JACEE long duration balloon flights. [Japanese-American Cooperative Emulsion Experiment
NASA Technical Reports Server (NTRS)
Burnett, T.; Iwai, J.; Dake, S.; Derrickson, J.; Fountain, W.; Fuki, M.; Gregory, J.; Hayashi, T.; Holynski, R.; Jones, W. V.
1989-01-01
JACEE balloon-borne emulsion chamber detectors are used to observe the spectra and interactions of cosmic ray protons and nuclei in the energy range 1 to 100A TeV. Experiments with long duration mid-latitude balloon flights and characteristics of the detector system that make it ideal for planned Antarctic balloon flights are discussed.
A hard X-ray experiment for long-duration balloon flights
NASA Astrophysics Data System (ADS)
Johnson, W. N.; Kurfess, J. D.; Strickman, M. S.; Saulnier, D. M.
The Naval Research Lab has developed a balloon-borne hard X-ray experiment which is designed for 60- to 90-day flight durations soon to be available with around the world Sky Anchor or RACOON balloon flights. The experiment's scintillation detector is sensitive to the 15 - 250 keV X-ray energy range. The experiment includes three microcomputer systems which control the data acquisition and provide the orientation and navigation information required for global balloon flights. The data system supports global data communications utilizing the GOES satellite as well as high bit rate communications through L-band li line-of-site transmissions
The French balloon and sounding rocket space program
NASA Astrophysics Data System (ADS)
Coutin/Faye, S.; Sadourny, I.
1987-08-01
Stratospheric and long duration flight balloon programs are outlined. Open stratospheric balloons up to 1 million cu m volume are used to carry astronomy, solar system, aeronomy, stratosphere, biology, space physics, and geophysics experiments. The long duration balloons can carry 50 kg payloads at 20 to 30 km altitude for 10 days to several weeks. Pressurized stratospheric balloons, and infrared hot air balloons are used. They are used to study the dynamics of stratospheric waves and atmospheric water vapor. Laboratories participating in sounding rocket programs are listed.
NASA Technical Reports Server (NTRS)
Wade, L. A.; Levy, A. R.
1996-01-01
A continuous operation, vibration-free, long-life 25K sorption cryocooler has been built and is now in final integration and performance testing. This cooler wil be flown on the University of California at Santa Barbara (UCSB) Long Duration Balloon (LDB) Cosmic Microwave Background Radiation Experiment.
Esrange Space Center, a Gate to Space
NASA Astrophysics Data System (ADS)
Widell, Ola
Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.
Precision CMB Measurements from Long Duration Stratospheric Balloons: Towards B-modes and Inflation
NASA Astrophysics Data System (ADS)
Jones, William C.
2013-01-01
Observations of the Cosmic Microwave Background (CMB) have played a leading role in establishing an understanding of the structure and evolution of the Universe on the largest scales. This achievement has been enabled by a series of extremely successful experiments, coupled with the simplicity of the relationship between the cosmological theory and data. Antarctic experiments, including both balloon-borne telescopes and instruments at the South Pole, have played a key role in realizing the scientific potential of the CMB, from the characterization of the temperature anisotropies to the detection and study of the polarized component. Current and planned Antarctic long duration balloon experiments will extend this heritage of discovery to test theories of cosmic genesis through sensitive polarized surveys of the millimeter-wavelength sky. In this paper we will review the pivotal role that Antarctic balloon borne experiments have played in transforming our understanding of the Universe, and describe the scientific goals and technical approach of current and future missions.
Overview of the TILDAE High-Altitude Balloon Mission
NASA Astrophysics Data System (ADS)
Godbole, N. H.; Maruca, B.; Marino, R.; Sundkvist, D. J.; Constantin, S.; Zimmerman, H.; Carbone, V.
2016-12-01
Though the presence of intermittent turbulence in the stratosphere has been well established, much remains unknown about it. In situ observations of this phenomenon, which have provided the greatest detail of it, have typically been achieved via sounding balloons (i.e., small balloons which burst at peak altitude) carrying constant-temperature "hot wire" anemometers (CTAs). The Turbulence and Intermittency Long-Duration Atmospheric Experiment (TILDAE) was developed to test a new paradigm for stratospheric observations. Rather than flying on a sounding balloon, TILDAE was incorporated as an "add-on" experiment to the payload of a NASA long-duration balloon mission that launched in January, 2016 from McMurdo Station, Antarctica. Furthermore, TILDAE's key instrument was a sonic anemometer, which (relative to a CTA) provides better-calibrated measurements of wind velocity and more-robust separation of velocity components. This presentation focuses on the technical details of TILDAE's instrumentation and the performance thereof during its flight. Potential design improvements for future flights are also discussed.
Power considerations for long duration balloon flights
NASA Astrophysics Data System (ADS)
Frye, G. M.; Owens, A.; Koga, R.; Denehy, B. V.; Mace, O.; Thomas, J.
A solar panel, silicad battery power supply system is described which provided 100 W of power for a balloon borne solar neutron experiment. The system operated successfully on a 22 day circum-global RACOON flight launched from Australia in January 1983.
The GRAD Supernova Observer: First flight of a very large balloon over Antarctica
NASA Astrophysics Data System (ADS)
Rester, A. C.
1993-02-01
The first very large, zero pressure balloon to be flown over Antarctica was launched from Williams Field near Ross Island on 8 January 1988. It carried the GRAD Supernova Observer Experiment, with which a study of the gamma-ray spectrum of SN1987a was made. The mission is reviewed, and recommendations for further long duration balloon flights are made.
Polar Balloon Experiment for Astrophysics Research (Polar BEAR)
NASA Technical Reports Server (NTRS)
Bashindzhagyan, G.; Adams, James H., Jr.; Bashindzhagyan, P.; Chilingarian, A.; Donnelly, J.; Drury, L.; Egorov, N.; Golubkov, S.; Grebenyuk, V.; Kalinin, A.;
2001-01-01
A new balloon experiment is proposed for a long duration flight around the North Pole. The primary objective of the experiment is to measure the elemental energy spectra of high-energy cosmic rays in the region up to 10(exp 15) eV. The proposed instrument involves the combination of a large collecting area (approximately 1 x 1 square m) KLEM (Kinematic Lightweight Energy Meter) device with an ionization calorimeter having a smaller collecting area (approximately 0.5 x 0.5 square m) and integrated beneath the KLEM apparatus. This combination has several important advantages. Due to the large aperture (greater than 2 square m sr) of the KLEM device a large exposure factor can be achieved with a long duration balloon flight (2-4 weeks). The calorimeter will collect about 10% of the events already registered by KLEM and provide effective cross-calibration for both energy measurement methods. Details of the experiment and its astrophysical significance will be presented.
Overview of and first observations from the TILDAE High-Altitude Balloon Mission
NASA Astrophysics Data System (ADS)
Maruca, Bennett A.; Marino, Raffaele; Sundkvist, David; Godbole, Niharika H.; Constantin, Stephane; Carbone, Vincenzo; Zimmerman, Herb
2017-04-01
Though the presence of intermittent turbulence in the stratosphere has been well established, much remains unknown about it. In situ observations of this phenomenon, which have provided the greatest details of it, have mostly been achieved via sounding balloons (i.e., small balloons which burst at peak altitude) carrying constant-temperature hot-wire
anemometers (CTAs). The Turbulence and Intermittency Long-Duration Atmospheric Experiment (TILDAE) was developed to test a new paradigm for stratospheric observations. Rather than flying on a sounding balloon, TILDAE was incorporated as an add-on
experiment to the payload of a NASA long-duration balloon mission that launched in January 2016 from McMurdo Station, Antarctica. Furthermore, TILDAE's key instrument was a sonic anemometer, which (relative to a CTA) provides better-calibrated measurements of wind velocity and a more robust separation of velocity components. During the balloon's ascent, TILDAE's sonic anemometer provided atmospheric measurements up to an altitude of about 18 km, beyond which the ambient air pressure was too low for the instrument to function properly. Efforts are currently underway to scientifically analyze these observations of small-scale fluctuations in the troposphere, tropopause, and stratosphere and to develop strategies for increasing the maximum operating altitude of the sonic anemometer.
The Latest Developments in NASA's Long Duration Balloon Systems
NASA Astrophysics Data System (ADS)
Stilwell, Bryan D.
The Latest Developments in NASA’s Long Duration Balloon Systems Bryan D. Stilwell, bryan.stilwell@csbf.nasa.gov Columbia Scientific Balloon Facility, Palestine, Texas, USA The Columbia Scientific Balloon Facility, located in Palestine, Texas offers the scientific community a high altitude balloon based communications platform. Scientific payload mass can exceed 2722 kg with balloon float altitudes on average of 40000 km and flight duration of up to 100 days. Many developments in electrical systems have occurred over the more than 25 years of long duration flights. This paper will discuss the latest developments in electronic systems related to long duration flights. Over the years, the long duration flights have increased in durations exceeding 56 days. In order to support these longer flights, the systems have had to increase in complexity and reliability. Several different systems that have been upgraded and/or enhanced will be discussed.
Microgravity experiment system utilizing a balloon
NASA Astrophysics Data System (ADS)
Namiki, M.; Ohta, S.; Yamagami, T.; Koma, Y.; Akiyama, H.; Hirosawa, H.; Nishimura, J.
A system for microgravity experiments by using a stratospheric balloon has been planned and developed in ISAS since 1978. A rocket-shaped chamber mounting the experiment apparatus is released from the balloon around 30 km altitude. The microgravity duration is from the release to opening of parachute, controlled by an on-board sequential timer. Test flights were performed in 1980 and in 1981. In September 1983 the first scientific experiment, observing behaviors and brain activities of fishes in the microgravity circumstance, have been successfully carried out. The chamber is specially equipped with movie cameras and subtransmitters, and its release altitude is about 32 km. The microgravity observed inside the chamber is less than 2.9 × 10-3 G during 10 sec. Engineering aspects of the system used in the 1983 experiment are presented.
SoRa first flight. Summer 2009
NASA Astrophysics Data System (ADS)
Pirrotta, S.; Flamini, E.
The SoRa (Sounding Radar) experiment was successfully launched from Longyearbyen (Svalbard, Norway) during the summer 2009 campaign managed by the Italian/Norwegian "Nobile Amundsen / Stratospheric Balloon Centre" (NA/SBC). SoRa is part of the Italian Space Agency (ASI) programs for Long Duration Balloon Flights. Carried by the biggest balloon (800.000 m3) ever launched in polar regions, SoRa main experiment and its three piggyback payloads (DUSTER, ISA and SIDERALE) performed a nominal flight of almost 4 days over the North Sea and Greenland, until the separation, landing and recovery in Baffin Island (Canada). Despite the final destructive event that compromise the scientific main goal of SoRa, the 2009 ASI balloon campaign can be considered an important milestone, because of the obtained scientific and technical results but also for the lesson learned by the science, engineering and managerial teams looking at the future ASI scientific balloon-born activities.
Power supplies for long duration balloon flights
NASA Astrophysics Data System (ADS)
Lichfield, Ernest W.
Long duration balloon flights require more electrical power than can be carried in primary batteries. This paper provides design information for selecting rechargeable batteries and charging systems. Solar panels for recharging batteries are discussed, with particular emphasis on cells mounting suitable for balloon flights and panel orientation for maximum power collection. Since efficient utilization of power is so important, modern DC to DC power conversion techniques are presented. On short flights of 1 day or less, system designers have not been greatly concerned with battery weight. But, with the advent of long duration balloon flights using superpressure balloons, anchor balloon systems, and RACOON balloon techniques, power supplies and their weight become of prime importance. The criteria for evaluating power systems for long duration balloon flights is performance per unit weight. Instrumented balloon systems have flown 44 days. For these very long duration flights, batteries recharged from solar cells are the only solution. For intermediate flight duration, say less than 10 days, the system designer should seriously consider using primary cells. The National Center for Atmospheric Research is sponsored by the National Science Foundation. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation.
Recent Results and Near Term Outlook for the NASA Balloon Science Program
NASA Astrophysics Data System (ADS)
Jones, William Vernon
Long-duration and conventional balloon flights in the traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines have continued in both polar and non-polar regions since the 39th COSPAR Assembly in Mysore, India. One of these established a new flight record of 55 days over Antarctica during the 2012-2013 austral season. That Super-TIGER science flight broke both the 42-day record of the CREAM science flight during the 2004-2005 season and the 54-day super pressure balloon test flight in 2008-2009. With two comets approaching the sun in 2013-2014, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System. All of the above science disciplines are interested in super pressure balloon (SPB) flights, which have been under development by NASA, and which were strongly supported by the Astro2010 Decadal Study. A 532,152 m3 (18.8 MCF) SPB with a major gamma ray astrophysics payload is planned for an ultra-long duration balloon (ULDB) test flight around and from Antarctica during the upcoming 2014-2015 season. Flights for SPB qualification to support 1000 kg science instruments to 33 km altitude have proceeded in parallel with planning for options to increase the altitude for less massive instruments that require less atmospheric overburden. The nearly constant SPB volume will provide stable altitude long-duration flights at non-polar latitudes, thereby supporting a much broader range of scientific investigations. Scientific ballooning continues to complement and enable space missions, while training young scientists and systems engineers for the workforce needed to conduct future missions. Highlights of results from past balloon-borne measurements and expected results from ongoing and planned balloon-borne experiments will be presented.
Evolution of scientific ballooning and its impact on astrophysics research
NASA Astrophysics Data System (ADS)
Jones, William Vernon
2014-05-01
As we celebrate the centennial year of the discovery of cosmic rays on a manned balloon, it seems appropriate to reflect on the evolution of ballooning and its scientific impact. Balloons have been used for scientific research since they were invented in France more than 200 years ago. Ballooning was revolutionized in 1950 with the introduction of the so-called natural shape balloon with integral load tapes. This basic design has been used with more or less continuously improved materials for scientific balloon flights for more than a half century, including long-duration balloon (LDB) flights around Antarctica for the past two decades. The U.S. National Aeronautics and Space Administration (NASA) is currently developing the next generation super-pressure balloon that would enable extended duration missions above 99.5% of the Earth's atmosphere at any latitude. The Astro2010 Decadal Survey report supports super-pressure balloon development and the giant step forward it offers with ultra-long-duration balloon (ULDB) flights at constant altitudes for about 100 days.
Ballooning for Biologists: Mission Essentials for Flying Experiments on Large NASA Balloons
NASA Technical Reports Server (NTRS)
Smith, David J.; Sowa, Marianne
2017-01-01
Despite centuries of scientific balloon flights, only a handful of experiments have produced biologically-relevant results. Yet unlike orbital spaceflight, it is much faster and cheaper to conduct biology research with balloons, sending specimens to the near space environment of Earths stratosphere. Samples can be loaded the morning of a launch and sometimes returned to the laboratory within one day after flying. The National Aeronautics and Space Administration (NASA) flies large, unmanned scientific balloons from all over the globe, with missions ranging from hours to weeks in duration. A payload in the middle portion of the stratosphere (approx. 35 km above sea level) will be exposed to an environment similar to the surface of Mars: temperatures generally around -36 C, atmospheric pressure at a thin 1 kPa, relative humidity levels <1%, and a harsh illumination of ultraviolet (UV) and cosmic radiation levels (about 100 W/sq m and 0.1 mGy/d, respectively) that can be obtained nowhere else on the surface of the Earth, including environmental chambers and particle accelerator facilities attempting to simulate space radiation effects. Considering the operational advantages of ballooning and the fidelity of space-like stressors in the stratosphere, researchers in aerobiology, astrobiology, and space biology can benefit from balloon flight experiments as an intermediary step on the extraterrestrial continuum (ground, low Earth orbit, and deep space studies). Our presentation targets biologists with no background or experience in scientific ballooning. We will provide an overview of large balloon operations, biology topics that can be uniquely addressed in the stratosphere, and a roadmap for developing payloads to fly with NASA.
NASA Technical Reports Server (NTRS)
Fazely, A. R.; Gunasingha, R. M.; Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.
2003-01-01
We present results on the spectra and the relative abundances of C, N, and 0 nuclei in the cosmic radiation as measured from the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) . The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate calorimeter. It is equipped with a large area mosaic of silicon detector pixels capable of charge identification from H to Fe. As a redundancy check for the charge identification and a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target.
Iridium: Global OTH data communications for high altitude scientific ballooning
NASA Astrophysics Data System (ADS)
Denney, A.
While the scientific community is no stranger to embracing commercially available technologies, the growth and availability of truly affordable cutting edge technologies is opening the door to an entirely new means of global communications. For many years high altitude ballooning has provided science an alternative to costly satellite based experimental platforms. As with any project, evolution becomes an integral part of development. Specifically in the NSBF ballooning program, where flight durations have evolved from the earlier days of hours to several weeks and plans are underway to provide missions up to 100 days. Addressing increased flight durations, the harsh operational environment, along with cumbersome and outdated systems used on existing systems, such as the balloon vehicles Support Instrumentation Package (SIP) and ground-based systems, a new Over-The-Horizon (OTH) communications medium is sought. Current OTH equipment planning to be phased-out include: HF commanding systems, ARGOS PTT telemetry downlinks and INMARSAT data terminals. Other aspects up for review in addition to the SIP to utilize this communications medium include pathfinder balloon platforms - thereby, adding commanding abilities and increased data rates, plus providing a package for ultra-small experiments to ride aloft. Existing communication systems employed by the National Scientific Balloon Facility ballooning program have been limited not only by increased cost, slow data rates and "special government use only" services such as TDRSS (Tracking and Data Relay Satellite System), but have had to make special provisions to geographical flight location. Development of the Support Instrumentation Packages whether LDB (Long Duration Balloon), ULDB (Ultra Long Duration Balloon) or conventional ballooning have been plagued by non-standard systems configurations requiring additional support equipment for different regions and missions along with a myriad of backup for redundancy. Several beneficial points provided by the Iridium platform include pure global accessibility (as well as polar), cost effectiveness because it is available as a COTS (Commercially Off The Shelf) technology, reliability in that the equipment must operate in extreme conditions (near space), integration and development time into current systems must be minimized. As a bonus Motorola and NAL Research Corporation are developing SBD (Short Burst Data) into the Iridium network. This may lead the way to a global IP (Internet Protocol) node based ballooning platform. The Iridium satellite data modems employ the Iridium Low-Earth Orbit (LEO) satellite network. The scope of this paper is to introduce an OTH communications alternative, albeit not necessarily a primary one, to existing ballooning platforms using COTS based emerging technologies. Design aspects, characteristics, actual flight testing statistics, principles of the Iridium modems and communication paths are described including payload and support instrumentation interfacing. Not limited to high altitude ballooning, the Iridium communications platform opens a new era in remote commanding and data retrieval.
NASA Astrophysics Data System (ADS)
Shimazaki, Natsumi; Naruse, Sho; Arai, Tsunenori; Imanishi, Nobuaki; Aiso, Sadakazu
2013-03-01
The purpose of this study was to investigate the artery dilatation performance of the short-duration heating balloon catheter in cadaver stenotic arteries. We designed a prototype short-duration heating balloon catheter that can heat artery media to around 60 °C in 15-25 s by a combination of laser-driven heat generation and continuous fluid irrigation in the balloon. We performed ex vivo short-duration heating dilatation in the cadaver atherosclerotic femoral arteries (initial percent diameter stenosis was 36-98%), with the maximum balloon temperature of 65+/-5 °C, laser irradiation duration of 25 s, and balloon dilatation pressure of 3.5 atm. The artery lumen configurations before and after the dilatations were assessed with a commercial IVUS system. After the short-duration heating dilatations, the percent diameter stenosis was reduced below 30% without any artery tears or dissections. We estimated that the artery media temperature was raised to around 60 °C in which plaque thickness was below 0.8 mm by a thermal conduction calculation. The estimated maximum temperature in artery adventitia and surrounding tissue was up to 45 °C. We found that the short-duration heating balloon could sufficiently dilate the cadaver stenotic arteries, without thermal injury in artery adventitia and surroundings.
An Overview of the NASA Sounding Rockets and Balloon Programs
NASA Technical Reports Server (NTRS)
Flowers, Bobby J.; Needleman, Harvey C.
1999-01-01
The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a combined total of approximately fifty to sixty missions per year in support of the NASA scientific community. These missions are provided in support of investigations sponsored by NASA'S Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program has continued to su,pport the science community by integrating their experiments into the sounding rocket payload and providing the rocket vehicle and launch operations necessary to provide the altitude/time required obtain the science objectives. The sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface, which is physically inaccessible to either balloons or satellites. A new architecture for providing this support has been introduced this year with the establishment of the NASA Sounding Rockets Contract. The Program has continued to introduce improvements into their operations and ground and flight systems. An overview of the NASA Sounding Rockets Program with special emphasis on the new support contract will be presented. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. Long duration balloon (LDB) is a prominent aspect of the program with two campaigns scheduled for this calendar year. Two flights are scheduled in the Northern Hemisphere from Fairbanks, Alaska, in June and two flights are scheduled from McMurdo, Antarctica, in the Southern Hemisphere in December. The comprehensive balloon research and development (R&D) effort has continued with advances being made across the spectrum of balloon related disciplines. As a result of these technology advancements a new ultra long duration balloon project (ULDB) for the development of a 100- day duration balloon capability has been initiated. The ULDB will rely upon new balloon materials and designs to accomplish its goals. The Program has also continued to introduce new technology and improvements into flights systems, ground systems and operational techniques. An overview of the various aspects of the NASA Balloon Program will be presented.
NASA Technical Reports Server (NTRS)
Pelling, M. R.; Duttweiler, F.; Lin, R. F.; Levedahl, W. K.; Primbach, H.; Curtis, D. W.; Burley, K. C.
1985-01-01
A program currently in progress to conduct extended duration spectroscopic and photometric observation of solar X-ray phenomena from balloons is described. High photometric sensitivity to weak hard X-ray bursts is attained using a 600 sq cm array of phoswich scintillators. High spectral resolution for stronger bursts is available from an array of planar germanium detectors. These instruments are carried in a novel balloon gondola dssigned for the 15 to 20 day float durations available through using conventional zero pressure balloons in the radiation controlled (RACOON) mode.
NASA Astrophysics Data System (ADS)
Pelling, M. R.; Duttweiler, F.; Lin, R. F.; Levedahl, W. K.; Primbach, H.; Curtis, D. W.; Burley, K. C.
1985-08-01
A program currently in progress to conduct extended duration spectroscopic and photometric observation of solar X-ray phenomena from balloons is described. High photometric sensitivity to weak hard X-ray bursts is attained using a 600 sq cm array of phoswich scintillators. High spectral resolution for stronger bursts is available from an array of planar germanium detectors. These instruments are carried in a novel balloon gondola dssigned for the 15 to 20 day float durations available through using conventional zero pressure balloons in the radiation controlled (RACOON) mode.
Telemetry Options for LDB Payloads
NASA Technical Reports Server (NTRS)
Field, Chris
2017-01-01
The Columbia Scientific Balloon Facility has been designing and building high-altitude balloon power systems for over 26 years. With that experience, we have found certain types of PV panels, batteries, and charge controllers that are reliable in stratospheric environments. The ultimate goal is to ensure that power systems will provide power reliably throughout the duration of an LDB flight. The purpose of this presentation is to provide some general guidelines and best practices for power system design.
The Electron Calorimeter (ECAL) Long Duration Balloon Experiment
NASA Technical Reports Server (NTRS)
Guzik, T. G.; Adams, J. H.; Bashindzhagyan, G.; Binns, W. R.; Chang, J.; Cherry, M. L.; Christl, M.; Dowkontt, P.; Ellison, B.; Isbert, J. B.;
2007-01-01
Accurate measurements of the cosmic ray electron energy spectrum in the energy region 50 GeV to greater than 1 TeV may reveal structure caused by the annihilation of exotic dark matter particles and/or individual cosmic ray sources. Here we describe a new long duration balloon (LDB) experiment, ECAL, optimized to directly measure cosmic ray electrons up to several TeV. ECAL includes a double layer silicon matrix, a scintillating optical fiber track imager, a neutron detector and a fully active calorimeter to identify more than 90% of the incident electrons with an energy resolution of about 1.7% while misidentifying only 1 in 200,000 protons and 0.8% of secondary gamma rays as electrons. Two ECAL flights in Antarctica are planned for a total exposure of 50 days with the first flight anticipate for December 2009.
Utilization of sounding rockets and balloons in the German Space Programme
NASA Astrophysics Data System (ADS)
Preu, Peter; Friker, Achim; Frings, Wolfgang; Püttmann, Norbert
2005-08-01
Sounding rockets and balloons are important tools of Germany's Space Programme. DLR manages these activities and promotes scientific experiments and validation programmes within (1) Space Science, (2) Earth Observation, (3) Microgravity Research and (4) Re-entry Technologies (SHEFEX). In Space Science the present focus is at atmospheric research. Concerning Earth Observation balloon-borne measurements play a key role in the validation of atmospheric satellite sounders (ENVISAT). TEXUS and MAXUS sounding rockets are successfully used for short duration microgravity experiments. The Sharp Edge Flight Experiment SHEFEX will deliver data from a hypersonic flight for the validation of a new Thermal Protection System (TPS), wind tunnel testing and numerical analysis of aerothermodynamics. Signing the Revised Esrange and Andøya Special Project (EASP) Agreement 2006-2010 in June 2004 Germany has made an essential contribution to the long-term availability of the Scandinavian ranges for the European science community.
NASA Astrophysics Data System (ADS)
Yoshida, Tetsuya; Fuke, Hideyuki; Shoji, Yasuhiro; Iijima, Issei; Izutsu, Naoki; Kato, Yoichi; Matsuzaka, Yukihiko; Mizuta, Eiichi; Sato, Takatoshi; Tamura, Keisuke; Saito, Yoshitaka; Kakehashi, Yuya
2012-07-01
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency conducts domestic balloon campaigns at Taiki Aerospace Research Field (TARF) in Hokkaido since 2008. The ballooning at TARF becomes stable after four year operation. Because the field faces to the Pacific Ocean, heavy balloons and payloads can be launched safely using a very unique sliding launcher. Recoveries at the inshore along the Tokachi coast can be done very quickly and smoothly. Unfortunately, flight opportunities are recently limited due to unfriendly weather condition. Unstable Jet stream also prevents us to have so-called `boomerang flight' to achieve long flight duration more than several hours. Six balloon-borne experiments were carried out in 2010 and 2011. Three of them were demonstrations of challenges of space engineering, two were in-situ atmospheric observation, and one was the technical flight of new high-resolution γ-ray telescope. In addition to these flights, we carried out two launches for next generation balloons: one for Tawara-shaped superpressure balloon and the other for ultra-thin high-altitude balloon. In this paper, recent activities of the Japanese scientific balloon program will be introduced. On-going development of the balloon system will also be presented.
A new TDRSS Compatible Transceiver for Long Duration HIgh Altitude Scientific Balloon Missions
NASA Astrophysics Data System (ADS)
Stilwell, B.; Siemon, M.
High altitude scientific balloons have been used for many years to provide scientists with access to near space at a fraction of the cost of satellite based or sounding rocket experiments. In recent years, these balloons have been successfully used for long duration missions of up to several weeks. Longer missions with durations of up to 100 days (Ultra-Long) are on the drawing board. An enabling technology for the growth of the scientific balloon missions is the use of the NASA Tracking and Data Relay Satellite System (TDRSS) for telemetering the health, status, position and payload science data to mission operations personnel. The TDRSS system provides global coverage by relaying the data through geostationary relay satellites to a single ground station in White Sands New Mexico. Data passes from the White Sands station to the user via commercial telecommunications services including the Internet. A forward command link can also be established to the balloon for real- time command and control. Early TDRSS communications equipment used by the National Scientific Balloon Facility was either unreliable or too expensive. The equipment must be a le tob endure the rigors of space flight including radiation exposure, high temperature extremes and the shock of landing and recovery. Since a payload may occasionally be lost, the cost of the TDRSS communications gear is a limiting factor in the number of missions that can be supported. Under sponsorship of the NSBF, General Dynamics Decision Systems has developed a new TDRSS compatible transceiver that reduces the size, weight and cost to approximately one half that of the prior generation of hardware. This paper describes the long and ultra-long balloon missions and the role that TDRSS communications plays in mission success. The new transceiver design is described, along with its interfaces, performance characteristics, qualification and production status. The transceiver can also be used in other space, avionics or terrestrial applications.
Introduction (Special Issue on Scientific Balloon Capabilities and Instrumentation)
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Smith, I. S.; Jones, W. V.
2014-01-01
In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3,000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science.) Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.
NASA Astrophysics Data System (ADS)
Gaskin, J. A.; Smith, I. S.; Jones, W. V.
In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of 2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3000 kg. Long-duration balloons can currently support mission durations lasting 55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science). Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.
Status of the NASA Balloon Program
NASA Technical Reports Server (NTRS)
Needleman, H. C.; Nock, R. S.; Bawcom, D. W.
1993-01-01
The NASA Balloon Program (BP) is examined in an overview of design philosophy, R&D activities, flight testing, and the development of a long-duration balloon for Antarctic use. The Balloon Recovery Program was developed to qualify the use of existing films and to design improved materials and seals. Balloon flights are described for studying the supernova SN1987a, and systems were developed to enhance balloon campaigns including mobile launch vehicles and tracking/data-acquisition systems. The technical approach to long-duration ballooning is reviewed which allows the use of payloads of up to 1350 kg for two to three weeks. The BP is responsible for the development of several candidate polyethylene balloon films as well as design/performance standards for candidate balloons. Specific progress is noted in reliability and in R&D with respect to optimization of structural design, resin blending, and extrusion.
Scientific balloons: historical remarks.
NASA Astrophysics Data System (ADS)
Ubertini, P.
The paper is an overview of the Human attempt to fly, from the myth of Daedalus and his son Icarus to the first "aerostatic" experiment by Joseph-Michel and Jaques-Etienne Montgolfier. Then, via a jump of about 200 years, we arrive to the era of the modern stratospheric ballooning that, from the beginning of the last century, have provided a unique flight opportunity for aerospace experiments. In particular, the Italian scientific community has employed stratospheric balloons since the '50s for cosmic rays and high energy astrophysical experiments with initial launches performed from Cagliari Helmas Airport (Sardinia). More recently an almost ideal location was found in the area of Trapani-Milo (Sicily, Italy), were an old abandoned airport was refurbished to be used as a new launch site that became operative at the beginning of the '70s. Finally, we suggest a short reminiscence of the first transatlantic experiment carried out on August 1975 in collaboration between SAS-CNR (Italy) and NSBF-NASA (USA). The reason why the Long Duration Balloon has been recently re-oriented in a different direction is analysed and future perspectives discussed. Finally, the spirit of the balloon launch performed by the Groups lead by Edoardo Amaldi, Livio Scarsi and other Italian pioneers, with payloads looking like "refrigerators" weighting a few tens of kg is intact and the wide participation to the present Workshop is the clear demonstration.
Performance of the Advanced Thin Ionization Calorimeter (ATIC)
NASA Technical Reports Server (NTRS)
Case, G.; Ellison, S.; Gould, R.; Granger, D.; Guzik, T. G.; Isbert, J.; Price, B.; Stewart, M.; Wefel, J. P.; Adams, J. H.;
2001-01-01
The ATIC instrument is a balloon-borne experiment capable of measuring cosmic ray elemental spectra from 50 GeV to 100 TeV for nuclei from H to Fe with a fully active Bismuth Germanate calorimeter. Several Long Duration Balloon flights from McMurdo station, Antarctica are scheduled. The detector was tested with high energy electron, proton, and pion beams at CERN. We present results for 150 and 375 GeV protons, and 150 GeV pions and comparison with a GEANT Monte Carlo.
Stratospheric Balloon Platforms for Near Space Access
NASA Astrophysics Data System (ADS)
Dewey, R. G.
2012-12-01
For over five decades, high altitude aerospace balloon platforms have provided a unique vantage point for space and geophysical research by exposing scientific instrument packages and experiments to space-like conditions above 99% of Earth's atmosphere. Reaching altitudes in excess of 30 km for durations ranging from hours to weeks, high altitude balloons offer longer flight durations than both traditional sounding rockets and emerging suborbital reusable launch vehicles. For instruments and experiments requiring access to high altitudes, engineered balloon systems provide a timely, responsive, flexible, and cost-effective vehicle for reaching near space conditions. Moreover, high altitude balloon platforms serve as an early means of testing and validating hardware bound for suborbital or orbital space without imposing space vehicle qualifications and certification requirements on hardware in development. From float altitudes above 30 km visible obscuration of the sky is greatly reduced and telescopes and other sensors function in an orbit-like environment, but in 1g. Down-facing sensors can take long-exposure atmospheric measurements and images of Earth's surface from oblique and nadir perspectives. Payload support subsystems such as telemetry equipment and command, control, and communication (C3) interfaces can also be tested and operationally verified in this space-analog environment. For scientific payloads requiring over-flight of specific areas of interests, such as an active volcano or forest region, advanced mission planning software allows flight trajectories to be accurately modeled. Using both line-of-sight and satellite-based communication systems, payloads can be tracked and controlled throughout the entire mission duration. Under NASA's Flight Opportunities Program, NSC can provide a range of high altitude flight options to support space and geophysical research: High Altitude Shuttle System (HASS) - A balloon-borne semi-autonomous glider carries payloads to high altitude and returns them safely to pre-selected landing sites, supporting quick recovery, refurbishment, and re-flight. Small Balloon System (SBS) - Controls payload interfaces via a standardized avionics system. Using a parachute for recovery, the SBS is well suited for small satellite and spacecraft subsystem developers wanting to raise their Technology Readiness Level (TRL) in an operationally relevant environment. Provides flexibility for scientific payloads requiring externally mounted equipment, such as telescopes and antennas. Nano Balloon System (NBS) - For smaller payloads (~CubeSats) with minimal C3 requirements, the Nano Balloon System (NBS) operates under less restrictive flight regulations with increased operational flexibility. The NBS is well suited for payload providers seeking a quick, simple, and cost effective solution for operating small ~passive payloads in near space. High altitude balloon systems offer the payload provider and experimenter a unique and flexible platform for geophysical and space research. Though new launch vehicles continue to expand access to suborbital and orbital space, recent improvements in high altitude balloon technology and operations provide a cost effective alternative to access space-like conditions.
The 37-day flight of CREAM during the 2009-2010 austral summer
NASA Astrophysics Data System (ADS)
Seo, Eun-Suk
The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was launched from McMurdo Station Antarctica on December 1, 2009, an early-launch record for Antarctic Long Duration Balloon (LDB) flights. A cumulative exposure of ˜ 156 days was achieved when this 37-day fifth flight of CREAM was terminated over the Ross Ice Shelf on January 8, 2010. Combining a sampling calorimeter for energy measurement with multiple charge detectors for particle identification, CREAM-V provided a large data sample to measure elemental spectra for 1 ≤ Z ≤ 26 in energies above 1014 eV. This was the first time that CREAM was supported with the standard Support Instrumentation Package (SIP) for LDB payloads. The first four flights were supported by the Command and Data Module (CDM) developed by the NASA Wallops Flight Facility for Ultra Long Duration Balloon (ULDB) flights. The instrument performance, results from the ongoing data analysis, and future plans will be presented.
Reference level winds from balloon platforms
NASA Technical Reports Server (NTRS)
Lally, Vincent E.
1985-01-01
The superpressure balloon was developed to provide a method of obtaining global winds at all altitudes from 5 to 30 km. If a balloon could be made to fly for several weeks at a constant altitude, and if it could be tracked accurately on its global circuits, the balloon would provide a tag for the air parcel in which it was embedded. The Lagrangian data on the atmospheric circulation would provide a superior data input to the numerical model. The Global Atmospheric Research Program (GARP) was initiated in large part based on the promise of this technique coupled with free-floating ocean buoys and satellite radiometers. The initial name proposed by Charney for GARP was SABABURA 'SAtellite BAlloon BUoy RAdiometric system' (Charney, 1966). However, although the superpressure balloon exceeded its designers' expectations for flight duration in the stratosphere (longest flight duration of 744 days), flight duration below 10 km was limited by icing in super-cooled clouds to a few days. The balloon was relegated to a secondary role during the GARP Special Observing Periods. The several major superpressure balloon programs for global wind measurement are described as well as those new developments which make the balloon once again an attractive vehicle for measurement of global winds as a reference and bench-mark system for future satellite systems.
Long Duration Balloon flights development. (Italian Space Agency)
NASA Astrophysics Data System (ADS)
Peterzen, S.; Masi, S.; Dragoy, P.; Ibba, R.; Spoto, D.
Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, earth observations, near space research and commercial component testing, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78º N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennial oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultra-light payloads and TM systems ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program. This paper discusses the development of the launch facilities and international LDB development.
Development Overview of the Revised NASA Ultra Long Duration Balloon
NASA Technical Reports Server (NTRS)
Cathey, H. M.; Gregory, D; Young, L.; Pierce, D.
2006-01-01
The development of the National Aeronautics and Space Administration s (NASA) Ultra Long Duration Balloon (ULDB) has made significant strides in addressing the deployment issues experienced in the scaling up of the balloon structure. This paper concentrates on the super-pressure balloon developments that have been, and are currently being planned by the NASA Balloon Program Office at Goddard Space Flight Center s Wallops Flight Facility. The goal of the NASA ULDB development project is to attempt to extend the potential flight durations for large scientific balloon payloads. A summary of the February 2005 test flight from Ft. Sumner, New Mexico will be presented. This test flight spurred a number of investigations and advancements for this project. The development path has pursued some new approaches in the design, analysis, and testing of the balloons. New issues have been ideEti6ed throu& both analysis md testing. These have been addressed in the design stage before the next balloon construction was begun. This paper will give an overview of the recent history for this effort and the development approach pursued for ULDB. A description of the balloon design, including the modifications made as a result of the lessons learned, will be presented. Areas to be presented include the design approach, deployment issues that have been encountered and the proposed solutions, ground testing, photogrammetry, and an analysis overview. Test flight planning and considerations will be presented including test flight safety. An extended duration test flight of the National Aeronautics and Space Administration s Ultra Long Duration Balloon is planned for the May/June 2006 time frame. This flight is expected to fly from Sweden to either Canada or Alaska. Preliminary results of this flight will be presented as available. Future plans for both ground testing and additional test flights will also be presented. Goals of the future test flights, which are staged in increments of increasing suspended load and altitude, will be presented. This will include the projected balloon volumes, payload capabilities, test flight locations, and proposed flight schedule.
High Altitude Balloons as a Platform for Space Radiation Belt Science
NASA Astrophysics Data System (ADS)
Mazzino, L.; Buttenschoen, A.; Farr, Q.; Hodgson, C.; Johnson, W.; Mann, I. R.; Rae, J.; University of Alberta High Altitude Balloons (UA-HAB)
2011-12-01
The goals of the University of Alberta High Altitude Balloons Program (UA-HAB) are to i) use low cost balloons to address space radiation science, and ii) to utilise the excitement of "space mission" involvement to promote and facilitate the recruitment of undergraduate and graduate students in physics, engineering, and atmospheric sciences to pursue careers in space science and engineering. The University of Alberta High Altitude Balloons (UA-HAB) is a unique opportunity for University of Alberta students (undergraduate and graduate) to engage in the hands-on design, development, build, test and flight of a payload to operate on a high altitude balloon at around 30km altitude. The program development, including formal design and acceptance tests, reports and reviews, mirror those required in the development of an orbital satellite mission. This enables the students to gain a unique insight into how space missions are flown. UA-HAB is a one and half year program that offers a gateway into a high-altitude balloon mission through hands on experience, and builds skills for students who may be attracted to participate in future space missions in their careers. This early education will provide students with the experience necessary to better assess opportunities for pursuing a career in space science. Balloons offer a low-cost alternative to other suborbital platforms which can be used to address radiation belt science goals. In particular, the participants of this program have written grant proposal to secure funds for this project, have launched several 'weather balloon missions', and have designed, built, tested, and launched their particle detector called "Maple Leaf Particle Detector". This detector was focussed on monitoring cosmic rays and space radiation using shielded Geiger tubes, and was flown as one of the payloads from the institutions participating in the High Altitude Student Platform (HASP), organized by the Louisiana State University and the Louisiana Space Consortium (LaSpace), and sponsored by NASA. The HASP platform was launched from Fort Sumner, New Mexico, and to an altitude of about 36kilometers with flight durations of 15 to 20 hours using a small volume, low pressure balloon. The main objectives of the program, the challenges involved in developing it, and the major achievements and outcomes will be discussed. Future opportunities for the use of high altitude balloons for solar-terrestrial science, such as the diagnosis of radiation belt loss through the flight of alternative X-ray scintillator payloads, on short duration weather balloon flights will also be discussed. The UA-HAB project is undertaken with the financial support of the Canadian Space Agency.
All-Particle Spectrum Measured by the ATIC Experiment
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.;
2007-01-01
The Advanced Thin Ionization Calorimeter (ATIC), a balloon-borne experiment, is designed to investigate the composition and energy spectra of cosmic rays of charge Z = 1 to 26 over the energy range - 10(exp 11) - 10(exp 14) ev. The instrument consists of a silicon matrix charge detector, plastic-scintillator strip hodoscopes interleaved with graphite interaction targets, and an 18 radiation length deep, fully active bismuth germanate (BGO) calorimeter. ATIC has had two successful long duration balloon (LDB) flights launched from McMurdo Station, Antarc't'ica in 2000 and 2002. In this paper, we present the all-particle spectrum extracted from data collected during the ATIC flights, and compare it with results from other experiments at both lower and higher energies.
Induced Radioactivity Measured in a Germanium Detector After a Long Duration Balloon Flight
NASA Technical Reports Server (NTRS)
Starr, R.; Evans, L. G.; Floyed, S. R.; Drake, D. M.; Feldman, W. C.; Squyres, S. W.; Rester, A. C.
1997-01-01
A 13-day long duration balloon flight carrying a germanium detector was flown from Williams Field, Antartica in December 1992. After recovery of the payload the activity induced in the detector was measured.
NASA Technical Reports Server (NTRS)
Richards, Paul L.
1998-01-01
Precise measurements of the angular power spectrum of the Cosmic Microwave Background (CMB) anisotropy will revolutionize cosmology. These measurements will discriminate between competing cosmological models and, if the standard inflationary scenario is correct, will determine each of the fundamental cosmological parameters with high precision. The astrophysics community has recognized this potential: the orbital experiments MAP and PLANCK, have been approved to measure CMB anisotropy. Balloon-borne experiments can realize much of this potential before these missions are launched. Additionally, properly designed balloon-borne experiments can complement MAP in frequency and angular resolution and can give the first realistic test of the instrumentation proposed for the high frequency instrument on PLANCK. The MAXIMA experiment is part of the MAXIMA/BOOMERANG collaboration which is doing balloon observations of the angular power spectrum of the Cosmic Microwave Background from l = 10 to l = 800. These experiments are designed to use the benefits of both North American and Antarctic long-duration ballooning to full advantage. We have developed several new technologies that together allow the power spectrum to be measured with unprecedented combination of angular resolution, beam throw, sensitivity, sky coverage and control of systematic effects. These technologies are the basis for the high frequency instrument for the PLANCK mission. Our measurements will strongly discriminate between models of the origin and evolution of structure in the universe and, for many models, will determine the value of the basic cosmological parameters to high precision.
Experience of Application of Silicon Matrix as a Charge Detector in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Christl, M. J.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) was built for series of long-duration balloon flights in Antarctica. Its main goal is to measure energy spectra of cosmic ray nuclei from protons up to iron nuclei in the wide range of their energy from 30 GeV up to 100 TeV. The ATIC balloon experiment had its first, test flight that lasted for 16 days from 28 Dec 2000 to 13 Jan 2001 around the South Pole. The ATIC spectrometer consists of a fully active BGO calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix consisted of 4480 pixels was used as a charge detector in the experiment. About 25 million cosmic ray events were detected during the flight. In the paper, the charge spectrum obtained with the silicon matrix is analyzed.
The Silicon Matrix as a Charge Detector in the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2004-01-01
The Advanced Thin Ionization Calorimeter (ATIC) was built for series of long- duration balloon flights in Antarctica. Its main goal is to measure energy spectra of cosmic ray nuclei from protons up to iron nuclei over a wide energy range from 30 GeV up to 100 TeV. The ATIC balloon experiment had its first, test flight that lasted for 16 days from 28 Dec 2000 to 13 Jan 2OO1 around the continent. The ATIC spectrometer consists of a fully active BGO calorimeter, scintillator hodoscopes and a silicon matrix. The silicon matrix, consisting of 4480 pixels, was used as a charge detector in the experiment. About 25 million cosmic ray events were detected during the flight. In the paper, the charge spectrum obtained with the silicon matrix is analyzed.
An Overview of the NASA Sounding Rocket and Balloon Programs
NASA Technical Reports Server (NTRS)
Eberspeaker, Philip J.; Smith, Ira S.
2003-01-01
The U.S. National Aeronautics and Space Administration (NASA) Sounding Rockets and Balloon Programs conduct a total of 50 to 60 missions per year in support of the NASA scientific community. These missions support investigations sponsored by NASA's Offices of Space Science, Life and Microgravity Sciences & Applications, and Earth Science. The Goddard Space Flight Center has management and implementation responsibility for these programs. The NASA Sounding Rockets Program provides the science community with payload development support, environmental testing, launch vehicles, and launch operations from fixed and mobile launch ranges. Sounding rockets continue to provide a cost-effective way to make in situ observations from 50 to 1500 km in the near-earth environment and to uniquely cover the altitude regime between 50 km and 130 km above the Earth's surface. New technology efforts include GPS payload event triggering, tailored trajectories, new vehicle configuration development to expand current capabilities, and the feasibility assessment of an ultra high altitude sounding rocket vehicle. The NASA Balloon Program continues to make advancements and developments in its capabilities for support of the scientific ballooning community. The Long Duration Balloon (LDB) is capable of providing flight durations in excess of two weeks and has had many successful flights since its development. The NASA Balloon Program is currently engaged in the development of the Ultra Long Duration Balloon (ULDB), which will be capable of providing flight times up to 100-days. Additional development efforts are focusing on ultra high altitude balloons, station keeping techniques and planetary balloon technologies.
Design Evolution and Methodology for Pumpkin Super-Pressure Balloons
NASA Astrophysics Data System (ADS)
Farley, Rodger
The NASA Ultra Long Duration Balloon (ULDB) program has had many technical development issues discovered and solved along its road to success as a new vehicle. It has the promise of being a sub-satellite, a means to launch up to 2700 kg to 33.5 km altitude for 100 days from a comfortable mid-latitude launch point. Current high-lift long duration ballooning is accomplished out of Antarctica with zero-pressure balloons, which cannot cope with the rigors of diurnal cycles. The ULDB design is still evolving, the product of intense analytical effort, scaled testing, improved manufacturing, and engineering intuition. The past technical problems, in particular the s-cleft deformation, their solutions, future challenges, and the methodology of pumpkin balloon design will generally be described.
Beam Tests of the Balloon-Borne ATIC Experiment
NASA Technical Reports Server (NTRS)
Ganel, O.; Adams, J. H., Jr.; Ahn, E. J.; Ampe, J.; Bashindzhagyan, G.; Case, G.; Chang, J.; Ellison, S.; Fazely, A.; Gould, R.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic-ray elemental spectra measurement from 50 GeV to 100 TeV for nuclei from hydrogen to iron. These measurements are expected to provide crucial hints about some of the most fundamental questions in astroparticle physics today. ATTIC'S design centers on an 18 radiation length (X(sub Omnicron)) deep bismuth germanate (BGO) calorimeter, preceded by a 0.75 lambda(sub int) graphite target. In September 1999 the ATIC detector was exposed to high-energy beams at CERN's SPS accelerator, within the framework of the development program for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). In December 2000 - January 2001, ATIC flew on the first of a series of long duration balloon (LDB) flights from McMurdo Station, Antarctica. We present here results from the 1999 beam-tests, including energy resolutions for electrons and protons at several beam energies from 100 GeV to 375 GeV, as well as signal linearity and collection efficiency estimates. We show how these results compare with expectations based on simulations, and their expected impacts on mission performance.
Electrodynamics of the stratosphere using 5000 m3 superpressure balloons
NASA Astrophysics Data System (ADS)
Holzworth, R. H.
Recently the U. S. National Science Foundation and NASA have begun support of a long duration balloon-borne experiment to study electrical properties of the upper atmosphere. This research project titled EMA (Electrodynamics of the Middle Atmopshere) involves the design of a microprocessor controlled payload and the launch of up to eight small superpressure balloons during 1982 through early 1984. The primary payload instrument will measure the vector electric field from DC to 10 kHz and the payloads will include instruments to measure local ionization, electrical conductivity, magnetic field, pressure and temperature fluctuations and to record optical lightning. Measurement of these parameters in the stratosphere from a few balloons simultaneously for periods extending over a few solar rotations will enable us to study (1) electrical coupling between the atmosphere and magnetosphere, (2) global current systems, (3) global response to solar flares and magnetospheric storms and many other outstanding problems. In order to obtain long duration flights, it is necessary to fly in the southern hemisphere where the balloons are expected to circle the globe dozens of times in their lifetimes. Thus the balloons will be out of direct communication with any one ground station most of the time so the telemetry will be relayed via satellite. This severely limits the data rates resulting in the need for on-board data processing. This is accomplished through the use of dual microcomputers for data analysis and for telemetry formatting. This talk will concentrate on a description of our payload design as driven by the scientific requirements. Examples of the types of electric field signatures we expect to be able to distinguish will also be presented.
Elemental Spectra from the First ATIC Flight
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Changv, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.
2005-01-01
The Advanced Thin Ionization Calorimeter (ATIC) instrument is a balloon-borne experiment designed to measure the composition and energy spectra of Z = l to 26 cosmic rays over the energy range from approx. 10(exp 11) to approx. 10(exp 14) eV. The instrument consists of a silicon matrix charge detector, plastic scintillator strip hodoscopes interleaved with graphite interaction targets, and a fully active Bismuth Germanate (BGO) calorimeter. ATIC had two successful Long Duration Balloon flights launched from McMurdo Station, Antarctica in 2000 and 2002. In this paper, spectra of various elements measured during the first 16 day flight are presented.
NASA Astrophysics Data System (ADS)
Helson, Kyle
2014-03-01
We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis.
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2011 CFR
2011-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2012 CFR
2012-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2013 CFR
2013-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
14 CFR 61.23 - Medical certificates: Requirement and duration.
Code of Federal Regulations, 2014 CFR
2014-01-01
... pilot certificate with glider or balloon privileges; or (ii) A pilot certificate with a glider category... privileges in a glider or balloon; (3) When exercising the privileges of a pilot certificate with a glider category rating or balloon class rating in a glider or a balloon, as appropriate; (4) When exercising the...
Soyama, Hiroaki; Miyamoto, Morikazu; Sasa, Hidenori; Ishibashi, Hiroki; Yoshida, Masashi; Nakatsuka, Masaya; Takano, Masashi; Furuya, Kenichi
2017-09-01
To evaluate the effectiveness of routine rapid insertion of a Bakri balloon during cesarean section for placenta previa based on a retrospective control study. Women with singleton pregnancies who underwent cesarean section for placenta previa at our institution between 2003 and 2016 were enrolled. Between 2015 and 2016, women who routinely underwent balloon tamponade during cesarean section were defined as the balloon group. Between 2003 and 2014, women who underwent no hemostatic procedures except balloon tamponade were defined as the non-balloon group. The clinical outcomes of the two groups were retrospectively analyzed. Of the 266 women with placenta previa, 50 were in the balloon group and 216 were in the non-balloon group. The bleeding amounts were significantly smaller in the balloon group than in the non-balloon group: intraoperative bleeding (991 vs. 1250 g, p < 0.01), postoperative bleeding (62 vs. 150 g, p < 0.01), and total bleeding (1066 vs. 1451 g, p < 0.01). Furthermore, the mean surgical duration was shorter in the balloon group than the non-balloon group (30 vs. 50 min, p < 0.01). In the balloon group, five patients suffered from increasing hemorrhage due to prolapse of the balloon from the uterus after the operation, but the hemorrhage was controlled by balloon re-insertion without additional hemostatic procedures. This study demonstrated that the routine rapid insertion of Bakri balloon tamponade during cesarean section significantly decreased intra- and postoperative hemorrhage and shortened the surgical duration in women with placenta previa.
NASA Technical Reports Server (NTRS)
1993-01-01
The observational limitations of earth bound solar studies has prompted a great deal of interest in recent months in being able to gain new scientific perspectives through, what should prove to be, relatively low cost flight of the magnetograph system. The ground work done by TBE for the solar balloon missions (originally planned for SOUP and GRID) as well as the rather advanced state of assembly of the EXVM has allowed the quick formulation of a mission concept for the 30 cm system currently being assembled. The flight system operational configuration will be discussed as it is proposed for short duration flight (on the order of one day) over the continental United States. Balloon hardware design requirements used in formulation of the concept are those set by the National Science Balloon Facility (NSBF), the support agency under NASA contract for flight services. The concept assumes that the flight hardware assembly would come together from three development sources: the scientific investigator package, the integration contractor package, and the NSBF support system. The majority of these three separate packages can be independently developed; however, the computer control interfaces and telemetry links would require extensive preplanning and coordination. A special section of this study deals with definition of a dedicated telemetry link to be provided by the integration contractor for video image data for pointing system performance verification. In this study the approach has been to capitalize to the maximum extent possible on existing hardware and system design. This is the most prudent step that can be taken to reduce eventual program cost for long duration flights. By fielding the existing EXVM as quickly as possible, experience could be gained from several short duration flight tests before it became necessary to commit to major upgrades for long duration flights of this system or of the larger 60 cm version being considered for eventual development.
The ATIC Long Duration Balloon Project
NASA Technical Reports Server (NTRS)
Guzik, T. G.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Granger, D.; Gunasingha, R.
2003-01-01
Long Duration Balloon (LDB) scientific experiments, launched to circumnavigate the south pole over Antarctica, have particular advantages compared to Shuttle or other Low Earth Orbit (LEO) missions in terms of cost, weight, scientific 'duty factor' and work force development. The Advanced Thin Ionization Calorimeter (ATIC) cosmic ray astrophysics experiment is a good example of a university-based project that takes full advantage of current LDB capability. The ATIC experiment is currently being prepared for its first LDB science flight that will investigate the charge composition and energy spectra of primary cosmic rays over the energy range from about 10(exp 10) to 10(exp 14) eV. The instrument is built around a fully active, Bismuth Germanate (BGO) ionization calorimeter to measure the energy deposited by the cascades formed by particles interacting in a thick carbon target. A highly segmented silicon matrix, located above the target, provides good incident charge resolution plus rejection of the 'backscattered' particles from the interaction. Trajectory reconstruction is based on the cascade profile in the BGO calorimeter, plus information from the three pairs of scintillator hodoscope layers in the target section above it. A full evaluation of the experiment was performed during a test flight occurring between 28 December 2000 and 13 January 2001 where ATIC was carried to an altitude of approx. 37 km above Antarctica by an approx. 850,000 cu m helium filled balloon for one circumnavigation of the continent. All systems behaved well, the detectors performed as expected, more than 43 gigabytes of engineering and cosmic ray event data was returned and these data are now undergoing preliminary data analysis. During the coming 2002-2003 Antarctica summer season, we are preparing for a ATIC science flight with approx. 15 to 30 days of continuous data collection in the near-space environment of LDB float altitudes.
McCoul, Edward D; Singh, Ameet; Anand, Vijay K; Tabaee, Abtin
2012-04-01
The surgical management options for eustachian tube dysfunction have historically been limited. The goal of the current study was to evaluate the technical considerations, learning curve, and potential barriers for balloon dilation of the eustachian tube (BDET) as an alternative treatment modality. Prospective preclinical trial of BDET in a cadaver model. A novel balloon catheter device was used for eustachian tube dilation. Twenty-four BDET procedures were performed by three independent rhinologists with no prior experience with the procedure (eight procedures per surgeon). The duration and number of attempts of the individual steps and overall procedure were recorded. Endoscopic examination of the eustachian tube was performed after each procedure, and the surgeon was asked to rate the subjective difficulty on a five-point scale. Successful completion of the procedure occurred in each case. The overall mean duration of the procedure was 284 seconds, and a mean number of 1.15 attempts were necessary to perform the individual steps. The mean subjective procedure difficulty was noted as somewhat easy. Statistically shorter duration and subjectively easier procedure were noted in the second compared to the first half of the series, indicating a favorable learning curve. Linear fissuring within the eustachian tube lumen without submucosal disruption (nine procedures, 37%) and with submucosal disruption (five procedures, 21%) were noted. The significance of these physical findings is unclear. Preclinical testing of BDET is associated with favorable duration, learning curve, and overall ease of completion. Clinical trials are necessary to evaluate safety and efficacy. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
The Energy Spectra of Proton and Helium Measured from the ATIC Experiment
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Seo, E. S.; Adams, J. H.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2004-01-01
The Advanced Thin Ionization Calorimeter (ATIC) balloon experiment is designed to investigate the composition and energy spectra of cosmic rays at the highest energies currently accessible from direct measurements, the region up to 100 TeV. The instrument consists of a silicon matrix for charge measurement, a graphite target (0.75 nuclear interaction length) to induce hadronic fragmentation, 3 scintillator strip hodoscopes for triggering and helping reconstruct trajectory, and a BGO calorimeter (18 radiation lengths) to measure the energy of incident particles. ATIC had two successful Long Duration Balloon (LDB) flights from McMurdo, Antarctica: from 12/28/00 to 01/13/01 and from 12/29/02 to 01/18/03. We present the energy spectra of proton and helium extracted from the ATIC flights, over the energy range from 100 GeV to 100 TeV, and compare them with the results from other experiments at both the lower and higher energy ends.
Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity
NASA Astrophysics Data System (ADS)
Rand, J. L.; Wakefield, D. S.
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may
Technologies developed by CNES balloon team
NASA Astrophysics Data System (ADS)
Sosa-Sesma, Sergio; Charbonnier, Jean-Marc; Deramecourt, Arnaud
CNES balloon team develops and operates all the components of this kind of vehicle: it means envelope and gondola. This abstract will point out only developments done for envelope. Nowadays CNES offers to scientists four types of envelops that cover a large range of mission demands. These envelops are: 1. Zero pressure balloons: Size going from 3,000m3 to 600,000m3, this kind of envelop is ideal for short duration flights (a few hours) but if we use an intelligent management of ballast consumption and if we chose the best launch site, it is possible to perform medium duration flights (10/20 days depending on the ballast on board). Flight train mass starts at 50kg for small balloons and reach 1000kg for larger ones. Zero pressure balloons are inflated with helium gas. 2. Super pressure balloons: Diameter going from 2.5m to 12m, this kind of envelop is ideal for long duration flights (1 to 6 months). Flight train is inside the envelop for small balloons, it means 2.5 diameter meters which is usually called BPCL (Super pressure balloon for Earth boundary layer) and it is about 3kg of mass. Larger ones could lift external flight trains about 50kg of mass. Super pressure balloons are inflated with helium gas. 3. MIR balloons: Size going from 36,000m3 to 46,000m3. Ceiling is reach with helium gas but after three days helium is no longer present inside and lift force is produced by difference of temperature between air inside and air of atmosphere. Flight trains must not be over 50kg. 4. Aero Clipper balloons: A concept to correlate measurements done in oceans and in nearest layers of atmosphere simultaneously. Flight train is made by a "fish" that drags inside water and an atmospheric gondola few meters above "fish", both pushed by a balloon which profits of the wind force. Materials used for construction and assembling depend on balloon type; they are usually made of polyester or polyethylene. Thickness varies from 12 micrometers to 120 micrometers. Balloon assembling is made at ZODIAC site (near Toulouse) by Zodiac teams although all mechanical machines belong to CNES. These machines had been developed by CNES to cut, to weld and to thermo-joint the different parts of the balloon.
Space and Earth Observations from Stratospheric Balloons
NASA Astrophysics Data System (ADS)
Peterzen, Steven; Ubertini, Pietro; Masi, Silvia; Ibba, Roberto; Ivano, Musso; Cardillo, Andrea; Romeo, Giovanni; Dragøy, Petter; Spoto, Domenico
Stratospheric balloons are rapidly becoming the vehicle of choice for near space investigations and earth observations by a variety of science disciplines. With the ever increasing research into climatic change, instruments suspended from stratospheric balloons offer the science team a unique, stable and reusable platform that can circle the Earth in the polar region or equatorial zone for thirty days or more. The Italian Space Agency (ASI) in collaboration with Andoya Rocket Range (Andenes, Norway) has opened access in the far northern latitudes above 78o N from Longyearbyen, Svalbard. In 2006 the first Italian UltraLite Long Duration Balloon was launched from Baia Terra Nova, Mario Zuchelli station in Antarctica and now ASI is setting up for the their first equatorial stratospheric launch from their satellite receiving station and rocket launch site in Malindi, Kenya. For the equatorial missions we have analysed the statistical properties of trajectories considering the biennal oscillation and the seasonal effects of the stratospheric winds. Maintaining these launch sites offer the science community 3 point world coverage for heavy lift balloons as well as the rapidly deployed Ultralight payloads and TM system ASI developed to use for test platforms, micro experiments, as well as a comprehensive student pilot program
Pegaso: Long durations balloons from polar regions
NASA Astrophysics Data System (ADS)
Romeo, G. R.; di Stefano, G. D. S.; di Felice, F. D. F.; Masi, S. M.; Cardillo, A. C.; Musso, I. M.; Ibba, R. I.; Palangio, P. P.; Caprara, F. C.; Peterzen, S. P.; Pegaso Group
Launched from the Mario Zuccelli Station Baia Terra Nova in Antarctica during the 2005 06 austral summer the PEGASO-D payload lifted into the stratospheric anticyclone over the southern polar region This effort marks the first Long Duration Scientific payload to be launched from this location and is the fourth such payload launched in the polar regions Performing in the framework of the NOBILE AMUNDSEN collaborative LDB development between ASI-ARR The Italian Institute of Geophysics and Volcanology INGV with the sponsorship of the Italian Antarctic Program PNRA and the Italian Space Agency ASI designed and built the Ultra-Light system together with three Universities in Italy The Pegaso program has been created to investigate the Earth magnetic field and provide a precursor series of small payload launches for the bigger LDB program such as OLIMPO BOOMERanG and BArSPOrt through this collaboration between ASI and ARR The Italian scientific community aware of the big advantages that LDB balloons can offer to their experiments proposed to extend the LDB program to Southern polar regions besides performing launches from the newly initiated Nobile Amundsen Stratospheric Balloon Center in Svalbard Norway Three PEGASO Polar Explorer for Geomagnetics And other Scientific Observations payloads have been launched from the Svalbard No in collaboration with Andoya Rocket Range ASI and ISTAR Operations and logistics during the past two northern summers These stratospheric altitude m 35000 small 10kmc balloons have floated in the stratosphere between 14 to
NASA Astrophysics Data System (ADS)
Helson, Kyle R.
2015-08-01
We report on the status of the E and B Experiment (EBEX) a balloon-borne polarimeter designed to measure the polarization of the cosmic microwave background radiation. The instrument employs a 1.5 meter Gregorian Mizuguchi-Dragone telescope providing 8 arc-minute resolution at three bands centered on 150, 250, and 410 GHz. A continuously rotating achromatic half wave plate, mounted on a superconducting magnetic bearing, and a polarizing grid give EBEX polarimetric capabilities. Radiation is detected with a kilo-pixel array of transition edge sensor (TES) bolometers that are cooled to 0.25 K. The detectors are readout using SQUID current amplifiers and a digital frequency-domain multiplexing system in which 16 detectors are readout simultaneously with two wires. EBEX is the first instrument to implement TESs and such readout system on board a balloon-borne platform. EBEX was launched from the Antarctic in December 2012 on an 11-day long-duration balloon flight. This presentation will provide an overview of the instrument and discuss the flight and status of the data analysis. We also discuss the next generation of EBEX called EBEX10k, currently in development.
Shah, Utsavi; Bellows, Patricia; Drexler, Kathleen; Hawley, Lauren; Davidson, Christina; Sangi-Haghpeykar, Haleh; Gandhi, Manisha
2017-05-01
To compare induction of labor methods in patients attempting a trial of labor after cesarean (TOLAC) with an unfavorable cervix. This is a retrospective cohort study from patients attempting TOLAC from 2009 to 2013. Patients with a simplified Bishop score of three or less where labor was initiated with either a Cook balloon or oxytocin were included. Our primary outcome was mode of delivery. Our secondary outcomes included duration of labor and multiple maternal and neonatal morbidities. Two-hundred and fourteen women met inclusion criteria: 150 received oxytocin and 64 had the Cook balloon placed. The vaginal birth after cesarean delivery rate was significantly higher in the oxytocin group at 70.7% versus 50.0% in the Cook balloon group (p = 0.004). In the multivariable analysis, odds for cesarean delivery were two times higher with the Cook balloon than with oxytocin (Adjusted OR = 2.09, 95% CI = 1.05-4.18, p = 0.036). The duration of labor was longer with the Cook balloon versus oxytocin (21.9 versus 16.3 hours, p = 0.0002). There were no significant differences in maternal and neonatal health outcomes. Oxytocin induction of labor was associated with a higher rate of vaginal delivery and a shorter duration of labor compared to the Cook balloon in women undergoing TOLAC with an unfavorable cervix.
Atic Experiment: Flight Data Processing
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) is a balloon borne experiment to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range approx. 30 GeV - 100 TeV. The instrument consists of a fully active 320-crystal Bismuth Germanate (BGO) calorimeter, 202 scintillator strips in 3 hodoscopes interleaved with a graphite target, and a 4480-pixel silicon matrix charge detector. ATIC has had two successful Long Duration Balloon flights from McMurdo, Antarctica: from 12/28/00 to 01/13/01 and from 12/29/02 to 01/18/03. We have developed the ATIC Data Processing System (ADPs), which is an Object Oriented data processing program based on ROOT. In this paper, we describe the processing scheme used in handling the flight data, especially the calibration method and the event reconstruction algorithm.
TeV electron measurement with CREST experiment
NASA Astrophysics Data System (ADS)
Park, Nahee; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Muller, D.; Musser, J.; Nutter, S.
CREST, the Cosmic Ray Electron Synchrotron Telescope is a balloon-borne experiment de-signed to measure the spectrum of multi-TeV electrons by the detection of the x-ray synchrotron photons generated in the magnetic field of the Earth. Electrons in the TeV range are expected to reflect the properties of local sources because fluxes from remote locations are suppressed by radiative losses during propagation. Since CREST needs to intersect only a portion of the kilometers-long trail of photons generated by the high-energy electron, the method yields a larger effective area than the physical size of the detector, boosting detection areas. The in-strument is composed of an array of 1024 BaF2 crystals and a set of scintillating veto counters. A long duration balloon flight in Antarctica is currently planned for the 2010-11 season.
Low-cost TDRSS communications for NASA's long duration balloon project
NASA Technical Reports Server (NTRS)
Israel, David J.
1993-01-01
A new transponder and RF ground support equipment for the NASA Tracking and Data Relay Satellite System (TDRSS) intended to support long duration scientific balloon flights in Antarctica are described. The new balloon class transponder features a highly integrated spread spectrum receiver design based on programmable charge coupled device (CCD) correlators and digital signal processing chips. The correlator chip is a Lincoln Labs 4ABC with four CCD channels. The balloon transponder is capable of reporting an estimate of its input bit error rate using digital signal processing. The TDRSS user RF test set is based on a set of RF ground support equipment capable of providing both the RF communications and direct control and monitoring necessary for transponder testing and a two-way RF link for preflight testing.
Despott, Edward J; Murino, Alberto; Bourikas, Leonidas; Nakamura, Masanao; Ramachandra, Vino; Fraser, Chris
2015-05-01
Spiral enteroscopy is a recently introduced technology alternative to balloon-assisted enteroscopy for examination of the small bowel. To compare small bowel insertion depths and procedure duration by spiral enteroscopy and double-balloon enteroscopy performed in the same cohort of patients, in immediate succession, using the same method of insertion depth estimation. A prospective, back-to-back comparative study was performed in 15 patients. Spiral enteroscopy procedures were performed first and a tattoo was placed to mark the most distal point. Double-balloon enteroscopy passed the tattoo placed at spiral enteroscopy in 14/15 cases (93%). Median insertion depths for double-balloon enteroscopy and spiral enteroscopy were 265cm and 175cm, respectively (P=0.004). Median time to achieve maximal depth of insertion was significantly shorter for spiral enteroscopy compared with double-balloon enteroscopy (24min vs. 45min, respectively; P=0.0005). However, in 14 patients no differences were found in median time to reach the same insertion depth (P=0.28). Double-balloon enteroscopy achieved significantly greater small bowel insertion depth than spiral enteroscopy. Although overall double-balloon enteroscopy procedure duration was longer, the time taken to reach the same small bowel insertion depth by both spiral enteroscopy and double-balloon enteroscopy was similar. Copyright © 2015 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cocquerez, P.; Venel, S.; Vial, F.; Mechoso, R.; Hertzog, A.; Basdevant, C.
The Stratéole-Vorcore stratospheric balloon campaign took place in September-October 2005 from McMurdo Antarctica This campaign which benefited from a very significant support from the National science Foundation as well as from the French polar institute Institut Paul Emile Victor is a joint effort of the French space agency CNES and the Laboratoire de meteorology Dynamique IPSL CNRS 27 balloons were released from 5 th of September to 28 th of October Drifting during several months at constant air density in the low stratosphere they formed a flotilla of up to 21 balloons floating simultaneously The duration of flight cumulated over the entire flotilla reached 1577 days producing more than 150 000 meteorological observations This presentation will mainly focus on the description of the ground and flight systems the launch operations and the main characteristics of the flights It will be completed by an overview of the current plans for the utilisation of this observation system for other scientific missions in the near future
Wiarda, Bart M; Stolk, Mark; Heine, Dimitri G N; Mensink, Peter; Thieme, Mai E; Kuipers, Ernst J; Stoker, Jaap
2013-03-01
We aimed to prospectively determine patient burden and patient preference for magnetic resonance enteroclysis, capsule endoscopy and balloon-assisted enteroscopy in patients with suspected or known Crohn's disease (CD) or occult gastrointestinal bleeding (OGIB). Consecutive consenting patients with CD or OGIB underwent magnetic resonance enteroclysis, capsule endoscopy and balloon-assisted enteroscopy. Capsule endoscopy was only performed if magnetic resonance enteroclysis showed no high-grade small bowel stenosis. Patient preference and burden was evaluated by means of standardized questionnaires at five moments in time. From January 2007 until March 2009, 76 patients were included (M/F 31/45; mean age 46.9 years; range 20.0-78.4 years): 38 patients with OGIB and 38 with suspected or known CD. Seventeen patients did not undergo capsule endoscopy because of high-grade stenosis. Ninety-five percent (344/363) of the questionnaires were suitable for evaluation. Capsule endoscopy was significantly favored over magnetic resonance enteroclysis and balloon-assisted enteroscopy with respect to bowel preparation, swallowing of the capsule (compared to insertion of the tube/scope), burden of the entire examination, duration and accordance with the pre-study information. Capsule endoscopy and magnetic resonance enteroclysis were significantly preferred over balloon-assisted enteroscopy for clarity of explanation of the examination, and magnetic resonance enteroclysis was significantly preferred over balloon-assisted enteroscopy for bowel preparation, painfulness and burden of the entire examination. Balloon-assisted enteroscopy was significantly favored over magnetic resonance enteroclysis for insertion of the scope and procedure duration. Pre- and post-study the order of preference was capsule endoscopy, magnetic resonance enteroclysis and balloon-assisted enteroscopy. Capsule endoscopy was preferred to magnetic resonance enteroclysis and balloon-assisted enteroscopy; it also had the lowest burden. Magnetic resonance enteroclysis was preferred over balloon-assisted enteroscopy for clarity of explanation of the examination, bowel preparation, painfulness and burden of the entire examination, and balloon-assisted enteroscopy over magnetic resonance enteroclysis for scope insertion and study duration. © 2012 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
Evaluation of balloon trajectory forecast routines for GAINS
NASA Astrophysics Data System (ADS)
Collander, R.; Girz, C.
The Global Air-ocean IN-situ System (GAINS) is a global observing system designed to augment current environmental observing and monitoring networks. GAINS is a network of long-duration, stratospheric platforms that carry onboard sensors and hundreds of dropsondes to acquire meteorological, air chemistry, and climate data over oceans and in remote land regions of the globe. Although GAINS platforms will include balloons and Remotely Operated Aircraft (ROA), the scope of this paper is limited to balloon-based platforms. A primary goal of GAINS balloon test flights is post-flight recovery of the balloon shell and payload, which requires information on the expected flight path and landing site prior to launch. Software has been developed for the prediction of the balloon trajectory and landing site, with separate versions written to generate predictions based upon rawinsonde data and model output. Balloon positions are calculated in 1-min increments based on wind data from the closest rawinsonde site or model grid point, given a known launch point, ascent and descent rate and flight duration. For short flights (< 6h), rawinsonde winds interpolated to 10-mb levels are used for trajectory calculations. Predictions for flight durations of 6 to 48h are based upon the initialization and 3 h forecast wind fields from NOAA's global aviation- (AVN) and Rapid Update Cycle (RUC) models. Given a limited number of actual balloon launches, trajectories computed from a chronological series of hourly RUC initializations are used as the baseline for comparison purposes. These baseline trajectories are compared to trajectory predictions from the rawinsonde and model-based versions on a monthly and seasonal basis over a 1-year period (January 1 - December 31, 2001) for flight durations of 3h, 6h and 48h. Predicted trajectories diverge from the baseline path, with the divergence increasing with increasing time. We examine the zonal, meridional and net magnitudes of these deviations, and attempt to determine directional biases in the predictions. This paper gives an overview of the software, including methods employed, physical considerations and limitations, and discusses results of this evaluation.
The French Balloon Program 2013 - 2017
NASA Astrophysics Data System (ADS)
Dubourg, Vincent; Vargas, André; Raizonville, Philippe
2016-07-01
With over 50 years' experience in the field, the French Centre National d'Etudes Spatiales (CNES) goes on supporting - as designer and operator - a significant scientific ballooning program. In particular so because balloons still give a unique and valuable access to near space science. From 2008 to 2013, an important renovation effort was achieved, beginning by Zero Pressure Balloons (ZPB) systems, to comply with more stringent Safety constraints and to the growing reliability and performance requirements from scientific missions. The paper will give an overview of the CNES new capabilities and services for operational balloon activities, and their availability status. The scientific launch campaigns of the past two years will be presented. A focus will be made on the results of the Stratoscience 2015 flight campaign from Timmins, Ontario, using the NOSYCA command and control system for ZPB, qualified in flight in 2013. In particular, the PILOT telescope successfully flew during the 2015 campaign, key figures about the flight and mission will be given. An outlook of the new stratospheric long duration flight systems currently in process of developement at CNES will be given, as well as the presentation of the Stratéole 2 project, dedicated to the survey of the low stratosphere and upper troposphere in equatorial regions, with a fleet of small suprer pressure balloons (SPB). As far as tropospheric balloons are concerned, the Aeroclipper initiative will be presented, aiming at qualifying a quasi-tethered balloon, pushed by the winds close to the sea surface, for the study of cyclones. The scientific launch campaigns and the main payloads in the study for the near future will also be presented.
TMBM: Tethered Micro-Balloons on Mars
NASA Technical Reports Server (NTRS)
Sims, M. H.; Greeley, R.; Cutts, J. A.; Yavrouian, A. H.; Murbach, M.
2000-01-01
The use of balloons/aerobots on Mars has been under consideration for many years. Concepts include deployment during entry into the atmosphere from a carrier spacecraft, deployment from a lander, use of super-pressurized systems for long duration flights, 'hot-air' systems, etc. Principal advantages include the ability to obtain high-resolution data of the surface because balloons provide a low-altitude platform which moves relatively slowly. Work conducted within the last few years has removed many of the technical difficulties encountered in deployment and operation of balloons/aerobots on Mars. The concept proposed here (a tethered balloon released from a lander) uses a relatively simple approach which would enable aspects of Martian balloons to be tested while providing useful and potentially unique science results. Tethered Micro-Balloons on Mars (TMBM) would be carried to Mars on board a future lander as a stand-alone experiment having a total mass of one to two kilograms. It would consist of a helium balloon of up to 50 cubic meters that is inflated after landing and initially tethered to the lander. Its primary instrumentation would be a camera that would be carried to an altitude of up to tens of meters above the surface. Imaging data would be transmitted to the lander for inclusion in the mission data stream. The tether would be released in stages allowing different resolutions and coverage. In addition during this staged release a lander camera system may observe the motion of the balloon at various heights above he lander. Under some scenarios upon completion of the primary phase of TMBM operations, the tether would be cut, allowing TMBM to drift away from the landing site, during which images would be taken along the ground.
NASA Technical Reports Server (NTRS)
Korn, A. O.
1975-01-01
In the late 1960's several governmental agencies sponsored efforts to develop unmanned, powered balloon systems for scientific experimentation and military operations. Some of the programs resulted in hardware and limited flight tests; others, to date, have not progressed beyond the paper study stage. Balloon system designs, materials, propulsion units and capabilities are briefly described, and critical problem areas are pointed out which require further study in order to achieve operational powered balloon systems capable of long duration flight at high altitudes.
NASA Technical Reports Server (NTRS)
Fazely, A. R.; Gunasingha, R. M.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
We present preliminary results on the spectra of CNO nuclei in the cosmic radiation as measured in the first flight of the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) which lasted for 16 days, starting in December, 2000 with a launch from McMurdo, Antarctica. ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction "target".
Searching for TeV cosmic electrons with the CREST experiment
NASA Astrophysics Data System (ADS)
Coutu, S.; Anderson, T.; Bower, C.; Gennaro, J.; Geske, M.; Müller, D.; Musser, J.; Nutter, S.; Park, N. H.; Schubnell, M.; Tarlé, G.; Wakely, S.; Yagi, A.
2011-06-01
The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. Such would be the markers of nearby cosmic accelerators, as energetic electrons from distant Galactic sources are expected to be depleted by radiative losses during interstellar transport. Electrons will be detected indirectly by the characteristic signature of their geomagnetic synchrotron losses, in the form of a burst of coaligned x-ray photons intersecting the plane of the instrument. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m2 instrument. The payload is composed of an array of 1024 BaF2 crystals surrounded by a set of veto scintillator detectors. A long-duration balloon flight in Antarctica is planned for the 2011-12 season.
A search for solar neutrons on a long duration balloon flight
NASA Technical Reports Server (NTRS)
Koga, R.; Frye, G. M., Jr.; Owens, A.; Denehy, B. V.; Mace, O.; Thomas, J.
1985-01-01
The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas.
A search for solar neutrons on a long duration balloon flight
NASA Astrophysics Data System (ADS)
Koga, R.; Frye, G. M., Jr.; Owens, A.; Denehy, B. V.; Mace, O.; Thomas, J.
1985-08-01
The EOSCOR 3 detector, designed to measure the flux of solar neutrons, was flown on a long duration RACOON balloon flight from Australia during Jan. through Feb, 1983. The Circum-global flight lasted 22 days. No major solar activity occurred during the flight and thus only an upper limit to the solar flare neutrons flux is given. The atmospheric neutron response is compared with that obtained on earlier flights from Palestine, Texas.
Advances in the Remote Monitoring of Balloon Flights
NASA Astrophysics Data System (ADS)
Breeding, S.
At the National Scientific Balloon Facility (NSBF), we must staff the Long Duration Balloon (LDB) control center 24 hours a day during LDB flights. This requires three daily shifts of two operators (balloon control and tdrss scheduling). In addition to this we also have one engineer on-call as LDB Lead to resolve technical issues and one manager on-call for flight management. These on-call periods are typically 48 to 72 hours in length. In the past the on-call staff had to travel to the LDB control center in order to monitor the status of a flight in any detail. This becomes problematic as flight durations push out beyond 20 to 30 day lengths, as these staff members are not available for business travel during these periods. This paper describes recent advances which allow for the remote monitoring of scientific balloon flight ground station computer displays. This allows balloon flight managers and lead engineers to check flight status and performance from any location with a network or telephone connection. This capability frees key personnel from the NSBF base during flights. It also allows other interested parties to check on the flight status at their convenience.
NASA Astrophysics Data System (ADS)
Siguier, J.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.
Long duration super-pressure balloons are a great challenge in scientific ballooning. Whatever the balloon type considered (spherical, pumpkin,...), it is necessary to have good knowledge of the mechanical behavior of the envelope regarding the flight level and the life-span of the balloon. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. On the one hand, we define the mechanical laws of envelope materials, that is the elasticity, plasticity and viscosity properties of polymers, and find the parameters of the law with unidirectional tests. These laws are introduced in a finite element code which predict the stress and strain state of a complex envelope structure. On the other hand, we are developing an experimental set-up to measure the 3D strain of a balloon sub-system, that is including the envelope, assemblies and apex parts, with realistic flight conditions. This facility, called NIRVANA, is a 1m3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. We can submit a 1,5m diameter sample to differential pressure, regulate the temperature from +20°C to -120°C and apply a load to tendons of up to 6 tons if required. This paper presents the first results of the modelizations and m asurements of ane envelope sample submitted to axisymetrical stress due to the differential pressure. This sample consists of a 50μm multi-layer polymer film with an assembly, used in 10m diameter STRATEOLE super-pressure balloons. The modelization gives results which largely agree with the experiment and enable us to continue with cold conditions and more complex structures.
NASA Scientific Balloon Team Hopes to Break Flight Duration Record with New Zealand Launch
2017-12-08
After years of tests and development, NASA’s Balloon Program team is on the cusp of expanding the envelope in high-altitude, heavy-lift ballooning with its super pressure balloon (SPB) technology. NASA’s scientific balloon experts are in Wanaka, New Zealand, prepping for the fourth flight of an 18.8 million-cubic-foot (532,000 cubic-meter) balloon, with the ambitious goal of achieving an ultra-long-duration flight of up to 100 days at mid-latitudes. Launch of the pumpkin-shaped, football stadium-size balloon is scheduled for sometime after April 1, 2016, from Wanaka Airport, pending final checkouts and flight readiness of the balloon and supporting systems. Once launched, the SPB, which is made from 22-acres of polyethylene film – similar to a sandwich bag, but stronger and more durable – will ascend to a nearly constant float altitude of 110,000 feet (33.5 km). The balloon will travel eastward carrying a 2,260-pound (1,025 kg) payload consisting of tracking, communications and scientific instruments. NASA expects the SPB to circumnavigate the globe once every one to three weeks, depending on wind speeds in the stratosphere. Read more: go.nasa.gov/1p56xKR NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Vial, F.; Hertzog, A.; Mechoso, C. R.; Basdevant, C.; Cocquerez, P.; Dubourg, V.; Nouel, F.
2001-10-01
In the late southern winter of 1998, Center National d'Études Spatiales (CNES), the French Space Agency, released six 10-m-diameter, superpressure balloons from a location near Quito, Ecuador. Three balloons collapsed soon after launching, but the remaining three drifted westward for a few weeks at altitudes between 19 and 20 km. Two of those balloons crossed the Pacific Ocean before falling above the ``maritime continent,'' while the other completed a revolution around the Earth and crossed the Pacific for a second time before its final fall. Despite the small number and the relatively short duration of the flights, the balloons provided a unique in situ data set for the lower equatorial stratosphere. This part 1 of a two-part paper describes this data set and analyzes outstanding features in the planetary scales. Part 2 focuses on gravity-wave scale. It is argued that balloon trajectories over the Pacific are primarily determined by the westward drift during the easterly phase of the equatorial quasi-biennial oscillation (QBO) and the meridional velocity field of a mixed Rossby-gravity (Yanai) wave with an apparent period of 4 days and zonal wave number 4. This wave appears to have two episodes of amplification during the balloon flights. It is also argued that the balloons show evidence of oscillations with periods between 2 and 4 days and of a Kelvin wave with an apparent period close to 10 days and zonal wave number 1. In this way, the balloon behavior provided a pictorial view of air parcel trajectory in the equatorial lower stratosphere. It is stated that larger balloon campaigns can provide excellent in situ data sets for studies on the dynamics and composition of the middle atmosphere.
Fresiello, Libera; Khir, Ashraf William; Di Molfetta, Arianna; Kozarski, Maciej; Ferrari, Gianfranco
2013-03-01
Despite 50 years of research to assess the intra-aortic balloon pump (IABP) effects on patients' hemodynamics, some issues related to the effects of this therapy are still not fully understood. One of these issues is the effect of IABP, its inflation timing and duration on peripheral circulation autonomic controls. This work provides a systematic analysis of IABP effects on baroreflex using a cardiovascular hybrid model, which consists of computational and hydraulic submodels. The work also included a baroreflex computational model that was connected to a hydraulic model with a 40-cm(3) balloon. The IABP was operated at different inflation trigger timings (-0.14 to 0.31 s) and inflation durations (0.05-0.45 s), with time of the dicrotic notch being taken as t = 0. Baroreflex-dependent parameters-afferent and efferent pathway activity, heart rate, peripheral resistance, and venous tone-were evaluated at each of the inflation trigger times and durations considered. Balloon early inflation (0.09 s before the dicrotic notch) with inflation duration of 0.25 s generated a maximum net increment of afferent pathway activity of 10%, thus leading to a decrement of efferent sympathetic activity by 15.3% compared with baseline values. These times also resulted in a reduction in peripheral resistance and heart rate by 4 and 4.3% compared with baseline value. We conclude that optimum IABP triggering time results in positive effects on peripheral circulation autonomic controls. Conversely, if the balloon is not properly timed, peripheral resistance and heart rate may even increase, which could lead to detrimental outcomes. © 2012, Copyright the Authors. Artificial Organs © 2012, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Status of the NASA Balloon Program
NASA Astrophysics Data System (ADS)
Needleman, H. C.; Nock, R. S.; Bawcom, D. W.
1993-02-01
In the early 1980's the U.S. National Aeronautics and Space Administration (NASA) Balloon Program was faced with a problem of catastrophic balloon failures. In 1986 a balloon recovery program was initiated. This program included qualification of new balloon films, and investigations into materials, processing, structures and performance of balloons. This recovery program has been very successful. To date, more than 100 balloons manufactured of newly developed films have been flown with unprecedented success. There has been much progress made across the spectrum of balloon related disciplines. A new design philosophy has been developed and is being used for all NASA balloons. An updated balloon reliability and quality assurance program is in effect. The long duration balloon development project has been initiated with the first flight test having been conducted in December 1989 from Antarctica. A comprehensive research and development (R&D) effort has been initiated and is progressing well. The progress, status and future plans for these and other aspects of the NASA program, along with a description of the comprehensive balloon R&D activity, will be presented.
Vellody, Ranjith; Willatt, Jonathon M; Arabi, Mohammad; Cwikiel, Wojciech B
2011-01-01
To evaluate the effect of temporary stent graft placement in the treatment of benign anastomotic biliary strictures. Nine patients, five women and four men, 22-64 years old (mean, 47.5 years), with chronic benign biliary anastomotic strictures, refractory to repeated balloon dilations, were treated by prolonged, temporary placement of stent-grafts. Four patients had strictures following a liver transplantation; three of them in bilio-enteric anastomoses and one in a choledocho-choledochostomy. Four of the other five patients had strictures at bilio-enteric anastomoses, which developed after complications following laparoscopic cholecystectomies and in one after a Whipple procedure for duodenal carcinoma. In eight patients, balloon-expandable stent-grafts were placed and one patient was treated by insertion of a self-expanding stent-graft. In the transplant group, treatment of patients with bilio-enteric anastomoses was unsuccessful (mean stent duration, 30 days). The patient treated for stenosis in the choledocho-choledochostomy responded well to consecutive self-expanding stent-graft placement (total placement duration, 112 days). All patients with bilio-enteric anastomoses in the non-transplant group were treated successfully with stent-grafts (mean placement duration, 37 days). Treatment of benign biliary strictures with temporary placement of stent-grafts has a positive effect, but is less successful in patients with strictures developed following a liver transplant.
Optimization of the GRAPE Polarimeter Design
NASA Astrophysics Data System (ADS)
McConnell, Mark
The Gamma Ray Polarimeter Experiment (GRAPE) is designed to investigate one of the most exotic phenomena in the universe - gamma-ray bursts (GRB). There has been intense observational and theoretical research in recent years, but research in this area has been largely focused on studies of time histories, spectra, and spatial distributions. Theoretical models show that a more complete understanding of the inner structure of GRBs, including the geometry and physical processes close to the central engine, requires the exploitation of gamma-ray polarimetry. Over the past several years, we have developed the GRAPE instrument to measure the polarization of gamma-rays from GRBs over the energy range of 50 to 500 keV. The GRAPE design is a modular one in which several independent modules are required to achieve sufficient sensitivity. A single module fits on the front end of a 2-inch square flat-panel multi-anode photomultiplier tube (MAPMT). The first operational balloon flight took in place in September of 2011 from Ft. Sumner, NM. The purpose of the 2011 flight was to validate the science capability of GRAPE by measuring the Crab polarization with a collimated array of 16 modules. The limited success of that flight led to a second validation flight (also from Ft. Sumner) in the fall of 2014, with significantly improved shielding and a larger array of modules. That flight proved too short to make a full observation of the Crab. Although we did not succeed in measuring the polarization of the Crab with a high degree of confidence, we feel that we are nonetheless prepared to move forward with our program. Our next goal is to fly GRAPE on a long duration balloon (LDB) platform to collect data on a significant sample of GRBs. Our experience with the first two balloon flights, coupled with further design efforts focused on orbital payloads, has led to an improved polarimeter concept that represents a natural evolution of the current design. It is this new concept that we are now proposing to develop and test before embarking on a long-duration balloon program. This new design, with improved sensitivity, will ensure that the science objectives can be achieved within the context of a viable balloon program.
Infrasound as a Geophysical Probe Using Earth as a Venus Analog
NASA Astrophysics Data System (ADS)
Komjathy, Attila; Cutts, James; Pauken, Michael; Kedar, Sharon; Smrekar, Suzanne
2016-10-01
JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude ~3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise.In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere.We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.
Infrasound as a Geophysical Probe Using Earth as a Venus Analog
NASA Astrophysics Data System (ADS)
Komjathy, A.; Cutts, J. A.; Pauken, M.; Kedar, S.; Smrekar, S. E.; Hall, J. R.
2016-12-01
JPL is in a process of developing an instrument to measure seismic activity on Venus by detecting infrasonic waves in the atmosphere. The overall objective of this research is to demonstrate the feasibility of using sensitive barometers to detect infrasonic signals from seismic and explosive activity on Venus from a balloon platform. Because of Venus' dense atmosphere, seismic signatures from even small quakes (magnitude 3) are effectively coupled into the atmosphere. The seismic signals are known to couple about 60 times more efficiently into the atmosphere on Venus than on Earth. It was found that almost no attenuation below 80 km on Venus for frequency less than 1Hz. Whereas wind noise is a major source of background noise for terrestrial infrasonic arrays, it is expected that a balloon platform, which drifts with winds will be capable of very sensitive measurements with low noise. In our research we will demonstrate and apply techniques for discriminating upward propagating waves from a seismic event by making measurements with two or more infrasonic sensors using very sensitive barometers on a tether deployed from the balloon in a series of earth-based tests. We will first demonstrate and validate the technique using an artificial infrasound source in a deployment from a hot air balloon on Earth and then extend it with longer duration flights in the troposphere and stratosphere. We will report results on the first flight experiment that will focus on using the barometer instruments on a tethered helium-filled balloon. The balloon flight will be conducted in the vicinity of a known seismic source generated by a seismic hammer. Earlier tests conducted by Sandia National Laboratory demonstrated that this is a highly reproducible source of seismic and acoustic energy using infrasound sensors. The results of the experiments are intended to validate the two-barometer signal processing approach using a well-characterized point signal source.
Development of a Super-Pressure Balloon with an Improved Design
NASA Astrophysics Data System (ADS)
Izutsu, Naoki; Akita, Daisuke; Fuke, Hideyuki; Iijima, Issei; Kato, Yoichi; Kawada, Jiro; Matsushima, Kiyoho; Matsuzaka, Yukihiko; Mizuta, Eiichi; Nakada, Takashi; Nonaka, Naoki; Saito, Yoshitaka; Takada, Atsushi; Tamura, Keisuke; Yamada, Kazuhiko; Yoshida, Tetsuya
A zero-pressure balloon used for scientific observation in the stratosphere has an unmanageable limitation that its floating altitude decreases during a nighttime because of temperature drop of the lifting gas. Since a super-pressure balloon may not change its volume, the lifetime can extend very long. We had introduced so called the ‘lobed-pumpkin’ type of super-pressure balloon that can realize a full-scale long-duration balloon and it will be in practical use in the very near future. As for larger super-pressure balloons, however, we still have some potential difficulties to be resolved. We here propose a new design suitable for a larger super-pressure balloon, which is roughly ‘lobed pumpkin with lobed cylinder’ and can adapt a single design for balloons of a wide range of volumes. Indoor inflation tests were successfully carried out with balloons designed and made by the method. It has been shown that the limit of the resisting pressure differential for a new designed balloon is same as that of a normal lobed-pumpkin balloon.
NASA Astrophysics Data System (ADS)
Siguier, J.-M.; Guigue, P.; Karama, M.; Mistou, S.; Dalverny, O.; Granier, S.
2004-01-01
Long duration super-pressure balloons constitute a great challenge in scientific ballooning. For any type of balloons (spherical, pumpkin, …), it is necessary to have a good knowledge of the mechanical behavior of envelopes regarding the level and the lifetime of the flight. For this reason CNES, ONERA and ENIT are carrying out a research program of modelization and experimentation in order to predict the envelope shape of a balloon in different conditions of temperature and differential pressure. This study was conducted in two parts. During the first one, we defined, with parameters obtained from unidirectional tests, the mechanical laws (elasticity, plasticity and viscosity properties of polymers) of materials involved in the envelope. These laws are introduced in a finite element code, which predicts the stress and strain status of a complex envelope structure. During the second one, we developed an experimental set-up to measure the 3D strain on a balloon subsystem, which includes envelope, assemblies and apex parts, in real flight conditions. This facility, called NIRVANA, is a 1 m 3 vacuum chamber with cooled screens equipped with a stereoscopic CCD measurement system. A 1.5 m diameter sample can be tested under differential pressure, regulated temperature (from +20 to -120 °C) and a load (up to 6 tonnes) applied on tendons. This paper presents the first results obtained from the modelizations and measurements done on an envelope sample submitted to axisymmetrical stress due to the differential pressure. This sample consists of a 50 μm multilayer polymer film with an assembly, used in 10 m diameter STRATEOLE super-pressure balloons. The modelization gives results in good accordance with the experiments and will enable us to follow this work with cold conditions, time dependence (creeping) and more complex structures.
Evolution of NASA Scientific Ballooning and Particle Astrophysics Research
NASA Astrophysics Data System (ADS)
Jones, William Vernon
2017-01-01
Particle astrophysics research has a history in ballooning that spans over 100 years, ever since Victor Hess discovered cosmic rays on a manned balloon in 1912. The NASA Particle Astrophysics Program currently covers the origin, acceleration and transport of Galactic cosmic rays, plus the Nature of Dark Matter and Ultrahigh Energy Neutrinos. Progress in each of these topics has come from sophisticated instrumentation flown on Long Duration Balloon (LDB) flights around Antarctica for more than two decades. Super Pressure Balloons (SPB) and International Space Station (ISS) platforms are emerging opportunities that promise major steps forward for these and other objectives. NASA has continued development and qualification flights leading to SPB flights capable of supporting 1000 kg science instruments to 33 km for upwards of hundred day missions, with plans for increasing the altitude to 38 km. This goal is even more important now, in view of the Astro2010 Decadal Study recommendation that NASA should support Ultra-Long Duration Balloon (ULDB) flight development for studies of particle astrophysics, cosmology and indirect detection of dark matter. The mid-latitude test flight of an 18.8 MCF SPB launched from Wanaka, NZ in 2015 achieved 32 days of nearly constant altitude exposure, and an identical SPB launched from Wanaka in 2016 with a science payload flew for 46 days. Scientific ballooning as a vital infrastructure component for cosmic ray and general astrophysics investigations, including training for young scientists, graduate and undergraduate students, leading up to the 2020 Decadal Study and beyond, will be presented and discussed.
Vince, D J; Culham, J A
1989-03-01
A prosthesis constructed with a fatigued steel helix encased in a silicone rubber shield was used to band the main pulmonary artery in 10 dogs. After a mean duration of 138 days the banded site was dilated with a 20 mm diameter angioplasty catheter. This dilatation produced a mean increase of 44.3% in the cross-sectional area. A further mean increase of 2.2% in the cross-sectional area was measured 137 days after the dilatation. In five uncomplicated experiments a second dilatation was performed with a 23 mm diameter angioplasty catheter after a mean interval of 140 days. The second dilatation produced a further 21% increase in the cross-sectional area. In the five experiments in which two dilatations were performed, there was a total increase in the mean cross-sectional area of 94% produced 273 days after banding. This prosthesis maintains banding of the main pulmonary artery and can be serially dilated by balloon angioplasty.
NASA Astrophysics Data System (ADS)
Lykov, Alexey; Khaykin, Sergey; Yushkov, Vladimir; Efremov, Denis; Formanyuk, Ivan; Astakhov, Valeriy
The FLASH instrument is based on the fluorescent method, which uses H2O molecules photodissociation at a wavelength lambda=121.6 nm (Lalpha - hydrogen emission) followed by the measurement of the fluorescence of excited OH radicals. The source of Lyman-alpha radiation is a hydrogen discharge lamp while the detector of OH fluorescence at 308 -316 nm is a photomultiplier run in photon counting mode. The intensity of the fluorescent light as well as the instrument readings is directly proportional to the water vapor mixing ratio under stratospheric conditions with negligible oxygen absorption. Initially designed for rocket-borne application, FLASH has evolved into a light-weight balloon sonde (FLASH-B) for measurements in the upper troposphere and stratosphere on board meteorological and small plastic balloons. This configuration has been used in over 100 soundings at numerous tropical mid-latitude and polar locations within various international field campaigns. An airborne version of FLASH instrument is successfully utilized onboard stratospheric M55-Geophysica aircraft and tropospheric airborne laboratory YAK42-Roshydromet. The hygrometer was modified for application onboard stratospheric long-duration balloons (FLASH-LDB version). This version was successfully used onboard CNES super-pressure balloon launched from SSC Esrange in March 2007 and flown during 10 days. Special design for polar long duration balloon PoGOLite was created for testing work during polar day in June 2013. Installation and measurement peculiarities as well as observational results are presented. Observations of water vapour using FLASH-B instrument, being of high quality are rather costly as the payload recovery is often complicated and most of the time impossible. Following the goal to find a cost-efficient solution, FLASH was adapted for use onboard Unmanned Aerial Vehicles (UAV). This solution was only possible thanks to compactness and light-weight (0.5 kg) of FLASH instrument. The hygrometer was installed at the nose of a small GPS-controlled glider, which was lifted by a meteorological balloon into the stratosphere and released by a remote command. GPS-based flight control guides and lands the UAV at the launch point thereby allowing multiple usage of its payload. Another sounding platform allowing for multiple usage of the FLASH instrument is a GPS-guided paraglide. The results of measurements acquired in the test flights using different types of balloon-lifted UAVs are presented.
NASA Astrophysics Data System (ADS)
Said, Magdi A.
2004-01-01
The assessment of creep and dynamic response behaviors on materials intended for ultra long duration balloon (ULDB) applications is essential. The first provides needed information for design and fabrication. The second ensures that the film is sufficiently tough to survive the dynamic events during launch and ascent. Characterization and assessment of these two important parameters are discussed in this paper. Visco-elastic behavior of materials in a loaded structure, such as the ULDB film change their geometry significantly over time under load causing possible changes in the load path and the stress distribution. These changes must be held in check to satisfy the functional requirements of the structure over its service life. Typically, the balloon experiences during its service life various environmental conditions each with a different creep response. These are characterized by a simplified load temperature history for the purpose of lifetime response assessment. At mid-latitudes a significant portion of the service life is spent at night, i.e., at low temperature and low load; for the ULDB film this night-time contribution to creep is negligible. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This paper presents the creep behavior of the ULDB film as a function of load, temperature, and time along with an overview of its implementation in the design. In addition, it presents a quantitative assessment on the toughness of the material under dynamic "Snatch" loading.
Long duration balloon flights in the middle stratosphere
NASA Astrophysics Data System (ADS)
Malaterre, P.
1993-02-01
Research and development performed by the French Space Agency (CNES) over the past 10 years has given the scientific community the Infrared Montgolfiere, a balloon capable of lifting 50-kg payloads into the stratosphere for periods of several weeks. The Infrared Montgolfiere is a hot air balloon that captures infrared radiation using the earth as a heat source. Thirty flights have been launched so far, some lasting more than sixty days and circling the globe twice.
NASA Astrophysics Data System (ADS)
Williams, B. P.; Kjellstrand, B.; Jones, G.; Reimuller, J. D.; Fritts, D. C.; Miller, A.; Geach, C.; Limon, M.; Hanany, S.; Kaifler, B.; Wang, L.; Taylor, M. J.
2017-12-01
PMC-Turbo is a NASA long-duration, high-altitude balloon mission that will deploy 7 high-resolution cameras to image polar mesospheric clouds (PMC) and measure gravity wave breakdown and turbulence. The mission has been enhanced by the addition of the DLR Balloon Lidar Experiment (BOLIDE) and an OH imager from Utah State University. This instrument suite will provide high horizontal and vertical resolution of the wave-modified PMC structure along a several thousand kilometer flight track. We have requested a flight from Kiruna, Sweden to Canada in June 2017 or McMurdo Base, Antarctica in Dec 2017. Three of the PMC camera systems were deployed on an aircraft and two tomographic ground sites for the High Level campaign in Canada in June/July 2017. On several nights the cameras observed PMC's with strong gravity wave breaking signatures. One PMC camera will piggyback on the Super Tiger mission scheduled to be launched in Dec 2017 from McMurdo, so we will obtain PMC images and wave/turbulence data from both the northern and southern hemispheres.
Development of EXITE3, Imaging Detectors and a Long Duration Balloon Gondola
NASA Technical Reports Server (NTRS)
2003-01-01
In this Report we summarize the work conducted for the EXITE program under grant NAG5-5103. This grant supported the ongoing EXITE program at Harvard for the development of imaging hard x-ray detectors and telescopes over the 3 year period 1997-2000 with a one year extension to 2001 to transition to the next SR&T grant in this program. Work was conducted in three major parts: analysis of the EXITE2 balloon flight data (from our May 1997 flight); development of pixellated imaging Cd-Zn-Te detector arrays and readout systems for the proposed EXITE3 detector and telescope; and development of systems for a Long Duration Balloon (LDB) gondola. Progress on all three major aspects of this research is summarized for each of the years of this grant.
Catalytic Generation of Lift Gases for Balloons
NASA Technical Reports Server (NTRS)
Zubrin, Robert; Berggren, Mark
2011-01-01
A lift-gas cracker (LGC) is an apparatus that generates a low-molecular-weight gas (mostly hydrogen with smaller amounts of carbon monoxide and/or carbon dioxide) at low gauge pressure by methanol reforming. LGCs are undergoing development for use as sources of buoyant gases for filling zero-gauge-pressure meteorological and scientific balloons in remote locations where heavy, high-pressure helium cylinders are not readily available. LGCs could also be used aboard large, zero-gauge-pressure, stratospheric research balloons to extend the duration of flight.
Current trends of balloon laryngoplasty in Thailand.
Moungthong, Greetha; Bunbanjerdsuk, Sacarin; Wright, Nida; Sathavornmanee, Thanakrit; Setabutr, Dhave
2017-06-01
To describe the current trend in balloon laryngoplasty usage and experience by practicing otolaryngologists in Thailand. Anonymous 11 question online and paper survey of otolaryngologists on their current balloon laryngoplasty practices. Current practices and experience in balloon laryngoplasty were queried with multiple choice and open-ended questions. Laser use is the most commonly utilized instrument to treat airway stenosis in Thailand. 86% of respondents do not have experience with balloon dilatation; yet, almost half (47.6%) report they perform a minimum of five airway surgeries per year. Most respondents had been in practice for less than 6 years (41%) and reported that they did not have exposure to balloon use during residency training. The largest barrier reported for the use of balloon instrumentation in the airway is inexperience (44.4%) followed by cost (38.3%), yet most feel that treatment in airway stenosis could benefit by usage of balloons (95.5%). Most otolaryngologists in Thailand do not have experience with the use of balloon dilatation and lack of exposure remains the largest barrier to its use. Otolaryngologists in Thailand feel that increased usage of balloons in the airway could improve airway stenosis treatment in the country.
Improving UV Resistance of High Strength Fibers Used In Large Scientific Balloons
NASA Technical Reports Server (NTRS)
Said, M.; Gupta, A.; Seyam, A.; Mock, G.; Theyson, T.
2004-01-01
For the last three decades, NASA has been involved in the development of giant balloons that are capable of lifting heavy payloads of equipment (such as large telescopes and scientific instruments) to the upper atmosphere. While the use of such balloons has led to scientific discoveries, the demand for competitive science payloads and observational programs continues to rise. The NASA Balloon Program Office has entered a new phase of research to develop an Ultra Long Duration Balloon (ULDB) that will lift payloads of up to 3,600 kg to altitudes of up to 40 km. The flight duration is targeted to ranges between 30 to 100 days. Attaining these target durations requires the development of a super-pressure balloon design. The use of textile structures have already been established in these missions in the form of high strength tendons essential for the super pressure pumpkin design. Unfortunately, high strength fibers lose significant strength upon exposure to Ultra Violet (UV) radiation. Such UV degradation poses a serious challenge for the development of the ULDB. To improve the mission performance of the ULDB, new methods for protecting the tendons from the environmental effects need to be developed. NASA and NC State University College of Textiles are undertaking a research program to address these issues. Four tracks have been identified to prepare finishes that are believed to enhance the resistance of high strength fibers to UV. These tracks are: (a) self-polymerizing, (b) diffusion application, (c) polymer-filled with 30-40% UV absorber, and (d) combination of dyeing plus surface application. Four high performance fibers have been selected for this research investigation. These are Vectran (trademark), Spectra (trademark), Kevlar (trademark) and, PBO (Zylon (trademark)). This work will address the current progress of evaluating the performance of the UV finishes. This will be accomplished by comparing the tensile properties (strength, breaking elongation, modulus, etc) of untreated, unexposed to UV fibers; untreated exposed to UV fibers; and treated exposed to UV fibers.
Laboratory and balloon flight performance of the liquid xenon gamma ray imaging telescope
NASA Astrophysics Data System (ADS)
Curioni, Alessandro
2004-10-01
This thesis presents the laboratory calibration and in- flight performance of the liquid xenon γ-ray imaging telescope (LXeGRIT). LXeGRIT is the prototype of a novel concept of Compton telescope, based on a liquid xenon time projection chamber (LXeTPC), developed through several years by Prof. Aprile and collaborators at Columbia. When I joined the collaboration in Spring 1999, LXeGRIT was getting ready for a balloon borne experiment with the goal of performing the key measurement of the background at balloon altitude. After the 1999 balloon flight, a good deal of work was devoted to a thorough calibration of LXeGRIT, both through several tests in the laboratory and through improving the analysis software and developing Monte Carlo simulations. After substantial advancements in our understanding of the detector performance, LXeGRIT was improved and calibrated before a long duration balloon campaign in the Fall of 2000. Data gathered in this flight have allowed a detailed study of the background at balloon altitude and of the sensitivity to celestial γ-ray sources, the focus of the second part of my thesis. As this dissertation is intended to show, “the LXeGRIT phase”—defined as the prototype work, the experimental demonstration of the LXeTPC concept as a Compton telescope, the measurement of the background and of the detection sensitivity—has been now successfully completed. We are now ready for future implementations of the LXeTPC technology for astrophysics observations. The detailed calibration of LXeGRIT, both as an imaging calorimeter and as a Compton telescope is described in Chapters 2, 3 and 4. In Chapter 5 more details are given of LXeGRIT as a balloon borne instrument and its flight performance in year 2000. The measurement of the background at balloon altitude, based on the data collected in year 2000, is presented in Chapter 6 and the sensitivity of the instrument is derived in Chapter 7. An overview of future developments for the LXeTPC technology in the field of γ-ray astronomy is given in Chapter 8. The main results from the 1999 balloon flight are summarized in Appendix A.
NASA Astrophysics Data System (ADS)
Vieregg, Abigail
Through high energy neutrino astrophysics, we explore the structure and evolution of the universe in a unique way and learn about the physics inside of astrophysical sources that drives the acceleration of the highest energy particles. Neutrinos travel virtually unimpeded through the universe, making them unique messenger particles for cosmic sources and carrying information about very distant sources that would otherwise be unavailable. The highest energy neutrinos (E>10^{18} eV), created as a by-product of the interaction of the highest energy cosmic rays with the cosmic microwave background, are an important tool for determining the origin of the highest energy cosmic rays and still await discovery. Balloon-borne and ground-based experiments are poised to discover these ultra-high energy (UHE) cosmogenic neutrinos by looking for radio emission from two different types of neutrino interactions: particle cascades induced by neutrinos in glacial ice, and extensive air showers in the atmosphere induced by the charged-particle by-product of tau neutrinos interacting in the earth. These impulsive radio detectors are also sensitive to radio emission from extensive air showers induced directly by UHE cosmic rays. Balloon-borne experiments are especially well-suited for discovering the highest energy neutrinos, and are the only way to probe the high energy cutoff of the sources themselves to reveal the astrophysics that drives the central engines inside the most energetic accelerators in the universe. Balloon platforms offer the chance to monitor extremely large volumes of ice and atmosphere, but with a higher energy threshold compared to ground-based observatories, since the neutrino interaction happens farther from the detector. This tradeoff means that the sensitivity of balloon-borne experiments, such as the Antarctic Impulsive Transient Antenna (ANITA) or the ExaVolt Antenna, is optimized for discovery of the highest energy neutrinos. We are developing an interferometric phased array trigger for these impulsive radio detectors, a new type of trigger that will improve sensitivity substantially and expedite the discovery of the highest energy particles in our universe. We have developed an 8- channel interferometric trigger board for ground-based applications that will be deployed in December 2017 with the ground-based Askaryan Radio Array (ARA) experiment at the South Pole. Preliminary Monte Carlo simulations indicate that the cosmogenic neutrino event rate will go up by a factor of 3 with the new trigger. The true power of the interferometric trigger is in scaling to large numbers of channels, and the discovery space that is only available from a balloon platform at the highest energies is extremely appealing. We will build on and extend the NASA investment in the ANITA Long Duration Balloon (LDB) mission and the many other complementary particle astrophysics LDB missions by developing the electronics required to bring a large-scale radio interferometric trigger to a balloon platform, extending the scientific reach of any future LDB or Super Pressure Balloon (SPB) mission for radio detection of the highest energy cosmic particles. We will develop an interferometric trigger system that is scalable to O(100) channels and suitable for use on a balloon platform. Under this proposal, we will: 1) Design and fabricate interferometric trigger hardware for balloon-borne cosmic particle detectors that is scalable to large numbers of channels O(100) by reducing the power consumption per channel, increasing the number of channels per board, and developing high-speed communication capability between boards. 2) Perform a trade study and inform design decisions for future balloon missions by further developing our Monte Carlo simulation and adapting it to balloon geometries.
NASA Astrophysics Data System (ADS)
Bewley, Thomas; Meneghello, Gianluca
2016-10-01
Accurate long-term forecasts of the path and intensity of severe hurricanes are imperative to protect property and save lives. Extensive real-time measurements within hurricanes, especially near their core, are essential for supplementing the limited relevant information accessible by satellites in order to improve such forecasts. Current operational methods for obtaining in situ information, such as dropsondes and repeated manned and unmanned aircraft flights over and within hurricanes, are both expensive and limited in duration. In the present work it is demonstrated by numerical experiments how a swarm of robust, inexpensive, buoyancy-controlled, sensor-laden balloons might be deployed and controlled in an energetically efficient, coordinated fashion, for days at a time, to continuously monitor relevant properties (pressure, humidity, temperature, and wind speed) of a hurricane as it develops. Rather than fighting its gale-force winds, the strong and predictable stratification of these winds is leveraged to efficiently disperse the balloons into a favorable time-evolving distribution. An iterative bootstrap approach is envisioned in which (a) sensor balloons are used to help improve the available computational estimate of the uncertain and underresolved flow field of the hurricane and (b) this (imprecise) estimate of the hurricane flow field is leveraged to improve the distribution of the sensor balloons, which then better facilitates (a), etc. The control approach envisioned in this ambitious effort is a combination of (centrally computed) model predictive control for coordination at the largest scales, which is the focus of the present paper, coupled with a feedback control strategy (decentrally computed, on the balloons themselves), for smaller-scale corrections. Our work indicates that, following such an approach, certain target orbits of interest within the hurricane can be continuously sampled by some balloons, while others make repeated sweeps between the eye and the spiral rain bands.
NASA Astrophysics Data System (ADS)
Haase, J. S.; Cao, B.; Alexander, M. J.; Zhang, W.
2017-12-01
Deep tropical convection influences the transport of mass and momentum from the equatorial upper troposphere into the lower stratosphere through the generation and interaction of waves at a broad range of scales. The France-US collaborative Stratéole-2 project will explore equatorial waves in the tropopause region with super-pressure balloons, designed to drift on quasi-Lagrangian trajectories in the lower stratosphere. The Stratéole-2 program will launch 5 balloons from the Seychelles in the Indian Ocean in 2018-2019, and 20 balloons in 2020-2021, each with a flight duration of about 80 days. Five balloons will carry the Radio OCcultation (ROC2) instrument at 20 km altitude to execute a continuous sequence of temperature profiles on either side of the balloon trajectory to sample the equatorial wave field in three dimensions. It will also carry a micro-lidar for detecting cirrus and convective cloud tops. The goals are to describe the horizontal and vertical structure of tropical waves and their impact on cirrus formation and to investigate the relationships of waves to convective clouds. The GPS measurements quantify wave activity by providing precise estimates of balloon velocity and height perturbations due to waves and by providing refractivity profiles that are sensitive to vertical temperature fluctuations caused by waves. We present ray-tracing simulations of the propagation of GPS signals through the Earth's atmosphere, where they will be bent and delayed due to the gradient of atmospheric refractive index. European Centre for Medium-Range Weather Forecasts (ECMWF) analyses are used to construct the refractive index of the equatorial atmosphere, in which abundant atmospheric waves are present. With the known GPS signal geometry, the excess phase/Doppler are simulated that reflect the wave signatures. The resulting refractivity retrievals provide guidance for interpreting the spectral range of waves that the ROC2 instruments are most likely to reveal.
