figure 5 on this section. The bag shall be filled with No. 71/2 chilled lead shot to a total weight of... durability test equipment—(i) Boil test. Two containers of water shall be provided with means to maintain one...
NASA Technical Reports Server (NTRS)
Mcclure, Donald J.
1988-01-01
A system for the vacuum deposition of atomic-oxygen durable coatings for reflective solar dynamic power systems (SDPS) concentrators was designed and demonstrated. The design issues pertinent to SDPS were developed by the Government Aerospace Systems Division of the Harris Corporation and are described in NASA-CR-179489. Both design and demonstration phases have been completed. At the time of this report the deposition system was ready for coating of facets for SDPS concentrators. The materials issue relevant to the coating work were not entirely resolved. These issues can only be resolved when substrates which are comparable to those which will be used in flight hardware are available. The substrates available during the contract period were deficient in the areas of surface roughness and contamination. These issues are discussed more thoroughly in the body of the report.
Gastrointestinal metabolic surgery for the treatment of type 2 diabetes mellitus
Pok, Eng-Hong; Lee, Wei-Jei
2014-01-01
Medical therapy for type 2 diabetes mellitus is ineffective in the long term due to the progressive nature of the disease, which requires increasing medication doses and polypharmacy. Conversely, bariatric surgery has emerged as a cost-effective strategy for obese diabetic individuals; it has low complication rates and results in durable weight loss, glycemic control and improvements in the quality of life, obesity-related co-morbidity and overall survival. The finding that glucose homeostasis can be achieved with a weight loss-independent mechanism immediately after bariatric surgery, especially gastric bypass, has led to the paradigm of metabolic surgery. However, the primary focus of metabolic surgery is the alteration of the physio-anatomy of the gastrointestinal tract to achieve glycemic control, metabolic control and cardio-metabolic risk reduction. To date, metabolic surgery is still not well defined, as it is used most frequently for less obese patients with poorly controlled diabetes. The mechanism of glycemic control is still incompletely understood. Published research findings on metabolic surgery are promising, but many aspects still need to be defined. This paper examines the proposed mechanism of diabetes remission, the efficacy of different types of metabolic procedures, the durability of glucose control, and the risks and complications associated with this procedure. We propose a tailored approach for the selection of the ideal metabolic procedure for different groups of patients, considering the indications and prognostic factors for diabetes remission. PMID:25339819
Damage Progression in Bolted Composites
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C.; Gotsis, Pascal K.
1998-01-01
Structural durability, damage tolerance, and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.
Damage Progression in Bolted Composites
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos; Gotsis, Pascal K.
1998-01-01
Structural durability,damage tolerance,and progressive fracture characteristics of bolted graphite/epoxy composite laminates are evaluated via computational simulation. Constituent material properties and stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for bolted composites. Single and double bolted composite specimens with various widths and bolt spacings are evaluated. The effect of bolt spacing is investigated with regard to the structural durability of a bolted joint. Damage initiation, growth, accumulation, and propagation to fracture are included in the simulations. Results show the damage progression sequence and structural fracture resistance during different degradation stages. A procedure is outlined for the use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of experimental results with insight for design decisions.
Directable weathering of concave rock using curvature estimation.
Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew
2010-01-01
We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lei; Luo, Langli; Feng, Zhenxing
Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and durability. Herein, we report a highly active (360 mV overpotential at 10 mA cm–2GEO) and durable (no degradation after 20000 cycles) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists ofmore » NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron-donation/deviation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less
NASA Astrophysics Data System (ADS)
Kim-Hak, David; Huang, Kuan; Winkler, Renato
2016-04-01
The recent advancements of the laser-based technology -in particular Cavity Ring Down Spectroscopy, CRDS- gave birth to a new generation of water stable isotope analyzers that are user-friendly, compact and field deployable providing in-situ measurements. Furthermore, with last year's launch of the Continuous Water Sampler front-end, CWS, the analyzer system added two additional dimensions to liquid water measurements: real-time and continuous. These features enable the user to construct high resolution water isotope data sets through time and space. Campaigns on the Sacramento-San Joaquin River Delta with the US Geological Survey where the CWS-CRDS system was deployed onto a boat to spatially map sections of the delta, validated the CWS performance and demonstrated its durability on brackish water. The next step for the CWS is to explore oceanic applications with seawater. Early in-house laboratory experiments showed stable performance with brine waters (3% concentration). For the field experiment, we have collaborated with the China State Oceanic Administration to deploy the CWS-CRDS in oceanic environments on cruises along the costal China and Antarctic. Here, we present the results of the analysis collected onboard and compared them with discrete sampling measurements. The long-term test has also allowed us to assess the durability and expected lifetime of the CWS membrane and to recommend the proper maintenance procedure for optimum performance under oceanic conditions.
NASA Astrophysics Data System (ADS)
Kim-Hak, D.; Huang, K.
2016-02-01
The recent advancements of the laser-based technology -in particular Cavity Ring Down Spectroscopy, CRDS- gave birth to a new generation of water stable isotope analyzers that are user-friendly, compact and field deployable providing in-situ measurements. Furthermore, with last year's launch of the Continuous Water Sampler front-end, CWS, the analyzer system added two additional dimensions to liquid water measurements: real-time and continuous. These features enable the user to construct high resolution water isotope data sets through time and space. Campaigns on the Sacramento-San Joaquin River Delta with the US Geological Survey where the CWS-CRDS system was deployed onto a boat to spatially map sections of the delta, validated the CWS performance and demonstrated its durability on brackish water. The next step for the CWS is to explore oceanic applications with seawater. Early in-house laboratory experiments showed stable performance with brine waters (3% concentration). For the field experiment, we have collaborated with the China State Oceanic Administration to deploy the CWS-CRDS in oceanic environments on cruises along the costal China and Antarctic. Here, we present the results of the analysis collected onboard and compared them with discrete sampling measurements. The long-term test has also allowed us to assess the durability and expected lifetime of the CWS membrane and to recommend the proper maintenance procedure for optimum performance under oceanic conditions.
Insight, working through, and practice: the role of procedural knowledge.
Rosenblatt, Allan
2004-01-01
A conception of insight is proposed, based on a systems and information-processing framework and using current neuroscience concepts, as an integration of information that results in a new symbolization of experience with a significant change in self-image and a transformation of non-declarative procedural knowledge into declarative knowledge. Since procedural memory and knowledge, seen to include emotional and relationship issues, is slow to change, durable emotional and behavioral change often requires repeated practice, a need not explicitly addressed in standard psychoanalytic technique. Working through is thus seen as also encompassing nondynamic factors. The application of these ideas to therapeutic technique suggests possible therapeutic interventions beyond interpretation. An illustrative clinical vignette is presented.
Solid-State Water Electrolysis with an Alkaline Membrane
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leng, YJ; Chen, G; Mendoza, AJ
2012-06-06
We report high-performance, durable alkaline membrane water electrolysis in a solid-state cell. An anion exchange membrane (AEM) and catalyst layer ionomer for hydroxide ion conduction were used without the addition of liquid electrolyte. At 50 degrees C, an AEM electrolysis cell using iridium oxide as the anode catalyst and Pt black as the cathode catalyst exhibited a current density of 399 mA/cm(2) at 1.80 V. We found that the durability of the AEM-based electrolysis cell could be improved by incorporating a highly durable ionomer in the catalyst layer and optimizing the water feed configuration. We demonstrated an AEM-based electrolysis cellmore » with a lifetime of > 535 h. These first-time results of water electrolysis in a solid-state membrane cell are promising for low-cost, scalable hydrogen production.« less
Aortic Root Biomechanics After Sleeve and David Sparing Techniques: A Finite Element Analysis.
Tasca, Giordano; Selmi, Matteo; Votta, Emiliano; Redaelli, Paola; Sturla, Francesco; Redaelli, Alberto; Gamba, Amando
2017-05-01
Aortic root aneurysm can be treated with valve-sparing procedures. The David and Yacoub techniques have shown excellent long-term results but are technically demanding. Recently, a new and simpler procedure, the Sleeve technique, was proposed with encouraging results. We aimed to quantify the biomechanics of the initially aneurysmal aortic root (AR) after the Sleeve procedure to assess whether it induces abnormal stresses, potentially undermining its durability. Two finite element (FE) models of the physiologic and aneurysmal AR were built, accounting for the anatomical asymmetry and the nonlinear and anisotropic mechanical properties of human AR tissues. On the aneurysmal model, the Sleeve and David techniques were simulated based on the corresponding published technical features. Aortic root biomechanics throughout 2 consecutive cardiac cycles were computed in each simulated configuration. Both sparing techniques restored physiologic-like kinematics of aortic valve (AV) leaflets but induced different leaflets stresses. The time course averaged over the leaflets' bellies was 35% higher in the David model than in the Sleeve model. Commissural stresses, which were equal to 153 and 318 kPa in the physiologic and aneurysmal models, respectively, became 369 and 208 kPa in the David and Sleeve models, respectively. No intrinsic structural problems were detected in the Sleeve model that might jeopardize the durability of the procedure. If corroborated by long-term clinical outcomes, the results obtained suggest that using this new technique could successfully simplify the surgical repair of AR aneurysms and reduce intraoperative complications. Copyright © 2017 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Lai, Ying-Chih; Deng, Jianan; Niu, Simiao; Peng, Wenbo; Wu, Changsheng; Liu, Ruiyuan; Wen, Zhen; Wang, Zhong Lin
2016-12-01
Electric eel-skin-inspired mechanically durable and super-stretchable nanogenerator is demonstrated for the first time by using triboelectric effect. This newly designed nanogenerator can produce electricity by touch or tapping despite under various extreme mechanical deformations or even after experiencing damage. This device can be used not only as deformable and wearable power source but also as fully autonomous and self-sufficient adaptive electronic skin system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fundamental characteristics of degradation-recoverable solid-state DFB polymer laser.
Yoshioka, Hiroaki; Yang, Yu; Watanabe, Hirofumi; Oki, Yuji
2012-02-13
A novel solid-state dye laser with degradation recovery was proposed and demonstrated. Polydimethylsiloxane was used as a nanoporous solid matrix to enable the internal circulation of dye molecules in the solid state. An internal circulation model for the dye molecules was also proposed and verified numerically by assuming molecular mobility and using a proposed diffusion equation. The durability of the laser was increased 20.5-fold compared with that of a conventional polymethylmethacrylate laser. This novel laser solves the low-durability problem of dye-doped polymer lasers.
Progressive Damage and Fracture of Unstiffened and Stiffened Composite Pressure Vessels
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Gotsis, Pascal K.; Chamis, Christos C.
1997-01-01
Structural durability and damage tolerance characteristics of pressurized graphite/epoxy laminated thin composite cylinders are investigated via computational simulation. Both unstiffened and integral hoop stiffened cylinders are considered. A computer code is utilized for the simulation of composite structural degradation under loading. Damage initiation, growth, accumulation, and propagation to structural fracture are included in the simulation. The increase of burst pressure due to hoop stiffening is quantified. Results demonstrate the significance of the type and size of local defects on the structural durability of pressurized composite cylindrical shells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ying, Jie; Li, Jing; Jiang, Gaopeng
Pt-based nanomaterials are regarded as the most efficient electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, widespread adoption of PEMFCs requires solutions to major challenges encountered with ORR catalysts, namely high cost, sluggish kinetics, and low durability. In this paper, a new efficient method utilizing Co-based metal-organic frameworks is developed to produce PtCo bimetallic nanoparticles embedded in unique nitrogen-doped hollow porous carbon capsules. The obtained catalyst demonstrates an outstanding ORR performance, with a mass activity that is 5.5 and 13.5 times greater than that of commercial Pt/C and Pt black, respectively. Most importantly,more » the product exhibits dramatically improved durability in terms of both electrochemically active surface area (ECAS) and mass activity compared to commercial Pt/C and Pt black catalysts. Finally, the remarkable ORR performance demonstrated here can be attributed to the structural features of the catalyst (its alloy structure, high dispersion and fine particle size) and the carbon support (its nitrogen dopant, large surface area and hollow porous structure).« less
Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming
2015-01-01
The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132
Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming
2015-02-01
The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells.
Ying, Jie; Li, Jing; Jiang, Gaopeng; ...
2017-11-29
Pt-based nanomaterials are regarded as the most efficient electrocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs). However, widespread adoption of PEMFCs requires solutions to major challenges encountered with ORR catalysts, namely high cost, sluggish kinetics, and low durability. In this paper, a new efficient method utilizing Co-based metal-organic frameworks is developed to produce PtCo bimetallic nanoparticles embedded in unique nitrogen-doped hollow porous carbon capsules. The obtained catalyst demonstrates an outstanding ORR performance, with a mass activity that is 5.5 and 13.5 times greater than that of commercial Pt/C and Pt black, respectively. Most importantly,more » the product exhibits dramatically improved durability in terms of both electrochemically active surface area (ECAS) and mass activity compared to commercial Pt/C and Pt black catalysts. Finally, the remarkable ORR performance demonstrated here can be attributed to the structural features of the catalyst (its alloy structure, high dispersion and fine particle size) and the carbon support (its nitrogen dopant, large surface area and hollow porous structure).« less
40 CFR 86.094-28 - Compliance with emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the outlier procedure and averaging (as allowed under § 86.094-26(a)(6)(i)) to the same data set, the...) through (3) of this section. (1) All valid exhaust emission data from the tests required under § 86.094-26... § 86.094-29 for all tests conducted on all durability data vehicles of the combination selected under...
40 CFR 86.094-28 - Compliance with emission standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... the outlier procedure and averaging (as allowed under § 86.094-26(a)(6)(i)) to the same data set, the...) through (3) of this section. (1) All valid exhaust emission data from the tests required under § 86.094-26... § 86.094-29 for all tests conducted on all durability data vehicles of the combination selected under...
40 CFR 86.094-28 - Compliance with emission standards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... the outlier procedure and averaging (as allowed under § 86.094-26(a)(6)(i)) to the same data set, the...) through (3) of this section. (1) All valid exhaust emission data from the tests required under § 86.094-26... § 86.094-29 for all tests conducted on all durability data vehicles of the combination selected under...
40 CFR 86.094-28 - Compliance with emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the outlier procedure and averaging (as allowed under § 86.094-26(a)(6)(i)) to the same data set, the...) through (3) of this section. (1) All valid exhaust emission data from the tests required under § 86.094-26... § 86.094-29 for all tests conducted on all durability data vehicles of the combination selected under...
Code of Federal Regulations, 2014 CFR
2014-07-01
... catalyst. Calculate the least-squared best-fit line through the data. For the data set to be useful for this purpose the data should have an approximately common intercept between 0 and 4000 miles. See the... data between one- and two-times the standard. 2. Estimate the value of R and calculate the effective...
Development and deregulation of the plum pox virus resistant transgenic plum 'HoneySweet'
USDA-ARS?s Scientific Manuscript database
We have demonstrated that genetic engineering can be an important source of high level and durable resistance against Plum pox virus (PPV). We have shown, through a number of field studies, the environmental safety of this genetically engineered plum. Nevertheless, the utilization of this demonstr...
Management of tricuspid regurgitation
Taramasso, Maurizio; Lapenna, Elisabetta; Alfieri, Ottavio
2014-01-01
Secondary tricuspid regurgitation is the most frequent type of tricuspid insufficiency in western countries. Its surgical treatment is still an object of debate both in terms of timing and surgical techniques. Until recently, the avoidance of surgery for tricuspid repair was commonly accepted in patients with less than severe secondary tricuspid regurgitation undergoing left-sided valve surgery. More recently, compelling evidence in favour of a more aggressive surgical approach in this setting has emerged. The surgical technique should be tailored to the stage of disease. Ring annuloplasty is more durable than suture annuloplasty and represents the method of choice in the presence of isolated annular dilatation. In patients in whom the dilatation of the tricuspid annulus is combined with significant leaflet tethering, annuloplasty alone is unlikely to be durable and additional procedures have been proposed in order to achieve a more durable repair. In this review, pathophysiology, surgical indications, techniques of repair and outcomes of secondary tricuspid regurgitation will be discussed. We will also focus on the challenging issue of significant tricuspid regurgitation occurring late after left-sided valve surgery. Finally, the current and future role of percutaneous tricuspid valve technologies will be briefly described. PMID:25184048
Report of the Dutch experience with the Ross procedure in 343 patients.
Takkenberg, J J M; Dossche, K M E; Hazekamp, M G; Nijveld, A; Jansen, E W L; Waterbolk, T W; Bogers, A J J C
2002-07-01
Limited information is available on outcome after autograft aortic valve replacement, in particular with respect to the durability of the autograft and of the allograft used to reconstruct the right ventricular outflow tract. A retrospective follow-up study of all patients who underwent a Ross procedure in the Netherlands since 1988 was done to obtain an overview of the Dutch experience with this procedure. From 1988 to January 2000, 348 Ross procedures were performed in nine centers in the Netherlands. Pre-operative, peri-operative and follow-up data from 343 patients in seven centers (99% of all Dutch autograft patients) were collected and analyzed. Mean patient age was 26 years (SD 14, range 0-58) and male/female ratio was 2.1. Bicuspid valve or other congenital heart valve disease was the most common indication for operation. The root replacement technique was used in 95% of patients and concomitant procedures were done in 12%. Hospital mortality was 2.6% (N=9). Mean follow-up was 4 years (median 3.8, SD 2.8, range 0-12.5). Overall cumulative survival was 96% at 1 year (95% confidence interval (CI) 94-98%) and 94% at 5 and 7 post-operative years, respectively (95% CI 91-97%). At last follow-up, 87% of the surviving patients was in New York Heart Association (NYHA) class I. Independent predictors of overall mortality were pre-operative NYHA class IV/V and longer perfusion time. Autograft reoperation had to be performed in 14 patients and reintervention on the pulmonary allograft in 10 patients. Freedom from any valve-related reintervention was 88% at 7 years (95% CI 81-94%). The Dutch experience with the Ross procedure is favorable, with low operative mortality and good mid-term results. Although both the autograft in aortic position and the allograft in the right ventricular outflow tract have a limited durability, this has not yet resulted in considerable reoperation rates and associated morbidity and mortality.
Wei, Ming-Li; Du, Yan-Jun; Reddy, Krishna R; Wu, Hao-Liang
2015-12-01
For viable and sustainable reuse of solidified/stabilized heavy metal-contaminated soils as roadway subgrade materials, long-term durability of these soils should be ensured. A new binder, KMP, has been developed for solidifying/stabilizing soils contaminated with high concentrations of heavy metals. However, the effects of long-term extreme weather conditions including freeze and thaw on the leachability and strength of the KMP stabilized contaminated soils have not been investigated. This study presents a systematic investigation on the impacts of freeze-thaw cycle on leachability, strength, and microstructural characteristics of the KMP stabilized soils spiked with Zn and Pb individually and together. For comparison purpose, Portland cement is also tested as a conventional binder. Several series of tests are conducted including the toxicity characteristic leaching procedure (TCLP), modified European Community Bureau of Reference (BCR) sequential extraction procedure, unconfined compression test (UCT), and mercury intrusion porosimetry (MIP). The results demonstrate that the freeze-thaw cycles have much less impact on the leachability and strength of the KMP stabilized soils as compared to the PC stabilized soils. After the freeze-thaw cycle tests, the KMP stabilized soils display much lower leachability, mass loss, and strength loss. These results are assessed based on the chemical speciation of Zn and Pb, and pore size distribution of the soils. Overall, this study demonstrates that the KMP stabilized heavy metal-contaminated soils perform well under the freeze-thaw conditions.
An Investigation of the Compatibility of Radiation and Convection Heat Flux Measurements
NASA Technical Reports Server (NTRS)
Liebert, Curt H.
1996-01-01
A method for determining time-resolved absorbed surface heat flux and surface temperature in radiation and convection environments is described. The method is useful for verification of aerodynamic, heat transfer and durability models. A practical heat flux gage fabrication procedure and a simple one-dimensional inverse heat conduction model and calculation procedure are incorporated in this method. The model provides an estimate of the temperature and heat flux gradient in the direction of heat transfer through the gage. This paper discusses several successful time-resolved tests of this method in hostile convective heating and cooling environments.
Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells
Zheng, Weiqing; Wang, Liang; Deng, Fei; ...
2017-09-04
Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Using focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• aremore » significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.« less
Nano-scale hydrogen-bond network improves the durability of greener cements
Jacobsen, Johan; Rodrigues, Michelle Santos; Telling, Mark T. F.; Beraldo, Antonio Ludovico; Santos, Sérgio Francisco; Aldridge, Laurence P.; Bordallo, Heloisa N.
2013-01-01
More than ever before, the world's increasing need for new infrastructure demands the construction of efficient, sustainable and durable buildings, requiring minimal climate-changing gas-generation in their production. Maintenance-free “greener” building materials made from blended cements have advantages over ordinary Portland cements, as they are cheaper, generate less carbon dioxide and are more durable. The key for the improved performance of blends (which substitute fine amorphous silicates for cement) is related to their resistance to water penetration. The mechanism of this water resistance is of great environmental and economical impact but is not yet understood due to the complexity of the cement's hydration reactions. Using neutron spectroscopy, we studied a blend where cement was replaced by ash from sugar cane residuals originating from agricultural waste. Our findings demonstrate that the development of a distinctive hydrogen bond network at the nano-scale is the key to the performance of these greener materials. PMID:24036676
NASA Technical Reports Server (NTRS)
Olson, B. A.; Lee, H. C.; Osgerby, I. T.; Heck, R. M.; Hess, H.
1980-01-01
The durability of CATCOM catalysts and catalyst supports was experimentally demonstrated in a combustion environment under simulated gas turbine engine combustor operating conditions. A test of 1000 hours duration was completed with one catalyst using no. 2 diesel fuel and operating at catalytically-supported thermal combustion conditions. The performance of the catalyst was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. Tests were performed periodically to determine changes in catalytic activity of the catalyst core. Detailed parametric studies were also run at the beginning and end of the durability test, using no. 2 fuel oil. Initial and final emissions for the 1000 hours test respectively were: unburned hydrocarbons (C3 vppm):0, 146, carbon monoxide (vppm):30, 2420; nitrogen oxides (vppm):5.7, 5.6.
40 CFR 85.2115 - Notification of intent to certify.
Code of Federal Regulations, 2013 CFR
2013-07-01
... testing and durability demonstration represent worst case with respect to emissions of all those... submitted by the aftermarket manufacturer to: Mod Director, MOD (EN-340F), Attention: Aftermarket Parts, 401...
40 CFR 85.2115 - Notification of intent to certify.
Code of Federal Regulations, 2012 CFR
2012-07-01
... testing and durability demonstration represent worst case with respect to emissions of all those... submitted by the aftermarket manufacturer to: Mod Director, MOD (EN-340F), Attention: Aftermarket Parts, 401...
40 CFR 85.2115 - Notification of intent to certify.
Code of Federal Regulations, 2014 CFR
2014-07-01
... testing and durability demonstration represent worst case with respect to emissions of all those... submitted by the aftermarket manufacturer to: Mod Director, MOD (EN-340F), Attention: Aftermarket Parts, 401...
Durability evaluation of reversible solid oxide cells
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyu; O'Brien, James E.; O'Brien, Robert C.; Housley, Gregory K.
2013-11-01
An experimental investigation on the performance and durability of single solid oxide cells (SOCs) is under way at the Idaho National Laboratory. Reversible operation of SOCs includes electricity generation in the fuel cell mode and hydrogen generation in the electrolysis mode. Degradation is a more significant issue when operating SOCs in the electrolysis mode. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOCs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. Cells were obtained from four industrial partners. Cells from Ceramatec Inc. and Materials and Systems Research Inc. (MSRI) showed improved durability in electrolysis mode compared to previous stack tests. Cells from Saint Gobain Advanced Materials Inc. (St. Gobain) and SOFCPower Inc. demonstrated stable performance in the fuel cell mode, but rapid degradation in the electrolysis mode, especially at high current density. Electrolyte-electrode delamination was found to have a significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the electrode microstructure helped to mitigate degradation. Polarization scans and AC impedance measurements were performed during the tests to characterize cell performance and degradation.
Yoon, Dong Woog; Yang, Ji-Hyuk; Jun, Tae-Gook; Park, Pyo Won
2017-01-01
Background The Ross/Ross-Konno procedure is considered a good option for irreparable aortic valve disease in pediatric patients because of its hemodynamic performance and potential for growth of the pulmonary autograft. This study is a review of the long-term results of our 20-year experience with the Ross and Ross-Konno operations in a single institution. Methods Between June 1995 and January 2016, 16 consecutive patients (mean age, 6.0±5.9 years; range, 16 days to 17.4 years) underwent either a Ross operation (n=9) or a Ross-Konno operation (n=7). The study included 12 males and 4 females, with a median follow-up period of 47 months (range, 6 to 256 months). Results There were no cases of in-hospital or late mortality. Six reoperations were performed in 5 patients. Four patients underwent right ventricular-pulmonary artery (RV-PA) conduit replacement. Two patients underwent concomitant replacement of the pulmonary autograft and RV-PA conduit 10 years and 8 years after the Ross operation, respectively. The rate of freedom from adverse outcomes of the pulmonary autograft was 88% and 70% at 5 and 10 years, respectively. The rate of freedom from valve-related reoperations was 79% and 63% at 5 and 10 years, respectively. Conclusion Pulmonary autografts demonstrated good durability with low mortality. The Ross/Ross-Konno procedure is a good option that can be performed safely in pediatric patients with aortic valve disease, even in a small-volume center. PMID:28795027
JPRS Report, Science & Technology Europe
1988-05-10
given environment essentially depends on three parameters ; these are: • the adhesion between the adhesive and the supports; • the cohesion of the...durability/CND J Electric current under high field/Tensile test at 4 degrees K I Synthetic hydroxyapatite /behavior under friction and wear GB NaCl, s...French programs GB Inventory of accelerated test procedures, correlation among parameters FC Influence of experimental parameters 8615 JPRS-EST-88
Code of Federal Regulations, 2013 CFR
2013-07-01
... for each catalyst. Calculate the least-squared best-fit line through the data. For the data set to be useful for this purpose the data should have an approximately common intercept between 0 and 4000 miles... testing yields data between one- and two-times the standard. 2. Estimate the value of R and calculate the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... for each catalyst. Calculate the least-squared best-fit line through the data. For the data set to be useful for this purpose the data should have an approximately common intercept between 0 and 4000 miles... testing yields data between one- and two-times the standard. 2. Estimate the value of R and calculate the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... for each catalyst. Calculate the least-squared best-fit line through the data. For the data set to be useful for this purpose the data should have an approximately common intercept between 0 and 4000 miles... testing yields data between one- and two-times the standard. 2. Estimate the value of R and calculate the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... for each catalyst. Calculate the least-squared best-fit line through the data. For the data set to be useful for this purpose the data should have an approximately common intercept between 0 and 4000 miles... testing yields data between one- and two-times the standard. 2. Estimate the value of R and calculate the...
Cold Regions - Environmental Testing of Individual Soldier Clothing
2011-10-17
Individual Soldier Clothing 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHORS 5d. PROJECT NUMBER 5e. TASK...This Test Operations Procedure (TOP) provides testing guidelines for individual Soldier cold weather clothing and footwear in a cold regions...Soldier clothing , along with its safety, reliability, durability, and performance when exposed to a cold regions environment. 15. SUBJECT TERMS
NASA Technical Reports Server (NTRS)
Heck, R. M.; Chang, M.; Hess, H.; Carrubba, R.
1977-01-01
The durability of catalysts and catalyst supports in a combustion environment was experimentally demonstrated. A test of 1000 hours duration was completed with two catalysts, using diesel fuel and operating at catalytically supported thermal combustion conditions. The performance of the catalysts was determined by monitoring emissions throughout the test, and by examining the physical condition of the catalyst core at the conclusion of the test. The test catalysts proved to be capable of low emissions operation after 1000 hours diesel aging, with no apparent physical degradation of the catalyst support.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-02-16
Building Science Corporation collaborated with ICI Homes in Daytona Beach, FL on a 2008 prototype Showcase House that demonstrates the energy efficiency and durability upgrades that ICI currently promotes through its in-house efficiency program called EFactor.
Maturity method demonstration : final report.
DOT National Transportation Integrated Search
2003-07-01
The concrete maturity method is a quality control/quality assurance tool that can be used to assist contractors and transportation officials in producing cost-efficient, durable concrete structures. This report documents the findings of an investigat...
McHugh, R. Kathryn; Greenfield, Shelly F.
2010-01-01
The Women’s Recovery Group study was a Stage I randomized clinical trial comparing a new manual-based group treatment for women with substance use disorders with Group Drug Counseling. Data from this study were examined to determine whether co-occurring symptoms of depression and anxiety would improve with treatment and whether these improvements would demonstrate durability over the follow-up period. The sample consisted of 36 women (29 WRG, 7 GDC) who were administered self-report and clinician-rated measures of anxiety, depression, and general psychiatric symptoms. Although there were no group differences in psychiatric symptom improvement, analyses demonstrated significant within-subject improvement in depression, anxiety, and general psychiatric symptoms. Symptom reduction was not mediated by changes in substance use. This study demonstrated significant psychiatric symptom reduction that remained durable through 6 month follow-up for women receiving group therapy focused on substance abuse relapse prevention. Reduction in psychiatric symptoms may be an additional benefit of substance abuse group therapy for women. PMID:20625473
NASA Technical Reports Server (NTRS)
Brady, J.; Banks, B.
1990-01-01
The importance of synergistic environmental exposure is demonstrated through the evaluation of DuPont 93-1 in simulated LEO environment. Changes in optical properties, surface condition, and mass loss data are described. The qualitative results indicate the necessity for exposure of materials to a series of simulated LEO environments in order to properly determine synergistic effects and demonstrate the overall LEO durability of candidate materials. It is shown that synergistic effects may occur with vacuum thermal cycling combined with VUV radiation followed by atomic oxygen exposure. Testing the durability of candidate solar array blanket materials in a test sequence with necessary synergistic effects makes it possible to determine the appropriate material for providing structural support and maintaining the proper operating temperature for solar cells in the SSF Photovaltaic Power System.
Single low-dose un-adjuvanted HBsAg nanoparticle vaccine elicits robust, durable immunity.
Lugade, Amit A; Bharali, Dhruba J; Pradhan, Vandana; Elkin, Galina; Mousa, Shaker A; Thanavala, Yasmin
2013-10-01
Chitosan nanoparticles were evaluated as a vaccine delivery system for hepatitis B surface antigen (HBsAg) in the absence of adjuvant. Nano-encapsulated HBsAg (HBsAg chitosan-NP) was endocytosed more rapidly and efficiently by dendritic cells compared to soluble HBsAg. FRET analysis demonstrated that intact nanoparticles were taken up by DCs. To determine the immunogenicity of adjuvant-free nano-encapsulated HBsAg, mice were immunized with a single dose of non-encapsulated HBsAg, HBsAg chitosan-NP, or HBsAg alum. Mice immunized with adjuvant-free nanoparticle elicited anti-HBs antibodies at significantly higher titers compared to mice immunized with HBsAg alum. Elevated numbers of BAFF-R(+) B cells and CD138+ plasma cells account for the heightened anti-HBs response in nanoparticle immunized mice. Increases in Tfh cells provide a mechanism for the accumulation of anti-HBs secreting cells. Thus, chitosan nanoparticle vaccines represent a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration. In this study, chitosan nanoparticle vaccines are demonstrated as a promising un-adjuvanted platform to generate robust and durable immunity to HBsAg and other subunit antigens following a single low-dose administration in a murine model. The authors also demonstrated superior antibody response induction compared with non-encapsulated HBs antigen and HBsAg aluminum. Copyright © 2013 Elsevier Inc. All rights reserved.
Adjuvant-enhanced CD4 T Cell Responses are Critical to Durable Vaccine Immunity.
Martins, Karen A O; Cooper, Christopher L; Stronsky, Sabrina M; Norris, Sarah L W; Kwilas, Steven A; Steffens, Jesse T; Benko, Jacqueline G; van Tongeren, Sean A; Bavari, Sina
2016-01-01
Protein-based vaccines offer a safer alternative to live-attenuated or inactivated vaccines but have limited immunogenicity. The identification of adjuvants that augment immunogenicity, specifically in a manner that is durable and antigen-specific, is therefore critical for advanced development. In this study, we use the filovirus virus-like particle (VLP) as a model protein-based vaccine in order to evaluate the impact of four candidate vaccine adjuvants on enhancing long term protection from Ebola virus challenge. Adjuvants tested include poly-ICLC (Hiltonol), MPLA, CpG 2395, and alhydrogel. We compared and contrasted antibody responses, neutralizing antibody responses, effector T cell responses, and T follicular helper (Tfh) cell frequencies with each adjuvant's impact on durable protection. We demonstrate that in this system, the most effective adjuvant elicits a Th1-skewed antibody response and strong CD4 T cell responses, including an increase in Tfh frequency. Using immune-deficient animals and adoptive transfer of serum and cells from vaccinated animals into naïve animals, we further demonstrate that serum and CD4 T cells play a critical role in conferring protection within effective vaccination regimens. These studies inform on the requirements of long term immune protection, which can potentially be used to guide screening of clinical-grade adjuvants for vaccine clinical development.
RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X, Zhang; J. E. O'Brien; R. C. O'Brien
2012-07-01
High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupportedmore » and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.« less
The percutaneous trampoline platysmaplasty: technique and experience with 105 consecutive patients.
Mueller, Gregory P; Leaf, Norman; Aston, Sherrell J; Stone, Corbett W
2012-01-01
Controversy persists regarding the optimal procedure to rejuvenate the aging neck. More invasive procedures carry increased risks of complications, whereas less invasive approaches may deliver marginal results. The challenge is selecting the appropriate procedure for delivering consistent, durable results meeting both the patient's and surgeon's expectations. The authors describe their trampoline platysmaplasty (TPP) approach, a percutaneous suture suspension necklift that constitutes a less invasive approach for neck rejuvenation. A retrospective study was conducted of 105 consecutive patients who underwent TPP. Age, sex, procedure(s) performed, complications, and patient satisfaction were recorded. Cadaver studies were conducted to compare the tensile strength of the ligaments that anchor the TPP to the tensile strength of the sutures placed to approximate the medial platysma borders. In addition, the accuracy of light transillumination to determine depth of travel of the light-emitting diode (LED) lighted rod was evaluated. Patients underwent either TPP alone (18 women, 24 men) or TPP with a facelift (35 women, 28 men) between October 2007 and June 2009. The average age of the patients was 52 years, and average length of follow-up was 33 months. Patient satisfaction was high. Three early patients underwent immediate revision to improve results secondary to the suture matrix being too loose. Six additional patients had recurrent banding around one year postoperatively, but correction was achieved in all six by replacing the matrix with the help of the lighted rod. The results of the cadaver study revealed that the tensile strength of the retaining ligaments was statistically identical to the medial platysma borders, and the light transillumination feedback was accurate with regard to the depth of travel of the illuminated rod tip. The TPP approach for neck rejuvenation is effective and durable in properly-selected patients. It works well as a stand-alone procedure and in conjunction with facelift procedures. It also offers younger patients a less-invasive option to improve neck contours inherited through genetics. After nearly three years of follow-up of the patients in this report, the results appear to be long-lasting.