The First Flight of ATIC : Preliminary Results on CNO Nuclei
NASA Technical Reports Server (NTRS)
Fazely, A.; Gunasingha, R.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
We present preliminary results on the spectra of CNO nuclei in the cosmic radiation as measured in the first flight of the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) which lasted for 16 days, starting in December, 2000 with a launch from McMurdo, Antarctica. ATIC is a multiple, long duration balloon flight,investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction'target'.
Polymer blends for LDB applications. [Long Duration Ballooning
NASA Technical Reports Server (NTRS)
Lichkus, Andrew M.; Harrison, Ian R.
1991-01-01
A series of LCP/PE blends have been studied to determine the potential of such systems to produce a high modulus balloon film material which retains the balloon fabrication and low temperature flight advantages of the current PE films. Blown films of blends of 5 and 15 percent LCP in PE have been produced which show a 28 percent enhancement in modulus over the neat PE matrix. These results are substantially lower than anticipated and are explained in terms of the LCP reinforcement aspect ratio and fibril diameter.
BaR-SPOrt: the instrument to be accommodated at Dome C
NASA Astrophysics Data System (ADS)
Zannoni, M.; Carretti, E.; Cortiglioni, S.; Macculi, C.; Ramponi, M.; Sbarra, C.; Ventura, G.; Monari, J.; Poloni, M.; Poppi, S.; Natale, V.; Nesti, R.; Baralis, M.; Peverini, O.; Tascone, R.; Virone, G.; Boscaleri, A.; Boella, G.; Sironi, G.; Gervasi, M.; de Bernardis, P.; Masi, S.; de Petris, M.
The BaR-SPOrt (Balloon-Borne Radiometers for Sky Polarization Observations) experiment, a program of the Agenzia Spaziale Italiana (ASI) co-funded by PNRA (Progetto Nazionale di Ricerca in Antartide) was originally designed as a payload for long duration balloons flights. The changing scenario, both scientific and strategic, has led us to propose it for the starting winter campaign of at the Concordia Base. Here the instrument and the features making it suitable to operate at Dome-C are described. After the initial setup, BaR-SPOrt should not require any kind of routine intervention by a dedicated base staff. The experiment will just need electrical power (less than 2 kW) and a suitable accommodation on the field. It can be fully monitored and controlled, including the data acquisition, through its own telemetry/telecommand link using IRIDIUM modems. Both the receiver and the critical electronics are housed inside a temperature-controlled vacuum chamber, providing the properly stabilized environment. The cold part of the radiometer employs a closed loop mechanical cryo-cooler that provides temperatures <70 ±0.1 K with low power consumption (<200 W).
Umakanthan, Ramanan; Hoff, Steven J; Solenkova, Natalia; Wigger, Mark A; Keebler, Mary E; Lenneman, Andrew; Leacche, Marzia; Disalvo, Thomas G; Ooi, Henry; Naftilan, Allen J; Byrne, John G; Ahmad, Rashid M
2012-05-01
Axillary intra-aortic balloon pump therapy has been described as a bridge to transplant. Advantages over femoral intra-aortic balloon pump therapy include reduced incidence of infection and enhanced patient mobility. We identified the patients who would benefit most from this therapy while awaiting heart transplantation. We conducted a single-center, retrospective observational study to evaluate outcomes from axillary intra-aortic balloon pump therapy. These included hemodynamic parameters, duration of support, and success in bridging to transplant. We selected patients on the basis of history of sternotomy, elevated panel-reactive antibody, and small body habitus. Patients were made to ambulate aggressively beginning on postoperative day 1. Between September 2007 and September 2010, 18 patients underwent axillary intra-aortic balloon pump therapy. All patients had the devices placed through the left axillary artery with a Hemashield side graft (Boston Scientific, Natick, Mass). Before axillary placement, patients underwent femoral placement to demonstrate hemodynamic benefit. Duration of support ranged from 5 to 63 days (median = 19 days). There was marked improvement in ambulatory potential and hemodynamic parameters, with minimal blood transfusion requirements. There were no device-related infections. Some 72% of the patients (13/18) were successfully bridged to transplantation. Axillary intra-aortic balloon pump therapy provides excellent support for selected patients as a bridge to transplant. The majority of the patients were successfully bridged to transplant and discharged. Although this therapy has been described in previous studies, this is the largest series to incorporate a regimen of aggressive ambulation with daily measurements of distances walked. Copyright © 2012. Published by Mosby, Inc.
ERIC Educational Resources Information Center
Balloon Council, Washington, DC.
This document provides background information on balloons including: (1) the history of balloons; (2) balloon manufacturing; (3) biodegradability; (4) the fate of latex balloons; and (5) the effect of balloons on the rainforest and sea mammals. Also included as part of this instructional kit are four fun experiments that allow students to…
Hot-Air Ballooning in Physics Teaching.
ERIC Educational Resources Information Center
Haugland, Ole Anton
1991-01-01
Describes the modern hot-air balloon and the physics of ballooning. Proposes that students construct their own hot-air balloon and presents an experiment calculating the time needed for a balloon to rise to the ceiling of a gymnasium. (MDH)
Absorption spectrometer balloon flight and iodine investigations
NASA Technical Reports Server (NTRS)
1970-01-01
A high altitude balloon flight experiment to determine the technical feasibility of employing absorption spectroscopy to measure SO2 and NO2 gases in the earth's atmosphere from above the atmospheric ozone layer is discussed. In addition to the balloon experiment the contract includes a ground-based survey of natural I emissions from geological sources and studies of the feasibility of mapping I2 from spacecraft. This report is divided into three major sections as follows: (1) the planning engineering and execution of the balloon experiment, (2) data reduction and analysis of the balloon data, and (3) the results of the I2 phase of the contract.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oguzkurt, Levent, E-mail: loguzkurt@yahoo.com; Tercan, Fahri; Gulcan, Oner
2005-04-15
A 24-year-old woman with uncontrollable high blood pressure for 3 months had significant stenosis of the left renal artery caused by fibromuscular dysplasia (FMD). The lesion was resistant to percutaneous transluminal angioplasty at 18 atm with a semicompliant balloon. Angioplasy with a 6 x 10 mm cutting balloon (CB) caused rupture of the artery. Low-pressure balloon inflation decreased but did not stop the leak. An attempt to place a stent-graft (Jostent; Jomed, Rangendingen, Germany) failed, and a bare, 6-mm balloon-expandable stent (Express SD; Boston Scientific, MN) was deployed to seal the leak, which had decreased considerably after long-duration balloon inflation.more » The bleeding continued, and the patient underwent emergent surgical revascularization of the renal artery with successful placement of a 6-mm polytetrafluoroethylene bypass graft. CBs should be used very carefully in the treatment of renal artery stenosis, particularly in patients with FMD.« less
NASA Astrophysics Data System (ADS)
Wiencke, Lawrence; Adams, Jim; Olinto, Angela; JEM-EUSO Collaboration
2016-03-01
The Extreme Universe Space Observatory on a super pressure balloon (EUSO-SPB) mission will make the first fluorescence observations of high energy cosmic ray extensive air showers by looking down on the atmosphere from near space. EUSO-SPB follows a successful overnight flight in August 2014 of the JEM-EUSO prototype mission named EUSO-Balloon. EUSO-Balloon recorded artificial tracks and pulses that were generated by a laser and optical flashers that were flown in a helicopter under the balloon. Preparations are underway for EUSO-SPB with the potential for a flight of 50 days duration. The planned launch site is Wanaka, New Zealand. We describe the mission, the updated instrument, and expected detection rates of extensive air showers events produced by cosmic primaries.
Recent results in the NASA research balloon program
NASA Technical Reports Server (NTRS)
Jones, W. Vernon
1989-01-01
The NASA Balloon Program has progressed from a total hiatus in the fall of 1985 to an unprecedented flight success rate in the fall of 1988. Using heavy-lift balloons being regularly supplied by two manufacturers, the program has provided a timely response for investigations of Supernova 1987A from Australia, low energy cosmic ray investigations from Canada during periods of near-solar-minimum, and routine domestic turnaround flights for a variety of investigations. Recent re-evaluation of balloon flight-safety have resulted in severe constraints on flights launched from the Palestine, Texas facility. The future program must rely heavily on the use of remote launch sites to meet the growing requirements for more frequent and longer duration flights being planned for the next 3 - 5 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trefall, H.
Ways to solve the practical problems associated with largescale simultaneous balloon recordings of auroral-zone x rays in the region from Scandinavia to eastern Greenland, caused by the paucity of land-based launching and telemetry sites, are suggested. Firstly, the long-duration flight capabilities of modern stratospheric balloons coupled with their westward drift in the summer should make it possible to perform such recordings with launchings from Scandinavian stations only. Secondly, the experimentally tested vhf radio range of a balloon-borne transmitter seems just sufficient to cover the region mentioned from land-based telemetry stations only. Thirdly, the CONSOL navigation system seems conveniently applicable formore » the determination of balloon positions between Scandinavia and Greenland. On this basis, suggestions are made for cooperative programs between balloon recordings of x rays from electron precipitation events and GEOS satellite measurements. A scheme for longitudinal shift maneuver of the satellite is proposed with such measurements in mind. (FR)« less
NASA Technical Reports Server (NTRS)
Crannell, C. J.; Starr, R.; Stottlemyre, A. R.; Trombka, J. I.
1984-01-01
The design, development, and balloon-flight verification of a payload for observations of gamma-ray emission from solar flares are reported. The payload incorporates a high-purity germanium semiconductor detector, standard NIM and CAMAC electronics modules, a thermally stabilized pressure housing, and regulated battery power supplies. The flight system is supported on the ground with interactive data-handling equipment comprised of similar electronics hardware. The modularity and flexibility of the payload, together with the resolution and stability obtained throughout a 30-hour flight, make it readily adaptable for high-sensitivity, long-duration balloon fight applications.
Pohl, J; May, A; Aschmoneit, I; Ell, C
2009-02-01
Choledochojejunal anastomoses with Roux-en-Y reconstruction excludes the biliary tract from conventional endoscopic retrograde cholangiography (ERC) with standard endoscopes due to the length of the interposed small bowel segment. Double-balloon enteroscopy (DBE) facilitates deep insertion into the small bowel and may be used to perform ERC in these patients. In the present case series we report our experience with diagnostic and therapeutic double-balloon ERC in patients with choledochojejunostomy to a long Roux-en-Y loop previously unavailable for standard length endoscopes. Between December 2004 and May 2008 15 patients (mean age: 60.2 years) with choledochojejunal anastomosis underwent a total of 25 DBE-ERC procedures. Cannulation of the bile ducts was achieved in 22 / 25 procedures (84 %). Twenty-one therapeutic interventions, including stone removal, biliary duct dilation, stent placement and removal of previously placed stents were performed during 16 procedures in 8 patients. The mean total duration time of the procedures was 74.6 +/- 25.0 minutes. Postinterventional self-limiting fever occurred after 4 procedures in 3 patients with cholangitis. After therapeutic interventions all patients had a significant drop of bilirubin levels and all except one patient were free of complaints (follow-up 10.4 +/- 8.6 months). The DBE system permits diagnostic and therapeutic ERC in surgically modified anatomy, previously unavailable for endoluminal access. In our experience this procedure is safe and has a high success rate with a favourable patient outcome.
IAE - Inflatable Antenna Experiment
1996-06-10
STS077-705-051 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour and its subsequent inflation process, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over mountains. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
IAE - Inflatable Antenna Experiment
1996-06-10
STS077-705-012 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Inflatable Antenna Experiment (IAE) portion of the Spartan 207 payload is backdropped over Earth as it continues its inflation process. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
Inflatable Antenna Experiment (IAE)
1996-05-20
S77-E-5022 (20 May 1996)--- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
IAE - Inflatable Antenna Experiment
1996-05-20
STS077-150-010 (20 May 1996) --- Soon after leaving the cargo bay of the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload goes through its inflation process, backdropped over clouds. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
Inflatable Antenna Experiment (IAE)
1996-05-20
S77-E-5027 (20 May 1996)--- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
IAE - Inflatable Antenna Experiment
1996-06-10
STS077-705-004 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Inflatable Antenna Experiment (IAE) portion of the Spartan 207 payload begins to inflate, backdropped against clouds over the Pacific Ocean. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
Inflatable Antenna Experiment (IAE)
1996-05-20
S77-E-5033 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped against a wall of grayish clouds. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
The use of optical fibers in the Trans Iron Galactic Element Recorder (TIGER)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sposato, S. H.; Binns, W. R.; Dowkontt, P. F.
1998-11-09
TIGER, the Trans-Iron Galactic Element Recorder, is a cosmic-ray balloon borne experiment that utilizes a scintillating Fiber Hodoscope/Time of Flight (TOF) counter. It was flown aboard a high altitude balloon on September 24, 1997. The objective of this experiment is to measure the elemental abundances of all nuclei within the charge range: 26{<=}Z{<=}40. This initial balloon flight will test the detector concept, which will be used in future balloon and space experiments. The instrument and the fiber detector are described.
A balloon-borne experiment to investigate the Martian magnetic field
NASA Astrophysics Data System (ADS)
Schwingenschuh, K.; Feldhofer, H.; Koren, W.; Jernej, I.; Stachel, M.; Riedler, W.; Slamanig, H.; Auster, H.-U.; Rustenbach, J.; Fornacon, H. K.; Schenk, H. J.; Hillenmaier, O.; Haerendel, G.; Yeroshenko, Ye.; Styashkin, V.; Zaroutzky, A.; Best, A.; Scholz, G.; Russell, C. T.; Means, J.; Pierce, D.; Luhmann, J. G.
1996-03-01
The Space Research Institute of the Austrian Academy, of Sciences (Graz, Austria) in cooperation with MPE (Berlin, Germany), GFZ Potsdam (Obs. Niemegk, Germany) IZMIRAN/IOFAN (Moscow, Russian) and IGPP/UCLA (Los Angeles, USA) is designing the magnetic field experiment MAGIBAL (MAGnetic field experiment aboard a martian BALloon) to investigate the magnetic field on the surface of Mars. The dual sensor fluxgate magnetometer is part of the MARS-98/MARS-TOGETHER balloon payload. During a ten days period the balloon will float over a distance of about 2000 km at altitudes between 0 and 4 km. Due to the limited power and telemetry allocation the magnetometer can transmit only one vector per ten seconds and spectral information in the frequency range from 2 - 25 Hz. The dynamic range is +/- 2000 nT. The main scientific objectives of the experiment are: • Determination of the magnetism of the Martian rocks • Investigation of the leakage of the solar wind induced magnetosphere using the correlation between orbiter and balloon observations • Measurement of the magnetic field profile between the orbiter and the surface of Mars during the descent phase of the balloon. Terrestrial test flights with a hot air balloon were performed in order to test the original MAGIBAL equipment under balloon flight conditions.
JUBA (Joint UAS-Balloon Activities) Final Campaign Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dexheimer, Darielle; Apple, Monty; Callow, Diane Schafer
Using internal investment funds within Sandia National Laboratories’ (SNL) Division 6000, JUBA was a collaborative exercise between SNL Orgs. 6533 & 6913 (later 8863) to demonstrate simultaneous flights of tethered balloons and UAS on the North Slope of Alaska. JUBA UAS and tethered balloon flights were conducted within the Restricted Airspace associated with the ARM AMF3 site at Oliktok Point, Alaska. The Restricted Airspace occupies a 2 nautical mile radius around Oliktok Point. JUBA was conducted at the Sandia Arctic Site, which is approximately 2 km east-southeast of the AMF3. JUBA activities occurred from 08/08/17 – 08/10/17. Atmospheric measurements frommore » tethered balloons can occur for a long duration, but offer limited spatial variation. Measurements from UAS could offer increased spatial variability.« less
Structural Analysis of NASA's ULDB using Photogrammetric Measurements
NASA Astrophysics Data System (ADS)
Young, Leyland; Garde, Gabriel; Cathey, Henry
The National Aeronautics and Space Administration (NASA) Balloon Program Office (BPO) has been developing a super-pressure Ultra Long Duration Balloon (ULDB) for constant altitude and longer flight times. The development of the ULDB has progressed in many areas that are significant to NASA's desired goals. However, there has been a re-occurring anomaly of the ULDB called a cleft, which prevents the balloon from properly deploying at float altitudes. Over the years, there has been an influx of hypotheses and speculations to the cause of the cleft formation. Significant changes were made to the design paradigm of the ULDB to address the clefting issue. It was hypothesized that the design philosophy of fore-shortening the tendons relative to the polyethylene film was causing the cleft formation, thus the fore-shortened scheme was removed in the design process. The latest design concept removed the fore-shortening and produced a one to one matching of the tendons and film. Consequently, in 2006, a six million cubic foot (MCF) balloon was designed with the new concept of zero fore-shortening and clefted as it reached its float altitude. This 6 MCF cleft proved that the clefting phenomenon was not properly understood and there was more to the problem than just fore-shortening. Most analytical analyses conducted on the ULDB towards the clefting issue focused on pressure stabilities. It was shown through several finite element analyses that the new design concept produces a stable balloon when pressurized; thus, pressurized stability was believed to be a sufficient measure to indicate if a balloon would cleft or not cleft. Eventually, the 6 MCF balloon that clefted in 2006 showed that the pressurized stability analysis is subjective and is not applicable in predicting a cleft formation. Moreover, the analytical pressurized stability is conducted on a fully deployed balloon, whereas, the clefting phenomena occurs as part of the deployment process, and is clearly seen during the final deployment stages. In time, there is no doubt that an analytical tool will be available to fully analyze the ULDB for all concerns; however, at the present time, the analytical efforts are ongoing but are delayed by the complexity of modeling a balloon from un-deployed to deployed configuration. Thus, in the absence of an analytical tool, the development of the ULDB was steered towards more experimental work in understanding the clefting phenomena. This paper highlights the experimental analyses conducted on several scaled model ULDB's using photogrammetry measurements. The experimental work began with two 48-gore 4-meter diameter scaled ULDB's having the characteristics of a 180-degree bulge angle and 7.5-degree bulge angle respectively. The 180-degree balloon inflation experiments showed that similes of clefts appeared in the balloon at the onset of full deployment; whereas, these cleft-like formations were absent in the subsequent experiments with the 7.5-degree bulge angle balloon. This confirmed the thought that "excess material" designed in the gore width to create a 180-degree bulge angle is likely contributing to the clefting phenomena. Thus, the ULDB project decided to build three 200-gore 27-meter balloons: a 90-degree bulge angle, a 55- degree bulge angle, and a 1.8-degree bulge angle balloon to verify the hypothesis of excess material contribution to the clefting phenomena and to explore the limits of the deployment trade space. The experimental analysis with photogrammetry of these three 27-meter diameter balloons provided valuable data of stresses and strains and of the deployment mechanics of an ULDB that proves excess material is a contributor to the clefting phenomena. Significantly, the photogrammetry data showed that there are significant benefits for the lower value lobe angle designs; moreover, the lower value lobe angle balloon deployed better and had stresses and strains comparable to the other two designs. Another test was conducted on an 8-meter 48-gore scaled model ULDB to test the strain limits of the film. After
NASA Astrophysics Data System (ADS)
González-Llana, Arturo; González-Bárcena, David; Pérez-Grande, Isabel; Sanz-Andrés, Ángel
2018-07-01
The selection of the extreme thermal environmental conditions -albedo coefficient and Earth infrared radiation- for the thermal design of stratospheric balloon missions is usually based on the methodologies applied in space missions. However, the particularities of stratospheric balloon missions, such as the much higher residence time of the balloon payload over a determined area, make necessary an approach centered in the actual environment the balloon is going to find, in terms of geographic area and season of flight. In this sense, this work is focussed on stratospheric balloon missions circumnavigating the North Pole during the summer period. Pairs of albedo and Earth infrared radiation satellite data restricted to this area and season of interest have been treated statistically. Furthermore, the environmental conditions leading to the extreme temperatures of the payload depend in turn on the surface finish, and more particularly on the ratio between the solar absorptance and the infrared emissivity α/ε. A simple but representative thermal model of a balloon and its payload has been set up in order to identify the pairs of albedo coefficient and Earth infrared radiation leading to extreme temperatures for each value of α/ε.
NASA Technical Reports Server (NTRS)
Takahashi, Yoshiyuki; Gregory, John C.; Tominaga, Taka; Dong, Bei Lei
1997-01-01
The research developed the fundamental techniques of the emulsion chamber methods that permit measurements of the composition and energy spectra of cosmic rays at energies ranging from 1 GeV/n to over 1,000 TeV/n. The research program consisted of exploring new principles and techniques in measuring very high energy cosmic nuclei with large-area emulsion chambers for high statistics experiments. These tasks have been accomplished and their use was essential in successful analysis of the balloon-borne emulsion chamber experiments up to 10(exp 14) eV. It also provided the fundamental technologies for designing large-area detectors that are aimed at measuring the composition at above 1015 eV region. The latter is now partially succeeded by a NASA Mission Concept, Advanced Cosmic Composition Experiments on the Space Station (ACCESS). The cosmic ray group at the University of Alabama in Huntsville has performed technological R & D as well as contributing to the Japanese-American-Emulsion-Chamber-Experiments (JACEE) Collaboration with the regular data analysis. While primary research support for other institutions' efforts in the JACEE experiments came from NSF and DOE, primary support for the University of Alabama in Huntsville was this contract. Supplemental tasks to standardize the data base and hardware upgrades (automatized microscope) had this institutions cooperation. Investigation of new techniques in this program consisted of development of a fast calorimetry, magnetic/scattering selection of high momentum tracks for a pairmeter, and high statistics momentum measurements for low energy nuclei (E < 1 TeV/n). The highest energy calorimetry and a pairmeter have been considered as strawman instruments by the GOAL (Galactic Origin and Acceleration Limit) proposal of the NASA Cosmic Ray Working Group for long- duration balloon flights. We accomplished the objectives of the GOAL program with three circumpolar, Antarctic JACEE balloon flights during 1992 - 1994.
Nácul, Miguel Prestes; Cavazzola, Leandro Totti; Loureiro, Marcelo de Paula; Bonin, Eduardo Aimoré; Ferreira, Paulo Roberto Walter
2015-09-01
To evaluate a new, low-cost, reusable balloon trocar device for dissection of the preperitoneal space during endoscopic surgery. Twenty swine (weight: 15-37 kg) were randomized to two groups, according to whether the preperitoneal space was created with a new balloon device manufactured by Bhio-Supply (group B) or with the commercially available OMSPDB 1000® balloon device manufactured by Covidien (group C). Quality and size of the created preperitoneal space, identification of anatomic structures, balloon dissection time, total procedure time, balloon resistance and internal pressure after insufflation with 300 mL of ambient air, balloon-related complications, and procedure cost were assessed. No significant differences in dissection time, total procedure time, or size of the created preperitoneal space were found between the groups. Balloons in group B had a significantly higher internal pressure compared to balloons in group C. None of the balloons ruptured during the experiment. Three animals in group C had balloon-related peritoneal lacerations. Despite a higher individual device cost, group B had a lower procedure cost over the entire experiment. The new balloon device is not inferior to the commercially available device in terms of the safety and effectiveness for creating a preperitoneal space in swine.
Accurate Determination of the Volume of an Irregular Helium Balloon
ERIC Educational Resources Information Center
Blumenthal, Jack; Bradvica, Rafaela; Karl, Katherine
2013-01-01
In a recent paper, Zable described an experiment with a near-spherical balloon filled with impure helium. Measuring the temperature and the pressure inside and outside the balloon, the lift of the balloon, and the mass of the balloon materials, he described how to use the ideal gas laws and Archimedes' principal to compute the average molecular…
NASA Astrophysics Data System (ADS)
Wakefield, David
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures. Founded upon their inTENS finite element analysis suite, these activities have broadened to encompass ‘lighter than air' structures such as aerostats, hybrid air-vehicles and stratospheric balloons. Since 2004 Tensys have acted as consultants to the NASA Ultra Long Duration Balloon (ULDB) Program. Early implementations of the super-pressure balloon design chosen for ULDB have shown problems of geometric instability, characterised by improper deployment and the potential for overall geometric instability once deployed. The latter has been reproduced numerically using inTENS, and the former are better understood following a series of large-scale hangar tests simulating launch and ascent. In both cases the solution lies in minimising the film lobing between the tendons. These tendons, which span between base and apex end fittings, cause the characteristic pumpkin shape of the balloons and also provide valuable constraint against excessive film deformation. There is also the requirement to generate a biaxial stress field in order to mobilise in-plane shear stiffness. A consequence of reduced lobing between tendons is the development of higher stresses in the balloon film under pressure. The different thermal characteristics between tendons and film lead to further significant meridional stress under low temperature flight conditions. The non-linear viscoelastic response of the envelope film acts positively to help dissipate excessive stress and local concentrations. However, creep over time may produce lobe geometry variations sufficient to compromise the geometric stability of the balloon. The design of a balloon requires an analysis approach that addresses the questions of stress and stability over the duration of a flight by time stepping analyses using an appropriate material model. This paper summarises the Dynamic Relaxation approach to stress and stability analysis inherent in inTENS, and focuses in particular on: Implementation of an alternative application of the Incremental Schapery Rand (ISR) representation of the non-linear visco-elastic response of the polyethylene balloon film. This is based upon the relaxation modulus, rather than the creep compliance, and as such fits more efficiently into the Dynamic Relaxation analysis procedure used within inTENS. Comparisons of results between the two approaches are given. Verification of the material model by comparison with material tests. Verification of the application to pumpkin balloon structures by comparison with scale model tests. Application of inTENS with ISR to time-stepping analyses of a balloon flight including diurnal variations of temperature and pressure. This includes the demonstration of a method for checking the likely hood of overall instability developing at any particular time in the flight as both balloon geometry and film properties change due to visco-elastic effects.
NASA Technical Reports Server (NTRS)
Sharp, William E.; Knoll, Glenn
1989-01-01
A feasibility study of conducting a joint NASA/GSFC and Soviet Space Agency long duration balloon flight at the Antarctic in Jan. 1993 is reported. The objective of the mission is the verification and calibration of gamma ray and neutron remote sensing instruments which can be used to obtain geochemical maps of the surface of planetary bodies. The gamma ray instruments in question are the GRAD and the Soviet Phobos prototype. The neutron detectors are supplied by Los Alamos National Laboratory and the Soviet Phobos prototype. These are to be carried aboard a gondola that supplies the data and supplies the power for the period of up to two weeks.
Joint US-USSR Long duration Antarctic Mars calibration Balloon (LAMB) mission
NASA Technical Reports Server (NTRS)
Floyd, S. R.; Trombka, J. I.; Evans, L. G.; Starr, R.; Squyres, S. W.; Surkov, Iu. A.; Moskaleva, L. P.; Shcheglov, O.; Mitugov, A. G.; Rester, A. C.
1991-01-01
The Long duration Antarctic Mars calibration Balloon (LAMB) project has been established at Goddard Space Flight Center for the evaluation and cross calibration of U.S. and USSR remote sensing gamma-ray and neutron detectors. These detectors are analogs of those flown on the Soviet Phobos mission around Mars and those to be flown on the upcoming U.S. Mars Observer mission. Cosmic rays, which are normally filtered out by the atmosphere, and the earth's magnetic field, will induce gamma-ray and neutron emissions from about a half ton of simulated Mars soil aboard the gondola. The cross calibration of these instruments should greatly facilitate the data analysis from both missions and play a role in U.S.-USSR cooperation in space.
Scientific Balloons for Venus Exploration
NASA Astrophysics Data System (ADS)
Cutts, James; Yavrouian, Andre; Nott, Julian; Baines, Kevin; Limaye, Sanjay; Wilson, Colin; Kerzhanovich, Viktor; Voss, Paul; Hall, Jeffery
Almost 30 years ago, two balloons were successfully deployed into the atmosphere of Venus as an element of the VeGa - Venus Halley mission conducted by the Soviet Union. As interest in further Venus exploration grows among the established planetary exploration agencies - in Europe, Japan, Russia and the United States, use of balloons is emerging as an essential part of that investigative program. Venus balloons have been proposed in NASA’s Discovery program and ESA’s cosmic vision program and are a key element in NASA’s strategic plan for Venus exploration. At JPL, the focus for the last decade has been on the development of a 7m diameter superpressure pressure(twice that of VeGa) capable of carrying a 100 kg payload (14 times that of VeGA balloons), operating for more than 30 days (15 times the 2 day flight duration of the VeGa balloons) and transmitting up to 20 Mbit of data (300 times that of VeGa balloons). This new generation of balloons must tolerate day night transitions on Venus as well as extended exposure to the sulfuric acid environment. These constant altitude balloons operating at an altitude of about 55 km on Venus where temperatures are benign can also deploy sondes to sound the atmosphere beneath the probe and deliver deep sondes equipped to survive and operate down to the surface. The technology for these balloons is now maturing rapidly and we are now looking forward to the prospects for altitude control balloons that can cycle repeatedly through the Venus cloud region. One concept, which has been used for tropospheric profiling in Antarctica, is the pumped-helium balloon, with heritage to the anchor balloon, and would be best adapted for flight above the 55 km level. Phase change balloons, which use the atmosphere as a heat engine, can be used to investigate the lower cloud region down to 30 km. Progress in components for high temperature operation may also enable investigation of the deep atmosphere of Venus with metal-based balloons.
IAE - Inflatable Antenna Experiment
1996-06-10
STS077-705-016 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Inflatable Antenna Experiment (IAE) part of the Spartan 207 payload nears completion of its inflation process over California?s Pacific Coast near Santa Barbara and Point Conception. The view was photographed with a handheld 70mm camera during the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
IAE - Inflatable Antenna Experiment
1996-05-20
STS077-150-044 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over the Grand Canyon. After the IAE completed its inflation process in free-flight, this view was photographed with a large format still camera. The activity came on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
IAE - Inflatable Antenna Experiment
1996-05-20
STS077-150-022 (20 May 1996) --- After leaving the cargo bay of the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload goes through the final stages its inflation process, backdropped over clouds and blue water. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
An overview of the HIBISCUS campaign
NASA Astrophysics Data System (ADS)
Pommereau, J.-P.; Garnier, A.; Held, G.; Gomes, A. M.; Goutail, F.; Durry, G.; Borchi, F.; Hauchecorne, A.; Montoux, N.; Cocquerez, P.; Letrenne, G.; Vial, F.; Hertzog, A.; Legras, B.; Pisso, I.; Pyle, J. A.; Harris, N. R. P.; Jones, R. L.; Robinson, A. D.; Hansford, G.; Eden, L.; Gardiner, T.; Swann, N.; Knudsen, B.; Larsen, N.; Nielsen, J. K.; Christensen, T.; Cairo, F.; Fierli, F.; Pirre, M.; Marécal, V.; Huret, N.; Rivière, E. D.; Coe, H.; Grosvenor, D.; Edvarsen, K.; di Donfrancesco, G.; Ricaud, P.; Berthelier, J.-J.; Godefroy, M.; Seran, E.; Longo, K.; Freitas, S.
2011-03-01
The EU HIBISCUS project consisted of a series of field campaigns during the intense convective summers in 2001, 2003 and 2004 in the State of São Paulo in Brazil. Its objective was to investigate the impact of deep convection on the Tropical Tropopause Layer (TTL) and the lower stratosphere by providing a new set of observational data on meteorology, tracers of horizontal and vertical transport, water vapour, clouds, and chemistry in the tropical Upper Troposphere/Lower Stratosphere (UT/LS). This was achieved using short duration research balloons to study local phenomena associated with convection over land, and long-duration balloons circumnavigating the globe to study the contrast between land and oceans. Analyses of observations of short-lived tracers, ozone and ice particles show strong episodic local updraughts of cold air across the lapse rate tropopause up to 18 or 19 km (420-440 K) in the lower stratosphere by overshooting towers. The long duration balloon and satellite measurements reveal a contrast between the composition of the lower stratosphere over land and oceanic areas, suggesting significant global impact of such events. The overshoots are shown to be well captured by non-hydrostatic meso-scale Cloud Resolving Models indicating vertical velocities of 50-60 m s-1 at the top of the Neutral Buoyancy Level (NBL) at around 14 km, but, in contrast, are poorly represented by global Chemistry-Transport Models (CTM) forced by Numerical Weather Forecast Models (NWP) underestimating the overshooting process. Finally, the data collected by the HIBISCUS balloons have allowed a thorough evaluation of temperature NWP analyses and reanalyses, as well as satellite ozone, nitrogen oxide, water vapour and bromine oxide measurements in the tropics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Too, Chow Wei, E-mail: toochowwei@gmail.com; Sayani, Raza; Lim, Elvin Yuan Ting
PurposeTo describe a technique involving REcanalisation and Balloon-Oriented puncture for Re-insertion of dialysis catheter in Nonpatent central veins (REBORN) and to report long-term results.Materials and MethodsThis is a retrospective study of ten subjects in whom dialysis catheters were inserted using the REBORN technique from March 2012 to October 2014 and followed up till April 2016. Data on the duration of catheter usage, complications and reasons for removal were obtained. Seven patients had partially occluded lower internal jugular veins (IJV) recanalised in an antegrade fashion via a more cranial puncture. The balloon was then inflated at usual puncture site with anmore » 18G needle. The collapsed balloon was cannulated with a guide wire, and both balloon and guide wire were advanced together into the superior vena cava. This was followed by tunnelled catheter placement using standard techniques. Two patients had catheters placed in the subclavian vein using a similar antegrade technique, and one patient had catheter placed via the left IJV following retrograde recanalisation from a right femoral puncture.ResultsMean duration of catheter use was 278 days (range 32–503). Three catheters were removed due to matured arteriovenous accesses. Four patients had successful catheter change over the same subcutaneous track due to catheter malfunction. One catheter was removed after 7 months because of sepsis. No complications were reported.ConclusionThe REBORN technique allows for the preservation of central veins for future haemodialysis access, which can be challenging in patients requiring long-term dialysis.« less
ATIC Experiment: Preliminary Results from the Flight in 2002
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Cox, M.; Ellison, S. B.; Fazely, A. R.; Ganel, O.
2003-01-01
Abstract The Advanced Thin Ionization Calorimeter (ATIC) had successful Long Duration Balloon flights from McMurdo, Antarctica in both 2000 and 2002. The instrument consists of a Silicon matrix for charge measurement, a flared graphite target to induce nuclear interactions, scintillator strip hodoscopes for triggering and helping reconstruct trajectory, and a BGO calorimeter to measure the energy of incident particles. In this paper, we discuss the second flight, which lasted 20 days, starting on 12/29/02. Preliminary results from the on-going analysis of the data including the proton and helium spectra are reported.
ATIC Experiment: Elemental Spectra from the Flight in 2000
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.
2003-01-01
The Advanced Thin Ionization Calorimeter (ATIC) had successful Long Duration Balloon flights from McMurdo, Antarctica in both 2000 and 2002. The instrument consists of a silicon matrix charge detector, a 0.75 nuclear interaction length graphite target, 3 scintillator strip hodoscopes, and an 18 radiation length thick BGO calorimeter to measure the cosmic ray composition and energy spectra from approximately 30 GeV to near 100 TeV. In this paper, we present preliminary results from the first flight, which was a test flight that lasted for 16 days, starting on 12/28/00.
Terahertz photometers to observe solar flares from space (SOLAR-T project)
NASA Astrophysics Data System (ADS)
Kaufmann, Pierre; Raulin, Jean-Pierre
The space experiment SOLAR-T designed to observe solar flares at THz frequencies was completed. We present the concept, fabrication and performance of a double THz photometers system. An innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. It is the first detecting system conceived to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. One artificial Sun setup was developed to simulate actual observations. Tests comprised the whole system performance, on ambient and low pressure and temperature conditions. It is intended to provide data on the still unrevealed spectral shape of the mysterious THz solar flares emissions. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014-2016. The SOLAR-T development, fabrication and tests has been accomplished by engineering and research teams from Mackenzie, Unicamp and Bernard Lyot Solar Observatory; Propertech Ltda.; Neuron Ltda.; and Samsung, Brazil; Tydex LCC, Russia; CONICET, Argentina; the stratospheric balloon missions will be carried in cooperation with teams from University of California, Berkeley, USA (flight over Antarctica), and Lebedev Physical Institute, Moscow, Russia (flight over Russia).
NASA Technical Reports Server (NTRS)
2000-01-01
During this final period, BOOMERANG was deployed to McMurdo Mtn., Antarctica in late 1998 and successfully flew a 10.5 day long duration flight. The experiment returned excellent data, and produced the first resolved images of the early universe. These results, as well as those produced during a test flight over North America in August, 1997, are given in the references below. Analysis of the data from the 1998 flight is continuing. In parallel, we have begun to prepare the payload for a long-duration flight from McMurdo in December 2001. For this flight, the focal plane is being outfitted with polarization sensitive detectors, with the goal of detecting the polarization of the CMB that is predicted to exist at degree angular scales.
Inquiry-Based Early Undergraduate Research Using High-Altitude Ballooning
NASA Astrophysics Data System (ADS)
Sibbernsen, K.; Sibbernsen, M.
2012-12-01
One common objective for undergraduate science classes is to have students learn how to do scientific inquiry. However, often in science laboratory classes, students learn to take data, analyze the data, and come to conclusions, but they are told what to study and do not have the opportunity to ask their own research questions, a crucial part of scientific inquiry. A special topics class in high-altitude ballooning (HAB) was offered at Metropolitan Community College, a large metropolitan two-year college in Omaha, Nebraska to focus on scientific inquiry for the participants through support of NASA Nebraska Space Grant. A weather balloon with payloads attached (balloonSAT) was launched to near space where the balloon burst and fell back to the ground with a parachute. Students worked in small groups to ask their research questions, they designed their payloads, participated in the launch and retrieval of equipment, analyzed data, and presented the results of their research. This type of experience has potential uses in physics, physical science, engineering, electronics, computer programming, meteorology, astronomy, and chemistry classes. The balloonSAT experience can act as a stepping-stone to designing sounding rocket payloads and it can allow students the opportunity to participate in regional competitions and present at HAB conferences. Results from the workshop are shared, as well as student responses to the experience and suggestions for administering a high-altitude ballooning program for undergraduates or extending inquiry-based ballooning experiences into high-school or middle-school.
Covered Balloon-Expanding Stents in Airway Stenosis.
Majid, Adnan; Kheir, Fayez; Chung, Jey; Alape, Daniel; Husta, Bryan; Oh, Scott; Folch, Erik
2017-04-01
The balloon-expanding stents are widely available but rarely described for use within the tracheobronchial tree. This report describes our experience with these stents in airway stenosis particularly as a lobar salvage therapy. This was a retrospective review of all records in which the balloon-expanding stents were used at a tertiary medical center. Ages, sex, location of stenosis, etiology of stenosis, stent size, duration of stent placement and associated interventions for airway stenosis were recorded. Patient's self-reported respiratory symptoms, dyspnea scale, and radiographic imaging at baseline and after stent placement were also reported. Twenty-one Atrium iCAST stents were inserted in 18 patients with malignant and benign airway disease. The median age was 69.5 years (interquartile range, 53.5 to 74). Most stents (n=20, 95%) were deployed in the lobar airways. There was a significant improvement in the modified Medical Research Council dyspnea scale from median of 3 to 2 (P<0.05). Self-reported respiratory symptoms improved in 14 patients (78%, P<0.05). Radiographic improvement post Atrium iCAST stent placement was achieved in 15 patients (83%). No deaths were related to airway stenting complications. Adverse events related to stents included migration (n=2, 9.5%), granulation tissue formation (n=2, 9.5%) and mucus plugging (n=1, 4.8%). Lobar stenting with balloon-expanding metallic stents appears feasible, safe and improves symptoms as well as radiographic atelectasis in patients with lobar airway stenosis in this small case series. Larger studies are needed to confirm this observation and to address long-term safety.
PEGASO . Polar Explorer for Geomagnetic And other Scientific Observation
NASA Astrophysics Data System (ADS)
Romeo, G.; Di Stefano, G.; Di Felice, F.; Caprara, F.; Iarocci, A.; Peterzen, S.; Masi, S.; Spoto, D.; Ibba, R.; Musso, I.; Dragoy, P.
PEGASO (Polar Explorer for Geomagnetic And other Scientific Observation) program has been created to conduct small experiments in as many disciplines on-board of small stratospheric balloons. PEGASO uses the very low expensive pathfinder balloons. Stratospheric pathfinders are small balloons commonly used to explore the atmospheric circumpolar upper winds and to predict the trajectory for big LDBs (Long Duration Balloons). Installing scientific instruments on pathfinder and using solar energy to power supply the system, we have the opportunity to explorer the Polar Regions, during the polar summer, following circular trajectory. These stratospheric small payload have flown for 14 up to 40 days, measuring the magnetic field of polar region, by means of 3-axis-fluxgate magnetometer. PEGASO payload uses IRIDIUM satellite telemetry (TM). A ground station communicates with one or more payloads to download scientific and house-keeping data and to send commands for ballast releasing, for system resetting and for operating on the separator system at the flight end. The PEGASO missions have been performed from the Svalbard islands with the logistic collaboration of the Andoya Rocket Range and from the Antarctic Italian base. Continuous trajectory predictions, elaborated by Institute of Information Science and Technology (ISTI-CNR), were necessary for the flight safety requirements in the north hemisphere. This light payloads (<10 Kg) are realized by the cooperation between the INGV and the Physics department "La Sapienza" University and it has operated five times in polar areas with the sponsorship of Italian Antarctic Program (PNRA), Italian Space Agency (ASI). This paper summarizes important results about stratospheric missions.
High Altitude Ozone Research Balloon
NASA Technical Reports Server (NTRS)
Cauthen, Timothy A.; Daniel, Leslie A.; Herrick, Sally C.; Rock, Stacey G.; Varias, Michael A.
1990-01-01
In order to create a mission model of the high altitude ozone research balloon (HAORB) several options for flight preparation, altitude control, flight termination, and payload recovery were considered. After the optimal launch date and location for two separate HAORB flights were calculated, a method for reducing the heat transfer from solar and infrared radiation was designed and analytically tested. This provided the most important advantage of the HAORB over conventional balloons, i.e., its improved flight duration. Comparisons of different parachute configurations were made, and a design best suited for the HAORB's needs was determined to provide for payload recovery after flight termination. In an effort to avoid possible payload damage, a landing system was also developed.
14 CFR 61.115 - Balloon rating: Limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... takes a practical test in a balloon with an airborne heater: (1) The pilot certificate will contain a limitation restricting the exercise of the privileges of that certificate to a balloon with an airborne... removed when the person obtains the required aeronautical experience in a balloon with an airborne heater...
Spiotta, Alejandro M; James, Robert F; Lowe, Stephen R; Vargas, Jan; Turk, Aquilla S; Chaudry, M Imran; Bhalla, Tarun; Janjua, Rashid M; Delaney, John J; Quintero-Wolfe, Stacey; Turner, Raymond D
2015-10-01
Conventional Onyx embolization of cerebral arteriovenous malformations (AVMs) requires lengthy procedure and fluoroscopy times to form an adequate 'proximal plug' which allows forward nidal penetration while preventing reflux and non-targeted embolization. We review our experience with balloon-augmented Onyx embolization of cerebral AVMs using a dual-lumen balloon catheter technique designed to minimize these challenges. Retrospectively acquired data for all balloon-augmented cerebral AVM embolizations performed between 2011 and 2014 were obtained from four tertiary care centers. For each procedure, at least one Scepter C balloon catheter was advanced into the AVM arterial pedicle of interest and Onyx embolization was performed through the inner lumen after balloon inflation via the outer lumen. Twenty patients underwent embolization with the balloon-augmented technique over 24 discreet treatment episodes. There were 37 total arterial pedicles embolized with the balloon-augmented technique, a mean of 1.9 per patient (range 1-5). The treated AVMs were heterogeneous in their location and size (mean 3.3±1.6 cm). Mean fluoroscopy time for each procedure was 48±26 min (28 min per embolized pedicle). Two Scepter C balloon catheter-related complications (8.3% of embolization sessions, 5.4% of pedicles embolized) were observed: an intraprocedural rupture of a feeding pedicle and fracture and retention of a catheter fragment. This multicenter experience represents the largest reported series of balloon-augmented Onyx embolization of cerebral AVMs. The technique appears safe and effective in the treatment of AVMs, allowing more efficient and controlled injection of Onyx with a decreased risk of reflux and decreased fluoroscopy times. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Project SunbYte: solar astronomy on a budget
NASA Astrophysics Data System (ADS)
Alvarez Gonzalez, F.; Badilita, A.-M.; Baker, A.; Cho, Y.-H.; Dhot, N.; Fedun, V.; Hare, C.; He, T.; Hobbs, M.; Javed, M.; Lovesey, H.; Lord, C.; Panoutsos, G.; Permyakov, A.; Pope, S.; Portnell, M.; Rhodes, L.; Sharma, R.; Taras, P.; Taylor, J.; Tilbrook, R.; Verth, G.; Wrigley, S. N.; Yaqoob, M.; Cook, R.; McLaughlin, J.; Morton, R.; Scullion, E.; Shelyag, S.; Hamilton, A.; Zharkov, S.; Jess, D.; Wrigley, M.
2017-04-01
The Sheffield University Nova Balloon Lifted Solar Telescope (SunbYte) is a high-altitude balloon experiment devised and run largely by students at the University of Sheffield, and is scheduled for launch in October 2017. It was the only UK project in 2016 to be selected for the balloon side of the Swedish-German student programme REXUS/BEXUS (Rocket and Balloon Experiments for University Students; see box on p2.25). The success of the SunbYte team in the REXUS/BEXUS selection process is an unprecedented opportunity for the students to gain valuable experience working in the space engineering industry, using their theoretical knowledge and networking with students and technology companies from all over Europe.
The Extreme Universe Space Observatory Super Pressure Balloon Mission
NASA Astrophysics Data System (ADS)
Wiencke, Lawrence; Olinto, Angela; Adams, Jim; JEM-EUSO Collaboration
2017-01-01
The Extreme Universe Space Observatory on a super pressure balloon (EUSO-SPB) mission will make the first fluorescence observations of high energy cosmic ray extensive air showers by looking down on the atmosphere from near space. A long duration flight of at least 50 nights launched from Wanaka NZ is planned for 2017. We describe completed instrument, and the planned mission. We acknowledge the support of NASA through grants NNX13AH53G and NNX13AH55G.
Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons
NASA Technical Reports Server (NTRS)
Lin, Robert P.
1989-01-01
The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.
IAE - Inflatable Antenna Experiment
1996-05-20
STS077-150-094 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over the Mississippi River and metropolitan St. Louis. The metropolitan area lies just below the gold-colored Spartan at bottom of photo. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
IAE - Inflatable Antenna Experiment
1996-05-20
STS077-150-129 (20 May 1996) --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over the Atlantic Ocean and Hampton Roads, Virginia. (Hold photograph vertically with land mass at top.) Virginia Beach and part of Newport News can be delineated in the upper left quadrant of the frame. The view was photographed with a large format still camera on the first full day of in-space operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit.
Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped against a wall of grayish clouds. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:14:57.
Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:12:50.
Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Following its deployment from the Space Shuttle Endeavour, the Spartan 207/Inflatable Antenna Experiment (IAE) payload is backdropped over clouds and water. The view was photographed with an Electronic Still Camera (ESC) and downlinked to flight controllers on the first full day of orbital operations by the six-member crew. Managed by Goddard Space Flight Center (GSFC), Spartan is designed to provide short-duration, free-flight opportunities for a variety of scientific studies. The Spartan configuration on this flight is unique in that the IAE is part of an additional separate unit which is ejected once the experiment is completed. The IAE experiment will lay the groundwork for future technology development in inflatable space structures, which will be launched and then inflated like a balloon on-orbit. GMT: 08:04:38.
Near Space Lab-Rat Experimentation using Stratospheric Balloon
NASA Astrophysics Data System (ADS)
Buduru, Suneel Kumar; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Trivedi, Dharmesh; Devarajan, Anand; Pandit Manikrao Kulkarni, MR..; Ojha, Devendra; Korra, Sakram; Neerudu, Nagendra; Seng, Lim; Godi, Stalin Peter
2016-07-01
First ever balloon borne lab-rat experiment up to near space stratospheric altitude levels carried out at TIFR Balloon Facility, Hydeabad using zero pressure balloons for the purpose of validating the life support system. A series of two balloon experiments conducted under joint collaboration with IN.Genius, Singapore in the year 2015. In these experiments, three lab-rats sent to stratosphere in a pressurized capsule designed to reach an altitude of 30 km by keeping constant pressure, temperature and maintained at a precise rate of oxygen supply inside the capsule. The first experiment conducted on 1 ^{st} February, 2015 with a total suspended weight of 225 kg. During the balloon ascent stage at 18 km altitude, sensors inside the capsule reported drastic drop in internal pressure while oxygen and temperatures maintained at correct levels resulted in premature fligt termination at 20.1 km. All the three lab-rats recovered without life due to the collapse of their lungs caused by the depressurization inside the capsule. The second experiment conducted on 14th March, 2015 using a newly developed capsule with rectification of depressurization fault by using improved sealing gaskets and hermitically sealed connectors for sending lab-rats again to stratosphere comprising a total suspended load of 122.3 kg. The balloon flight was terminated after reaching 29.5 km in 110 minutes and succesfully recovered all the three lab-rats alive. This paper focuses on lessons learnt of the development of the life support system as an integral pressurized vessel, flight control instrumentation, flight simulation tests using thermo-vaccum chamber with pre-flight operations.
BLAST: The Balloon-Borne Large Aperture Submillimeter Telescope
NASA Technical Reports Server (NTRS)
Devlin, Mark; Ade, Peter; Bock, Jamie; Dicker, Simon; Griffin, Matt; Gunderson, Josh; Halpern, Mark; Hargrave, Peter; Hughes, David; Klein, Jeff
2004-01-01
BLAST is the Balloon-borne Large-Aperture Sub-millimeter Telescope. It will fly from a Long Duration Balloon (LDB) platform from Antarctica. The telescope design incorporates a 2 m primary mirror with large-format bolometer arrays operating at 250, 350 and 500 microns. By providing the first sensitive large-area (10 sq. deg.) sub-mm surveys at these wavelengths, BLAST will address some of the most important galactic and cosmological questions regarding the formation and evolution of stars, galaxies and clusters. Galactic and extragalactic BLAST surveys will: (1) identify large numbers of high-redshift galaxies; (2) measure photometric redshifts, rest-frame FIR luminosities and star formation rates thereby constraining the evolutionary history of the galaxies that produce the FIR and sub-mm background; (3) measure cold pre-stellar sources associated with the earliest stages of star and planet formation; (4) make high-resolution maps of diffuse galactic emission over a wide range of galactic latitudes. In addition to achieving the above scientific goals, the exciting legacy of the BLAST LDB experiment will be a catalogue of 3000-5000 extragalactic sub-mm sources and a 100 sq. deg. sub-mm galactic plane survey. Multi-frequency follow-up observations from SIRTF, ASTRO-F, and Herschel, together with spectroscopic observations and sub-arcsecond imaging from ALMA are essential to understand the physical nature of the BLAST sources.
Balloon Program Wraps up in Antarctica, Heading to New Zealand
2015-02-02
Caption: A NASA Super Pressure Balloon with the COSI payload is ready for launch from McMurdo, Antarctica. Credit: NASA More info: NASA’s globetrotting Balloon Program Office is wrapping up its 2014-2015 Antarctic campaign while prepping for an around-the-world flight launching out of Wanaka, New Zealand, in March. After 16 days, 12 hours, and 56 minutes of flight, operators successfully conducted a planned flight termination of the Suborbital Polarimeter for Inflation Dust and the Epoch of Reionization (SPIDER) mission Saturday, Jan. 18, the final mission of the campaign. Other flights in the 2014-2015 Antarctic campaign included the Antarctic Impulsive Transient Antenna (ANITA-III) mission as well as the Compton Spectrometer and Imager (COSI) payload flown on the developmental Super Pressure Balloon (SPB). ANITA-III successfully wrapped up Jan. 9 after 22 days, 9 hours, and 14 minutes of flight. Flight controllers terminated the COSI flight 43 hours into the mission after detecting a small gas leak in the balloon. Crews are now working to recover all three instruments from different locations across the continent. The 6,480-pound SPIDER payload is stationary at a position about 290 miles from the United Kingdom’s Sky Blu Logistics Facility in Antarctica. The 4,601 pound ANITA-III payload, located about 100 miles from Australia’s Davis Station, and the 2,866 pound COSI payload, located about 340 miles from the United States McMurdo Station both had numerous key components recovered in the past few days. Beginning in late January, the Balloon Program Office will deploy a team to Wanaka, New Zealand, to begin preparations for an SPB flight, scheduled to launch in March. The Program Office seeks to fly the SPB more than 100 days, which would shatter the current flight duration record of 55 days, 1 hour, and 34 minutes for a large scientific balloon. “We’re looking forward to the New Zealand campaign and hopefully a history-making flight with the Super Pressure Balloon,” said Debbie Fairbrother, NASA’s Balloon Program Office Chief. Most scientific balloons see altitude variances based on temperature changes in the atmosphere at night and during the day. The SPB is capable of missions on the order of 100 days or more at constant float altitudes due to the pressurization of the balloon. “Stable, long-duration flights at near-space altitudes above more than 99 percent of the atmosphere are highly desirable in the science community, and we’re ready to deliver,” said Fairbrother. In addition to the SPB flight in March, the Balloon Program Office has 10 more balloon missions planned through September 2015 to include scheduled test flights of the Low-Density Supersonic Decelerator, which is testing new technologies for landing larger, heavier payloads on Mars. NASA’s Wallops Flight Facility manages the agency’s Scientific Balloon Program with 10 to 15 flights each year from launch sites worldwide. The balloons are massive in volume; the average-sized balloon could hold the volume of nearly 200 blimps. Previous work on balloons have contributed to confirming the Big Bang Theory. For more information on NASA’s Scientific Balloon Program, see: sites.wff.nasa.gov/code820/index.html NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Multicenter comparison of double-balloon enteroscopy and spiral enteroscopy.
Rahmi, Gabriel; Samaha, Elia; Vahedi, Kouroche; Ponchon, Thierry; Fumex, Fabien; Filoche, Bernard; Gay, Gerard; Delvaux, Michel; Lorenceau-Savale, Camille; Malamut, Georgia; Canard, Jean-Marc; Chatellier, Gilles; Cellier, Christophe
2013-06-01
Spiral enteroscopy is a novel technique for small bowel exploration. The aim of this study is to compare double-balloon and spiral enteroscopy in patients with suspected small bowel lesions. Patients with suspected small bowel lesion diagnosed by capsule endoscopy were prospectively included between September 2009 and December 2010 in five tertiary-care academic medical centers. After capsule endoscopy, 191 double-balloon enteroscopy and 50 spiral enteroscopies were performed. Indications were obscure gastrointestinal bleeding in 194 (80%) of cases. Lesions detected by capsule endoscopy were mainly angioectasia. Double-balloon and spiral enteroscopy resulted in finding one or more lesions in 70% and 75% of cases, respectively. The mean diagnosis procedure time and the average small bowel explored length during double-balloon and spiral enteroscopy were, respectively, 60 min (45-80) and 55 min (45-80) (P=0.74), and 200 cm (150-300) and 220 cm (200-300) (P=0.13). Treatment during double-balloon and spiral enteroscopy was possible in 66% and 70% of cases, respectively. There was no significant major procedure-related complication. Spiral enteroscopy appears as safe as double-balloon enteroscopy for small bowel exploration with a similar diagnostic and therapeutic yield. Comparison between the two procedures in terms of duration and length of small bowel explored is slightly in favor of spiral enteroscopy but not significantly. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.
High altitude ballooning as a platform for student research experiences in science and engineering
NASA Astrophysics Data System (ADS)
Armstrong, John; Larson, Shane; Hiscock, Bill
2008-10-01
Humans have dreamed of sailing high above Earth's atmosphere and making the voyage into outer space. At the start of the 21st Century, our students can send their own research experiments from the surface of Earth to the fringes of outer space, borne aloft by high altitude balloons. Colloquially known as near-space platforms, these balloon systems are designed, constructed and own by the students themselves. They are inexpensive to construct, are built with common electronic and hardware components that are easily purchased from commercial vendors, and can be launched and recovered in a single day. The systems are reusable and can be own many times, allowing students to many new experiments during their student lifetime, or to a single experiment many times to acquire extended scientific data sets. We will focus the presentation on Weber State University's High Altitude Reconnaissance Balloon for Outreach and Research (HARBOR) that is based on the successful Montana State BOREALIS ballooning program. We will outline successful strategies for engaging undergraduate students in research and design using such programs.
NASA Astrophysics Data System (ADS)
Hertzog, A.; Vial, F.
2001-10-01
This study is the companion paper of Vial et al. [this issue]. A campaign of ultra-long-duration, superpressure balloons in the equatorial lower stratosphere was held in September 1998. By conception these balloons evolve on isopycnic surfaces. Pressure and position were measured every 12 min, which enable to infer the characteristics of gravity waves with periods between 1 hour and 1 day in this region of the atmosphere. The intrinsic-frequency spectra of horizontal wind fluctuations exhibit a -2 slope, while the one associated with vertical-wind fluctuations is flat. Significant inhomogeneity of the wave activity is observed, and the variance of the shortest frequency waves is found to be linked to the position of the balloons with respect to the Intertropical Convergence Zone. On average, the total energy associated with gravity waves in the period range studied in this paper is found to be ˜ 7 J kg-1. Calculations of momentum flux have also been undertaken. It appears that there is an approximate equipartition of flux between eastward and westward propagating gravity waves and that the absolute value of the flux is 8-12 × 10-3 m2 s-2 at 20 km. A larger flux is also observed above convective regions. These values suggest that gravity waves may carry the largest part of the Eliassen-Palm flux required for the driving of the quasi-biennial oscillation.
Jagadeesan, Bharathi D; Grigoryan, Mikayel; Hassan, Ameer E; Grande, Andrew W; Tummala, Ramachandra P
2013-12-01
Ethylene vinyl alcohol copolymer (Onyx) is widely used for the embolization of arteriovenous malformations (AVMs) of the brain, head, and neck. Balloon-assisted Onyx embolization may provide additional unique advantages in the treatment of AVMs in comparison with traditional catheter-based techniques. To report our initial experience in performing balloon-assisted AVM embolization for brain and neck AVMs with the use of the new Scepter-C and Scepter-XC coaxial dual-lumen balloon microcatheters. Balloon-assisted transarterial embolization was performed in a series of 7 patients with AVMs (4 with brain AVMs, 1 with a dural arteriovenous fistula, and 2 with neck AVMs) by using Onyx delivered through the lumen of Scepter-C or Scepter XC coaxial balloon microcatheters. Following the initial balloon-catheter navigation into a feeding artery and the subsequent inflation of the balloon, the embolization was performed by using Onyx 18, Onyx 34, or both. A total of 12 embolization sessions were performed via 17 arterial feeders in these 7 patients. In 1 patient, there was an arterial perforation from the inflation of the balloon; in all others, the embolization goals were successfully achieved with no adverse events. The balloon microcatheters showed excellent navigability, and there were no problems with retrieval or with the repeated inflation and deflation of the balloons. A proximal Onyx plug, which is crucial in many AVM embolizations, was not necessary with this technique. Additionally, fluoroscopy and procedural times seemed lower with this technique compared with conventional embolization methods.
Bladder catheterization, male (image)
... kept empty (decompressed) and urinary flow assured. The balloon holds the catheter in place for a duration of time. Catheterization in males is slightly more difficult and uncomfortable than in females because of the longer urethra.
Electrodynamics of the middle atmosphere: Superpressure balloon program
NASA Technical Reports Server (NTRS)
Holzworth, Robert H.
1987-01-01
In this experiment a comprehensive set of electrical parameters were measured during eight long duration flights in the southern hemisphere stratosphere. These flight resulted in the largest data set ever collected from the stratosphere. The stratosphere has never been electrodynamically sampled in the systematic manner before. New discoveries include short term variability in the planetary scale electric current system, the unexpected observation of stratospheric conductivity variations over thunderstorms and the observation of direct stratospheric conductivity variations following a relatively small solar flare. Major statistical studies were conducted of the large scale current systems, the stratospheric conductivity and the neutral gravity waves (from pressure and temperature data) using the entire data set.
Antideuteron based dark matter search with GAPS: Current progress and future prospects
NASA Astrophysics Data System (ADS)
Hailey, C. J.; Aramaki, T.; Boggs, S. E.; Doetinchem, P. v.; Fuke, H.; Gahbauer, F.; Koglin, J. E.; Madden, N.; Mognet, S. A. I.; Ong, R.; Yoshida, T.; Zhang, T.; Zweerink, J. A.
2013-01-01
The General Antiparticle Spectrometer (GAPS) is a new approach to the indirect detection of dark matter. It relies on searching for primary antideuterons produced in the annihilation of dark matter in the galactic halo. Low energy antideuterons produced through Standard Model processes, such as collisions of cosmic-rays with interstellar baryons, are greatly suppressed compared to primary antideuterons. Thus a low energy antideuteron search provides a clean signature of dark matter. In GAPS antiparticles are slowed down and captured in target atoms. The resultant exotic atom deexcites with the emission of X-rays and annihilation pions, protons and other particles. A tracking geometry allows for the detection of the X-rays and particles, providing a unique signature to identify the mass of the antiparticle. A prototype detector was successfully tested at the KEK accelerator in 2005, and a prototype GAPS balloon flight is scheduled for 2011. This will be followed by a full scale experiment on a long duration balloon from Antarctica in 2014. We discuss the status and future plans for GAPS.
Thermal performance modeling of NASA s scientific balloons
NASA Astrophysics Data System (ADS)
Franco, H.; Cathey, H.
The flight performance of a scientific balloon is highly dependant on the interaction between the balloon and its environment. The balloon is a thermal vehicle. Modeling a scientific balloon's thermal performance has proven to be a difficult analytical task. Most previous thermal models have attempted these analyses by using either a bulk thermal model approach, or by simplified representations of the balloon. These approaches to date have provided reasonable, but not very accurate results. Improvements have been made in recent years using thermal analysis tools developed for the thermal modeling of spacecraft and other sophisticated heat transfer problems. These tools, which now allow for accurate modeling of highly transmissive materials, have been applied to the thermal analysis of NASA's scientific balloons. A research effort has been started that utilizes the "Thermal Desktop" addition to AUTO CAD. This paper will discuss the development of thermal models for both conventional and Ultra Long Duration super-pressure balloons. This research effort has focused on incremental analysis stages of development to assess the accuracy of the tool and the required model resolution to produce usable data. The first stage balloon thermal analyses started with simple spherical balloon models with a limited number of nodes, and expanded the number of nodes to determine required model resolution. These models were then modified to include additional details such as load tapes. The second stage analyses looked at natural shaped Zero Pressure balloons. Load tapes were then added to these shapes, again with the goal of determining the required modeling accuracy by varying the number of gores. The third stage, following the same steps as the Zero Pressure balloon efforts, was directed at modeling super-pressure pumpkin shaped balloons. The results were then used to develop analysis guidelines and an approach for modeling balloons for both simple first order estimates and detailed full models. The development of the radiative environment and program input files, the development of the modeling techniques for balloons, and the development of appropriate data output handling techniques for both the raw data and data plots will be discussed. A general guideline to match predicted balloon performance with known flight data will also be presented. One long-term goal of this effort is to develop simplified approaches and techniques to include results in performance codes being developed.
Antimatter and Dark Matter Search in Space: BESS-Polar Results
NASA Technical Reports Server (NTRS)
Mitchell, John W.; Yamamoto, Akira
2009-01-01
The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.
The BESS Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter
NASA Technical Reports Server (NTRS)
Mitchell, John; Yamamoto, Akira
2009-01-01
The apex of the Balloon-borne Experiment with a Superconducting Spectrometer (BESS) program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier antinuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of antideuterons and antihelium. The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.
NASA Astrophysics Data System (ADS)
Marshall, T. C.; Stolzenburg, M.
2006-12-01
One of Benjamin Franklin's most famous experiments was the kite experiment, which showed that thunderstorms are electrically charged. It is not as commonly noted that the kite experiment was also one of the the first attempts to make an in situ measurement of any storm parameter. Franklin realized the importance of making measurements close to and within storms, and this realization has been shared by later atomspheric scientists. In this presentation we focus on a modern version of Franklin's kite--instrumented balloons--used for in situ measurements of electric field and other storm parameters. In particular, most of our knowledge of the charge structure inside thunderstorms is based on balloon soundings of electric field. Balloon measurements of storm electricity began with the work of Simpson and colleagues in the 1930's and 1940's. The next major instrumentation advances were made by Winn and colleagues in the 1970's and 1980's. Today's instruments are digital versions of the Winn design. We review the main instrument techniques that have allowed balloons to be the worthy successors to kites. We also discuss some of the key advances in our understanding of thunderstorm electrification made with in situ balloon-borne instruments.
NASA Astrophysics Data System (ADS)
Ricci, Marco;
2016-05-01
The Extreme Universe Space Observatory on-board the Japanese Experiment Module (JEM-EUSO) of the International Space Station (ISS), is a space mission that aims to unveiling the nature and the origin of the Ultra High Energy Cosmic Rays (UHECRs) and to address basic problems of fundamental physics at extreme energies. The instrument is designed to measure the arrival direction, the energy and, possibly, the nature of these particles. Basically, it consists of a wide Field of View (FoV) telescope, based on Fresnel lenses, that looks down from the ISS during night-time to detect UV photons (fluorescence and Cherenkov photons) emitted from air showers. An infrared camera and an atmosphere monitoring system improve the performance of the instrument. The program is proceeding in different steps. While the JEM-EUSO mission is being improved to allow the use of the new carrier Space-X Dragon, the project K-EUSO, a mirror-based telescope to be placed on the Russian module of the ISS, conceived as an improvement of the KLYPVE experiment already approved by the Russian Space Agency Roscosmos, modified with EUSO technology, is in the stage of final definition. Meanwhile, a program of test experiments, pathfinders of the main mission, has been developed: the first, EUSO-Balloon, successfully flew on board a stratospheric balloon in Canada to measure the fluorescence background from the top of the Atmosphere; a second, EUSO-TA on ground, is in operation at the Telescope Array site in Utah. Next steps include: a) Mini-EUSO, approved by Roscosmos and the Italian Space Agency ASI, a small, compact UV telescope to be installed inside the Russian Module of the ISS to measure the UV background from Earth and b) a long duration Super Pressure Balloon Flight (EUSO-SPB) to be flown from New Zealand to observe EAS (Extensive Air Showers) from stratospheric atmosphere altitudes. Scientific, technical and programmatic aspects of all these EUSO-like projects are described.
Onyx embolization using dual-lumen balloon catheter: initial experience and technical note.
Paramasivam, Srinivasan; Niimi, Yasunari; Fifi, Johanna; Berenstein, Alejandro
2013-10-01
Onyx as an embolization agent for the management of vascular malformation is well established. We report our initial experience with dimethyl-sulphoxide (DMSO) compatible double lumen balloon catheters used for Onyx embolization. Between December 2011 and March 2013, we treated 22 patients aged between 1.5 to 70years with two types of DMSO compatible dual-lumen balloon catheters (Scepter C and Ascent) to treat dural arteriovenous fistulas, brain arteriovenous malformation (AVM) with dural feeders, mandibular, facial, lingual, vertebral and paravertebral AVMs. The catheter has good navigability, compliant balloon on inflation formed a "plug" that has more resistance than Onyx plug enhancing better penetration. During injection, the balloon remained stable without spontaneous deflation or rupture and withstood the pressure build-up well. The retrieval of the catheter in most cases took less than a minute (19/28) while in five, it was less than five minutes and in the remaining four, it was longer that includes a trapped catheter on prolonged attempted retrieval resulted in an epidural hematoma, requiring emergent surgical evacuation. The fluoroscopy time is reduced, as we do not form a proximal onyx plug, the injection time is shorter along with easy and instantaneous removal of the catheter after balloon deflation in most cases. Dual-lumen balloon catheter Onyx embolization is a safe and effective technique. Currently, an important tool to circumvent some of the shortcomings associated with Onyx embolization. The catheter has good navigability, the balloon has stability, tolerance, enhances penetrability. It is easy to retrieve the microcatheter. With the experience gained, and with more compliant balloon catheters available, this technique can be applied to cerebral vessels in near future. Copyright © 2013. Published by Elsevier Masson SAS.
High altitude flights in equatorial regions
NASA Astrophysics Data System (ADS)
Redkar, R. T.
A thorough analysis of balloon flights made from Hyderabad, India (Latitude 17°28'N, Longitude 78°35'E), and other equatorial sites has been made. It has been shown that limited success is expected for flights made from equatorial latitudes with balloons made out of natural colour polyethylene film, since the best known balloon film in the world today viz. Winzen Stratofilm is tested for low temperature brittleness only at -80°C., whereas the tropopause temperatures over equatorial latitudes vary between -80°C and -90°C. The success becomes even more critical when flights are made with heavy payloads and larger balloons particularly at night when in the absence of solar radiation the balloon film becomes more susceptible to low temperature brittle failure. It is recommended that in case of capped balloons longer caps should be used to fully cover the inflated protion of the balloon at the higher level equatorial tropopause. It is also advised that the conditions such as wind shears in the tropopause should be critically studied before launching and a day with the tropopause temperature nearer to -80°C should be chosen. Special care also should be taken while handling the balloon on ground and during launching phase. Properties of Winzen Stratofilm have been critically studied and fresh mandates have been recommended on the basis of limiting values of film stresses which caused balloon failures in the equatorial tropopause. It is also emphasized that the data on such flights is still meagre especially for flights with heavy payloads and larger balloons. It has been also shown that it is safest to use balloons made out of grey coloured film which retains its flexibility with the absorption of solar radiation, the success obtained with such balloons so far being 100%. The drawback, however, is that these balloons cannot be used for night flights. Stratospheric wind regimes over Hyderabad are also discussed with a view to determine the period over which long duration flights can be made. The data available, however, is meagre and it is recommended that more frequent special wind ascents be made to collect adequate statistical data from which reliable conclusions could be drawn through critical analysis.
Balloons on Ice: NASA Launches Antarctica Scientific Balloon Campaign
2017-12-08
Cosmic rays and the chemicals and atoms that make up the interstellar space between stars are the focus of this year’s NASA Antarctica Long Duration Balloon Flight Campaign, which kicked into high gear with the launch of the Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) payload Nov. 28. The University of Maryland’s BACCUS mission is the first of three payloads taking flight from a balloon launch site on Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Read more: go.nasa.gov/2gCMtyP NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Design considerations and practical results with long duration systems for manned world flights
NASA Astrophysics Data System (ADS)
Nott, Julian
2004-01-01
This paper describes development of three balloon types by the author, all proposed for piloted flights around the world. The first was a superpressure pumpkin used to cross Australia. However, the balloon took up an incorrect shape when inflated. Because of this and other problems, the pumpkin was abandoned and the author built a combined helium-hot air balloon. This in turn was abandoned because it was cumbersome and costly. The author then developed an entirely new system, carrying cryogenic liquid helium to create lift in flight. Two very successful 24-h flights were made. In addition several inventions were developed for crew safety. Perhaps the most important is an entirely new way to protect pilots against sudden cabin pressure loss, with potentially broad use.
Kolev, I; Parvanov, O; Kaprielov, B
1988-06-15
The paper presents results from lidar measurements of wind velocity in the planetary boundary layer using correlation data processing. Two lidars are used in our experiments: a ruby lidar operating along slant paths and a YAG:Nd lidar operating for near vertical sounding used by us for the first time. On the basis of our experience the optimal sizes of aerosol inhomogeneities (30-300 m), the duration of the experiments (2-10 min), and the repetition rate of laser shots (fractions of hertz to several hertz) are determined. The results are compared to independent data obtained from anemometer measurements, theodolite- and radar-tracked pilot balloons. The range of differences is ~1-2 m/s in speed and 10-15 degrees in direction. Preliminary results from the use of lidar data to remotely sound the wind speed for various atmospheric stratifications and synoptic situations are described as well.
Experiments with Helium-Filled Balloons
NASA Astrophysics Data System (ADS)
Zable, Anthony C.
2010-12-01
The concepts of Newtonian mechanics, fluids, and ideal gas law physics are often treated as separate and isolated topics in the typical introductory college-level physics course, especially in the laboratory setting. To bridge these subjects, a simple experiment was developed that utilizes computer-based data acquisition sensors and a digital gram scale to estimate the molar mass of the gas in an inflated balloon. In this experiment, the comparable density of an inflated balloon to that of atmospheric air introduces a significant role for buoyancy that must be accounted for. The ideal gas law approximation is assumed for both the isolated gas mixture within the balloon and the surrounding air, which defines the relationship between the gas pressure, volume, temperature, and molar quantity. Analysis of the forces associated with the inflated balloon with the incorporation of Archimedes' principle and the ideal gas law into Newton's second law results in an experimental method for the measurement of the molar mass and mole fraction of a gas that is easy to implement yet academically challenging for students. The following narrative describes the basic setup of this experiment, along with a sample set of data as acquired and analyzed by a typical physics student from one of my classes.
Atmospheric Balloon Swarms for Persistent In-Situ Measurements in Hurricanes
NASA Astrophysics Data System (ADS)
Meneghello, G.; Bewley, T.
2015-12-01
Real-time measurements within hurricanes are essential to improve forecasts, protect property and save lives. Current methods for obtaining in-situ data, including radar and satellite imagery as well as drop-sondes deployed from repeated aircraft flights above or even within the hurricane itself, are costly, dangerous and limited in duration or resolution. We demonstrate how a swarm of inexpensive, buoyancy-controlled, sensor-laden balloons can be deployed from altitude or from sea-level within a hurricane flow field, and coordinated autonomously in an energetically-efficient fashion to persistently and continuously monitor relevant properties (pressure, humidity, temperature, windspeed) of a hurricane for days at a time. Rather than fighting the gale-force winds in the storm, the strong, predictable stratification of these winds is leveraged to disperse the balloons into a favorable, time-evolving distribution and to follow the hurricane track as it moves. Certain target orbits of interest in the hurricane can be continuously sampled by some balloons, while other balloons make continuous sweeps between the eye and the spiral rain bands. We expect the acquired data to complement current measurement methods and to be instrumental in improving the numerical models' forecast skills.
Sahin, Tayfun; Karauzum, Kurtulus; Ural, Ertan; Pedersen, Wesley R.
2018-01-01
Percutaneous balloon pulmonary valvuloplasty is the preferred therapy for pulmonary valve stenosis. However, the designs of the cylindrical balloons historically used for valvuloplasty have limitations, especially in patients who have large pulmonary annular diameters. The hourglass-shaped V8 Aortic Valvuloplasty Balloon may prove to be an effective alternative. The balloon has 2 large bulbous segments that are separated by a narrowed waist. The geometric shape is maintained throughout inflation, improving fixation and enabling broader leaflet opening. We present our first experience with the V8 balloon in 3 adults who had severe, symptomatic pulmonary valve stenosis. In addition to describing their cases, we detail our sizing technique for pulmonary valvuloplasty with the V8 balloon. Our successful results suggest that the V8 balloon is efficient and safe for balloon pulmonary valvuloplasty in adults with severe pulmonary valve stenosis. PMID:29844739
Balloon-Borne Infrasound Detection of Energetic Bolide Events
NASA Astrophysics Data System (ADS)
Young, Eliot F.; Ballard, Courtney; Klein, Viliam; Bowman, Daniel; Boslough, Mark
2016-10-01
Infrasound is usually defined as sound waves below 20 Hz, the nominal limit of human hearing. Infrasound waves propagate over vast distances through the Earth's atmosphere: the CTBTO (Comprehensive Nuclear-Test-Ban Treaty Organization) has 48 installed infrasound-sensing stations around the world to detect nuclear detonations and other disturbances. In February 2013, several CTBTO infrasound stations detected infrasound signals from a large bolide that exploded over Chelyabinsk, Russia. Some stations recorded signals that had circumnavigated the Earth, over a day after the original event. The goal of this project is to improve upon the sensitivity of the CTBTO network by putting microphones on small, long-duration super-pressure balloons, with the overarching goal of studying the small end of the NEO population by using the Earth's atmosphere as a witness plate.A balloon-borne infrasound sensor is expected to have two advantages over ground-based stations: a lack of wind noise and a concentration of infrasound energy in the "stratospheric duct" between roughly 5 - 50 km altitude. To test these advantages, we have built a small balloon payload with five calibrated microphones. We plan to fly this payload on a NASA high-altitude balloon from Ft Sumner, NM in August 2016. We have arranged for three large explosions to take place in Socorro, NM while the balloon is aloft to assess the sensitivity of balloon-borne vs. ground-based infrasound sensors. We will report on the results from this test flight and the prospects for detecting/characterizing small bolides in the stratosphere.
Su, Hongwei; Zhu, Yongsheng; Wang, Jia; Deng, Qingfu; Pei, Lijun; Wang, Juan
2015-12-01
To evaluate the effect of nephrostomy tubing with balloon on postoperative hemorrhage after percutaneous nephrolithotomy. A total of 284 patients with upper urinary calculi were enrolled for blocked randomization with 71 blocks and block length of 4. The experimental group consisted of 143 patients receiving 14-Fr silicone tubing with balloon, and the control group consisted of 141 patients receiving 14-Fr silicone tubing without balloon. One patient in the control group developed intraoperative bleeding as a result of calyceal laceration, and was reassigned to the experimental group receiving nephrostomy tubing with balloon. Postoperative drop in hemoglobin level at 3 days was significantly less in the experimental group (3.31 ± 2.85 g/L) compared with the control group (5.14 ± 3.43 g/L) (P < 0.001). The duration of gross hematuria, defined by urine with visible light or bright red color (2.73 ± 1.59 days vs. 3.55 ± 2.09 days, P < 0.001), and the incidence of postoperative extravasation (22/143 vs. 38/141, P < 0.05) for patients in the experimental group (implanted with 14-Fr silicone tubing with balloon) were significantly lower compared with the control group. Use of indwelling nephrostomy tubes with balloon after percutaneous nephrolithotomy can reduce blood loss. Further consideration for more widespread adoption of this type of tubing to limit perioperative bleeding complications is warranted. © 2015 The Japanese Urological Association.
ERIC Educational Resources Information Center
Jee-Yon Lee; Hee-Soo Yoo; Jong Sook Park; Kwang-Jin Hwang; Jin Seog Kim
2005-01-01
The spontaneous mixing of helium and air in a helium-inflated balloon is described in an experiment in which the partial pressure of the gases in the balloon are determined from the mole factions and the total pressure measured in the balloon. The results described provide a model for teaching concepts of partial pressure, chemical potential, and…
SuperHERO: the next generation hard x-ray HEROES telescope
NASA Astrophysics Data System (ADS)
Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Kilaru, Kiranmayee; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tennant, Allyn F.; Weddendorf, Bruce; Wilson, Matthew D.; Wilson-Hodge, Colleen A.
2014-07-01
SuperHERO is a new high-resolution, Long Duration Balloon-capable, hard-x-ray (20-75 keV) focusing telescope for making novel astrophysics and heliophysics observations. The SuperHERO payload, currently in its proposal phase, is being developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center and the Solar Physics Laboratory and the Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently flew from Fort Sumner, NM in September of 2013, and will utilize many of the same features. Significant enhancements to the HEROES payload will be made, including the addition of optics, novel solid-state multi-pixel CdTe detectors, integration of the Wallops Arc-Second Pointer and a significantly lighter gondola suitable for Long Duration Flights.
NASA Astrophysics Data System (ADS)
Lowell, A. W.; Boggs, S. E.; Chiu, C. L.; Kierans, C. A.; Sleator, C.; Tomsick, J. A.; Zoglauer, A. C.; Chang, H.-K.; Tseng, C.-H.; Yang, C.-Y.; Jean, P.; von Ballmoos, P.; Lin, C.-H.; Amman, M.
2017-10-01
A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2-5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) and 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).
ERIC Educational Resources Information Center
Jeskova, Z.; Featonby, D.; Fekova, V.
2012-01-01
Whilst everyone is familiar with the process of blowing up a balloon, few of us have gone further to quantify the actual pressures involved at different stages in the inflation process. This paper seeks to describe experiments to fill some of those gaps and examine some of the apparently anomalous behaviour of connected balloons. (Contains 12…
Clinical application of continent anal plug in bedridden patients with intractable diarrhea.
Kim, J; Shim, M C; Choi, B Y; Ahn, S H; Jang, S H; Shin, H J
2001-08-01
Some patients bedridden from various causes such as stroke or spinal cord injury experience poor control of bowel movement. This causes fecal leakage and diarrhea, increases the risk of perianal excoriation and bed sores, and is a burden on caregivers. To evaluate the efficacy of fecal evacuation and the prevention and treatment of skin complications in intractable diarrhea patients using a new device. A continent anal plug (US Patent No. 5 569 216) comprises an inner balloon surrounded by an outer balloon, both of which are mounted on a silicone tube containing a pair of air passages and an enema fluid inlet. The tube is secured in place in the rectum by the inflatable outer balloon and is designed to drain fecal matter through a thin collapsible hose situated in the anal canal. Thirty-two patients (21 male; median age 61 (range, 28-76) years) were evaluated after fully informed consent. Median duration was 12 (range, 3-37) days. The continent anal plug evacuated efficiently in those patients with loose or watery stools who only required irrigation once daily or not at all. Skin excoriations improved in three to seven days. Minimal leakage was seen around the anus. There was no anorectal mucosal injury noted over 37 days. The continent anal plug is an efficient method of treating patients with loss of bowel control and incontinence because it enables controlled fecal evacuation and helps reduce skin complications without causing anorectal mucosal injury.
Innovative measurement within the atmosphere of Venus.
NASA Astrophysics Data System (ADS)
Ekonomov, Alexey; Linkin, Vyacheslav; Manukin, Anatoly; Makarov, Vladislav; Lipatov, Alexander
The results of Vega project experiments with two balloons flew in the cloud layer of the atmosphere of Venus are analyzed as to the superrotation nature and local dynamic and thermodynamic characteristics of the atmosphere. These balloons in conjunction with measurements of temperature profiles defined by the Fourier spectrometer measurements from the spacecraft Venera 15 allow us to offer a mechanism accelerating the atmosphere to high zonal velocities and supporting these speeds, the atmosphere superrotation in general. Spectral measurements with balloons confirm the possibility of imaging the planet's surface from a height of not more than 55 km. Promising experiments with balloons in the atmosphere of Venus are considered. In particular, we discuss the possibility of measuring the geopotential height, as Venus no seas and oceans to vertical positioning of the temperature profiles. As an innovative research facilities within the atmosphere overpressure balloon with a lifetime longer than 14 Earth days and vertical profile microprobes are considered.
NASA Astrophysics Data System (ADS)
Kislat, Fabian; Abarr, Quin; Beheshtipour, Banafsheh; De Geronimo, Gianluigi; Dowkontt, Paul; Tang, Jason; Krawczynski, Henric
2018-01-01
X-ray polarimetry promises exciting insights into the physics of compact astrophysical objects by providing two observables: the polarization fraction and angle as function of energy. X-Calibur is a balloon-borne hard x-ray scattering polarimeter for the 15- to 60-keV energy range. After the successful test flight in September 2016, the instrument is now being prepared for a long-duration balloon (LDB) flight in December 2018 through January 2019. During the LDB flight, X-Calibur will make detailed measurements of the polarization of Vela X-1 and constrain the polarization of a sample of between 4 and 9 additional sources. We describe the upgraded polarimeter design, including the use of a beryllium scattering element, lower-noise front-end electronics, and an improved fully active CsI(Na) anticoincidence shield, which will significantly increase the instrument sensitivity. We present estimates of the improved polarimeter performance based on simulations and laboratory measurements. We present some of the results from the 2016 flight and show that we solved several problems, which led to a reduced sensitivity during the 2016 flight. We end with a description of the planned Vela X-1 observations, including a Swift/BAT-guided observation strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuno, T
2004-09-03
Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4{pi} sr), the sensitive energy range of the instrument ({approx} 10 MeV to 100 GeV) and abundant components (proton, alpha, e{sup -}, e{sup +}, {mu}{sup -}, {mu}{sup +} and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functionsmore » in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.« less
Mechanical and Tear Properties of Fabric/Film Laminates
NASA Technical Reports Server (NTRS)
Said, Magdi A.
1998-01-01
Films reinforced with woven fabrics are being considered for the development of a material suitable for long duration scientific balloons under a program managed by the National Aeronautics and Space Administration (NASA). Recently developed woven fabrics provide a relatively high strength to weight ratio compared to standard homogenous films. Woven fabrics also have better crack propagation resistance and rip stop capabilities when compared to homogenous lightweight, high strength polymeric films such as polyester and nylon. If joining is required, such as in the case of scientific balloons, woven fabrics have the advantage over polymeric thin films to utilize traditional textile methods as well as other techniques including hot sealing, adhesion, and ultrasonic means. Woven fabrics, however, lack the barrier properties required for helium filled scientific balloons, therefore lamination with homogenous films is required to provide the gas barrier capabilities required in these applications.
In Brief: Observing the Sun from a giant balloon
NASA Astrophysics Data System (ADS)
Showstack, Randy
2007-10-01
A solar telescope, borne by a balloon larger than a Boeing 747, was successfully launched to an altitude of 120,000 feet, the National Center for Atmospheric Research (NCAR) announced on 23 October. NCAR, working with a team of research partners, indicated that the test clears the way for long-duration polar balloon flights beginning in 2009 to capture unprecedented details of the Sun's surface. ``We hope to unlock important mysteries about the Sun's magnetic field structures, which at times can cause electromagnetic storms in our upper atmosphere and may have an impact on Earth's climate,'' said Michael Knölker, director of NCAR's High Altitude Observatory and a principal investigator on the project known as Sunrise. ``This is a very economical way of rising above the atmosphere and capturing images that cannot be captured from Earth.''
Rocha Ferreira, Graziela Santos; de Almeida, Juliano Pinheiro; Landoni, Giovanni; Vincent, Jean Louis; Fominskiy, Evgeny; Gomes Galas, Filomena Regina Barbosa; Gaiotto, Fabio A; Dallan, Luís Oliveira; Franco, Rafael Alves; Lisboa, Luiz Augusto; Palma Dallan, Luis Roberto; Fukushima, Julia Tizue; Rizk, Stephanie Itala; Park, Clarice Lee; Strabelli, Tânia Mara; Gelas Lage, Silvia Helena; Camara, Ligia; Zeferino, Suely; Jardim, Jaquelline; Calvo Arita, Elisandra Cristina Trevisan; Caldas Ribeiro, Juliana; Ayub-Ferreira, Silvia Moreira; Costa Auler, Jose Otavio; Filho, Roberto Kalil; Jatene, Fabio Biscegli; Hajjar, Ludhmila Abrahao
2018-04-30
The aim of this study was to evaluate the efficacy of perioperative intra-aortic balloon pump use in high-risk cardiac surgery patients. A single-center randomized controlled trial and a meta-analysis of randomized controlled trials. Heart Institute of São Paulo University. High-risk patients undergoing elective coronary artery bypass surgery. Patients were randomized to receive preskin incision intra-aortic balloon pump insertion after anesthesia induction versus no intra-aortic balloon pump use. The primary outcome was a composite endpoint of 30-day mortality and major morbidity (cardiogenic shock, stroke, acute renal failure, mediastinitis, prolonged mechanical ventilation, and a need for reoperation). A total of 181 patients (mean [SD] age 65.4 [9.4] yr; 32% female) were randomized. The primary outcome was observed in 43 patients (47.8%) in the intra-aortic balloon pump group and 42 patients (46.2%) in the control group (p = 0.46). The median duration of inotrope use (51 hr [interquartile range, 32-94 hr] vs 39 hr [interquartile range, 25-66 hr]; p = 0.007) and the ICU length of stay (5 d [interquartile range, 3-8 d] vs 4 d [interquartile range, 3-6 d]; p = 0.035) were longer in the intra-aortic balloon pump group than in the control group. A meta-analysis of 11 randomized controlled trials confirmed a lack of survival improvement in high-risk cardiac surgery patients with perioperative intra-aortic balloon pump use. In high-risk patients undergoing cardiac surgery, the perioperative use of an intra-aortic balloon pump did not reduce the occurrence of a composite outcome of 30-day mortality and major complications compared with usual care alone.
Ozone profiles from tethered balloon measurements in an urban plume experiment
NASA Technical Reports Server (NTRS)
Youngbluth, O., Jr.; Storey, R. W.; Clendenin, C. G.; Jones, S.; Leighty, B.
1981-01-01
NASA Langley Research Center used two tethered balloon systems to measure ozone in the general area of Norfolk, Va. The large balloon system which has an altitude range of 1,500 meters was located at Wallops Island, Va., and the smaller balloon which has an altitude range of 900 meters was located at Chesapeake, Va. Each balloon system measured ozone, temperature, humidity, wind speed, and wind direction from ground to its maximum altitude. From these measurements and from the location of the balloon sites, areas of ozone generation and ozone transport may be inferred. The measurements which were taken during August 1979 are discussed as well as the measurement techniques.
Project Aether Aurora: STEM outreach near the arctic circle
NASA Astrophysics Data System (ADS)
Longmier, B. W.; Bering, E. A.
2012-12-01
Project Aether is a program designed to immerse high-school through graduate students to field research in some of the fields of STEM. The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The balloon's location is monitored during its flight by GPS-satellite relay. Most of the science and video data are recorded on SD cards using an Arduino digitizer. The payload is located using the GPS device. The science data are recovered from the payload and shared with the students. In April 2012, Project Aether leaders conducted a field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. Auroral physics experiments that can be done on ultra small balloons (5 cubic meters) include electric field and magnetic fluctuation observations, full spectrum and narrow band optical imaging, GPS monitoring of the total electron content of the ionosphere, x-ray detection and infrared and UV spectroscopy. The actual undergraduate student experiments will be reviewed and some data presented.; Balloon deployment underneath aurora, Fairbanks Alaska, 2012.
First Flight of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment
NASA Technical Reports Server (NTRS)
Case, G.; Ellison, S.; Gould, R.; Granger, D.; Guzik, T. G.; Isbert, J.; Price, B.; Stewart, M.; Wefel, J. P.; Mock, L.;
2001-01-01
The ATILT instrument is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range -10 GeV - 100 TeV. ATIC was launched as a long duration test balloon flight on 12/28/00 local time from McMurdo, Antarctica. The operations preceding and during launch went very smoothly. During the first -20 hr while the instrument remained within line of sight (LOS), a full system check out was conducted, the experiment was operated in several test configurations, and all major tuning was completed. Preliminary analysis of the science data indicates that the overall detector system is functioning as expected. With our fully functioning analysis software we were able to monitor the data in nearly real time. Each event was reconstructed event-by-event to confirm the detector performance. The shower profiles indicate that the shower maximum location is deeper in the calorimeter for higher energy events, as expected. The energy spectra of protons, Helium nuclei, and "all particles" appear to follow power laws. Both the Si matrix and top scintillator layer of the charge module show clear charge separation for p and He. As the statistics increase, heavy nuclei charge separation will be evaluated. We will present preliminary results of the LOS data, as well as other data that will be available from the flight-data hard disk,
NASA Technical Reports Server (NTRS)
Shibasaki, K.; Iwagami, N.; Ogawa, T.
1985-01-01
As a part of the Japanese activities of MAP in the Antarctica, balloon-borne measurements of the stratospheric NO2 profile were planned and carried out by the JARE 23rd and 24th wintering parties. Few results have been reported so far as the stratospheric NO2 profile at high latitude. There were no reported balloon measurements carried out in the Southern Hemisphere. Profiles are presented for the first balloon-borne measurement of the stratospheric NO2 in the Antarctica. Three balloons named JA21, JA25 and JA26 were launched from Syowa Station (69 deg S, 35.6 deg E) using 5000 cu. cm plastic balloons. JA21 balloon was launched on November 24, 1982, and JA25 and JA26 balloons on November 12 and 20, 1983, respectively.
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Downing, R. G.; Sidwell, L. B.
1985-01-01
The Solar Cell Calibration Facility (SCCF) experiment was designed and built to evaluate the effect of the Earth's upper atmosphere on the calibration of solar cell standards. During execution of the experiment, a collection of carefully selected solar cells was flown on the shuttle, and reflown on a high-altitude balloon, then their outputs were compared. After correction to standard temperature and intensity values of 28 C and an Earth-Sun distance of 1 AU, the solar cell outputs during the two flights were found to be identical. The conclusion is therefore that the high-altitude balloon flights are very good vehicles for calibrating solar cells for use as space flight reference standards.
Some special sub-systems for stratospheric balloon flights in India
NASA Astrophysics Data System (ADS)
Damle, S. V.; Gokhale, G. S.; Kundapurkar, R. U.
During last few years several new sub-systems for balloon were developed and are being regularly used in the balloon flights. Some of these sub-systems are i) positive monitor for magnetic ballast release using an opto-electronic device ii) one-way pressure switch to terminate flight for runaway balloon iii) in-flight payload reel down system for atmospheric science experiment. The design, usage and performance of these and other sub-systems will be presented.
Location and data collection for long stratospheric balloon flights
NASA Astrophysics Data System (ADS)
Malaterre, P.
Stratospheric balloons capable of taking a 30 kg scientific payload to an altitude of 22 to 30 km for 1 month or more were developed. In-flight experiments were used to qualify the designs of a pumpkin shaped superpressure balloon and an infrared hot air balloon. Tracking of the flights (location and transmission of the parameters measured on board) was achieved using a telemetry gondola including an ARGOS beacon adapted for operation in the low temperatures encountered.
First Images from HERO: A Hard-X-Ray Focusing Telescope
NASA Technical Reports Server (NTRS)
Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Benson, Carl M.; Dietz, Kurtis L.; Elsner, Ronald F.; Engelhaupt, Darell E.; Ghosh, Kajal K.; Kolodziejczak, Jeffery J.; ODell, Stephen L.;
2001-01-01
We are developing a balloon-borne hard-x-ray telescope that utilizes grazing incidence optics. Termed HERO, for High-Energy Replicated Optics, the instrument will provide unprecented sensitivity in the hard-x-ray region and will achieve milliCrab-level sensitivity in a typical 3-hour balloon-flight observation and 50 microCrab sensitivity on ultra-long-duration flights. A recent proof-of-concept flight, featuring a small number of mirror shells captured the first focused hard-x-ray images of galactic x-ray sources. Full details of the payload, its expected future performance and its recent measurements are provided.
Stenting for curved lesions using a novel curved balloon: Preliminary experimental study.
Tomita, Hideshi; Higaki, Takashi; Kobayashi, Toshiki; Fujii, Takanari; Fujimoto, Kazuto
2015-08-01
Stenting may be a compelling approach to dilating curved lesions in congenital heart diseases. However, balloon-expandable stents, which are commonly used for congenital heart diseases, are usually deployed in a straight orientation. In this study, we evaluated the effect of stenting with a novel curved balloon considered to provide better conformability to the curved-angled lesion. In vitro experiments: A Palmaz Genesis(®) stent (Johnson & Johnson, Cordis Co, Bridgewater, NJ, USA) mounted on the Goku(®) curve (Tokai Medical Co. Nagoya, Japan) was dilated in vitro to observe directly the behavior of the stent and balloon assembly during expansion. Animal experiment: A short Express(®) Vascular SD (Boston Scientific Co, Marlborough, MA, USA) stent and a long Express(®) Vascular LD stent (Boston Scientific) mounted on the curved balloon were deployed in the curved vessel of a pig to observe the effect of stenting in vivo. In vitro experiments: Although the stent was dilated in a curved fashion, stent and balloon assembly also rotated conjointly during expansion of its curved portion. In the primary stenting of the short stent, the stent was dilated with rotation of the curved portion. The excised stent conformed to the curved vessel. As the long stent could not be negotiated across the mid-portion with the balloon in expansion when it started curving, the mid-portion of the stent failed to expand fully. Furthermore, the balloon, which became entangled with the stent strut, could not be retrieved even after complete deflation. This novel curved balloon catheter might be used for implantation of the short stent in a curved lesion; however, it should not be used for primary stenting of the long stent. Post-dilation to conform the stent to the angled vessel would be safer than primary stenting irrespective of stent length. Copyright © 2014 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
Clinical experience with the Monorail balloon catheter for coronary angioplasty.
Finci, L; Meier, B; Roy, P; Steffenino, G; Rutishauser, W
1988-01-01
The Monorail balloon catheter is distinctly different from other current balloon catheters: the guidewire passes through the balloon itself, exits the catheter proximal to the balloon, and runs alongside its small shaft (3 French) through the guiding catheter. Monorail coronary angioplasty was attempted in 61 patients on 73 lesions with balloons from 2.0 to 3.7 mm. Angiographic success was obtained in 66 lesions (90%). For 15 lesions, balloon exchanges were needed. In three lesions, the Monorail balloon failed to cross the lesion, while a standard balloon succeeded; two lesions could not be crossed with any balloon. Vessel occlusion occurred in four patients: two had emergency surgery without infarct (one died suddenly 4 days later and one had a stroke 1 day later), one was recanalized with a standard balloon, and one had a myocardial infarct. Continuous infusion of urokinase was used until patient 3 in whom problems with the delivery system led to cardiocerebral air embolization (with complete recovery). No thrombotic complications were observed in the subsequent 58 patients with only a bolus of 10,000 U of heparin. The Monorail balloon facilitates contrast injections and balloon exchanges but appears more difficult to pass through tight lesions. Omission of the previously recommended infusion with a thrombolytic agent proved safe.
An analysis of the deployment of a pumpkin balloon on mars
NASA Astrophysics Data System (ADS)
Rand, J.; Phillips, M.
The design of large superpressure balloons has received significant attention in recent years due to the successful demonstration of various enabling technologies and materials. Of particular note is the "pumpkin" shaped balloon concept, which allows the stress in the envelope to be limited by the surface geometry. Unlike a sphere, which produces stress resultants determined by the volume of the system, the pumpkin utilizes a system of meridional tendons to react the loading in one direction, and form a number of lobes, which limit the stress in the circumferential direction. The application of this technology to very large systems is currently being demonstrated by NASA's Ultra Long Duration Balloon (ULDB) Program. However, this type of balloon has certain features that may be exploited to produce a system far more robust than a comparable sphere during deployment, inflation, and operation for long periods of time. When this concept is applied to a system designed to carry two kilograms in the atmosphere of Mars, the resulting balloon is small enough to alter the construction techniques and produce an envelope which is free of tucks and folds which may cause uncontrolled stress concentrations. A technique has been demonstrated where high strength tendons may be pretensioned prior to installation along the centerline of each gore. Since this position is the shortest distance between the apex and nadir of the balloon, the tendons will automatically resist the forces caused by deployment and inflation and thereby protect the thin film gas barrier from damage. A suitable balloon has been designed for this type of mission using five-micron Mylar Type C film for the gas barrier and P O braided cables for the meridionalB load carrying members. The deployment of this balloon is assumed to occur while falling on a decelerator suitably designed for the Mars atmosphere. The inflation is accomplished by a ten-kilogram system suspended at the nadir of the balloon. As the system falls toward the surface of the planet, helium gas is transferred to the balloon, forming a partially inflated system very similar to an ascending zero pressure balloon. This analysis incorporates the flow of the planetary gas around the inflating balloon, altering the pressure distribution and shape. As a result, stresses are seen to increase beyond the design margin of safety, requiring the balloon to be redesigned. In addition, several scale models of this balloon were dynamically deployed in the laboratory to demonstrate that the deployment forces are indeed carried by the tendons
Low Cost Balloon programme of Indian Centre for Space Physics
NASA Astrophysics Data System (ADS)
Chakrabarti, Sandip Kumar
2016-07-01
Indian Centre for Space Physics has launched 89 Missions to near space using single or multiple weather balloons or very light plastic balloons. Basic goal was to capitalize miniaturization of equipments in modern ages. Our typical payload of less than 4kg weight consists of GPS, video camera, cosmic ray detectors, Attitude measurement unit, sunsensor and most importantly a 50-100sqcm X-ray/Gamma-ray detector (usually a scintillator type). The main purpose of the latter is to study spectra of secondary cosmic ray spectra (till our ceiling altitude of 36-42km) over the years and their seasonal variation or variation with solar cycle. We also study solar X-ray spectra, especially of solar flares. We have detected a Gamma Ray Burst (GRB) and pulsars. Our observation of black hole candidates did not yield satisfactory result yet mainly because of poor collimation (~ 10 deg x 10 deg) by lead collimator which introduces strong background also. Our effort with multiple balloon flights enabled us to have long duration flights. We believe that our procedure is very futuristic and yet at an affordable cost.
Crest - A Balloon-borne Instrument To Measure Cosmic-ray Electrons Above TeV Energies.
NASA Astrophysics Data System (ADS)
Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Geske, M.; Müller, D.; Musser, J.; Nutter, S.; Park, N.; Tarlé, G.; Wakely, S.; Yagi, A.
2009-01-01
The observation of high energy (E > 1 TeV) electrons in the cosmic radiation provides important information on the distribution and energetics of local cosmic-ray sources. Galactic cosmic-ray electrons are thought to be shock accelerated in supernova remnants as evident from observations of non-thermal X-rays and TeV gamma rays. Their locally observed energy spectrum above 1 TeV is expected to reflect the distribution and abundance of nearby acceleration sites. However, the rates at these energies are low and the direct detection would require unfeasibly large balloons or satellite born detectors. CREST, a balloon-borne detector array of 1024 BaF2 crystals, overcomes this hurdle: it will measure the intensity and spectrum of multi-TeV electrons by detecting synchrotron photons emitted from electrons passing through the earth's magnetic field. Thus CREST's acceptance is several times its geometric area providing sensitivity up to about 50 TeV. Following an engineering flight in spring of 2009, CREST will be flown in a circumpolar orbit on an upcoming Antarctic long-duration balloon flight. This work is supported by NASA and CSBF.
NASA Astrophysics Data System (ADS)
Bénech, Bruno; Ezcurra, Agustin; Lothon, Marie; Saïd, Frédérique; Campistron, Bernard; Lohou, Fabienne; Durand, Pierre
ESCOMPTE programme aims at studying the emissions of primary pollutants in industrial and urban areas, their transport, diffusion and transformation in the atmosphere. This experiment, carried out in southeast France, can be used to validate and to improve meteorological and chemical mesoscale models. One major goal of this experiment was to follow the pollutant plumes, and to investigate its thermodynamic and physico-chemical time evolution. This was realized by means of constant volume balloons, located by global position satellite (GPS) and equipped with thermodynamic and ozone sensors, flying at constant density levels. During the two ESCOMPTE campaigns that took place in June and July 2000 and 2001, 40 balloons were launched, 17 of them equipped with ozone sensors during the day from 0800 to 1800 UTC. Balloons' altitudes flight levels ranged between 400 and 1200 m altitude with Mistral (northerly synoptic flow) and Sea Breeze (southerly breeze) conditions. The atmospheric boundary layer (ABL) topography of the experimental domain is complex and varies strongly from day to day. Its depth presents a large gradient from the sea coast to the north part of the ESCOMPTE domain, and also more complex variability within the domain. The balloons' trajectories describe the evolution of the pollutant plume emitted from the industrial area of Fos-Berre or from the Marseille urban area. Constant volume balloons give a good description of the trajectories of these two plumes. The balloons, which fly at an isopicnic level, cross different atmospheric layers chiefly depending on the ABL height in relation with the constant volume balloons flight level. Thus, each balloon flight is decomposed into different segments that correspond to the same atmospheric layer. In each segment, the ozone content variation is analyzed in relation to other thermodynamical parameters measured by the balloon and mainly to the vapor mixing ratio content. During ESCOMPTE campaign, the mean linear rate of chemical net ozone production at the top of the atmospheric boundary layer was found to be around 6 ppb h -1.
NASA Astrophysics Data System (ADS)
Buduru, Suneel Kumar
2016-07-01
The Balloon Facility of Tata Institute of Fundamental Research (TIFR-BF) is a unique center of expertise working throughout the year to design, fabricate and launch scientific balloons mainly for space astronomy, atmospheric science and engineering experiments. Recently TIFR-BF extended its support to new user scientists for conducting balloon launches for biological and middle atmospheric sciences. For the first time two balloon launches conducted for sending live lab rats to upper stratosphere and provided launch support for different balloon campaigns such as Tropical Tropopause Dynamics (TTD) to study water vapour content in upper tropospheric and lower stratospheric regions over Hyderabad and the other balloon campaign to study the Asian Tropopause Aerosol Layer (BATAL) during the Indian summer monsoon season. BATAL is the first campaign to conduct balloon launches during active (South-West) monsoon season using zero pressure balloons of different volumes. TIFR-BF also provided zero pressure and sounding balloon support to various research institutes and organizations in India and for several international space projects. In this paper, we present details on our increased capability of balloon fabrication for carrying heavier payloads, development of high strength balloon load tapes and recent developments of flight control and safety systems. A summary of the various flights conducted in two years will be presented along with the future ballooning plans.
Does water-perfused catheter overdiagnose anismus compared to balloon probe?
Savoye, G; Leroi, A M; Bertot-Sassigneux, P; Touchais, J Y; Devroede, G; Denis, P
2002-12-01
The purpose of this study was to compare the manometric assessment of straining effort as if to defecate and rectoanal inhibitory reflex obtained with a rectosphincteric balloon probe and with a water-perfused catheter in the same subject. Twelve healthy volunteers underwent two manometric assessments of anal sphincter function and electromyographic (EMG) surface recordings. one with a rectosphincteric balloon and one with a water-perfused catheter, 7 days apart in random order. Increased EMG activity in the external anal sphincter in the midst of the rectoanal inhibitory reflex (P < 0.001) and during straining for defecation (P < 0.001) was more frequently observed with the perfused system than with the balloon probe. There was a discrepancy between the EMG activity of the external anal sphincter and the anal pressures during straining recorded with the perfused system. Duration of the reflex elicited by rectal distension with 10 and 20 ml of air was significantly greater with the rectosphincteric balloon than with the perfused catheter (P = 0.02 and P = 0.05, respectively). Water instilled in the anal canal by the perfused system induces artifacts in EMG recording and active anal contractions. These artifacts and induced contractions could lead to an erroneous diagnosis of anismus, particularly if pelvic floor EMG is only taken into account for the diagnosis of anismus.
Gastro-oesophageal reflux in mechanically ventilated patients: effects of an oesophageal balloon.
Orozco-Levi, M; Félez, M; Martínez-Miralles, E; Solsona, J F; Blanco, M L; Broquetas, J M; Torres, A
2003-08-01
Gastro-oesophageal reflux (GOR) and bronchoaspiration of gastric content are risk factors linked with ventilator-associated pneumonia. This study was aimed at evaluating the effect of a nasogastric tube (NGT) incorporating a low-pressure oesophageal balloon on GOR and bronchoaspiration in patients receiving mechanical ventilation. Fourteen patients were studied in a semi-recumbent position for 2 consecutive days. Inflation or deflation of the oesophageal balloon was randomised. Samples of blood, gastric content, and oropharyngeal and bronchial secretions were taken every 2 h over a period of 8 h. A radioactively labelled nutritional solution was continuously administered through the NGT. The magnitude of both the GOR and bronchoaspiration was measured by radioactivity counting of oropharyngeal and bronchial secretion samples, respectively. Inflation of the oesophageal balloon resulted in a significant decrease of both GOR and bronchoaspiration of gastric content. This protective effect was statistically significant from 4 h following inflation throughout the duration of the study. This study demonstrates that an inflated oesophageal balloon delays and decreases gastro-oesophageal and bronchial aspiration of gastric content in patients carrying a nasogastric tube and receiving enteral nutrition during mechanical ventilation. Although the method was found to be safe when applied for 8 h, longer times should be considered with caution.
Cerebral intolerance during flow arrested carotid angioplasty.
St Louis, Myron; Park, Brian D; Dahn, Michael; Bozeman, Patricia
2012-01-01
The use of flow arrest as a means of providing cerebral protection during carotid angioplasty offers the advantages of improved efficiency of debris removal and the ability to provide protection under unfavorable (tortuous) anatomic circumstances. However, in contrast to the filtration methods of cerebral protection, this modality requires complete interruption of antegrade carotid artery flow during balloon angioplasty and stent deployment. We report our experience with 9 patients undergoing carotid angioplasty with the Mo.Ma device, which utilizes common and external carotid artery balloon occlusion during the angioplasty procedure. We assessed the clinical outcomes and intraprocedural hemodynamic data. The average duration of carotid occlusion was 8.3 minutes. Of the 9 patients, 2 patients (22%) experienced cerebral intolerance. No stroke occurred in this patient cohort. There appeared to be a poor relationship between procedure intolerance and the presence of significant contralateral stenosis or low carotid back pressure. Furthermore, the incidence of postangioplasty hypotension was not clearly related to cerebral intolerance. Carotid angioplasty with stenting can be safely conducted with flow arrest as an alternative to filter-type cerebral protection devices. However, because cerebral intolerance is not an infrequent occurrence with this approach, clinicians must be cognizant of management strategies for transient cerebral intolerance.
Ultra-Heavy Galactic Cosmic Ray Abundances from the SuperTIGER Instrument
NASA Astrophysics Data System (ADS)
Murphy, Ryan; Binns, W. R.; Bose, R. G.; Dowkontt, P. F.; Israel, M. H.; Rauch, B. F.; Ward, J. E.; Brandt, T. J.; de Nolfo, G. A.; Hams, T.; Link, J. T.; Mitchell, J. W.; Sakai, K.; Sasaki, M.; Labrador, A. W.; Mewaldt, R. A.; Stone, E. C.; Waddington, C. J.; Wiedenbeck, M. E.
2015-04-01
The SuperTIGER (Trans-Iron Galactic Element Recorder) experiment was launched on a long-duration balloon flight from Williams Field, Antarctica, on December 8, 2012. SuperTIGER flew for a total of 55 days at a mean atmospheric depth of 4.4 g/cm2. The instrument measured the abundances of galactic cosmic rays in the charge (Z) range Z = 10 to Z = 40 with high statistical precision and excellent charge resolution, displaying well-resolved individual-element peaks at every charge up to and including Z = 40. We will describe the instrument, data analysis techniques used, balloon flight, and payload recovery. The data that will be presented contain more than 600 events in the charge range from Z = 30 to Z = 40, with charge resolution at iron of <0.18 cu. Our results confirm with improved statistics the earlier results from TIGER supporting a model of cosmic-ray origin in OB associations, with preferential acceleration of refractory elements over volatile elements. This research was supported by NASA under grants NNX09AC17G, NNX14AB25G, the Peggy and Steve Fossett Foundation, and the McDonnell Center for the Space Sciences at Washington University.
Bruti, Gianpaolo; Kolyva, Christina; Pepper, John R.
2015-01-01
Abstract The intra‐aortic balloon pump (IABP) is a ventricular assist device that is used with a broad range of pre‐, intra‐, and postoperative patients undergoing cardiac surgery. Although the clinical efficacy of the IABP is well documented, the question of reduced efficacy when patients are nursed in the semi‐recumbent position remains outstanding. The aim of the present work is therefore to investigate the underlying mechanics responsible for the loss of IABP performance when operated at an angle to the horizontal. Simultaneous recordings of balloon wall movement, providing an estimate of its diameter (D), and fluid pressure were taken at three sites along the intra‐aortic balloon (IAB) at 0 and 45°. Flow rate, used for the calculation of displaced volume, was also recorded distal to the tip of the balloon. An in vitro experimental setup was used, featuring physiological impedances on either side of the IAB ends. IAB inflation at an angle of 45° showed that D increases at the tip of the IAB first, presenting a resistance to the flow displaced away from the tip of the balloon. The duration of inflation decreased by 15.5%, the inflation pressure pulse decreased by 9.6%, and volume decreased by 2.5%. Similarly, changing the position of the balloon from 0 to 45°, the balloon deflation became slower by 35%, deflation pressure pulse decreased by 14.7%, and volume suctioned was decreased by 15.2%. IAB wall movement showed that operating at 45° results in slower deflation compared with 0°. Slow wall movement, and changes in inflation and deflation onsets, result in a decreased volume displacement and pressure pulse generation. Operating the balloon at an angle to the horizontal, which is the preferred nursing position in intensive care units, results in reduced IAB inflation and deflation performance, possibly compromising its clinical benefits. PMID:25959284
Results from the IMP-J violet solar cell experiment and violet cell balloon flights
NASA Technical Reports Server (NTRS)
Gaddy, E. M.
1976-01-01
The Interplanetary Monitoring Platform-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard-particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.
Results from the IMP-J violet solar cell experiment and violet cell balloon flights
NASA Technical Reports Server (NTRS)
Gaddy, E. M.
1976-01-01
The IMP-J violet solar cell experiment was flown in an orbit with mild thermal cycling and low hard particle radiation. The results of the experiment show that violet cells degrade at about the same rate as conventional cells in such an orbit. Balloon flight measurements show that violet solar cells produce approximately 20% more power than conventional cells.
Gradient magnetometer system balloons
NASA Astrophysics Data System (ADS)
Korepanov, Valery; Tsvetkov, Yury
2005-08-01
Earth's magnetic field study still remains one of the leading edges of experimental geophysics. Thus study is executed on the Earth surface, including ocean bottom, and on satellite heights using component, mostly flux-gate magnetometers. But balloon experiments with component magnetometers are very seldom, first of all because of great complexity of data interpretation. This niche still waits for new experimental ideology, which will allow to get the measurements results with high accuracy, especially in gradient mode. The great importance of precise balloon-borne component magnetic field gradient study is obvious. Its technical realization is based both on the available at the marked high-precision non-magnetic tiltmeters and on recent achievements of flux-gate magnetometry. The scientific goals of balloon-borne magnetic gradiometric experiment are discussed and its practical realization is proposed.
On the feasibility of closed-loop control of intra-aortic balloon pumping
NASA Technical Reports Server (NTRS)
Clark, J. W., Jr.; Bourland, H. M.; Kane, G. R.
1973-01-01
A closed-loop control scheme for the control of intra-aortic balloon pumping has been developed and tested in dog experiments. A performance index reflecting the general objectives of balloon-assist pumping is developed and a modified steepest ascent control algorithm is utilized for the selection of a proper operating point for the balloon during its pumping cycle. This paper attempts to indicate the feasibility of closed-loop control of balloon pumping, and particularly its flexibility in achieving both diastolic augmentation of mean aortic pressure and control of the level of end-diastolic pressure (EDP) an important factor in reducing heart work.
Global electrodynamics from superpressure balloons
NASA Technical Reports Server (NTRS)
Holzworth, R. H.; Hu, H.
1995-01-01
Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.
The FIREBall fiber-fed UV spectrograph
NASA Astrophysics Data System (ADS)
Tuttle, Sarah E.; Schiminovich, David; Milliard, Bruno; Grange, Robert; Martin, D. Christopher; Rahman, Shahinur; Deharveng, Jean-Michel; McLean, Ryan; Tajiri, Gordon; Matuszewski, M.