Will Catheter Interventions Replace Surgery for Valve Abnormalities?
O’Byrne, Michael L; Gillespie, Matthew J
2015-01-01
Purpose of Review Catheter-based valve technologies have evolved rapidly over the last decade. Transcatheter aortic valve replacement (TAVR) has become a routine procedure in high-risk adult patients with calcific aortic stenosis. In patients with congenital heart disease (CHD), transcatheter pulmonary valve replacement represents a transformative technology for right ventricular outflow tract dysfunction with the potential to expand to other indications. This review aims to summarize 1) the current state of the art for transcatheter valve replacement (TVR) in CHD, 2) the expanding indications for TVR, and 3) the technological obstacles to optimizing TVR. Recent findings Multiple case series have demonstrated that TVR with the Melody transcatheter pulmonary valve in properly selected patients is safe, effective, and durable in short-term follow-up. The Sapien transcatheter heart valve represents an alternative device with similar safety and efficacy in limited studies. Innovative use of current valves has demonstrated the flexibility of TVR, while highlighting the need for devices to address the broad range of post-operative anatomies either with a single device or strategies to prepare the outflow tract for subsequent device deployment. Summary The potential of TVR has not been fully realized, but holds promise in treatment of CHD. PMID:24281347
Highly durable, coking and sulfur tolerant, fuel-flexible protonic ceramic fuel cells.
Duan, Chuancheng; Kee, Robert J; Zhu, Huayang; Karakaya, Canan; Chen, Yachao; Ricote, Sandrine; Jarry, Angelique; Crumlin, Ethan J; Hook, David; Braun, Robert; Sullivan, Neal P; O'Hayre, Ryan
2018-05-01
Protonic ceramic fuel cells, like their higher-temperature solid-oxide fuel cell counterparts, can directly use both hydrogen and hydrocarbon fuels to produce electricity at potentially more than 50 per cent efficiency 1,2 . Most previous direct-hydrocarbon fuel cell research has focused on solid-oxide fuel cells based on oxygen-ion-conducting electrolytes, but carbon deposition (coking) and sulfur poisoning typically occur when such fuel cells are directly operated on hydrocarbon- and/or sulfur-containing fuels, resulting in severe performance degradation over time 3-6 . Despite studies suggesting good performance and anti-coking resistance in hydrocarbon-fuelled protonic ceramic fuel cells 2,7,8 , there have been no systematic studies of long-term durability. Here we present results from long-term testing of protonic ceramic fuel cells using a total of 11 different fuels (hydrogen, methane, domestic natural gas (with and without hydrogen sulfide), propane, n-butane, i-butane, iso-octane, methanol, ethanol and ammonia) at temperatures between 500 and 600 degrees Celsius. Several cells have been tested for over 6,000 hours, and we demonstrate excellent performance and exceptional durability (less than 1.5 per cent degradation per 1,000 hours in most cases) across all fuels without any modifications in the cell composition or architecture. Large fluctuations in temperature are tolerated, and coking is not observed even after thousands of hours of continuous operation. Finally, sulfur, a notorious poison for both low-temperature and high-temperature fuel cells, does not seem to affect the performance of protonic ceramic fuel cells when supplied at levels consistent with commercial fuels. The fuel flexibility and long-term durability demonstrated by the protonic ceramic fuel cell devices highlight the promise of this technology and its potential for commercial application.
Lim, JeongHoon; Shin, Hyeyoung; Kim, MinJoong; Lee, Hoin; Lee, Kug-Seung; Kwon, YongKeun; Song, DongHoon; Oh, SeKwon; Kim, Hyungjun; Cho, EunAe
2018-04-11
Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mg Pt -1 ) and a 17.3-fold improvement in the specific activity (2.53 mA cm -2 ) compared to the commercial Pt/C (0.106 A mg Pt -1 and 0.146 mA cm -2 ). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.
Atar, Nurit; Grossman, Eitan; Gouzman, Irina; Bolker, Asaf; Murray, Vanessa J; Marshall, Brooks C; Qian, Min; Minton, Timothy K; Hanein, Yael
2015-06-10
In low Earth orbit (LEO), hazards such as atomic oxygen (AO) or electrostatic discharge (ESD) degrade polymeric materials, specifically, the extensively used polyimide (PI) Kapton. We prepared PI-based nanocomposite films that show both AO durability and ESD protection by incorporating polyhedral oligomeric silsesquioxane (POSS) and carbon nanotube (CNT) additives. The unique methods that are reported prevent CNT agglomeration and degradation of the CNT properties that are common in dispersion-based processes. The influence of the POSS content on the electrical, mechanical, and thermo-optical properties of the CNT-POSS-PI films was investigated and compared to those of control PI and CNT-PI films. CNT-POSS-PI films with 5 and 15 wt % POSS content exhibited sheet resistivities as low as 200 Ω/□, and these resistivities remained essentially unchanged after exposure to AO with a fluence of ∼2.3 × 10(20) O atoms cm(-2). CNT-POSS-PI films with 15 wt % POSS content exhibited an erosion yield of 4.8 × 10(-25) cm(3) O atom(-1) under 2.3 × 10(20) O atoms cm(-2) AO fluence, roughly one order of magnitude lower than that of pure PI films. The durability of the conductivity of the composite films was demonstrated by rolling film samples with a tight radius up to 300 times. The stability of the films to thermal cycling and ionizing radiation was also demonstrated. These properties make the prepared CNT-POSS-PI films with 15 wt % POSS content excellent candidates for applications where AO durability and electrical conductivity are required for flexible and thermally stable materials. Hence, they are suggested here for LEO applications such as the outer layers of spacecraft thermal blankets.
Evaluation and Validation of Organic Materials for Advanced Stirling Convertors (ASCs): Overview
NASA Technical Reports Server (NTRS)
Shin, Euy-Sik Eugene
2015-01-01
Various organic materials are used as essential parts in Stirling Convertors for their unique properties and functionalities such as bonding, potting, sealing, thread locking, insulation, and lubrication. More efficient Advanced Stirling Convertors (ASC) are being developed for future space applications especially with a long mission cycle, sometimes up to 17 years, such as deep space exploration or lunar surface power or Mars rovers, and others. Thus, performance, durability, and reliability of those organics should be critically evaluated in every possible material-process-fabrication-service environment relations based on their mission specifications. In general, thermal stability, radiation hardness, outgassing, and material compatibility of the selected organics have been systematically evaluated while their process and fabrication conditions and procedures were being optimized. Service environment-simulated long term aging tests up to 4 years were performed as a function of temperature for durability assessment of the most critical organic material systems.
Bright and durable field emission source derived from refractory taylor cones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Gregory
A method of producing field emitters having improved brightness and durability relying on the creation of a liquid Taylor cone from electrically conductive materials having high melting points. The method calls for melting the end of a wire substrate with a focused laser beam, while imposing a high positive potential on the material. The resulting molten Taylor cone is subsequently rapidly quenched by cessation of the laser power. Rapid quenching is facilitated in large part by radiative cooling, resulting in structures having characteristics closely matching that of the original liquid Taylor cone. Frozen Taylor cones thus obtained yield desirable tipmore » end forms for field emission sources in electron beam applications. Regeneration of the frozen Taylor cones in-situ is readily accomplished by repeating the initial formation procedures. The high temperature liquid Taylor cones can also be employed as bright ion sources with chemical elements previously considered impractical to implement.« less
Uterosacral ligament vaginal vault suspension: anatomy, outcome and surgical considerations.
Yazdany, Taji; Bhatia, Narender
2008-10-01
With aging populations, primary pelvic organ and recurrent pelvic organ prolapse have become a large-scale public health concern. Surgical options for patients include both abdominal and vaginal approaches, each with its own safety and efficacy profiles. This review summarizes the most recent anatomic, surgical and outcome data for uterosacral ligament vault suspension. It offers data on methods to avoid complications and difficult surgical scenarios. Uterosacral ligament suspension allows reattachment of the vaginal vault high within the pelvis. New modifications in technique including the extraperitoneal and laparoscopic approaches allow surgeons more freedom when planning surgery. Five-year data on the durability of the procedure make it a viable surgical option. As a technique widely used by many pelvic reconstructive surgeons, uterosacral ligament vault suspension provides a safe, anatomically correct and durable approach to uterine and vault prolapse. It requires advanced surgical training and an intimate understanding of pelvic anatomy to avoid and identify ureteral injury.
Carbodiimide Inactivation of MMPs and Effect on Dentin Bonding
Mazzoni, A.; Apolonio, F.M.; Saboia, V.P.A.; Santi, S.; Angeloni, V.; Checchi, V.; Curci, R.; Di Lenarda, R.; Tay, F.R.; Pashley, D.H.; Breschi, L.
2014-01-01
The use of protein cross-linking agents during bonding procedures has been recently proposed to improve bond durability. This study aimed to use zymography and in situ zymography techniques to evaluate the ability of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) cross-linker to inhibit matrix metalloproteinase (MMP) activity. The hypotheses tested were that: (1) bonding procedures increase dentin gelatinolytic activity and (2) EDC pre-treatment prevents this enzymatic activity. The zymographic assay was performed on protein extracts obtained from dentin powder treated with Optibond FL or Scotchbond 1XT with or without 0.3M EDC pre-treatment. For in situ zymography, adhesive/dentin interfaces were created with the same adhesives applied to acid-etched dentin slabs pre-treated or not with EDC conditioner. Zymograms revealed increased expression of dentin endogenous MMP-2 and -9 after adhesive application, while the use of EDC as a primer inactivated dentin gelatinases. Results of in situ zymograpy showed that hybrid layers of tested adhesives exhibited intense collagenolytic activity, while almost no fluorescence signal was detected when specimens were pre-treated with EDC. The correlative analysis used in this study demonstrated that EDC could contribute to inactivate endogenous dentin MMPs within the hybrid layer created by etch-and-rinse adhesives. PMID:24334409
Evolution of Force Sensing Technologies.
Shah, Dipen
2017-06-01
In order to Improve the procedural success and long-term outcomes of catheter ablation techniques for atrial fibrillation (AF), an Important unfulfilled requirement is to create durable electrophysiologically complete lesions. Measurement of contact force (CF) between the catheter tip and the target tissue can guide physicians to optimise both mapping and ablation procedures. Contact force can affect lesion size and clinical outcomes following catheter ablation of AF. Force sensing technologies have matured since their advent several years ago, and now allow the direct measurement of CF between the catheter tip and the target myocardium in real time. In order to obtain complete durable lesions, catheter tip spatial stability and stable contact force are important. Suboptimal energy delivery, lesion density/contiguity and/or excessive wall thickness of the pulmonary vein-left atrial (PV-LA) junction may result in conduction recovery at these sites. Lesion assessment tools may help predict and localise electrical weak points resulting in conduction recovery during and after ablation. There is increasing clinical evidence to show that optimal use of CF sensing during ablation can reduce acute PV re-conduction, although prospective randomised studies are desirable to confirm long-term favourable clinical outcomes. In combination with optimised lesion assessment tools, contact force sensing technology has the potential to become the standard of care for all patients undergoing AF catheter ablation.
Tsuchiya, Kenji; Takamizawa, Toshiki; Barkmeier, Wayne W; Tsubota, Keishi; Tsujimoto, Akimasa; Berry, Thomas P; Erickson, Robert L; Latta, Mark A; Miyazaki, Masashi
2016-02-01
The present study aimed to determine the effect of the functional monomer, 10-methacryloxydecyl dihydrogen phosphate (MDP), on the enamel bond durability of single-step self-etch adhesives through integrating fatigue testing and long-term water storage. An MDP-containing self-etch adhesive, Clearfil Bond SE ONE (SE), and an experimental adhesive, MDP-free (MF), which comprised the same ingredients as SE apart from MDP, were used. Shear bond strength (SBS) and shear fatigue strength (SFS) were measured with or without phosphoric acid pre-etching. The specimens were stored in distilled water for 24 h, 6 months, or 1 yr. Although similar SBS and SFS values were obtained for SE with pre-etching and for MF after 24 h of storage in distilled water, SE with pre-etching showed higher SBS and SFS values than MF after storage in water for 6 months or 1 yr. Regardless of the pre-etching procedure, SE showed higher SBS and SFS values after 6 months of storage in distilled water than after 24 h or 1 yr. To conclude, MDP might play an important role in enhancing not only bond strength but also bond durability with respect to repeated subcritical loading after long-term water storage. © 2015 Eur J Oral Sci.
DOT National Transportation Integrated Search
2012-07-01
Supplementary cementitious materials (SCM) have become common parts of modern concrete practice. The blending of two or three : cementitious materials to optimize durability, strength, or economics provides owners, engineers, materials suppliers, and...
Develop Silicone Encapsulation Systems for Terrestrial Silicon Solar Arrays
NASA Technical Reports Server (NTRS)
1979-01-01
A cost effective encapsulant system was identified and a silicone acrylic cover material containing a durable ultraviolet screening agent was prepared. The effectiveness of the cover material in protecting photo-oxidatively sensitive polymers was demonstrated.
Reagan as Roosevelt: The Elasticity of Pseudo-Populist Appeals.
ERIC Educational Resources Information Center
Woodward, Gary C.
1983-01-01
Shows that the presidencies of Franklin Roosevelt and Ronald Reagan have been rhetorical echoes of the original Populists. Demonstrates the durability and elasticity of a style born in nineteenth century grass roots political reform. (PD)
Nair, Jijeesh R; Porcarelli, Luca; Bella, Federico; Gerbaldi, Claudio
2015-06-17
Profoundly ion-conducting, self-standing, and tack-free ethylene oxide-based polymer electrolytes encompassing a room-temperature ionic liquid (RTIL) with specific amounts of lithium salt are successfully prepared via a rapid and easily upscalable process including a UV irradiation step. All prepared materials are thoroughly characterized in terms of their physical, chemical, and morphological properties and eventually galvanostatically cycled in lab-scale lithium batteries (LIBs) exploiting a novel direct polymerization procedure to get intimate electrode/electrolyte interfacial characteristics. The promising multipurpose characteristics of the newly elaborated materials are demonstrated by testing them in dye-sensitized solar cells (DSSCs), where the introduction of the iodine/iodide-based redox mediator in the polymer matrix assured the functioning of a lab-scale test cell with conversion efficiency exceeding 6% at 1 sun. The reported results enlighten the promising prospects of the material to be successfully implemented as stable, durable, and efficient electrolyte in next-generation energy conversion and storage devices.
Producing lasting amphiphobic building surfaces with self-cleaning properties
NASA Astrophysics Data System (ADS)
Facio, Dario S.; Carrascosa, Luis A. M.; Mosquera, María J.
2017-06-01
Nowadays, producing building surfaces that prevent water and oil uptake and which present self-cleaning activity is still a challenge. In this study, amphiphobic (superhydrophobic and oleophobic) building surfaces were successfully produced. A simple and low-cost process was developed, which is applicable to large-scale building surfaces, according the following procedure: (1) by spraying a SiO2 nanocomposite which produces a closely-packed nanoparticle uniform topography; (2) by functionalizing the previous coating with a fluorinated alkoxysilane, producing high hydrophobicity and oleophobicity. The formation of a Cassie-Baxter regime, in which air pockets could be trapped between the aggregates of particles, was confirmed by topographic study. The building surface demonstrated an excellent self-cleaning performance. Finally, the surface presented lasting superhydrophobicity with high stability against successive attachment/detachment force cycles. This high durability can be explained by the effective grafting of the silica nanocomposite coating skeleton with the substrate, and with the additional fluorinated coating produced by condensation reactions.
Plastic Organic Scintillator Chemistry
NASA Astrophysics Data System (ADS)
Brightwell, C. R.; Temanson, E. S.; Febbraro, M. T.
2017-09-01
Due to their high light output, quick decay time, affordability, durability and ability to be molded, plastic organic scintillators are increasingly becoming a more viable method of particle detection. Since the plastic is composed entirely of single molecular chains with repeating units, scintillating properties remain stable despite changes in experimental conditions. Different scintillating plastics can be modified and tailored to suit specific experiments depending on a variety of requirements such as light output, scintillating wavelength, and PMT compatibility. The synthesis chemistry of a recent but well-known scintillating polyester, polyethylene naphthalate (PEN) will be presented to demonstrate how plastic organic scintillators can be modified for different particle detection experiments. PEN has been successfully synthesized at ORNL, and procedures are currently being investigated to modify PEN using different reactants and catalysts. The goal is to achieve a transparent scintillating plastic with an incorporated wavelength shifter in the chain that scintillates with a wavelength around 440 nm. The status of this project will be presented. This research is supported by the U. S. Department of Energy Office of Science.
Di Maria, Francesco; Bianconi, Francesco; Micale, Caterina; Baglioni, Stefano; Marionni, Moreno
2016-02-01
The size distribution of aggregates has direct and important effects on fundamental properties of construction materials such as workability, strength and durability. The size distribution of aggregates from construction and demolition waste (C&D) is one of the parameters which determine the degree of recyclability and therefore the quality of such materials. Unfortunately, standard methods like sieving or laser diffraction can be either very time consuming (sieving) or possible only in laboratory conditions (laser diffraction). As an alternative we propose and evaluate the use of image analysis to estimate the size distribution of aggregates from C&D in a fast yet accurate manner. The effectiveness of the procedure was tested on aggregates generated by an existing C&D mechanical treatment plant. Experimental comparison with manual sieving showed agreement in the range 81-85%. The proposed technique demonstrated potential for being used on on-line systems within mechanical treatment plants of C&D. Copyright © 2015 Elsevier Ltd. All rights reserved.
An improved glycerin-jelly mounting procedure for permanent preparations of helminth eggs.
Kumagai, M; Inaba, T; Makioka, A; Ishiwata, K; Onishi, K; Watanabe, N
2010-04-01
Many attempts have been undertaken to make permanent preparations of helminth eggs. However, the resulting preparations either lacked durability or tended to deform thin-shelled eggs, such as those of the hookworm. To overcome these drawbacks, we have modified 2 aspects of the glycerin-jelly mounting procedure. First, we gradually changed the media in which the helminth eggs soaked, from 10% formalin via water to a 70% ethanol and 5% glycerin solution. It took 10 days, which is much longer than the time required for the processes previously reported. Second, we used a hole slide glass instead of a slide glass. Eggs of 11 species of helminths have been prepared with this procedure, and have kept their morphology without apparent change for more than 4 yr.
Subliminal words durably affect neuronal activity.
Gaillard, Raphaël; Cohen, Laurent; Adam, Claude; Clemenceau, Stéphane; Hasboun, Dominique; Baulac, Michel; Willer, Jean-Claude; Dehaene, Stanislas; Naccache, Lionel
2007-10-08
Unconscious mental representations elicited by subliminal stimuli are marked by their fleeting lifetimes, usually below 1 s. Can such evanescent subliminal stimuli, nevertheless, lead to long-lasting learning? To date, evidence suggesting a long-term influence of briefly perceived stimuli on behaviour or brain activity is scarce and questionable. In this study, we used intracranial recordings to provide the first direct demonstration that unconsciously perceived subliminal words could exert long-lasting effects on neuronal signals. When repeating subliminal words over long interstimulus intervals, we observed electrophysiological repetition effects. These unconscious repetition effects suggest that the single presentation of a masked word can durably affect neural architecture.
Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures.
Kim, Sung-Kon; Kim, Hae Jin; Lee, Jong-Chan; Braun, Paul V; Park, Ho Seok
2015-08-25
The reliability and durability of energy storage devices are as important as their essential characteristics (e.g., energy and power density) for stable power output and long lifespan and thus much more crucial under harsh conditions. However, energy storage under extreme conditions is still a big challenge because of unavoidable performance decays and the inevitable damage of components. Here, we report high-temperature operating, flexible supercapacitors (f-SCs) that can provide reliable power output and extreme durability under severe electrochemical, mechanical, and thermal conditions. The outstanding capacitive features (e.g., ∼40% enhancement of the rate capability and a maximum capacitances of 170 F g(-1) and 18.7 mF cm(-2) at 160 °C) are attributed to facilitated ion transport at elevated temperatures. Under high-temperature operation and/or a flexibility test in both static and dynamic modes at elevated temperatures >100 °C, the f-SCs showed extreme long-term stability of 100000 cycles (>93% of initial capacitance value) and mechanical durability after hundreds of bending cycles (at bend angles of 60-180°). Even at 120 °C, the versatile design of tandem serial and parallel f-SCs was demonstrated to provide both desirable energy and power requirements at high temperatures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lei; Luo, Langli; Feng, Zhenxing
Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhanced reaction kinetics but are limited by their scarce resource. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides etc. are their low electronic conductivity and poor durability. Here, we report OER catalysts of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells derived from bimetallic metal–organic frameworks (MOFs) precursors. The optimal OER catalyst shows excellent activity (360 mV overpotential atmore » 10 mA cm–2GEO) and durability (no obvious degradation after 20 000 cycles). The electron-donation from Fe and tuned electronic structure of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity. We further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by chemical state of precursors. Severe metal particle growth probably caused by oxidation of carbon shells and encapsulated nanoparticles is believed to the main mechanism for activity degradation in these catalysts.« less
Nam, Gyutae; Park, Joohyuk; Choi, Min; Oh, Pilgun; Park, Suhyeon; Kim, Min Gyu; Park, Noejung; Cho, Jaephil; Lee, Jang-Soo
2015-06-23
Understanding the interaction between a catalyst and oxygen has been a key step in designing better electrocatalysts for the oxygen reduction reaction (ORR) as well as applying them in metal-air batteries and fuel cells. Alloying has been studied to finely tune the catalysts' electronic structures to afford proper binding affinities for oxygen. Herein, we synthesized a noble-metal-free and nanosized transition metal CuFe alloy encapsulated with a graphitic carbon shell as a highly efficient and durable electrocatalyst for the ORR in alkaline solution. Theoretical models and experimental results demonstrated that the CuFe alloy has a more moderate binding strength for oxygen molecules as well as the final product, OH(-), thus facilitating the oxygen reduction process. Furthermore, the nitrogen-doped graphitic carbon-coated layer, formed catalytically under the influence of iron, affords enhanced charge transfer during the oxygen reduction process and superior durability. These benefits were successfully confirmed by realizing the catalyst application in a mechanically rechargeable Zn-air battery.
Technology of combined chemical-mechanical fabrication of durable coatings
NASA Astrophysics Data System (ADS)
Smolentsev, V. P.; Ivanov, V. V.; Portnykh, A. I.
2018-03-01
The article presents the scientific fundamentals of methodology for calculating the modes and structuring the technological processes of combined chemical-mechanical fabrication of durable coatings. It is shown that they are based on classical patterns, describing the processes of simultaneous chemical and mechanical impact. The paper demonstrates the possibility of structuring a technological process, taking into account the systematic approach to impact management and strengthening the reciprocal positive influence of each impact upon the combined process. The combined processes have been planned for fabricating the model types of chemical-mechanical coatings of durable products in machine construction. The planning methodology is underpinned by a scientific hypothesis of a single source of impact management through energy potential of process components themselves, or by means of external energy supply through mechanical impact. The control of it is fairly thoroughly studied in the case of pulsed external strikes of hard pellets, similar to processes of vibroimpact hardening, thoroughly studied and mastered in many scientific schools of Russia.
Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F
2016-02-08
This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP's effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production.
Verheye, Stefan; Khattab, Ahmed A; Carrie, Didier; Stella, Pieter; Slagboom, Ton; Bartunek, Jozef; Onuma, Yoshinobu; Serruys, Patrick W
2016-08-05
Our aim was to demonstrate the safety and efficacy of the Svelte sirolimus-eluting coronary stent-on-a-wire Integrated Delivery System (IDS) with bioresorbable drug coating compared to the Resolute Integrity zotarolimus-eluting stent with durable polymer in patients with de novo coronary artery lesions. Direct stenting, particularly in conjunction with transradial intervention (TRI), has been associated with reduced bleeding complications, procedure time, radiation exposure and contrast administration compared to conventional stenting with wiring and predilatation. The low-profile Svelte IDS is designed to facilitate TRI and direct stenting, reducing the number of procedural steps, time and cost associated with coronary stenting. DIRECT II was a prospective, multicentre trial which enrolled 159 patients to establish non-inferiority of the Svelte IDS versus Resolute Integrity using a 2:1 randomisation. The primary endpoint was angiographic in-stent late lumen loss (LLL) at six months. Target vessel failure (TVF), as well as secondary clinical endpoints, will be assessed annually up to five years. At six months, in-stent LLL was 0.09±0.31 mm in the Svelte IDS group compared to 0.13±0.27 mm in the Resolute Integrity group (p<0.001 for non-inferiority). TVF at one year was similar across the Svelte IDS and Resolute Integrity groups (6.5% vs. 9.8%, respectively). DIRECT II demonstrated the non-inferiority of the Svelte IDS to Resolute Integrity with respect to in-stent LLL at six months. Clinical outcomes at one year were comparable between the two groups.
Emerging Minimally Invasive Treatment Options for Male Lower Urinary Tract Symptoms.
Magistro, Giuseppe; Chapple, Christopher R; Elhilali, Mostafa; Gilling, Peter; McVary, Kevin T; Roehrborn, Claus G; Stief, Christian G; Woo, Henry H; Gratzke, Christian
2017-12-01
Lower urinary tract symptoms (LUTS) are one of the most common and troublesome nonmalignant conditions affecting quality of life in aging men. A spectrum of established medical and surgical options is available to provide relief of bothersome LUTS. Both the adverse events of medication and the morbidity with surgical treatment modalities have to be counterbalanced against efficacy. Novel minimally invasive treatment options aim to be effective, ideally to be performed in an ambulatory setting under local anaesthesia and to offer a more favourable safety profile than existing reference techniques. A comprehensive, narrative review of novel minimally invasive treatment modalities for the management of male LUTS due to benign prostatic enlargement is presented. Medline, PubMed, Cochrane database, and Embase were screened for randomised controlled trials (RCTs), clinical trials, and reviews on novel minimally invasive treatment options for male LUTS due to benign prostatic enlargement. With regard to newly devised intraprostatic injectables (botulinum neurotoxin A, NX1207, PRX302), PRX302 is currently the only substance that was superior to placebo in a phase 3 RCT providing proof of efficacy and safety. The prostatic urethral lift technique has been evaluated in several phase 3 trials showing rapid and durable relief of LUTS without compromising sexual function in carefully selected patients without a prominent median lobe. The first clinical experience of the temporary implantable nitinol device demonstrated that implantation of this novel device is a safe procedure, easy, and fast to perform. Further studies are required to evaluate efficacy, durability, and to define appropriate patient selection. New ablative approaches like the image guided robotic waterjet ablation (AquaBeam) or procedures based on convective water vapour energy (Rezūm) are in the early stages of development. Prostatic artery embolization performed by interventional radiologists at specialised centres shows a high technical success rate in the treatment of bothersome LUTS. However, a substantial clinical failure rate and a particular spectrum of complications not commonly seen after urologic interventions do occur and need to be critically evaluated. Initial promising clinical results on novel minimally invasive treatment options indicate efficacy comparable to standard techniques, often associated with a more favourable safety profile, in particular with preservation of sexual function. Many of these techniques are in their infancy and based on experience of new developments in the past. Further RCTs are required to evaluate efficacy, safety, and durability of novel techniques with long-term follow-up and careful evaluation of the selection criteria, which have been applied in clinical trials. The prostatic urethral lift is the only procedure with Level 1 evidence data and that can therefore be recommended for treatment of male LUTS in clinical practice for selected patients. Minimally invasive treatment options have been developed to provide relief of lower urinary tract symptoms comparable to standard surgical techniques with a more favourable safety profile. However, long-term clinical evaluation is still needed for most of these innovations before they can be recommended to be an effective replacement for standard surgical treatment. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Experimental demonstration of Xypex additive in concrete to improve durability.
DOT National Transportation Integrated Search
2015-12-01
In 2012 the Maine Department of Transportation reconstructed the Stockton Springs Underpass Bridge : #5760 on Church Street over US Route 1. The primary Contractor for this project was the Lane : Construction Corporation of Cheshire, Connecticut. : T...
Ultra-High Temperature Thermal Barrier Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, Eric; Gell, Maurice; Wang, Jiwen
In this project, HiFunda LLC worked with the University of Connecticut (UConn) to demonstrate an attractive option for thermal barrier coatings (TBCs), namely yttrium aluminum garnet (YAG), which was well known to have proven thermal stability and excellent high-temperature mechanical properties. YAG and other higher temperature TBCs have not been used to date because they exhibit inadequate durability, resulting from (a) poor erosion resistance and (b) greater thermal expansion mismatch strains compared to 7YSZ. UConn had previously demonstrated that the solution precursor plasma spray (SPPS) process could produce a durable 7YSZ TBC resulting from a highly strain tolerant microstructure, consistingmore » of through-coating-thickness vertical cracks. HiFunda/UConn reasoned at the start of Phase I that such a strain-tolerant microstructure could produce durable, higher temperature TBCs. The Phase I work demonstrated the feasibility of that concept and of SPPS YAG TBCs. The Phase II work demonstrated that SPPS YAG coating possessed the necessary range of properties to be a viable high temperature TBC, including cyclic durability and reduced elevated temperature thermal conductivity. The SPPS YAG TBCs were shown to have the potential to be used at temperatures 200°C higher than APS YSZ, based on thermal stability, sinter resistance, and CMAS resistance. The overall technical objectives of this Phase 2A project were to further improve the commercial viability of SPPS by improving their performance capabilities and manufacturing economics. The improved performance capability was to be achieved through: (1) further reductions in thermal conductivity, which allows higher gas temperatures and/or thinner coatings to achieve similar gas temperatures; and (2) improved resistance to calcium magnesium alumnoslicate (CMAS) attack of the TBCs, which can yield improved lifetimes. The improved thermal conductivity and CMAs resistance was to be accomplished through compositional and microstructural optimization. Finally, the key metrics to improve the process economics were increased deposition rate and efficiency. In addition to these technical objectives, there were commercialization objectives of getting key commercialization partners to evaluate and qualify the SPPS YAG technology independently so that the technology readiness level (TRL) of the technology could be sufficiently advanced to facilitate Phase III strategic partnerships, leading to eventual commercialization consistent with the overall objectives of the DOE SBIR/STTR program. All the Phase 2A goals were successfully achieved.« less
Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Wang, Jing; Liao, Xiaofeng; Zeng, Xingrong
2017-08-23
Large-scale fabrication of superhydrophobic surfaces with excellent durability by simple techniques has been of considerable interest for its urgent practical application in oil-water separation in recent years. Herein, we proposed a facile vapor-liquid sol-gel approach to fabricating highly durable and robust superhydrophobic polydimethylsiloxane@silica surfaces on the cross-structure polyester textiles. Scanning electron microscopy and Fourier transform infrared spectroscopy demonstrated that the silica generated from the hydrolysis-condensation of tetraethyl orthosilicate (TEOS) gradually aggregated at microscale driven by the extreme nonpolar dihydroxyl-terminated polydimethylsiloxane (PDMS(OH)). This led to construction of hierarchical roughness and micronano structures of the superhydrophobic textile surface. The as-fabricated superhydrophobic textile possessed outstanding durability in deionized water, various solvents, strong acid/base solutions, and boiling/ice water. Remarkably, the polyester textile still retained great water repellency and even after ultrasonic treatment for 18 h, 96 laundering cycles, and 600 abrasion cycles, exhibiting excellent mechanical robustness. Importantly, the superhydrophobic polyester textile was further applied for oil-water separation as absorption materials and/or filter pipes, presenting high separation efficiency and great reusability. Our method to construct superhydrophobic textiles is simple but highly efficient; no special equipment, chemicals, or atmosphere is required. Additionally, no fluorinated slianes and organic solvents are involved, which is very beneficial for environment safety and protection. Our findings conceivably stand out as a new tool to fabricate organic-inorganic superhydrophobic surfaces with strong durability and robustness for practical applications in oil spill accidents and industrial sewage emission.