2008-07-01
FIREBall (Faint Intergalactic Redshifted Emission Balloon) had a successful first engineering flight in July of 2007 from Palestine, Texas. Here we detail the design and construction of the spectrograph. FIREBall consists of a 1m telescope coupled to a fiber-fed ultraviolet spectrograph flown on a short duration balloon. The spectrograph is designed to map hydrogen and metal line emission from the intergalactic medium at several redshifts below z=1, exploiting a small window in atmospheric oxygen absorption at balloon altitudes. The instrument is a wide-field IFU fed by almost 400 fibers. The Offner mount spectrograph is designed to be sensitive in the 195-215nm window accessible at our altitudes of 35-40km. We are able to observe Lyα, as well as OVI and CIV doublets, from 0.3 < z < 0.9. Observations of UV bright B stars and background measurements allow characterization of throughput for the entire system and will inform future flights.
Progress and recent developments in the GAINS program
NASA Astrophysics Data System (ADS)
Girz, C. M. I. R.:; MacDonald, A. E.; Caracena, F.; Collander, R. S.; Jamison, B. D.; Anderson, R. L.; Latsch, D.; Lachenmeier, T.; Moody, R. A.; Mares, S.; Cooper, J.; Ganoe, G.; Katzberg, S.; Johnson, T.; Russ, B.
2001-08-01
The GAINS (Global Air-ocean IN-situ System) network of long-duration, high-altitude vehicles is proposed as a means to provide critically needed in-situ observations worldwide. This need is increasingly apparent, for example, in the Arctic where there is growing concern around the shrinking of the ice cap and sea ice extent with concomitant decreases in habitat for animal and plant species. In the mid-latitudes, the sustainability of sufficient soil moisture in grain producing regions is questionable under several climate change scenarios. Preparatory steps using smaller balloons and prototype payloads have been taken toward demonstrating the GAINS balloon concept. The balloon envelope recovery system (BERS) has been tested and radio frequency interference, compatibility and distance checks of the prototype command and communication systems were performed. Electronic and mechanical systems have been integrated in preparation for a 48-h flight of an 18-m diameter prototype.
Time-dependent strains and stresses in a pumpkin balloon
NASA Technical Reports Server (NTRS)
Gerngross, T.; Xu, Y.; Pellegrino, S.
2006-01-01
This paper presents a study of pumpkin-shaped superpressure balloons, consisting of gores made from a thin polymeric film attached to high stiffness, meridional tendons. This type of design is being used for the NASA ULDB balloons. The gore film shows considerable time-dependent stress relaxation, whereas the behaviour of the tendons is essentially time-independent. Upon inflation and pressurization, the "instantaneous", i.e. linear-elastic strain and stress distribution in the film show significantly higher values in the meridional direction. However, over time, and due to the biaxial visco-elastic stress relaxation of the the material, the hoop strains increase and the meridional stresses decrease, whereas the remaining strain and stress components remain substantially unchanged. These results are important for a correct assessment of the structural integrity of a pumpkin balloon in a long-duration mission, both in terms of the material performance and the overall stability of the shape of the balloon. An experimental investigation of the time dependence of the biaxial strain distribution in the film of a 4 m diameter, 48 gore pumpkin balloon is presented. The inflated shape of selected gores has been measured using photogrammetry and the time variation in strain components at some particular points of these gores has been measured under constant pressure and temperature. The results show good correlation with a numerical study, using the ABAQUS finite-element package, that includes a widely used model of the visco-elastic response of the gore material:
Overview of the Scientific Balloon Activity in Sweden
NASA Astrophysics Data System (ADS)
Abrahamsson, Mattias; Kemi, Stig; Lockowandt, Christian; Andersson, Kent
SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from ESC since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times are very beneficial for astronomical payloads, such as telescopes that need long observation times. In 2013 two such payloads were flown, the first called SUNRISE was a German/US solar telescope, and the other called PoGOLite with a Swedish gamma-ray telescope. In 14 days PoGOLite, which had permission to fly over Russia, made an almost complete circumpolar flight. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. University students from all over Europe are involved in flights from Esrange under a Swedish/German programme called BEXUS. Two stratospheric balloons are flown with student payloads yearly, with the goal to introduce students in ballooning. Over the next couple of years the plan is to make a re-flight of the PoGOLite payload, fly two Japanese balloon payloads for planetary science missions, fly four student balloons, three balloons for technical studies of re-entry vehicles, and a balloon with a payload studying aerodynamic behaviour of a falling body.
Near-Space Science: A Ballooning Project to Engage Students with Space beyond the Big Screen
ERIC Educational Resources Information Center
Hike, Nina; Beck-Winchatz, Bernhard
2015-01-01
Many students probably know something about space from playing computer games or watching movies and TV shows. Teachers can expose them to the real thing by launching their experiments into near space on a weather balloon. This article describes how to use high-altitude ballooning (HAB) as a culminating project to a chemistry unit on experimental…
An overview of the Soviet Vega balloon experiment and studies of the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Sagdeev, R. Z.
1986-01-01
An overview of the VEGA probe to Venus is given, including a detailed examination of the balloon experiment to study the atmosphere of Venus. The areas of study include the ground network, the global network of radiotelescopes, meteorological measurements, the thermal structure of the Venus atmosphere in the middle cloud layer, atmospheric dynamics, and other results of the VEGA 1 and 2 experiments.
MASA's Ultra-Long Duration Balloon Project - Teaching an Old Dog New Tricks
NASA Technical Reports Server (NTRS)
Smith, I.; Cutts, J.
1999-01-01
The leviathan silently slides through the upper atmosphere of the blue planet, its eye steadily staring into the cold, dark recesses of deep space. Periodically the eye looks at different points in the blackness while processing the information it sees.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowell, A. W.; Boggs, S. E; Chiu, C. L.
2017-10-20
A long duration gamma-ray burst, GRB 160530A, was detected by the Compton Spectrometer and Imager (COSI) during the 2016 COSI Super Pressure Balloon campaign. As a Compton telescope, COSI is inherently sensitive to the polarization of gamma-ray sources in the energy range 0.2–5.0 MeV. We measured the polarization of GRB 160530A using (1) a standard method (SM) based on fitting the distribution of azimuthal scattering angles with a modulation curve and (2) an unbinned, maximum likelihood method (MLM). In both cases, the measured polarization level was below the 99% confidence minimum detectable polarization levels of 72.3% ± 0.8% (SM) andmore » 57.5% ± 0.8% (MLM). Therefore, COSI did not detect polarized gamma-ray emission from this burst. Our most constraining 90% confidence upper limit on the polarization level was 46% (MLM).« less
ERIC Educational Resources Information Center
Helseth, Lars Egil
2014-01-01
I describe a simple and fascinating experiment wherein helium leaks out of a rubber balloon, thereby causing it to descend. An estimate of the volumetric leakage rate is made by measuring its rate of descent.
The Balloon-borne Large Aperture Submillimeter Telescope: BLAST
NASA Astrophysics Data System (ADS)
Truch, Matthew D. P.; Ade, P. A. R.; Bock, J. J.; Chapin, E. L.; Chung, J.; Devlin, M. J.; Dicker, S.; Griffin, M.; Gundersen, J. O.; Halpern, M.; Hargrave, P. C.; Hughes, D. H.; Klein, J.; MacTavish, C. J.; Marsden, G.; Martin, P. G.; Martin, T. G.; Mauskopf, P.; Netterfield, C. B.; Olmi, L.; Pascale, E.; Patanchon, G.; Rex, M.; Scott, D.; Semisch, C.; Thomas, N. E.; Tucker, C.; Tucker, G. S.; Viero, M. P.; Wiebe, D. V.
2009-01-01
The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) is a suborbital surveying experiment designed to study the evolutionary history and processes of star formation in local galaxies (including the Milky Way) and galaxies at cosmological distances. The BLAST continuum camera, which consists of 270 detectors distributed between three arrays, observes simultaneously in broadband (30%) spectral windows at 250, 350, and 500 microns. The optical design is based on a 2 m diameter telescope, providing a diffraction-limited resolution of 30" at 250 microns. The gondola pointing system enables raster mapping of arbitrary geometry, with a repeatable positional accuracy of 30"; postflight pointing reconstruction to <5" rms is achieved. The onboard telescope control software permits autonomous execution of a preselected set of maps, with the option of manual override. On this poster, we describe the primary characteristics and measured in-flight performance of BLAST. BLAST performed a test flight in 2003 and has since made two scientifically productive long-duration balloon flights: a 100 hour flight from ESRANGE (Kiruna), Sweden to Victoria Island, northern Canada in 2005 June; and a 250 hour, circumpolar flight from McMurdo Station, Antarctica in 2006 December. The BLAST collaboration acknowledges the support of NASA through grants NAG5-12785, NAG5-13301, and NNGO-6GI11G, the Canadian Space Agency (CSA), the Science and Technology Facilities Council (STFC), Canada's Natural Sciences and Engineering Research Council (NSERC), the Canada Foundation for Innovation, the Ontario Innovation Trust, the Puerto Rico Space Grant Consortium, the Fondo Institucional para la Investigacion of the University of Puerto Rico, and the National Science Foundation Office of Polar Programs.
Second-generation endometrial ablation technologies: the hot liquid balloons.
Vilos, George A; Edris, Fawaz
2007-12-01
Hysteroscopic endometrial ablation (HEA) was introduced in the 1980s to treat menorrhagia. Its use required additional training, surgical expertise and specialized equipment to minimize emergent complications such as uterine perforations, thermal injuries and excessive fluid absorption. To overcome these difficulties and concerns, thermal balloon endometrial ablation (TBEA) was introduced in the 1990s. Four hot liquid balloons have been introduced into clinical practice. All systems consist of a catheter (4-10mm diameter), a silicone balloon and a control unit. Liquids used to inflate the balloons include internally heated dextrose in water (ThermaChoice, 87 degrees C), and externally heated glycine (Cavaterm, 78 degrees C), saline (Menotreat, 85 degrees ) and glycerine (Thermablate, 173 degrees C). All balloons require pressurization from 160 to 240 mmHg for treatment cycles of 2 to 10 minutes. Prior to TBEA, preoperative endometrial thinning, including suction curettage, is optional. Several RCTs and cohort studies indicate that the advantages of TBEA include portability, ease of use and short learning curve. In addition, small diameter catheters requiring minimal cervical dilatation (5-7 mm) and short duration of treatment cycles (2-8 min) allow treatment under minimal analgesia/anesthesia requirements in a clinic setting. Following TBEA serious adverse events, including thermal injuries to viscera have been experienced. To minimize such injuries some surgeons advocate the use of routine post-dilatation hysteroscopy and/or ultrasonography to confirm correct intrauterine placement of the balloon prior to initiating the treatment cycle. After 10 years of clinical practice, TBEA is thought to be the preferred first-line surgical treatment of menorrhagia in appropriately selected candidates. Economic modeling also suggested that TBEA may be more cost-effective than HEA.
The Vega balloons - A tool for studying atmosphere dynamics on Venus
NASA Technical Reports Server (NTRS)
Kremnev, R. S.; Selivanov, A. S.; Linkin, V. M.; Lipatov, A. N.; Tarnoruder, I. IA.; Puchkov, V. I.; Kustodiev, V. D.; Shurupov, A. A.; Ragent, B.; Preston, R. A.
1986-01-01
The Vega balloon experiment, designed to measure the dynamics of the Venus atmosphere, comprised the balloons themselves, their gondolas with on-board sensors and radio transmitters, and the radio telescope network on the earth. The structures and the physical parameters of the balloon probe are described, together with the instruments on the gondola, designed for the measurements of the atmospheric pressure, temperature, and vertical wind flows, and illumination, as well as possible flashes of lightning. Consideration is also given to the formatting of the information flow for the individual parameters measured.
[A balloon probe for the treatment of recurrent bloat in calves and young cattle].
Doll, K
1989-01-01
For the treatment of recurrent bloat a soft-rubber balloon tube which is inserted through the nose into the rumen and can stay there for several days was developed. The inflated balloon ensures a floating of the tip of the tube in the dorsal gas cap above the rumen contents. The tube can also be used as a prophylactic measure to avoid excessive ruminal gas accumulation in recumbent patients during surgery. This report describes the experiences with this balloon tube gathered in 23 clinical patients.
Prospects for infrasound bolide detections from balloon-borne platforms
NASA Astrophysics Data System (ADS)
Young, Eliot; Bowman, Daniel; Arrowsmith, Stephen; Boslough, Marc; Klein, Viliam; Ballard, Courtney; Lees, Jonathan
2017-04-01
We report on an experiment to assess whether balloon-borne instruments can improve sensitivities to bolides exploding in the Earth's atmosphere (essentially using the atmosphere as a witness plate to characterize the small end of the NEO (Near Earth Object) population). The CTBTO's infrasound network regularly detects infrasound disturbances caused by bolides, including the 15-FEB-2013 Chelybinsk impact. Balloon-borne infrasound sensors should have two important advantages over ground-based infrasound stations: there should be virtually no wind noise on a free-floating platform, and a sensor in the stratosphere should benefit from its location within the stratospheric duct. Balloon-borne sensors also have the disadvantage that the amplitude of infrasound waves will decrease as they ascend with altitude. To test the performance of balloon-borne sensors, we conducted an experiment on a NASA high altitude (35 km) balloon launched from Ft Sumner, NM on 28-SEP-2016. We were able to put two independent infrasound payloads on this flight. We arranged for three 3000-lb ANFO explosions to be detonated from Socorro, NM at 12:00, 14:00 and 16:29:59 MST. The first two explosions were detected from the NASA balloon, with the first explosion showing three separate waveforms arriving within a 25-s span. The peak-to-peak amplitude of the waveforms was about 0.06 Pa, and the cleanest microphone channel detected this waveform with an SNR greater than 20. A second balloon at 15 km altitude also detected the second explosion. We have signals from a dozen ground stations at various positions from Socorro to Ft Sumner. We will report on wave propagation models and how they compare with observations from the two balloons and the various ground-stations.
Balloons on Ice: Launch # 2 takes flight in Antarctica
2017-12-08
The second of three missions as part of NASA’s Antarctica Long Duration Balloon Flight Campaign was successfully launched at 8:10 a.m. EDT, Dec. 2. The Antarctic Impulsive Transient Antenna (ANITA) from the University of Hawaii at Manoa was launched from Antarctica’s Ross Ice Shelf near McMurdo Station with support from the National Science Foundation’s United States Antarctic Program. Scientists will use ANITA’s instruments to study the reactions in the core of stars and as they explode via the release of neutrinos that travel to Earth and interact with the Antarctica ice. More: go.nasa.gov/2ghR6Le
Improving INPE'S balloon ground facilities for operation of the protoMIRAX experiment
NASA Astrophysics Data System (ADS)
Mattiello-Francisco, F.; Rinke, E.; Fernandes, J. O.; Cardoso, L.; Cardoso, P.; Braga, J.
2014-10-01
The system requirements for reusing the scientific balloon ground facilities available at INPE were a challenge to the ground system engineers involved in the protoMIRAX X-ray astronomy experiment. A significant effort on software updating was required for the balloon ground station. Considering that protoMIRAX is a pathfinder for the MIRAX satellite mission, a ground infrastructure compatible with INPE's satellite operation approach would be useful and highly recommended to control and monitor the experiment during the balloon flights. This approach will make use of the SATellite Control System (SATCS), a software-based architecture developed at INPE for satellite commanding and monitoring. SATCS complies with particular operational requirements of different satellites by using several customized object-oriented software elements and frameworks. We present the ground solution designed for protoMIRAX operation, the Control and Reception System (CRS). A new server computer, properly configured with Ethernet, has extended the existing ground station facilities with switch, converters and new software (OPS/SERVER) in order to support the available uplink and downlink channels being mapped to TCP/IP gateways required by SATCS. Currently, the CRS development is customizing the SATCS for the kernel functions of protoMIRAX command and telemetry processing. Design-patterns, component-based libraries and metadata are widely used in the SATCS in order to extend the frameworks to address the Packet Utilization Standard (PUS) for ground-balloon communication, in compliance with the services provided by the data handling computer onboard the protoMIRAX balloon.
Balloon-borne air traffic management (ATM) as a precursor to space-based ATM
NASA Astrophysics Data System (ADS)
Brodsky, Yuval; Rieber, Richard; Nordheim, Tom
2012-01-01
The International Space University—Balloon Air traffic control Technology Experiment (I-BATE ) has flown on board two stratospheric balloons and has tracked nearby aircraft by receiving their Automatic Dependent Surveillance-Broadcast (ADS-B) transmissions. Air traffic worldwide is facing increasing congestion. It is predicted that daily European flight volumes will more than double by 2030 compared to 2009 volumes. ADS-B is an air traffic management system being used to mitigate air traffic congestion. Each aircraft is equipped with both a GPS receiver and an ADS-B transponder. The transponder transmits an equipped aircraft's unique identifier, position, heading, and velocity once per second. The ADS-B transmissions can then be received by ground stations for use in traditional air traffic management. Airspace not monitored by these ground stations or other traditional means remains uncontrolled and poorly monitored. A constellation of space-based ADS-B receivers could close these gaps and provide global air traffic monitoring. By flying an ADS-B receiver on a stratospheric balloon, I-BATE has served as a precursor to a constellation of ADS-B-equipped Earth-orbiting satellites. From the ˜30 km balloon altitude, I-BATE tracked aircraft ranging up to 850 km. The experiment has served as a proof of concept for space-based air traffic management and supports a technology readiness level 6 of space-based ADS-B reception. I-BATE: International Space University—Balloon Air traffic control Technology Experiment.
Liquid-crystal variable retarders for aerospace polarimetry applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heredero, R. L.; Uribe-Patarroyo, N.; Belenguer, T.
2007-02-10
We present the optical effects of different tests that simulate the aerospace environment on the liquid-crystal variable retarders (LCVRs) used in the Imaging Magnetograph eXperiment postfocal instrument of the SUNRISE payload within the NASA Long Duration Balloon program. Analysis of the influence of vacuum,temperature, vibration, and gamma and ultraviolet radiation is performed by measuring the effects of these tests on the optical retardance, the response time, the wavefront distortion,and the transmittance, including some in situ measurements. Outgassing measurements of the different parts of the LCVRs are also shown. From the results obtained it can be concluded that these optical devicesmore » are suitable and seem to be excellent candidates for aerospace platforms.« less
Kiuchi, Ryuta; Tomita, Shigeyuki; Yamaguchi, Shojiro; Nishida, Yuji; Ohtake, Hiroshi; Nakamura, Hiroyuki; Watanabe, Go
2014-07-01
It is important for coronary active perfusion systems to avoid myocardial ischemia during off-pump coronary artery bypass grafting. We have developed a new concept for a perfusion system to pump blood based on changes in helium gas volume. This system uses a conventional intra-aortic balloon pump to activate the perfusion pump. Our study used basic and animal experiments to investigate the most suitable system for coronary perfusion using this new concept. A conventional intra-aortic balloon pump was used to supply power. A device for perfusion was developed with a balloon placed inside a stiff syringe barrel. The device was connected to the helium gas line of the intra-aortic balloon pump. Changes in flow with changes in augmentation level were noted when volumes outside and within the balloon were changed. Six pigs with occlusion of the left anterior descending artery were used for system validation, with monitoring to identify changes in hemodynamics and cardiac enzyme levels. In the basic experiment, an 80-mL outside volume and 3.0-mL inner volume resulted in the greatest percentage change in flow rate with respect to changes in augmentation. In the animal experiment, the new coronary active perfusion system prevented myocardial ischemia during coronary occlusion. We clarified the most suitable method for our new coronary active perfusion system. Using this system, safe anastomosis was consistently performed in animal experiments. Clinically, off-pump coronary artery bypass may potentially be performed more safely and easily using this new system. Copyright © 2014 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Murcray, D. G.; Brooks, J. N.; Kosters, J. J.; Williams, W. J.
1975-01-01
A balloon flight was conducted with a sensitive infrared spectral radiometer system in support of the LACATE balloon experiment. The instrumentation aboard the balloon is described along with data reduction techniques. Results obtained during the flight are presented.
Balloon Borne Ultraviolet Spectrometer.
1978-12-28
n.c.aaary ond lden lfy by block numb.r) ultraviolet ground support equipment (GSE) spectrometers flight electronics instrumentation balloons \\ solar ...Assembly 4 Fig. 3 Solar Balloon Experiment Ass ’y 7 Fig. 4 Mechanical Interface , UV Spectrometer 8 Fig . 5 Spectrometer Body Assemb ly 10 Fig. 6...Diagram, GSE )bnitor 48 Selector and Battery Charger Fig. 25 Schematic Diagram, GSE Serial to 49 Parallel Data Converter Fig. 26 Schematic Diagram
NASA Astrophysics Data System (ADS)
Voss, P. B.; Nott, J.; Cutts, J. A.; Hall, J. L.; Beauchamp, P. M.; Limaye, S. S.; Baines, K. H.; Hole, L. R.
2013-12-01
In situ exploration of the upper atmosphere of Venus, approximately 65-77 km altitude, could answer many important questions (Limaye 2013, Crisp 2013). This region contains a time-variable UV absorber of unknown composition that controls many aspects of the heat balance on Venus. Understanding the composition and dynamics of this unknown absorber is an important science goal; in situ optical and chemical measurements are needed. However, conventional approaches do not provide access to this altitude range, repeated traverses, and a mission lifetime of several months needed to effectively carry out the science. This paper examines concepts for altitude-controlled balloons not previously flown on planetary missions that could potentially provide the desired measurements. The concepts take advantage of the fact that at 60 km altitude, for example, the atmospheric density on Venus is about 40% of the sea-level density on earth and the temperature is a moderate 230 K. The solar flux is approximately double that on earth, creating some thermal challenges, but making photovoltaic power highly effective. Using a steady-state thermodynamic model and flight data from Earth, we evaluate the suitability of two types of altitude-controlled balloons for a potential mission on Venus. Such balloons could repeatedly measure profiles, avoid diurnal temperature extremes, and navigate using wind shear. The first balloon design uses air ballast (AB) whereby ambient air can be compressed into or released from a constant-volume balloon, causing it to descend or ascend accordingly. The second design uses lift-gas compression (LGC) to change the volume of a zero-pressure balloon, thereby changing its effective density and altitude. For an altitude range of 60-75 km on Venus, we find that the superpressure volume for a LGC balloon is about 5% of that needed for an AB balloon while the maximum pressurization is the same for both systems. The compressor work per km descent of the LGC balloon is about 10% of the AB balloon, largely due to the much lower flow rate. The LGC balloon must compress some lift gas at sunrise, but this can be managed by one of several strategies. We conclude that while the weight constraints are likely to be significant, LGC altitude-controlled balloons may be feasible for accessing the 60 to 75 km altitude range on Venus. The underlying concept of balloons on Venus was proven by the Soviet Union's successful deployment of their two superpressure VEGA balloons in 1981 operating at a fixed altitude near 55 km. Superpressure balloon concepts for similar altitudes and larger payloads have since been proposed for NASA's Discovery program and ESA's Cosmic Visions program. The LGC balloon would add a zero-pressure envelope and a compressor to the established superpressure design, allowing it to ascend above the deployment altitude and realize lossless altitude control over a range of several scale heights. The thermodynamic equations, flight data, and conceptual analysis presented are intended to foster further discussion about the feasibility and potential benefits of a balloon mission to Venus.
Jagadeesan, Bharathi D; Mortazavi, Shabnam; Hunter, David W; Duran-Castro, Olga L; Snyder, Gregory B; Siedel, Glen F; Golzarian, Jafar
2014-04-01
Balloon-assisted embolization performed by delivering Onyx ethylene vinyl alcohol copolymer through a dual-lumen coaxial balloon microcatheter is a new technique for the management of peripheral vascular lesions. This technique does not require an initial reflux of Onyx to form around the tip of the microcatheter before antegrade flow of Onyx can commence. In a series of four patients who were treated with the use of this technique, the absence of significant reflux of Onyx was noted, as were excellent navigability and easy retrieval of the balloon microcatheter. However, in one patient, there was inadvertent adverse embolization of a digital artery, which was not caused by reflux of Onyx but could still be related to balloon inflation. © 2013 SIR Published by SIR All rights reserved.
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
NASA Astrophysics Data System (ADS)
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.; Garcia, Raphael F.; Mimoun, David; Cadu, Alexandre; Sournac, Anthony; Jackson, Jennifer M.; Lai, Voon Hui; Bowman, Daniel C.
2018-04-01
We conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hot air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.
Uribe-Patarroyo, Néstor; Alvarez-Herrero, Alberto; Martínez Pillet, Valentín
2012-07-20
We present the study, characterization, and calibration of the polarization modulation package (PMP) of the Imaging Magnetograph eXperiment (IMaX) instrument, a successful Stokes spectropolarimeter on board the SUNRISE balloon project within the NASA Long Duration Balloon program. IMaX was designed to measure the Stokes parameters of incoming light with a signal-to-noise ratio of at least 103, using as polarization modulators two nematic liquid-crystal variable retarders (LCVRs). An ad hoc calibration system that reproduced the optical and environmental characteristics of IMaX was designed, assembled, and aligned. The system recreates the optical beam that IMaX receives from SUNRISE with known polarization across the image plane, as well as an optical system with the same characteristics of IMaX. The system was used to calibrate the IMaX PMP in vacuum and at different temperatures, with a thermal control resembling the in-flight one. The efficiencies obtained were very high, near theoretical maximum values: the total efficiency in vacuum calibration at nominal temperature was 0.972 (1 being the theoretical maximum). The condition number of the demodulation matrix of the same calibration was 0.522 (0.577 theoretical maximum). Some inhomogeneities of the LCVRs were clear during the pixel-by-pixel calibration of the PMP, but it can be concluded that the mere information of a pixel-per-pixel calibration is sufficient to maintain high efficiencies in spite of inhomogeneities of the LCVRs.
Cassini Titan Flybys: The Next Year (April 2012 through April 2013)
NASA Astrophysics Data System (ADS)
Ray, T.; Burton, M.; Pitesky, J. E.; Steadman, K.; Roy, M.
2012-04-01
This poster describes the scientific, engineering, and operations planning for a Discovery / New Frontiers class Titan airplane mission, AVIATR (Aerial Vehicle for In-situ and Airborne Titan Reconnaissance). The mission would focus on Titan's surface and atmospheric diversity, using high-resolution imaging, near-infrared spectroscopy, a haze spectrometer, and atmospheric structure measurements. Previous mission studies have elected to use hot-air balloons to achieve similar science goals. These hot-air balloon concepts require the waste heat from inefficient thermocouple-based Radioisotope Thermoelectric Generators (RTGs) for buoyancy. New Advanced Stirling Radioisotope Generators (ASRGs) are much more efficient than RTGs both in terms of power produced per gram of plutonium-238 and the total watts-per-kilogram of the power unit itself. However, they are so efficient that they are much less effective for use in heating a hot-air balloon. Similarly, old-style RTGs produce insufficient specific power for heavier-than-air flight, but the use of 2 ASRGs can support a 120 kg airplane for a long-duration mission at Titan. The AVIATR airplane concept has several advantages in its science capabilities relative to a balloon, including the ability to target any site of interest, remaining on the dayside, stereo and repeat coverage, and easy altitude changes. It also possesses engineering advantages over a balloon like low total mass, a more straightforward deployment sequence, direct-to-Earth communications capability, and a more robust airframe.
Titan's atmosphere and surface in 2026: the AVIATR Titan Airplane Mission
NASA Astrophysics Data System (ADS)
McKay, Chris; Barnes, Jason W.; Lemke, Lawrence; Beyer, Ross A.; Radebaugh, Jani; Atkinson, David; Flasar, F. Michael
2010-04-01
This poster describes the scientific, engineering, and operations planning for a Discovery / New Frontiers class Titan airplane mission, AVIATR (Aerial Vehicle for In-situ and Airborne Titan Reconnaissance). The mission would focus on Titan's surface and atmospheric diversity, using high-resolution imaging, near-infrared spectroscopy, a haze spectrometer, and atmospheric structure measurements. Previous mission studies have elected to use hot-air balloons to achieve similar science goals. These hot-air balloon concepts require the waste heat from inefficient thermocouple-based Radioisotope Thermoelectric Generators (RTGs) for buoyancy. New Advanced Stirling Radioisotope Generators (ASRGs) are much more efficient than RTGs both in terms of power produced per gram of plutonium-238 and the total watts-per-kilogram of the power unit itself. However, they are so efficient that they are much less effective for use in heating a hot-air balloon. Similarly, old-style RTGs produce insufficient specific power for heavier-than-air flight, but the use of 2 ASRGs can support a 120 kg airplane for a long-duration mission at Titan. The AVIATR airplane concept has several advantages in its science capabilities relative to a balloon, including the ability to target any site of interest, remaining on the dayside, stereo and repeat coverage, and easy altitude changes. It also possesses engineering advantages over a balloon like low total mass, a more straightforward deployment sequence, direct-to-Earth communications capability, and a more robust airframe.
The Eole experiment - Early results and current objectives.
NASA Technical Reports Server (NTRS)
Morel, P.; Bandeen, W.
1973-01-01
The Eole experiment with 480 constant level balloons released in the Southern Hemisphere is described. Each balloon, floating freely at approximately the 200-mb level, is a precise tracer of the horizontal motion of air masses, the accuracy of which is limited only by the laminated structure of the stratospheric flow, within an rms uncertainty of 1.5 m/sec. The balloons were found after 2 months to distribute at random over the whole hemisphere outside the tropics, irrespective of their original launching site. Early results of Eulerian and Lagrangian averages of the Eole wind data are given for describing the mean 200-mb zonal and meridional circulations.
High Energy Cosmic Ray Electron Spectra measured from the ATIC Balloon Experiment
NASA Technical Reports Server (NTRS)
Chang, J.; Schmidt, W. K. H.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G.; Batkov, K. E.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2003-01-01
The Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) is specifically designed for high energy cosmic ray ion detection. From simulation and a CERN beam test exposure we find that the design consisting of a graphite target and an energy detection device, a totally active calorimeter of BGO scintillator, gives us sufficient information to distinguish electrons from protons up to the TeV energy range. Balloon observations were successfully carried out over Antarctica in both 2000/2001 and 2002/2003 for a total of more than 35 days. This paper presents preliminary results on the spectrum of high energy electrons observed in the first ATIC flight.
NASA Astrophysics Data System (ADS)
van Wynsberghe, Erinn; Turak, Ayse
2016-11-01
A stable, ultra long-duration high-altitude balloon (HAB) platform which can maintain stationary position would represent a new paradigm for telecommunications and high-altitude observation and transmission services, with greatly reduced cost and complexity compared to existing technologies including satellites, telecom towers, and unmanned aerial vehicles (UAVs). This contribution proposes a lightweight superpressure balloon platform for deployment to an altitude of 25 km. Electrohydrodynamic (EHD) thrusters are presented to maintain position by overcoming stratospheric winds. Critical to maintaining position is a continual supply of electrical power to operate the on-board propulsion system. One viable solution is to deliver power wirelessly to a high-altitude craft from a ground-based transmitter. Microwave energy, not heavily attenuated by the atmosphere, can be provided remotely from a ground-based generator (magnetron, klystron, etc.) and steered electrically with an antenna array (phased array) at a designated frequency (such as 2.45 or 5.8 GHz). A rectifying antenna ("rectenna") on the bottom of the balloon converts waves into direct current for on-board use. Preliminary mission architecture, energy requirements, and safety concerns for a proposed system are presented along with recommended future work.
Global assimilation of X Project Loon stratospheric balloon observations
NASA Astrophysics Data System (ADS)
Coy, L.; Schoeberl, M. R.; Pawson, S.; Candido, S.; Carver, R. W.
2017-12-01
Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.
Global Assimilation of X Project Loon Stratospheric Balloon Observations
NASA Technical Reports Server (NTRS)
Coy, Lawrence; Schoeberl, Mark R.; Pawson, Steven; Candido, Salvatore; Carver, Robert W.
2017-01-01
Project Loon has an overall goal of providing worldwide internet coverage using a network of long-duration super-pressure balloons. Beginning in 2013, Loon has launched over 1600 balloons from multiple tropical and middle latitude locations. These GPS tracked balloon trajectories provide lower stratospheric wind information over the oceans and remote land areas where traditional radiosonde soundings are sparse, thus providing unique coverage of lower stratospheric winds. To fully investigate these Loon winds we: 1) compare the Loon winds to winds produced by a global data assimilation system (DAS: NASA GEOS) and 2) assimilate the Loon winds into the same comprehensive DAS. Results show that in middle latitudes the Loon winds and DAS winds agree well and assimilating the Loon winds have only a small impact on short-term forecasting of the Loon winds, however, in the tropics the loon winds and DAS winds often disagree substantially (8 m/s or more in magnitude) and in these cases assimilating the loon winds significantly improves the forecast of the loon winds. By highlighting cases where the Loon and DAS winds differ, these results can lead to improved understanding of stratospheric winds, especially in the tropics.
Biliary sphincteroplasty facilitates retrieval of proximally migrated plastic biliary stent.
Shah, Dharmesh K; Jain, Samit S; Somani, Piyush O; Rathi, Pravin M
2014-01-01
Proximal migration of biliary stents presents a technical challenge for the therapeutic endoscopist. It may require multiple, complicated corrective procedures resulting in significant morbidity to the patients. In this study we evaluated the utility of balloon biliary sphincteroplasty with CRE (Controlled Radial Expansion) Balloon Dilator on retrieval of proximally migrated biliary stents. We identified patients from our ERCP database who presented with proximal migration of biliary stent, between August 2011 and October 2013. Patients in whom the stent could not be retrieved with conventional methods, balloon sphincteroplasty was performed with a 12 mm CRETM Balloon Dilator (Boston Scientific). Stent removal was attempted with extraction balloon or basket thereafter. We identified 28 patients with proximal migration of biliary stents, placed for benign diseases of the common bile duct. Stent removal was successful in 18 patients (64.28%) with help of an extraction balloon or basket. Of the remaining 10 patients, balloon sphincteroplasty was successfully followed by stent removal in eight patients. Balloon biliary sphincteroplasty increases the success rate of retrieving proximally migrated biliary stents. The procedure is safe, technically easy and yields a good success rate in our experience.
Analysis of Data from the Balloon Borne Gamma RAy Polarimeter Experiment (GRAPE)
NASA Astrophysics Data System (ADS)
Wasti, Sambid K.; Bloser, Peter F.; Legere, Jason S.; McConnell, Mark L.; Ryan, James M.
2016-04-01
The Gamma Ray Polarimeter Experiment (GRAPE), a balloon borne polarimeter for 50~300 keV gamma rays, successfully flew in 2011 and 2014. The main goal of these balloon flights was to measure the gamma ray polarization of the Crab Nebula. Analysis of data from the first two balloon flights of GRAPE has been challenging due to significant changes in the background level during each flight. We have developed a technique based on the Principle Component Analysis (PCA) to estimate the background for the Crab observation. We found that the background depended mostly on the atmospheric depth, pointing zenith angle and instrument temperatures. Incorporating Anti-coincidence shield data (which served as a surrogate for the background) was also found to improve the analysis. Here, we present the calibration data and describe the analysis done on the GRAPE 2014 flight data.
Recent Developments in Balloon Support Instrumentation at TIFR Balloon Facility, Hyderabad.
NASA Astrophysics Data System (ADS)
Vasudevan, Rajagopalan
2012-07-01
The Balloon Facility of Tata Institute of Fundamental Research has been conducting stratospheric balloon flights regularly for various experiments in Space Astronomy and Atmospheric Sciences. A continuous improvement in Balloon flight Support instrumentation by the Control Instrumentation Group to keep in space with the growing complexities of the scientific payloads have contributed to the total success of balloon flights conducted recently. Recent improvements in display of Balloon position during balloon flight by showing on real time the balloon GPS position against Google TM maps is of immense help in selecting the right spot for payload landing and safe recovery . For further speeding up the payload recovery process, a new GPS-GSM payload system has been developed which gives SMS of the payload position information to the recovery team on their cell phones. On parallel footing, a new GPS- VHF system has been developed using GPS and Radio Modems for Balloon Tracking and also for obtaining the payload impact point. On the Telecommand side, a single board Telecommand/ Timer weighing less than 2 Kg has been specially developed for use in the mesosphere balloon test flight. The interference on the existing Short Range Telemetry System has been eliminated by introducing a Band Pass Filter and LNA in the Receiving system of the modules, thereby enhancing its reliability. In this paper , we present the details of the above mentioned developments.
Advanced gamma ray balloon experiment ground checkout and data analysis
NASA Technical Reports Server (NTRS)
Blackstone, M.
1976-01-01
A software programming package to be used in the ground checkout and handling of data from the advanced gamma ray balloon experiment is described. The Operator's Manual permits someone unfamiliar with the inner workings of the software system (called LEO) to operate on the experimental data as it comes from the Pulse Code Modulation interface, converting it to a form for later analysis, and monitoring the program of an experiment. A Programmer's Manual is included.
2015-01-22
Prior to launch, the team laid out the parachute and hang lines in front of SPIDER, seen in the distance. The long-duration balloon that would carry SPIDER into the sky is attached to the end of the parachute shown here in the foreground. http://photojournal.jpl.nasa.gov/catalog/PIA19177
Cosmic rays: Physics and astrophysics. A research briefing
NASA Technical Reports Server (NTRS)
1994-01-01
Some recent results in cosmic-ray physics are summarized, and how they raise new questions of interest for both physics and astrophysics is described. An important technical advance, the recently demonstrated capability of long-duration balloon flights of heavy payloads, will offer a great advantage for achieving some of these goals.
14 CFR 61.19 - Duration of pilot and instructor certificates.
Code of Federal Regulations, 2010 CFR
2010-01-01
... medical certificate. (2) For student pilots who have reached their 40th birthday, the student pilot... medical certificate. (3) For student pilots seeking a glider rating, balloon rating, or a sport pilot... expiration date may not, after that date, exercise the privileges of that certificate. (b) Student pilot...
Balloon-Borne, High-Energy Astrophysics: Experiences from the 1960s to the 1980s
NASA Technical Reports Server (NTRS)
Fishman, Gerald J.
2008-01-01
Observational high-energy astrophysics in the hard-x-ray and gamma-ray regions owes its development and initial successes to the balloon-borne development of detector systems, as well as pioneering observations, primarily in the timeframe from the 1960s to the 1990s. I will describe some of the first observations made by the Rice University balloon group in the 1960s, including the impetus for these observations. The appearance of SN 1987a led to several balloon-flight campaigns, sponsored by NASA, from Alice Springs, Australia in 1987 and 1988. During the 1980s, prototypes of instruments for the Compton Gamma Ray Observatory were flown on many balloon flights, which greatly enhanced the success of that mission.
Bruti, Gianpaolo; Kolyva, Christina; Pepper, John R; Khir, Ashraf W
2015-08-01
The intra-aortic balloon pump (IABP) is a ventricular assist device that is used with a broad range of pre-, intra-, and postoperative patients undergoing cardiac surgery. Although the clinical efficacy of the IABP is well documented, the question of reduced efficacy when patients are nursed in the semi-recumbent position remains outstanding. The aim of the present work is therefore to investigate the underlying mechanics responsible for the loss of IABP performance when operated at an angle to the horizontal. Simultaneous recordings of balloon wall movement, providing an estimate of its diameter (D), and fluid pressure were taken at three sites along the intra-aortic balloon (IAB) at 0 and 45°. Flow rate, used for the calculation of displaced volume, was also recorded distal to the tip of the balloon. An in vitro experimental setup was used, featuring physiological impedances on either side of the IAB ends. IAB inflation at an angle of 45° showed that D increases at the tip of the IAB first, presenting a resistance to the flow displaced away from the tip of the balloon. The duration of inflation decreased by 15.5%, the inflation pressure pulse decreased by 9.6%, and volume decreased by 2.5%. Similarly, changing the position of the balloon from 0 to 45°, the balloon deflation became slower by 35%, deflation pressure pulse decreased by 14.7%, and volume suctioned was decreased by 15.2%. IAB wall movement showed that operating at 45° results in slower deflation compared with 0°. Slow wall movement, and changes in inflation and deflation onsets, result in a decreased volume displacement and pressure pulse generation. Operating the balloon at an angle to the horizontal, which is the preferred nursing position in intensive care units, results in reduced IAB inflation and deflation performance, possibly compromising its clinical benefits. Copyright © 2015 The Authors. Artificial Organs published by Wiley Periodicals, Inc. on behalf of International Center for Artificial Organ and Transplantation (ICAOT).
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; ...
2018-04-24
Here, we conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hotmore » air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.« less
Initial experience with the Europass: a new ultra-low profile monorail balloon catheter.
Zimarino, M; Corcos, T; Favereau, X; Tamburino, C; Toussaint, M; Spaulding, C; Guérin, Y
1994-09-01
One of the causes for percutaneous transluminal coronary angioplasty (PTCA) failure is the inability to cross the lesion with the balloon catheter after guidewire positioning. The Europass coronary angioplasty catheter is a monorail Duralyn balloon catheter developed to enhance lesion crossability and to overcome this limitation. This system was evaluated in 50 patients in which target lesions were chronic total coronary occlusions (12 cases) or stenoses that could not be reached or crossed by other new monorail balloon catheters. Overall procedural success was obtained in 49/50 patients (98%), using a single Europass balloon catheter in 46/50 patients (92%), with no in-hospital complications. Its low profile, small distal shaft, and excellent trackability allowed successful angioplasty in cases where other catheters failed. This balloon catheter represents a significant advance in angioplasty technology and can be considered as a first-choice device for a safe and expeditious single-operator procedure.
Detection of Artificially Generated Seismic Signals Using Balloon-Borne Infrasound Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.
Here, we conducted an experiment in Pahrump, Nevada, in June 2017, where artificial seismic signals were created using a seismic hammer, and the possibility of detecting them from their acoustic signature was examined. In this work, we analyze the pressure signals recorded by highly sensitive barometers deployed on the ground and on tethers suspended from balloons. Our signal processing results show that wind noise experienced by a barometer on a free-flying balloon is lower compared to one on a moored balloon. This has never been experimentally demonstrated in the lower troposphere. While seismoacoustic signals were not recorded on the hotmore » air balloon platform owing to operational challenges, we demonstrate the detection of seismoacoustic signals on our moored balloon platform. Our results have important implications for performing seismology in harsh surface environments such as Venus through atmospheric remote sensing.« less
Zodiac II: Debris Disk Imaging Potential
NASA Technical Reports Server (NTRS)
Traub Wesley; Bryden, Geoff; Stapelfeldt, Karl; Chen, Pin; Trauger, John
2011-01-01
Zodiac II is a proposed coronagraph on a balloon-borne platform, for the purpose of observing debris disks around nearby stars. Zodiac II will have a 1.2-m diameter telescope mounted in a balloon-borne gondola capable of arcsecond quality pointing, and with the capability to make long-duration (several week) flights. Zodiac II will have a coronagraph able to make images of debris disks, meaning that its scattered light speckles will be at or below an average contrast level of about 10(exp -7) in three narrow (7 percent) bands centered on the V band, and one broad (20%) one at I band. We will discuss the potential science to be done with Zodiac II.
SPIDER: Listening for the echoes of inflation from above the clouds
NASA Astrophysics Data System (ADS)
Filippini, Jeffrey; Spider Collaboration
2016-03-01
We report on the status of SPIDER, a balloon-borne instrument to map the polarization of the cosmic microwave background at large angular scales. SPIDER targets the B-mode signature of primordial gravitational waves, with a focus on mapping a large sky area at multiple frequencies. SPIDER's six monochromatic refracting telescopes (three each at 95 and 150 GHz) feed a total of more than 2000 antenna-coupled superconducting transition-edge sensors. A sapphire half-wave plate at the aperture of each telescope modulates sky polarization for control of systematics. We discuss SPIDER's first long-duration balloon flight in January 2015, as well as the status of data analysis and development toward a second flight.
Park, Yoo Seok; Chung, Sung Phil; You, Je Sung; Kim, Min Joung; Chung, Hyun Soo; Hong, Jung Hwa; Lee, Hye Sun; Wang, Jinwon; Park, Incheol
2016-08-16
The purpose of this study was to investigate whether a multidisciplinary organised critical pathway (CP) for ST-segment elevation myocardial infarction (STEMI) management can significantly attenuate differences in the duration from emergency department (ED) arrival to evaluation and treatment, regardless of the arrival time, by eliminating off-hour and weekend effects. Retrospective observational cohort study. 2 tertiary academic hospitals. Consecutive patients in the Fast Interrogation Rule for STEMI (FIRST) program. A study was conducted on patients in the FIRST program, which uses a computerised physician order entry (CPOE) system. The patient demographics, time intervals and clinical outcomes were analysed based on the arrival time at the ED: group 1, normal working hours on weekdays; group 2, off-hours on weekdays; group 3, normal working hours on weekends; and group 4, off-hours on weekends. Clinical outcomes categorised according to 30-day mortality, in-hospital mortality and the length of stay. The duration from door-to-data or FIRST activation did not differ significantly among the 4 groups. The median duration between arrival and balloon placement during percutaneous coronary intervention did not significantly exceed 90 min, and the proportions (89.6-95.1%) of patients with door-to-balloon times within 90 min did not significantly differ among the 4 groups, regardless of the ED arrival time (p=0.147). Moreover, no differences in the 30-day (p=0.8173) and in-hospital mortality (p=0.9107) were observed in patients with STEMI. A multidisciplinary CP for STEMI based on a CPOE system can effectively decrease disparities in the door-to-data duration and proportions of patients with door-to-balloon times within 90 min, regardless of the ED arrival time. The application of a multidisciplinary CP may also help attenuate off-hour and weekend effects in STEMI clinical outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
NASA Astrophysics Data System (ADS)
Yamamoto, Masa-yuki; Kakinami, Yoshihiro; Kono, Hiroki
In Japan, the high altitude balloon for scientific observation has been continuously launched by JAXA. The balloon has a possibility to reach 50 km altitude without tight environmental condition for onboard equipments, operating with a cost lower than sounding rockets, however, development of the large-scale scientific observation balloons by university laboratories is still difficult. Being coupled with recent improvement of semiconductor sensors, laboratory-basis balloon experiments using small weather balloons has been becoming easily in these years. Owing to an advantage of wide land fields in continental regions, the launch of such small balloons has become to be carried out many times especially in continental countries (e.g. Near Space Ventures, Inc., 2013). Although the balloon is very small as its diameter of 6 feet, excluding its extra buoyancy and the weight of the balloon itself, it is expected that about 2 kg loading capacity is remained for payloads to send it up to about 35 km altitude. However, operation of such balloons in Japan is not in general because precise prediction of a landing area of the payload is difficult, thus high-risk situation for balloon releases is remained. In this study, we aim to achieve practical engineering experiments of weather balloons in Japan to be used for scientific observation within university laboratory level as an educational context. Here we report an approach of developing many devices for a small tethered balloon currently in progress. We evaluated an accuracy of altitude measurement by using a laboratory developed altitude data logger system that consists of a GPS-module and a barometric altimeter. Diameter of the balloon was about 1.4 m. Being fulfilled with about 1440 L helium, it produced buoyancy of about 15.7 N. Taking into account of total weight including the mooring equipments, available payload mass becomes to be about 1100 g. Applying an advantage of a 3D printer of FDM (Fused Deposition Modeling) method with a 3DCAD design software, we designed and manufactured a camera-platform type antenna rotator that automatically track the balloon direction based on the received GPS data as a balloon operation system on ground with automatic controlling software for the tracking system. In order to develop a future telemetry system onboard a small weather balloon, we have performed an onboard data logger system. In this presentation, system configuration of the automatic tracking system will be introduced more in detail. The telemetry system onboard the small balloon is currently under development. We have a plan to send the measured GPS coordinates, temperature, pressure, and humidity data detected by the onboard sensors to ground. A monitoring camera, a 3-axes accelerometer, geomagnetic azimuth measurement, and power monitoring were added to the developed data logger system. The acquired data will be stored in an SD card aboard as well as transmitted to the ground. Using a vacuum chamber with a pressure sensors and a constant-temperature reservoir in laboratory, environmental tests were operated. In this presentation, introducing the data obtained through the development of a prototype balloon system, our recent results and problems will be discussed.
B-MINE: The Balloon-Borne Microcalorimeter Nuclear Line Explorer
NASA Technical Reports Server (NTRS)
Silver, E.; Schnopper, H.; Jones, C.; Forman, W.; Bandler, S.; Murray, S.; Romaine, S.; Slane, P.; Grindlay, J.; Madden, N.
2001-01-01
B-MINE is a concept for a balloon mission designed to probe the deepest regions of a supernova explosion by detecting 44Ti emission at 68 keV with spatial and spectral resolutions that are sufficient to determine the extent and velocity distribution of the 44Ti emitting region. The payload introduces the concept of focusing optics and microcalorimeter spectroscopy to nuclear line emission astrophysics. B-MINE has a thin, plastic foil telescope multilayered to maximize the reflectivity in a 20 keV band centered at 68 keV and a microcalorimeter array optimized for the same energy band. This combination provides a reduced background, an energy resolution of 50 eV and a 3 sigma sensitivity in 10 (exp 6) s of 3.3 x 10(exp -7) ph cm(exp -2) s(exp -1) at 68 keV. During the course of a long duration balloon flight, B-MINE could carry out a detailed study of the 44Ti emission line centroid and width in CAS A.
Long-Duration, Balloon-Borne Observations of Cosmic Microwave Background Anisotropy
NASA Technical Reports Server (NTRS)
1997-01-01
Funds from this grant were used to support the continuing development of BOOMERANG, a 1.3 m, balloon-borne, attitude-stabilized telescope designed to measure the anisotropy of the Cosmic Microwave Background (CMB) on angular scales of 12 min to 10 degrees. By the end of the funding period covered by this grant, the fabrication of most of the BOOMERANG sub-systems was completed, and integration and test of the payload at Caltech had begun. The project was continued under a new grant from NASA and continuing funding from the NSF. Payload integration and test was completed in April, 1997. A campaign to Palestine, Texas, resulted in two test flights during 1997. A flight on August 12, 1997 was terminated on ascent due to a leaky balloon. The payload was successfully recovered, refurbished, and flown again on August 29, 1997. The second flight was completely successful, and qualified the payload for an LDB flight from McMurdo Stn., Antarctica, in December 1998.
ERIC Educational Resources Information Center
El Abed, Mohamed
2014-01-01
A team of French high-school students sent a weather balloon into the upper atmosphere to recreate Viktor Hess's historical experiment that demonstrated the existence of ionizing radiation from the sky--later called cosmic radiation. This discovery earned him the Nobel Prize for Physics in 1936.
Extension of drop experiments with the MIKROBA balloon drop facility
NASA Astrophysics Data System (ADS)
Sommer, K.; Kretzschmar, K.; Dorn, C.
1992-12-01
The German balloon drop facility MIKROBA extends the worldwide available drop experiment opportunities to the presently highest usable experimentation time span of 55 s at microgravity conditions better than 0.001 g. The microgravity period is started with the typical quasi-deal step function from 1 to 0 g. MIKROBA allows flexible experiment design, short access time, and easy hands-on payload integration. The transport to the operational height is realized by soft energies and technologies compatible with the earth's environment. Balloon campaigns are not restricted to a certain test range, i.e., several suitable sites are available all over the world. MIKROBA combines negligible mechanical loads at the mission start, typical of all drop facilities, with extremely low drop deceleration loads (less than g), due to the implemented three-stage parachute and airbag recovery subsystem.
Status report on the activities of National Balloon Facility at Hyderabad
NASA Astrophysics Data System (ADS)
Shankarnarayan, Sreenivasan; S, Sreenivasan; Shankarnarayan, Sreenivasan; Manchanda, R. K.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar
National balloon facility at Hyderabad has been mandated to provide launch support for Indian and International scientific balloon experiments and also perform the necessary research and development in the design and fabrication of plastic balloons. In the last 4 years, since our last report, NBF has launched many successful balloon flights for the astronomy payloads and a large number of high altitude GPS Sonde flights at different places in the country. We have also continued our efforts on qualification of raw materials for zero-failure performance of our balloons and major focus on upgrading of various facilities and load-line instrumentation for launching from remote sites. We foresee a surge of balloon based experimental activity for in-situ measurements in atmospheric sciences and concept validation payloads for future space based instruments. A new centre for research in Environmental Sciences and Payload Engineering (ESPE) has also been set up at the National Balloon Facility campus to develop and conduct research in various aspects of Environmental sciences in collaboration with other groups, with a specific goal to identify, development of advanced technologies leading to an improved understanding of the earth system. The Payload Engineering facility is geared to the Design and Fabrication of Micro and Nano Satellites and will act as Inter -University Centre for payload fabrication. In this paper we present an overview of the present and planned activities in scientific ballooning at National Balloon Facility Hyderabad.
Development of a Compact Captive Balloon and Its Level Supporting
NASA Astrophysics Data System (ADS)
Nakao, Tatsuya; Fujiwara, Kazuhito; Furukawa, Motoyasu; Hiroe, Tetsuyuki
Many kinds of observation techniques have been developed to obtain the properties of atmospheric conditions. The advanced observation techniques of the flow in relatively large scale are remote sensing by satellite facilities, long range observations by radar or Doppler Sodar, etc., while data from conventional climometers set at fixed places are merely limited information about local scale flow. Captive balloons are also available and feasible for the observation of local flows if their standing mechanics are robust against the strong wind and the motion of balloon are stable for all wind direction and the change of wind direction. In this paper, a compact captive balloon (about 2m diam.) for flow measurement is proposed and the preservation of balloon height level and the stabilization of its motion are challenged by using a kite. The relation between force balances acted on the balloon and the balloon height or position was estimated and confirmed in experiments. Although the lift force of single kite worked successfully, it is found that the performance of plural kites is less in the traction of balloon since the interaction of their tensions. The compact balloon supported by the kite enabled the over 300m floating by virtue of the small size causing only low air resistance.
Contrast-marking prosodic emphasis in Williams syndrome: results of detailed phonetic analysis.
Ito, Kiwako; Martens, Marilee A
2017-01-01
Past reports on the speech production of individuals with Williams syndrome (WS) suggest that their prosody is anomalous and may lead to challenges in spoken communication. While existing prosodic assessments confirm that individuals with WS fail to use prosodic emphasis to express contrast, those reports typically lack detailed phonetic analysis of speech data. The present study examines the acoustic properties of speech prosody, aiming for the future development of targeted speech interventions. The study examines the three primary acoustic correlates of prosodic emphasis (duration, intensity, F0) and determines whether individuals with WS have difficulty in producing all or a particular set of the three prosodic cues. Speech produced by 12 individuals with WS and 12 chronological age (CA)-matched typically developing individuals were recorded. A sequential picture-naming task elicited production of target phrases in three contexts: (1) no contrast: gorilla with a racket → rabbit with a balloon; (2) contrast on the animal: fox with a balloon → rabbit with a balloon; and (3) contrast on the object: rabbit with a ball → rabbit with a balloon. The three acoustic correlates of prosodic prominence (duration, intensity and F0) were compared across the three referential contexts. The two groups exhibited striking similarities in their use of word duration and intensity for expressing contrast. Both groups showed the reduction and enhancement of final lengthening, and the enhancement and reduction of intensity difference for the animal contrast and for the object contrast conditions, respectively. The two groups differed in their use of F0: the CA group produced higher F0 for the animal than for the object regardless of the context, and this difference was enhanced when the animal noun was contrastive. In contrast, the WS group produced higher F0 for the object than for the animal when the object was contrastive. The present data contradict previous assessment results that report a lack of prosodic skills to mark contrast in individuals with WS. The methodological differences that may account for this variability are discussed. The present data suggest that individuals with WS produce appropriate prosodic cues to express contrast, although their use of pitch may be somewhat atypical. Additional data and future speech comprehension studies will determine whether pitch modulation can be targeted for speech intervention in individuals with WS. © 2016 Royal College of Speech and Language Therapists.
Luo, Fangyuan; Xie, Lan; Xie, Ping; Liu, Siwei; Zhu, Yue
2017-04-01
To introduce the primary experience of using aortic balloon catheters during cesarean section for placenta previa and/or placenta accreta. From January 2013 to May 2015, 43 patients who were preoperatively diagnosed with major placenta previa and/or placenta accreta and who underwent prophylactic aortic catheterization before caesarean section (CS) were included in the study. We analyzed the clinical data of the study population. Surgery- and catheterization-related complications were also reported. Major placenta previa or placenta accreta was surgically confirmed in 42 patients, 28 of whom had both conditions. The mean patient age was 32.3 ± 5.5 years, whereas the median gestational age at delivery was 260 (range, 153-280) days. Twenty-nine (67.4%) patients had previously undergone CS, and 13 (30%) patients had undergone emergency surgery for antenatal hemorrhage. The median estimated blood loss during surgery was 500 (range, 100-3,000) mL, and the median duration of occlusion was 20 (range, 5-32) minutes. Hysterectomy was performed in five (11.6%) patients and uterine artery embolization in two (4.6%) patients. Two patients with placenta percreta experienced surgery-related complications, and two patients required hospital readmission. No major catheterization-related complications were observed. Forty-two live births were recorded, and the Apgar score of the infants at 5 minutes was > 7. Intraoperative aortic balloon occlusion is a relatively safe method for treating placenta previa and/or placenta accreta during scheduled and emergency CS and might be helpful to prevent hysterectomy and embolization in women wishing to preserve fertility. Copyright © 2017. Published by Elsevier B.V.