Takahashi, Nana; Iwasa, Fuminori; Inoue, Yuuki; Morisaki, Hirobumi; Ishihara, Kazuhiko; Baba, Kazuyoshi
2014-08-01
The polymer 2-methacryloyloxyethyl phosphorylcholine is currently used on medical devices to prevent infection. Denture plaque-associated infection is regarded as a source of serious dental and medical complications in the elderly population, and denture hygiene, therefore, is an issue of considerable importance for denture wearers. Furthermore, because denture bases are exposed to mechanical stresses, for example, denture brushing, the durability of the coating is important for retaining the antiadhesive function of 2-methacryloyloxyethyl phosphorylcholine. The purpose of this study is to investigate the durability and antiadhesive activity of two 2-methacryloyloxyethyl phosphorylcholine polymer coating techniques: poly-2-methacryloyloxyethyl phosphorylcholine grafting and poly-2-methacryloyloxyethyl phosphorylcholine-co-n-butyl methacrylate coating. It was revealed that 2-methacryloyloxyethyl phosphorylcholine polymer coating of the denture base resin polymethyl methacrylate decreases bacterial biofilm formation. Durability was examined by rhodamine staining and elemental surface analysis and by determining the wetting properties of the 2-methacryloyloxyethyl phosphorylcholine polymer-modified polymethyl methacrylate after a friction test that comprised 500 brushing cycles. Antiadhesive activity was examined by using a Streptococcus mutans biofilm formation assay. Poly-2-methacryloyloxyethyl phosphorylcholine-grafted polymethyl methacrylate retained 2-methacryloyloxyethyl phosphorylcholine units and antiadhesive activity even after repetitive mechanical stress, whereas co-n-butyl methacrylate-coated polymethyl methacrylate did not. These results demonstrated that graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on denture surfaces may contribute to the durability of the coating and prevent microbial retention. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lucas, John T., E-mail: johnthomas75@gmail.com; Nida, Adrian M.; Isom, Scott
Purpose: To determine factors associated with the durability of stereotactic radiation surgery (SRS) for treatment of trigeminal neuralgia (TN). Methods and Materials: Between 1999 and 2008, 446 of 777 patients with TN underwent SRS and had evaluable follow-up in our electronic medical records and phone interview records. The median follow-up was 21.2 months. The Barrow Neurologic Institute (BNI) pain scale was used to determine pre- and post-SRS pain. Dose-volume anatomical measurements, Burchiel pain subtype, pain quality, prior procedures, and medication usage were included in this retrospective cohort to identify factors impacting the time to BNI 4-5 pain relapse by using Cox proportionalmore » hazard regression. An internet-based nomogram was constructed based on predictive factors of durable relief pre- and posttreatment at 6-month intervals. Results: Rates of freedom from BNI 4-5 failure at 1, 3, and 5 years were 84.5%, 70.4%, and 46.9%, respectively. Pain relief was BNI 1-3 at 1, 3, and 5 years in 86.1%, 74.3%, and 51.3% of type 1 patients; 79.3%, 46.2%, and 29.3% of type 2 patients; and 62.7%, 50.2%, and 25% of atypical facial pain patients. BNI type 1 pain score was achieved at 1, 3, and 5 years in 62.9%, 43.5%, and 22.0% of patients with type 1 pain and in 47.5%, 25.2%, and 9.2% of type 2 patients, respectively. Only 13% of patients with atypical facial pain achieved BNI 1 response; 42% of patients developed post-Gamma Knife radiation surgery (GKRS) trigeminal dysfunction. Multivariate analysis revealed that post-SRS numbness (hazard ratio [HR], 0.47; P<.0001), type 1 (vs type 2) TN (HR, 0.6; P=.02), and improved post-SRS BNI score at 6 months (HR, 0.009; P<.0001) were predictive of a durable pain response. Conclusions: The durability of SRS for TN depends on the presenting Burchiel pain type, the post-SRS BNI score, and the presence of post-SRS facial numbness. The durability of pain relief can be estimated pre- and posttreatment by using our nomogram for situations when the potential of relapse may guide the decision for initial intervention.« less
Bonding effectiveness to different chemically pre-treated dental zirconia.
Inokoshi, Masanao; Poitevin, André; De Munck, Jan; Minakuchi, Shunsuke; Van Meerbeek, Bart
2014-09-01
The objective of this study was to evaluate the effect of different chemical pre-treatments on the bond durability to dental zirconia. Fully sintered IPS e.max ZirCAD (Ivoclar Vivadent) blocks were subjected to tribochemical silica sandblasting (CoJet, 3M ESPE). The zirconia samples were additionally pre-treated using one of four zirconia primers/adhesives (Clearfil Ceramic Primer, Kuraray Noritake; Monobond Plus, Ivoclar Vivadent; Scotchbond Universal, 3M ESPE; Z-PRIME Plus, Bisco). Finally, two identically pre-treated zirconia blocks were bonded together using composite cement (RelyX Ultimate, 3M ESPE). The specimens were trimmed at the interface to a cylindrical hourglass and stored in distilled water (7 days, 37 °C), after which they were randomly tested as is or subjected to mechanical ageing involving cyclic tensile stress (10 N, 10 Hz, 10,000 cycles). Subsequently, the micro-tensile bond strength was determined, and SEM fractographic analysis performed. Weibull analysis revealed the highest Weibull scale and shape parameters for the 'Clearfil Ceramic Primer/mechanical ageing' combination. Chemical pre-treatment of CoJet (3M ESPE) sandblasted zirconia using Clearfil Ceramic Primer (Kuraray Noritake) and Monobond Plus (Ivoclar Vivadent) revealed a significantly higher bond strength than when Scotchbond Universal (3M ESPE) and Z-PRIME Plus (Bisco) were used. After ageing, Clearfil Ceramic Primer (Kuraray Noritake) revealed the most stable bond durability. Combined mechanical/chemical pre-treatment, the latter with either Clearfil Ceramic Primer (Kuraray Noritake) or Monobond Plus (Ivoclar Vivadent), resulted in the most durable bond to zirconia. As a standard procedure to durably bond zirconia to tooth tissue, the application of a combined 10-methacryloyloxydecyl dihydrogen phosphate/silane ceramic primer to zirconia is clinically highly recommended.
Long-term micro-Deval durability of andesite aggregate
NASA Astrophysics Data System (ADS)
Czinder, Balázs; Török, Ákos
2017-04-01
Micro-Deval tests have been intensively used for analysing aggregate durability. The tests procedure described in details in the European Norm (EN 1097-1:2011). The current research intends to evaluate the long term durability of andesite aggregate by using extended micro-Deval tests. Andesite aggregate from Recsk (Hungary) was used for the tests. The tested andesite is a massive porphyritic biotite amphibol andesite that was formed during Eocene volcanism and forms a part of Mátra Mountains volcanic complex in NE Hungary. The aggregates were crushed and screened. Size fractions of 10.0/14.0 mm representing minimum and maximum grain sizes were used in the tests. 500 g of aggregate specimens were loaded in the steel drum and 2500 ml of water was added besides the 5000 g of steel balls into the device. The steel balls have a diameter of 10 mm according to EN. The test material - in the first stage - was subjected to 12,000 revolutions in the drum. This number is suggested by the EN. The micro-Deval coefficient was calculated after this first stage. Further wear of the andesitic material was tested by using additional revolutions. The increase in revolutions of the drum was in 12,000 rotation steps, reached 48,000 revolutions as a maximum. The tests were aimed to model the wear of aggregate on a longer term. It was also used to assess the durability of the aggregate when it is applied in engineering structures. The micro-Deval test results suggest that additional revolutions caused additional loss in material, i.e. increase in micro-Deval coefficient. A correlation is suggested between the revolution and andesite wear.
Peng, Shan; Yang, Xiaojun; Tian, Dong; Deng, Wenli
2014-09-10
We developed a simple fabrication method to prepare a superamphiphobic aluminum surface. On the basis of a low-energy surface and the combination of micro- and nanoscale roughness, the resultant surface became super-repellent toward a wide range of liquids with surface tensions of 25.3-72.1 mN m(-1). The applied approach involved (1) the formation of an irregular microplateau structure on an aluminum surface, (2) the fabrication of a nanoplatelet structure, and (3) fluorination treatment. The chemical stability and mechanical durability of the superamphiphobic surface were evaluated in detail. The results demonstrated that the surface presented an excellent chemical stability toward cool corrosive liquids (HCl/NaOH solutions, 25 °C) and 98% concentrated sulfuric acid, hot liquids (water, HCl/NaOH solutions, 30-100 °C), solvent immersion, high temperature, and a long-term period. More importantly, the surface also exhibited robust mechanical durability and could withstand multiple-fold, finger-touch, intensive scratching by a sharp blade, ultrasonication treatment, boiling treatment in water and coffee, repeated peeling by adhesive tape, and even multiple abrasion tests under 500 g of force without losing superamphiphobicity. The as-prepared superamphiphobic surface was also demonstrated to have excellent corrosion resistance. This work provides a simple, cost-effective, and highly efficient method to fabricate a chemically stable and mechanically robust superamphiphobic aluminum surface, which can find important outdoor applications.
Superhydrophobic engineered cementitious composites for highway applications : phase II.
DOT National Transportation Integrated Search
2013-06-01
The strength and durability of highway bridges are two of the key components in maintaining a : high level of freight transportation capacity on the nations highways. : The CFIRE project 04-09 demonstrated the feasibility of a new hybrid engineered...
40 CFR 1065.415 - Durability demonstration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... than in-use operation, subject to any pre-approval requirements established in the applicable standard.... Perform emission tests following the provisions of the standard setting part and this part, as applicable. Perform emission tests to determine deterioration factors consistent with good engineering judgment...
40 CFR 1065.415 - Durability demonstration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... than in-use operation, subject to any pre-approval requirements established in the applicable standard.... Perform emission tests following the provisions of the standard setting part and this part, as applicable. Perform emission tests to determine deterioration factors consistent with good engineering judgment...
40 CFR 1065.415 - Durability demonstration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... than in-use operation, subject to any pre-approval requirements established in the applicable standard.... Perform emission tests following the provisions of the standard setting part and this part, as applicable. Perform emission tests to determine deterioration factors consistent with good engineering judgment...
Stress Testing of the Philips 60W Replacement Lamp L Prize Entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poplawski, Michael E.; Ledbetter, Marc R.; Smith, Mark
2012-04-24
The Pacific Northwest National Laboratory, operated by Battelle for the U.S. Department of Energy, worked with Intertek to develop a procedure for stress testing medium screw-base light sources. This procedure, composed of alternating stress cycles and performance evaluation, was used to qualitatively compare and contrast the durability and reliability of the Philips 60W replacement lamp L Prize entry with market-proven compact fluorescent lamps (CFLs) with comparable light output and functionality. The stress cycles applied simultaneous combinations of electrical, thermal, vibration, and humidity stresses of increasing magnitude. Performance evaluations measured relative illuminance, x chromaticity and y chromaticity shifts after each stressmore » cycle. The Philips L Prize entry lamps appear to be appreciably more durable than the incumbent energy-efficient technology, as represented by the evaluated CFLs, and with respect to the applied stresses. Through the course of testing, all 15 CFL samples permanently ceased to function as a result of the applied stresses, while only 1 Philips L Prize entry lamp exhibited a failure, the nature of which was minor, non-destructive, and a consequence of a known (and resolved) subcontractor issue. Given that current CFL technology appears to be moderately mature and no Philips L Prize entry failures could be produced within the stress envelope causing 100 percent failure of the benchmark CFLs, it seems that, in this particular implementation, light-emitting diode (LED) technology would be much more durable in the field than current CFL technology. However, the Philips L Prize entry lamps used for testing were carefully designed and built for the competition, while the benchmark CFLs were mass produced for retail sale—a distinction that should be taken into consideration. Further reliability testing on final production samples would be necessary to judge the extent to which the results of this analysis apply to production versions of the Philips L Prize entry.« less
Endovascular stent-graft repair of failed endovascular abdominal aortic aneurysm repair.
Baril, Donald T; Silverberg, Daniel; Ellozy, Sharif H; Carroccio, Alfio; Jacobs, Tikva S; Sachdev, Ulka; Teodorescu, Victoria J; Lookstein, Robert A; Marin, Michael L
2008-01-01
Despite high initial technical success, the long-term durability of endovascular abdominal aortic aneurysm repair (EVAR) continues to be a concern. Following EVAR, patients can experience endoleaks, device migration, device fractures, or aneurysm growth that may require intervention. The purpose of this study was to review all patients treated with secondary endovascular devices at our institution for failed EVAR procedures. Over an 8-year period, 988 patients underwent EVAR, of whom 42 (4.3%) required secondary interventions involving placement of additional endovascular devices. Data regarding patient characteristics, aneurysm size, initial device type, time until failure, failure etiology, secondary interventions, and outcomes were reviewed. The mean time from initial operation until second operation was 34.1 months. Failures included type I endoleaks in 38 patients (90.5%), type III endoleaks in two patients (4.8%), and enlarging aneurysms without definite endoleaks in two patients (4.8%). The overall technical success rate for secondary repair was 92.9% (39/42). Perioperative complications occurred in nine patients (21.4%), including wound complications (n = 6), cerebrovascular accident (CVA) (n = 1), foot drop (n = 1), and death (n = 1). Mean follow-up following secondary repair was 16.4 months (range 1-50). Eighty-six percent of patients treated with aortouni-iliac devices had successful repairs compared to 45% of patients treated with proximal cuffs. Ten patients (23.8%) had persistent or recurrent type I or type III endoleaks following revision. Of these, four had tertiary interventions, including two patients who had additional devices placed. Failures following EVAR occur in a small but significant number of patients. When anatomically possible, endovascular revision offers a safe means of treating these failures. Aortouni-iliac devices appear to offer a more durable repair than the proximal cuff for treatment of proximal type I endoleaks. Midterm results indicate that these patients may require additional procedures but have a low rate of aneurysm-related mortality. Longer-term follow-up is necessary to determine the durability of these endovascular revisions.
Song, Howard K; Preiss, Liliana R; Maslen, Cheryl L; Kroner, Barbara; Devereux, Richard B; Roman, Mary J; Holmes, Kathryn W; Tolunay, H Eser; Desvigne-Nickens, Patrice; Asch, Federico M; Milewski, Rita K; Bavaria, Joseph; LeMaire, Scott A
2014-05-01
The long-term outcomes of aortic valve-sparing (AVS) root replacement in Marfan syndrome (MFS) patients remain uncertain. The study aim was to determine the utilization and outcomes of AVS root replacement in MFS patients enrolled in the Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC). At the time of this analysis, 788 patients with MFS were enrolled in the GenTAC Registry, of whom 288 had undergone aortic root replacement. Patients who had undergone AVS procedures were compared to those who had undergone aortic valve replacement (AVR). AVS root replacement was performed in 43.5% of MFS patients, and the frequency of AVS was increased over the past five years. AVS patients were younger at the time of surgery (31.0 versus 36.3 years, p = 0.006) and more likely to have had elective rather than emergency surgery compared to AVR patients, in whom aortic valve dysfunction and aortic dissection was the more likely primary indication for surgery. After a mean follow up of 6.2 +/- 3.6 years, none of the 87 AVS patients had required reoperation; in contrast, after a mean follow up of 10.5 +/- 7.6 years, 11.5% of AVR patients required aortic root reoperation. Aortic valve function has been durable, with 95.8% of AVS patients having aortic insufficiency that was graded as mild or less. AVS root replacement is performed commonly among the MFS population, and the durability of the aortic repair and aortic valve function have been excellent to date. These results justify a continued use of the procedure in an elective setting. The GenTAC Registry will be a useful resource to assess the long-term durability of AVS root replacement in the future.
Low NO/x/ heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1980-01-01
The paper deals with the 'Low NO/x/ Heavy Fuel Combustor Program'. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen (NO/x/), improved combustor durability and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R.; Han, InTaek; Yun, Dong-Jin
2015-01-01
A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements. PMID:26490133
NASA Technical Reports Server (NTRS)
1975-01-01
The retention of granular catalyst in a metal foam matrix was demonstrated to greatly increase the life capability of hydrazine monopropellant reactors. Since nickel foam used in previous tests was found to become degraded after long-term exposure the cause of degradation was examined and metal foams of improved durability were developed. The most durable foam developed was a rhodium-coated nickel foam. An all-platinum foam was found to be incompatible in a hot ammonia (hydrazine) environment. It is recommended to scale up the manufacturing process for the improved foam to produce samples sufficiently large for space shuttle APU gas generator testing.
Park, Sung-Hoon; Lee, Sangeui; Moreira, David; Bandaru, Prabhakar R; Han, InTaek; Yun, Dong-Jin
2015-10-22
A simple, scalable, non-lithographic, technique for fabricating durable superhydrophobic (SH) surfaces, based on the fingering instabilities associated with non-Newtonian flow and shear tearing, has been developed. The high viscosity of the nanotube/elastomer paste has been exploited for the fabrication. The fabricated SH surfaces had the appearance of bristled shark skin and were robust with respect to mechanical forces. While flow instability is regarded as adverse to roll-coating processes for fabricating uniform films, we especially use the effect to create the SH surface. Along with their durability and self-cleaning capabilities, we have demonstrated drag reduction effects of the fabricated films through dynamic flow measurements.
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.
1995-01-01
The potential for a revolutionary step in the durability of reusable rocket engines is made possible by the combination of several emerging technologies. The recent creation and analytical demonstration of life extending (or damage mitigating) control technology enables rapid rocket engine transients with minimum fatigue and creep damage. This technology has been further enhanced by the formulation of very simple but conservative continuum damage models. These new ideas when combined with recent advances in multidisciplinary optimization provide the potential for a large (revolutionary) step in reusable rocket engine durability. This concept has been named the robust rocket engine concept (RREC) and is the basic contribution of this paper. The concept also includes consideration of design innovations to minimize critical point damage.
Low NO(x) heavy fuel combustor program
NASA Technical Reports Server (NTRS)
Lister, E.; Niedzwiecki, R. W.; Nichols, L.
1979-01-01
The 'low nitrogen oxides heavy fuel combustor' program is described. Main program objectives are to generate and demonstrate the technology required to develop durable gas turbine combustors for utility and industrial applications, which are capable of sustained, environmentally acceptable operation with minimally processed petroleum residual fuels. The program will focus on 'dry' reductions of oxides of nitrogen, improved combustor durability, and satisfactory combustion of minimally processed petroleum residual fuels. Other technology advancements sought include: fuel flexibility for operation with petroleum distillates, blends of petroleum distillates and residual fuels, and synfuels (fuel oils derived from coal or shale); acceptable exhaust emissions of carbon monoxide, unburned hydrocarbons, sulfur oxides and smoke; and retrofit capability to existing engines.
Imminent Engine Failure Probe Investigation.
probe signature determination, development of data recording techniques, accumulation of data during durability testing of T56 or TF41 engines and...any other opportunistic gas turbine engine test. The electrostatic probe demonstrated some capability to detect engine distress in TF41 and T56 engines
Li, Qiang; Tong, Zichuan; Wang, Lefeng; Zhang, Jianjun; Ge, Yonggui; Wang, Hongshi; Li, Weiming; Xu, Li; Ni, Zhuhua
2013-01-01
Introduction With long-term follow-up, whether biodegradable polymer drug-eluting stents (DES) is efficient and safe in primary percutaneous coronary intervention (PCI) remains a controversial issue. This study aims to assess the long-term efficacy and safety of DES in PCI for ST-segment elevation myocardial infarction (STEMI). Material and methods A prospective, randomized single-blind study with 3-year follow-up was performed to compare biodegradable polymer DES with durable polymer DES in 332 STEMI patients treated with primary PCI. The primary end point was major adverse cardiac events (MACE) at 3 years after the procedure, defined as the composite of cardiac death, recurrent infarction, and target vessel revascularization. The secondary end points included in-segment late luminal loss (LLL) and binary restenosis at 9 months and cumulative stent thrombosis (ST) event rates up to 3 years. Results The rate of the primary end points and the secondary end points including major adverse cardiac events, in-segment late luminal loss, binary restenosis, and cumulative thrombotic event rates were comparable between biodegradable polymer DES and durable polymer DES in these 332 STEMI patients treated with primary PCI at 3 years. Conclusions Biodegradable polymer DES has similar efficacy and safety profiles at 3 years compared with durable polymer DES in STEMI patients treated with primary PCI. PMID:24482648
Fibrous composite material for textile heart valve design: in vitro assessment.
Amri, Amna; Laroche, Gaetan; Chakfe, Nabil; Heim, Frederic
2018-04-17
With over 150,000 implantations performed over the world, transcatheter aortic valve replacement (TAVR) has become a surgical technique, which largely competes with open surgery valve replacement for an increasing number of patients. The success of the procedure favors the research toward synthetic valve leaflet materials as an alternative to biological tissues, whose durability remains unknown. In particular, fibrous constructions have recently proven to be durable in vivo over a 6-month period of time in animal sheep models. Exaggerated fibrotic tissue formation remains, however, a critical issue to be addressed. This work investigates the design of a composite fibrous construction combining a woven polyethylene terephthalate (PET) layer and a non-woven PET mat, which are expected to provide, respectively, strength and appropriate topography toward limited fibrotic tissue ingrowth. For this purpose, a specific equipment has been developed to produce non-woven PET mats made from fibers with small diameter. These mats were assembled with woven PET substrates using various assembling techniques in order to obtain hybrid fibrous constructions. The physical and mechanical properties of the obtained materials were assessed and valve samples were manufactured to be tested in vitro for hydrodynamic performances. The results show that the composite fibrous construction is characterized by properties suitable for the valve leaflet function, but the durability of the assembling is however limited under accelerated cyclic loading.
Impact of a surgical site infection reduction strategy after colorectal resection.
Connolly, T M; Foppa, C; Kazi, E; Denoya, P I; Bergamaschi, R
2016-09-01
This study was performed to determine the impact of a surgical site infection (SSI) reduction strategy on SSI rates following colorectal resection. American College of Surgeons National Surgical Quality Improvement Program (NSQIP) data from 2006-14 were utilized and supplemented by institutional review board-approved chart review. The primary end-point was superficial and deep incisional SSI. The inclusion criterion was colorectal resection. The SSI reduction strategy consisted of preoperative (blood glucose, bowel preparation, shower, hair removal), intra-operative (prophylactic antibiotics, antimicrobial incisional drape, wound protector, wound closure technique) and postoperative (wound dressing technique) components. The SSI reduction strategy was prospectively implemented and compared with historical controls (pre-SSI strategy arm). Statistical analysis included Pearson's chi-square test, and Student's t-test performed with spss software. Of 1018 patients, 379 were in the pre-SSI strategy arm, 311 in the SSI strategy arm and 328 were included to test durability. The study arms were comparable for all measured parameters. Preoperative wound class, operation time, resection type and stoma creation did not differ significantly. The SSI strategy arm demonstrated a significant decrease in overall SSI rates (32.19% vs 18.97%) and superficial SSI rates (23.48% vs 8.04%). Deep SSI and organ space rates did not differ. A review of patients testing durability demonstrated continued improvement in overall SSI rates (8.23%). The implementation of an SSI reduction strategy resulted in a 41% decrease in SSI rates following colorectal resection over its initial 3 years, and its durability as demonstrated by continuing improvement was seen over an additional 2 years. Colorectal Disease © 2015 The Association of Coloproctology of Great Britain and Ireland.
Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability
Baker, Andrew M.; Williams, Stefan Thurston DuBard; Mukundan, Rangachary; ...
2017-06-06
Doped ceria compounds demonstrate excellent radical scavenging abilities and are promising additives to improve the chemical durability of polymer electrolyte membrane (PEM) fuel cells. Here in this paper, Ce 0.85Zr 0.15O 2 (CZO) nanoparticles were incorporated into the cathode catalyst layers (CLs) of PEM fuel cells (based on Nafion XL membranes containing 6.0 μg cm -2 ion-exchanged Ce) at loadings of 10 and 55 μg cm -2. When compared to a CZO-free baseline, CZO-containing membrane electrode assemblies (MEAs) demonstrated extended lifetimes during PEM chemical stability accelerated stress tests (ASTs), exhibiting reduced electrochemical gas crossover, open circuit voltage decay, and fluoridemore » emission rates. The MEA with high CZO loading (55 μg cm -2) demonstrated performance losses, which are attributed to Ce poisoning of the PEM and CL ionomer regions, which is supported by X-ray fluorescence (XRF) analysis. In the MEA with the low CZO loading (10 μg cm -2), both the beginning of life (BOL) performance and the performance after 500 hours of ASTs were nearly identical to the BOL performance of the CZO-free baseline MEA. XRF analysis of the MEA with low CZO loading reveals that the BOL PEM Ce concentrations are preserved after 1408 hours of ASTs and that Ce contents in the cathode CL are not significant enough to reduce performance. Therefore, employing a highly effective radical scavenger such as CZO, at a loading of 10 μg cm -2 in the cathode CL, dramatically mitigates degradation effects, which improves MEA chemical durability and minimizes performance losses.« less
Zr-doped ceria additives for enhanced PEM fuel cell durability and radical scavenger stability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Andrew M.; Williams, Stefan Thurston DuBard; Mukundan, Rangachary
Doped ceria compounds demonstrate excellent radical scavenging abilities and are promising additives to improve the chemical durability of polymer electrolyte membrane (PEM) fuel cells. Here in this paper, Ce 0.85Zr 0.15O 2 (CZO) nanoparticles were incorporated into the cathode catalyst layers (CLs) of PEM fuel cells (based on Nafion XL membranes containing 6.0 μg cm -2 ion-exchanged Ce) at loadings of 10 and 55 μg cm -2. When compared to a CZO-free baseline, CZO-containing membrane electrode assemblies (MEAs) demonstrated extended lifetimes during PEM chemical stability accelerated stress tests (ASTs), exhibiting reduced electrochemical gas crossover, open circuit voltage decay, and fluoridemore » emission rates. The MEA with high CZO loading (55 μg cm -2) demonstrated performance losses, which are attributed to Ce poisoning of the PEM and CL ionomer regions, which is supported by X-ray fluorescence (XRF) analysis. In the MEA with the low CZO loading (10 μg cm -2), both the beginning of life (BOL) performance and the performance after 500 hours of ASTs were nearly identical to the BOL performance of the CZO-free baseline MEA. XRF analysis of the MEA with low CZO loading reveals that the BOL PEM Ce concentrations are preserved after 1408 hours of ASTs and that Ce contents in the cathode CL are not significant enough to reduce performance. Therefore, employing a highly effective radical scavenger such as CZO, at a loading of 10 μg cm -2 in the cathode CL, dramatically mitigates degradation effects, which improves MEA chemical durability and minimizes performance losses.« less
Technical Report for the Period 10 January 1959 to 30 June 1960
1960-08-22
boon started to determine the efficacy of various drying procedures for polyesters. Water contents are being determined by the Karl Fischer method to an...CHARGES 17 XX.4 Inspection Methods 17 XXI SOLID PROPELLANTS FOR ROCKETS 18 XXI.1 Colloidal Propellants - Extruded 18 XXI.2 Colloidal Propellants - Cast...derivatives can be made more durable and, in particular, more resistant to heat. The method used has consisted in the preparation of crotonyl derivatives of
Du, Lei; Luo, Langli; Feng, Zhenxing; ...
2017-07-05
Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less
Eltchaninoff, Hélène; Durand, Eric; Avinée, Guillaume; Tron, Christophe; Litzler, Pierre-Yves; Bauer, Fabrice; Dacher, Jean-Nicolas; Werhlin, Camille; Bouhzam, Najime; Bettinger, Nicolas; Candolfi, Pascal; Cribier, Alain
2018-03-30
Durability of transcatheter aortic bioprosthetic valves remains a major issue. Standardised definitions of deterioration and failure of bioprosthetic valves have recently been proposed. The aim of this study was to assess structural transcatheter valve deterioration (SVD) and bioprosthetic valve failure (BVF) using these new definitions. All TAVI patients implanted up to September 2012 with a minimal theoretical five-year follow-up were included. Systematic clinical and echocardiographic follow-up was performed annually. New standardised definitions were used to assess durability of transcatheter aortic bioprosthetic valves. From 2002 to 2012, 378 patients were included. Mean age and logistic EuroSCORE were 83.3±6.8 years and 22.8±13.1%. Thirty-day mortality was 13.2%. Nine patients had SVD including two severe forms and two patients had definite late BVF. The incidence of SVD and BVF at eight years was 3.2% (95% CI: 1.45-6.11) and 0.58% (95% CI: 0.15-2.75), respectively. Even though limited by the poor survival of the very high-risk/compassionate early population, our data do not demonstrate any alarm concerning transcatheter aortic valve durability. Careful prospective assessment in younger and lower-risk patients and comparison with surgical bioprosthetic valves are required for further assessment of the long-term durability of transcatheter valves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Lei; Luo, Langli; Feng, Zhenxing
Oxygen evolution reaction (OER) plays a crucial role in various energy conversion devices such as water electrolyzers and metal–air batteries. Precious metal catalysts such as Ir, Ru and their oxides are usually used for enhancing reaction kinetics but are limited by their scarcity. The challenges associated with alternative non–precious metal catalysts such as transition metal oxides and (oxy)hydroxides are their low electronic conductivity and durability. The carbon encapsulating transition metal nanoparticles are expected to address these challenges. However, the relationship between precursor compositions and catalyst properties, and the intrinsic functions of each component has been rarely studied. In this paper,more » we report a highly durable (no degradation after 20,000 cycles) and highly active (360 mV overpotential at 10 mA cm –2 GEO) OER catalyst derived from bimetallic metal–organic frameworks (MOFs) precursors. This catalyst consists of NiFe nanoparticles encapsulated by nitrogen–doped graphitized carbon shells. The electron–donation/deviation from Fe and tuned lattice and electronic structures of metal cores by Ni are revealed to be primary contributors to the enhanced OER activity, whereas N concentration contributes negligibly. Finally, we further demonstrated that the structure and morphology of encapsulating carbon shells, which are the key factors influencing the durability, are facilely controlled by the chemical state of precursors.« less
G.T. Kirker; A.B. Blodgett; S. Lebow; C.A. Clausen
2013-01-01
Extractive content and composition is a vital component of naturally durable woods; however, variability in extractives can limit their usefulness in the field. Two extractive-free, non-durable wood species were pressure treated with ethanol-toluene extractives from 8 durable wood species. Extracted Southern pine, Paulownia and unextracted Southern pine blocks were...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Max H.; Walker, Iain S.
Duct leakage has been identified as a major source of energy loss in residential buildings. Most duct leakage occurs at the connections to registers, plenums or branches in the duct system. At each of these connections a method of sealing the duct system is required. Typical sealing methods include tapes or mastics applied around the joints in the system. Field examinations of duct systems have typically shown that these seals tend to fail over extended periods of time. The Lawrence Berkeley National Laboratory has been testing sealant durability for several years. Typical duct tape (i.e. fabric backed tapes with naturalmore » rubber adhesives) was found to fail more rapidly than all other duct sealants. This report summarizes the results of duct sealant durability testing of five UL 181B-FX listed duct tapes (three cloth tapes, a foil tape and an Oriented Polypropylene (OPP) tape). One of the cloth tapes was specifically developed in collaboration with a tape manufacturer to perform better in our durability testing. The first test involved the aging of common ''core-to-collar joints'' of flexible duct to sheet metal collars, and sheet metal ''collar-to-plenum joints'' pressurized with 200 F (93 C) air. The second test consisted of baking duct tape specimens in a constant 212 F (100 C) oven following the UL 181B-FX ''Temperature Test'' requirements. Additional tests were also performed on only two tapes using sheet metal collar-to-plenum joints. Since an unsealed flexible duct joint can have a variable leakage depending on the positioning of the flexible duct core, the durability of the flexible duct joints could not be based on the 10% of unsealed leakage criteria. Nevertheless, the leakage of the sealed specimens prior to testing could be considered as a basis for a failure criteria. Visual inspection was also documented throughout the tests. The flexible duct core-to-collar joints were inspected monthly, while the sheet metal collar-to-plenum joints were inspected weekly. The baking test specimens were visually inspected weekly, and the durability was judged by the observed deterioration in terms of brittleness, cracking, flaking and blistering (the terminology used in the UL 181B-FX test procedure).« less
Peper, Shana M; Lew, Robert; Mikuls, Ted; Brophy, Mary; Rybin, Denis; Wu, Hongseng; O'Dell, James
2017-10-01
Although it is common for rheumatologists to initiate biologic agents after failure of methotrexate monotherapy in rheumatoid arthritis (RA), ample data support the initial use of combinations of conventional therapies in this clinical scenario. Our study explores the durability of triple therapy (methotrexate, sulfasalazine, and hydroxychloroquine) versus methotrexate-etanercept in RA. RA patients with suboptimal response to methotrexate (n = 353) were randomized to either triple therapy or methotrexate-etanercept therapy in a 48-week, double-blinded, noninferiority trial. Patients without clinical improvement at 24 weeks were switched to the alternative treatment. Of the total, 289 participated in followup. We report treatment durability, Disease Activity Score in 28 joints (DAS28), and other measures during an open-label extension for an additional period up to 72 weeks. Mean ± SD duration of open-label followup was 11 ± 6 months. The likelihood of continuing conventional therapy at 1 year was 78% for triple therapy versus 63% for methotrexate-etanercept, with most treatment changes occurring at the start of followup. More patients changed from methotrexate-etanercept to triple therapy than from triple therapy to methotrexate-etanercept (P = 0.005). DAS28 scores and other disease activity measures were not different for the 2 treatments and were stable during followup. In RA patients with suboptimal methotrexate response randomized to receive triple therapy or methotrexate-etanercept, the former was found to be significantly more durable. Given cost differences and similar outcomes, the variable durability demonstrated provides additional evidence supporting conventional combinations over biologic agent combinations as the first choice after methotrexate inadequate response. © 2017, American College of Rheumatology.
Eger, J E; Hamm, R L; Demark, J J; Chin-Heady, E; Tolley, M P; Benson, E P; Zungoli, P A; Smith, M S; Spomer, N A
2014-06-01
A durable termite bait containing 0.5% noviflumuron was evaluated for physical durability, retention of active ingredient, consumption by termites, and toxicity to termites over 5 yr in field studies at locations in Indiana, Mississippi, and South Carolina. Plots in Indiana and Mississippi included both natural rainfall and irrigated plots, while plots in South Carolina received only natural rainfall. Samples collected every 3 mo for the first 4 yr were evaluated for consumption with a 7 d no-choice bioassay using Reticulitermes flavipes (Kollar). Consumption and toxicity of 5 yr samples were evaluated in similar bioassays conducted for 42 d. Durable baits received from field sites had some cracking, and a small amount of external flaking, but no major deterioration based on visual observation. There were no significant differences in noviflumuron concentration over the 5-yr period and no trend toward reduced concentrations of noviflumuron over time. Consumption of aged durable baits over 4 yr was variable, but termites usually consumed more aged durable bait than fresh durable bait and the differences were frequently significant. There were some exceptions, but termites consumed significantly more fresh durable bait than aged durable bait in only 4% of observations. When 5 yr samples were evaluated, consumption was lowest for fresh durable bait and termites consumed significantly more aged durable bait from irrigated plots in Indiana and from both natural and irrigated plots in Mississippi than fresh durable bait. Survival of termites fed blank durable bait was significantly higher than that for termites fed any of the baits containing noviflumuron and there were no significant differences in survival among the noviflumuron durable baits. Our results suggest that the bait would be durable for at least 5 yr and possibly longer under most environmental conditions.
Overview of existing cartilage repair technology.
McNickle, Allison G; Provencher, Matthew T; Cole, Brian J
2008-12-01
Currently, autologous chondrocyte implantation and osteochondral grafting bridge the gap between palliation of cartilage injury and resurfacing via arthroplasty. Emerging technologies seek to advance first generation techniques and accomplish several goals including predictable outcomes, cost-effective technology, single-stage procedures, and creation of durable repair tissue. The biologic pipeline represents a variety of technologies including synthetics, scaffolds, cell therapy, and cell-infused matrices. Synthetic constructs, an alternative to biologic repair, resurface a focal chondral defect rather than the entire joint surface. Scaffolds are cell-free constructs designed as a biologic "net" to augment marrow stimulation techniques. Minced cartilage technology uses stabilized autologous or allogeneic fragments in 1-stage transplantation. Second and third generation cell-based methods include alternative membranes, chondrocyte seeding, and culturing onto scaffolds. Despite the promising early results of these products, significant technical obstacles remain along with unknown long-term durability. The vast array of developing technologies has exceptional promise and the potential to revolutionize the cartilage treatment algorithm within the next decade.
38 CFR 17.902 - Preauthorization.
Code of Federal Regulations, 2011 CFR
2011-07-01
....900 through 17.905: rental or purchase of durable medical equipment with a total rental or purchase... Section 17.902 Pensions, Bonuses, and Veterans' Relief DEPARTMENT OF VETERANS AFFAIRS MEDICAL Health Care... where there is a demonstrated medical need. In cases of other covered birth defects, authorization will...
Design, construction, operation, and evaluation of a prototype culm combustion boiler/heater unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Aciermo, J.; Richards, H.; Spindler, F.
1983-10-01
A process for utilizing anthracite culm in a fluidized bed combustion system was demonstrated by the design and construction of a prototype steam plant at Shamokin, PA, and operation of the plant for parametric tests and a nine month extended durability test. The parametric tests evaluated turndown capability of the plant and established turndown techniques to be used to achieve best performance. Throughout the test program the fluidized bed boiler durability was excellent, showing very high resistence to corrosion and erosion. A series of 39 parametric tests was performed in order to demonstrate turndown capabilities of the atmospheric fluidized bedmore » boiler burning anthracite culm. Four tests were performed with bituminous coal waste (called gob) which contains 4.8 to 5.5% sulfur. Heating value of both fuels is approximately 3000 Btu/lb and ash content is approximately 70%. Combustion efficiency, boiler efficiency, and emissions of NO/sub x/ and SO/sub 2/ were also determined for the tests.« less
A review of polymer electrolyte membrane fuel cell stack testing
NASA Astrophysics Data System (ADS)
Miller, M.; Bazylak, A.
This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation.
Ultra-stretchable conductors based on buckled super-aligned carbon nanotube films.
Yu, Yang; Luo, Shu; Sun, Li; Wu, Yang; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan
2015-06-14
Ultra-stretchable conductors are fabricated by coating super-aligned carbon nanotube (SACNT) films on pre-strained polydimethylsiloxane (PDMS) substrates and forming buckled SACNT structures on PDMS after release of the pre-strain. The parallel SACNT/PDMS conductors demonstrate excellent stability with normalized resistance changes of only 4.1% under an applied strain as high as 200%. The SACNT/PDMS conductors prepared with cross-stacked SACNT films show even lower resistance variation. The parallel SACNT/PDMS conductors exhibit high durability with a resistance increase of less than 5% after 10,000 cycles at 150% strain. In situ microscopic observations demonstrate that the buckled SACNT structures are straightened during the stretching process with reversible morphology evolution and thus the continuous SACNT conductive network can be protected from fracture. Due to the excellent electrical and mechanical properties of SACNT films and the formation of the buckled structure, SACNT/PDMS films exhibit high stretchability and durability, possessing great potential for use as ultra-stretchable conductors for wearable electronics, sensors, and energy storage devices.
Leddy, Michael T; Belter, Joseph T; Gemmell, Kevin D; Dollar, Aaron M
2015-01-01
Additive manufacturing techniques are becoming more prominent and cost-effective as 3D printing becomes higher quality and more inexpensive. The idea of 3D printed prosthetics components promises affordable, customizable devices, but these systems currently have major shortcomings in durability and function. In this paper, we propose a fabrication method for custom composite prostheses utilizing additive manufacturing, allowing for customizability, as well the durability of professional prosthetics. The manufacturing process is completed using 3D printed molds in a multi-stage molding system, which creates a custom finger or palm with a lightweight epoxy foam core, a durable composite outer shell, and soft urethane gripping surfaces. The composite material was compared to 3D printed and aluminum materials using a three-point bending test to compare stiffness, as well as gravimetric measurements to compare weight. The composite finger demonstrates the largest stiffness with the lowest weight compared to other tested fingers, as well as having customizability and lower cost, proving to potentially be a substantial benefit to the development of upper-limb prostheses.
Increased Durability of Concrete Made with Fine Recycled Concrete Aggregates Using Superplasticizers
Cartuxo, Francisco; de Brito, Jorge; Evangelista, Luis; Jiménez, José Ramón; Ledesma, Enrique F.
2016-01-01
This paper evaluates the influence of two superplasticizers (SP) on the durability properties of concrete made with fine recycled concrete aggregate (FRCA). For this purpose, three families of concrete were tested: concrete without SP, concrete made with a regular superplasticizer and concrete made with a high-performance superplasticizer. Five volumetric replacement ratios of natural sand by FRCA were tested: 0%, 10%, 30%, 50% and 100%. Two natural gravels were used as coarse aggregates. All mixes had the same particle size distribution, cement content and amount of superplasticizer. The w/c ratio was calibrated to obtain similar slump. The results showed that the incorporation of FRCA increased the water absorption by immersion, the water absorption by capillary action, the carbonation depth and the chloride migration coefficient, while the use of superplasticizers highly improved these properties. The incorporation of FRCA jeopardized the SP’s effectiveness. This research demonstrated that, from a durability point of view, the simultaneous incorporation of FRCA and high-performance SP is a viable sustainable solution for structural concrete production. PMID:28787905
Alia, Shaun M.; Ngo, Chilan; Shulda, Sarah; ...
2017-04-11
For the first time, extended nanostructured catalysts are demonstrated with both high specific activity (>6000 μA cm Pt –2 at 0.9 V) and high surface areas (>90 m 2 g Pt –1). Platinum–nickel (Pt—Ni) nanowires, synthesized by galvanic displacement, have previously produced surface areas in excess of 90 m 2 g Pt –1, a significant breakthrough in and of itself for extended surface catalysts. Unfortunately, these materials were limited in terms of their specific activity and durability upon exposure to relevant electrochemical test conditions. Through a series of optimized postsynthesis steps, significant improvements were made to the activity (3-fold increasemore » in specific activity), durability (21% mass activity loss reduced to 3%), and Ni leaching (reduced from 7 to 0.3%) of the Pt—Ni nanowires. Finally, these materials show more than a 10-fold improvement in mass activity compared to that of traditional carbon-supported Pt nanoparticle catalysts and offer significant promise as a new class of electrocatalysts in fuel cell applications.« less
Yin, Feng; Ye, Dong; Zhu, Chen; Qiu, Lei; Huang, YongAn
2017-01-01
Harmonious developments of electrical and mechanical performances are crucial for stretchable sensors in structural health monitoring (SHM) of flexible aircraft such as aerostats and morphing aircrafts. In this study, we prepared a highly durable ternary conductive nanocomposite made of polydimethylsiloxane (PDMS), carbon black (CB) and multi-walled carbon nanotubes (MWCNTs) to fabricate stretchable strain sensors. The nanocomposite has excellent electrical and mechanical properties by intensively optimizing the weight percentage of conducting fillers as well as the ratio of PDMS pre-polymer and curing agent. It was found that the nanocomposite with homogeneous hybrid filler of 1.75 wt % CB and 3 wt % MWCNTs exhibits a highly strain sensitive characteristics of good linearity, high gauge factor (GF ~ 12.25) and excellent durability over 105 stretching-releasing cycles under a tensile strain up to 25% when the PDMS was prepared at the ratio of 12.5:1. A strain measurement of crack detection for the aerostats surface was also employed, demonstrating a great potential of such ternary nanocomposite used as stretchable strain sensor in SHM. PMID:29156620
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alia, Shaun M.; Ngo, Chilan; Shulda, Sarah
For the first time, extended nanostructured catalysts are demonstrated with both high specific activity (>6000 μA cm Pt –2 at 0.9 V) and high surface areas (>90 m 2 g Pt –1). Platinum–nickel (Pt—Ni) nanowires, synthesized by galvanic displacement, have previously produced surface areas in excess of 90 m 2 g Pt –1, a significant breakthrough in and of itself for extended surface catalysts. Unfortunately, these materials were limited in terms of their specific activity and durability upon exposure to relevant electrochemical test conditions. Through a series of optimized postsynthesis steps, significant improvements were made to the activity (3-fold increasemore » in specific activity), durability (21% mass activity loss reduced to 3%), and Ni leaching (reduced from 7 to 0.3%) of the Pt—Ni nanowires. Finally, these materials show more than a 10-fold improvement in mass activity compared to that of traditional carbon-supported Pt nanoparticle catalysts and offer significant promise as a new class of electrocatalysts in fuel cell applications.« less
Favorable effect of in-situ generated platinum in the membrane on fuel cell membrane durability
NASA Astrophysics Data System (ADS)
Macauley, Natalia; Wong, Ka Hung; Watson, Mark; Kjeang, Erik
2015-12-01
The overall lifetime of polymer electrolyte fuel cells is often determined by the membrane durability. Platinum, which may dissolve from the catalyst layers during fuel cell operation and deposit in the membrane, has been shown to have both positive and negative effects on membrane stability. In the present work, we analyze what specific conditions are required in order to reach a favorable, membrane stabilizing effect with the controlled use of platinum in the membrane. Using accelerated membrane durability testing, field operated membrane samples, and electron microscopy, we demonstrate that a high platinum concentration with specific particle shapes and sizes is essential for enhanced membrane stability. Specifically, star shaped and dendritic particles with high particle density and high surface area are shown to be preferable. These particles contain high levels of Pt(111) and are expected to have high catalytic activity toward peroxide quenching and crossover gas consumption, thereby mitigating chemical membrane degradation. On the other hand, small, dispersed cubic particles are found to have no effect or the opposite, negative effect on membrane stability.
RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
X. Zhang; J. E. O'Brien; R. C. O'Brien
2012-07-01
An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cellmore » and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.« less
Moutsopoulou, Karolina; Waszak, Florian
2013-05-01
It has been shown that in associative learning it is possible to disentangle the effects caused on behaviour by the associations between a stimulus and a classification (S-C) and the associations between a stimulus and the action performed towards it (S-A). Such evidence has been provided using ex-Gaussian distribution analysis to show that different parameters of the reaction time distribution reflect the different processes. Here, using this method, we investigate another difference between these two types of associations: What is the relative durability of these associations across time? Using a task-switching paradigm and by manipulating the lag between the point of the creation of the associations and the test phase, we show that S-A associations have stronger effects on behaviour when the lag between the two repetitions of a stimulus is short. However, classification learning affects behaviour not only in short-term lags but also (and equally so) when the lag between prime and probe is long and the same stimuli are repeatedly presented within a different classification task, demonstrating a remarkable durability of S-C associations.
Durability of coconut shell powder (CSP) concrete
NASA Astrophysics Data System (ADS)
Leman, A. S.; Shahidan, S.; Senin, M. S.; Shamsuddin, S. M.; Anak Guntor, N. A.; Zuki, S. S. Mohd; Khalid, F. S.; Azhar, A. T. S.; Razak, N. H. S.
2017-11-01
The rising cost of construction in developing countries like Malaysia has led concrete experts to explore alternative materials such as coconut shells which are renewable and possess high potential to be used as construction material. Coconut shell powder in varying percentages of1%, 3% and 5% was used as filler material in concrete grade 30 and evaluated after a curing period of 7 days and 28days respectively. Compressive strength, water absorption and carbonation tests were conducted to evaluate the strength and durability of CSP concrete in comparison with normal concrete. The test results revealed that 1%, 3% and 5% of CSP concrete achieved a compressive strength of 47.65 MPa, 45.6 MPa and 40.55% respectively. The rate of water absorption of CSP concrete was recorded as 3.21%, 2.47%, and 2.73% for 1%, 3% and 5% of CSP concrete respectively. Although CSP contained a carbon composition of 47%, the carbonation test showed that CSP no signs of carbon were detected inside the concrete. To conclude, CSP offers great prospects as it demonstrated relatively high durability as a construction material.
Kottkamp, Hans; Berg, Jan; Bender, Roderich; Rieger, Andreas; Schreiber, Doreen
2016-01-01
Catheter ablation strategies beyond pulmonary vein isolation (PVI) for treatment of atrial fibrillation (AF) are less well defined. Increasing clinical data indicate that atrial fibrosis is a critical common left atrial (LA) substrate in AF patients (pts). We applied a new substrate modification concept according to the individual fibrotic substrate as estimated from electroanatomic voltage mapping (EAVM) in 41 pts undergoing catheter ablation of AF. First, EAVM during sinus rhythm was done in redo cases of 10 pts with paroxysmal AF despite durable PVI. Confluent low-voltage areas (LVA) were found in all pts and were targeted with circumferential isolation, so-called box isolation of fibrotic areas (BIFA). This strategy led to stable sinus rhythm in 9/10 pts and was transferred prospectively to first procedures of 31 pts with nonparoxysmal AF. In 13 pts (42%), no LVA (<0.5 mV) were identified, and only PVI was performed. In 18 pts (58%), additional BIFA strategies were applied (posterior box in 5, anterior box in 7, posterior plus anterior box in 5, no box in 1 due to diffuse fibrosis). Mean follow-up was 12.5 ± 2.4 months. Single-procedure freedom from AF/atrial tachycardia was achieved in 72.2% of pts and in 83.3% of pts with 1.17 procedures/patient. In approximately 40% of pts with nonparoxysmal AF, no substantial LVA were identified, and PVI alone showed high success rate. In pts with paroxysmal AF despite durable PVI and in approximately 60% of pts with nonparoxysmal AF, individually localized LVA were identified and could be targeted successfully with the BIFA strategy. © 2015 Wiley Periodicals, Inc.
Final Report - MEA and Stack Durability for PEM Fuel Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yandrasits, Michael A.
2008-02-15
Proton exchange membrane fuel cells are expected to change the landscape of power generation over the next ten years. For this to be realized one of the most significant challenges to be met for stationary systems is lifetime, where 40,000 hours of operation with less than 10% decay is desired. This project conducted fundamental studies on the durability of membrane electrode assemblies (MEAs) and fuel cell stack systems with the expectation that knowledge gained from this project will be applied toward the design and manufacture of MEAs and stack systems to meet DOE’s 2010 stationary fuel cell stack systems targets.more » The focus of this project was PEM fuel cell durability – understanding the issues that limit MEA and fuel cell system lifetime, developing mitigation strategies to address the lifetime issues and demonstration of the effectiveness of the mitigation strategies by system testing. To that end, several discoveries were made that contributed to the fundamental understanding of MEA degradation mechanisms. (1) The classically held belief that membrane degradation is solely due to end-group “unzipping” is incorrect; there are other functional groups present in the ionomer that are susceptible to chemical attack. (2) The rate of membrane degradation can be greatly slowed or possibly eliminated through the use of additives that scavenge peroxide or peroxyl radicals. (3) Characterization of GDL using dry gases is incorrect due to the fact that fuel cells operate utilizing humidified gases. The proper characterization method involves using wet gas streams and measuring capillary pressure as demonstrated in this project. (4) Not all Platinum on carbon catalysts are created equally – the major factor impacting catalyst durability is the type of carbon used as the support. (5) System operating conditions have a significant impact of lifetime – the lifetime was increased by an order of magnitude by changing the load profile while all other variables remain the same. (6) Through the use of statistical lifetime analysis methods, it is possible to develop new MEAs with predicted durability approaching the DOE 2010 targets. (7) A segmented cell was developed that extend the resolution from ~ 40 to 121 segments for a 50cm2 active area single cell which allowed for more precise investigation of the local phenomena in a operating fuel cell. (8) The single cell concept was extended to a fuel size stack to allow the first of its kind monitoring and mapping of an operational fuel cell stack. An internal check used during this project involved evaluating the manufacturability of any new MEA component. If a more durable MEA component was developed in the lab, but could not be scaled-up to ‘high speed, high volume manufacturing’, then that component was not selected for the final MEA-fuel cell system demonstration. It is the intent of the team to commercialize new products developed under this project, but commercialization can not occur if the manufacture of said new components is difficult or if the price is significantly greater than existing products as to make the new components not cost competitive. Thus, the end result of this project is the creation of MEA and fuel cell system technology that is capable of meeting the DOEs 2010 target of 40,000 hours for stationary fuel cell systems (although this lifetime has not been demonstrated in laboratory or field testing yet) at a cost that is economically viable for the developing fuel cell industry. We have demonstrated over 2,000 hours of run time for the MEA and system developed under this project.« less
JT90 thermal barrier coated vanes
NASA Technical Reports Server (NTRS)
Sheffler, K. D.; Graziani, R. A.; Sinko, G. C.
1982-01-01
The technology of plasma sprayed thermal barrier coatings applied to turbine vane platforms in modern high temperature commercial engines was advanced to the point of demonstrated feasibility for application to commercial aircraft engines. The three thermal barrier coatings refined under this program are zirconia stabilized with twenty-one percent magnesia (21% MSZ), six percent yttria (6% YSZ), and twenty percent yttria (20% YSZ). Improvement in thermal cyclic endurance by a factor of 40 times was demonstrated in rig tests. A cooling system evolved during the program which featured air impingement cooling for the vane platforms rather than film cooling. The impingement cooling system, in combination with the thermal barrier coatings, reduced platform cooling air requirements by 44% relative to the current film cooling system. Improved durability and reduced cooling air requirements were demonstrated in rig and engine endurance tests. Two engine tests were conducted, one of 1000 cycles and the other of 1500 cycles. All three coatings applied to vanes fabricated with the final cooling system configuration completed the final 1500 cycle engine endurance test. Results of this test clearly demonstrated the durability of the 6% YSZ coating which was in very good condition after the test. The 21% MSZ and 20% YSZ coatings had numerous occurrences of significant spalling in the test.
NASA Astrophysics Data System (ADS)
Qu, Jing
Conjugated polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) are of interest for a variety of applications including interfaces between electronic biomedical devices and living tissue. These polymers provide an improved interface compared to metal and semiconducting electrodes because of their ionic conductivity, relatively lower stiffness, and ability to incorporate biological molecules. Even though the signal transfer and biocompatibility of conjugated polymers are superior compared as the biointerfacing materials, the durability has been the weakest part for the long-term applications. Even though some efforts have been made to improve the durability of conjugated polymers, little quantitative information of the improved cohesion, adhesion and durability has been reported. In this thesis, the methods of improving the durability of conjugated polymer films, especially PEDOT, were investigated, including alternating the processing methods and components in synthesis. The 7-month in vivo testing showed that the durability of PEDOT films still needed to be improved. As a coating for biosignal transfer, the cohesion, adhesion and electrochemical stability of PEDOT are vital to determine the long-term performance. Not much information hd been developed around the cohesion and adhesion. A thin film cracking method was developed to measure the stiffness, strength and the interfacial shear strength (adhesion) of electrochemically deposited PEDOT. The estimated Young’s modulus of the PEDOT films was 2.6 ± 1.4 GPa, and the strain to failure was around 2%. The tensile strength was measured to be 56 ± 27 MPa. The effectiveness of crosslinker and adhesion promoter was demonstrated by this method. It was shown that 5 mole% addition of a tri-functional EDOT crosslinker (EPh) increased the tensile strength of the films to 283 ± 67 MPa, while the strain to failure remained about the same (2%). With the modification of EDOT-acid to the surface of stainless steel substrate, the interfacial shear strength was improved from 11.8 MPa to 32.5 MPa. To correlate the adhesion with the durability of PEDOT coatings, a tribology test was introduced. It was found that the durability of PEDOT on Au electrode was much exceptionally good, and even better than the adhesion promoted coatings with EDOT-acid on stainless steel and ITO substrates. The characterization method developed in this thesis made a critical difference in systematically comparing different materials, and provided valuable information for materials development and selection.
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2010 CFR
2010-07-01
... incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney... principal's subsequent incompetence. As with a durable special power of attorney, a springing durable... than those specified in paragraph (b) of this section may be negotiated under a springing durable...
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2014 CFR
2014-07-01
... incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney... principal's subsequent incompetence. As with a durable special power of attorney, a springing durable... than those specified in paragraph (b) of this section may be negotiated under a springing durable...
Evidence based abreactive ego state therapy for PTSD.
Barabasz, Arreed
2013-07-01
A single 5-6 hours manualized abreactive ego state therapy session has recently been subjected to two placebo-controlled investigations meeting evidence-based criteria. Ego state therapy was found to be a highly effective and durable treatment for posttraumatic stress disorder. Apparently, ego state therapy works because it is emotion focused, activates sub-cortical structures, and because the supportive, interpretive therapist reconstructs the patient's personality to be resilient and adaptive. In this article the author reviews the treatment procedures and presents the findings of both studies.
Articulatory rehearsal is more than refreshing memory traces.
Nishiyama, Ryoji; Ukita, Jun
2013-01-01
This study examined whether additional articulatory rehearsal induced temporary durability of phonological representations, using a 10-s delayed nonword free recall task. Three experiments demonstrated that cumulative rehearsal between the offset of the last study item and the start of the filled delay (Experiments 1 and 3) and a fixed rehearsal of the immediate item during the subsequent interstimulus interval (Experiments 2 and 3) improved free recall performance. These results suggest that an additional rehearsal helps to stabilize phonological representations for a short period. Furthermore, the analyses of serial position curves suggested that the frequency of the articulation affected the durability of the phonological representation. The significance of these findings as clues of the mechanism maintaining verbal information (i.e., verbal working memory) is discussed.
Park, Juyoung; Hyun, Byung Gwan; An, Byeong Wan; Im, Hyeon-Gyun; Park, Young-Geun; Jang, Junho; Park, Jang-Ung; Bae, Byeong-Soo
2017-06-21
We report an Ag nanofiber-embedded glass-fabric reinforced hybrimer (AgNF-GFRHybrimer) composite film as a reliable and high-performance flexible transparent conducting film. The continuous AgNF network provides superior optoelectronic properties of the composite film by minimizing transmission loss and junction resistance. In addition, the excellent thermal/chemical stability and mechanical durability of the GFRHybrimer matrix provides enhanced mechanical durability and reliability of the final AgNF-GFRHybrimer composite film. To demonstrate the availability of our AgNF-GFRHybrimer composite as a transparent conducting film, we fabricated a flexible organic light-emitting diode (OLED) device on the AgNF-GFRHybrimer film; the OLED showed stable operation during a flexing.
Loveridge, Melanie J; Lain, Michael J; Huang, Qianye; Wan, Chaoying; Roberts, Alexander J; Pappas, George S; Bhagat, Rohit
2016-11-09
Hybrid anode materials consisting of micro-sized silicon (Si) particles interconnected with few-layer graphene (FLG) nanoplatelets and sodium-neutralized poly(acrylic acid) as a binder were evaluated for Li-ion batteries. The hybrid film has demonstrated a reversible discharge capacity of ∼1800 mA h g -1 with a capacity retention of 97% after 200 cycles. The superior electrochemical properties of the hybrid anodes are attributed to a durable, hierarchical conductive network formed between Si particles and the multi-scale carbon additives, with enhanced cohesion by the functional polymer binder. Furthermore, improved solid electrolyte interphase (SEI) stability is achieved from the electrolyte additives, due to the formation of a kinetically stable film on the surface of the Si.
Dewan, Michael C; Lim, Jaims; Shannon, Chevis N; Wellons, John C
2017-05-01
OBJECTIVE Up to one-third of patients with a posterior fossa brain tumor (PFBT) will experience persistent hydrocephalus mandating permanent CSF diversion. The optimal hydrocephalus treatment modality is unknown; the authors sought to compare the durability between endoscopic third ventriculostomy (ETV) and ventriculoperitoneal shunt (VPS) therapy in the pediatric population. METHODS The authors conducted a systematic review of articles indexed in PubMed between 1986 and 2016 describing ETV and/or VPS treatment success/failure and time-to-failure rate in patients < 19 years of age with hydrocephalus related to a PFBT. Additionally, the authors conducted a retrospective review of their institutional series of PFBT patients requiring CSF diversion. Patient data from the systematic review and from the institutional series were aggregated and a time-to-failure analysis was performed comparing ETV and VPS using the Kaplan-Meier method. RESULTS A total of 408 patients were included from 12 studies and the authors' institutional series: 284 who underwent ETV and 124 who underwent VPS placement. The analysis included uncontrolled studies with variable method and timing of CSF diversion and were subject to surgeon bias. No significant differences between cohorts were observed with regard to age, sex, tumor grade or histology, metastatic status, or extent of resection. The cumulative failure rate of ETV was 21%, whereas that of VPS surgery was 29% (p = 0.105). The median time to failure was earlier for ETV than for VPS surgery (0.82 [IQR 0.2-1.8] vs 4.7 months [IQR 0.3-5.7], p = 0.03). Initially the ETV survival curve dropped sharply and then stabilized around 2 months. The VPS curve fell gradually but eventually crossed below the ETV curve at 5.7 months. Overall, a significant survival advantage was not demonstrated for one procedure over the other (p = 0.21, log-rank). However, postoperative complications were higher following VPS (31%) than ETV (17%) (p = 0.012). CONCLUSIONS ETV failure occurred sooner than VPS failure, but long-term treatment durability may be higher for ETV. Complications occurred more commonly with VPS than with ETV. Limited clinical conclusions are drawn using this methodology; the optimal treatment for PFBT-related hydrocephalus warrants investigation through prospective studies.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-29
...This final rule with comment period addresses changes to the physician fee schedule and other Medicare Part B payment policies to ensure that our payment systems are updated to reflect changes in medical practice and the relative value of services. It finalizes the calendar year (CY) 2010 interim relative value units (RVUs) and issues interim RVUs for new and revised procedure codes for CY 2011. It also addresses, implements, or discusses certain provisions of both the Affordable Care Act (ACA) and the Medicare Improvements for Patients and Providers Act of 2008 (MIPPA). In addition, this final rule with comment period discusses payments under the Ambulance Fee Schedule (AFS), the Ambulatory Surgical Center (ASC) payment system, and the Clinical Laboratory Fee Schedule (CLFS), payments to end-stage renal disease (ESRD) facilities, and payments for Part B drugs. Finally, this final rule with comment period also includes a discussion regarding the Chiropractic Services Demonstration program, the Competitive Bidding Program for durable medical equipment, prosthetics, orthotics, and supplies (CBP DMEPOS), and provider and supplier enrollment issues associated with air ambulances.
Influence of Preoperative Risk Factors on Outcome After Carotid Endarterectomy
Sternbergh, W. Charles; Money, Samuel R.
2003-01-01
As supported by level 1 multicenter randomized trial data, carotid endarterectomy (CEA) has a very low risk of perioperative morbidity and excellent durability, and provides significant long-term reductions of the risk of stroke. At Ochsner, our 1.1% risk of major stroke or death after CEA (n=366) is a demonstration of the safety of this procedure in experienced hands. This treatment modality continues to be the gold standard for most patients with carotid artery occlusive disease. Almost half of these patients treated with CEA were considered “high-risk” as defined by ineligibility for past or present randomized carotid trials. Importantly, these “high-risk” patients had outcomes that were not statistically different from “low-risk” trial-eligible patients. Thus, evidence-based decision-making does not support the routine use of investigational carotid stenting in “high-risk” trial-ineligible patients. However, carotid stenting is clearly a valuable alternative for selected patients. Our challenge is to precisely define which patients will most benefit from medical, surgical, or catheter-based therapy for carotid artery occlusive disease. PMID:22470252
Importance of microscopy in durability studies of solidified and stabilized contaminated soils
Klich, I.; Wilding, L.P.; Drees, L.R.; Landa, E.R.
1999-01-01
Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or achieved in a laboratory warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.Solidification/stabilization (S/S) is recognized by the U.S. EPA as a best demonstrated available technology for the containment of contaminated soils and other hazardous wastes that cannot be destroyed by chemical, thermal, or biological means. Despite the increased use of S/S technologies, little research has been conducted on the weathering and degradation of solidified and stabilized wastes once the treated materials have been buried. Published data to verify the performance and durability of landfilled treated wastes over time are rare. In this preliminary study, optical and electron microscopy (scanning electron microscopy [SEM], transmission electron microscopy [TEM] and electron probe microanalyses [EPMA]) were used to evaluate weathering features associated with metal-bearing contaminated soil that had been solidified and stabilized with Portland cement and subsequently buried on site, stored outdoors aboveground, or archived in a laboratory, warehouse for up to 6 yr. Physical and chemical alteration processes identified include: freeze-thaw cracking, cracking caused by the formation of expansive minerals such as ettringite, carbonation, and the movement of metals from waste aggregates into the cement micromass. Although the extent of degradation after 6 yr is considered slight to moderate, results of this study show that the same environmental concerns that affect the durability of concrete must be considered when evaluating the durability and permanence of the solidification and stabilization of contaminated soils with cement. In addition, such evaluations cannot be based on leaching and chemical analyses alone. The use of all levels of microscopic analyses must be incorporated into studies of the long-term performance of S/S technologies.
'Duster' wheat: A durable, dual-purpose cultivar adapted to the southern great plains of the USA
USDA-ARS?s Scientific Manuscript database
Winter wheat (Triticum aestivum L.) cultivars which gain broad commercial acceptance in Oklahoma and surrounding states of the U.S. southern Great Plains must produce a definitive grain yield advantage, and they must demonstrate season-long dependability in dual purpose management systems, effective...
Serializing Racial Subjects: The Stagnation and Suspense of the O. J. Simpson Saga
ERIC Educational Resources Information Center
Foley, Megan
2010-01-01
While critiques of racial essentialism have demonstrated decisively that race is rhetorically contingent, institutions of white privilege nevertheless remain distressingly durable. The continuing media coverage of Orenthal James "O.J." Simpson since his 1995 acquittal exemplifies this chronic temporality of whiteness discourse. Over time, the…
Evaluation of Additive Manufacturing for Composite Part Molds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duty, Chad E.; Springfield, Robert M.
2015-02-01
The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.
2018-01-01
ABSTRACT Induction of broadly cross-reactive antiviral humoral responses with the capacity to target globally diverse circulating strains is a key goal for HIV-1 immunogen design. A major gap in the field is the identification of diverse HIV-1 envelope antigens to evaluate vaccine regimens for binding antibody breadth. In this study, we define unique antigen panels to map HIV-1 vaccine-elicited antibody breadth and durability. Diverse HIV-1 envelope glycoproteins were selected based on genetic and geographic diversity to cover the global epidemic, with a focus on sexually acquired transmitted/founder viruses with a tier 2 neutralization phenotype. Unique antigenicity was determined by nonredundancy (Spearman correlation), and antigens were clustered using partitioning around medoids (PAM) to identify antigen diversity. Cross-validation demonstrated that the PAM method was better than selection by reactivity and random selection. Analysis of vaccine-elicited V1V2 binding antibody in longitudinal samples from the RV144 clinical trial revealed the striking heterogeneity among individual vaccinees in maintaining durable responses. These data support the idea that a major goal for vaccine development is to improve antibody levels, breadth, and durability at the population level. Elucidating the level and durability of vaccine-elicited binding antibody breadth needed for protection is critical for the development of a globally efficacious HIV vaccine. IMPORTANCE The path toward an efficacious HIV-1 vaccine will require characterization of vaccine-induced immunity that can recognize and target the highly genetically diverse virus envelope glycoproteins. Antibodies that target the envelope glycoproteins, including diverse sequences within the first and second hypervariable regions (V1V2) of gp120, were identified as correlates of risk for the one partially efficacious HIV-1 vaccine. To build upon this discovery, we experimentally and computationally evaluated humoral responses to define envelope glycoproteins representative of the antigenic diversity of HIV globally. These diverse envelope antigens distinguished binding antibody breadth and durability among vaccine candidates, thus providing insights for advancing the most promising HIV-1 vaccine candidates. PMID:29386288
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jun-Hyuk; Kwon, Gihan; Lim, Hankwon
High cost and low durability are unresolved issues that impede the commercialization of proton exchange membrane fuel cells (PEMFCs). To overcome these limitations, Pt/TiO2 is reported as an alternative electrocatalyst for enhancing the oxygen reduction reaction (ORR) activity and/or durability of the system. However, the low electrical conductivity of TiO2 is a drawback that may be addressed by doping. To date, most reports related to Pt/doped-TiO2 focus on changes in the catalyst activity caused by the Pt-TiO2 interaction (metal -support interaction), instead of the effect of doping itself; doping is merely considered to enhance the electrical conductivity of TiO2. Inmore » this study, we discuss the variation in the electronic fine structure of Pt caused by the dopant, and its correlation with the ORR activity. More extensive contraction of the Pt lattice in Pt/M-TiO2 (M = V, Cr, and Nb) relative to Pt/TiO2 and Pt/C leads to outstanding ORR specific activity of Pt/M-TiO2. Notably, a fourfold increase of the specific activity is achieved with Pt/V-TiO2 relative to Pt/C. Furthermore, an accelerated durability test (ADT) of Pt/V-TiO2 demonstrates that this system is three times more durable than conventional Pt/C due to the metal support interaction.« less
The effect of curing conditions on the durability of high performance concrete
NASA Astrophysics Data System (ADS)
Bumanis, G.; Bajare, D.
2017-10-01
This study researches compressive strength and durability of the high strength self-compacting concrete (SCC) impacted at early stage by the curing conditions. The mixture compositions of metakaolin containing waste and cenospheres as partial cement replacement (15 wt%) were compared to reference SCC with 100% cement. The specimens prepared in advance were demoulded 24h after casting of the SCC and the specific curing conditions were applied for up to 28 days: standard water curing at 20°C (i); indoor curing at 20°C, RH 60% (ii) and low temperature air curing (2°C) at RH 60% (iii). Results indicate that at early stage (14 days) indoor curing conditions increase compressive strength of the SCC whilst no strength loss has been detected even at a low temperature curing. The further strength gain has been substantially reduced for samples cured indoor and at a low temperature with significant variation observed for long term compressive strength (180 days). The metakaolin containing waste has proved to be an effective partial cement replacement and it has improved strength gain even at a low temperature curing. Meanwhile cenospheres have reduced the SCC strength and with no positive effect on strength observed within the standard term. Freeze-thaw durability and resistance to the chloride penetration have been improved for the SCC cured at low temperature. The SCC with metakaolin containing waste has proved to be the most durable thus demonstrating importance of effective micro filler use.