Cox, J G; Winter, R K; Maslin, S C; Jones, R; Buckton, G K; Hoare, R C; Sutton, D R; Bennett, J R
1988-01-01
Seventy one patients with benign oesophageal strictures were randomised to receive balloon or bougie dilatation. Sixty five patients were eligible for analysis. At the end of five months the balloon group had significantly more dysphagia and the calibre of the strictures in the balloon group had narrowed by a greater degree. The methods were equally safe and acceptable to patients. While the choice of the method of dilatation depends on the individual patient's needs and operator experience, bougie dilatation is more effective in reducing dysphagia and maintaining stricture patency. Images Fig. 2 Fig. 3 PMID:3065156
NASA Technical Reports Server (NTRS)
Atallah, K.; Modlinger, A.; Schmidt, W. K. H.; Cleghorn, T. F.
1975-01-01
A balloon experiment which was used to determine the chemical composition of very high-energy cosmic rays up to and beyond 100 GeV/nucleon is described. The detector had a geometric factor of 1 sq m sr and a total weight on the balloon of 2100 kg. The apparatus consisted of an ionization spectrometer, spark chambers, and plastic scintillation and Cherenkov counters. It was calibrated at CERN up to 24 GeV/c protons and at DESY up to 7 GeV/c electrons. In October 1972 it was flown successfully on a stratospheric balloon.
Mechanical properties of ANTRIX balloon film and fabrication of single cap large volume balloons
NASA Astrophysics Data System (ADS)
Suneel Kumar, B.; Sreenivasan, S.; Subba Rao, J. V.; Manchanda, R. K.
2008-11-01
The zero pressure plastic balloons used for high altitude studies are generally made from polyethylene material. Tensile properties of the thin film polymer are the key parameters for material selection due to extremely low temperature of -90 °C encountered by the balloons in the tropopause region during the ascent at equatorial latitudes. The physical and structural properties of the material determine the uniformity of the stress distribution over the entire shell. Load stresses from the suspended load propagate via load tapes heat sealed along with the gore seals as per the balloon design. A balance between this heat seal strength and the film strength is a desirable property of the basic resin in terms of the bubble strength, gauge uniformity, and long-term storage properties. In addition, the design of the top shell of the balloon and its stress distribution play an important role since only a fraction of the balloon is deployed during the filling operation and the ascent. In this paper we describe the mechanical properties of the 'ANTRIX' film developed by us and the optimized design of single cap balloons, which have been successfully used in our experiments over the past 5 years.
Balloon test project: Cosmic Ray Antimatter Calorimeter (CRAC)
NASA Technical Reports Server (NTRS)
Christy, J. C.; Dhenain, G.; Goret, P.; Jorand, J.; Masse, P.; Mestreau, P.; Petrou, N.; Robin, A.
1984-01-01
Cosmic ray observations from balloon flights are discussed. The cosmic ray antimatter calorimeter (CRAC) experiment attempts to measure the flux of antimatter in the 200-600 Mev/m energy range and the isotopes of light elements between 600 and 1,000 Mev/m.
Ultra-long Duration Balloon Mission Concept Study: EXIST-LITE Hard X-ray Imaging Survey
NASA Technical Reports Server (NTRS)
2003-01-01
We carried out a mission concept Study for an ultra-long duration balloon (ULDB) mission to conduct a high-sensitivity hard x-ray (approx. 20-600 keV) imaging sky survey. The EXIST-LITE concept has been developed, and critical detector technologies for realistic fabrication of very large area Cd-Zn-Te imaging detector arrays are now much better understood. A ULDB mission such as EXIST-LITE is now even more attractive as a testbed for the full Energetic X-ray Imaging Survey Telescope (EXIST) mission, recommended by the Decadal Survey, and now included in the NASA Roadmap and Strategic Plan as one of the 'Einstein Probes'. In this (overdue!) Final Report we provide a brief update for the science opportunities possible with a ULDB mission such as EXIST-LITE and relate these to upcoming missions (INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) and Swift) as well as the ultimate very high sensitivity sky survey mission EXIST. We then review the progress made over this investigation in Detector/Telescope design concept, Gondola and Mission design concept, and Data Handling/Analysis.
NASA Technical Reports Server (NTRS)
Wilson, Thomas L. (Editor); Wefel, John P. (Editor)
1999-01-01
In 1994 NASA Administrator selected the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments. The first such experiment to come forward was Advanced Cosmic-Ray Composition Experiment for Space Station (ACCESS) in 1996. It was proposed as a new mission concept in space physics to attach a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the International Space Station (ISS), and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's suborbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer review. This process is still ongoing, and the accommodation study presented here will discuss the baseline definition of ACCESS as we understand it today.
Intragastric Balloon Treatment for Obesity: Review of Recent Studies.
Tate, Chinara M; Geliebter, Allan
2017-08-01
The FDA recently approved three intragastric balloon (IGB) devices, ReShape, ORBERA™, and Obalon for treatment of obesity. Given the high cost, complication risk, and invasiveness of bariatric surgery, IGB treatment may present a safer and lower cost option for weight reduction. IGBs are generally placed in the stomach endoscopically for up to 6 months to reduce gastric capacity, enhance feelings of fullness, and induce weight loss. The mechanism of action likely involves stimulation of gastric mechanoreceptors triggering short-acting vagal signals to brain regions implicated in satiety. Balloon efficacy may be influenced by balloon volume, patient gastric capacity, and treatment duration. This review focused on eight recent (2006-present) randomized controlled trials (RCTs) comparing percentage total body weight loss (%TBWL) between IGB and control groups including three reviewed by the FDA. %TBWL based on the reviewed studies was also compared with bariatric surgery and pharmacotherapy. Of the eight IGB studies, five had balloon treatment duration of 6 months. Efficacy at 6 months, based on a pooled weighted-mean %TBWL, was 9.7%, and the control-subtracted %TBWL was 5.6%. When one study without SDs was removed, the weighted mean %TBWL was 9.3 ± 5.7% SD, and control-subtracted %TBWL was 5.5 ± 7.8%, which was statistically greater than controls. IGB showed lower efficacy than bariatric surgery (median weight loss of 27% for Rouen-Y gastric bypass (RYGB). The control-subtracted %TBWL over 6 months of 5.5-5.6% is less than the most efficacious FDA-approved weight loss drug, Qsymia. At the recommended dose, Qsymia has a placebo-subtracted %TBWL at 6 months of approximately 6.6%. The weighted mean reported incidence of serious adverse events (SAEs) in the IGB group across all eight studies was 10.5%. Only six of the eight reviewed studies reported adverse events (AEs) in the IGB group, with a pooled reported incidence of 28.2%. Recently, the FDA reported new AEs including acute pancreatitis with ReShape and ORBERA™. Based on the available evidence, it is unlikely that IGB use will supplant other forms of obesity treatment. The estimated cost of endoscopic balloon implantation and retrieval is US $8,150. Collectively, a relatively small control-subtracted %TBWL and the potential for serious complications makes IGB unlikely to become widely adopted. Given the recent FDA warning, IGB longevity on the market is questionable.
Preparations for the Advanced Scintillator Compton Telescope (ASCOT) balloon flight
NASA Astrophysics Data System (ADS)
Sharma, T.; Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; McConnell, M. L.; Ryan, J. M.; Wright, A. M.
2017-08-01
We describe our ongoing work to develop a new medium-energy gamma-ray Compton telescope using advanced scintillator materials combined with silicon photomultiplier readouts and fly it on a scientific balloon. There is a need in high-energy astronomy for a medium-energy gamma-ray mission covering the energy range from approximately 0.4 - 20 MeV to follow the success of the COMPTEL instrument on CGRO. We believe that directly building on the legacy of COMPTEL, using relatively robust, low-cost, off-the-shelf technologies, is the most promising path for such a mission. Fortunately, high-performance scintillators, such as Cerium Bromide (CeBr3) and p-terphenyl, and compact readout devices, such as silicon photomultipliers (SiPMs), are already commercially available and capable of meeting this need. We are now constructing an Advanced Scintillator Compton Telescope (ASCOT) with SiPM readout, with the goal of imaging the Crab Nebula at MeV energies from a high-altitude balloon flight. We expect a 4-sigma detection at 1 MeV in a single transit. We present calibration results of the detector modules, and updated simulations of the balloon instrument sensitivity. If successful, this project will demonstrate that the energy, timing, and position resolution of this technology are sufficient to achieve an order of magnitude improvement in sensitivity in the medium-energy gamma-ray band, were it to be applied to a 1 cubic meter instrument on a long-duration balloon or Explorer platform.
Lu, Xiaojian; Hussain, Mohammed; Ni, Lanchun; Huang, Qinfeng; Zhou, Fei; Gu, Zhikai; Chen, Jian; Ding, Yuchuan; Xu, Feng
2014-01-01
Objective Transarterial treatment of direct carotid cavernous fistulas (DCCF) via embolic materials has been well documented. This study reports, validates, and compares with existing literature our experience treating DCCFs via endovascular approaches by using detachable balloons, coils, and covered stents. Methods Between June 2006 to October 2011, 32 patients (21 male, 11 female) with 32 DCCFs (30 traumatic, 2 spontaneous cavernous ICA aneurysms) were embolized endovascularly. Followup was performed for at least 6 months. Results Among the 32 DCCFs, 21 (65.6%) were embolized using detachable balloons, eight (25.0%) with coils, one (3.1%) with balloons and coils, and two (6.3%) with covered stents. Complete DCCF obliteration was achieved in 31 (96.9%) cases. One fistula failed to respond due to premature balloon detachment. Intracranial bruit in 31 (100%) chemosis and exophthalmos in 28 (100%) cases resolved after embolization. Visual acuity and oculomotor palsy improved in 18 (90%) and 18 (69.2%) cases, respectively. There was no evidence of DCCF recurrence. Thirteen DCCFs were followed up by MRI and five by DSA. In these cases, four (4/13, 30.8%) balloon-embolized DCCFs showed pseudoaneurysms. Three patients were asymptomatic; one had minor left oculomotor palsy. Conclusions Our results correlate and reinforce literature regarding endovascular treatment of DCCFs. Application of Transarterial embolization with detachable balloons, despite extensive use has been decreasing. Coil embolization is an effective and safe alternative for treatment, especially when balloon embolization fails. Covered stent placement may be used as another alternative for selected cases. PMID:25566340
A comparison of Loon balloon observations and stratospheric reanalysis products
NASA Astrophysics Data System (ADS)
Friedrich, Leon S.; McDonald, Adrian J.; Bodeker, Gregory E.; Cooper, Kathy E.; Lewis, Jared; Paterson, Alexander J.
2017-01-01
Location information from long-duration super-pressure balloons flying in the Southern Hemisphere lower stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses including National Centers for Environmental Prediction Climate Forecast System version 2 (NCEP-CFSv2), European Centre for Medium-Range Weather Forecasts (ERA-Interim), NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and the recently released MERRA version 2. Balloon GPS location information is used to derive wind speeds which are then compared with values from the reanalyses interpolated to the balloon times and locations. All reanalysis data sets accurately describe the winds, with biases in zonal winds of less than 0.37 m s-1 and meridional biases of less than 0.08 m s-1. The standard deviation on the differences between Loon and reanalyses zonal winds is latitude-dependent, ranging between 2.5 and 3.5 m s-1, increasing equatorward. Comparisons between Loon trajectories and those calculated by applying a trajectory model to reanalysis wind fields show that MERRA-2 wind fields result in the most accurate simulated trajectories with a mean 5-day balloon-reanalysis trajectory separation of 621 km and median separation of 324 km showing significant improvements over MERRA version 1 and slightly outperforming ERA-Interim. The latitudinal structure of the trajectory statistics for all reanalyses displays marginally lower mean separations between 15 and 35° S than between 35 and 55° S, despite standard deviations in the wind differences increasing toward the equator. This is shown to be related to the distance travelled by the balloon playing a role in the separation statistics.
Ioseliani, G D; Chilaia, S M
1983-02-01
A basically new design for the reversing balloon pump has been proposed for increasing the efficacy of intra-aortic balloon pumping (IABP). The device not only causes a significant increase in discharge, but also permits control of the central and peripheral circulation within the desired limits owing to back-and-forth movements (like a piston) of the balloon pump. Standard one- and two-chamber balloon pumps were compared. In addition to traditional hemodynamic and biochemical indexes, the efficacy of IABP was assessed based on electrode monitor control of PO2 and pH in the myocardium, peripheral tissues, and circulating blood. Based on 54 experiments on dogs, it was found that IABP with reversing balloon pumps in synchronous pulsation resulted in survival of 69% of the cases; PO2 and pH levels in the myocardium, tissues, and blood in the coronary sinus were close to normal, and coronary blood flow and peripheral circulation were increased. With standard one-chamber balloon pumps, the survival rate did not exceed 33.4%; PO2 and pH in the peripheral tissues reached critical levels.
Xinopoulos, Dimitrios; Kypreos, Dimitrios; Bassioukas, Stefanos P; Korkolis, Dimitrios; Mavridis, Konstantinos; Scorilas, Andreas; Dimitroulopoulos, Dimitrios; Loukou, Argyro; Paraskevas, Emmanouel
2011-03-01
Postoperative anastomotic strictures frequently complicate colorectal resection. Currently, various endoscopic techniques are being employed in their management, but the establishment of an optimal therapeutic strategy is still pending. The purpose of our study is to compare through-the-scope (TTS) balloon dilators versus Eder-Puestow metal olive dilators in the treatment of postoperative benign rectal strictures, considering the clinical outcome and cost-effectiveness of each method. A total of 39 patients with benign anastomotic rectal stenosis were retrospectively studied. In group A, 15 patients underwent dilation with Eder-Puestow metal olives, while in group B 19 patients were treated by means of TTS balloon dilators. The technical and clinical success of dilation, complications, number of repeated sessions required, disease-free time intervals, and the overall cost of each procedure were evaluated. Dilations were technically successful in all patients. No major complications occurred in either group. The number of dilations needed, rate of stricture recurrence, and duration of stenosis-free time intervals were not statistically significantly different between the two groups. Both methods proved more effective in older patients, given the greater number of dilations required in younger patients of both groups and higher frequency of stricture relapse in younger balloon-dilated patients (median 64.00 years) compared with older ones (median 75.00 years) (p = 0.001). An indisputable advantage of the Eder-Puestow technique, compared with TTS balloon dilators, is the low cost of equipment (median 22.30
The EOLE experiment: Early results and current objectives
NASA Technical Reports Server (NTRS)
Morel, P.; Bandeen, W. R.
1972-01-01
The EOLE experiment with 480 constant level balloons released in the Southern Hemisphere is described. Each balloon floating freely at approximately the 200 mb level, is a precise tracer of the horizontal motion of air masses, the accuracy of which is limited only by the laminated structure of the stratospheric flow, within an RMS uncertainty of 1.5 m/sec. The balloons were found after 2 months to distribute at random over the whole hemisphere outside the tropics, irrespective of their original launching site. Early results of Eulerian and Lagrangian averages of the EOLE wind data are given for describing the mean 200 mb zonal and meridional circulations. The effect of the small scale eddies of two-dimensional turbulence has been studied with respect to the relative eddy diffusion of pairs of balloons and the relative dispersion of triangular clusters. New estimates of the RMS divergence of the 200 mb flow are given, together with their scale dependence which was found to be a logarithmic law.
Telescope performance and image simulations of the balloon-borne coded-mask protoMIRAX experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penacchioni, A. V., E-mail: ana.penacchioni@inpe.br; Braga, J., E-mail: joao.braga@inpe.br; Castro, M. A., E-mail: manuel.castro@inpe.br
2015-12-17
In this work we present the results of imaging simulations performed with the help of the GEANT4 package for the protoMIRAX hard X-ray balloon experiment. The instrumental background was simulated taking into account the various radiation components and their angular dependence, as well as a detailed mass model of the experiment. We modelled the meridian transits of the Crab Nebula and the Galactic Centre (CG) region during balloon flights in Brazil (∼ −23° of latitude and an altitude of ∼40 km) and introduced the correspondent spectra as inputs to the imaging simulations. We present images of the Crab and ofmore » three sources in the GC: 1E 1740.7-2942, GRS 1758-258 and GX 1+4. The results show that the protoMIRAX experiment is capable of making spectral and timing observations of bright hard X-ray sources as well as important imaging demonstrations that will contribute to the design of the MIRAX satellite mission.« less
Atmospheric and Spectroscopic Research in the Far Infrared
NASA Technical Reports Server (NTRS)
Park, Kwangjai
2001-01-01
The University of Oregon (UO) was a participant in a number of far infrared spectroscopic projects over the past three decades. These include Sub-millimeter Infrared Balloon Experiment (SIBEX), the Balloon Intercomparison Campaign (BIC), and the Infrared Balloon Experiment (IBEX). In addition to these field studies, the UO program contained a detector research component and a laboratory spectroscopy element. Through a productive collaboration with Dr. Carli's group in Italy, with Prof. Ade's group in England and with Dr. Chance of Harvard-Smithsonian, we have made substantial contributions to the development of far infrared spectroscopy as a mature measurement technology for the atmospheric science. This report summarizes the activities during the latest grant period, covering the span from February 22, 1998 to February 21, 2002.
NASA Technical Reports Server (NTRS)
2002-01-01
Cosmic-ray background fluxes were modeled based on existing measurements and theories and are presented here. The model, originally developed for the Gamma-ray Large Area Space Telescope (GLAST) Balloon Experiment, covers the entire solid angle (4(pi) sr), the sensitive energy range of the instrument ((approx) 10 MeV to 100 GeV) and abundant components (proton, alpha, e(sup -), e(sup +), (mu)(sup -), (mu)(sup +) and gamma). It is expressed in analytic functions in which modulations due to the solar activity and the Earth geomagnetism are parameterized. Although the model is intended to be used primarily for the GLAST Balloon Experiment, model functions in low-Earth orbit are also presented and can be used for other high energy astrophysical missions. The model has been validated via comparison with the data of the GLAST Balloon Experiment.
NASA Technical Reports Server (NTRS)
Said, Magdi A; Schur, Willi W.; Gupta, Amit; Mock, Gary N.; Seyam, Abdelfattah M.; Theyson, Thomas
2004-01-01
Science and technology development from balloon-borne telescopes and experiments is a rich return on a relatively modest involvement of NASA resources. For the past three decades, the development of increasingly competitive and complex science payloads and observational programs from high altitude balloon-borne platforms has yielded significant scientific discoveries. The success and capabilities of scientific balloons are closely related to advancements in the textile and plastic industries. This paper will present an overview of scientific balloons as a viable and economical platform for transporting large telescopes and scientific instruments to the upper atmosphere to conduct scientific missions. Additionally, the paper sheds the light on the problems associated with UV degradation of high performance textile components that are used to support the payload of the balloon and proposes future research to reduce/eliminate Ultra Violet (UV) degradation in order to conduct long-term scientific missions.
Field-Line Localized Destabilization of Ballooning Modes in Three-Dimensional Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willensdorfer, M.; Cote, T. B.; Hegna, C. C.
2017-08-25
Field-line localized ballooning modes have been observed at the edge of high confinement mode plasmas in ASDEX Upgrade with rotating 3D perturbations induced by an externally applied n ¼ 2 error field and during a moderate level of edge localized mode mitigation. The observed ballooning modes are localized to the field lines which experience one of the two zero crossings of the radial flux surface displacement during one rotation period. The localization of the ballooning modes agrees very well with the localization of the largest growth rates from infinite-n ideal ballooning stability calculations using a realistic 3D ideal magnetohydrodynamic equilibrium.more » This analysis predicts a lower stability with respect to the axisymmetric case. The primary mechanism for the local lower stability is the 3D distortion of the local magnetic shear.« less
Cosmic ray positron research and silicon track detector development
NASA Technical Reports Server (NTRS)
Jones, W. Vernon; Wefel, John P.
1991-01-01
The purpose was to conduct research on: (1) position sensing detector systems, particularly those based upon silicon detectors, for use in future balloon and satellite experiments; and (2) positrons, electrons, proton, anti-protons, and helium particles as measured by the NASA NMSU Balloon Magnet Facility.
NASA Technical Reports Server (NTRS)
Ohman, Lynne E.
1995-01-01
Rats with either bilateral electrolytic or sham lesions of the ventrolateral portion of the lateral parabrachial nucleus (VLLPBN) were implanted with latex balloons that lay at the right superior vena cava/atrial junction (RSVC/AJ). Water intake in response to isoproterenol was measured both with and without inflation of the balloon. Water intake of the sham-lesioned rats was significantly depressed by balloon inflation during the first hour of the experiment. In contrast, water intake in the VLLPBN-lesioned rats was unaffected by balloon inflation. These results suggest that the VLLPBN is involved in the processing of afferent input from stretch-activated RSVC/AJ receptors.
Search for Cosmic-Ray Antiproton Origins and for Cosmological Antimatter with BESS
NASA Technical Reports Server (NTRS)
Yamamoto, A.; Mitchell, J. W.; Yoshimura, K.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.;
2011-01-01
The balloon-borne experiment with a superconducting spectrometer (BESS) has performed cosmic-ray observations as a US-Japan cooperative space science program, and has provided fundamental data on cosmic rays to study elementary particle phenomena in the early Universe. The BESS experiment has measured the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic origins such as dark matter candidates or primordial black holes. and searched for heavier antinuclei that might reach Earth from antimatter domains formed in the early Universe. The apex of the BESS program was reached with the Antarctic flight of BESS-Polar II, during the 2007- 2008 Austral Summer, that obtained over 4.7 billion cosmic-ray events from 24.5 days of observation. The flight took place at the expected solar minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. Here, we report the scientific restults, focusing on the long-duration flights of BESS-Polar I (2004) and BESS-Polar II (2007-2008).
Chou, Min Min; Kung, Hsiao Fan; Hwang, Jen I; Chen, Wei Chi; Tseng, Jenn Jhy
2015-10-01
The purpose of this study was to investigate the efficacy and safety of temporary prophylactic intravascular balloon occlusion of the common iliac arteries (CIA) before planned cesarean hysterectomy for controlling operative blood loss in abnormal placentation. A retrospective study of 13 pregnant women at risk for placenta accreta identified using sequential obstetric ultrasonography and magnetic resonance imaging from January 2007 to December 2009 was performed. Temporary prophylactic intravascular balloon catheterization of the bilateral CIA before cesarean hysterectomy was performed by interventional radiologists. The maximum duration of occlusion time of CIA must not exceed 60 minutes. The primary outcome for this study included estimated blood loss and secondary outcomes included the development of thromboembolism, disseminated intravascular coagulation and surgical complications. Among these 13 patients, the mean age of the patients was 32.8 ± 0.7 years (range 29-37 years). The mean gestational age at cesarean hysterectomy was 32.2 ± 0.9 weeks (range 28-36 weeks), and the mean intraoperative blood loss was 1902.3 ± 578.8 mL (range 500-8000 mL). Operative bleeding was controlled by conservative treatment without additional surgery in two cases. Importantly, two patients (15.8%) had severe complications possibly related to the interventional procedure. One patient was noted to have a popliteal artery thrombosis. A second patient had an external iliac artery thrombosis with 80-90% occlusion. Both patients required antithrombotic treatment without sequelae. With limited experience in this small series, we observed a statistically significant reduction in operative blood loss after the use of temporary prophylactic balloon occlusion of the CIA technique compared with historical controls of similar demographic characteristics previously published (1902.3 ± 578.8 mL, range 500-8000 mL vs. 4445.7 ± 996.48 mL, range 1040-15,000 mL, p = 0.0402). Additionally, two patients had arterial thrombosis. These preliminary findings are based on a small number of patients, and therefore further investigation is needed to determine the effectiveness and safety of this new technique. Copyright © 2015. Published by Elsevier B.V.
A revised approach to the ULDB design
NASA Astrophysics Data System (ADS)
Smith, M.; Cathey, H.
The National Aeronautics and Space Administration Balloon Program has experienced problems in the scaling up of the proposed Ultra Long Duration Balloon. Full deployment of the balloon envelope has been the issue for the larger balloons. There are a number of factors that contribute to this phenomenon. Analytical treatments of the deployment issue are currently underway. It has also been acknowledged that the current fabrication approach using foreshortening is costly, labor intensive, and requires significant handling during production thereby increasing the chances of inducing damage to the envelope. Raven Industries has proposed a new design and fabrication approach that should increase the probability of balloon deployment, does not require foreshortening, will reduce the handling, production labor, and reduce the final balloon cost. This paper will present a description of the logic and approach used to develop this innovation. This development consists of a serial set of steps with decision points that build upon the results of the previous steps. The first steps include limited material development and testing. This will be followed by load testing of bi-axial reinforced cylinders to determine the effect of eliminating the foreshortening. This series of tests have the goal of measuring the strain in the material as it is bi-axially loaded in a condition that closely replicated the application in the full-scale balloon. Constant lobe radius pumpkin shaped test structures will be designed and analyzed. This matrix of model tests, in conjunction with the deployment analyses, will help develop a curve that should clearly present the deployment relationship for this kind of design. This will allow the ``design space'' for this type of balloon to be initially determined. The materials used, analyses, and ground testing results of both cylinders and small pumpkin structures will be presented. Following ground testing, a series of test flights, staged in increments of increasing suspended load and balloon volume, will be conducted. The first small scale test flight has been proposed for early Spring 2004. Results of this test flight of this new design and approach will presented. Two additional domestic test flights from Ft. Sumner, New Mexico, and Palestine, Texas, and one circumglobal test flight from Australia are planned as part of this development. Future plans for both ground testing and test flights will also be presented.
A Revised Approach to the ULDB Design
NASA Technical Reports Server (NTRS)
Smith, Michael; Cathey, H. M., Jr.
2004-01-01
The National Aeronautics and Space Administration Balloon Program has experienced problems in the scaling up of the proposed Ultra Long Duration Balloon. Full deployment of the balloon envelope has been the issue for the larger balloons. There are a number of factors that contribute to this phenomenon. Analytical treatments of the deployment issue are currently underway. It has also been acknowledged that the current fabrication approach using foreshortening is costly, labor intensive, and requires significant handling during production thereby increasing the chances of inducing damage to the envelope. Raven Industries has proposed a new design and fabrication approach that should increase the probability of balloon deployment, does not require foreshortening, will reduce the handling, production labor, and reduce the final balloon cost. This paper will present a description of the logic and approach used to develop this innovation. This development consists of a serial set of steps with decision points that build upon the results of the previous steps. The first steps include limited material development and testing. This will be followed by load testing of bi-axial reinforced cylinders to determine the effect of eliminating the foreshortening. This series of tests have the goal of measuring the strain in the material as it is bi-axially loaded in a condition that closely replicated the application in the full-scale balloon. Constant lobe radius pumpkin shaped test structures will be designed and analyzed. This matrix of model tests, in conjunction with the deployment analyses, will help develop a curve that should clearly present the deployment relationship for this kind of design. This will allow the "design space" for this type of balloon to be initially determined. The materials used, analyses, and ground testing results of both cylinders and small pumpkin structures will be presented. Following ground testing, a series of test flights, staged in increments of increasing suspended load and balloon volume, will be conducted. The first small scale test flight has been proposed for early Spring 2004. Results of this test flight of this new design and approach will presented. Two additional domestic test flights from Ft. Sumner, New Mexico, and Palestine, Texas, and one circumglobal test flight from Australia are planned as part of this development. Future plans for both ground testing and test flights will also be presented.
Catching Comet's Particles in the Earth's Atmosphere by Using Balloons
NASA Astrophysics Data System (ADS)
Potashko, Oleksandr; Viso, Michel
The project is intended to catch cometary particles in the atmosphere by using balloons. The investigation is based upon knowledge that the Earth crosses the comet’s tails during the year. One can catch these particles at different altitudes in the atmosphere. So, we will be able to gradually advance in the ability to launch balloons from low to high altitudes and try to catch particles from different comet tails. The maximum altitude that we have to reach is 40 km. Both methods - distance observation and cometary samples from mission Stardust testify to the presence of organic components in comet’s particles. It would be useful to know more details about this organic matter for astrobiology; besides, the factor poses danger to the Earth. Moreover, it is important to prove that it is possible to get fundamental scientific results at low cost. In the last 5 years launching balloons has become popular and this movement looks like hackers’ one - as most of them occur without launch permission to airspace. The popularity of ballooning is connected with low cost of balloon, GPS unit, video recording unit. If you use iPhone, you have a light solution with GPS, video, picture and control function in one unit. The price of balloon itself begins from $50; it depends on maximum altitude, payload weight and material. Many university teams realized balloon launching and reached even stratosphere at an altitude of 33 km. But most of them take only video and picture. Meanwhile, it is possible to carry out scientific experiments by ballooning, for example to collect comet particles. There is rich experience at the moment of the use of mineral, chemical and isotopic analysis techniques and data of the comet’s dust after successful landing of StarDust capsule with samples in 2006. Besides, we may use absolutely perfect material to catch particles in the atmosphere, which was used by cosmic missions such as Stardust and Japanese Hayabusa. As to balloon launches, we could use Indian Space Research Organization experience that launched a balloon to stratosphere in 2009 and successfully caught particles with organics at an altitude of 42 km. The main aim of the project is to catch cometary particles by using balloons and to make this method steady and reliable. Why are the comet particles interesting? The nature of a comet is full of puzzles; many researchers think that comets may give keys to the origin of the Solar System and origin of life on the Earth. 2014 and 2015 are special years for comet science: mission Rozetta will reach the vicinity of the comet 67P/Churyumov-Gerasimenko - 10 years after leaving the Earth. Using astronomic data, one may choose date for ballooning, specify the altitude of comet particles by photometry and laser measurement of particle outburst. After height measurement one may launch a balloon. For example, for Draconids particles (Parent comet: 21PGiacobini-Zinner) the expected time of outburst maximum - hence that for catching is 22:42 UT, October 6, 2014. The best conditions for catching will be in Greenland and extreme north-eastern part of North America. Draconids are very convenient for the initial stage of the project - the altitude of observed Draconids outburst is 10 km. One may catch them above 10 km, e.g. 10500 m. We consider ballooning is quite a good method to get experimental data as an additional technique in comparison with big space missions. Moreover, it might be a part of cosmic mission to other planets such as Mars and Venus. The approach of the project is to make targeting catch of comet particles. The method consists of choosing the right place and time for ballooning.
The Cosmic Ray Energetics And Mass Project
NASA Astrophysics Data System (ADS)
Seo, Eun-Suk; Iss-Cream Collaboration
2017-01-01
The balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment was flown for 161 days in six flights over Antarctica, the longest known exposure for a single balloon project. Elemental spectra were measured for Z = 1- 26 nuclei over a wide energy range from 1010 to >1014 eV. Building on the success of those balloon flights, one of the two balloon payloads was transformed for exposure on the International Space Station (ISS) Japanese Experiment Module Exposed Facility (JEM-EF). This ISS-CREAM instrument is configured with redundant and complementary particle detectors. The four layers of its finely segmented Silicon Charge Detector provide precise charge measurements, and its ionization calorimeter provides energy measurements. In addition, scintillator-based Top and Bottom Counting Detectors and the Boronated Scintillator Detector distinguish electrons from nuclei. An order of magnitude increase in data collecting power is expected to reach the highest energies practical with direct measurements. Following completion of its qualification tests at NASA Goddard Space Flight Center, the ISS-CREAM payload was delivered to NASA Kennedy Space Center in August 2015 to await its launch to the ISS. While waiting for ISS-CREAM to launch, the other balloon payload including a Transition Radiation Detector, which is too large for the JEM-EF envelope, has been prepared for another Antarctic balloon flight in 2016. This so-called Boron And Carbon Cosmic rays in the Upper Stratosphere (BACCUS) payload will investigate cosmic ray propagation history. The overall project status and future plans will be presented.
Agarwal, Anurag; Dhama, Vipin; Manik, Yogesh K; Upadhyaya, M K; Singh, C S; Rastogi, V
2015-02-01
Trigeminal neuralgia (TN) is characterized by unilateral, lancinating, paroxysmal pain in the dermatomal distribution area of trigeminal nerve. Percutaneous balloon compression (PBC) of Gasserian ganglion is an effective, comparatively cheaper and simple therapeutic modality for treatment of TN. Compression secondary to PBC selectively injures the large myelinated A-alfa (afferent) fibers that mediate light touch and does not affect A-delta and C-fibres, which carry pain sensation. Balloon compression reduces the sensory neuronal input, thus turning off the trigger to the neuropathic trigeminal pain. In this current case series, we are sharing our experience with PBC of Gasserian Ganglion for the treatment of idiopathic TN in our patients at an academic university-based medical institution in India. During the period of August 2012 to October 2013, a total of twelve PBCs of Gasserian Ganglion were performed in eleven patients suffering from idiopathic TN. There were nine female patients and two male patients with the age range of 35-70 years (median age: 54 years). In all patients cannulation of foramen ovale was done successfully in the first attempt. In eight out of eleven (72.7%) patients ideal 'Pear-shaped' balloon visualization could be achieved. In the remaining three patients (27.3%), inflated balloon was 'Bullet-shaped'. In one patient final placement of Fogarty balloon was not satisfactory and it ruptured during inflation. This case was deferred for one week when it was completed successfully with 'Pear-shaped' balloon inflation. During the follow up period of 1-13 months, there have been no recurrences of TN. Eight out of eleven patients (72.7%) are completely off medicines (carbamazepine and baclofen) and other two patients are stable on very low doses of carbamazepine. All patients have reported marked improvement in quality of life. This case series shows that percutaneous balloon compression is a useful minimally invasive intervention for the treatment of trigeminal neuralgia.
Gondola development for CNES stratospheric balloons
NASA Astrophysics Data System (ADS)
Vargas, A.; Audoubert, J.; Cau, M.; Evrard, J.; Verdier, N.
The CNES has been supporting scientific ballooning since its establishment in 1962. The two main parts of the balloon system or aerostat are the balloon itself and the flight train, comprising the house-keeping gondola, for the control of balloon flight (localization and operational telemetry & telecommand - TM/TC), and the scientific gondola with its dedicated telecommunication system. For zero pressure balloon, the development of new TM/TC system for the housekeeping and science data transmission are going on from 1999. The main concepts are : - for balloon house-keeping and low rate scientific telemetry, the ELITE system, which is based on single I2C bus standardizing communication between the different components of the system : trajectography, balloon control, power supply, scientific TM/TC, .... In this concept, Radio Frequency links are developed between the house keeping gondola and the components of the aerostat (balloon valve, ballast machine, balloon gas temperature measurements, ...). The main objectives are to simplify the flight train preparation in term of gondola testing before flight, and also by reducing the number of long electrical cables integrated in the balloon and the flight train; - for high rate scientific telemetry, the use of functional interconnection Internet Protocol (IP) in interface with the Radio Frequency link. The main idea is to use off-the-shelf IP hardware products (routers, industrial PC, ...) and IP software (Telnet, FTP, Web-HTTP, ...) to reduce the development costs; - for safety increase, the adding, in the flight train, of a totally independent house keeping gondola based on the satellite Inmarsat M and Iridium telecommunication systems, which permits to get real time communications between the on-board data mobile and the ground station, reduced to a PC computer with modem connected to the phone network. These GEO and LEO telecommunication systems give also the capability to operate balloon flights over longer distance (over the line of sight) than with dedicated RF system, which requires balloon visibility from the ground station. For long duration flights (3 months) of Infra Red Montgolfieres, a house keeping gondola has been developed, using the Inmarsat C standard to have communication all around the world (up to N or S 80 ° latitude) with an automatic switching between the 4 geostationnary Inmarsat satellites. After validation flights performed from Bauru / Brazil. (2000 & 2001) and Kiruna/Sweden (2002), the first operational flights took place from Bauru in February 2003 during ENVISAT validation campaign. The next flights will be realized in the framework of the Hibiscus campaign planned in February 2004 in Bauru.. The Balloon Division was involved in the Franco / Japanese HSFD II project which consists to drop a mock-up of the Japanese HOPE-X space shuttle from a stratospheric balloon to validate its flight from the altitude of 30 km. We developed a specific gondola as a service module for the HOPE-X shuttle, providing power and GPS radio-frequency signal during the balloon flight phase, telemetry end remote control radio frequency links and separation system with pyrotechnic cutters for the drop of the shuttle. A successful flight was performed at Kiruna in July 2003. Concerning gondola with pointing system, the study of a big g-ray telescope (8 m of focal length), started by the end of 2002. For this 1 ton gondola, the telescope stabilization system will be based on control moment gyro (CMG). The CMG system has been designed and will be manufactured and validated during 2004. The first flight of this g-ray gondola is planned for 2006. The progress, status and future plans concerning these gondola developments will be presented.
The High Energy Replicated Optics to Explore the Sun (HEROES)
NASA Astrophysics Data System (ADS)
Christe, Steven; Shih, A. Y.; Rodriguez, M.; Cramer, A.; Gregory, K.; Gaskin, J.; Chavis, K.; Smith, L.; HOPE/HEROES Team
2013-07-01
Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaboration between NASA Marshall Space Flight Center and Goddard Space Flight Center to upgrade an existing payload to make unique scientific measurements of the Sun (during the day) and astrophysical targets (at night) during a single flight. HEROES will use grazing-incidence x-ray focusing optics combined with position-sensitive detectors to make new high energy 20 keV to 75 keV) observations of the Sun in order to understand particle acceleration in solar flares. The HEROES science payload consists of 8 mirror modules, housing 109 grazing incidence replicated optics, mounted on a carbon-fiber-Aluminum optical bench 6 m from a matching array of focal-plane detectors (high pressure xenon gas scintillation proportional counters). HEROES will investigate electron acceleration and transport in the solar corona both in the solar flares and in the non-flaring quiet Sun. HEROES will image the Sun with an angular resolution of 20 arcsec (FWHM) and will have a sensitivity up to ~50 times better than RHESSI at 20 keV. During 6 hours of solar observations (a minimum requirement for a typical balloon flight), HEROES has a ~75% chance of observing at least one flare with a GOES class above C1, and a ~20% chance of at least one flare above M1. HEROES is expected to observe the faint HXR emission from electrons streaming down the legs of magnetic loops or escaping along open magnetic field lines. Experience on this flight will be used to design of new balloon payload (Super HERO) capable of capable of observing the Sun for 2-4 weeks using a Long Duration Balloon (LDB). This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer, and Office of the Chief Technologist.
The E and B EXperiment: Implementation and Analysis of the 2009 Engineering Flight
NASA Astrophysics Data System (ADS)
Milligan, Michael Bryce
The E and B EXperiment (EBEX) is a balloon-borne telescope designed to map the polarization of the cosmic microwave background (CMB) and emission from galactic dust at millimeter wavelengths from 150 to 410 GHz. The primary science objectives of EBEX are to: detect or constrain the primordial B-mode polarization of the CMB predicted by inflationary cosmology; measure the CMB B-mode signal induced by gravitational lensing; and characterize the polarized thermal emission from interstellar dust. EBEX will observe a 420 square degree patch of the sky at high galactic latitude with a telescope and camera that provide an 8 arcminute beam at three observing bands (150, 250, and 410 GHz) and a 6.2 degree diffraction limited field of view to two large-format bolometer array focal planes. Polarimetry is achieved via a continuously rotating half-wave plate (HWP), and the optical system is designed from the ground up for control of sidelobe response and polarization systematic errors. EBEX is intended to execute fly or more Antarctic long duration balloon campaigns. In June 2009 EBEX completed a North American engineering flight launched from NASA's Columbia Scientific Ballooning Facility (CSBF) in Ft. Sumner, NM and operated in the stratosphere above 30 km altitude for ˜10 hours. During flight EBEX must be largely autonomous as it conducts pointed, scheduled observations; tunes and operates 1432 TES bolometers via 28 embedded Digital frequency-domain multiplexing (DfMux) computers; logs over 3 GiB/hour of science and housekeeping data to onboard redundant disk storage arrays; manages and dispatches jobs over a fault-tolerant onboard Ethernet network; and feeds a complex real-time data processing infrastructure on the ground via satellite and line-of-sight (LOS) downlinks. In this thesis we review the EBEX instrument, present the optical design and the computational architecture for in-flight control and data handling, and the quick-look software stack. Finally we describe the 2009 North American test flight and present analysis of data collected at the end of that flight that characterizes scan-synchronous signals and the expected response to emission from thermal dust in our galaxy.
Use of mechanical devices for distal hemoperfusion during balloon catheter coronary angioplasty.
Heibig, J; Angelini, P; Leachman, D R; Beall, M M; Beall, A C
1988-01-01
Previous attempts to protect the dependent myocardium during balloon catheter coronary angioplasty in animals and humans have had generally unsatisfactory results. This paper summarizes the authors' experience in investigating commercially available mechanical pumps for distal coronary hemoperfusion during balloon angioplasty. Both roller and piston pumps can attain adequate distal perfusion without significant side effects in the majority of patients. Our goal was to suppress angina for at least 5 min to prolong balloon inflation in awake patients. Minor T-wave changes without concomitant angina pectoris can be expected when the distal coronary bed is perfused with hypothermic blood. Side branch occlusion by the inflated balloon prevents effective protection of the corresponding part of the dependent myocardium during distal hemoperfusion, which may result in persistent angina and ST-T changes uncorrected by increasing the hemoperfusion rate. Distal coronary diffuse spasm, rare and transient, was the only immediate complication of this procedure. It is suggested that intense local wall stimulation could occur with a higher flow rate (jet effect). Improved balloon catheter pressure/flow characteristics and on-line continuous mechanical pumps should soon make distal coronary hemoperfusion through balloon catheters an accepted clinical technique.
Endoscopic minor papilla balloon dilation for the treatment of symptomatic pancreas divisum.
Yamamoto, Natsuyo; Isayama, Hiroyuki; Sasahira, Naoki; Tsujino, Takeshi; Nakai, Yousuke; Miyabayashi, Koji; Mizuno, Suguru; Kogure, Hirofumi; Sasaki, Takashi; Hirano, Kenji; Tada, Minoru; Koike, Kazuhiko
2014-08-01
A subpopulation of patients with pancreas divisum experience symptomatic events such as recurrent acute pancreatitis and chronic pancreatitis. Minor papilla sphincterotomy has been reported as being an effective treatment. The aim of this study was to evaluate the safety and efficacy of endoscopic balloon dilation for the minor papilla. Between 2000 and 2012, 16 patients were retrospectively included in this study. After endoscopic balloon dilation for the minor papilla was received, a pancreatic stent or a nasal pancreatic drainage catheter was placed for 1 week. If a stricture or obstruction was evident, it was treated with balloon dilation followed by long-term stent placement (1 year). When an outflow of pancreatic juice was disturbed by a pancreatic stone, endoscopic stone extraction was performed. Balloon dilation and stent placement were achieved and were successful in all the cases (16/16; 100%). Clinical improvement was achieved in 7 (84.7%) of the 9 patients with recurrent acute pancreatitis and in 6 (85.7%) of the 7 patients with chronic pancreatitis. Early complications were observed in 1 (6.3%) patient. Pancreatitis or bleeding related to balloon dilation was not observed. Endoscopic balloon dilation for the minor papilla is feasible for the management of symptomatic pancreas divisum.
Clarençon, Frédéric; Pérot, Guillaume; Biondi, Alessandra; Di Maria, Federico; Szatmary, Zoltan; Chiras, Jacques; Sourour, Nader
2012-03-01
To present the feasibility of using the Ascent balloon, a new double-lumen remodeling balloon, for a new 2-in-1 technique allowing coiling through the lumen of the balloon without the use of an additional coiling microcatheter. Remodeling technique had enlarged the indications for endovascular treatment of intracranial aneurysm. Nevertheless, one of the limitations of this technique is that it requires using 2 devices in the same parent artery. A 55-year-old woman presented with a 7.7 × 4.5-mm incidental anterior communicating artery aneurysm. Only 1 A1 segment (left side) was patent on the cerebral angiogram. A 6F Fargo Max guiding catheter was positioned in the left petrous internal carotid artery. The Ascent balloon was placed in front of the neck of the aneurysm after navigation on a Traxcess 0.014-in guidewire. Coiling of the aneurysm sac was performed via 1 lumen of the device under iterative inflations of the balloon through the second lumen. This new 2-in-1 technique using a sole remodeling balloon without an additional coiling microcatheter is very promising, especially in cases of a small-caliber parent artery.
ARCADE-R2 experiment on board BEXUS 17 stratospheric balloon
NASA Astrophysics Data System (ADS)
Barbetta, Marco; Boesso, Alessandro; Branz, Francesco; Carron, Andrea; Olivieri, Lorenzo; Prendin, Jacopo; Rodeghiero, Gabriele; Sansone, Francesco; Savioli, Livia; Spinello, Fabio; Francesconi, Alessandro
2015-09-01
This paper provides an overview of the ARCADE-R2 experiment, a technology demonstrator that aimed to prove the feasibility of small-scale satellite and/or aircraft systems with automatic (a) attitude determination, (b) control and (c) docking capabilities. The experiment embodies a simplified scenario in which an unmanned vehicle mock-up performs rendezvous and docking operations with a fixed complementary unit. The experiment is composed by a supporting structure, which holds a small vehicle with one translational and one rotational degree of freedom, and its fixed target. The dual system features three main custom subsystems: a relative infrared navigation sensor, an attitude control system based on a reaction wheel and a small-scale docking mechanism. The experiment bus is equipped with pressure and temperature sensors, and wind probes to monitor the external environmental conditions. The experiment flew on board the BEXUS 17 stratospheric balloon on October 10, 2013, where several navigation-control-docking sequences were executed and data on the external pressure, temperature, wind speed and direction were collected, characterizing the atmospheric loads applied to the vehicle. This paper describes the critical components of ARCADE-R2 as well as the main results obtained from the balloon flight.
The survival of micro-organisms in space. Further rocket and balloon-borne exposure experiments.
Hotchin, J; Lorenz, P; Markusen, A; Hemenway, C
1967-01-01
This report describes the results of survival studies of terrestrial micro-organisms exposed directly to the space environment on two balloons and in two rocket flights. The work is part of a program to develop techniques for the collection of micro-organisms in the size range of micrometeorite particles in space or non-terrestrial atmospheres, and their return to earth in a viable state for further study. Previous survival studies were reported (J. Hotchin, P. Lorenz and C. Hemenway, Nature 206 (1965) 442) in which a few relatively large area samples of micro-organisms were exposed on millipore filter cemented to aluminum plates. In the present series of experiments, newly developed techniques have resulted in a 25-fold miniaturization resulting in a corresponding increase in the number of experiments performed. This has enabled a statistical evaluation of the results to be made. A total of 756 separate exposure units (each approximately 5 x 5 mm in size) were flown in four experiments, and organisms used were coliphage T1, penicillium roqueforti (THOM) mold spores, poliovirus type I (Pfizer attenuated Sabin vaccine strain), and bacillus subtilis spores. The organisms were deposited either by spraying directly upon the vinyl-coated metal units, or by droplet seeding into shallow depressions in the millipore filter membrane-coated units. Groups of units were prepared comprising fully exposed, inverted (screened by 2 mm of Al), and filter-protected organisms. All of these were included in the flight set, the back up set, and a laboratory control set. The altitude of the exposures varied from 35 km in the balloon experiments to 150 km in the rocket experiments. Times of exposures at altitude were approximately 6 hours for the balloon flights and about 3 minutes for the rocket experiments.
NASA Astrophysics Data System (ADS)
Redkar, R. T.
1993-02-01
A new grade of balloon film extruded out of LLDPE resin with Butene as comonomer and Cold Brittle Point (CBP) at -88°C was extruded and successfully flight tested with a 25 micron single shell 53,000 Cu.M. balloon carrying 330 Kg. payload to 33 Km. altitude. We have also produced superior LLDPE film out of Dowlex 2045 Dow Chemicals resin with Octene as comonomer, which has the cold brittle point lower than -90°C and superior mechanical properties at low temperatures. A high pressure hydrogen filling system capable of delivering 2200 Cu.Ft. of hydrogen per minute has been commissioned and successfully utilised in 11 flights. With this new filling system, the inflation time is drastically reduced by over 50% thereby reducing the duration of pre-launch stresses on the ground bubble. After the acceptance of our revised design criteria for balloons to be flown from equatorial latitudes by M/s.Winzen International Inc., U.S.A., 41 flights have been made, out of which 36 have been successful giving us a success record of 88%. Out of the 5 failures, 3 have been float failures with gross inflations exceeding 1950 kg, for which launch spool damage is a suspect. To reduce the spool damage, the shell thickness of the subsequent balloon was increased to 20.32 microns from 17.78 microns and the flight was a success. For further reducing the possibility of launch spool damage, a larger diameter spool is being designed.
Vomiting and gastric electrical dysrhythmia in dogs.
Ueno, T; Chen, J D Z
2004-04-01
The correlation between gastric myoelectrical activity (GMA) and gastrointestinal symptoms such as nausea and vomiting is poorly understood. The aim of this study was to assess the association of GMA with vomiting induced by retrograde gastric electrical stimulation or duodenal balloon distention. Ten dogs were involved in this study. Vomiting was induced by retrograde gastric electrical stimulation in 6 dogs and by duodenal balloon distention in 4 dogs. Computerized spectral analysis and visual analysis were applied to detect the GMA change during various periods before and after vomiting. Gastric dysrhythmia preceded vomiting but was of brief duration. The major pattern of dysrhythmia immediately before vomiting was tachyarrhythmia and gastric slow wave was completely uncoupled before vomiting. Gastric dysrhythmia and slow wave uncoupling were also noticed immediately after vomiting but the dogs recovered quickly. The major pattern of dysrhythmia after vomiting was arrhythmia. GMA was normal during the periods other than 5 min before and during vomiting and 5 min after vomiting. Gastric dysrhythmia seems to be the cause of vomiting induced by retrograde gastric electrical stimulation or duodenal balloon distention. It is brief and characterized with tachyarrhythmia and uncoupling.
Porter, Thomas R; Xie, Feng; Lof, John; Powers, Jeffry; Vignon, Francois; Shi, William; White, Matthew
2017-08-01
Acute ischemic stroke is often due to thromboembolism forming over ruptured atherosclerotic plaque in the carotid artery (CA). The presence of intraluminal CA thrombus is associated with a high risk of thromboembolic cerebral ischemic events. The cavitation induced by diagnostic ultrasound high mechanical index (MI) impulses applied locally during a commercially available intravenous microbubble infusion has dissolved intravascular thrombi, especially when using longer pulse durations. The beneficial effects of this in acute carotid thromboembolism is not known. An oversized balloon injury was created in the distal extracranial common CA of 38 porcine carotid arteries. After this, a 70% to 80% stenosis was created in the mid common CA proximal to the injury site using partial balloon inflation. Acute thrombotic CA occlusions were created just distal to the balloon catheter by injecting fresh autologous arterial thrombi. After angiographic documentation of occlusion, the common carotid thrombosis was treated with either diagnostic low MI imaging alone (0.2 MI; Philips S5-1) applied through a tissue mimicking phantom (TMP) or intermittent diagnostic high MI stable cavitation (SC)-inducing impulses with a longer pulse duration (0.8 MI; 20 microseconds' pulse duration) or inertial cavitation (IC) impulses (1.2 MI; 20 microseconds' pulse duration). All treatment times were for 30 minutes. Intravenous ultrasound contrast (2% Definity; Lantheus Medical) was infused during the treatment period. Angiographic recanalization in 4 intracranial and extracranial vessels downstream from the CA occlusion (auricular, ascending pharyngeal, buccinator, and maxillary) was assessed with both magnetic resonance 3-dimensional time-of-flight and phase contrast angiography. All magnetic resonance images were interpreted by an independent neuroradiologist using the thrombolysis in cerebral infarction (TICI) scoring system. By phase contrast angiography, at least mild recanalization (TICI 2a or higher) was seen in 64% of downstream vessels treated with SC impulses compared with 33% of IC treated and 29% of low MI alone treated downstream vessels (P = 0.001), whereas moderate or complete recanalization (TICI 2b or higher) was seen in 39% of SC treated vessels compared with 10% IC treated and 21% of low MI alone treated vessels (P = 0.001). High MI 20-microsecond pulse duration impulses during a commercial microbubble infusion can be used to recanalize acutely thrombosed carotid arteries and restore downstream flow without anticoagulants. However, this effect is only seen with SC-inducing impulses and not at higher mechanical indices, when a paradoxical reversal of the thrombolytic effect is observed. Diagnostic ultrasound-induced SC can be a nonsurgical method of dissolving CA thrombi and preventing thromboembolization.
Turbulence fluxes and variances measured with a sonic anemometer mounted on a tethered balloon
NASA Astrophysics Data System (ADS)
Canut, Guylaine; Couvreux, Fleur; Lothon, Marie; Legain, Dominique; Piguet, Bruno; Lampert, Astrid; Maurel, William; Moulin, Eric
2016-09-01
This study presents the first deployment in field campaigns of a balloon-borne turbulence probe, developed with a sonic anemometer and an inertial motion sensor suspended below a tethered balloon. This system measures temperature and horizontal and vertical wind at high frequency and allows the estimation of heat and momentum fluxes as well as turbulent kinetic energy in the lower part of the boundary layer. The system was validated during three field experiments with different convective boundary-layer conditions, based on turbulent measurements from instrumented towers and aircraft.
NASA Technical Reports Server (NTRS)
Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.;
2011-01-01
The energy spectrum of cosmic-ray antiprotons (p(raised bar)'s) collected by the BESS-Polar II instrument during a long-duration flight over Antarctica in the solar minimum period of December 2007 through January 2008. The p(raised bar) spectrum measured by BESS-Polar II shows good consistency with secondary p(raised bar) calculations. Cosmologically primary p(raised bar)'s have been searched for by comparing the observed and calculated p(raised bar) spectra. The BESSPolar II result shows no evidence of primary p(raised bar)'s originating from the evaporation of PBH.
NASA Technical Reports Server (NTRS)
Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Kim, K. C.; Kusumoto, A.; Lee, M. H.; Makida, Y.;
2012-01-01
The energy spectrum of cosmic-ray antiprotons (p-bar's) from 0.17 to 3.5 GeV has been measured using 7886 p-bar's detected by BESS-Polar II during a long-duration flight over Antarctica near solar minimum in December 2007 and January 2008. This shows good consistency with secondary p-bar calculations. Cosmologically primary p-bar's have been investigated by comparing measured and calculated p-bar spectra. BESS-Polar II data.show no evidence of primary p-bar's from the evaporation of primordial black holes.
High-Energy Cosmic-Ray Antiprotons with the CAPRICE98 experiment
NASA Astrophysics Data System (ADS)
Boezio, M.; Ambriola, M.; Bartalucci, S.; Bellotti, R.; Bergström, D.; Bonvicini, V.; Bravar, U.; Cafagna, F.; Carlson, P.; Casolino, M.; Ciacio, F.; Circella, M.; De Marzo, C. N.; De Pascale, M. P.; Finetti, N.; Francke, T.; Hansen, P.; Hof, M.; Kremer, J.; Menn, W.; Mitchell, J. W.; Mocchitti, E.; Morselli, A.; Ormes, J. F.; Papini, P.; Piccardi, S.; Picozza, P.; Ricci, M.; Schiavon, P.; Simon, M.; Sparvoli, R.; Spillantini, P.; Stephens, S. A.; Stochaj, S. J.; Streitmatter, R. E.; Suffert, M.; Vacchi, A.; Vannuccini, E.; Zampa, N.; WIZARD/CAPRICE Collaboration
2001-08-01
Observations of cosmic-ray antiprotons were performed by the balloon-borne experiment CAPRICE98 that was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. We report on the absolute-antiproton-energy spectrum determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV.
TT and C - First TDRSS, Then Commercial GEO and Big LEO and Now through LEO
NASA Technical Reports Server (NTRS)
Morgan, Dwayne; Bull, Barton; Grant, Charles; Streich, Ronald; Powers, Edward I. (Technical Monitor)
2001-01-01
The advent of low earth orbit (LEO) commercial communications satellites provides an opportunity to dramatically reduce Telemetry Tracking and Control (TT&C) costs of launch vehicles and Unpiloted Aerial Vehicles (UAVs) by reducing or eliminating ground infrastructure. Personnel from the Goddard Space Flight Center Wallops Flight Facility (GSFC/WFF) in Virginia have successfully used commercial GEO & Big LEO communications satellites for Long Duration Balloon flight TT&C. In addition, TDRSS capability for these balloons has been developed by WFF for the Ultra Long Duration Balloons with the first test flight launch in January 2001 for one global circumnavigation at 120,000 feet altitude launched from Alice Springs. Australia. Numerous other low cost applications can new utilize the commercial LEO satellites for TT&C. The Flight Modern became a GSFC/WFF Advanced Range Technology Initiative (ARTI) in an effort to streamline TT&C capability to the user community at low cost. Phase I ground tests of The Flight Modem verified downlink communications quality of service and measured transmission latencies. These tests were completed last year, Phase II consisting of aircraft flight tests provide much of the data presented in this paper. Phase III of the Flight Modern baseline test program is a demonstration of the ruggedized version of the WFF Flight Modem flown on one sounding rocket launched from Sweden. Flights of opportunity have been and are being actively pursued with other centers, ranges and users at universities. The WFF goal is to reduce TT&C costs by providing a low cost COTS Flight Modem with a User Handbook containing system capability and limitation descriptions. Additionally, since data transmission is by packetized Internet Protocol (IP), data can be received and commands initialed from practically any location with no infrastructure. The WFF, like most ranges, has been using GPS receivers on sounding rockets and long duration balloons for several years, The WFF Flight Modem contains a GPS receiver to provide vehicle position for tracking and vehicle recovery. The system architecture which integrates antennas, GPS receiver, commercial satellite packet data modem. and a single board computer with custom software is described and a number of technical challenges are discussed along with the plan for their resolution. These include antenna development, high Doppler rates, reliability, environmental ruggedness, hand over between satellites and data security. An aggressive test plan is included which in addition to environmental Testing measures bit error rate latency and antenna patterns. Additional flight tests are planned far the near future on aircraft, long duration balloons and sounding rockets and these results as well as the current status of the project arc reported. Use of the WFF Flight Modem on small satellites is also being pursued. The LEO satellite constellation altitude above 1400 km is not an obstacle because most spacecraft do not require continuous Communications. The challenge is scheduling where store and forward techniques for command are required and downlink when the communications link allows connection (above 60 percent of the time depending on the satellite altitude). Sophisticated scheduling techniques utilizing 2-line orbital element sets available on the NASA/NORAD Internet site could be implemented for rare special cases. The current 9600 baud rate of the LEO communications link may be increased With special techniques that are planned for development in the WFF Flight Modem project.