Laser Ablation Surface Preparation of Ti-6A1-4V for Adhesive Bonding
NASA Technical Reports Server (NTRS)
Palmieri, Frank L.; Watson, Kent A.; Morales, Guillermo; Williams, Thomas; Hicks, Robert; Wohl, Christopher J.; Hopkins, John W.; Connell, John W.
2012-01-01
Adhesive bonding offers many advantages over mechanical fastening, but requires certification before it can be incorporated in primary structures for commercial aviation without disbond-arrestment features or redundant load paths. Surface preparation is widely recognized as the key step to producing robust and predictable bonds. Laser ablation imparts both topographical and chemical changes to a surface which can lead to increased bond durability. A laser based process provides an alternative to chemical-dip, manual abrasion and grit blast treatments which are expensive, hazardous, polluting, and less precise. This report documents preliminary testing of a surface preparation technique using laser ablation as a replacement for the chemical etch and abrasive processes currently applied to Ti-6Al-4V alloy adherends. Failure mode, surface roughness, and chemical makeup were analyzed using fluorescence enhanced visualization, microscopy, and X-ray photoelectron spectroscopy, respectively. Single lap shear tests were conducted on bonded and aged specimens to observe bond strength retention and failure mode. Some promising results showed increasing strength and durability of lap shear specimens as laser ablation coverage area and beam intensity increased. Chemical analyses showed trends for surface chemical species which correlated with improved bond strength and durability. Combined, these results suggest that laser ablation is a viable process for inclusion with or/and replacement of one or more currently used titanium surface treatments. On-going work will focus on additional mechanical tests to further demonstrate improved bond durability.
The Role of Biomass Composition and Steam Treatment on Durability of Pellets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab
Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less
The Role of Biomass Composition and Steam Treatment on Durability of Pellets
Tang, Yong; Chandra, Richard P.; Sokhansanj, Shahab; ...
2018-03-03
Steam treatment has been reported to improve the durability of wood pellet likely by changing the physical and chemical structures of wood particles, but published literature is inconclusive about which structure change is the major reason for enhanced durability. Here, in this paper, steam treatment was combined either with alkaline or with SO 2 to study. The solids obtained after steam treatments along with a control sample were dried and each was compacted into pellets. The pellets were then tested for durability. Steam treatment alone dominated improvements in durability. The pellet durability increased with the amount of xylose, but xylosemore » performed better in the pellet from raw poplar than did in the pellet from treated poplar. Water-soluble components contributed a maximum 4% of the durability of poplar pellets. The addition of lignin and sugars to substrates after steam treatment did not improve durability significantly. The surface modification that took place as a result of size reduction during steam treatment was the major reason, contributing about 50% of the durability of the pellet from steam-treated poplar. The acidity of steam treatment slightly affected the relative contributions of these structure changes on the durability. Lastly, the new knowledge helps tailor the chemical and/or mechanical pretreatment involved in pelleting biomass to durable pellets.« less
Self-repairing composites for airplane components
NASA Astrophysics Data System (ADS)
Dry, Carolyn
2008-03-01
Durability and damage tolerance criteria drives the design of most composite structures. Those criteria could be altered by developing structure that repairs itself from impact damage. This is a technology for increasing damage tolerance for impact damage. Repaired damage would enable continued function and prevent further degradation to catastrophic failure in the case of an aircraft application. Further, repaired damage would enable applications to be utilized without reduction in performance due to impacts. Self repairing structures are designed to incorporate hollow fibers, which will release a repairing agent when the structure is impacted, so that the repairing agent will fill delaminations, voids and cracks in les than one minute, thus healing matrix voids. The intent is to modify the durability and damage tolerance criteria by incorporation of self-healing technologies to reduce overall weight: The structure will actually remain lighter than current conventional design procedures allow. Research objective(s) were: Prove that damage can be repaired to within 80-90% of original flexural strength in less than one minute, in laminates that are processed at 300-350F typical for aircraft composites. These were successfully met. The main focus was on testing of elements in compression after impact and a larger component in shear at Natural Process Design, Inc. Based on these results the advantages purposes are assessed. The results show potential; with self repairing composites, compressive strength is maintained sufficiently so that less material can be used as per durability and damage tolerance, yielding a lighter structure.
Textile for heart valve prostheses: fabric long-term durability testing.
Heim, Frederic; Durand, Bernard; Chakfe, Nabil
2010-01-01
The rapid developments and success in percutaneous vascular surgery over the last two decades with the now common stent grafts implantation, make the noninvasive surgery technique today attractive even for heart valve replacement. Less traumatic for the patient and also less time consuming, percutaneous heart valve replacement is however at its beginning and restricted to end of life patients. The noninvasive procedure expects from the heart valve prosthesis material to be resistant and adapted to folding requirements of the implantation process (catheter). Polyester fabric could be a suited material for heart valve implanted percutaneously. Highly flexible and resistant, polyester fabric proved to be well adapted to the dynamic behavior of a valve and polyester (Dacron) is also widely used for vascular grafts implantation and shows good biocompatibility and durability. However, today there's no data available on long-term durability of fabric used as heart valve material. The purpose of this work is to study the long term behavior of a microdenier polyester fabric construction under combined in vitro flexure and tension fatigue stress. In the novel in vitro testing technique presented, a fabric specimen was subjected to combined flexural and tensile fatigue generated by fluid flow under physiological pressure conditions. The results obtained show how flexural properties change with fatigue time, which reflects directly on the suitability of a fabric in such devices. It was also observed that these fabric structural changes directly influence the in vitro behavior of the textile heart valve prosthesis. (c) 2009 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, David L
2013-06-30
The Florida Hydrogen Initiative (FHI) was a research, development and demonstration hydrogen and fuel cell program. The FHI program objectives were to develop Florida?s hydrogen and fuel cell infrastructure and to assist DOE in its hydrogen and fuel cell activities The FHI program funded 12 RD&D projects as follows: Hydrogen Refueling Infrastructure and Rental Car Strategies -- L. Lines, Rollins College This project analyzes strategies for Florida's early stage adaptation of hydrogen-powered public transportation. In particular, the report investigates urban and statewide network of refueling stations and the feasibility of establishing a hydrogen rental-car fleet based in Orlando. Methanol Fuelmore » Cell Vehicle Charging Station at Florida Atlantic University ? M. Fuchs, EnerFuel, Inc. The project objectives were to design, and demonstrate a 10 kWnet proton exchange membrane fuel cell stationary power plant operating on methanol, to achieve an electrical energy efficiency of 32% and to demonstrate transient response time of less than 3 milliseconds. Assessment of Public Understanding of the Hydrogen Economy Through Science Center Exhibits, J. Newman, Orlando Science Center The project objective was to design and build an interactive Science Center exhibit called: ?H2Now: the Great Hydrogen Xchange?. On-site Reformation of Diesel Fuel for Hydrogen Fueling Station Applications ? A. Raissi, Florida Solar Energy Center This project developed an on-demand forecourt hydrogen production technology by catalytically converting high-sulfur hydrocarbon fuels to an essentially sulfur-free gas. The removal of sulfur from reformate is critical since most catalysts used for the steam reformation have limited sulfur tolerance. Chemochromic Hydrogen Leak Detectors for Safety Monitoring ? N. Mohajeri and N. Muradov, Florida Solar Energy Center This project developed and demonstrated a cost-effective and highly selective chemochromic (visual) hydrogen leak detector for safety monitoring at any facility engaged in transport, handling and use of hydrogen. Development of High Efficiency Low Cost Electrocatalysts for Hydrogen Production and PEM Fuel Cell Applications ? M. Rodgers, Florida Solar Energy Center The objective of this project was to decrease platinum usage in fuel cells by conducting experiments to improve catalyst activity while lowering platinum loading through pulse electrodeposition. Optimum values of several variables during electrodeposition were selected to achieve the highest electrode performance, which was related to catalyst morphology. Understanding Mechanical and Chemical Durability of Fuel Cell Membrane Electrode Assemblies ? D. Slattery, Florida Solar Energy Center The objective of this project was to increase the knowledge base of the degradation mechanisms for membranes used in proton exchange membrane fuel cells. The results show the addition of ceria (cerium oxide) has given durability improvements by reducing fluoride emissions by an order of magnitude during an accelerated durability test. Production of Low-Cost Hydrogen from Biowaste (HyBrTec?) ? R. Parker, SRT Group, Inc., Miami, FL This project developed a hydrogen bromide (HyBrTec?) process which produces hydrogen bromide from wet-cellulosic waste and co-produces carbon dioxide. Eelectrolysis dissociates hydrogen bromide producing recyclable bromine and hydrogen. A demonstration reactor and electrolysis vessel was designed, built and operated. Development of a Low-Cost and High-Efficiency 500 W Portable PEMFC System ? J. Zheng, Florida State University, H. Chen, Bing Energy, Inc. The objectives of this project were to develop a new catalyst structures comprised of highly conductive buckypaper and Pt catalyst nanoparticles coated on its surface and to demonstrate fuel cell efficiency improvement and durability and cell cost reductions in the buckypaper based electrodes. Development of an Interdisciplinary Hydrogen and Fuel Cell Technology Academic Program ? J. Politano, Florida Institute of Technology, Melbourne, FL This project developed a hydrogen and fuel cell technology academic program at Florida Institute of Technology in Melbourne, Florida. Design and Development of an Advanced Hydrogen Storage System using Novel Materials ? E. Stefanakos, University of South Florida The goal of this project was to design and develop novel conducting polymeric nanomaterials for on-board hydrogen storage. The project approach was to examine synthesis of polyaniline solid state hydrogen storage materials. Advanced HiFoil ? Bipolar Plates ? J. Braun, M. Fuchs, EnerFuel, Inc. The goal of this project was to provide a durable, low cost bipolar plate for high temperature proton exchange membrane fuel cells. The project results produced a durable, low cost bipolar plate with very high in-plane thermal conductivity.« less
Advanced Turbine Technology Applications Project (ATTAP)
NASA Technical Reports Server (NTRS)
1990-01-01
Advanced Turbine Technology Application Project (ATTAP) activities during the past year were highlighted by test-bed engine design and development activities; ceramic component design; materials and component characterization; ceramic component process development and fabrication; component rig testing; and test-bed engine fabrication and testing. Although substantial technical challenges remain, all areas exhibited progress. Test-bed engine design and development activity included engine mechanical design, power turbine flow-path design and mechanical layout, and engine system integration aimed at upgrading the AGT-5 from a 1038 C metal engine to a durable 1371 C structural ceramic component test-bed engine. ATTAP-defined ceramic and associated ceramic/metal component design activities include: the ceramic combustor body, the ceramic gasifier turbine static structure, the ceramic gasifier turbine rotor, the ceramic/metal power turbine static structure, and the ceramic power turbine rotors. The materials and component characterization efforts included the testing and evaluation of several candidate ceramic materials and components being developed for use in the ATTAP. Ceramic component process development and fabrication activities are being conducted for the gasifier turbine rotor, gasifier turbine vanes, gasifier turbine scroll, extruded regenerator disks, and thermal insulation. Component rig testing activities include the development of the necessary test procedures and conduction of rig testing of the ceramic components and assemblies. Four-hundred hours of hot gasifier rig test time were accumulated with turbine inlet temperatures exceeding 1204 C at 100 percent design gasifier speed. A total of 348.6 test hours were achieved on a single ceramic rotor without failure and a second ceramic rotor was retired in engine-ready condition at 364.9 test hours. Test-bed engine fabrication, testing, and development supported improvements in ceramic component technology that will permit the achievement of program performance and durability goals. The designated durability engine accumulated 359.3 hour of test time, 226.9 of which were on the General Motors gas turbine durability schedule.
Kato, Fumihiko; Ito, Keigo; Nakashima, Hiroaki; Machino, Masaaki
2009-01-01
Anterior procedures in the cervical spine are feasible in cases having anterior aetiologies such as anterior neural compression and/or severe kyphosis. Halo vests or anterior plates are used concurrently for cases with long segmental fixation. Halo vests are bothersome and anterior plate fixation is not adequately durable. We developed a new anterior pedicle screw (APS) and plate fixation procedure that can be used with fluoroscope-assisted pedicle axis view imaging. Six patients (3 men and 3 women; mean age, 54 years) with anterior multisegmental aetiology were included in this study. Their original diagnoses comprised cervical myelopathy and/or radiculopathy (n = 4), posterior longitudinal ligament ossification (n = 1) and post-traumatic kyphosis (n = 1). All patients underwent anterior decompression and strut grafting with APS and plate fixation. Mean operative time was 192 min and average blood loss was 73 ml. Patients were permitted to ambulate the next day with a cervical collar. Local sagittal alignment was characterised by 3.5° of kyphosis preoperatively, which improved to 6.8° of lordosis postoperatively and 5.2° of lordosis at final follow-up. Postoperative improvement and early bony union were observed in all cases. There was no serious complication except for two cases of dysphagia. Postoperative imaging demonstrated screw exposure in one screw, but no pedicle perforation. APS and plate fixation is useful in selected cases of multisegmental anterior reconstruction of cervical spine. However, the adequate familiarity and experience with both cervical pedicle screw fixation and the imaging technique used for visualising the pedicle during surgery are crucial for this procedure. PMID:19343377
Perspective on thermal barrier coatings for industrial gas turbine applications
NASA Technical Reports Server (NTRS)
Mutasim, Z. Z.; Hsu, L. L.; Brentnall, W. D.
1995-01-01
Thermal Barrier Coatings (TBC's) have been used in high thrust aircraft engines for many years, and have proved to be very effective in allowing higher turbine inlet temperatures. TBC life requirements for aircraft engines are typically less than those required in industrial gas turbines. The use of TBC's for industrial gas turbines can increase if durability and longer service life can be successfully demonstrated. This paper will describe current and future applications of TBC's in industrial gas turbine engines. Early testing and applications of TBC's will also be reviewed. This paper focuses on the key factors that are expected to influence utilization of TBC's in advanced industrial gas turbine engines. It is anticipated that reliable, durable and high effective coating systems will be produced that will ultimately improve engine efficiency and performance.
Advanced Oxide Material Systems For 1650 C Thermal/Environmental Barrier Coating Applications
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.
2004-01-01
Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor containing combustion environments. The 1650 C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems. In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650OC coatings feasibility with long-term cyclic durability.
Creep and Environmental Durability of EBC/CMCs Under Imposed Thermal Gradient Conditions
NASA Technical Reports Server (NTRS)
Appleby, Matthew; Morscher, Gregory N.; Zhu, Dongming
2013-01-01
Interest in SiC fiber-reinforced SiC ceramic matrix composite (CMC) environmental barrier coating (EBC) systems for use in high temperature structural applications has prompted the need for characterization of material strength and creep performance under complex aerospace turbine engine environments. Stress-rupture tests have been performed on SiC/SiC composites systems, with varying fiber types and coating schemes to demonstrate material behavior under isothermal conditions. Further testing was conducted under exposure to thermal stress gradients to determine the effect on creep resistance and material durability. In order to understand the associated damage mechanisms, emphasis is placed on experimental techniques as well as implementation of non-destructive evaluation; including electrical resistivity monitoring. The influence of environmental and loading conditions on life-limiting material properties is shown.
Advanced Environmental Barrier Coatings Development for Si-Based Ceramics
NASA Technical Reports Server (NTRS)
Zhu, Dong-Ming; Choi, R. Sung; Robinson, Raymond C.; Lee, Kang N.; Bhatt, Ramakrishna T.; Miller, Robert A.
2005-01-01
Advanced environmental barrier coating concepts based on multi-component HfO2 (ZrO2) and modified mullite systems are developed for monolithic Si3N4 and SiC/SiC ceramic matrix composite (CMC) applications. Comprehensive testing approaches were established using the water vapor cyclic furnace, high pressure burner rig and laser heat flux steam rig to evaluate the coating water vapor stability, cyclic durability, radiation and erosion resistance under simulated engine environments. Test results demonstrated the feasibility and durability of the environmental barrier coating systems for 2700 to 3000 F monolithic Si3N4 and SiC/SiC CMC component applications. The high-temperature-capable environmental barrier coating systems are being further developed and optimized in collaboration with engine companies for advanced turbine engine applications.
Kasturi, Sudhir Pai; Kozlowski, Pamela A; Nakaya, Helder I; Burger, Matheus C; Russo, Pedro; Pham, Mathew; Kovalenkov, Yevgeniy; Silveira, Eduardo L V; Havenar-Daughton, Colin; Burton, Samantha L; Kilgore, Katie M; Johnson, Mathew J; Nabi, Rafiq; Legere, Traci; Sher, Zarpheen Jinnah; Chen, Xuemin; Amara, Rama R; Hunter, Eric; Bosinger, Steven E; Spearman, Paul; Crotty, Shane; Villinger, Francois; Derdeyn, Cynthia A; Wrammert, Jens; Pulendran, Bali
2017-02-15
Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NP-adjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Env-specific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV). The results of the RV144 HIV vaccine trial, which demonstrated a rapid waning of protective immunity with time, have underscored the need to develop strategies to enhance the durability of protective immune responses. Our recent work in mice has highlighted the capacity of nanoparticle-encapsulated TLR ligands (NP) to induce potent and durable antibody responses that last a lifetime in mice. In the present study, we evaluated the ability of these NP adjuvants to promote robust and durable protective immune responses against SIV in nonhuman primates. Our results demonstrate that immunization of rhesus macaques with NP adjuvants mixed with soluble SIV Env or a virus-like particle form of Env (VLP) induces potent and durable Env-specific antibody responses in the serum and in vaginal secretions. These responses were superior to those induced by alum adjuvant, and they resulted in enhanced protection against a low-dose intravaginal challenge with a heterologous strain of SIV in animals with TRIM5a restrictive alleles. These results highlight the potential for such NP TLR L adjuvants in promoting robust and durable antibody responses against HIV in the next generation of HIV immunogens currently being developed. Copyright © 2017 American Society for Microbiology.
Durable flame retardant finish for silk fabric using boron hybrid silica sol
NASA Astrophysics Data System (ADS)
Zhang, Qiang-hua; Gu, Jiali; Chen, Guo-qiang; Xing, Tie-ling
2016-11-01
A hybrid silica sol was prepared via sol gel method using tetraethoxysilane (TEOS) as a precursor and boric acid (H3BO3) as flame retardant additive and then applied to silk fabric. In order to endow silk fabric with durable flame retardancy, 1,2,3,4-butanetetracarboxylic acid (BTCA) was used as cross-linking agent for the sake of strong linkage formation between the hybrid silica sol and silk fabric. The FT-IR and XPS analysis demonstrated the Si-O-B formation in the sol system, as well as the linkage between the sol and silk after the treatment. The limiting oxygen index (LOI) and smoke density test indicated good flame retardancy and smoke suppression of the treated silk fabrics. The micro calorimeter combustion (MCC) test and thermo gravimetric (TG) analysis showed that the treated samples had less weight loss in the high temperature and lower heat release rate when burning. The washing durability evaluation results indicated that there was a distinct improvement for the silk samples treated with BTCA even after 30 times washing. In addition, the influence of the processing order of BTCA and silica sol treatment on the limiting oxygen index (LOI) of the finished silk fabric was also investigated. And the results demonstrated that the sample treated with BTCA first and then with the silica sol exhibited better LOI value (32.3%) than that of the sample by the conversed treatment order. Moreover the tensile property of treated samples was nearly unchanged, but the handle of sol treated samples obviously decreased.
Tjäderhane, Leo; Nascimento, Fabio D.; Breschi, Lorenzo; Mazzoni, Annalisa; Tersariol, Ivarne L.S.; Geraldeli, Saulo; Tezvergil-Mutluay, Arzu; Carrilho, Marcela R.; Carvalho, Ricardo M.; Tay, Franklin R.; Pashley, David H.
2012-01-01
Objectives Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. Methods Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. Results The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. Significance Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future. PMID:22901826
Evaluation of permanent deformation and durability of epoxidized natural rubber modified asphalt mix
NASA Astrophysics Data System (ADS)
Al-Mansob, Ramez A.; Ismail, Amiruddin; Rahmat, Riza Atiq O. K.; Nazri Borhan, Muhamad; Alsharef, Jamal M. A.; Albrka, Shaban Ismael; Rehan Karim, Mohamed
2017-09-01
The road distresses have caused too much in maintenance cost. However, better understandings of the behaviours and properties of asphalt, couples with greater development in technology, have allowed paving technologists to examine the benefits of introducing additives and modifiers. As a result, modifiers such as polymers are the most popular modifiers used to improve the performance of asphalt mix. This study was conducted to investigate the use of epoxidized natural rubber (ENR) to be mixed with asphalt mix. Tests were conducted to investigate the performance characteristics of ENR-asphalt mixes, where the mixes were prepared according to the wet process. Mechanical testing on the ENR-asphalt mixes have demonstrated that the asphalt mix permanent deformation performance at high temperature was found to be improved compared to the base mixes. However, the durability studies have indicated that ENR-asphalt mixes are slightly susceptible with the presence of moisture. The durability of the ENR-asphalt mixes were found to be enhanced in term of permanent deformation at high and intermediate temperatures compared to the base asphalt mixes. As conclusion, asphalt pavement performance can be enhanced by using ENR as modifier to face the major road distresses.
Durable and self-hydrating tungsten carbide-based composite polymer electrolyte membrane fuel cells.
Zheng, Weiqing; Wang, Liang; Deng, Fei; Giles, Stephen A; Prasad, Ajay K; Advani, Suresh G; Yan, Yushan; Vlachos, Dionisios G
2017-09-04
Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• are significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.The proton conductivity of polymer electrolyte membranes in fuel cells dictates their performance, but requires sufficient water management. Here, the authors report a simple method to produce well-dispersed transition metal carbide nanoparticles as additives to enhance the performance of Nafion membranes in fuel cells.
Convective Radiofrequency Water Vapor Thermal Therapy with Rezūm System.
Helo, Sevann; Holland, Bradley; McVary, Kevin T
2017-10-01
Lower urinary tract symptoms (LUTS) secondary to benign prostatic hyperplasia (BPH) are amongst the most commonly treated conditions by urologists. Minimally invasive therapies for the treatment of BPH/LUTS have garnered increased interest as new technology has emerged, improving durability, efficacy, and safety. This paper reviews the most recent literature regarding water vapor therapy, a convective thermal therapy that ablates prostatic tissue. The current literature includes a pilot study of 65 men and a randomized controlled trial (RCT) of 197 men investigating the efficacy and safety profile of water vapor therapy up to 2 years. Subjects treated with water vapor therapy demonstrated a 51% reduction in IPSS from baseline, sustained at 24 months (p < 0.0001). Durable improvements in max flow rate (Qmax) and quality of life (QoL) were also achieved, while no changes in sexual function were observed. Reporting of adverse events (AEs) reveals predominantly Clavien grade I complications that were self-limited. The clinical efficacy and safety of water vapor therapy are durable to 24 months making it an attractive alternative for patients seeking a minimally invasive treatment for LUTS due to BPH.
Examining the durability of incidentally learned trust from gaze cues.
Strachan, James W A; Tipper, Steven P
2017-10-01
In everyday interactions we find our attention follows the eye gaze of faces around us. As this cueing is so powerful and difficult to inhibit, gaze can therefore be used to facilitate or disrupt visual processing of the environment, and when we experience this we infer information about the trustworthiness of the cueing face. However, to date no studies have investigated how long these impressions last. To explore this we used a gaze-cueing paradigm where faces consistently demonstrated either valid or invalid cueing behaviours. Previous experiments show that valid faces are subsequently rated as more trustworthy than invalid faces. We replicate this effect (Experiment 1) and then include a brief interference task in Experiment 2 between gaze cueing and trustworthiness rating, which weakens but does not completely eliminate the effect. In Experiment 3, we explore whether greater familiarity with the faces improves the durability of trust learning and find that the effect is more resilient with familiar faces. Finally, in Experiment 4, we push this further and show that evidence of trust learning can be seen up to an hour after cueing has ended. Taken together, our results suggest that incidentally learned trust can be durable, especially for faces that deceive.
Thermo-mechanical simulations of early-age concrete cracking with durability predictions
NASA Astrophysics Data System (ADS)
Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis
2017-09-01
Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.
Durable superhydrophobic carbon soot coatings for sensor applications
NASA Astrophysics Data System (ADS)
Esmeryan, K. D.; Radeva, E. I.; Avramov, I. D.
2016-01-01
A novel approach for the fabrication of durable superhydrophobic (SH) carbon soot coatings used in quartz crystal microbalance (QCM) based gas or liquid sensors is reported. The method uses modification of the carbon soot through polymerization of hexamethyldisiloxane (HMDSO) by means of glow discharge RF plasma. The surface characterization shows a fractal-like network of carbon nanoparticles with diameter of ~50 nm. These particles form islands and cavities in the nanometer range, between which the plasma polymerized hexamethyldisiloxane (PPHMDSO) embeds and binds to the carbon chains and QCM surface. Such modified surface structure retains the hydrophobic nature of the soot and enhances its robustness upon water droplet interactions. Moreover, it significantly reduces the insertion loss and dynamic resistance of the QCM compared to the commonly used carbon soot/epoxy resin approach. Furthermore, the PPHMDSO/carbon soot coating demonstrates durability and no aging after more than 40 probing cycles in water based liquid environments. In addition, the surface layer keeps its superhydrophobicity even upon thermal annealing up to 540 °C. These experiments reveal an opportunity for the development of soot based SH QCMs with improved electrical characteristics, as required for high-resolution gas or liquid measurements.
Citric acid based durable and sustainable flame retardant treatment for lyocell fabric.
Mengal, Naveed; Syed, Uzma; Malik, Samander Ali; Ali Sahito, Iftikhar; Jeong, Sung Hoon
2016-11-20
Pyrovatex CP New, is a commonly used organophosphorus based flame retardant (FR) reagent for cellulosic materials. However, it has a drawback of high formaldehyde release when used with methylated melamine (MM) based cross-linker, a known carcinogenous compound. In the present approach, a durable and sustainable flame retarding recipe formulation for lyocell fabrics is developed using citric acid (CA) as a cross-linker. The FR finish was applied by pad-dry-cure process. The treated fabrics were characterized for surface morphology, elemental analysis, TG analysis, char study and FT-IR spectroscopy. Furthermore, flame retardancy, washing durability, formaldehyde release and breaking strength were also assessed, and compared with the conventional MM based FR recipe. The fabric samples treated with 400gL(-1) of FR with either 40 or 80gL(-1) of CA demonstrate flame retardancy even after 10 washing cycles. Furthermore, a 75% reduction in formaldehyde release is achieved. Higher char yield and lower decomposition temperature are found compared to untreated and FR+ MM treated lyocell. Such an improved sustainable recipe formulation can be used for lyocell fabric without any health risk in apparel wear. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fuel Cell Electric Vehicle Evaluations | Hydrogen and Fuel Cells | NREL
Electric Vehicle Evaluations Fuel Cell Electric Vehicle Evaluations NREL's technology validation include commercial FCEVs for the first time. Current fuel cell electric vehicle evaluations build on the seven-year FCEV Learning Demonstration and focus on fuel cell stack durability and efficiency, vehicle
Loger, K; Engel, A; Haupt, J; Lima de Miranda, R; Lutter, G; Quandt, E
2016-03-01
Heart valves are constantly exposed to high dynamic loading and are prone to degeneration. Therefore, it is a challenge to develop a durable heart valve substitute. A promising approach in heart valve engineering is the development of hybrid scaffolds which are composed of a mechanically strong inorganic mesh enclosed by valvular tissue. In order to engineer an efficient, durable and very thin heart valve for transcatheter implantations, we developed a fabrication process for microstructured heart valve leaflets made from a nickel-titanium (NiTi) thin film shape memory alloy. To examine the capability of microstructured NiTi thin film as a matrix scaffold for tissue engineered hybrid heart valves, leaflets were successfully seeded with smooth muscle cells (SMCs). In vitro pulsatile hydrodynamic testing of the NiTi thin film valve leaflets demonstrated that the SMC layer significantly improved the diastolic sufficiency of the microstructured leaflets, without affecting the systolic efficiency. Compared to an established porcine reference valve model, magnetron sputtered NiTi thin film material demonstrated its suitability for hybrid tissue engineered heart valves.
Aggregate Freezing-Thawing Performance Using the Iowa Pore Index : final report.
DOT National Transportation Integrated Search
2016-10-01
In cold climates, the use of non-durable aggregate leads to premature pavement deterioration due to damage caused by freezing-thawing cycles. Differentiating durable and non-durable aggregates is a crucial yet challenging task. The frost durability o...
State-of-the-Art Report About Durability of Post-Tensioned Bridge Substructures
DOT National Transportation Integrated Search
1999-10-01
Durability design requires an understanding of the factors influencing durability and the measures necessary to improve durability of concrete structures. The objectives of this report are to: 1. Survey the condition of bridge substructures in Texas;...
Sensitivity study on durability variables of marine concrete structures
NASA Astrophysics Data System (ADS)
Zhou, Xin'gang; Li, Kefei
2013-06-01
In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.
Synthesis and characterization of wollastonite glass-ceramics for dental implant applications.
Saadaldin, Selma A; Rizkalla, Amin S
2014-03-01
To synthesize a glass-ceramic (GC) that is suitable for non-metallic one-piece dental implant application. Three glasses in a SiO2-Al2O3-CaO-CaF2-K2O-B2O3-P2O5-CeO2-Y2O3 system were produced by wet chemistry. Differential thermal analysis (DTA) was carried out to determine the glass crystallization kinetic parameters and the heating schedules that were used for sintering of GCs. Crystalline phases and crystal morphologies were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. Mechanical properties of the GCs were determined by ultrasonic and indentation tests and its machinability were evaluated. Chemical durability was carried out according to ISO 6872, whereas testing chemical degradation in tris buffered solution was executed according to ISO 10993-14. XRD of the GC specimens showed that wollastonite was the main crystalline with other secondary phases; GC2 had cristobalite as an additional phase. SEM of the GCs revealed dense acicular interlocking crystals. Young's modulus of elasticity (E), true hardness (Ho) and fracture toughness (KIC) of the GCs were 89-100GPa, 4.85-5.17GPa and 4.62-5.58MPam(0.5), respectively. All GCs were demonstrated excellent machinability. The GCs exhibited various chemical durability and degradation rates. KIC values of the GCs following chemical durability testing were not significantly different from those of the original materials (p>0.05). GC2 exhibited significantly higher KIC value compared with GC1 and GC3 (p<0.05) and its chemical durability satisfied ISO 6872 specification for dental ceramics. Wollastonite-cristobalite GC can be considered as a promising material for one-piece dental implant applications due to its strength, machinability and chemical durability. Copyright © 2014. Published by Elsevier Ltd.
Stent-assisted coil embolization of intracranial aneurysms: a single center experience.
Luo, Chao-Bao; Teng, Michael Mu-Huo; Chang, Feng-Chi; Lin, Chung-Jung; Guo, Wan-Yuo; Chang, Cheng-Yen
2012-07-01
Endovascular detachable coil embolization has become an important method in the management of intracranial aneurysms. However, coil embolization alone may fail to treat some wide-neck aneurysms. Herein, we report our experience with and outcome of stent-assisted coil embolization (SACE) of intracranial aneurysms. Over a 5-year period, a total of 59 patients diagnosed with 63 intracranial aneurysms underwent SACE. Of the total 63 aneurysms, 6 aneurysms were treated by SACE as a salvageable procedure because of coil instability after detachment. There were 17 men and 42 women enrolled in the study, with ages ranging from 24 to 86 years (mean: 60 years). We retrospectively assessed the clinical data, aneurysm characteristics, and angiographic and clinical outcomes of all patient cases. The mean aneurysm size was 9.4 mm, and the mean neck size was 5.5 mm. Clinical and angiographic follow-up exceeding 6 months were available in 51 and 40 patients, respectively. The mean clinical follow-up time was 28 months (range: 6-49 months). Successful stent deployment was found in 60 aneurysms (95%). Midterm total or subtotal angiographic aneurismal occlusion was obtained in 56 aneurysms (89%), with further thrombosis of the aneurismal sac occurring in 4 (10%). Stable coiling aneurysm was found in 24 (78%), aneurysm recurrence was observed in 5 (13%), and permanent procedural morbidity was observed in two patients (3.4%). During the follow-up period, there were no hemorrhagic events and no stent displacement. Despite a modest procedural complication rate, and some evidence of aneurismal recurrence, SACE was proved to be both effective and safe in managing wide-neck intracranial aneurysms. Our results also demonstrated the midterm durability and stability of aneurysm treated by SACE. Furthermore, SACE can be a salvageable procedure in cases with coil instability after detachment. Copyright © 2012. Published by Elsevier B.V.
3D visualization of membrane failures in fuel cells
NASA Astrophysics Data System (ADS)
Singh, Yadvinder; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik
2017-03-01
Durability issues in fuel cells, due to chemical and mechanical degradation, are potential impediments in their commercialization. Hydrogen leak development across degraded fuel cell membranes is deemed a lifetime-limiting failure mode and potential safety issue that requires thorough characterization for devising effective mitigation strategies. The scope and depth of failure analysis has, however, been limited by the 2D nature of conventional imaging. In the present work, X-ray computed tomography is introduced as a novel, non-destructive technique for 3D failure analysis. Its capability to acquire true 3D images of membrane damage is demonstrated for the very first time. This approach has enabled unique and in-depth analysis resulting in novel findings regarding the membrane degradation mechanism; these are: significant, exclusive membrane fracture development independent of catalyst layers, localized thinning at crack sites, and demonstration of the critical impact of cracks on fuel cell durability. Evidence of crack initiation within the membrane is demonstrated, and a possible new failure mode different from typical mechanical crack development is identified. X-ray computed tomography is hereby established as a breakthrough approach for comprehensive 3D characterization and reliable failure analysis of fuel cell membranes, and could readily be extended to electrolyzers and flow batteries having similar structure.
NASA Technical Reports Server (NTRS)
Mcgaw, Michael A.; Saltsman, James F.
1993-01-01
A recently developed high-temperature fatigue life prediction computer code is presented and an example of its usage given. The code discussed is based on the Total Strain version of Strainrange Partitioning (TS-SRP). Included in this code are procedures for characterizing the creep-fatigue durability behavior of an alloy according to TS-SRP guidelines and predicting cyclic life for complex cycle types for both isothermal and thermomechanical conditions. A reasonably extensive materials properties database is included with the code.
1989-04-01
the shape it had as it was ex- truded from the grout tube . Figure 3 shows the type of voids in which the ma- terial is expected to form a barrier...has promising characteristics for coastal engi- neering applications. Microfine Cement, a company which markets ultrafine ce- ment, claims the product...can penetrate fine sand, and is strong and durable with a 4- to 5-hr set time. Fifty percent of Microfine Cement’s particles are less than 4 microns
Rolls, Joanne; Keahey, David
2016-09-01
The purpose of this study was to assess the number of Health Resources and Services Administration Expansion of Physician Assistant Training (EPAT)-funded physician assistant (PA) programs planning to maintain class size at expanded levels after grant funds expire and to report proposed financing methods. The 5-year EPAT grant expired in 2015, and the effect of this funding on creating a durable expansion of PA training seats has not yet been investigated. The study used an anonymous, 9-question, Web-based survey sent to the program directors at each of the PA programs that received EPAT funding. Data were analyzed in Excel and using SAS statistical analysis software for both simple percentages and for Fisher's exact test. The survey response rate was 81.48%. Eighty-two percent of responding programs indicated that they planned to maintain all expanded positions. Fourteen percent will revert to their previous student class size, and 4% will maintain a portion of the expanded positions. A majority of the 18 programs (66%) maintaining all EPAT seats will be funded by tuition pass-through, and one program (6%) will increase tuition. There was no statistical association between the program type and the decision to maintain expanded positions (P = .820). This study demonstrates that the one-time EPAT PA grant funding opportunity created a durable expansion in PA training seats. Future research should focus on the effectiveness of the program in increasing the number of graduates choosing to practice in primary care and the durability of expansion several years after funding expiration.
Advanced Stirling Convertor Durability Testing: Plans and Interim Results
NASA Technical Reports Server (NTRS)
Meer, David W.; Oriti, Salvatore M.
2012-01-01
The U.S. Department of Energy (DOE), Lockheed Martin Corporation (LM), and NASA Glenn Research Center (GRC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. In support of this program, GRC has been involved in testing Stirling convertors, including the Advanced Stirling Convertor (ASC), for use in the ASRG. This testing includes electromagnetic interference/compatibility (EMI/EMC), structural dynamics, advanced materials, organics, and unattended extended operation. The purpose of the durability tests is to experimentally demonstrate the margins in the ASC design. Due to the high value of the hardware, previous ASC tests focused on establishing baseline performance of the convertors within the nominal operating conditions. The durability tests present the first planned extension of the operating conditions into regions beyond those intended to meet the product spec, where the possibility exists of lateral contact, overstroke, or over-temperature events. These tests are not intended to cause damage that would shorten the life of the convertors, so they can transition into extended operation at the conclusion of the tests. This paper describes the four tests included in the durability test sequence: 1) start/stop cycling, 2) exposure to constant acceleration in the lateral and axial directions, 3) random vibration at increased piston amplitude to induce contact events, and 4) overstroke testing to simulate potential failures during processing or during the mission life where contact events could occur. The paper also summarizes the analysis and simulation used to predict the results of each of these tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher; Klein, Walter E; Li, Zhen
Photoelectrochemical (PEC) water splitting is an elegant method of converting sunlight and water into H2 fuel. To be commercially advantageous, PEC devices must become cheaper, more efficient, and much more durable. This work examines low-cost polycrystalline chalcopyrite films, which are successful as photovoltaic absorbers, for application as PEC absorbers. In particular, Cu-Ga-Se films with wide band gaps can be employed as top cell photocathodes in tandem devices as a realistic route to high efficiencies. In this report, we demonstrate that decreasing Cu/Ga composition from 0.66 to 0.31 in Cu-Ga-Se films increased the band gap from 1.67 to 1.86 eV andmore » decreased saturated photocurrent density from 18 to 8 mA/cm2 as measured by chopped-light current-voltage (CLIV) measurements in a 0.5 M sulfuric acid electrolyte. Buffer and catalyst surface treatments were not applied to the Cu-Ga-Se films, and they exhibited promising stability, evidenced by unchanged CLIV after 9 months of storage in air. Finally, films with Cu/Ga = 0.36 (approximately stoichiometric CuGa3Se5) and 1.86 eV band gaps had exceptional durability and continuously split water for 17 days (~12 mA/cm2 at -1 V vs RHE). This is equivalent to ~17 200 C/cm2, which is a world record for any polycrystalline PEC absorber. These results indicate that CuGa3Se5 films are prime candidates for cheaply achieving efficient and durable PEC water splitting.« less
Optical Property Enhancement and Durability Evaluation of Heat Receiver Aperture Shield Materials
NASA Technical Reports Server (NTRS)
deGroh, Kim K.; Jaworske, Donald A.; Smith, Daniela C.
1998-01-01
Under the Solar Dynamic Flight Demonstration (SDFD) program, NASA Lewis Research Center worked with AlliedSignal Aerospace, the heat receiver contractor, on the development, characterization and durability testing of refractory metals to obtain appropriate optical and thermal properties for the SDFD heat receiver aperture shield. Molybdenum and tungsten foils were grit-blasted using silicon carbide or alumina grit under various grit-blasting conditions for optical property enhancement. Black rhenium coated tungsten foil was also evaluated. Tungsten, black rhenium-coated tungsten, and grit-blasted tungsten screens of various mesh sizes were placed over the pristine and grit-blasted foils for optical property characterization. Grit-blasting was found to be effective in decreasing the specular reflectance and the absorptance/emittance ratio of the refractory foils. The placement of a screen further enhanced these optical properties, with a grit-blasted screen over a grit-blasted foil producing the best results. Based on the optical property enhancement results, samples were tested for atomic oxygen and vacuum heat treatment durability. Grit-blasted (Al2O3 grit) 2 mil tungsten foil was chosen for the exterior layer of the SDFD heat receiver aperture shield. A 0.007 in. wire diameter, 20 x 20 mesh tungsten screen was chosen to cover the tungsten foil. Based on these test results, a heat receiver aperture shield test unit has been built with the screen covered grit-blast tungsten foil exterior layers. The aperture shield was tested and verified the thermal and structural durability of the outer foil layers during an off-pointing period.
Muzzillo, Christopher P; Klein, W Ellis; Li, Zhen; DeAngelis, Alexander Daniel; Horsley, Kimberly; Zhu, Kai; Gaillard, Nicolas
2018-06-13
Photoelectrochemical (PEC) water splitting is an elegant method of converting sunlight and water into H 2 fuel. To be commercially advantageous, PEC devices must become cheaper, more efficient, and much more durable. This work examines low-cost polycrystalline chalcopyrite films, which are successful as photovoltaic absorbers, for application as PEC absorbers. In particular, Cu-Ga-Se films with wide band gaps can be employed as top cell photocathodes in tandem devices as a realistic route to high efficiencies. In this report, we demonstrate that decreasing Cu/Ga composition from 0.66 to 0.31 in Cu-Ga-Se films increased the band gap from 1.67 to 1.86 eV and decreased saturated photocurrent density from 18 to 8 mA/cm 2 as measured by chopped-light current-voltage (CLIV) measurements in a 0.5 M sulfuric acid electrolyte. Buffer and catalyst surface treatments were not applied to the Cu-Ga-Se films, and they exhibited promising stability, evidenced by unchanged CLIV after 9 months of storage in air. Finally, films with Cu/Ga = 0.36 (approximately stoichiometric CuGa 3 Se 5 ) and 1.86 eV band gaps had exceptional durability and continuously split water for 17 days (∼12 mA/cm 2 at -1 V vs RHE). This is equivalent to ∼17 200 C/cm 2 , which is a world record for any polycrystalline PEC absorber. These results indicate that CuGa 3 Se 5 films are prime candidates for cheaply achieving efficient and durable PEC water splitting.
40 CFR 86.094-26 - Mileage and service accumulation; emission requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-duty vehicles. It prescribes mileage and service accumulation requirements for durability data vehicles... Durability Program of § 86.094-13(d), and for emission data vehicles regardless of the durability program employed. Service accumulation requirements for durability data vehicles run under the Alternative Service...
76 FR 43808 - Designation of Biobased Items for Federal Procurement
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
... thermal shipping containers, including durable and non-durable thermal shipping containers as... able to utilize this Web site as one tool to determine the availability of qualifying biobased products... containers and the subcategories are (1) durable thermal shipping containers, and (2) non-durable thermal...
Review of a solution-processed vertical organic transistor as a solid-state vacuum tube
NASA Astrophysics Data System (ADS)
Lin, Hung-Cheng; Zan, Hsiao-Wen; Chao, Yu-Chiang; Chang, Ming-Yu; Meng, Hsin-Fei
2015-05-01
In this paper, we investigate the key issues in raising the on/off current ratio and increasing the output current. A 1 V operated inverter composed of an enhancement-mode space-charge-limited transistor (SCLT) and a depletion-mode SCLT is demonstrated using the self-assembled monolayer modulation process. With a bulk-conduction mechanism, good bias-stress reliability, and good bending durability are obtained. Finally, key scaling-up processes, including nanoimprinting and blade-coated nanospheres, are demonstrated.
Short- and long-term effects of clinical audits on compliance with procedures in CT scanning.
Oliveri, Antonio; Howarth, Nigel; Gevenois, Pierre Alain; Tack, Denis
2016-08-01
To test the hypothesis that quality clinical audits improve compliance with the procedures in computed tomography (CT) scanning. This retrospective study was conducted in two hospitals, based on 6950 examinations and four procedures, focusing on the acquisition length in lumbar spine CT, the default tube current applied in abdominal un-enhanced CT, the tube potential selection for portal phase abdominal CT and the use of a specific "paediatric brain CT" procedure. The first clinical audit reported compliance with these procedures. After presenting the results to the stakeholders, a second audit was conducted to measure the impact of this information on compliance and was repeated the next year. Comparisons of proportions were performed using the Chi-square Pearson test. Depending on the procedure, the compliance rate ranged from 27 to 88 % during the first audit. After presentation of the audit results to the stakeholders, the compliance rate ranged from 68 to 93 % and was significantly improved for all procedures (P ranging from <0.001 to 0.031) in both hospitals and remained unchanged during the third audit (P ranging from 0.114 to 0.999). Quality improvement through repeated compliance audits with CT procedures durably improves this compliance. • Compliance with CT procedures is operator-dependent and not perfect. • Compliance differs between procedures and hospitals, even within a unified department. • Compliance is improved through audits followed by communication to the stakeholders. • This improvement is sustainable over a one-year period.
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2013 CFR
2013-07-01
... following a determination that the named payee is incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney is similar to a durable power of attorney except... special power of attorney, a springing durable special power of attorney is created by the principal's use...
31 CFR 240.17 - Powers of attorney.
Code of Federal Regulations, 2011 CFR
2011-07-01
... following a determination that the named payee is incompetent. (e) Springing durable special powers of attorney. A springing durable special power of attorney is similar to a durable power of attorney except... special power of attorney, a springing durable special power of attorney is created by the principal's use...
What Bariatric Surgery Can Teach Us About Endoluminal Treatment of Obesity and Metabolic Disorders.
Kaplan, Lee M
2017-04-01
Bariatric surgical procedures, including gastric bypass, vertical sleeve gastrectomy, and biliopancreatic diversion, are the most effective and durable treatments for obesity. In addition, These operations induce metabolic changes that provide weight-independent improvement in type 2 diabetes, fatty liver disease and other metabolic disorders. Initially thought to work by mechanical restriction of food intake or malabsorption of ingested nutrients, these procedures are now known to work through complex changes in neuroendocrine and immune signals emanating from the gut, including peptide hormones, bile acids, vagal nerve activity, and metabolites generated by the gut microbiota, all collaborating to reregulate appetite, food preference, and energy expenditure. Development of less invasive means of achieving these benefits would allow much greater dissemination of effective, gastrointestinal (GI)-targeted therapies for obesity and metabolic disorders. To reproduce the benefits of bariatric surgery, however, these endoscopic procedures and devices will need to mimic the physiological rather than the mechanical effects of these operations. Copyright © 2017 Elsevier Inc. All rights reserved.
Aortic valve surgery of the 21st century: sutureless AVR versus TAVI.
Costache, Victor S; Moldovan, Horatiu; Arsenescu, Catalina; Costache, Andreea
2018-04-01
Surgical aortic valve replacement (sAVR) has been a safe, effective and time-proven technique and is still the standard of care all over the world for aortic valve treatment. The vast majority of centers perform this procedure by doing a median sternotomy with several disadvantages. While many others specialties went minimally invasive decades ago, in cardiovascular field transcatheter valve implantation was the first minimally invasive valvular procedure that gained rapid worldwide acceptance. Transcatheter valve replacement (TAVR) is now marketed as a procedure that should be performed under local anesthesia, by an interventional cardiologist via trans femoral route with no other healthcare professional invited to the patient selection or case planning. An increasing number of surgeons are promoting minimally invasive aortic valve replacement, which is gaining grounds, especially with the help of the new sutureless valve technology. With these two new technologies emerging, legitimate questions arise and need to be answered - which has the longest durability, lower complication rate and lower overall mortality.
Attachment techniques for high temperature strain
NASA Astrophysics Data System (ADS)
Wnuk, Steve P., Jr.
1993-01-01
Attachment methods for making resistive strain measurements to 2500 F were studied. A survey of available strain gages and attachment techniques was made, and the results are compiled for metal and carbon composite test materials. A theoretical analysis of strain transfer into a bonded strain gage was made, and the important physical parameters of the strain transfer medium, the ceramic matrix, were identified. A pull tester to measure pull-out tests on commonly used strain gage cements indicated that all cements tested displayed adequate strength for good strain transfer. Rokide flame sprayed coatings produced significantly stronger bonds than ceramic cements. An in-depth study of the flame spray process produced simplified installation procedures which also resulted in greater reliability and durability. Application procedures incorporating improvements made during this program are appended to the report. Strain gages installed on carbon composites, Rene' 41, 316 stainless steel, and TZM using attachment techniques developed during this program were successfully tested to 2500 F. Photographs of installation techniques, test procedures, and graphs of the test data are included in this report.
Multi-factor Effects on the Durability of Recycle Aggregate Concrete
NASA Astrophysics Data System (ADS)
Ma, Huan; Cui, Yu-Li; Zhu, Wen-Yu; Xie, Xian-Jie
2016-05-01
Recycled Aggregate Concrete (RAC) was prepared with different recycled aggregate replacement ratio, 0, 30%, 70% and 100% respectively. The performances of RAC were examined by the freeze-thaw cycle, carbonization and sulfate attack to assess the durability. Results show that test sequence has different effects on the durability of RAC; the durability is poorer when carbonation experiment was carried out firstly, and then other experiment was carried out again; the durability is better when recycled aggregate replacement ratio is 70%.
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Lee, Kuan
2008-01-01
The acoustic liner system designed for use in the High Speed Civil Transport (HSCT) was tested in a thermal-acoustic environment. Five ceramic matrix composite (CMC) acoustic tile configurations, five bulk acoustic absorbers, and one thermal protection system design were tested. The CMC acoustic tiles were subjected to two 2 3/4 hr ambient temperature acoustic exposures to measure their dynamic response. One exposure was conducted on the tiles alone and the second exposure included the tiles and the T-foam bulk absorber. The measured tile RMS strains were small. With or without the T-foam absorber, the dynamic strains were below strain levels that would cause damage during fatigue loading. After the ambient exposure, a 75-hr durability test of the entire acoustic liner system was conducted using a thermal-acoustic cycle that approximated the anticipated service cycle. Acoustic loads up to 139 dB/Hz and temperatures up to 1670 F (910 C) were employed during this 60 cycle test. During the durability test, the CMC tiles were exposed to temperatures up to 1780 F and a transient through thickness gradient up to 490 F. The TPS peak temperatures on the hot side of the panels ranged from 750 to 1000 F during the 60 cycles. The through thickness delta T ranged from 450 to 650 F, varying with TPS location and cycle number. No damage, such as cracks or chipping, was observed in the CMC tiles after completion of the testing. However, on tile warped during the durability test and was replaced after 43 or 60 cycles. No externally observed damage was found in this tile. No failure of the CMC fasteners occurred, but damage was observed. Cracks and missing material occurred, only in the fastener head region. No indication of damage was observed in the T-foam acoustic absorbers. The SiC foam acoustic absorber experienced damage after about 43 cycles. Cracking in the TPS occurred around the attachment holes and under a vent. In spite of the development of damage, the TPS maintained its insulative capability throughout the durability test. The durability test results demonstrate damage-tolerant CMC tile, CMC fastener, TPS, and T-foam absorber designs for the combined thermal and acoustic engine nozzle environment.
2012-10-26
the need for alignment. We have also demonstrated the use of this technique with various materials as masks for silk biopolymer RIE processing and a...project. The automatization of silk solution was developed. Examination of different processing conditions for the raw material showed promise for...higher durability and higher flexibility optical substrates. Progress on interfaces was solidified. The previous findings on silk -metal interfaces
The report gives results of a demonstration/research project to evaluate sub-slab depressurization (SSD) techniques for radon mitigation in North Florida where the housing stock is primarily slab-on-grade and the sub-slab medium typically consists of native soil and sand. Objecti...
The report gives results of a demonstration/research project to evaluate sub-slab depressurization (SSD) techniques for radon mitigation in North Florida where the housing stock is primarily slab-on-grade and the sub-slab medium typically consists of native soil and sand. Objecti...
NREL Scientists Demonstrate Remarkable Stability in Perovskite Solar Cells
environmentally stable, high-efficiency perovskite solar cell, bringing the emerging technology a step closer to needed to make the devices durable enough for long-term use. NREL's unencapsulated solar cell-a cell used Unencapsulated Perovskite Solar Cells for >1000 Hours of Operational Stability." "A solar cell in
2009-08-12
Man-In- The-Loop Simulation Integration & Demonstrators FTTS JLTV Future Force MRAP Thermal / CFD Crew Safety Structures/Durability Blast Dynamics ...Scott Stilson – General Dynamics Land Systems Chief Engineer, Stryker Modernization (S-Mod) Program The Application of Modeling and Simulation to the S...Military Ground Vehicles Nammalwar Purushothaman, Paramsothy Jayakumar & James Critchley – BAE Systems Sandip Datta & Venkat Pisipati – TAC World Wide
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1982-01-01
Rig tests of a can-type combustor were performed to demonstrate two advanced ground power engine combustor concepts: steam cooled rich-burn combustor primary zones for enhanced durability; and variable combustor geometry for three stage combustion equivalence ratio control. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This offers the potential of both long life and reduced use of strategic materials for liner fabrication. Three degrees of variable geometry were successfully implemented to control airflow distribution within the combustor. One was a variable blade angle axial flow air swirler to control primary airflow while the other two consisted of rotating bands to control secondary and tertiary or dilution air flow.
NASA Astrophysics Data System (ADS)
Chiryatyeva, Aleksandra; Trebushat, Dmitry; Prokhorokhin, Aleksei; Khakhalkin, Vladimir; Andreev, Mark; Novokhreschenov, Aleksei; Kretov, Evgeny
2017-12-01
Cardiovascular diseases are the leading cause of death worldwide. Valvular heart disease often requires valve repair or replacement. Today, surgery uses xenograft—porcine or bovine pericardium. However, bioprosthetic valves do not ensure sufficient durability. We investigated 0.6% glutaraldehyde-treated porcine pericardium to define its properties. Using a tensile test stand, we studied characteristics of the polymeric material—expanded polytetrafluoroethylene (ePTFE)—and compared it to xenopericardium. The artificial material provides a better durability; it has higher elastic modulus and ultimate tensile strength. However, ePTFE samples demonstrated direction anisotropy due to extrusion features. It requires the enhancement of quality of the ePTFE sheet or investigation of other polymeric materials to find the adequate replacement for bioprosthetic heart valves.
A new specimen management system using RFID technology.
Shim, Hun; Uh, Young; Lee, Seung Hwan; Yoon, Young Ro
2011-12-01
The specimen management system with barcode needs to be improved in order to solve inherent problems in work performance. This study describes the application of Radio Frequency Identification (RFID) which is the solution for the problems associated with specimen labeling and management. A new specimen management system and architecture with RFID technology for clinical laboratory was designed. The suggested system was tested in various conditions such as durability to temperature and aspect of effective utilization of new work flow under a virtual hospital clinical laboratory environment. This system demonstrates its potential application in clinical laboratories for improving work flow and specimen management. The suggested specimen management system with RFID technology has advantages in comparison to the traditional specimen management system with barcode in the aspect of mass specimen processing, robust durability of temperature, humidity changes, and effective specimen tracking.
Thermal cycle testing of Space Station Freedom solar array blanket coupons
NASA Technical Reports Server (NTRS)
Scheiman, David A.; Schieman, David A.
1991-01-01
Lewis Research Center is presently conducting thermal cycle testing of solar array blanket coupons that represent the baseline design for Space Station Freedom. Four coupons were fabricated as part of the Photovoltaic Array Environment Protection (PAEP) Program, NAS 3-25079, at Lockheed Missile and Space Company. The objective of the testing is to demonstrate the durability or operational lifetime of the solar array welded interconnect design within the durability or operational lifetime of the solar array welded interconnect design within a low earth orbit (LEO) thermal cycling environment. Secondary objectives include the observation and identification of potential failure modes and effects that may occur within the solar array blanket coupons as a result of thermal cycling. The objectives, test articles, test chamber, performance evaluation, test requirements, and test results are presented for the successful completion of 60,000 thermal cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Weiqing; Wang, Liang; Deng, Fei
Proton conductivity of the polymer electrolyte membranes in fuel cells dictates their performance and requires sufficient water management. Here, we report a simple, scalable method to produce well-dispersed transition metal carbide nanoparticles. We demonstrate that these, when added as an additive to the proton exchange Nafion membrane, provide significant enhancement in power density and durability over 100 hours, surpassing both the baseline Nafion and platinum-containing recast Nafion membranes. Using focused ion beam/scanning electron microscope tomography reveals the key membrane degradation mechanism. Density functional theory exposes that OH• and H• radicals adsorb more strongly from solution and reactions producing OH• aremore » significantly more endergonic on tungsten carbide than on platinum. Consequently, tungsten carbide may be a promising catalyst in self-hydrating crossover gases while retarding desorption of and capturing free radicals formed at the cathode, resulting in enhanced membrane durability.« less
42 CFR 414.229 - Other durable medical equipment-capped rental items.
Code of Federal Regulations, 2011 CFR
2011-10-01
... AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.229 Other durable medical... 42 Public Health 3 2011-10-01 2011-10-01 false Other durable medical equipment-capped rental items...
42 CFR 414.229 - Other durable medical equipment-capped rental items.
Code of Federal Regulations, 2010 CFR
2010-10-01
... AND HUMAN SERVICES (CONTINUED) MEDICARE PROGRAM PAYMENT FOR PART B MEDICAL AND OTHER HEALTH SERVICES Payment for Durable Medical Equipment and Prosthetic and Orthotic Devices § 414.229 Other durable medical... 42 Public Health 3 2010-10-01 2010-10-01 false Other durable medical equipment-capped rental items...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement in...
Highly Dispersed Alloy Catalyst for Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vivek S. Murthi; Izzo, Elise; Bi, Wu
2013-01-08
Achieving DOE's stated 5000-hr durability goal for light-duty vehicles by 2015 will require MEAs with characteristics that are beyond the current state of the art. Significant effort was placed on developing advanced durable cathode catalysts to arrive at the best possible electrode for high performance and durability, as well as developing manufacturing processes that yield significant cost benefit. Accordingly, the overall goal of this project was to develop and construct advanced MEAs that will improve performance and durability while reducing the cost of PEMFC stacks. The project, led by UTC Power, focused on developing new catalysts/supports and integrating them withmore » existing materials (membranes and gas diffusion layers (GDLs)) using state-of-the-art fabrication methods capable of meeting the durability requirements essential for automotive applications. Specifically, the project work aimed to lower platinum group metals (PGM) loading while increasing performance and durability. Appropriate catalysts and MEA configuration were down-selected that protects the membrane, and the layers were tailored to optimize the movements of reactants and product water through the cell to maximize performance while maintaining durability.« less
Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abumeri, Galib; Abdi, Frank
2012-02-16
The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relationships obtained from testing of the blade with baseline neat material were compared to the ones from analytical simulation using neat resin and using silica nanoparticles in the resin. Multi-scale PFA results for the neat material construction matched closely those from test for both load displacement and location and type of damage and failure. AlphaSTAR demonstrated that wind blade structures made from advanced composite materials can be certified with multi-scale progressive failure analysis by following building block verification approach.« less
Wendling, Mark R; Melvin, W Scott; Perry, Kyle A
2013-10-01
Gastroesophageal reflux disease (GERD) remains a significant problem for the medical community. Many endoluminal treatments for GERD have been developed with little success. Currently, transoral incisionless fundoplication (TIF) attempts to recreate a surgical fundoplication through placement of full-thickness polypropylene H-fasteners. This, the most recent procedure to gain FDA approval, has shown some promise in the early data. However, questions of its safety profile, efficacy, and durability remain. The Cochrane Library and MEDLINE through PubMed were searched to identify published studies reporting on subjective and objective GERD indices after TIF. The search was limited to human studies published in English from 2006 up to March 2012. Data collected included GERD-HRQL and RSI scores, PPI discontinuation and patient satisfaction rates, pH study metrics, complications, and treatment failures. Statistical analysis was performed with weighted t tests. Titles and abstracts of 214 papers were initially reviewed. Fifteen studies were found to be eligible, reporting on over 550 procedures. Both GERD-HRQL scores (21.9 vs. 5.9, p < 0.0001) and RSI scores (24.5 vs. 5.4, p ≤ 0.0001) were significantly reduced after TIF. Overall patient satisfaction was 72 %. The overall rate of PPI discontinuation was 67 % across all studies, with a mean follow-up of 8.3 months. pH metrics were not consistently normalized. The major complication rate was 3.2 % and the failure rate was 7.2 % across all studies. TIF appears to provide symptomatic relief with reasonable levels of patient satisfaction at short-term follow-up. A well-designed prospective clinical trial is needed to assess the effectiveness and durability of TIF as well as to identify the patient population that will benefit from this procedure.
Finger, E R
2001-04-15
The transmalar subperiosteal midface lift is a simple, direct-approach procedure to be performed with a meloplasty. The entry into the midface is at the site of maximum suture tension, which allows for more elevation. The skin is elevated enough to expose the entry site, which is on the zygoma just cephalad to the origins of the zygomaticus muscles. Through a small hole at that site, a periosteal elevator is used for the midface dissection. This is a blind dissection, and the technique is described. The advantages of the technique are that there is (1) no lower-lid incision or risk of an ectropion, (2) a resultant tightening and elevation of the lower lid, (3) more elevation and durability because the zygomaticus muscle origins are elevated with the periosteum and are sutured to the very substantial deep temporal fascia, (4) a simple and fast procedure, and (5) no telltale sign of a face lift. Both the superficial musculoaponeurotic system (SMAS) and the skin are substantially elevated with the transmalar subperiosteal midface lift to the extent that they should be only minimally dissected. In the author's opinion, the extended dissection of the skin and/or the SMAS does not increase the amount of tissue lift and probably reduces it in most cases, considering that the goal is a natural look and not one that appears pulled or stretched. The skin is elevated only for exposure, and the SMAS is elevated only enough to create a preauricular SMAS-platysma flap to tighten the neck. With two fewer layers of dissection, there is significantly less postoperative swelling and recovery time. The article presents the technique, the results on 272 patients over a period of 5 years, and a discussion. No patients described have had secondary procedures such as lasers, so the transmalar subperiosteal midface lift can be evaluated on its own merit.
Development of iron phosphate ceramic waste form to immobilize radioactive waste solution
NASA Astrophysics Data System (ADS)
Choi, Jongkwon; Um, Wooyong; Choung, Sungwook
2014-09-01
The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions were 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.
Development of iron phosphate ceramic waste form to immobilize radioactive waste solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Jongkwon; Um, Wooyong; Choung, Sungwook
The objective of this research was to develop an iron phosphate ceramic (IPC) waste form using converter slag obtained as a by-product of the steel industry as a source of iron instead of conventional iron oxide. Both synthetic off-gas scrubber solution containing technetium-99 (or Re as a surrogate) and LiCl-KCl eutectic salt, a final waste solution from pyrochemical processing of spent nuclear fuel, were used as radioactive waste streams. The IPC waste form was characterized for compressive strength, reduction capacity, chemical durability, and contaminant leachability. Compressive strengths of the IPC waste form prepared with different types of waste solutions weremore » 16 MPa and 19 MPa for LiCl-KCl eutectic salt and the off-gas scrubber simulant, respectively, which meet the minimum compressive strength of 3.45 MPa (500 psi) for waste forms to be accepted into the radioactive waste repository. The reduction capacity of converter slag, a main dry ingredient used to prepare the IPC waste form, was 4,136 meq/kg by the Ce(IV) method, which is much higher than those of the conventional Fe oxides used for the IPC waste form and the blast furnace slag materials. Average leachability indexes of Tc, Li, and K for the IPC waste form were higher than 6.0, and the IPC waste form demonstrated stable durability even after 63-day leaching. In addition, the Toxicity Characteristic Leach Procedure measurements of converter slag and the IPC waste form with LiCl-KCl eutectic salt met the universal treatment standard of the leachability limit for metals regulated by the Resource Conservation and Recovery Act. This study confirms the possibility of development of the IPC waste form using converter slag, showing its immobilization capability for radionuclides in both LiCl-KCl eutectic salt and off-gas scrubber solutions with significant cost savings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karmis, Michael; Luttrell, Gerald; Ripepi, Nino
The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less
Aschoff, H-H; Juhnke, D-L
2016-05-01
In 1999 the first endo-exo femoral prosthesis (EEFP) was implanted in Germany in a patient who had suffered a traumatic above-knee amputation. This procedure involves a skeletally anchored exoprosthetic device that is inserted into the residual femur. The distal part of the implant protrudes transcutaneously and allows attachment to a prosthetic limb which provides direct force transmission to the external prosthetic components. The technique originated from dental implantology and helps to avoid possible problems resulting from treatment of amputated limbs using socket prostheses. In the meantime, durability times of over 10 years have now helped to invalidate the initially well-founded reservations held against the procedure. What advantages can be achieved by osseointegrated and percutaneously channeled prostheses and which problems had to be overcome for treatment. Critical evaluation of data from patients operated on in Lübeck, Germany from January 2003 to December 2014. With osseointegrated and percutaneously channeled prostheses permanent durability times can be achieved. Infection-associated soft tissue problems at the site of skin protrusion (stoma) can be successfully prevented. The creation of this so-called stoma means acceptance of a possible bacterial portal of entry into the body. Patient satisfaction has so far been high, postoperative rehabilitation is simplified and the technique could possibly lower the costs of medical treatment. Endo-exo prostheses have proved to be successful for more than 15 years. A critical appraisal of the indications as well as a close cooperation between the surgeon, orthopedic technician and the associated rehabilitation facilities with the patient are the basis for the long-term success of this relatively new treatment approach.
Compositional threshold for Nuclear Waste Glass Durability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Albert A.; Farooqi, Rahmatullah; Hrma, Pavel R.
2013-04-24
Within the composition space of glasses, a distinct threshold appears to exist that separates "good" glasses, i.e., those which are sufficiently durable, from "bad" glasses of a low durability. The objective of our research is to clarify the origin of this threshold by exploring the relationship between glass composition, glass structure and chemical durability around the threshold region.
Microbial Community Analysis of Naturally Durable Wood in an Above Ground Field Test
G.T. Kirker; S.V. Diehl; P.K. Lebow
2014-01-01
This paper presents preliminary results of an above ground field test wherein eight naturally durable wood species were exposed concurrently at two sites in North America. Surface samples were taken at regular intervals from non-durable controls and compared to their more durable counterparts. Terminal Restriction Fragment Length Polymorphism was performed to...
Combined hydrophobicity and mechanical durability through surface nanoengineering
Elliott, Paul R.; Stagon, Stephen P.; Huang, Hanchen; ...
2015-04-08
This paper reports combined hydrophobicity and mechanical durability through the nanoscale engineering of surfaces in the form of nanorod-polymer composites. Specifically, the hydrophobicity derives from nanoscale features of mechanically hard ZnO nanorods and the mechanical durability derives from the composite structure of a hard ZnO nanorod core and soft polymer shell. Experimental characterization correlates the morphology of the nanoengineered surfaces with the combined hydrophobicity and mechanical durability, and reveals the responsible mechanisms. Such surfaces may find use in applications, such as boat hulls, that benefit from hydrophobicity and require mechanical durability.
[Method to make the tricuspid extracardiac conduit by heterogeneous pericardium].
Yamagishi, M; Imai, Y; Koh, Y; Nagatsu, M; Matsuo, K; Kurosawa, H
1992-07-01
We described here, how to make tricuspid extracardiac conduit by heterogeneous pericardium for Rastelli procedure. We have developed some ingenious devices which allow to obtain good hemodynamics. One of the devices is large valvular leaflets as long as 130% of the circumference of the conduit. Another device is the commissural suture as figure of eight. We used 121 tricuspid extracardiac conduits between January 1985 and March 1991. There were two reoperations: One from stenosis at the suture with ventricle and the other from infective endocarditis. This hand-made conduit has the advantages of flexibility, fitness with the pulmonary artery, wide range of size and very little regurgitation. These advantages indicate that the tricuspid extracardiac conduit made by heterogeneous pericardium is a valved conduit substitute of choice for Rastelli procedure. The durability of the conduit is to be further evaluated.
Küllmer, Armin; Schmidt, Arthur; Caca, Karel
2016-03-01
We report on two patients with recurrent episodes of chronic intestinal pseudo-obstruction (CIPO). A 50-year-old woman with severe multiple sclerosis and an 84-year-old man with Parkinson's disease and dementia had multiple hospital admissions because of pain and distended abdomen. Radiographic and endoscopic findings showed massive dilation of the colon without any evidence of obstruction. Conservative management resolved symptoms only for a short period of time. As these patients were poor candidates for any surgical treatment we carried out percutaneous endoscopic colostomy by placing a 20-Fr tube in the cecum with the introducer method. The procedure led to durable symptom relief without complications. We present these two cases and give a review through the existing literature of the procedure in CIPO. © 2015 Japan Gastroenterological Endoscopy Society.