14 CFR 61.133 - Commercial pilot privileges and limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... rating takes a practical test in a balloon with an airborne heater— (i) The pilot certificate will... airborne heater. (ii) The limitation specified in paragraph (b)(2)(i) of this section may be removed when... person obtains the required aeronautical experience in a balloon with an airborne heater and receives a...
Hot-Air Balloons: Project-Centered Study as a Bridge between Science and Technology Education.
ERIC Educational Resources Information Center
Barak, Moshe; Raz, Eli
2000-01-01
Describes the development of a project-based unit on hot-air balloons used with Israeli junior high school students. Concludes that students in the program gained experience with high-level scientific principles and technological processes, the project allows for a learning environment of cooperation and teamwork, and collaboration between…
Polarizing PVC--A Discrepant Event
ERIC Educational Resources Information Center
Headly, David; Karabatek, Mohamed
2016-01-01
This article describes an experiment teaching polarization phenomena and the Triboelectric Series in a unit on electrostatics. Using rods (2-3 ft in length) made from wood, aluminum, PVC, and Plexiglas on an inverted watch glass, these items demonstrated to the class how a party balloon rubbed with fake rabbit fur (charging the balloon negative)…
Access to Space: Hands on flight instrument experience for sophomores at UW
NASA Astrophysics Data System (ADS)
Holzworth, R. H.; Harnett, E. M.; Winglee, R. M.; Chinowsky, T. M.; McCarthy, M. P.
2003-12-01
Students at the college sophomore level, with no science or technical prerequisites, form teams to design and fabricate sounding balloon payloads. This 200 level class promotes interest in research and involves a mixture of lectures about the upper atmosphere and space environment coupled with an intense laboratory experience. Students are taught rudimentary electronics and fabrication techniques, culminating after just 4 weeks of the flight of a CricketSat instrument (single, thermistor-controlled tone telemetry modulation; kit by Bob Twiggs at Stanford) on a sounding balloon. Following this appetite whetting, student teams design, test, calibrate and interface an instrument of their own choosing to a telemetry system for sounding balloon flight. During Spring 2003 student built payloads included devices to measure direct and reflected solar radiation, magnetic field variations, temperature and pressure, and even a small 'biosphere' with crickets which actually survived flight to near 30km altitude! Students go on a one day field trip to launch the sounding balloons and attempt recovery. This is followed by the last two weeks of data analysis and final report writing.
A Sensitivity Analysis of fMRI Balloon Model.
Zayane, Chadia; Laleg-Kirati, Taous Meriem
2015-01-01
Functional magnetic resonance imaging (fMRI) allows the mapping of the brain activation through measurements of the Blood Oxygenation Level Dependent (BOLD) contrast. The characterization of the pathway from the input stimulus to the output BOLD signal requires the selection of an adequate hemodynamic model and the satisfaction of some specific conditions while conducting the experiment and calibrating the model. This paper, focuses on the identifiability of the Balloon hemodynamic model. By identifiability, we mean the ability to estimate accurately the model parameters given the input and the output measurement. Previous studies of the Balloon model have somehow added knowledge either by choosing prior distributions for the parameters, freezing some of them, or looking for the solution as a projection on a natural basis of some vector space. In these studies, the identification was generally assessed using event-related paradigms. This paper justifies the reasons behind the need of adding knowledge, choosing certain paradigms, and completing the few existing identifiability studies through a global sensitivity analysis of the Balloon model in the case of blocked design experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles
2014-04-01
The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarizationmore » on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.« less
Intraoperative photodynamic treatment for high-grade gliomas
NASA Astrophysics Data System (ADS)
Dupont, C.; Reyns, N.; Deleporte, P.; Mordon, S.; Vermandel, M.
2017-02-01
Glioblastoma (GBM) is the most common primary brain tumor. Its incidence is estimated at 5 to 7 new cases each year for 100 000 inhabitants. Despite reference treatment, including surgery, radiation oncology and chemotherapy, GBM still has a very poor prognosis (median survival of 15 months). Because of a systematic relapse of the tumor, the main challenge is to improve local control. In this context, PhotoDynamic Therapy (PDT) may offer a new treatment modality. GBM recurrence mainly occurs inside the surgical cavity borders. Thus, a new light applicator was designed for delivering light during a PDT procedure on surgical cavity borders after Fluorescence Guided Resection. This device combines an inflatable balloon and a light source. Several experimentations (temperature and impermeability tests, homogeneity of the light distribution and ex-vivo studies) were conducted to characterize the device. An abacus was created to determine illumination time from the balloon volume in order to reach a therapeutic fluence value inside the borders of the surgical cavity. According to our experience, cavity volumes usually observed in the neurosurgery department lead to an acceptable average lighting duration, from 20 to 40 minutes. Thus, extra-time needed for PDT remains suitable with anesthesia constraints. A pilot clinical trial is planned to start in 2017 in our institution. In view of the encouraging results observed in preclinical or clinical, this intraoperative PDT treatment can be easily included in the current standard of care.
Measurement results from a balloon experiment simulating land mobile satellite transmissions
NASA Technical Reports Server (NTRS)
Vogel, W. J.; Torrence, G. W.
1984-01-01
A transmitter operating at 869.525 MHz was twice carried by a stratospheric balloon to an altitude of about 40 km. A motor vehicle was driven within the line-of-sight from the transmitter. Measurements of the received signal strength were made every 1/8 wavelength for an overall travelling distance of about seven hundred kilometers. This scenario was to simulate a satellite system providing mobile communications to rural areas. The statistics of the sampled field, consisting of a combination of direct wave, specular reflection and diffuse components, are presented as a function of elevation angle. Parameters such as type of road driven (mostly 2 lane) or type of landscape (rolling to flat) and vegetation (pine and mixed forest) encountered are described where possible. The power distribution function for all the data, at elevation angles from 10 to 35 degrees, is 1 dB below the free space mean at the 50% level, 7 dB below at the 90% level, and 18 dB below at the 99% level. In the elevation angle range of 30 to 35 degrees the corresponding values were found to be .5, 1.2, and 4.5 dB. The conditional fade duration and level crossing rate distribution functions are also presented. The former shows some dependence on the threshold level, the latter almost none.
The Mars Society Balloon Probe Mission
NASA Astrophysics Data System (ADS)
Griebel, H. S.; Knuth, S.; Landgraf, M.; Kalkum, F.; Hettmer, M.
2002-01-01
Throughout the past decade Mars has been subject to extensive research. Largely due to the fact that Mars is so alike our home world, numerous space craft have been sent out to visit this planet. Even though the majority of these craft have perished en route, or failed upon arrival, a vast amount of data could already be gathered. Orbiting satellites have mapped the surface and analysed global atmospheric and geophysical parameters, while the three successful landers of the Viking and Pathfinder missions have measured soil composition, sent back surface images and have probed the atmosphere for composition and climate data. And yet we find ourselves left with a gap - that of the intermediate scale. That of long range mobility of planetary dimensions combined with close up surface measurements and imaging. To fill this gap, various institutions have repeatedly suggested and studied the feasibility of an aerial reconnaissance mission. Following them is the Mars Society Germany in it's effort to fly a mission of that sort, supported by numerous companies, universities and the German Space Agency DLR. Besides being a technology demonstrator, the proposed craft will perform unique scientific experiments. Being a super pressure balloon it will have the ability to make close up images of the surface from an oblique perspective, probe the weak residual magnetic field from its position beneath the ionosphere, and use an atmospheric science package to provide for in situ measurements of local pressure, temperature and humidity. The associated instruments are a high resolution planetary camera provided by DLR Berlin, a magnetometer provided by TU Braunschweig and a meteorology package provided by the Finnish Meteorological Institute. These sensors have a combined weight of roughly 600 g without electronics, and are suspended beneath a 15 m diameter balloon in a small gondola of 4.3 kg. The aerobot itself has a mass of 17 kg and floats at approximately 5 km altitude. Eventually, the aerial platform itself becomes a scientific experiment owing to the fact that it represents a test particle that can be traced to investigate atmospheric movements on a planetary scale. While two possible balloon systems have been proposed, namely the Montgolfiere and the Super Pressure Balloon, the latter was chosen by the Mars Society Germany and is now subject of further design studies. At this time it is the only concept that seems to offer a potential for mission durations exceeding a few sols. The aerobot will be deployed after successful descent to the ground by the entry vehicle itself. It weighs less than 90 kg and is planned to be transported out to Mars on board the AMSAT P5-A mission, slated to launch in 2007. In addition to the work already mentioned, a preliminary parametric cost analysis for development, test and manufacturing of the craft has been performed, resulting in an estimated total cost of 55 M.
NASA Technical Reports Server (NTRS)
Tueller, Jack (Technical Monitor); Fazio, Giovanni G.; Tolls, Volker
2004-01-01
The purpose of this study was to investigate the feasibility of developing a daytime star tracker for ULDB flights using a commercially available off-the-shelf infrared array camera. This report describes the system used for ground-based tests, the observations, the test results, and gives recommendations for continued development.
NASA Technical Reports Server (NTRS)
Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Kumazawa, T.; Kusumoto, A.;
2016-01-01
The BESS-Polar Collaboration measured the energy spectra of cosmic-ray protons and helium during two long-duration balloon flights over Antarctica in December 2004 and December 2007, at substantially different levels of solar modulation. Proton and helium spectra probe the origin and propagation history of cosmic rays in the galaxy, and are essential to calculations of the expected spectra of cosmic-ray antiprotons, positrons, and electrons from interactions of primary cosmic-ray nuclei with the interstellar gas, and to calculations of atmospheric muons and neutrinos. We report absolute spectra at the top of the atmosphere for cosmic-ray protons in the kinetic energy range 0.2-160 GeV and helium nuclei 0.15-80 GeV/nucleon. The corresponding magnetic rigidity ranges are 0.6-160 GV for protons and 1.1-160 GV for helium. These spectra are compared to measurements from previous BESS flights and from ATIC-2, PAMELA, and AMS-02. We also report the ratio of the proton and helium fluxes from 1.1 GV to 160 GV and compare to ratios from PAMELA and AMS-02.
Heiser, M; Malaty, H
2001-01-01
Percutaneous endoscopic gastrostomy (PEG) has been an established procedure for nearly 20 years. Caring for patients with a PEG has been incorporated into the practice of nurses in most gastroenterology settings. Several practice-related questions have arisen, particularly in relation to replacement PEGs. In an attempt to obtain relevant information for decisions relating to cost-effectiveness and providing optimum care for PEG replacement, two clinical research questions were studied: (1) is there a difference in patient (stomal) response related to two different replacement PEG tubes, and (2) is there a difference in the duration (life-span) between the two types of replacement tubes? A non-experimental, two-group descriptive study was conducted to answer the two clinical research questions. Two types of replacement PEG tubes were evaluated: a balloon type and a non-balloon type. Stoma response (recording skin and insertion site characteristics) and PEG life span were the measures of interest. Differences in the occurrence of skin and insertion site problems between the two groups were not statistically significant. Differences between the life spans of the two tubes were found to be statistically significant at three time intervals. Findings give information to the practitioner involved in making independent and interdependent practice decisions when planning care for patients with a PEG. Suggestions for additional research and replication are included.
Lee, Hyun Jik; Park, Wan; Lee, Hyuk; Lee, Keun Ho; Park, Jun Chul; Shin, Sung Kwan; Lee, Sang Kil; Lee, Yong Chan; Noh, Sung Hoon
2014-07-01
The aim of this study was to evaluate the outcome of endoscopic dilation for benign anastomotic stricture after radical gastrectomy in gastric cancer patients. Gastric cancer patients who underwent endoscopic balloon dilation for benign anastomosis stricture after radical gastrectomy during a 6-year period were reviewed retrospectively. Twenty-one patients developed benign strictures at the site of anastomosis. The majority of strictures occurred within 1 year after surgery (95.2%). The median duration to stenosis after surgery was 1.70 months (range, 0.17 to 23.97 months). The success rate of the first endoscopic dilation was 61.9%. Between the restenosis group (n=8) and the no restenosis group (n=13), there were no significant differences in the body mass index (22.82 kg/m(2) vs 22.46 kg/m(2)), interval to symptom onset (73.9 days vs 109.3 days), interval to treatment (84.6 days vs 115.6 days), maximal balloon diameter (14.12 mm vs 15.62 mm), number of balloon dilation sessions (1.75 vs 1.31), location of gastric cancer or type of surgery. One patient required surgery because of stricture refractory to repeated dilation. Endoscopic dilation is a highly effective treatment for benign anastomotic strictures after radical gastrectomy for gastric cancer and should be considered a primary intervention prior to proceeding with surgical revision.
Middle atmospheric electrodynamics
NASA Technical Reports Server (NTRS)
Kelley, M. C.
1983-01-01
A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.
Energy spectra of atmospheric muons measured with the CAPRICE98 balloon experiment
NASA Astrophysics Data System (ADS)
Boezio, M.; Bonvicini, V.; Schiavon, P.; Vacchi, A.; Zampa, N.; Bergström, D.; Carlson, P.; Francke, T.; Hansen, P.; Mocchiutti, E.; Suffert, M.; Hof, M.; Kremer, J.; Menn, W.; Simon, M.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; de Marzo, C. N.; Papini, P.; Piccardi, S.; Spillantini, P.; Vannuccini, E.; Bartalucci, S.; Ricci, M.; Casolino, M.; de Pascale, M. P.; Morselli, A.; Picozza, P.; Sparvoli, R.; Mitchell, J. W.; Ormes, J. F.; Stephens, S. A.; Streitmatter, R. E.; Bravar, U.; Stochaj, S. J.
2003-04-01
The measurement of the atmospheric muon spectrum is currently of great interest because of the study of atmospheric neutrinos and the claim of neutrino oscillations made in 1998 by the Super-Kamiokande Collaboration. A measurement of the muon flux is an indirect measure of the neutrino flux. Therefore, it can be used to improve the calculation of the atmospheric neutrino flux, which in turn can be compared with the observed neutrino rates in underground detectors. This article reports a new measurement of the μ+ and μ- spectra at several atmospheric depths in the momentum ranges 0.3 20 GeV/c and 0.3 40 GeV/c, respectively. The data were collected by the balloon-borne experiment CAPRICE98 during the ascent of the payload on 28 May 1998 from Fort Sumner, N. M. The experiment used the NMSU-WIZARD/CAPRICE 98 balloon-borne magnet spectrometer equipped with a gas ring imaging Cherenkov detector and a silicon-tungsten calorimeter.
New method for scanning spacecraft and balloon-borne/space-based experiments
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1991-01-01
A new method is presented for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in X-ray and gamma ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.
Watson, Timothy; El-Jack, Seifeddin; Stewart, James T; Ormiston, John
2013-09-01
Intravascular ultrasound (IVUS) is a proven and safe imaging modality used to guide percutaneous coronary intervention (PCI). The Volcano VIBE™ RX Vascular Imaging Balloon Catheter is a novel rapid exchange, 0.014" wire-compatible multi-lumen conventional balloon catheter modified with the addition of an IVUS transducer proximal to the balloon, delivered via a standard 6 Fr sheath. We sought to evaluate the safety, balloon performance, and image quality of the VIBE™ RX in patients scheduled for coronary intervention. Patients aged >21 and <85 years with single or multivessel coronary disease scheduled for PCI due to coronary ischaemic symptoms were included. Those with angiographic features that precluded the safe or informative use of the device were excluded. Twenty-nine patients having angiography because of ischaemic symptoms underwent 44 VIBE RX imaging runs, with balloon dilation in 20. Successful device deployment was achieved in all but one patient. All images were adequate and reproducible. One patient had a non-ST-elevation MI felt to be due to the complexity of the procedure rather than directly related to the VIBE™ RX. The study demonstrated the safety and effectiveness of the VIBE™ RX for its intended purpose with minimal failure rate and no directly related complications.
Gulino, Ferdinando Antonio; Guardo, F Di; Zambrotta, E; Di Gregorio, L M; Miranda, Andrea; Capriglione, Stella; Palumbo, M A
2018-05-18
We studied the efficacy of using pre-cesarean delivery (CD) temporary occlusion of internal iliac arteries with balloon catheters in case of placenta previa-accreta in terms of maternal and neonatal outcomes and to test accuracy of ultrasound (US) and magnetic resonance imaging (MRI) for prenatal diagnosis. From March 2014 to January 2018, women with an US and/or MRI diagnosis of placenta previa-accreta and a planned delivery were enrolled and divided into two groups: balloon catheterization group (women treated with preoperative catheters and CD) and control group (women candidates to elective CD). 37 patients were enrolled: 16 in balloon catheterization group and 21 in control group. Significant differences were detected in estimated blood loss. Prophylactic balloon catheterization could reduce intraoperative red blood cell transfusion. The incidence of hysterectomy was lower in balloon group. No statistical difference was found for neonatal outcomes. Both US and MRI have showed to be useful and complementary to diagnose placenta previa-accreta. Temporal, perioperative, and prophylactic positioning of balloon vascular catheters is an effective method for managing severe hemorrhage caused by placenta previa-accreta as it reduced intraoperative blood loss, lessened perioperative hemostatic measures and intraoperative red cell transfusions, and reduced hysterectomies.
A Spreadsheet Simulation Tool for Terrestrial and Planetary Balloon Design
NASA Technical Reports Server (NTRS)
Raquea, Steven M.
1999-01-01
During the early stages of new balloon design and development, it is necessary to conduct many trade studies. These trade studies are required to determine the design space, and aid significantly in determining overall feasibility. Numerous point designs then need to be generated as details of payloads, materials, mission, and manufacturing are determined. To accomplish these numerous designs, transient models are both unnecessary and time intensive. A steady state model that uses appropriate design inputs to generate system-level descriptive parameters can be very flexible and fast. Just such a steady state model has been developed and has been used during both the MABS 2001 Mars balloon study and the Ultra Long Duration Balloon Project. Using Microsoft Excel's built-in iteration routine, a model was built. Separate sheets were used for performance, structural design, materials, and thermal analysis as well as input and output sheets. As can be seen from figure 1, the model takes basic performance requirements, weight estimates, design parameters, and environmental conditions and generates a system level balloon design. Figure 2 shows a sample output of the model. By changing the inputs and a few of the equations in the model, balloons on earth or other planets can be modeled. There are currently several variations of the model for terrestrial and Mars balloons, as well there are versions of the model that perform crude material design based on strength and weight requirements. To perform trade studies, the Visual Basic language built into Excel was used to create an automated matrix of designs. This trade study module allows a three dimensional trade surface to be generated by using a series of values for any two design variables. Once the fixed and variable inputs are defined, the model automatically steps through the input matrix and fills a spreadsheet with the resulting point designs. The proposed paper will describe the model in detail, including current variations. The assumptions, governing equations, and capabilities will be addressed. Detailed examples of the model in practice will also be used.
Modified jailed balloon technique for bifurcation lesions.
Saito, Shigeru; Shishido, Koki; Moriyama, Noriaki; Ochiai, Tomoki; Mizuno, Shingo; Yamanaka, Futoshi; Sugitatsu, Kazuya; Tobita, Kazuki; Matsumi, Junya; Tanaka, Yutaka; Murakami, Masato
2017-12-04
We propose a new systematic approach in bifurcation lesions, modified jailed balloon technique (M-JBT), and report the first clinical experience. Side branch occlusion brings with a serious complication and occurs in more than 7.0% of cases during bifurcation stenting. A jailed balloon (JB) is introduced into the side branch (SB), while a stent is placed in the main branch (MB) as crossing SB. The size of the JB is half of the MB stent size. While the proximal end of JB attaching to MB stent, both stent and JB are simultaneously inflated with same pressure. JB is removed and then guidewires are recrossed. Kissing balloon dilatation (KBD) and/or T and protrusion (TAP) stenting are applied as needed. Between February 2015 and February 2016, 233 patients (254 bifurcation lesions including 54 left main trunk disease) underwent percutaneous coronary intervention (PCI) using this technique. Procedure success was achieved in all cases. KBD was performed for 183 lesions and TAP stenting was employed for 31 lesions. Occlusion of SV was not observed in any of the patients. Bench test confirmed less deformity of MB stent in M-JBT compared with conventional-JBT. This is the first report for clinical experiences by using modified jailed balloon technique. This novel M-JBT is safe and effective in the preservation of SB patency during bifurcation stenting. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Polites, Michael E.
1990-01-01
A new method is presented for scanning balloon-borne experiments, free-flying spacecraft, and gimballed experiments mounted to the space shuttle or the space station. It uses rotating-unbalanced-mass (RUM) devices for generating circular, line, or raster scan patterns and an auxiliary control system for target acquisition, keeping the scan centered on the target, and producing complementary motion for raster scanning. It is ideal for applications where the only possible way to accomplish the required scan is to physically scan the entire experiment or spacecraft as in x ray and gamma ray experiments. In such cases, this new method should have advantages over prior methods in terms of either power, weight, cost, performance, stability, or a combination of these.
Zábori, Balázs; Hirn, Attila; Deme, Sándor; Apáthy, István; Csőke, Antal; Pázmándi, Tamás; Szántó, Péter
2016-12-01
Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research aeroplanes. However, there is only limited information about that between 15 and 30 km altitudes. In order to study the radiation environment in the stratosphere, an experiment was built by students from Hungarian universities that flew on board the BEXUS (Balloon Experiments for University Students) stratospheric balloon in Northern Sweden, from the ESRANGE Space Center. The main technical goals of the experiment were to test at the first time the TRITEL 3D silicon detector telescope system in close to space conditions and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TRITEL system to determine dosimetric and radiation quantities during the balloon flight and to intercompare the TRITEL and Pille results to provide a correction factor for the Pille measurements. To fulfil the scientific and technological objectives, several different dosimeter systems were included in the experiment: an advanced version of the TRITEL silicon detector telescope, Geiger-Müller (GM) counters and Pille thermoluminescent dosimeters. The float altitude of the BEXUS balloon was ∼28.6 km; the total flight time was ∼4 h. Measurement data from the active instruments were received in real time by the ground team during the mission. There were no failures in the operation of the system; everything worked as expected. This article presents the scientific goals and results in detail. From the TRITEL measurements, the linear energy transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined. Estimations for the uncertainty in the TRITEL measurements were given. The deposited energy spectra measured with the TRITEL instrument were compared with the count rates measured with the GM counters. The experiences and results gained in the frame of the project will be used in the evaluation of TRITEL data from measurements on board the International Space Station. As an outlook a short overview is given of the planned rocket radiation experiments based on the system used in the BEXUS programme. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Out of This World Science, Down to Earth Prices
NASA Technical Reports Server (NTRS)
Kremic, Tibor; Hurford, Terry Anthony; Mandell, Avi; Arnold, Steven
2015-01-01
The National Aeronautics and Space Administration (NASA), along with the rest of government and the nation have become increasing cost conscious in recent years. This has resulted in renewed efforts at finding ways to do more with less. Planetary science is no exception. The 2013 Decadal Survey for Planetary Science made great efforts to understand the costs of proposed missions. The community has been asked to develop more affordable versions of mission concepts, especially in the flagship category. Many in the community continue to encourage NASA to prioritize lower cost missions at a more frequent cadence over fewer but larger missions. This presentation discusses a new tool in the planetary science arsenal to achieve a broad set of planetary science questions at costs that are lower, and in some cases dramatically lower, than other options in the past. Technology advances in pointing systems and the growing capabilities of stratospheric balloons, such as the ultra-long duration flights, have caught the attention of many in the planetary science community. A workshop was held in January 2012 to help planetary scientists and NASA better understand the capabilities of balloon borne platforms, along with their strengths and limitations. Perhaps most importantly, the workshop focused on the potential science that could be achieved. The science and engineering participants discussed what, if any, science can be achieved and why or how balloon platforms would offer an advantage. Since that first workshop, not only have further discussions and studies occurred within the community, but demonstration missions have been flown with compelling results. These balloon missions have shown that the science envisioned can indeed be achievable, that balloon platforms do offer some unique advantages; and that repeated flights can be implemented at relatively low cost. The presentation briefly summarizes the potential science and the characteristics of a balloon based observatory that make it desirable for some science investigations. The recent missions are described along with some of their challenges and achievements. Finally, a brief summary of options moving forward are considered.
A high-resolution gamma-ray and hard X-ray spectrometer for solar flare observations in Max 1991
NASA Technical Reports Server (NTRS)
Lin, R. P.; Curtis, D. W.; Harvey, P.; Hurley, K.; Primbsch, J. H.; Smith, D. M.; Pelling, R. M.; Duttweiler, F.
1988-01-01
A long duration balloon flight instrument for Max 1991 designed to study the acceleration of greater than 10 MeV ions and greater than 15 keV electrons in solar flares through high resolution spectroscopy of the gamma ray lines and hard X-ray and gamma ray continuum is described. The instrument, HIREGS, consists of an array of high-purity, n-type coaxial germanium detectors (HPGe) cooled to less than 90 K and surrounded by a bismuth germanate (BGO) anticoincidence shield. It will cover the energy range 15 keV to 20 MeV with keV spectral resolution, sufficient for accurate measurement of all parameters of the expected gamma ray lines with the exception of the neutron capture deuterium line. Electrical segmentation of the HPGe detector into a thin front segment and a thick rear segment, together with pulse-shape discrimination, provides optimal dynamic range and signal-to-background characteristics for flare measurements. Neutrons and gamma rays up to approximately 0.1 to 1 GeV can be detected and identified with the combination of the HPGe detectors and rear BGO shield. The HIREGS is planned for long duration balloon flights (LDBF) for solar flare studies during Max 1991. The two exploratory LDBFs carried out at mid-latitudes in 1987 to 1988 are described, and the LDBFs in Antarctica, which could in principle provide 24 hour/day solar coverage and very long flight durations (20 to 30 days) because of minimal ballast requirements are discussed.
NASA Technical Reports Server (NTRS)
1971-01-01
Nimbus 4 satellite data for the period September 1 through October 31 1970 are presented. Data are also given on interrogation recording and location system balloon tracking from launch through March 27, 1971.
NASA Technical Reports Server (NTRS)
Richards, Paul L.
1991-01-01
An all-sky survey at submillimeter waves is examined. Far-infrared all-sky surveys were performed using high-thoroughput bolometric detectors from a one-meter balloon telescope. Based on the large-bodied experience obtained with the original all-sky survey telescope, a number of radically different approaches were implemented. Continued balloon measurements of the spectrum of the cosmic microwave background were performed.
Cho, Moonsung; Neubauer, Peter; Fahrenson, Christoph; Rechenberg, Ingo
2018-06-01
The physical mechanism of aerial dispersal of spiders, "ballooning behavior," is still unclear because of the lack of serious scientific observations and experiments. Therefore, as a first step in clarifying the phenomenon, we studied the ballooning behavior of relatively large spiders (heavier than 5 mg) in nature. Additional wind tunnel tests to identify ballooning silks were implemented in the laboratory. From our observation, it seems obvious that spiders actively evaluate the condition of the wind with their front leg (leg I) and wait for the preferable wind condition for their ballooning takeoff. In the wind tunnel tests, as-yet-unknown physical properties of ballooning fibers (length, thickness, and number of fibers) were identified. Large spiders, 16-20 mg Xysticus spp., spun 50-60 nanoscale fibers, with a diameter of 121-323 nm. The length of these threads was 3.22 ± 1.31 m (N = 22). These physical properties of ballooning fibers can explain the ballooning of large spiders with relatively light updrafts, 0.1-0.5 m s-1, which exist in a light breeze of 1.5-3.3 m s-1. Additionally, in line with previous research on turbulence in atmospheric boundary layers and from our wind measurements, it is hypothesized that spiders use the ascending air current for their aerial dispersal, the "ejection" regime, which is induced by hairpin vortices in the atmospheric boundary layer turbulence. This regime is highly correlated with lower wind speeds. This coincides well with the fact that spiders usually balloon when the wind speed is lower than 3 m s-1.
High submuscular placement of urologic prosthetic balloons and reservoirs via transscrotal approach.
Morey, Allen F; Cefalu, Christopher A; Hudak, Steven J
2013-02-01
Traditional placement of inflatable penile prosthesis (IPP) reservoirs and/or artificial urinary sphincter (AUS) balloons into the space of Retzius may be challenging following major pelvic surgery. The aim of this study is to report our 1-year experience using a novel technique for high balloon/reservoir placement beneath the rectus abdominus muscle, thus completely obviating deep pelvic dissection during prosthetic urologic surgery. A retrospective review of all patients who underwent IPP and/or AUS placement between June 2011 and June 2012 was performed. All had AUS balloons and/or IPP reservoirs placed in a submuscular location by bluntly tunneling through the external inguinal ring into a potential space between the transversalis fascia and the rectus abdominus muscle using a long, angled, lung grasping clamp. Patient demographics, perioperative outcomes, and initial follow-up patient-reported outcomes were reviewed. During the study period, 120 submuscular balloons/reservoirs were inserted in 107 consecutive patients who underwent placement of an IPP (61 patients), AUS (33 patients), or both (13 patients). Among our 48 most recent patients, 41 (85%) reported they were totally unable to feel their balloon/reservoir, and all but two patients reported no bother from the submuscular balloon/reservoir placement. Of the 120 total submuscular balloons and reservoirs, surgical time and outcomes of the prosthetic procedures appeared similar to those placed using traditional methods; two reservoirs required revision surgery for repositioning. High submuscular placement of genitourinary prosthetic balloons and reservoirs via a transscrotal approach is both safely and effective, while avoiding deep retropubic dissection. © 2012 International Society for Sexual Medicine.
Aquablation Procedural Outcomes for BPH in Large Prostates (80-150cc): Initial Experience.
Desai, Mihir; Bidair, Mo; Bhojani, Naeem; Trainer, Andrew; Arther, Andrew; Kramolowsky, Eugene; Doumanian, Leo; Elterman, Dean; Kaufman, Ronald P; Lingeman, James; Krambeck, Amy; Eure, Gregg; Badlani, Gopal; Plante, Mark; Uchio, Edward; Gin, Greg; Goldenberg, Larry; Paterson, Ryan; So, Alan; Humphreys, Mitch; Roehrborn, Claus; Kaplan, Steven; Motola, Jay; Zorn, Kevin C
2018-04-25
To present early safety and feasibility data from a multicenter prospective study of Aquablation in treatment of symptomatic men with large volume BPH. Between September and December 2017, 101 men with moderate-to-severe BPH symptoms and prostate volume of 80-150cc underwent Aquablation in a prospective multicenter international clinical trial. Baseline demographics and standardized postoperative management parameters were carefully recorded in a central independently monitored database. Surgeons answered analog scale questionnaires on intraoperative technical factors and postoperative management. Adverse events through 1 month were adjudicated by an independent clinical events committee. Mean prostate volume was 107cc (range 80 to 150). Mean operative time was 37 minutes (range 15-97) and mean Aquablation resection time was 8 minutes (range 3-15). Adequate adenoma resection was achieved with a single pass in 34 patients and additional passes in 67 patients (mean 1.8 treatment passes), all in a single operative session. Hemostasis was achieved using either a Foley balloon catheter placed in the bladder under traction (N=98, mean duration 18 hours) or direct tamponade using a balloon inflated in the prostate fossa (N=3, mean duration 15 hours). No subject required electrocautery for hemostasis at the time of primary procedure. The average length of stay following the procedure was 1.6 days (range same day-6 days). The observed Clavien-Dindo (CD) grade 2 or higher event rate at 1 month was 29.7%. Bleeding complications were recorded in 10 (9.9%) patients during the index procedure hospitalization prior to discharge and included six (5.9%) peri-operative transfusions. Aquablation is feasible and safe in treating men with men with large prostates (80-150cc). The six month efficacy data are being accrued and will be presented in future publications (number, NCT03123250). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Generalized math model for simulation of high-altitude balloon systems
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.; Hinton, D. E.; Yang, J. K.
1985-01-01
Balloon systems have proved to be a cost-effective means for conducting research experiments (e.g., infrared astronomy) in the earth's atmosphere. The purpose of this paper is to present a generalized mathematical model that can be used to simulate the motion of these systems once they have attained float altitude. The resulting form of the model is such that the pendulation and spin motions of the system are uncoupled and can be analyzed independently. The model is evaluated by comparing the simulation results with data obtained from an actual balloon system flown by NASA.
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII)
NASA Technical Reports Server (NTRS)
Rinehart, Stephen
2012-01-01
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer to simultaneously obtain spatial and spectral information on science targets; the long baseline provides subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.
2017-12-08
Matthew Mullin and Bobby Meazell, Orbital ATK/Columbia Scientific Balloon Facility technicians, conduct compatibility testing on NASA Langley Research Center’s Radiation Dosimetry Experiment payload Wednesday, Sept. 9, at Fort Sumner, N.M. The successful compatibility test was a key milestone in ensuring the flight readiness of RaD-X, which is scheduled to launch on an 11-million-cubic-foot NASA scientific balloon no earlier than Friday, Sept. 11, from the agency’s balloon launching facility in Fort Sumner. RaD-X will measure cosmic ray energy at two separate altitude regions in the stratosphere—above 110,000 feet and between 69,000 to 88,500 feet. The data is key to confirming Langley’s Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model, which is a physics-based model that determines solar radiation and galactic cosmic ray exposure globally in real-time. The NAIRAS modeling tool will be used to help enhance aircraft safety as well as safety procedures for the International Space Station. In addition to the primary payload, 100 small student experiments will fly on the RaD-X mission as part of the Cubes in Space program. The program provides 11- to 18-year-old middle and high school students a no-cost opportunity to design and compete to launch an experiment into space or into the near-space environment. The cubes measure just 4 centimeters by 4 centimeters. NASA’s scientific balloons offer low-cost, near-space access for scientific payloads weighing up to 8,000 pounds for conducting scientific investigations in fields such as astrophysics, heliophysics and atmospheric research. NASA’s Wallops Flight Facility in Virginia manages the agency’s scientific balloon program with 10 to 15 flights each year from launch sites worldwide. Orbital ATK provides program management, mission planning, engineering services and field operations for NASA’s scientific balloon program. The program is executed from the Columbia Scientific Balloon Facility in Palestine, Texas. The Columbia team has launched more than 1,700 scientific balloons in over 35 years of operation. Anyone may track the progress of the Fort Sumner flights, which includes a map showing the balloon’s real-time location, at: towerfts.csbf.nasa.gov/ For more information on the balloon program, see: www.nasa.gov/scientificballoons NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Astrophysics Data System (ADS)
Chanover, Nancy J.; Aslam, Shahid; DiSanti, Michael A.; Hibbitts, Charles A.; Honniball, Casey I.; Paganini, Lucas; Parker, Alex; Skrutskie, Michael F.; Young, Eliot F.
2016-10-01
The Gondola for High Altitude Planetary Science (GHAPS) is an observing asset under development by NASA's Planetary Science Division that will be hosted on stratospheric balloon missions intended for use by the broad planetary science community. GHAPS is being designed in a modular fashion to interface to a suite of instruments as called for by science needs. It will operate at an altitude of 30+ km and will include an optical telescope assembly with a 1-meter aperture and a pointing stability of approximately 1 arcsecond with a flight duration of ~100 days. The spectral grasp of the system is envisaged to include wavelengths spanning the near-ultraviolet to near/mid-infrared (~0.3-5 µm) and possibly to longer wavelengths.The GHAPS Science Instrument Definition Team (SIDT) was convened in May 2016 to define the scope of science investigations, derive the science requirements and instrument concepts for GHAPS, prioritize the instruments according to science priorities that address Planetary Science Decadal Survey questions, and generate a report that is broadly disseminated to the planetary science community. The SIDT examined a wide range of solar system targets and science questions, focusing on unique measurements that could be made from a balloon-borne platform to address high-priority planetary science questions for a fraction of the cost of space missions. The resulting instrument concepts reflect unique capabilities offered by a balloon-borne platform (e.g., observations at spectral regions inaccessible from the ground due to telluric absorption, diffraction-limited imaging, and long duration uninterrupted observations of a target). We discuss example science cases that can be addressed with GHAPS and describe a notional instrument suite that can be used by guest observers to pursue decadal-level science questions.
Kim, Sang Heum; Kim, Tae Gon; Kong, Min Ho
2017-09-01
The Onyx system has been well established in recent years as a very important material in the treatment of arteriovenous malformations (AVMs). When using the Onyx, it is essential to wait for the creation of a plug around the tip of the catheter, which enables the effective forward penetration of Onyx. Recent reports have shown that the introduction of a dimethyl sulfoxide compatible dual-lumen balloon microcatheter improves the efficiency of AVM embolization. We report our recent experience of two cases of intracranial AVM embolization using Onyx and the transarterial balloon-assisted technique. In both cases, the procedures were successfully performed and the nidus of the AVM was totally occluded in a relatively short time. This technique may enable immediate forward flow and penetration of Onyx without concern about reflux. It may also reduce the procedure time and increase the angiographic occlusion rate. Navigation of the dual-lumen balloon microcatheter nevertheless remains a challenge.
Kim, Sang Heum; Kong, Min Ho
2017-01-01
The Onyx system has been well established in recent years as a very important material in the treatment of arteriovenous malformations (AVMs). When using the Onyx, it is essential to wait for the creation of a plug around the tip of the catheter, which enables the effective forward penetration of Onyx. Recent reports have shown that the introduction of a dimethyl sulfoxide compatible dual-lumen balloon microcatheter improves the efficiency of AVM embolization. We report our recent experience of two cases of intracranial AVM embolization using Onyx and the transarterial balloon-assisted technique. In both cases, the procedures were successfully performed and the nidus of the AVM was totally occluded in a relatively short time. This technique may enable immediate forward flow and penetration of Onyx without concern about reflux. It may also reduce the procedure time and increase the angiographic occlusion rate. Navigation of the dual-lumen balloon microcatheter nevertheless remains a challenge. PMID:29159158
Gabriel, Kara I; Williamson, Ashley
2010-12-01
Framing uncertain scenarios to emphasize potential positive or negative elements influences decision making and behavior. The current experiment investigated sex differences in framing effects on risk-taking propensity in a modified version of the Balloon Analogue Risk Task (BART). Male and female undergraduates completed questionnaires on sensation seeking, impulsiveness, and risk and benefit perception prior to viewing one of three framing conditions for the BART: (1) positively-framed instructions emphasizing the ability to earn money if balloons were inflated to large size; (2) negatively framed instructions emphasizing the possibility that money could be lost if balloons were inflated to bursting; and (3) completely framed instructions noting both possible outcomes. Results revealed correlations between BART performance and impulsiveness for both sexes. Compared to positive and complete framing, negatively framed instructions decreased balloon inflation time in women but not men, indicating sex differences in response to treatments designed to alter risk-taking behavior.
Structure of micro-instabilities in tokamak plasmas: Stiff transport or plasma eruptions?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dickinson, D., E-mail: dd502@york.ac.uk; EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB; Roach, C. M.
2014-01-15
Solutions to a model 2D eigenmode equation describing micro-instabilities in tokamak plasmas are presented that demonstrate a sensitivity of the mode structure and stability to plasma profiles. In narrow regions of parameter space, with special plasma profiles, a maximally unstable mode is found that balloons on the outboard side of the tokamak. This corresponds to the conventional picture of a ballooning mode. However, for most profiles, this mode cannot exist, and instead, a more stable mode is found that balloons closer to the top or bottom of the plasma. Good quantitative agreement with a 1D ballooning analysis is found, providedmore » the constraints associated with higher order profile effects, often neglected, are taken into account. A sudden transition from this general mode to the more unstable ballooning mode can occur for a critical flow shear, providing a candidate model for why some experiments observe small plasma eruptions (Edge Localised Modes, or ELMs) in place of large Type I ELMs.« less
Microcontroller uses in Long-Duration Ballooning
NASA Astrophysics Data System (ADS)
Jones, Joseph
This paper discusses how microcontrollers are being utilized to fulfill the demands of long duration ballooning (LDB) and the advantages of doing so. The Columbia Scientific Balloon Facility (CSBF) offers the service of launching high altitude balloons (120k ft) which provide an over the horizon telemetry system and platform for scientific research payloads to collect data. CSBF has utilized microcontrollers to address multiple tasks and functions which were previously performed by more complex systems. A microcontroller system has been recently developed and programmed in house to replace our previous backup navigation system which is used on all LDB flights. A similar microcontroller system was developed to be independently launched in Antarctica before the actual scientific payload. This system's function is to transmit its GPS position and a small housekeeping packet so that we can confirm the upper level float winds are as predicted from satellite derived models. Microcontrollers have also been used to create test equipment to functionally check out the flight hardware used in our telemetry systems. One test system which was developed can be used to quickly determine if our communication link we are providing for the science payloads is functioning properly. Another system was developed to provide us with the ability to easily determine the status of one of our over the horizon communication links through a closed loop system. This test system has given us the capability to provide more field support to science groups than we were able to in years past. The trend of utilizing microcontrollers has taken place for a number of reasons. By using microcontrollers to fill these needs, it has given us the ability to quickly design and implement systems which meet flight critical needs, as well as perform many of the everyday tasks in LDB. This route has also allowed us to reduce the amount of time required for personnel to perform a number of the tasks required during the initial fabrication and also refurbishing processes of flight hardware systems. The recent use of microcontrollers in the design of both LDB flight hardware and test equipment has shown some examples of the adaptability and usefulness they have provided for our workplace.
Fresiello, Libera; Khir, Ashraf W; Di Molfetta, Arianna; Kozarski, Maciej; Ferrari, Gianfranco
2013-11-01
The aim of this study was to investigate the effects of the intra aortic balloon pump (IABP) and of aortic compliance on left ventricular performance, including the effects of baroreflex control. The study was conducted using a hybrid cardiovascular simulator, including a computational cardiovascular sub-model, a hydraulic sub-model of the descending aorta, and a baroreflex computational sub-model. A 40 cc balloon was inserted into a rubber tube component of the hydraulic sub-model. A comparative analysis was conducted for two aortic compliances (C1 = 2.4 and C2 = 1.43 cm3/mmHg, corresponding to an aortic pulse pressure of 23 mmHg and 35 mmHg, respectively), driving the balloon for different trigger timings. Under C1 conditions, the IABP induced higher effects on baroreflex activity (decrement of sympathetic efferent activity: 10% for C1 and 14.7% for C2) and ventricular performance (increment of cardiac output (CO): 3.7% for C1 and 5.2% for C2, increment of endocardial viability ratio (EVR): 24.8% for C1 and 55% for C2). The best balloon timing was different for C1 and C2: inflation trigger timing (from the dicrotic notch) -0.09 s for C1 and -0.04 s for C2, inflation duration 0.25 s for C1 and 0.2 s for C2. Early inflation ensures better EVR, CO, and an increment of the afferent nerve activity, hence causing peripheral resistance and heart rate to decrease. The best balloon timing depends on aortic compliance, thus suggesting the need for a therapy tailored to the specific conditions of individual patients.
NASA Technical Reports Server (NTRS)
1997-01-01
This is the Final Report for grant NAGW-624, which was our original grant to develop the Energetic X- ray Imaging Telescope Experiment (EXITE) and Associated Balloon Gondola. The EXITE grant was changed over to a new grant (from GSFC), NAG5-5103, beginning in FY97 and is currently very much continuing under that grant. The Final Report presented here then covers the EXITE development under the original grant, which in fact continued (with a 1 year no-cost extension) through December 31, 1997.
Carbon dioxide measurements in the stratosphere
NASA Technical Reports Server (NTRS)
Mauersberger, K.; Finstad, R.
1980-01-01
A mass spectrometer experiment for the analysis of minor constituents in the stratosphere has been flown successfully four times from Palestine, Texas on board a balloon gondola. The carbon dioxide mixing ratio, which shows unexpectedly large variations in the stratosphere, reached 400 ppm in one particular night flight. This is about 20% higher than the ground value. Evidence is presented that the experiment performed well during each of the balloon flights. The isotopic ratio C-12/C-13 was measured and found in good agreement with previous air analyses showing a depletion of C-13.
Adapted ECC ozonesonde for long-duration flights aboard boundary-layer pressurised balloons
NASA Astrophysics Data System (ADS)
Gheusi, François; Durand, Pierre; Verdier, Nicolas; Dulac, François; Attié, Jean-Luc; Commun, Philippe; Barret, Brice; Basdevant, Claude; Clenet, Antoine; Derrien, Solène; Doerenbecher, Alexis; El Amraoui, Laaziz; Fontaine, Alain; Hache, Emeric; Jambert, Corinne; Jaumouillé, Elodie; Meyerfeld, Yves; Roblou, Laurent; Tocquer, Flore
2016-12-01
Since the 1970s, the French space agency CNES has developed boundary-layer pressurised balloons (BLPBs) with the capability to transport lightweight scientific payloads at isopycnic level and offer a quasi-Lagrangian sampling of the lower atmosphere over very long distances and durations (up to several weeks).
Electrochemical concentration cell (ECC) ozonesondes are widely used under small sounding balloons. However, their autonomy is limited to a few hours owing to power consumption and electrolyte evaporation. An adaptation of the ECC sonde has been developed specifically for long-duration BLPB flights. Compared to conventional ECC sondes, the main feature is the possibility of programming periodic measurement sequences (with possible remote control during the flight). To increase the ozonesonde autonomy, the strategy has been adopted of short measurement sequences (2-3 min) regularly spaced in time (e.g. every 15 min). The rest of the time, the sonde pump is turned off. Results of preliminary ground-based tests are first presented. In particular, the sonde was able to provide correct ozone concentrations against a reference UV-absorption ozone analyser every 15 min for 4 days. Then we illustrate results from 16 BLBP flights launched over the western Mediterranean during three summer field campaigns of the ChArMEx project (http://charmex.lsce.ipsl.fr): TRAQA in 2012, and ADRIMED and SAFMED in 2013. BLPB drifting altitudes were in the range 0.25-3.2 km. The longest flight lasted more than 32 h and covered more than 1000 km. Satisfactory data were obtained when compared to independent ozone measurements close in space and time. The quasi-Lagrangian measurements allowed a first look at ozone diurnal evolution in the marine boundary layer as well as in the lower free troposphere. During some flight segments, there was indication of photochemical ozone production in the marine boundary layer or even in the free troposphere, at rates ranging from 1 to 2 ppbv h -1, which is slower than previously found in the boundary layer over land in the same region.
A long duration balloon-borne telescope for solar gamma-ray astronomy
NASA Technical Reports Server (NTRS)
Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.
1989-01-01
A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.
A long duration balloon-borne telescope for solar gamma-ray astronomy
NASA Astrophysics Data System (ADS)
Owens, Alan; Chupp, Edward L.; Dunphy, Philip P.
A new solar gamma-ray telescope is described which is intended to take advantage of current long-duration ballon facilities such as the RACOON system. The primary scientific objective is to detect and measure gamma-ray lines from solar flares, along with the associated low-energy continuum. The proposed instrument is centered on a multiheaded Ge system and is designed to operate over the energy range 50 keV to 200 200 MeV. In the nuclear transition energy region, the average energy resolution of the primary detectors is over 20 times better than that achieved with the gamma-ray spectrometer on the Solar Maximum Mission satellite.
Data Retrieved by ARCADE-R2 Experiment On Board the BEXUS-17 Balloon
NASA Astrophysics Data System (ADS)
Barbetta, M.; Branz, F.; Carron, A.; Olivieri, L.; Prendin, J.; Sansone, F.; Savioli, L.; Spinello, F.; Francesconi, A.
2015-09-01
The Autonomous Rendezvous, Control And Docking Experiment — Reflight 2 (ARCADE-R2) is a technology demonstrator aiming to prove automatic attitude determination and control, rendezvous and docking capabilities for small scale spacecraft and aircraft. The development of such capabilities could be fundamental to create, in the near future, fleets of cooperative, autonomous unmanned aerial vehicles for mapping, surveillance, inspection and remote observation of hazardous environments; small-class satellites could also benefit from the employment of docking systems to extend and reconfigure their mission profiles. ARCADE-R2 is designed to test these technologies on a stratospheric flight on board the BEXUS-17 balloon, allowing to demonstrate them in a harsh environment subjected to gusty winds and high pressure and temperature variations. In this paper, ARCADE-R2 architecture is introduced and the main results obtained from a stratospheric balloon flight are presented.
The Balloon-Borne Exoplanet Experiment (EchoBeach)
NASA Astrophysics Data System (ADS)
Pascale, E.
2013-09-01
The Balloon-Borne Exoplanet Experiment (EchoBeach) is a proposed sub-orbital spectroscopic instrument. Its primary scientific goal is to detect and characterize the atmospheres of transiting exoplanets in the Mid-IR part of the electromagnetic spectrum from 4 to 20 μm using a 1.6m diameter telescope. It is in this wavelength range where the contrast between the star and planet emission grows exponentially, and this spectral region is key to answering important questions about the existence and composition of exp-atmospheres. Due to the Earth atmospheric absorption and emission, bservations at these wavelength are impossible from the ground or even at aircraft altitudes, but become available to balloon-born instrumentation flying in the upper stratosphere. At present we have high fidelity Mid-IR spectra of just two exoplanets of any type. EchoBeach can greatly improve on this by observing a multitude of transiting exoplanets, well in advance of any planned space-mission.
Revised Energy Spectra for Primary Elements, H - Si, above 50 GeV from the ATIC-2 Science Flight
NASA Technical Reports Server (NTRS)
Wefel, J. P.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunashingha, R. M.; Guzik, T. G.;
2007-01-01
The Advanced Thin Ionization Calorimeter (ATIC) long duration balloon experiment had a successful science flight accumulating 18 days of data (12/02 - 1/03) during a single circumnavigation in Antarctica. ATIC measures the energy spectra of elements from H to Fe in primary cosmic rays using a fully active Bismuth Germanate calorimeter preceded by a carbon target, with embedded scintillator hodoscopes, and a silicon matrix charge detector at the top. Preliminary results from ATIC have been reported in previous conferences. The revised results reported here are derived from a new analysis of the data with improved charge resolution, lower background and revised energy calibration. The raw energy deposit spectra are de-convolved into primary energy spectra and extrapolated to the top of the atmosphere. We compare these revised results to previous data and comment upon the astrophysical interpretation of the results.
Advanced Thin Ionization Calorimeter (ATIC) Update
NASA Technical Reports Server (NTRS)
Ahn, H. S.; Ganel, O.; Kim, K. C.; Seo, E. S.; Sina, R.; Wang, J. Z.; Wu, J.; Case, G.; Ellison, S. B.; Gould, R.;
2002-01-01
The Advanced Thin Ionization Calorimeter (ATIC) experiment is designed to measure the composition and energy spectra of Z = 1 to 28 cosmic rays over the energy range of approximately 10 GeV - 100 TeV. ATIC is comprised of an eight-layer, 18 radiation length deep Bismuth Germanate (BGO) calorimeter, downstream of a 0.75 nuclear interaction length graphite target and an approximately 1 sq m finely segmented silicon charge detector. Interleaved with the graphite layers are three scintillator strip hodoscopes for pre-triggering and tracking. ATIC flew for the first time on a Long Duration Balloon (LDB) launched from McMurdo, Antarctica in January 2001. During its 16-day flight ATIC collected more than 30 million science events, along with housekeeping, calibration, and rate data. This presentation will describe the ATIC data processing, including calibration and efficiency corrections, and show results from analysis of this dataset. The next launch is planned for December 2002.
Measurement of Cosmic-Ray TeV Electrons
NASA Astrophysics Data System (ADS)
Schubnell, Michael; Anderson, T.; Bower, C.; Coutu, S.; Gennaro, J.; Geske, M.; Mueller, D.; Musser, J.; Nutter, S.; Park, N.; Tarle, G.; Wakely, S.
2011-09-01
The Cosmic Ray Electron Synchrotron Telescope (CREST) high-altitude balloon experiment is a pathfinding effort to detect for the first time multi-TeV cosmic-ray electrons. At these energies distant sources will not contribute to the local electron spectrum due to the strong energy losses of the electrons and thus TeV observations will reflect the distribution and abundance of nearby acceleration sites. CREST will detect electrons indirectly by measuring the characteristic synchrotron photons generated in the Earth's magnetic field. The instrument consist of an array of 1024 BaF2 crystals viewed by photomultiplier tubes surrounded by a hermetic scintillator shield. Since the primary electron itself need not traverse the payload, an effective detection area is achieved that is several times the nominal 6.4 m2 instrument. CREST is scheduled to fly in a long duration circumpolar orbit over Antarctica during the 2011-12 season.
Robotic-assisted modified retroauricular cervical approach: initial experience in Latin America.
Chulam, Thiago Celestino; Lira, Renan Bezerra; Kowalski, Luiz Paulo
2016-01-01
to evaluate the thickness of the gastric wall at the time of intra gastric balloon (IGB) placement, at the time of its withdrawal and one month after withdrawal. fifteen morbidly obese patients underwent the introduction of IGB under general anesthesia. In all patients, there was infusion of 500ml of distilled water in the balloon for the test. Measurements of the thickness of the gastric wall were made in the antrum, body and proximal body, using a radial echoendoscope with a frequency of 12MHz and maximum zoom, and its own balloon inflated with 5ml of distilled water. the presence of IGB led to increased wall thickness of the gastric body by expanding the muscle layer. These changes were apparently transient, since 30 days after the balloon withdrawal there was a tendency to return of the wall thickness values observed before the balloon insertion. the use of intragastric balloon for the treatment of obesity determines transient increase in the wall thickness of the gastric body caused by expanded muscle layer. A preocupação com a melhoria dos resultados estéticos e funcionais sem comprometimento dos resultados oncológicos na cirurgia de cabeça e pescoço tem aumentado significativamente. Os procedimentos minimamente invasivos e principalmente aqueles que utilizam a tecnologia robótica permitiram o desenvolvimento de novas abordagens, incluindo o acesso retroauricular, que agora é usado rotineiramente, especialmente na Coréia do Sul. A presente nota irá ilustrar a técnica e a experiência inicial na América Latina, demonstrando que esta abordagem é viável, segura e eficaz oncologicamente, podendo ser utilizada em casos selecionados com um benefício estético evidente.
Advanced Cosmic Ray Composition Experiment for Space Station (ACCESS)
NASA Technical Reports Server (NTRS)
Wilson, Thomas L.; Wefel, John P.
1999-01-01
In 1994 the first high-energy particle physics experiment for the Space Station, the Alpha Magnetic Spectrometer (AMS), was selected by NASA's Administrator as a joint collaboration with the U.S. Department of Energy (DOE). The AMS program was chartered to place a magnetic spectrometer in Earth orbit and search for cosmic antimatter. A natural consequence of this decision was that NASA would begin to explore cost-effective ways through which the design and implementation of AMS might benefit other promising payload experiments which were evolving from the Office of Space Science. The first such experiment to come forward was ACCESS in 1996. It was proposed as a new mission concept in space physics to place a cosmic-ray experiment of weight, volume, and geometry similar to the AMS on the ISS, and replace the latter as its successor when the AMS is returned to Earth. This was to be an extension of NASA's sub-orbital balloon program, with balloon payloads serving as the precursor flights and heritage for ACCESS. The balloon programs have always been a cost-effective NASA resource since the particle physics instrumentation for balloon and space applications are directly related. The next step was to expand the process, pooling together expertise from various NASA centers and universities while opening up definition of the ACCESS science goals to the international community through the standard practice of peer-review. This process is still on-going and the Accommodation Study presented here will discuss the baseline definition of ACCESS as we understand it today. Further detail on the history, scope, and background of the study is provided in Appendix A.
NASA Technical Reports Server (NTRS)
Tarbell, Theodore D.; Topka, Kenneth P.
1992-01-01
The definition phase of a scientific study of active regions on the sun by balloon flight of a former Spacelab instrument, the Solar Optical Universal Polarimeter (SOUP) is described. SOUP is an optical telescope with image stabilization, tunable filter and various cameras. After the flight phase of the program was cancelled due to budgetary problems, scientific and engineering studies relevant to future balloon experiments of this type were completed. High resolution observations of the sun were obtained using SOUP components at the Swedish Solar Observatory in the Canary Islands. These were analyzed and published in studies of solar magnetic fields and active regions. In addition, testing of low-voltage piezoelectric transducers was performed, which showed they were appropriate for use in image stabilization on a balloon.
NASA Technical Reports Server (NTRS)
Williamson, P. R.; Banks, P. M.
1976-01-01
The objectives of the Tethered Balloon Current Generator experiment are to: (1) generate relatively large regions of thermalized, field-aligned currents, (2) produce controlled-amplitude Alfven waves, (3) study current-driven electrostatic plasma instabilities, and (4) generate substantial amounts of power or propulsion through the MHD interaction. A large balloon (a diameter of about 30 m) will be deployed with a conducting surface above the space shuttle at a distance of about 10 km. For a generally eastward directed orbit at an altitude near 400 km, the balloon, connected to the shuttle by a conducting wire, will be positive with respect to the shuttle, enabling it to collect electrons. At the same time, the shuttle will collect positive ions and, upon command, emit an electron beam to vary current flow in the system.