Revisiting the role of durable polymers in cardiovascular devices.
Mori, Hiroyoshi; Otsuka, Fumiyuki; Gupta, Anuj; Jinnouchi, Hiroyuki; Torii, Sho; Harari, Emanuel; Virmani, Renu; Finn, Aloke V
2017-11-01
Polymers are an essential component of drug-eluting stents (DES) used to control drug release but remain the most controversial component of DES technology. There are two types of polymers employed in DES: durable polymer based DES (DP-DES) and biodegradable polymer DES (BP-DES). First-generation DES were exclusively composed of DP and demonstrated increased rates of late stent failure due in part to poor polymer biocompatibility. Newer generations DES use more biocompatible durable polymers or biodegradable polymers. Areas covered: We will cover issues identified with 1st-generation DP-DES, areas of success and failure in 2nd-generation DP-DES and examine the promise and shortcomings of BP-DES. Briefly, fluorinated polymers used in 2nd-generation DP-DES have excellent anti-thrombogenicity and better biocompatibility than 1st-generation DES polymers. However, these devices lead to persistent drug exposure to the endothelium which impairs endothelial function and predisposes towards neoatherosclerosis. Meanwhile, BP-DES has shortened the duration of drug exposure which might be beneficial for endothelial functional recovery leading to less neoatherosclerosis. However, it remains uncertain whether the long-term biocompatibility of bare metal surfaces is better than that of polymer-coated metals. Expert commentary: Each technology has distinct advantages, which can be optimized depending upon the particular characteristics of the patient being treated.
Extended Durability Testing of an External Fuel Processor for a Solid Oxide Fuel Cell (SOFC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Perna; Anant Upadhyayula; Mark Scotto
2012-11-05
Durability testing was performed on an external fuel processor (EFP) for a solid oxide fuel cell (SOFC) power plant. The EFP enables the SOFC to reach high system efficiency (electrical efficiency up to 60%) using pipeline natural gas and eliminates the need for large quantities of bottled gases. LG Fuel Cell Systems Inc. (formerly known as Rolls-Royce Fuel Cell Systems (US) Inc.) (LGFCS) is developing natural gas-fired SOFC power plants for stationary power applications. These power plants will greatly benefit the public by reducing the cost of electricity while reducing the amount of gaseous emissions of carbon dioxide, sulfur oxides,more » and nitrogen oxides compared to conventional power plants. The EFP uses pipeline natural gas and air to provide all the gas streams required by the SOFC power plant; specifically those needed for start-up, normal operation, and shutdown. It includes a natural gas desulfurizer, a synthesis-gas generator and a start-gas generator. The research in this project demonstrated that the EFP could meet its performance and durability targets. The data generated helped assess the impact of long-term operation on system performance and system hardware. The research also showed the negative impact of ambient weather (both hot and cold conditions) on system operation and performance.« less
NASA Astrophysics Data System (ADS)
Xu, Liangfei; Reimer, Uwe; Li, Jianqiu; Huang, Haiyan; Hu, Zunyan; Jiang, Hongliang; Janßen, Holger; Ouyang, Minggao; Lehnert, Werner
2018-02-01
City buses using polymer electrolyte membrane (PEM) fuel cells are considered to be the most likely fuel cell vehicles to be commercialized in China. The technical specifications of the fuel cell systems (FCSs) these buses are equipped with will differ based on the powertrain configurations and vehicle control strategies, but can generally be classified into the power-follow and soft-run modes. Each mode imposes different levels of electrochemical stress on the fuel cells. Evaluating the aging behavior of fuel cell stacks under the conditions encountered in fuel cell buses requires new durability test protocols based on statistical results obtained during actual driving tests. In this study, we propose a systematic design method for fuel cell durability test protocols that correspond to the power-follow mode based on three parameters for different fuel cell load ranges. The powertrain configurations and control strategy are described herein, followed by a presentation of the statistical data for the duty cycles of FCSs in one city bus in the demonstration project. Assessment protocols are presented based on the statistical results using mathematical optimization methods, and are compared to existing protocols with respect to common factors, such as time at open circuit voltage and root-mean-square power.
NASA Astrophysics Data System (ADS)
Fu, Sulei; Wang, Weibiao; Xiao, Li; Lu, Zengtian; Li, Qi; Song, Cheng; Zeng, Fei; Pan, Feng
2018-04-01
Achieving high resistance to acoustomigration and electromigration in the electrodes used in high-power and high-frequency surface acoustic wave (SAW) filters is important to mobile communications development. In this study, the effects of the Ti buffer layers on the textures and acoustomigration and electromigration resistances of the Al-Cu electrodes were studied comprehensively. The results demonstrate that both power durability and electromigration lifetime are positively correlated with the Al-Cu electrode texture quality. Ultrathin (˜2 nm) Ti can lead to the strongest Al-Cu (111) textured electrodes, with a full width at half maximum of the rocking curve of 2.09°. This represents a remarkable enhancement of the power durability of high-frequency 2.6 GHz SAW filters from 29 dBm to 35 dBm. It also produces lifetime almost 7 times longer than those of electrodes without Ti buffer layers in electromigration tests. X-ray diffraction and transmission electron microscopy analyses revealed that these improved acoustomigration and electromigration resistances can be attributed primarily to the reductions in overall and large-angle grain boundaries in the highly Al-Cu (111) textured electrodes. Furthermore, the growth mechanism of highly Al-Cu texture films is discussed in terms of surface-interface energy balance.
Ancient Chemistry "Pharaoh's Snakes" for Efficient Fe-/N-Doped Carbon Electrocatalysts.
Ren, Guangyuan; Gao, Liangliang; Teng, Chao; Li, Yunan; Yang, Hequn; Shui, Jianglan; Lu, Xianyong; Zhu, Ying; Dai, Liming
2018-04-04
The method of fabricating nonprecious metal electrocatalysts with high activity and durability through a facile and eco-friendly procedure is of great significance to the development of low-cost fuel cells and metal-air batteries. Herein, we present that an ancient chemical reaction of "Pharaoh's snakes" can be a fast and convenient technique to prepare Fe-/N-doped carbon (Fe/N-C) nanosheet/nanotube electrocatalysts with sugar, soda, melamine, and iron nitrate as precursors. The resultant Fe/N-C catalyst has a hierarchically porous structure, a large surface area, and uniformly distributed active sites. The catalyst shows high electrocatalytic activities toward both the oxygen reduction reaction with a half-wave potential of 0.90 V (vs reversible hydrogen electrode) better than that of Pt/C and the oxygen evolution reaction with an overpotential of 0.46 V at the current density of 10 mA cm -2 comparable to that of RuO 2 . The activity and stability of the catalyst are also evaluated in primary and rechargeable Zn-air batteries. In both conditions, three-dimensional Fe/N-C exhibited performances superior to Pt/C. Our work demonstrates a success of utilizing an ancient science to make a state-of-the-art electrocatalyst.
Kavarana, Minoo N.; Jones, Jeffrey A.; Stroud, Robert E.; Bradley, Scott M.; Ikonomidis, John S.; Mukherjee, Rupak
2015-01-01
Children with functional single ventricle heart disease are commonly palliated down a staged clinical pathway toward a Fontan completion procedure (total cavopulmonary connection). The Fontan physiology is fraught with long term complications associated with lower body systemic venous hypertension, eventually resulting in significant morbidity and mortality. The bidirectional Glenn shunt or superior cavopulmonary connection (SCPC) is commonly the transitional stage in single ventricle surgical management and provides excellent palliation. Some studies have demonstrated lower morbidity and mortality with the SCPC when compared with the Fontan. Unfortunately the durability of the SCPC is significantly limited by the development of pulmonary arteriovenous malformations (PAVMs) which have been commonly attributed to the absence of hepatic venous blood flow and the lack of pulsatile flow to the affected lungs. Abnormal angiogenesis has been suggested as a final common pathway to PAVM development. Understanding these fundamental mechanisms through the investigation of angiogenic pathways associated with the pathogenesis of PAVMs would help to develop medical therapies that could prevent or reverse this complication following SCPC. Such therapies could improve the longevity of the SCPC, potentially eliminate or significantly postpone the Fontan completion with its associated complications, and improve long-term survival in children with single ventricle disease. PMID:24758411
Quan, Hong-zhu; Kasami, Hideo
2014-01-01
In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%-20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized.
Arizzi, Anna; Viles, Heather; Martín-Sanchez, Inés; Cultrone, Giuseppe
2016-01-15
Hemp-based composites are eco-friendly building materials as they improve energy efficiency in buildings and entail low waste production and pollutant emissions during their manufacturing process. Nevertheless, the organic nature of hemp enhances the bio-receptivity of the material, with likely negative consequences for its long-term performance in the building. The main purpose of this study was to study the response at macro- and micro-scale of hemp-lime renders subjected to weathering simulations in an environmental cabinet (one year was condensed in twelve days), so as to predict their long-term durability in coastal and inland areas with Mediterranean, Tropical and Semi-arid climates, also in relation with the lime type used. The simulated climatic conditions caused almost unnoticeable mass, volume and colour changes in hemp-lime renders. No efflorescence or physical breakdown was detected in samples subjected to NaCl, because the salt mainly precipitates on the surface of samples and is washed away by the rain. Although there was no visible microbial colonisation, alkaliphilic fungi (mainly Penicillium and Aspergillus) and bacteria (mainly Bacillus and Micrococcus) were isolated in all samples. Microbial growth and diversification were higher under Tropical climate, due to heavier rainfall. The influence of the bacterial activity on the hardening of samples has also been discussed here and related with the formation and stabilisation of vaterite in hemp-lime mixes. This study has demonstrated that hemp-lime renders show good durability towards a wide range of environmental conditions and factors. However, it might be useful to take some specific preventive and maintenance measures to reduce the bio-receptivity of this material, thus ensuring a longer durability on site. Copyright © 2015 Elsevier B.V. All rights reserved.
Djian-Caporalino, Caroline; Palloix, Alain; Fazari, Ariane; Marteu, Nathalie; Barbary, Arnaud; Abad, Pierre; Sage-Palloix, Anne-Marie; Mateille, Thierry; Risso, Sabine; Lanza, Roger; Taussig, Catherine; Castagnone-Sereno, Philippe
2014-02-22
Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens.
2014-01-01
Background Resistant cultivars are key elements for pathogen control and pesticide reduction, but their repeated use may lead to the emergence of virulent pathogen populations, able to overcome the resistance. Increased research efforts, mainly based on theoretical studies, explore spatio-temporal deployment strategies of resistance genes in order to maximize their durability. We evaluated experimentally three of these strategies to control root-knot nematodes: cultivar mixtures, alternating and pyramiding resistance genes, under controlled and field conditions over a 3-years period, assessing the efficiency and the durability of resistance in a protected crop rotation system with pepper as summer crop and lettuce as winter crop. Results The choice of the resistance gene and the genetic background in which it is introgressed, affected the frequency of resistance breakdown. The pyramiding of two different resistance genes in one genotype suppressed the emergence of virulent isolates. Alternating different resistance genes in rotation was also efficient to decrease virulent populations in fields due to the specificity of the virulence and the trapping effect of resistant plants. Mixing resistant cultivars together appeared as a less efficient strategy to control nematodes. Conclusions This work provides experimental evidence that, in a cropping system with seasonal sequences of vegetable species, pyramiding or alternating resistance genes benefit yields in the long-term by increasing the durability of resistant cultivars and improving the long-term control of a soil-borne pest. To our knowledge, this result is the first one obtained for a plant-nematode interaction, which helps demonstrate the general applicability of such strategies for breeding and sustainable management of resistant cultivars against pathogens. PMID:24559060
Porous textile antenna designs for improved wearability
NASA Astrophysics Data System (ADS)
Shahariar, Hasan; Soewardiman, Henry; Muchler, Clifford A.; Adams, Jacob J.; Jur, Jesse S.
2018-04-01
Textile antennas are an integral part of the next generation personalized wearable electronics system. However, the durability of textile antennas are rarely discussed in the literature. Typical textile antennas are prone to damage during normal wearable user scenarios, washing, and heat cycling over time. Fabricating a durable, washable, flexible, and breathable (like textile materials) antenna is challenging due to the incompatibility of the mechanical properties of conductive materials and soft textile materials. This paper describes a scalable screen printing process on an engineered nonwoven substrate to fabricate microstrip patch antennas with enhanced durability. This work used an Evolon® nonwoven substrate with low surface roughness (˜Ra = 18 μm) and high surface area (˜2.05 mm2 mm-2 of fabric area) compared to traditional textile materials, which allows the ink to penetrate evenly in the fiber bulk with its strong capillary wicking force and enhances print resolution. The composite layer of ink and fiber is conductive and enables the antennas to maintain high mechanical flexibility without varying its RF (Radio Frequency) properties. Additionally, the antennas are packaged by laminating porous polyurethane web to make the device durable and washable. The fully packaged antennas maintain the structural flexibility and RF functionality after 15 cycles of washing and drying. To improve the air permeability and enhance flexibility the antenna is also modified by incorporating holes in the both patch and ground layer of the antenna. The antennas were analyzed before and after submerging in water to observe the effect of wetting and drying with respect to frequency response. The porous antenna with holes recovered 3x times faster than the one without holes (solid) from fully wet state (saturated with water) to the dry state, demonstrating its potential use as a moisture sensor system.
Research on durability of a concrete continuous rigid frame bridge
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Ran, Zhi-hong
2018-05-01
The research on the durability of concrete structures has also become one of the most important topics for discussion at international academic institutions and conferences. This paper summarizes and reviews the current research on the durability of bridge structure of the bridge at the index relationship between state lifetime and structure durability. According to the actual situation in this paper on a continuous rigid frame bridge China of Yunnan as an example, this bridge was completed and opened to traffic during the first half of the year, a series of tests are carried out for the durability problem. It is found that all the indicators are good within six months after the bridge opened to traffic, but durability issues should be further studied in future monitoring efforts.
Kremer, M; Lang, E; Berger, A C
2000-09-01
Integra artificial skin (Integra LifeSciences Corp., Plainsboro, NJ, USA) is a dermal template consisting of bovine collagen, chondroitin-6-sulphate and a silastic membrane manufactured as Integra. This product has gained widespread use in the clinical treatment of third degree burn wounds and full thickness skin defects of different aetiologies. The product was designed to significantly reduce the time needed to achieve final wound closure in the treatment of major burn wounds, to optimise the sparse autologous donor skin resources and to improve the durable mechanical quality of the skin substitute. The clinical procedure requires two stages. The first step creates a self neodermis, the second creates a self epidermis on the neodermis. However, it is desirable to cover major burn wounds early in a single step by a skin substitute consisting of a dermal equivalent seeded in vitro with autologous keratinocytes ('composite-skin') out of which a full thickness skin develops in vivo.The goal of this experimental study was to develop a method to integrate human keratinocytes in homogeneous distribution and depth into Integra Artificial Skin. The seeded cell-matrix composites were grafted onto athymic mice in order to evaluate their potential to reconstitute a human epidermis in vivo. We were able to demonstrate that the inoculated human keratinocytes reproducibly displayed a homogeneous pattern of distribution, adherence, proliferation and confluence. The cell-matrix composites grafted in this model exhibited good wound adherence, complete healing, minor wound contraction and had the potential to reconstitute an elastic, functional and durable human skin. Histologically we were able to show that the inoculated human keratinocytes in vivo colonised the matrix in a histomorphologically characteristic epidermal pattern (keratomorula, keratinocyte bubbling) and developed a persisting, stratified, keratinising epidermis which immunohistologically proved to be of human origin. These experimental results demonstrate the establishment of an effective cell cultivation process which may be suitable for scale-up production of the epidermal component as large-scale composite-skin grafts. When seeded into Integratrade mark and grafted onto the nude mouse a replacement skin with normal functioning dermal-epidermal components was developed. These results encourage the design of a clinical trial to assess the function of this composite graft in man.
Durable silver mirror with ultra-violet thru far infra-red reflection
Wolfe, Jesse D.
2010-11-23
A durable highly reflective silver mirror characterized by high reflectance in a broad spectral range of about 300 nm in the UV to the far infrared (.about.10000 nm), as well as exceptional environmental durability. A high absorptivity metal underlayer is used which prevents the formation of a galvanic cell with a silver layer while increasing the reflectance of the silver layer. Environmentally durable overcoat layers are provided to enhance mechanical and chemical durability and protect the silver layer from corrosion and tarnishing, for use in a wide variety of surroundings or climates, including harsh or extreme environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Sara; Rothgeb, Stacey; Polly, Ben
The U.S. Department of Energy (DOE) Building America Program enables the transformation of the U.S. housing industry to achieve energy savings through energy-efficient, high-performance homes with improved durability, comfort, and health for occupants. Building America bridges the gap between the development of emerging technologies and the adoption of codes and standards by engaging industry partners in applied research, development, and demonstration of high-performance solutions.
Improved strength and durability of concrete through metabolic activity of ureolytic bacteria.
Alonso, Maria Jose Castro; Ortiz, Carlos Eloir Lopez; Perez, Sixto Omar Garcia; Narayanasamy, Rajeswari; Fajardo San Miguel, Gerardo Del Jesús; Hernández, Héctor Herrera; Balagurusamy, Nagamani
2017-06-07
In recent years, biomineralization process is being employed in development of bioconcrete, which is emerging as a sustainable method to enhance the durability of concrete by way of increasing compressive strength and reducing the chloride permeability. In this study, different bacterial strains isolated from the soils of the Laguna Region of Mexico were selected for further study. ACRN5 strain demonstrated higher urease activity than other strains, and the optimum substrate concentration, pH, and temperature were 120 mM, pH 8, and 25 °C, respectively. Further, Km and Vmax of urease activity of ACRN5 were 21.38 mM and 0.212 mM min -1 , respectively. It was observed that addition of ACRN5 at 10 5 cells ml -1 to cement-water mixture significantly increased (14.94%) in compressive strength after 36 days of curing and reduced chloride penetration. Deposition of calcite in bio-mortars was observed in scanning electron microscopy and energy dispersive X-ray diffraction spectrometry analyses. Results of this study demonstrated the role of microbially induced calcium carbonate precipitation in improving the physico-mechanical properties of bio-mortars.
Semiconductor nanostructures for artificial photosynthesis
NASA Astrophysics Data System (ADS)
Yang, Peidong
2012-02-01
Nanowires, with their unique capability to bridge the nanoscopic and macroscopic worlds, have already been demonstrated as important materials for different energy conversion. One emerging and exciting direction is their application for solar to fuel conversion. The generation of fuels by the direct conversion of solar energy in a fully integrated system is an attractive goal, but no such system has been demonstrated that shows the required efficiency, is sufficiently durable, or can be manufactured at reasonable cost. One of the most critical issues in solar water splitting is the development of a suitable photoanode with high efficiency and long-term durability in an aqueous environment. Semiconductor nanowires represent an important class of nanostructure building block for direct solar-to-fuel application because of their high surface area, tunable bandgap and efficient charge transport and collection. Nanowires can be readily designed and synthesized to deterministically incorporate heterojunctions with improved light absorption, charge separation and vectorial transport. Meanwhile, it is also possible to selectively decorate different oxidation or reduction catalysts onto specific segments of the nanowires to mimic the compartmentalized reactions in natural photosynthesis. In this talk, I will highlight several recent examples in this lab using semiconductor nanowires and their heterostructures for the purpose of direct solar water splitting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.
O'Neill, Mark B.; Henderson, Andrew J.; Hebrink, Timothy J.; Katare, Rajesh K.; Jing, Naiyong; North, Diane; Peterson, Eric M.
2017-02-14
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.
Prediction of glass durability as a function of environmental conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C M
1988-01-01
A thermodynamic model of glass durability is applied to natural, ancient, and nuclear waste glasses. The durabilities of over 150 different natural and man-made glasses, including actual ancient Roman and Islamic glasses (Jalame ca. 350 AD, Nishapur 10-11th century AD and Gorgon 9-11th century AD), are compared. Glass durability is a function of the thermodynamic hydration free energy, ..delta..G/sub hyd/, which can be calculated from glass composition and solution pH. The durability of the most durable nuclear waste glasses examined was /approximately/10/sup 6/ years. The least durable waste glass formulations were comparable in durability to the most durable simulated medievalmore » window glasses of /approximately/10/sup 3/ years. In this manner, the durability of nuclear waste glasses has been interpolated to be /approximately/10/sup 6/ years and no less than 10/sup 3/ years. Hydration thermodynamics have been shown to be applicable to the dissolution of glass in various natural environments. Groundwater-glass interactions relative to geologic disposal of nuclear waste, hydration rind dating of obsidians, andor other archeological studies can be modeled, e.g., the relative durabilities of six simulated medieval window glasses have been correctly predicted for both laboratory (one month) and burial (5 years) experiments. Effects of solution pH on glass dissolution has been determined experimentally for the 150 different glasses and can be predicted theoretically by hydration thermodynamics. The effects of solution redox on dissolution of glass matrix elements such as SI and B have shown to be minimal. The combined effects of solution pH and Eh have been described and unified by construction of thermodynamically calculated Pourbaix (pH-Eh) diagrams for glass dissolution. The Pourbaix diagrams have been quantified to describe glass dissolution as a function of environmental conditions by use of the data derived from hydration thermodynamics. 56 refs., 7 figs.« less
Rapid immobilization of simulated radioactive soil waste by microwave sintering.
Zhang, Shuai; Shu, Xiaoyan; Chen, Shunzhang; Yang, Huimin; Hou, Chenxi; Mao, Xueli; Chi, Fangting; Song, Mianxin; Lu, Xirui
2017-09-05
A rapid and efficient method is particularly necessary in the timely disposal of seriously radioactive contaminated soil. In this paper, a series of simulated radioactive soil waste containing different contents of neodymium oxide (3-25wt.%) has been successfully vitrified by microwave sintering at 1300°C for 30min. The microstructures, morphology, element distribution, density and chemical durability of as obtained vitrified forms have been analyzed. The results show that the amorphous structure, homogeneous element distribution, and regular density improvement are well kept, except slight cracks emerge on the magnified surface for the 25wt.% Nd 2 O 3 -containing sample. Moreover, all the vitrified forms exhibit excellent chemical durability, and the leaching rates of Nd are kept as ∼10 -4 -10 -6 g/(m 2 day) within 42days. This demonstrates a potential application of microwave sintering in radioactive contaminated soil disposal. Copyright © 2017 Elsevier B.V. All rights reserved.
Corrosion Behavior and Durability of Low-Alloy Steel Rebars in Marine Environment
NASA Astrophysics Data System (ADS)
Liu, Ming; Cheng, Xuequn; Li, Xiaogang; Yue, Pan; Li, Jun
2016-11-01
The corrosion resistance of Cr-modified low-alloy steels and HRB400 carbon steel was estimated using the open-circuit potential, potentiodynamic polarization, electrochemical impedance spectroscopic, and weight loss methods in simulated concrete pore solution. Results show that Cr-modified steels exhibit a higher corrosion resistance with a higher critical chloride level (CTL), lower corrosion current density, and higher impedance than carbon steel. The CTL of the steels significantly reduces with increasing temperature. Weight loss measurement shows that the Cr-modified steels exhibit low corrosion rates and small corrosion pitting. The primary constituents of the corrosion scales are Fe2O3, Fe3O4, β-FeOOH, γ-FeOOH, and α-FeOOH. A large amount of α-FeOOH could be detected in the Cr-modified steel corrosion products. Moreover, the Cr-modified steels demonstrate a higher durability than HRB400 carbon steel.
Avelumab: a new standard for treating metastatic Merkel cell carcinoma.
Baker, Mairead; Cordes, Lisa; Brownell, Isaac
2018-04-01
Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer. Although MCC is chemosensitive, responses to traditional chemotherapeutic agents are not durable. Avelumab, a novel anti-PD-L1 immune checkpoint inhibitor, recently became the first FDA-approved agent for the treatment of metastatic MCC and represents a new option to improve patient survival. Areas covered: This article presents an overview of MCC and summarizes the development of avelumab in the treatment of metastatic MCC. Preclinical studies, phase 1 and phase 2 clinical trials, and the safety profile of avelumab are reviewed. Future perspectives and ongoing studies are also discussed. Expert commentary: Avelumab demonstrated rapid and durable responses and a manageable safety profile in the treatment of metastatic MCC. Patient outcomes are favorable when compared to historical responses to standard chemotherapy. Ongoing clinical trials will continue to characterize avelumab and its optimal use in MCC therapy.
Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate
NASA Astrophysics Data System (ADS)
Wu, Shaofei; Wang, Wenxi; Li, Minchan; Cao, Lujie; Lyu, Fucong; Yang, Mingyang; Wang, Zhenyu; Shi, Yang; Nan, Bo; Yu, Sicen; Sun, Zhifang; Liu, Yao; Lu, Zhouguang
2016-11-01
It is a challenge to prepare organic electrodes for sodium-ion batteries with long cycle life and high capacity. The highly reactive radical intermediates generated during the sodiation/desodiation process could be a critical issue because of undesired side reactions. Here we present durable electrodes with a stabilized α-C radical intermediate. Through the resonance effect as well as steric effects, the excessive reactivity of the unpaired electron is successfully suppressed, thus developing an electrode with stable cycling for over 2,000 cycles with 96.8% capacity retention. In addition, the α-radical demonstrates reversible transformation between three states: C=C α-C.radical and α-C- anion. Such transformation provides additional Na+ storage equal to more than 0.83 Na+ insertion per α-C radical for the electrodes. The strategy of intermediate radical stabilization could be enlightening in the design of organic electrodes with enhanced cycling life and energy storage capability.
Nanopatched Graphene with Molecular Self-Assembly Toward Graphene-Organic Hybrid Soft Electronics.
Kang, Boseok; Lee, Seong Kyu; Jung, Jaehyuck; Joe, Minwoong; Lee, Seon Baek; Kim, Jinsung; Lee, Changgu; Cho, Kilwon
2018-06-01
Increasing the mechanical durability of large-area polycrystalline single-atom-thick materials is a necessary step toward the development of practical and reliable soft electronics based on these materials. Here, it is shown that the surface assembly of organosilane by weak epitaxy forms nanometer-thick organic patches on a monolayer graphene surface and dramatically increases the material's resistance to harsh postprocessing environments, thereby increasing the number of ways in which graphene can be processed. The nanopatched graphene with the improved mechanical durability enables stable operation when used as transparent electrodes of wearable strain sensors. Also, the nanopatched graphene applied as an electrode modulates the molecular orientation of deposited organic semiconductor layers, and yields favorable nominal charge injection for organic transistors. These results demonstrate the potential for use of self-assembled organic nanopatches in graphene-based soft electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large patternable metal nanoparticle sheets by photo/e-beam lithography
NASA Astrophysics Data System (ADS)
Saito, Noboru; Wang, Pangpang; Okamoto, Koichi; Ryuzaki, Sou; Tamada, Kaoru
2017-10-01
Techniques for micro/nano-scale patterning of large metal nanoparticle sheets can potentially be used to realize high-performance photoelectronic devices because the sheets provide greatly enhanced electrical fields around the nanoparticles due to localized surface plasmon resonances. However, no single metal nanoparticle sheet currently exists with sufficient durability for conventional lithographical processes. Here, we report large photo and/or e-beam lithographic patternable metal nanoparticle sheets with improved durability by incorporating molecular cross-linked structures between nanoparticles. The cross-linked structures were easily formed by a one-step chemical reaction; immersing a single nanoparticle sheet consisting of core metals, to which capping molecules ionically bond, in a dithiol ethanol solution. The ligand exchange reaction processes were discussed in detail, and we demonstrated 20 μm wide line and space patterns, and a 170 nm wide line of the silver nanoparticle sheets.
Tattoolike Polyaniline Microparticle-Doped Gold Nanowire Patches as Highly Durable Wearable Sensors.
Gong, Shu; Lai, Daniel T H; Wang, Yan; Yap, Lim Wei; Si, Kae Jye; Shi, Qianqian; Jason, Naveen Noah; Sridhar, Tam; Uddin, Hemayet; Cheng, Wenlong
2015-09-09
Wearable and highly sensitive strain sensors are essential components of electronic skin for future biomonitoring and human machine interfaces. Here we report a low-cost yet efficient strategy to dope polyaniline microparticles into gold nanowire (AuNW) films, leading to 10 times enhancement in conductivity and ∼8 times improvement in sensitivity. Simultaneously, tattoolike wearable sensors could be fabricated simply by a direct "draw-on" strategy with a Chinese penbrush. The stretchability of the sensors could be enhanced from 99.7% to 149.6% by designing curved tattoo with different radius of curvatures. We also demonstrated roller coating method to encapusulate AuNWs sensors, exhibiting excellent water resistibility and durability. Because of improved conductivity of our sensors, they can directly interface with existing wireless circuitry, allowing for fabrication of wireless flexion sensors for a human finger-controlled robotic arm system.
Bezuidenhout, Deon; Williams, David F; Zilla, Peter
2015-01-01
Efficient function and long-term durability without the need for anticoagulation, coupled with the ability to be accommodated in many different types of patient, are the principal requirements of replacement heart valves. Although the clinical use of valves appeared to have remained steady for several decades, the evolving demands for the elderly and frail patients typically encountered in the developed world, and the needs of much younger and poorer rheumatic heart disease patients in the developing world have now necessitated new paradigms for heart valve technologies and associated materials. This includes further consideration of durable elastomeric materials. The use of polymers to produce flexible leaflet valves that have the benefits of current commercial bioprosthetic and mechanical valves without any of their deficiencies has been held desirable since the mid 1950s. Much attention has been focused on thermoplastic polyurethanes in view of their generally good physico-chemical properties and versatility in processing, coupled with the improving biocompatibility and stability of recent formulations. Accelerated in vitro durability of between 600 and 1000 million cycles has been achieved using polycarbonate urethanes, and good resistance to degradation, calcification and thrombosis in vivo has been shown with some polysiloxane-based polyurethanes. Nevertheless, polymeric valves have remained relegated to use in temporary ventricular assist devices for bridging heart failure patients to transplantation. Some recent studies suggest that there is a greater degree of instability in thermoplastic materials than hitherto believed so that significant challenges remain in the search for the combination of durability and biocompatibility that would allow polymeric valves to become a clinical reality for surgical implantation. Perhaps more importantly, they could become candidates for use in situations where minimally invasive transcatheter procedures are used to replace diseased valves. Being amenable to relatively inexpensive mass production techniques, the attainment of this goal could benefit very large numbers of patients in developing and emerging countries who currently have no access to treatment for rheumatic heart disease that is so prevalent in these areas. This review discusses the evolution and current status of polymeric valves in wide-ranging circumstances.
Surface evaluation of orthopedic hip implants marketed in Brazil
NASA Astrophysics Data System (ADS)
Souza, M. M.; Trommer, R. M.; Maru, M. M.; Roesler, C. R. M.; Barros, W. S.; Dutra, M. S.
2016-07-01
One of the factors that contribute to the quality of total hip prostheses is the degree of accuracy in the manufacturing of the joint surfaces. The dimensional control of joint components is important because of its direct influence on the durability and, consequently, in the patients’ life quality. This work presents studies on the form and roughness of orthopedic hip prostheses marketed in Brazil. The results provide data for quality control of the surfaces of the femoral heads and acetabular components of hip prostheses and indicate the need of improvement in the procedures used to this control.
Multi-Functional Composite Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C.
2008-01-01
Damage and fracture of composites subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via a recently developed composite mechanics code that allows the user to focus on composite response at infinitely small scales. Constituent material properties, stress and strain limits are scaled up to the laminate level to evaluate the overall damage and durability. Results show the number of cycles to failure at different temperatures. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
Direct and Indirect Pulp Capping: A Brief History, Material Innovations, and Clinical Case Report.
Alex, Gary
2018-03-01
Among the goals of pulp capping are to manage bacteria, arrest caries progression, stimulate pulp cells to form new dentin, and produce a durable seal that protects the pulp complex. This article will provide a general discussion of direct and indirect pulp capping procedures, offering practitioners a pragmatic and science-based clinical protocol for treatment of vital pulp exposures. A clinical case will be presented in which a novel light-cured resin-modified mineral trioxide aggregate hybrid material was used to manage a mechanical vital pulp exposure that occurred during deep caries excavation.
Treatment of chronic radiation injury over the shoulder with a latissimus dorsi myocutaneous flap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendelson, B.C.; Masson, J.K.
1977-11-01
We report our experiences in treating chronic radiation injury about the shoulder, a complication of radiation after mastectomy. Left untreated, these can result in chronic infection and/or amputation. The coverage of a large shoulder area presents certain unique problems, which severely limit the usefulness of traditional procedures. We have found that the remarkable size and versatility of the latissimus dorsi myocutaneous flap enables one to use it with relative simplicity and safety. A further great advantage is that it brings new permanent blood supply into this ischemic area, thus favoring rapid healing and durable coverage.
Surgical management of Crohn's colitis.
Moir, Christopher R
2007-08-01
Crohn's disease in childhood is changing. The incidence is increasing, colonic disease is becoming more prevalent in younger children, and colon reconstruction is more acceptable. Genetic phenotypes are influencing decisions for surgery, and targeted immunotherapy has renewed hope for more durable remissions following less extensive resections. The tasks facing the surgeon evaluating a child with Crohn's colitis include confirming the specific diagnostic subtype and selecting the correct procedure. This chapter will review the unique aspects of pediatric Crohn's colitis and the increased complexity of surgical choice for this most challenging presentation. Recent success with less extensive surgery offers renewed hope for children with intractable colonic disease.
Comparative durability and costs analysis of ventricular shunts.
Agarwal, Nitin; Kashkoush, Ahmed; McDowell, Michael M; Lariviere, William R; Ismail, Naveed; Friedlander, Robert M
2018-05-11
OBJECTIVE Ventricular shunt (VS) durability has been well studied in the pediatric population and in patients with normal pressure hydrocephalus; however, further evaluation in a more heterogeneous adult population is needed. This study aims to evaluate the effect of diagnosis and valve type-fixed versus programmable-on shunt durability and cost for placement of shunts in adult patients. METHODS The authors retrospectively reviewed the medical records of all patients who underwent implantation of a VS for hydrocephalus at their institution over a 3-year period between August 2013 and October 2016 with a minimum postoperative follow-up of 6 months. The primary outcome was shunt revision, which was defined as reoperation for any indication after the initial procedure. Supply costs, shunt durability, and hydrocephalus etiologies were compared between fixed and programmable valves. RESULTS A total of 417 patients underwent shunt placement during the index time frame, consisting of 62 fixed shunts (15%) and 355 programmable shunts (85%). The mean follow-up was 30 ± 12 (SD) months. The shunt revision rate was 22% for programmable pressure valves and 21% for fixed pressure valves (HR 1.1 [95% CI 0.6-1.8]). Shunt complications, such as valve failure, infection, and overdrainage, occurred with similar frequency across valve types. Kaplan-Meier survival curve analysis showed no difference in durability between fixed (mean 39 months) and programmable (mean 40 months) shunts (p = 0.980, log-rank test). The median shunt supply cost per index case and accounting for subsequent revisions was $3438 (interquartile range $2938-$3876) and $1504 (interquartile range $753-$1584) for programmable and fixed shunts, respectively (p < 0.001, Wilcoxon rank-sum test). Of all hydrocephalus etiologies, pseudotumor cerebri (HR 1.9 [95% CI 1.2-3.1]) and previous shunt malfunction (HR 1.8 [95% CI 1.2-2.7]) were found to significantly increase the risk of shunt revision. Within each diagnosis, there were no significant differences in revision rates between shunts with a fixed valve and shunts with a programmable valve. CONCLUSIONS Long-term shunt revision rates are similar for fixed and programmable shunt pressure valves in adult patients. Hydrocephalus etiology may play a significant role in predicting shunt revision, although programmable valves incur higher supply costs regardless of initial diagnosis. Utilization of fixed pressure valves versus programmable pressure valves may reduce supply costs while maintaining similar revision rates. Given the importance of developing cost-effective management protocols, this study highlights the critical need for large-scale prospective observational studies and randomized clinical trials of ventricular shunt valve revisions and additional patient-centered outcomes.
Durability, value, and reliability of selected electric powered wheelchairs.
Fass, Megan V; Cooper, Rory A; Fitzgerald, Shirley G; Schmeler, Mark; Boninger, Michael L; Algood, S David; Ammer, William A; Rentschler, Andrew J; Duncan, John
2004-05-01
To compare the durability, value, and reliability of selected electric powered wheelchairs (EPWs), purchased in 1998. Engineering standards tests of quality and performance. A rehabilitation engineering center. Fifteen EPWs: 3 each of the Jazzy, Quickie, Lancer, Arrow, and Chairman models. Not applicable. Wheelchairs were evaluated for durability (lifespan), value (durability, cost), and reliability (rate of repairs) using 2-drum and curb-drop machines in accordance with the standards of the American National Standards Institute and Rehabilitation Engineering and Assistive Technology Society of North America. The 5 brands differed significantly (P
Sustainability and durability analysis of reinforced concrete structures
NASA Astrophysics Data System (ADS)
Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.
2017-09-01
The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.
Dietzel, Martin; Schön, Frerich; Heinrichs, Jens; Deditius, Artur P; Leis, Albrecht
2016-01-01
Ancient hydraulic lime mortar preserves chemical and isotopic signatures that provide important information about historical processing and its durability. The distribution and isotopic composition of calcite in a mortar of a well-preserved Punic-Roman cistern at Pantelleria Island (Italy) was used to trace the formation conditions, durability, and individual processing periods of the cistern mortar. The analyses of stable carbon and oxygen isotopes of calcite revealed four individual horizons, D, E, B-1 and B-2, of mortar from the top to the bottom of the cistern floor. Volcanic and ceramic aggregates were used for the production of the mortar of horizons E/D and B-1/B-2, respectively. All horizons comprise hydraulic lime mortar characterized by a mean cementation index of 1.5 ± 1, and a constant binder to aggregate ratio of 0.31 ± 0.01. This suggests standardized and highly effective processing of the cistern. The high durability of calcite formed during carbonation of slaked lime within the matrix of the ancient mortar, and thus the excellent resistance of the hydraulic lime mortar against water, was documented by (i) a distinct positive correlation of δ(18)Ocalcite and δ(13)Ccalcite; typical for carbonation through a mortar horizon, (ii) a characteristic evolution of δ(18)Ocalcite and δ(13)Ccalcite through each of the four mortar horizons; lighter follow heavier isotopic values from upper to lower part of the cistern floor, and (iii) δ(18)Ocalcite varying from -10 to -5 ‰ Vienna Pee Dee belemnite (VPDB). The range of δ(18)Ocalcite values rule out recrystallization and/or neoformation of calcite through chemical attack of water stored in cistern. The combined studies of the chemical composition of the binder and the isotopic composition of the calcite in an ancient mortar provide powerful tools for elucidating the ancient techniques and processing periods. This approach helps to evaluate the durability of primary calcite and demonstrates the importance of calcite as a proxy for chemical attack and quality of the ancient inorganic binder.
NASA Technical Reports Server (NTRS)
Brinson, Hal F.
1994-01-01
The need for a constituent based durability or accelerated life prediction procedure to be used for the engineering design of polymer matrix composites is discussed in the light of current plans for the High Speed Civil Transport (HSCT) concerns about the U.S. infrastructure (bridges, pipelines, etc.) and other technological considerations of national concern. It is pointed out that good measurement procedures for insitu resin properties are needed for both adhesives and composites. A double cantilever beam (DCB) specimen which shows promise for the easy determination of adhesive shear properties is presented and compared with measurements of strains within the bondline using a new optical digital imaging micro-measurement system (DIMMS). The DCB specimen is also used to assess damage in a bonded joint using a dynamic mechanical thermal analysis system (DMTA). The possible utilization of the same DIMMS and DMTA procedures to determine the insitu properties of the resin in a composite specimen are discussed as well as the use of the procedures to evaluate long term mechanical and physical aging. Finally, a discussion on the state-of-the art of the measurement of strains in micron and sub-micron domains is given.
Using Bonding Enamel-Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures
2010-02-01
Initial tests with enameled metal straps cracked all the test cylinders and straps would not pull out BUILDING STRONG® New Strong Durable Ties...BUILDING STRONG® Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry Structures Principal Investigator: Steven C...COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Using Bonding Enamel -Coated Steel Fixtures to Produce More Durable Brick/Masonry
Chi, Dennis S; Phaëton, Rebecca; Miner, Thomas J; Kardos, Steven V; Diaz, John P; Leitao, Mario M; Gardner, Ginger; Huh, Jae; Tew, William P; Konner, Jason A; Sonoda, Yukio; Abu-Rustum, Nadeem R; Barakat, Richard R; Jaques, David P
2009-08-01
To obtain prospective outcomes data on patients (pts) undergoing palliative operative or endoscopic procedures for malignant bowel obstruction due to recurrent ovarian cancer. An institutional study was conducted from July 2002 to July 2003 to prospectively identify pts who underwent an operative or endoscopic procedure to palliate the symptoms of advanced cancer. This report focuses on pts with malignant bowel obstruction due to recurrent ovarian cancer. Procedures performed with an upper or lower gastrointestinal (GI) endoscope were considered "endoscopic." All other cases were classified as "operative." Following the procedure, the presence or absence of symptoms was determined and followed over time. All pts were followed until death. Palliative interventions were performed on 74 gynecologic oncology pts during the study period, of which 26 (35%) were for malignant GI obstruction due to recurrent ovarian cancer. The site of obstruction was small bowel in 14 (54%) cases and large bowel in 12 (46%) cases. Palliative procedures were operative in 14 (54%) pts and endoscopic in the other 12 (46%). Overall, symptomatic improvement or resolution within 30 days was achieved in 23 (88%) of 26 patients, with 1 (4%) postprocedure mortality. At 60 days, 10 (71%) of 14 pts who underwent operative procedures and 6 (50%) of 12 pts who had endoscopic procedures had symptom control. Median survival from the time of the palliative procedure was 191 days (range, 33-902) for those undergoing an operative procedure and 78 days (range, 18-284) for those undergoing an endoscopic procedure. Patients with malignant bowel obstructions due to recurrent ovarian cancer have a high likelihood of experiencing relief of symptoms with palliative procedures. Although recurrence of symptoms is common, durable palliation and extended survival are possible, especially in those patients selected for operative intervention.
NASA Astrophysics Data System (ADS)
Zhang, Enren; Wang, Feng; Yu, Qingling; Scott, Keith; Wang, Xu; Diao, Guowang
2017-08-01
The performance of activated carbon catalyst in air-cathodes in microbial fuel cells was investigated over one year. A maximum power of 1722 mW m-2 was produced within the initial one-month microbial fuel cell operation. The air-cathodes produced a maximum power >1200 mW m-2 within six months, but gradually became a limiting factor for the power output in prolonged microbial fuel cell operation. The maximum power decreased by 55% when microbial fuel cells were operated over one year due to deterioration in activated carbon air-cathodes. While salt/biofilm removal from cathodes experiencing one-year operation increased a limiting performance enhancement in cathodes, a washing-drying-pressing procedure could restore the cathode performance to its original levels, although the performance restoration was temporary. Durable cathodes could be regenerated by re-pressing activated carbon catalyst, recovered from one year deteriorated air-cathodes, with new gas diffusion layer, resulting in ∼1800 mW m-2 of maximum power production. The present study indicated that activated carbon was an effective catalyst in microbial fuel cell cathodes, and could be recovered for reuse in long-term operated microbial fuel cells by simple methods.
NASA Astrophysics Data System (ADS)
Rajczakowska, Magdalena; Łydżba, Dariusz
2016-03-01
This paper presents the nanoindentation investigation of the evolution of concrete microstructure modified by the Internal Crystallization Technology mineral powders. The samples under study were retrieved from a fragment of a circular concrete lining of the vertical mine shaft at a depth of approximately 1,000 m. Due to the aggressive environment and exposure to contaminated water, the internal surface of the structure was deteriorated, decreasing its strength significantly. The mineral powders were applied directly on the surface lining. The specimens were investigated one month, three months and one year after the application of the aforementioned substance in order to verify the time dependence of the strengthening processes and durability of the crystalline phase. The microstructural changes of concrete were assessed with the use of nanoindentation technique. The testing procedure involved including the previously cut specimens in the epoxy resin and grinding and polishing in order to reduce the surface roughness. As a result of the nanoindentation tests the hardness as well as Young's modulus of the material were evaluated. The results were then compared and statistically analyzed. As a consequence, the disintegration time of the crystalline network in the pores of concrete was identified.
Concrete aggregate durability study.
DOT National Transportation Integrated Search
2009-06-01
There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...
Research notes : inlaid durable pavement markings : year one.
DOT National Transportation Integrated Search
2004-12-01
Durable pavement markings are becoming more prevalent on primary highways statewide, increasing the safety of the traveling public and the ODOT maintenance personnel responsible for maintaining the striping. Several durable products are now being use...
Your Medicare Coverage: Durable Medical Equipment (DME) Coverage
... test, item, or service covered? Go Durable medical equipment (DME) coverage How often is it covered? Medicare ... B (Medical Insurance) covers medically necessary durable medical equipment (DME) that your doctor prescribes for use in ...
Suda, Shunichi; Tsujimoto, Akimasa; Barkmeier, Wayne W; Nojiri, Kie; Nagura, Yuko; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi
2018-03-30
The effect of phosphoric acid pre-etching on enamel bond fatigue durability of universal adhesives and two-step self-etch adhesives was investigated. Four universal adhesives and three two-step self-etch adhesives were used. The initial shear bond strengths and shear fatigue strengths to enamel with and without phosphoric acid pre-etching using the adhesives were determined. SEM observations were also conducted. Phosphoric acid pre-etching of enamel was found to increase the bond fatigue durability of universal adhesives, but its effect on two-step self-etch adhesives was material-dependent. In addition, some universal adhesives with phosphoric acid pre-etching showed similar bond fatigue durability to the two-step self-etch adhesives, although the bond fatigue durability of universal adhesives in self-etch mode was lower than that of the two-step self-etch adhesives. Phosphoric acid pre-etching enhances enamel bond fatigue durability of universal adhesives, but the effect of phosphoric acid pre-etching on the bond fatigue durability of two-step self-etch adhesives was material-dependent.
Experimental Study on Durability Improvement of Fly Ash Concrete with Durability Improving Admixture
Quan, Hong-zhu; Kasami, Hideo
2014-01-01
In order to improve the durability of fly ash concrete, a series of experimental studies are carried out, where durability improving admixture is used to reduce drying shrinkage and improve freezing-thawing resistance. The effects of durability improving admixture, air content, water-binder ratio, and fly ash replacement ratio on the performance of fly ash concrete are discussed in this paper. The results show that by using durability improving admixture in nonair-entraining fly ash concrete, the compressive strength of fly ash concrete can be improved by 10%–20%, and the drying shrinkage is reduced by 60%. Carbonation resistance of concrete is roughly proportional to water-cement ratio regardless of water-binder ratio and fly ash replacement ratio. For the specimens cured in air for 2 weeks, the freezing-thawing resistance is improved. In addition, by making use of durability improving admixture, it is easier to control the air content and make fly ash concrete into nonair-entraining one. The quality of fly ash concrete is thereby optimized. PMID:25013870
An industrial design solution for integrating NMR magnetic field sensors into an MRI scanner.
Kennedy, Michael; Lee, Yoojin; Nagy, Zoltan
2018-08-01
Neuroimaging research relies on the skills of increasingly multidisciplinary individuals and often requires the installation and use of additional home-built or third-party equipment. The purpose of the present work was the safe, ergonomic, durable, and aesthetically pleasing installation of magnetic field monitoring equipment into a scanner, while keeping the setup compatible with standard operating procedures. An extensive set of steps was required to design a 3D printed solution to install a magnetic field camera into the eight-channel head coil of a 3T MRI scanner. First, the outer surface of the plastic coil housing was recreated into a 3D model, and the installation of the magnetic field sensors around this 3D model was performed in a virtual environment. The 3D printed solution was then assembled and tested for safety, reproducible performance, and image quality. The 3D printed solution holds the probes in stable positions and guides the necessary cables in an organized fashion and away from the volunteer. Assembly is easy and the solution is ergonomic, durable, and safe. We did not find excessive heating in the 3D printed parts, nor in the electronics, that they help to incorporate. The material used interferes minimally with transmit B1+ field. The design met all of the boundary conditions for a durable, safe, cost-effective, attractive, and functional installation. This work will provide the basis for installing the magnetic field sensors into other available head coils, and for designing the experimental setup for projects with varying experimental requirements. Magn Reson Med 80:833-839, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Nondestructive Evaluation Correlated with Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Azid, Ali; Baaklini, George Y.
1999-01-01
Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.
Strollo, Patrick J; Gillespie, M Boyd; Soose, Ryan J; Maurer, Joachim T; de Vries, Nico; Cornelius, Jason; Hanson, Ronald D; Padhya, Tapan A; Steward, David L; Woodson, B Tucker; Verbraecken, Johan; Vanderveken, Olivier M; Goetting, Mark G; Feldman, Neil; Chabolle, Frédéric; Badr, M Safwan; Randerath, Winfried; Strohl, Kingman P
2015-10-01
To determine the stability of improvement in polysomnographic measures of sleep disordered breathing, patient reported outcomes, the durability of hypoglossal nerve recruitment and safety at 18 months in the Stimulation Treatment for Apnea Reduction (STAR) trial participants. Prospective multicenter single group trial with participants serving as their own controls. Twenty-two community and academic sleep medicine and otolaryngology practices. Primary outcome measures were the apnea-hypopnea index (AHI) and the 4% oxygen desaturation index (ODI). Secondary outcome measures were the Epworth Sleepiness Scale (ESS), the Functional Outcomes of Sleep Questionnaire (FOSQ), and oxygen saturation percent time < 90% during sleep. Stimulation level for each participant was collected at three predefined thresholds during awake testing. Procedure- and/or device-related adverse events were reviewed and coded by the Clinical Events Committee. The median AHI was reduced by 67.4% from the baseline of 29.3 to 9.7/h at 18 mo. The median ODI was reduced by 67.5% from 25.4 to 8.6/h at 18 mo. The FOSQ and ESS improved significantly at 18 mo compared to baseline values. The functional threshold was unchanged from baseline at 18 mo. Two participants experienced a serious device-related adverse event requiring neurostimulator repositioning and fixation. No tongue weakness reported at 18 mo. Upper airway stimulation via the hypoglossal nerve maintained a durable effect of improving airway stability during sleep and improved patient reported outcomes (Epworth Sleepiness Scale and Functional Outcomes of Sleep Questionnaire) without an increase of the stimulation thresholds or tongue injury at 18 mo of follow-up. © 2015 Associated Professional Sleep Societies, LLC.
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George
2015-03-01
Efforts to update and improve turbine engine components in meeting flights safety and durability requirements are commitments that engine manufacturers try to continuously fulfill. Most of their concerns and developments energies focus on the rotating components as rotor disks. These components typically undergo rigorous operating conditions and are subject to high centrifugal loadings which subject them to various failure mechanisms. Thus, developing highly advanced health monitoring technology to screen their efficacy and performance is very essential to their prolonged service life and operational success. Nondestructive evaluation techniques are among the many screening methods that presently are being used to pre-detect hidden flaws and mini cracks prior to any appalling events occurrence. Most of these methods or procedures are confined to evaluating material's discontinuities and other defects that have mature to a point where failure is eminent. Hence, development of more robust techniques to pre-predict faults prior to any catastrophic events in these components is highly vital. This paper is focused on presenting research activities covering the ongoing research efforts at NASA Glenn Research Center (GRC) rotor dynamics laboratory in support of developing a fault detection system for key critical turbine engine components. Data obtained from spin test experiments of a rotor disk that relates to investigating behavior of blade tip clearance, tip timing and shaft displacement based on measured data acquired from sensor devices such as eddy current, capacitive and microwave are presented. Additional results linking test data with finite element modeling to characterize the structural durability of a cracked rotor as it relays to the experimental tests and findings is also presented. An obvious difference in the vibration response is shown between the notched and the baseline no notch rotor disk indicating the presence of some type of irregularity.
2012-01-01
Background Indoor residual spraying (IRS) is a primary method of malaria vector control, but its potential impact is constrained by several inherent limitations: spraying must be repeated when insecticide residues decay, householders can tire of the annual imposition and campaign costs are recurrent. Durable lining (DL) can be considered an advanced form of long-lasting IRS where insecticide is gradually released from an aesthetically attractive wall lining material to provide vector control for several years. A multicentre trial was carried out in Equatorial Guinea, Ghana, Mali, South Africa and Vietnam to assess the feasibility, durability, bioefficacy and household acceptability of DL, compared to conventional IRS or insecticide-treated curtains (LLITCs), in a variety of operational settings. Methods This study was conducted in 220 households in traditional rural villages over 12-15 months. In all sites, rolls of DL were cut to fit house dimensions and fixed to interior wall surfaces (usually with nails and caps) by trained teams. Acceptability was assessed using a standardized questionnaire covering such topics as installation, exposure reactions, entomology, indoor environment, aesthetics and durability. Bioefficacy of interventions was evaluated using WHO cone bioassay tests at regular intervals throughout the year. Results The deltamethrin DL demonstrated little to no decline in bioefficacy over 12-15 months, supported by minimal loss of insecticide content. By contrast, IRS displayed a significant decrease in bioactivity by 6 months and full loss after 12 months. The majority of participants in DL households perceived reductions in mosquito density (93%) and biting (82%), but no changes in indoor temperature (83%). Among those households that wanted to retain the DL, 73% cited protective reasons, 20% expressed a desire to keep theirs for decoration and 7% valued both qualities equally. In Equatorial Guinea, when offered a choice of vector control product at the end of the trial (DL, IRS or LLITCs), DL consistently emerged as the most popular intervention regardless of the earlier household allocation. Conclusions Just as long-lasting insecticidal nets overcame several of the technical and logistical constraints associated with conventionally treated nets and then went to scale, this study demonstrates the potential of DL to sustain user compliance and overcome the operational challenges associated with IRS. PMID:23107112
NASA Astrophysics Data System (ADS)
Lu, Tao; Zhu, Shenmin; Chen, Zhixin; Wang, Wanlin; Zhang, Wang; Zhang, Di
2016-05-01
Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures.Hierarchical photonic structures in nature are of special interest because they can be used as templates for fabrication of stimuli-responsive photonic crystals (PCs) with unique structures beyond man-made synthesis. The current stimuli-responsive PCs templated directly from natural PCs showed a very weak external stimuli response and poor durability due to the limitations of natural templates. Herein, we tackle this problem by chemically coating functional polymers, polyacrylamide, on butterfly wing scales which have hierarchical photonic structures. As a result of the combination of the strong water absorption properties of the polyacrylamide and the PC structures of the butterfly wing scales, the designed materials demonstrated excellent humidity responsive properties and a tremendous colour change. The colour change is induced by the refractive index change which is in turn due to the swollen nature of the polymer when the relative humidity changes. The butterfly wing scales also showed an excellent durability which is due to the chemical bonds formed between the polymer and wing scales. The synthesis strategy provides an avenue for the promising applications of stimuli-responsive PCs with hierarchical structures. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01875k
Evaluation of inlaid durable pavement markings in an Oregon snow zone.
DOT National Transportation Integrated Search
2006-04-01
The Oregon Department of Transportation (ODOT) evaluated the use of inlaid durable pavement markings within a snow zone. Three different durable pavement marking products were installed and evaluated: Dura-Stripe, a methyl methacrylate; Permaline...
Durable superhydrophobic and superamphiphobic polymeric surfaces and their applications: A review.
Ellinas, Kosmas; Tserepi, Angeliki; Gogolides, Evangelos
2017-12-01
Wetting control is essential for many applications, such as self-cleaning, anti-icing, anti-fogging, antibacterial action as well as anti-reflection and friction control. While significant effort has been devoted to fabricate superhydrophobic/superamphiphobic surfaces (repellent to water and other low surface tension liquids), very few polymeric superhydrophobic/superamphiphobic surfaces can be considered as durable against various externally imposed stresses (e.g. application of heating, pressure, mechanical forces, chemical, etc.). Therefore, durability tests are extremely important for applications especially when such surfaces are made of "soft" materials. Here, we review the most recent and promising efforts reported towards the realization of durable, superhydrophobic/superamphiphobic, polymeric surfaces emphasizing the durability tests performed, and some important applications. We compare and put in context the scattered durability tests reported in the literature, and present conclusions, perspectives and challenges in the field. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Srinivas, Vikram; Menon, Sandeep; Osterman, Michael; Pecht, Michael G.
2013-08-01
Solder durability models frequently focus on the applied strain range; however, the rate of applied loading, or strain rate, is also important. In this study, an approach to incorporate strain rate dependency into durability estimation for solder interconnects is examined. Failure data were collected for SAC105 solder ball grid arrays assembled with SAC305 solder that were subjected to displacement-controlled torsion loads. Strain-rate-dependent (Johnson-Cook model) and strain-rate-independent elastic-plastic properties were used to model the solders in finite-element simulation. Test data were then used to extract damage model constants for the reduced-Ag SAC solder. A generalized Coffin-Manson damage model was used to estimate the durability. The mechanical fatigue durability curve for reduced-silver SAC solder was generated and compared with durability curves for SAC305 and Sn-Pb from the literature.
NASA Astrophysics Data System (ADS)
Haq, Gary; Martini, Giorgio; Mellios, Giorgos
2014-10-01
Evaporative emissions of non-methane volatile organic compounds (NMVOCs) arise from the vehicle's fuel system due to changes in ambient and vehicle temperatures, and contribute to urban smog. This paper presents an economic analysis of the societal costs and benefits of implementing a revised European evaporative emission test procedure for petrol vehicles under four scenarios for the period 2015-2040. The paper concludes that the most cost-effective option is the implementation of an aggressive purging strategy over 48 h and improved canister durability (scenario 2+). The average net benefit of implementing this scenario is €146,709,441 at a 6% discount rate. Per vehicle benefits range from €6-9 but when fuel savings benefits are added, total benefits range from €13-18. This is compared to average additional cost per vehicle of €9.
Livaditis, G J
2001-10-01
A clinical protocol is described for the treatment of intentional and unavoidable exposed pulps during crown preparation. The protocol includes a definitive cavity preparation to create space in the exposed dentin for an adhesive pulp barrier; procedures to develop the highly desirable hybrid zone to prevent microleakage; the use of a specific resinous material that serves as a long-term pulp barrier with a relatively neutral and biocompatible impact on the pulp; and the use of precise bipolar electrocoagulation to provide durable hemostasis for restoration of the pulp wall and a relatively clot-free surgical wound to facilitate healing. The protocol involves the application of gentle surgical and restorative procedures to support the inherent healing process to restore the health of the pulp. The patient presented was part of a larger investigation and was selected in an attempt to identify a fixed prosthodontic application of the proposed pulp therapy protocol.
Alonso, Diana; Gimeno, Miquel; Sepúlveda-Sánchez, José D; Shirai, Keiko
2010-04-19
A novel non-toxic procedure is described for the grafting of chitosan-based microcapsules containing grapefruit seed oil extract onto cellulose. The cellulose was previously UV-irradiated and then functionalized from an aqueous emulsion of the chitosan with the essential oil. The novel materials are readily attained with durable fragrance and enhanced antimicrobial properties. The incorporation of chitosan as determined from the elemental analyses data was 16.08+/-0.29 mg/g of sample. Scanning electron microscopy (SEM) and gas chromatography-mass spectroscopy (GC-MS) provided further evidence for the successful attachment of chitosan microcapsules containing the essential oil to the treated cellulose fibers. The materials thus produced displayed 100% inhibition of Escherichia coli and Staphylococcus epidermidis up to 48 h of incubation. Inhibition of bacteria by the essential oil was also evaluated at several concentrations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
The Role of Ceramics in a Resurgent Nuclear Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J
2006-02-28
With fuel oil and natural gas prices near record highs and worldwide energy demands increasing at an alarming rate, there is growing interest in revitalization of the nuclear power industry within the United States and across the globe. Ceramic materials have long played a very important part in the commercial nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced fuel cycles that minimize waste and increase proliferation resistance, ceramic materials will play an even larger role. Many of the advanced reactor concepts being evaluated operatemore » at high-temperature requiring the use of durable, heat-resistant materials. Ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, ceramic processes are also being applied to fuel reprocessing operations. Ceramic materials continue to provide a vital contribution in ''closing the fuel cycle'' by stabilization of associated low-level and high-level wastes in highly durable grout, ceramics, and glass. In the next five years, programs that are currently in the conceptual phase will begin laboratory- and engineering-scale demonstrations. This will require production-scale demonstrations of several ceramic technologies from fuel form development to advanced stabilization methods. Within the next five to ten years, these demonstrations will move to even larger scales and will also include radioactive demonstrations of these advanced technologies. These radioactive demonstrations are critical to program success and will require advances in ceramic materials associated with nuclear energy applications.« less
Avelumab Impresses in Merkel Cell Carcinoma.
2017-06-01
The PD-L1 inhibitor avelumab-approved by the FDA in March for the treatment of Merkel cell carcinoma-demonstrated a high number of durable responses in an international, open-label, prospective phase II study. The results of the study, which supported the FDA's decision, were presented in April at the American Association for Cancer Research (AACR) Annual Meeting 2017. ©2017 American Association for Cancer Research.
Forging a link between oncogenic signaling and immunosuppression in melanoma.
Khalili, Jahan S; Hwu, Patrick; Lizée, Gregory
2013-02-01
Immunosuppressive tumor microenvironments limit the efficacy of T cell-based immunotherapy. We have recently demonstrated that the inhibition of BRAF V600E with vemurafenib relieves interleukin-1 (IL-1)-induced T-cell suppression as mediated by melanoma tumor associated fibroblasts (TAFs). These results suggest that inhibitors of the MAPK pathway in combination with T cell-based immunotherapies may induce long-lasting and durable responses.
Barber, Sean M; Rangel-Castilla, Leonardo; Zhang, Y Jonathan; Klucznik, Richard; Diaz, Orlando
2015-10-01
Endovascular therapy is the preferred treatment for most carotid-cavernous fistulas (CCFs). Early reports have documented excellent initial clinical and radiographic outcomes after embolization of CCFs with Onyx or n-butyl cyanoacrylate (n-BCA), but little evidence is available about the long-term durability of this technique. To characterize the long-term durability of CCF liquid embolization. The authors retrospectively reviewed a database of 24 CCFs in 21 consecutive patients who underwent Onyx or n-BCA embolization of a CCF from 2006 to 2013 at our institution. A total of 25 Onyx or n-BCA embolization procedures were attempted and 24 successfully completed during the study, resulting in complete or near-complete occlusion by the end of the study in all 24 CCFs (obliteration success, 100%). Attempted embolization in a single CCF failed initially, but was performed successfully at a later date by a different approach. None of the 24 CCFs recanalized, regrew, or required any further treatment subsequent to Onyx or n-BCA embolization throughout a mean 12.4 months of angiographic follow-up (range 1-36 months). Clinically significant complications were seen in three embolization procedures, including cranial nerve palsies (n=1), embolic infarct (n=1), and intraperitoneal hemorrhage (n=1). Early evidence has indicated that endovascular embolization with Onyx is relatively safe and effective at achieving an initial angiographic cure for CCFs. Results of our series suggest that angiographic and clinical outcomes of Onyx and n-BCA embolization remain stable at mid- and long-term follow-up. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Narayan, Sanjiv M.; Baykaner, Tina; Clopton, Paul; Schricker, Amir; Lalani, Gautam; Krummen, David E.; Shivkumar, Kalyanam; Miller, John M.
2014-01-01
Objectives To determine if ablation that targets patient-specific AF-sustaining substrates (rotors or focal sources) is more durable than trigger ablation alone at preventing late AF recurrences. Background Late recurrence substantially limits the efficacy of pulmonary vein (PV) isolation for AF, and is associated with PV reconnection and the emergence of new triggers. Methods We performed 3 year follow-up of the CONFIRM trial, in which 92 consecutive AF patients (70.7% persistent) underwent novel computational mapping to reveal a median of 2 (IQR 1–2) rotors or focal sources in 97.7% of patients during AF. Ablation comprised source (Focal Impulse and Rotor Modulation, FIRM) then conventional ablation in n=27 (FIRM-guided), and conventional ablation alone in n=65 (FIRM-blinded). Patients were followed with implanted ECG monitors when possible (85.2% FIRM guided, 23.1% FIRM-blinded). Results On 890 days follow-up (median; IQR 224–1563) compared FIRM-blinded therapy, patients receiving FIRM-guided ablation maintained higher freedom from AF after 1.2±0.4 procedures (median 1, IQR 1–1) (77.8% vs 38.5%; p=0.001) and a single procedure (p>0.001), and higher freedom from all atrial arrhythmias (p=0.003). Freedom from AF was higher when ablation directly or coincidentally passed through sources than when it missed sources (p>0.001). CONCLUSIONS FIRM-guided ablation is more durable than conventional trigger-based ablation at preventing 3 year AF recurrence. Future studies should investigate how ablation of patient-specific AF-sustaining rotors and focal sources alters the natural history of arrhythmia recurrence. PMID:24632280
Pashapour, Ali; Mohammadian, Reza; Salehpour, Firooz; Sharifipour, Ehsan; Mansourizade, Reza; Mahdavifard, Ali; Salehi, Mohamadgharib; Mirzaii, Farhad; Sariaslani, Payam; Fatahzade Ardalani, Ghasem; Altafi, Davar
2014-01-01
Summary Ocular symptoms are regularly observed in patients with cavernous sinus dural arteriovenous fistulas (cDAVF). We aimed to evaluate the long-term efficacy and safety of endovascular approaches in patients with cDAVF presenting with different ocular symptoms. In a prospective study between June 2008 and March 2013, 46 patients with ocular symptoms due to cDAVF who were not eligible for conservative therapy, met the inclusion criteria and underwent endovascular treatment. They underwent a transarterial approach with histoacryl glue injections or transvenous coil embolization, all in one session. They were followed up for a mean period of 17.3 months (range 7 to 30 months) clinically and using angiography. The mean age of patients was 36.8 years (18-60) and 65% of them were male. All patients showed venous drainage into the superior and inferior orbital veins. Access to the cavernous sinus was transvenous in ten patients, transarterial in 26 patients, and mixed in ten patients. Initial symptoms were improved in 97.8% of patients and did not recur during the study follow-up. The procedural complications included: blurred vision, transient sixth nerve palsy and exacerbation of chemoproptosis in two, one and two patients respectively that completely resolved in initial weeks with no recurrence. No patient worsened or developed new symptoms suggestive of a recurrent fistula during the follow-up period. One patient experienced intracranial dissection of the internal carotid artery and ischemic stroke with an unfinished procedure. The relief of early presentation was durable in long-term follow-up and the cured lesions were stable in angiographic controls. Favorable and durable outcomes could be obtained following endovascular approaches for cDAVF presenting with different ocular symptoms. PMID:25196621
Hamm, Ronda L; DeMark, Joseph J; Chin-Heady, Eva; Tolley, Mike P
2013-04-01
A novel durable termite bait was developed to enable continuous bait availability and lengthen the monitoring interval to 1 year. Laboratory studies were conducted to determine the palatability and insecticidal activity of this bait to Reticulitermes flavipes (Kollar), R. virginicus (Banks), R. hesperus Banks, Coptotermes formosanus Shiraki and Heterotermes aureus (Synder). Consumption of the blank durable bait matrix was significantly higher than consumption of a blank preferred textured cellulose matrix (PTC) by R. virginicus, R. flavipes and C. formosanus. R. flavipes, R. hesperus and H. aureus consumed significantly more durable bait than PTC when both contained the active ingredient noviflumuron. All bait treatments resulted in significant mortality relative to the untreated controls. Survivorship of R. virginicus, C. formosanus and H. aureus was 2% or less and not significantly different between the durable bait and PTC treatments containing noviflumuron. The durable bait matrix lagged behind the PTC matrix in mortality over time for all species tested except H. aureus. The durable bait was highly palatable and effective in inducing mortality to R. flavipes, R. virginicus, R. hesperus, C. formosanus and H. aureus in the laboratory. This unique bait matrix will be available to termites continuously and allows for an annual monitoring interval. The durability of this bait matrix is unprecedented, allowing for bait to remain active for years and thus providing continuous structural protection. © 2012 Society of Chemical Industry.