NASA Astrophysics Data System (ADS)
Verner, E.; Bruhweiler, F. C.; Abot, J.; Casarotto, V.; Dichoso, J.; Doody, E.; Esteves, F.; Morsch Filho, E.; Gonteski, D.; Lamos, M.; Leo, A.; Mulder, N.; Matubara, F.; Schramm, P.; Silva, R.; Quisberth, J.; Uritsky, G.; Kogut, A.; Lowe, L.; Mirel, P.; Lazear, J.
2014-12-01
In this project a multi-disciplinary undergraduate team from CUA, comprising majors in Physics, Mechanical Engineering, Electrical Engineering, and Biology, design, build, test, fly, and analyze the data from a prototype attitude determination system (PADS). The goal of the experiment is to determine if an inexpensive attitude determination system could be built for high altitude research balloons using MEMS gyros. PADS is a NASA funded project, built by students with the cooperation of CUA faculty, Verner, Bruhweiler, and Abot, along with the contributed expertise of researchers and engineers at NASA/GSFC, Kogut, Lowe, Mirel, and Lazear. The project was initiated through a course taught in CUA's School of Engineering, which was followed by a devoted effort by students during the summer of 2014. The project is an experiment to use 18 MEMS gyros, similar to those used in many smartphones, to produce an averaged positional error signal that could be compared with the motion of the fixed optical system as recorded through a string of optical images of stellar fields to be stored on a hard drive flown with the experiment. The optical system, camera microprocessor, and hard drive are enclosed in a pressure vessel, which maintains approximately atmospheric pressure throughout the balloon flight. The experiment uses multiple microprocessors to control the camera exposures, record gyro data, and provide thermal control. CUA students also participated in NASA-led design reviews. Four students traveled to NASA's Columbia Scientific Balloon Facility in Palestine, Texas to integrate PADS into a large balloon gondola containing other experiments, before being shipped, then launched in mid-August at Ft. Sumner, New Mexico. The payload is to fly at a float altitude of 40-45,000 m, and the flight last approximately 15 hours. The payload is to return to earth by parachute and the retrieved data are to be analyzed by CUA undergraduates. A description of the instrument is presented here as well as a preliminary analysis of the anticipated data, which were not available at the time of abstract submission. Acknowledgements: NASA grant NNX13AR61 under NASA's Undergraduate Student Instrument Program (USIP). Participating Brazilian students acknowledge support through Brazil's "Science without Borders" program.
Neubauer, Peter; Fahrenson, Christoph; Rechenberg, Ingo
2018-01-01
The physical mechanism of aerial dispersal of spiders, “ballooning behavior,” is still unclear because of the lack of serious scientific observations and experiments. Therefore, as a first step in clarifying the phenomenon, we studied the ballooning behavior of relatively large spiders (heavier than 5 mg) in nature. Additional wind tunnel tests to identify ballooning silks were implemented in the laboratory. From our observation, it seems obvious that spiders actively evaluate the condition of the wind with their front leg (leg I) and wait for the preferable wind condition for their ballooning takeoff. In the wind tunnel tests, as-yet-unknown physical properties of ballooning fibers (length, thickness, and number of fibers) were identified. Large spiders, 16–20 mg Xysticus spp., spun 50–60 nanoscale fibers, with a diameter of 121–323 nm. The length of these threads was 3.22 ± 1.31 m (N = 22). These physical properties of ballooning fibers can explain the ballooning of large spiders with relatively light updrafts, 0.1–0.5 m s−1, which exist in a light breeze of 1.5–3.3 m s−1. Additionally, in line with previous research on turbulence in atmospheric boundary layers and from our wind measurements, it is hypothesized that spiders use the ascending air current for their aerial dispersal, the “ejection” regime, which is induced by hairpin vortices in the atmospheric boundary layer turbulence. This regime is highly correlated with lower wind speeds. This coincides well with the fact that spiders usually balloon when the wind speed is lower than 3 m s−1. PMID:29902191
Cheuk, Queenie K Y; Lo, T K; Lee, C P; Yeung, Anita P C
2015-06-01
To evaluate the efficacy and safety of double balloon catheter for induction of labour in Chinese women with one previous caesarean section and unfavourable cervix at term. Retrospective cohort study. A regional hospital in Hong Kong. Women with previous caesarean delivery requiring induction of labour at term and with an unfavourable cervix from May 2013 to April 2014. Primary outcome was to assess rate of successful vaginal delivery (spontaneous or instrument-assisted) using double balloon catheter. Secondary outcomes were double balloon catheter induction-to-delivery and removal-to-delivery interval; cervical score improvement; oxytocin augmentation; maternal or fetal complications during cervical ripening, intrapartum and postpartum period; and risk factors associated with unsuccessful induction. All 24 Chinese women tolerated double balloon catheter well. After double balloon catheter expulsion or removal, the cervix successfully ripened in 18 (75%) cases. The improvement in Bishop score 3 (interquartile range, 2-4) was statistically significant (P<0.001). Overall, 18 (75%) cases were delivered vaginally. The median insertion-to-delivery and removal-to-delivery intervals were 19 (interquartile range, 13.4-23.0) hours and 6.9 (interquartile range, 4.1-10.8) hours, respectively. Compared with cases without, the interval to delivery was statistically significantly shorter in those with spontaneous balloon expulsion or spontaneous membrane rupture during ripening (7.8 vs 3.0 hours; P=0.025). There were no major maternal or neonatal complications. The only factor significantly associated with failed vaginal birth after caesarean was previous caesarean section for failure to progress (P<0.001). This is the first study using double balloon catheter for induction of labour in Asian Chinese women with previous caesarean section. Using double balloon catheter, we achieved a vaginal birth after caesarean rate of 75% without major complications.
Remote sensing from the desktop up, a students's personal stairway to space (Invited)
NASA Astrophysics Data System (ADS)
Church, W.
2013-12-01
Doing science with real-time quantitative experiments is becoming more and more affordable and accessible. Because lab equipment is more affordable and accessible, many universities are using lab class models wherein students conduct their experiments in informal settings such as the dorm, outside, or other places throughout the campus. Students are doing real-time measurements homework outside of class. By liberating experiments from facilities, the hope is to give students more experimental science opportunities. The challenge is support. In lab settings, instructors and peers can help students if they have trouble with the steps of assembling their experimental set-up, configuring the data acquisition software, conducting the real-time measurement and doing the analysis. Students working on their own in a dorm do not benefit from this support. Furthermore, when students are given the open ended experimental task of designing their own measurement system, they may need more guidance. In this poster presentation, I will articulate a triangle model to support students through the task of finding the necessary resources to design and build a mission to space. In the triangle model, students have access to base layer concept and skill resources to help them build their experiment. They then have access to middle layer mini-experiments to help them configure and test their experimental set-up. Finally, they have a motivating real-time experiment. As an example of this type of resource used in practice, I will have a balloon science remote sensing project as a stand-in for a balloon mission to 100,000 feet. I will use an Arduino based DAQ system and XBee modules for wireless data transmission to a LabVIEW front-panel. I will attach the DAQ to a tethered balloon to conduct a real-time microclimate experiment in the Moscone Center. Expanded microclimate studies can be the capstone project or can be a stepping-stone to space wherein students prepare a sensor package for a weather balloon launch to 100,000 feet.
EHF channel sounding for telecommunications applications via HAPs and balloons
NASA Astrophysics Data System (ADS)
Cianca, E.; Lucente, M.; Rossi, T.; Stallo, C.; Ruggieri, M.; Morelli, E.
During the last few years, the growth of innovative multimedia services demanding for more and more bandwidth have led towards the need to explore higher and higher frequency bands for communication services, such as Q-V band (35-50 GHz and 50-75 GHz, respectively) and also W band (75-110 GHz), especially for satellite applications. The Italian scientific community has so far gained a leading position in the use of higher frequency bands for satellite communications and has also funded studies for the design of communication payload in W band. To keep this leading position one fundamental step to properly design an operative communication payload is the propagation channel characterisation. Whilst there are data for characterising the propagation channel in Q-V bands, there are no experimental data for proper characterisation in W band. A feasibility study has been recently funded by the Italian Space Agency (ASI) to use a manned aircraft flying at 20 km, for preliminary channel characterisation. In this paper we investigate the possibility to use balloons for experiments aiming to collect data for channel characterisation. Main advantages and drawbacks of using this platform for the proposed experiment with respect to alternatives such as manned aircrafts and Low Earth Orbit (LEO) satellites for such a experiment are outlined. We start presenting the main results of the Aero-WAVE mission, funded by ASI and aiming to design a payload for setting up an experiment for preliminary channel characterisation of W band. This will guide us in defining the main advantages and drawbacks of the alternatives solution represented by the balloons. We can conclude that it would be possible and convenient to use balloons for the proposed experiment. Some issues arise but solutions can be easily implemented. The data that could be collected from the proposed experiment represent a very interesting results at international level for further developments in W band communications. The possibility to set-up such experiment in a short-time and low costs would be strategically important.
Diagnostic and therapeutic direct peroral cholangioscopy using an intraductal anchoring balloon
Parsi, Mansour A; Stevens, Tyler; Vargo, John J
2012-01-01
AIM: To report our experience using a recently introduced anchoring balloon for diagnostic and therapeutic direct peroral cholangioscopy (DPOC). METHODS: Consecutive patients referred for diagnostic or therapeutic peroral cholangioscopy were evaluated in a prospective cohort study. The patients underwent DPOC using an intraductal anchoring balloon, which was recently introduced to allow consistent access to the biliary tree with an ultraslim upper endoscope. The device was later voluntarily withdrawn from the market by the manufacturer. RESULTS: Fourteen patients underwent DPOC using the anchoring balloon. Biliary access with an ultraslim upper endoscope was accomplished in all 14 patients. In 12 (86%) patients, ductal access required sphincteroplasty with a 10-mm dilating balloon. Intraductal placement of the ultraslim upper endoscope allowed satisfactory visualization of the biliary mucosa to the level of the confluence of the right and left hepatic ducts in 13 of 14 patients (93%). Therapeutic interventions by DPOC were successfully completed in all five attempted cases (intraductal biopsy in one and DPOC guided laser lithotripsy in four). Adverse events occurred in a patient on immunosuppressive therapy who developed an intrahepatic biloma at the site of the anchoring balloon. This required hospitalization and antibiotics. Repeat endoscopic retrograde cholangiopancreatography 8 wk after the index procedure showed resolution of the biloma. CONCLUSION: Use of this anchoring balloon allowed consistent access to the biliary tree for performance of diagnostic and therapeutic DPOC distal to the biliary bifurcation. PMID:22912549
Diagnostic and therapeutic direct peroral cholangioscopy using an intraductal anchoring balloon.
Parsi, Mansour A; Stevens, Tyler; Vargo, John J
2012-08-14
To report our experience using a recently introduced anchoring balloon for diagnostic and therapeutic direct peroral cholangioscopy (DPOC). Consecutive patients referred for diagnostic or therapeutic peroral cholangioscopy were evaluated in a prospective cohort study. The patients underwent DPOC using an intraductal anchoring balloon, which was recently introduced to allow consistent access to the biliary tree with an ultraslim upper endoscope. The device was later voluntarily withdrawn from the market by the manufacturer. Fourteen patients underwent DPOC using the anchoring balloon. Biliary access with an ultraslim upper endoscope was accomplished in all 14 patients. In 12 (86%) patients, ductal access required sphincteroplasty with a 10-mm dilating balloon. Intraductal placement of the ultraslim upper endoscope allowed satisfactory visualization of the biliary mucosa to the level of the confluence of the right and left hepatic ducts in 13 of 14 patients (93%). Therapeutic interventions by DPOC were successfully completed in all five attempted cases (intraductal biopsy in one and DPOC guided laser lithotripsy in four). Adverse events occurred in a patient on immunosuppressive therapy who developed an intrahepatic biloma at the site of the anchoring balloon. This required hospitalization and antibiotics. Repeat endoscopic retrograde cholangiopancreatography 8 wk after the index procedure showed resolution of the biloma. Use of this anchoring balloon allowed consistent access to the biliary tree for performance of diagnostic and therapeutic DPOC distal to the biliary bifurcation.
Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment
NASA Technical Reports Server (NTRS)
Wefel, John P.; Guzik, T. Gregory
2001-01-01
During grant NAG5-5064, Louisiana State University (LSU) led the ATIC team in the development, construction, testing, accelerator validation, pre-deployment integration and flight operations of the Advanced Thin Ionization Calorimeter (ATIC) Balloon Experiment. This involved interfacing among the ATIC collaborators (UMD, NRL/MSFC, SU, MSU, WI, SNU) to develop a new balloon payload based upon a fully active calorimeter, a carbon target, a scintillator strip hodoscope and a pixilated silicon solid state detector for a detailed investigation of the very high energy cosmic rays to energies beyond 10(exp 14) eV/nucleus. It is in this very high energy region that theory predicts changes in composition and energy spectra related to the Supernova Remnant Acceleration model for cosmic rays below the "knee" in the all-particle spectrum. This report provides a documentation list, details the anticipated ATIC science return, describes the particle detection principles on which the experiment is based, summarizes the simulation results for the system, describes the validation work at the CERN SPS accelerator and details the balloon flight configuration. The ATIC experiment had a very successful LDB flight from McMurdo, Antarctica in 12/00 - 1/01. The instrument performed well for the entire 15 days. Preliminary data analysis shows acceptable charge resolution and an all-particle power law energy deposition distribution not inconsistent with previous measurements. Detailed analysis is underway and will result in new data on the cosmic ray charge and energy spectra in the GeV - TeV energy range. ATIC is currently being refurbished in anticipation of another LDB flight in the 2002-03 period.
Atmospheric and spectroscopic research in the far infrared
NASA Technical Reports Server (NTRS)
Park, Kwangjai; Radostitz, James V.
1992-01-01
The University of Oregon (UO) has been a major participant in the development of far infrared spectroscopic research of the stratosphere for the purpose of understanding the ozone layer processes. The UO has had a 15-year collaboration with the Italian group of B. Carli, and have participated in the 1978/79 Sub-millimeter Infrared Balloon Experiment (SIBEX), in the Balloon Intercomparison Campaign, (BIC), in the Infrared Balloon Experiment (IBEX), and in the recently concluded Far Infrared Experiment for UARS Correlative Measurements (FIREX). Both IBEX and FIREX programs were conducted in collaboration with NASA Langley, and were designed as validation flights in support of the Upper Atmosphere Research Satellite (UARS) Program. The technique of atmospheric far infrared spectroscopy offers two important advantages. First, many chemically important species can be measured simultaneously and co-spatially in the atmosphere. Second, far infrared atmospheric spectra can be obtained in thermal emission without reference to the sun's position, enabling full diurnal and global coverage. Recent improvements in instrumentation, field measurements, and molecular concentration retrieval techniques are now making the far infrared a mature measurement technology. This work to date has largely focused on balloon-based studies, but the future efforts will focus also on satellite-based experiments. A program of research in the following general areas was proposed: Laboratory Pressure broadening coefficient studies; specialized detector system assembly and testing; and consultation and assistance with instrument and field support. The proposal was approved and a three-year research grant titled 'Atmospheric and Spectroscopic Research in the Far Infrared' was awarded. A summary of technical accomplishments attained during the grant period are presented.
Balloon-borne three-meter telescope for far-infrared and submillimeter astronomy
NASA Technical Reports Server (NTRS)
Fazio, Giovanni G.; Hoffmann, William F.; Harper, Doyal A.
1988-01-01
The scientific objectives, engineering analysis and design, results of technology development, and focal-plane instrumentation for a two-meter balloon-borne telescope for far-infrared and submillimeter astronomy are presented. The unique capabilities of balloon-borne observations are discussed. A program summary emphasizes the development of the two-meter design. The relationship of the Large Deployable Reflector (LDR) is also discussed. Detailed treatment is given to scientific objectives, gondola design, the mirror development program, experiment accommodations, ground support equipment requirements, NSBF design drivers and payload support requirements, the implementation phase summary development plan, and a comparison of three-meter and two-meter gondola concepts.
NASA Technical Reports Server (NTRS)
Rinehart, Stephen A.; Barclay, Richard B.; Barry, R. K.; Benford, D. J.; Calhoun, P. C.; Fixsen, D. J.; Gorman, E. T.; Jackson, M. L.; Jhabvala, C. A.; Leisawitz, D. T.;
2012-01-01
The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infraredinterferometer designed to fly on a high altitude balloon. BETTII uses a double-Fourier Michelson interferometer tosimultaneously obtain spatial and spectral information on science targets; the long baseline permits subarcsecond angular resolution, a capability unmatched by other far-infrared facilities. Here, we present key aspects of the overall design of the mission and provide an overview of the current status of the project. We also discuss briefly the implications of this experiment for future space-based far-infrared interferometers.
Microgravity combustion experiment using high altitude balloon.
NASA Astrophysics Data System (ADS)
Kan, Yuji
In JAXA, microgravity experiment system using a high altitude balloon was developed , for good microgravity environment and short turn-around time. In this publication, I give an account of themicrogravity experiment system and a combustion experiment to utilize the system. The balloon operated vehicle (BOV) as a microgravity experiment system was developed from 2004 to 2009. Features of the BOV are (1) BOV has double capsule structure. Outside-capsule and inside-capsule are kept the non-contact state by 3-axis drag-free control. (2) The payload is spherical shape and itsdiameter is about 300 mm. (3) Keep 10-4 G level microgravity environment for about 30 seconds However, BOV’s payload was small, and could not mount large experiment module. In this study, inherits the results of past, we established a new experimental system called “iBOV” in order toaccommodate larger payload. Features of the iBOV are (1) Drag-free control use for only vertical direction. (2) The payload is a cylindrical shape and its size is about 300 mm in diameter and 700 mm in height. (3) Keep 10-3-10-4 G level microgravity environment for about 30 seconds We have "Observation experiment of flame propagation behavior of the droplets column" as experiment using iBOV. This experiment is a theme that was selected first for technical demonstration of iBOV. We are conducting the flame propagation mechanism elucidation study of fuel droplets array was placed at regular intervals. We conducted a microgravity experiments using TEXUS rocket ESA and drop tower. For this microgravity combustion experiment using high altitude balloon, we use the Engineering Model (EM) for TEXUS rocket experiment. The EM (This payload) consists of combustion vessel, droplets supporter, droplets generator, fuel syringe, igniter, digital camera, high-speed camera. And, This payload was improved from the EM as follows. 1. Add a control unit. 2. Add inside batteries for control unit and heater of combustion vessel. 3. Update of the cameras for the observation. In this experiment, we heat air in the combustion vessel to 500K, before microgravity. And during microgravity, we conduct to the follows. (1) Generate five droplets on the droplets supporter. (2) Moving droplets into combustion vessel. (3) Ignition of an edge droplet of the array using igniter. And during combustion experiment, cameras take movies of combustion phenomena. We plan to conduct this experiment in May 2014.
Shape Analysis and Deployment of the ExaVolt Antenna
NASA Astrophysics Data System (ADS)
Baginski, Frank; Zhao, Kaiyu; Furer, Joshua; Landay, Justin; Bailoor, Shantanu; Gorham, Peter; Varner, Gary; Miki, Christian; Hill, Brian; Schoorlemmer, Harm; Nguyen, Liem; Romero-Wolf, Andrew; Liewer, Kurt; Sauder, Jonathan; Brakke, Kenneth; Beatty, Jim; Connolly, Amy; Allison, Patrick; Pfendner, Carl; Dailey, Brian; Fairbrother, Debra; Said, Magdi; Lang, Steven; Young, Leyland
The ExaVolt Antenna (EVA) is the next generation balloon-borne ultra-high energy (UHE) particle observatory under development for NASA’s suborbital super-pressure balloon program in Antarctica. Unlike a typical mission where the balloon lifts a gondola that carries the primary scientific instrument, the EVA mission is a first-of-its-kind in that the balloon itself is part of the science instrument. Specifically, a toroidal RF reflector is mounted onto the outside surface of a superpressure balloon (SPB) and a feed antenna is suspended inside the balloon, creating a high-gain antenna system with a synoptic view of the Antarctic ice sheet. The EVA mission presents a number of technical challenges. For example, can a stowed feed antenna be inserted through an opening in the top-plate? Can the feed antenna be deployed during the ascent? Once float altitude is achieved, how might small shape changes in the balloon shape affect the antenna performance over the life of the EVA mission? The EVA team utilized a combination of testing with a 1/20-scale physical model, mathematical modeling and numerical simulations to probe these and related questions. While the problems are challenging, they are solvable with current technology and expertise. Experiments with a 1/20-scale EVA physical model outline a pathway for inserting a stowed feed into a SPB. Analysis indicates the EVA system will ascend, deploy and assume a stable configuration at float altitude. Nominal shape changes in an Antarctic SPB are sufficiently small to allow the use of the surface of the balloon as a high-gain reflector.
Observation of planets by a circumpolar stratospheric telescope
NASA Astrophysics Data System (ADS)
Yamamoto, M.; Taguchi, M.; Yoshida, K.; Sakamoto, Y.; Nakano, T.; Shoji, Y.; Takahashi, Y.; Hamamoto, K.; Nakamoto, J.; Imai, M.
2012-12-01
Phenomena in the planetary atmospheres and plasmaspheres have been studied by various methods using emissions emitted from there in the spectral regions from radio wave to X-ray. Optical observation of a planet has been performed by a ground-based telescope, a satellite telescope and an orbiter. A balloon-borne telescope is proposed as another platform for optical remote sensing of planets. Since it is floated in the stratosphere at an altitude of about 32 km, fine weather condition, excellent seeing and high transmittance of the atmosphere in the near ultraviolet and infrared regions are expected. Especially a planet can be continuously monitored by a long-period circumpolar flight. For these reasons we have been developing a balloon-borne telescope system for planetary observations from the polar stratosphere. In this system a Schmidt-Cassegrain telescope with a 300-mm clear aperture is mounted on a gondola whose attitude is controlled by control moment gyros, an active decoupling motor, and attitude sensors. The gondola can float in the stratosphere for periods longer than 1 week. Pointing stability of 0.1"rms will be achieved by the cooperative operation of the following three-stage pointing devices: a gondola-attitude control system, two axis telescope gimbals for coarse guiding, and a tip/tilt mirror mount for guiding error correction. The optical path is divided to three paths to an ultraviolet camera, an infrared camera and a position-sensitive photomultiplier tube for detection of guiding error. The size of gondola is 1 m by 1 m by 2.7 m high, and the weight is 784 kg including the weight of ballast of 300 kg. The first experiment of the balloon-borne telescope system was conducted on June 3, 2009 at Taikicho, Hokkaido targeting Venus. However, it failed due to a trouble in an onboard computer. The balloon-borne telescope was redesigned for the second experiment in August in 2012, when the target planet is also Venus. In the presentation, the balloon-borne telescope system, the ground-test results of its pointing performance and the results of balloon experiment in 2012 will be reported. Overview of the gondola ;
Designing gondola using satcom services and solar cell energy
NASA Astrophysics Data System (ADS)
Cau, M.; Dezen, P.
Introduction of compact, and lightweight terminals for mobile satellite communication, opens up many opportunities to design new telecommunication systems for balloons. Architecture of this gondola, named Narcisse, is built around a control process unit able to support interface with all Inmarsat services, and Iridium or Thuraya satellite network as well. A first technological gondola was launched from Brazil in February 2001, under a Infra Red Mongolfiere (hot air balloon). This gondola used an Inmarsat terminal C which can support in two ways , store and forward messages at a data rate of 600 bits per second. During the 3 turns around the earth, the system worked well, and demonstrated its ability to handle change over from one geostationary spacecraft to the next, when balloon changes ocean region. Moreover this system provides high telemetry rate (Mbits) or telecommand capability, and greatly increase the performances of the scientific payloads . On the other hand, such types of gondola can be useful to operate long duration flight (days) with large stratospheric balloons, currently limited to range capability of UHF ground station . When line of sight of view is lost, between ground station and gondola, the switch would be made from UHF to the Inmarsat or iridium system to complete the mission. In this case, the TM/TC system has no range or altitude limitation, and the gondola descent trajectory can be followed until the ground improving the localization of landing which will be helpful for recovery operation. So, using a real time duplex mini M Inmarsat terminal, the Narcisse gondola has been operationally involved early 2002 in Archeops project. Launched from Kiruna, Narcisse provided a full duplex 2400bits per second link, all along the flight across Russia. Narcisse has been again involved in march 2003 in Mipas project, using Iridium as a cold redundancy to secure Inmarsat mini M not working at extreme polar regions (latitude more than 80°). During this flight an Inmarsat mini M was also used to provide a scientific telemetry and telecomand channel. A lighter version (15 Kg) of this gondola is currently involved in the Hibiscus project (launch of Infrared montgolfieres from Brazil ). This gondola fitted with the new terminal "Ec track" which taking advantage of better RF budget link offered by Inmarsat spacecraft third generation, requires 50% : launch of hundred pressurized balloons from south pole. The target being to decrease the gondola weight to less than 10 Kg. Expecting a life duration of three months, the energy to heat and power the electronic will be only provided from solar cells and Li Ion secondary battery. Plans for the future : Until now all the terminals we have used with Narcisse have a data rate limited to 2400 bit/s. We are now considering to transmit the data from scientific stratospheric balloons gondolas , by using a high speed terminal (64kbit/s) linked to a mechanically pointed antenna under a pressurized radome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farhang, M.; Bond, J. R.; Netterfield, C. B.
2013-07-01
We use the Bayesian estimation on direct T - Q - U cosmic microwave background (CMB) polarization maps to forecast errors on the tensor-to-scalar power ratio r, and hence on primordial gravitational waves, as a function of sky coverage f{sub sky}. This map-based likelihood filters the information in the pixel-pixel space into the optimal combinations needed for r detection for cut skies, providing enhanced information over a first-step linear separation into a combination of E, B, and mixed modes, and ignoring the latter. With current computational power and for typical resolutions appropriate for r detection, the large matrix inversions requiredmore » are accurate and fast. Our simulations explore two classes of experiments, with differing bolometric detector numbers, sensitivities, and observational strategies. One is motivated by a long duration balloon experiment like Spider, with pixel noise {proportional_to}{radical}(f{sub sky}) for a specified observing period. This analysis also applies to ground-based array experiments. We find that, in the absence of systematic effects and foregrounds, an experiment with Spider-like noise concentrating on f{sub sky} {approx} 0.02-0.2 could place a 2{sigma}{sub r} Almost-Equal-To 0.014 boundary ({approx}95% confidence level), which rises to 0.02 with an l-dependent foreground residual left over from an assumed efficient component separation. We contrast this with a Planck-like fixed instrumental noise as f{sub sky} varies, which gives a Galaxy-masked (f{sub sky} = 0.75) 2{sigma}{sub r} Almost-Equal-To 0.015, rising to Almost-Equal-To 0.05 with the foreground residuals. Using as the figure of merit the (marginalized) one-dimensional Shannon entropy of r, taken relative to the first 2003 WMAP CMB-only constraint, gives -2.7 bits from the 2012 WMAP9+ACT+SPT+LSS data, and forecasts of -6 bits from Spider (+ Planck); this compares with up to -11 bits for CMBPol, COrE, and PIXIE post-Planck satellites and -13 bits for a perfectly noiseless cosmic variance limited experiment. We thus confirm the wisdom of the current strategy for r detection of deeply probed patches covering the f{sub sky} minimum-error trough with balloon and ground experiments.« less
NASA Astrophysics Data System (ADS)
Akau, Ronald L.; Givler, Richard C.; Eastman, Daniel R.
1994-07-01
The High-Altitude Balloon Experiment telescope was designed to operate at an ambient temperature of -55 degree(s)C and an altitude of 26 km, using a precooled primary mirror. Although at this altitude the air density is only 1.4 percent of the value at sea level, the temperature gradients within the telescope are high enough to deform the optical wavefront. This problem is considerably lessened by precooling the primary mirror to -35 degree(s)C. This paper describes the application of several codes to determine the range of wavefront deformation during a mission.
Initial results from the Caltech/DSRI balloon-borne isotope experiment
NASA Technical Reports Server (NTRS)
Schindler, S. M.; Buffington, A.; Christian, E. C.; Grove, J. E.; Lau, K. H.; Stone, E. C.; Rasmussen, I. L.; Laursen, S.
1985-01-01
The Caltech/DSRI balloon-borne High Energy Isotope Spectrometer Telescope (HEIST) was flown successfully from Palestine, Texas on 14 May 1984. The experiment was designed to measure cosmic ray isotopic abundances from neon through iron, with incident particle energies from approximately 1.5 to 2.2 GeV/nucleon, depending on the element. During approximately 38 hours at float altitude, 10 to the 5th events were recorded with Z or = 6 and incident energies 1.5 GeV/nucleon. We present results from the ongoing data analysis associated with both the pre-flight Bevalac calibration and the flight data.
Peripheral Applications of Drug-Coated Balloons: Past, Present and Future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krokidis, Miltiadis, E-mail: mkrokidis@hotmail.com; Spiliopoulos, Stavros, E-mail: stavspiliop@upatras.gr; Katsanos, Konstantinos, E-mail: katsanos@med.upatras.gr
2013-04-15
Drug-coated balloon (DCB) technologies represent the latest and hottest development in the field of endovascular treatment of peripheral arterial disease. Initial experience with paclitaxel-coated balloon use in the femoral artery has demonstrated lower mid-term restenosis and superior mid-term clinical outcomes in terms of improved wound healing and reduced repeat angioplasty rates compared with standard balloon angioplasty. Many companies are presently developing and/or improving DCB catheters and therefore ongoing, technical improvements of the already existing platforms, new drugs, and innovative carriers are expected. The ongoing basic research studies and various multicenter randomized, controlled trials that are currently in progress will offermore » valuable scientific insights regarding the long-term effectiveness and other crucial issues, such as efficacy in various vascular beds, optimal balloon dosage, and post angioplasty antiplatelet therapy. Future applications of these devices also could include in-stent restenosis, anastomotic stenosis of surgical bypass, and benign stenoses of the central venous system. The authors envision that DCB angioplasty will evolve to a major paradigm shift in the endovascular treatment of occlusive vascular diseases.« less
A mid-latitude balloon-borne observation of total odd nitrogen
NASA Technical Reports Server (NTRS)
Kondo, Y.; Aimedieu, P.; Matthews, W. A.; Sheldon, W. R.; Benbrook, J. R.
1990-01-01
A balloon-borne instrument to measure total odd nitrogen NO(y) has been developed. A converter which enables catalytic conversion of NO(y) into nitric oxide on a heated gold surface is combined with a chemiluminescence detector. The conversion efficiency for NO2 was measured to be close to 100 percent at pressures between 60 and 7 mb. The major source of errors in the balloon-borne measurements are the uncertainties in the estimates of the sample flow rate and the zero level of the instrument. The NO(y) concentration was measured at altitudes between 12 and 28 km with a precision of about 25 percent on a balloon experiment conducted at latitude 44 deg N in June 1989. The NO(y) concentration has been measured to be 1.5 + or - 0.4, 3 + or - 0.7, 10 + or - 3, and 14 + or - 4 ppbv at altitudes of 17, 20, 25, and 28 km, respectively.
High-Altitude Balloon Launches for Effective Education, Inspiration and Research
NASA Astrophysics Data System (ADS)
Voss, H. D.; Dailey, J.; Patterson, D.; Krueger, J.
2006-12-01
Over a three-year period the Taylor University Science Research Training Program (SRTP) has successfully launched and recovered 33 sophisticated payloads to altitudes between 20-33 km (100% success with rapid recovery). All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, and uplink command capability for educational experiments (K-12 and undergrad) and nanosatellite subsystem testing. Launches were conducted both day and night, with multiple balloons, with up to 10 experiment boxes, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. The current design uses a Zigbee wireless connection (50 kbaud rate) for each of the payload experiment boxes for rapid assembly and checkout with a common interface board for gathering analog and digital data and for commanding. Common data from each box is processed and displayed using modular LabView software. The use of balloons for active research (ozone, aerosols, cosmic rays. UV, IR, remote sensing, energy, propulsion) significantly invigorates and motivates student development, drives team schedule, uncovers unexpected problems, permits end-to-end closure, and forces calibration and validation of real data. The SRTP has helped to spin off a student company called StratoStar Systems for providing an affordable low-cost balloon launch service capability, insurance plan, and other technical assistance for scientific, industrial and STEM educational use.
NASA Astrophysics Data System (ADS)
Hoffmann, Lars; Hertzog, Albert; Rößler, Thomas; Stein, Olaf; Wu, Xue
2017-07-01
In this study we compared temperatures and horizontal winds of meteorological analyses in the Antarctic lower stratosphere, a region of the atmosphere that is of major interest regarding chemistry and dynamics of the polar vortex. The study covers the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis, the ERA-Interim reanalysis, the Modern-Era Retrospective analysis for Research and Applications version 1 and 2 (MERRA and MERRA-2), and the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis. The comparison was performed with respect to long-duration observations from 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. Most of the balloon measurements were conducted at altitudes of 17-18.5 km and latitudes of 60-85° S. We found that large-scale state temperatures of the analyses have a mean precision of 0.5-1.4 K and a warm bias of 0.4-2.1 K with respect to the balloon data. Zonal and meridional winds have a mean precision of 0.9-2.3 m s-1 and a bias below ±0.5 m s-1. Standard deviations related to small-scale fluctuations due to gravity waves are reproduced at levels of 15-60 % for temperature and 30-60 % for the horizontal winds. Considering the fact that the balloon observations have been assimilated into all analyses, except for NCEP/NCAR, notable differences found here indicate that other observations, the forecast models, and the data assimilation procedures have a significant impact on the analyses as well. We also used the balloon observations to evaluate trajectory calculations with our new Lagrangian transport model Massive-Parallel Trajectory Calculations (MPTRAC), where vertical motions of simulated trajectories were nudged to pressure measurements of the balloons. We found relative horizontal transport deviations of 4-12 % and error growth rates of 60-170 km day-1 for 15-day trajectories. Dispersion simulations revealed some difficulties with the representation of subgrid-scale wind fluctuations in MPTRAC, as the spread of air parcels simulated with different analyses was not consistent. However, although case studies suggest that the accuracy of trajectory calculations is influenced by meteorological complexity, diffusion generally does not contribute significantly to transport deviations in our analysis. Overall, evaluation results are satisfactory and compare well to earlier studies using superpressure balloon observations.
Overview Of The Scientific Balloon Activity in Sweden 2014-2016
NASA Astrophysics Data System (ADS)
Abrahamsson, Mattias; Lockowandt, Christian; Andersson, Kent
2016-07-01
SSC, formerly known as Swedish Space Corporation, is a Swedish state-owned company working in several different space related fields, including scientific stratospheric balloon launches. Esrange Space Centre (Esrange in short) located in the north of Sweden is the launch facility of SSC, where both sounding rocket launches and stratospheric balloon launches are conducted. At Esrange there are also facilities for satellite communication, including one of the largest civilian satellite data reception stations in the world. Stratospheric balloons have been launched from Esrange since 1974, when the first flights were performed together with the French space agency CNES. These balloon flights have normally flown eastward either only over Sweden or into Finland. Some flights have also had permission to fly into Russia, as far as the Ural Mountains. Normal flight times are from 4 to 12 hours. These eastward flights are conducted during the winter months (September to May). Long duration flights have been flown from Esrange since 2005, when NASA flew the BLAST payload from Sweden to north Canada. The prevailing westerly wind pattern is very advantageous for trans-Atlantic flights during summer (late May to late July). The long flight times of 4-5 days are very beneficial for astronomical payloads, such as telescopes that need long observation times. Circumpolar flights of more than two weeks are possible if Russian overflight permission exists. Typical scientific balloon payload fields include atmospheric research, including research on ozone depletion, astronomical and cosmological research, and research in technical fields such as aerodynamics. Since last COSPAR a number of interesting balloon flights have been performed from Esrange. In late 2014 parachute tests for the ExoMars programme was performed by drop-test from balloons. This was followed up on in the summer of 2015 with full end-to-end dynamic stability tests of Earth re-entry capsule shapes. Several balloon-borne UAV tests have been performed in 2015. A small high-altitude gliding UAV was tested in the spring, a large supersonic UAV was flown in the summer, and in the late autumn several tests of a small glider were done. A number of flights of a small Swedish science package have been made in 2015 and 2016, and four flights within the BEXUS student programme have also been performed. Seven scientific flights studying the electron losses from Earth's radiation belt were performed by US scientists in August 2015, with the longest flight lasting more than 36 hours. In summer 2016 there is a plan to make a re-flight of the PoGOLite payload, studying polarized X-rays. The latest results from this will be presented.
Immediate Outcome of Balloon Mitral Valvuloplasty with JOMIVA Balloon during Pregnancy
Ramasamy, Ramona; Kaliappan, Tamilarasu; Gopalan, Rajendiran; Palanimuthu, Ramasmy; Anandhan, Premkrishna
2017-01-01
Introduction Rheumatic mitral stenosis is the most common Valvular Heart Disease encountered during pregnancy. Balloon Mitral Valvuloplasty (BMV) is one of the treatment option available if the symptoms are refractory to the medical management and the valve anatomy is suitable for balloon dilatation. BMV with Inoue balloon is the most common technique being followed worldwide. Over the wire BMV is a modified technique using Joseph Mitral Valvuloplasty (JOMIVA) balloon catheter which is being followed in certain centres. Aim To assess the immediate post procedure outcome of over the wire BMV with JOMIVA balloon. Materials and Methods Clinical and echocardiographic parameters of pregnant women with significant mitral stenosis who underwent elective BMV with JOMIVA balloon in our institute from 2005 to 2015 were analysed retrospectively. Severity of breathlessness (New York Heart Association Functional Class), and duration of pregnancy was included in the analysis. Pre procedural echocardiographic parameters which included severity of mitral stenosis and Wilkin’s scoring were analysed. Clinical, haemodynamic and echocardiographic outcomes immediately after the procedure were analysed. Results Among the patients who underwent BMV in our Institute 38 were pregnant women. Twenty four patients (63%) were in New York Heart Association (NYHA) Class III. All of them were in sinus rhythm except two (5%) who had atrial fibrillation. Thirty four patients (89.5%) were in second trimester of pregnancy at the time of presentation and four (10.5%) were in third trimester. Echocardiographic analysis of the mitral valve showed that the mean Wilkin’s score was 7.3. Mean mitral valve area pre procedure was 0.8 cm2. Mean gradient across the valve was 18 mmHg. Ten patients (26.5%) had mild mitral regurgitation and none had more than mild mitral regurgitation. Thirty six patients had pulmonary hypertension as assessed by tricuspid regurgitation jet velocity. All of them underwent BMV with JOMIVA balloon. Post procedure mean mitral valve area was 1.7 cm2 as assessed by echocardiography. Post procedure mean gradient across the mitral valve as assessed by echocardiography was 5 mmHg. Two patients had moderate to severe mitral regurgitation after the procedure and the rest had either no mitral regurgitation or mild mitral regurgitation after the procedure. None of the patients warranted mitral valve replacement after BMV. No patients had any manifestations of systemic embolism like cerebrovascular accident or limb ischemia after the procedure. None of the patients had preterm delivery or adverse fetal outcome during index hospitalisation. Conclusion Over the wire BMV is safe and effective method during pregnancy. The results are comparable to that of Inoue technique. BMV offers a good symptomatic improvement in pregnant women presenting with symptoms of pulmonary congestion because of Rheumatic mitral stenosis. PMID:28384909
NASA Astrophysics Data System (ADS)
Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.
2015-11-01
EUSO-Balloon is a pathfinder for JEM-EUSO, the Extreme Universe Space Observatory which is to be hosted on-board the International Space Station. As JEM-EUSO is designed to observe Ultra-High Energy Cosmic Rays (UHECR)-induced Extensive Air Showers (EAS) by detecting their ultraviolet light tracks "from above", EUSO-Balloon is a nadir-pointing UV telescope too. With its Fresnel Optics and Photo-Detector Module, the instrument monitors a 50 km2 ground surface area in a wavelength band of 290-430 nm, collecting series of images at a rate of 400,000 frames/sec. The objectives of the balloon demonstrator are threefold: a) perform a full end-to-end test of a JEM-EUSO prototype consisting of all the main subsystems of the space experiment, b) measure the effective terrestrial UV background, with a spatial and temporal resolution relevant for JEM-EUSO. c) detect tracks of ultraviolet light from near space for the first time. The latter is a milestone in the development of UHECR science, paving the way for any future space-based UHECR observatory. On August 25, 2014, EUSO-Balloon was launched from Timmins Stratospheric Balloon Base (Ontario, Canada) by the balloon division of the French Space Agency CNES. From a float altitude of 38 km, the instrument operated during the entire astronomical night, observing UV-light from a variety of ground-covers and from hundreds of simulated EASs, produced by flashers and a laser during a two-hour helicopter under-flight.
NASA Astrophysics Data System (ADS)
Javier Romualdez, Luis
Scientific balloon-borne instrumentation offers an attractive, competitive, and effective alternative to space-borne missions when considering the overall scope, cost, and development timescale required to design and launch scientific instruments. In particular, the balloon-borne environment provides a near-space regime that is suitable for a number of modern astronomical and cosmological experiments, where the atmospheric interference suffered by ground-based instrumentation is negligible at stratospheric altitudes. This work is centered around the analytical strategies and implementation considerations for the attitude determination and control of SuperBIT, a scientific balloon-borne payload capable of meeting the strict sub-arcsecond pointing and image stability requirements demanded by modern cosmological experiments. Broadly speaking, the designed stability specifications of SuperBIT coupled with its observational efficiency, image quality, and accessibility rivals state-of-the-art astronomical observatories such as the Hubble Space Telescope. To this end, this work presents an end-to-end design methodology for precision pointing balloon-borne payloads such as SuperBIT within an analytical yet implementationally grounded context. Simulation models of SuperBIT are analytically derived to aid in pre-assembly trade-off and case studies that are pertinent to the dynamic balloon-borne environment. From these results, state estimation techniques and control methodologies are extensively developed, leveraging the analytical framework of simulation models and design studies. This pre-assembly design phase is physically validated during assembly, integration, and testing through implementation in real-time hardware and software, which bridges the gap between analytical results and practical application. SuperBIT attitude determination and control is demonstrated throughout two engineering test flights that verify pointing and image stability requirements in flight, where the post-flight results close the overall design loop by suggesting practical improvements to pre-design methodologies. Overall, the analytical and practical results presented in this work, though centered around the SuperBIT project, provide generically useful and implementationally viable methodologies for high precision balloon-borne instrumentation, all of which are validated, justified, and improved both theoretically and practically. As such, the continuing development of SuperBIT, built from the work presented in this thesis, strives to further the potential for scientific balloon-borne astronomy in the near future.
THz Solar Observations on Board of a Trans-Antarctic Stratospheric Balloon Flight
NASA Technical Reports Server (NTRS)
Kaufmann, P.; Abrantes, A.; Bortolucci, E. C.; Caspi, A.; Fernandes, L. O. T.; Kropotov, G.; Kudaka, A. S.; Laurent, G.; Machado, N.; Marcon, R.;
2016-01-01
A new system of two photometers was built to observe the Sun at 3 and 7 THz from space, named SOLART. It has been flown coupled to U.C. Berkeley GRIPS experiment on a NASA stratospheric balloon flight over Antarctica, 19-30 January 2016. The mission was successfully accomplished. We describe the system performance, solar brightness determination and the first THz impulsive burst detected.
Infrasound from ground to space
NASA Astrophysics Data System (ADS)
Bowman, Daniel Charles
Acoustic detector networks are usually located on the Earth's surface. However, these networks suffer from shortcomings such as poor detection range and pervasive wind noise. An alternative is to deploy acoustic sensors on high altitude balloons. In theory, such platforms can resolve signals arriving from great distances, acquire others that never reach the surface at all, and avoid wind noise entirely. This dissertation focuses on scientific advances, instrumentation, and analytical techniques resulting from the development of such sensor arrays. Results from infrasound microphones deployed on balloon flights in the middle stratosphere are described, and acoustic sources such as the ocean microbarom and building ventilation systems are discussed. Electromagnetic noise originating from the balloon, flight system, and other payloads is shown to be a pervasive issue. An experiment investigating acoustic sensor calibration at low pressures is presented, and implications for high altitude recording are considered. Outstanding challenges and opportunities in sound measurement using sensors embedded in the free atmosphere are outlined. Acoustic signals from field scale explosions designed to emulate volcanic eruptions are described, and their generation mechanisms modeled. Wave forms recorded on sensors suspended from tethered helium balloons are compared with those detected on ground stations during the experiment. Finally, the Hilbert-Huang transform, a high time resolution spectral analysis method for nonstationary and nonlinear time series, is presented.
Speck, Ulrich; Scheller, Bruno; Rutsch, Wolfgang; Laule, Michael; Stangl, Verena
2011-05-01
Our initial investigations into restenosis inhibition by local drug delivery were prompted by reports on an improved outcome of coronary interventions, including a lower rate of target lesion revascularisation, when the intervention was performed with an ionic instead of non-ionic contrast medium. Although this was not confirmed in an animal study, the short exposure of the vessel wall to paclitaxel dissolved in contrast agent or coated on balloons proved to be efficacious. A study comparing three methods of local drug delivery to the coronary artery in pigs indicated the following order of efficacy in inhibiting neointimal proliferation: paclitaxel-coated balloons > sirolimus-eluting stents, sustained drug release > paclitaxel in contrast medium. Cell culture experiments confirmed that cell proliferation can be inhibited by very short exposure to the drug. Shorter exposure times require higher drug concentrations. Effective paclitaxel concentrations in porcine arteries are achieved when the drug is dissolved in contrast medium or coated on balloons. Paclitaxel is an exceptional drug in that it stays in the treated tissue for a long time. This may explain the long-lasting efficacy of paclitaxel-coated balloons, but does not disprove the hypothesis that the agent blocks a process initiating long-lasting excessive neointimal proliferation, which occurs early after vessel injury.
NASA Technical Reports Server (NTRS)
Hayashi, Masahiko; Murata, Isao; Iwasaka, Yasunobu; Kondo, Yutaka; Kanzawa, Hiroshi
1994-01-01
We present preliminary results for the PPB (Polar Patrol Balloon) experiment. The balloon was launched at 07:55 UT on 23 September and dropped at 21 UT on 28 September 1991. During the period, ozone and aerosol concentrations were measured correspondingly along the track. During the Lagrangian type observation, drastic change of ozone concentration in 'same air mass' and positive correlation between ozone concentration and sulfate aerosol amount were obtained at the level within 80-78 hPa. During the descent motion at 80 deg S active PSC's (type-1 and -2) were observed from 200 hPa to 80 hPa.
Cosmic ray proton spectra at low rigidities
NASA Technical Reports Server (NTRS)
Seo, E. S.; Ormes, J. F.; Streitmatter, R. E.; Lloyd-Evans, J.; Jones, W. V.
1990-01-01
The cosmic ray proton rigidity spectra have been investigated with data collected in the Low Energy Antiproton (LEAP) balloon flight experiment flown from Prince Albert, Canada in 1987. The LEAP apparatus was designed to measure antiprotons using a superconducting magnet spectrometer with ancillary scintillator, time-of-flight, and liquid Cherenkov detectors. After reaching float altitude the balloon drifted south and west to higher geomagnetic cutoffs. The effect of the changing geomagnetic cutoff on the observed spectra was observed during analysis of the proton data along the balloon trajectory. This is the first measurement of the primary and splash albedo spectra over a wide rigidity range (few hundred MV to about 100 GV) with a single instrument.
High Energy Antimatter Telescope (HEAT) Balloon Experiment
NASA Technical Reports Server (NTRS)
Beatty, J. J.
1995-01-01
This grant supported our work on the High Energy Antimatter Telescope(HEAT) balloon experiment. The HEAT payload is designed to perform a series of experiments focusing on the cosmic ray positron, electron, and antiprotons. Thus far two flights of the HEAT -e+/- configuration have taken place. During the period of this grant major accomplishments included the following: (1) Publication of the first results of the 1994 HEAT-e+/- flight in Physical Review Letters; (2) Successful reflight of the HEAT-e+/- payload from Lynn Lake in August 1995; (3) Repair and refurbishment of the elements of the HEAT payload damaged during the landing following the 1995 flight; and (4) Upgrade of the ground support equipment for future flights of the HEAT payload.
NASA Technical Reports Server (NTRS)
Nigro, N. J.; Elkouh, A. F.
1975-01-01
The attitude of the balloon system is determined as a function of time if: (a) a method for simulating the motion of the system is available, and (b) the initial state is known. The initial state is obtained by fitting the system motion (as measured by sensors) to the corresponding output predicted by the mathematical model. In the case of the LACATE experiment the sensors consisted of three orthogonally oriented rate gyros and a magnetometer all mounted on the research platform. The initial state was obtained by fitting the angular velocity components measured with the gyros to the corresponding values obtained from the solution of the math model. A block diagram illustrating the attitude determination process employed for the LACATE experiment is shown. The process consists of three essential parts; a process for simulating the balloon system, an instrumentation system for measuring the output, and a parameter estimation process for systematically and efficiently solving the initial state. Results are presented and discussed.
Hanna, Elias B; Ababneh, Bashar A; Amin, Amit N
2018-02-01
We describe our experience in transradial recanalization of the superficial femoral artery (SFA), and we provide a stepwise approach accounting for the patient's height and optimizing the yield of currently available devices. Fifteen patients with simple SFA disease, including 4 patients with total SFA occlusions <15 cm, were selected for stand-alone transradial recanalization. A 6F, 125-cm multipurpose guiding catheter was used to cannulate the limb of interest and support device delivery. The procedure was successful in all patients and consisted of balloon angioplasty (using 0.014″, 200-cm shaft monorail balloons) in all patients, and orbital atherectomy in 6 patients. We illustrate the steps and challenges of the transradial approach, namely the limited support in complex disease and the limited reach of current equipment. In patients with simple SFA disease, transradial recanalization appears feasible and safe but currently limited to balloon angioplasty ± orbital atherectomy. Proximal SFA stenting may be feasible in patients <160 cm in height.
NASA Astrophysics Data System (ADS)
Voss, H. D.; Dailey, J.; Snyder, S. J.
2011-09-01
Students creating and flying experiments into near-space using a low-cost balloon High-Altitude Research Platform (HARP) greatly advance understanding in introductory astronomy and advanced classes across several disciplines. Remote sensing above 98% of the atmosphere using cameras, image intensifiers, IR, and UV sensors provides access to the heavens and large regions of the earth below. In situ and limb atmospheric gas measurements, near-space stratosphere measurements, and cosmic rays engage students in areas from planetary atmospheres to supernova acceleration. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build less than 4 kg payloads. The HARP program provides an engaging laboratory, gives challenging science, technology, engineering, and mathematics (STEM) field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Over a seven-year period, Taylor University, an undergraduate liberal arts school, has successfully launched over 230 HARP systems to altitudes over 30 km (100% retrieval success with rapid recovery) with flight times between two and six hours. The HARP payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergraduate). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded, leading to representatives from more than 52 universities being trained at workshops to implement high-altitude balloon launches in the classroom. A spin-off company, StratoStar Systems LLC, now sells the turn-key high-altitude balloon system, and another spin-off company, NearSpace Launch, now offers a low cost ride-for-hire into near-space.
Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent
2014-01-01
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals.
Sabouri, Sepideh; Matene, Elhacene; Vinet, Alain; Richer, Louis-Philippe; Cardinal, René; Armour, J. Andrew; Pagé, Pierre; Kus, Teresa; Jacquemet, Vincent
2014-01-01
Epicardial high-density electrical mapping is a well-established experimental instrument to monitor in vivo the activity of the atria in response to modulations of the autonomic nervous system in sinus rhythm. In regions that are not accessible by epicardial mapping, noncontact endocardial mapping performed through a balloon catheter may provide a more comprehensive description of atrial activity. We developed a computer model of the canine right atrium to compare epicardial and noncontact endocardial mapping. The model was derived from an experiment in which electroanatomical reconstruction, epicardial mapping (103 electrodes), noncontact endocardial mapping (2048 virtual electrodes computed from a 64-channel balloon catheter), and direct-contact endocardial catheter recordings were simultaneously performed in a dog. The recording system was simulated in the computer model. For simulations and experiments (after atrio-ventricular node suppression), activation maps were computed during sinus rhythm. Repolarization was assessed by measuring the area under the atrial T wave (ATa), a marker of repolarization gradients. Results showed an epicardial-endocardial correlation coefficients of 0.80 and 0.63 (two dog experiments) and 0.96 (simulation) between activation times, and a correlation coefficients of 0.57 and 0.46 (two dog experiments) and 0.92 (simulation) between ATa values. Despite distance (balloon-atrial wall) and dimension reduction (64 electrodes), some information about atrial repolarization remained present in noncontact signals. PMID:24598778
Summary of biological spaceflight experiments with cells.
Dickson, K J
1991-07-01
Numerous biological experiments with cells have been conducted in space, and the importance of these experiments and this area of study is continually becoming evident. This contribution is a compilation of available information about spaceflight experiments with cells for the purpose of providing a single source of information for those interested in space gravitational cell biology. Experiments focused on a study of the effects of gravity and its absence on cells, cell function, and basic cellular processes have been included. Experiments include those involving viruses, bacteriophage, unicellular organisms, lower fungi, and animal and plant cell and tissue cultures, but exclude experiments with cells that were carried on a flight as part of a whole organism and later removed for study, and experiments with fertilized eggs. In addition, experiments in biotechnology, in which the microgravity environment is employed to study cell purification, cell fusion, protein crystallization, and similar processes, have not been included. Spaceflight experiments conducted by scientists from the U.S., U.S.S.R., and other countries and flown onboard sounding rockets (TEXUS, MAXUS, Consort), biosatellites (Biosatellite II, Cosmos), and various crewed spacecraft including the space shuttle (STS) and Soyuz, and space stations (Salyut, Mir) have been included, as well as high altitude balloon flights. Balloon flights are not spaceflights but can and are used as controls for the effects of space radiation, since organisms carried on balloons may be exposed to some of the same radiation as those taken into space, yet continue to be exposed to Earth's gravitational force. Parabolic flights on aircraft during which periods of microgravity of less than a minute are achieved have arbitrarily been excluded, because even though numerous experiments have been conducted, few results have been published.
Preliminary Results from the GPS-Reflections Mediterranean Balloon Experiment (GPSR-MEBEX)
NASA Technical Reports Server (NTRS)
Garrison, James L.; Ruffini, Giulio; Rius, Antonio; Cardellach, Estelle; Masters, Dallas; Armatys, Michael; Zavorotny, Valery; Bauer, Frank H. (Technical Monitor)
2000-01-01
An experiment to collect bistatically scattered GPS signals from a balloon at 37 km altitude has been conducted. This experiment represented the highest altitude to date that such signals were successfully recorded. The flight took place in August 1999 over the Mediterranean sea, between a launch in Sicily and recovery near Nerpio, a town in the Sierra de Segura, Albacete province of Huelva, Spain. Results from this experiment are presented, showing the waveform shape as compared to theoretical calculations. These results will be used to validate analytical models which form the basis of wind vector retrieval algorithms. These algorithms are already being validated from aircraft altitudes, but may be applied to data from future spacebourne GPS receivers. Surface wind data from radiosondes were used for comparison. This experiment was a cooperative project between NASA, the IEEC in Barcelona, and the University of Colorado at Boulder.
Preliminary Results from the GPS-Reflections Mediterranean Balloon Experiment (GPSR MEBEX)
NASA Technical Reports Server (NTRS)
Garrison, James L.; Ruffini, Giulio; Rius, Antonio; Cardellach, Estelle; Masters, Dallas; Armathys, Michael; Zavorotny, Valery
2000-01-01
An experiment to collect bistatically scattered GPS signals from a balloon at 37 km altitude has been conducted. This experiment represented the highest altitude to date that such signals were successfully recorded. The flight took place in August 1999 over the Mediterranean sea, between a launch in Sicily and recovery near Nerpio, a town in the Sierra de Segura, Albacete province of Huelva, Spain. Results from this experiment are presented, showing the waveform shape as compared to theoretical calculations. These results will be used to validate analytical models which form the basis of wind vector retrieval algorithms. These algorithms are already being validated from aircraft altitudes, but may be applied to data from future spaceborne GPS receivers. Surface wind data from radiosondes were used for comparison. This experiment was a cooperative project between NASA, the IEEC in Barcelona, and the University of Colorado at Boulder.
NASA Astrophysics Data System (ADS)
Young, Eliot
THAI-SPICE is the Testbed for High-Acuity Imaging - Stable Photometry and ImageMotion Compensation Experiment - It is a lead proposal, accompanied by a coInstitutional proposal from MIT LL. The overarching goal of THAI-SPICE is to advance balloonborne telescopes to the point where they can surpass HST in terms of spatial resolution in visible wavelengths and surpass the Kepler mission in terms of observing exoplanet transits. Balloon-borne telescopes are becoming an important part of NASA's observing programs - each 100-day super-pressure balloon flight will provide 1000 hours of dark time observing, equivalent to about 1/3 of the total on-target time allocated in an HST cycle across its entire portfolio of science programs. However, balloon-borne telescopes face unique challenges from the stratospheric thermal environment and the pointing stability of a suspended platform. This proposal will study and test three areas of development that will enable high-acuity image quality and stable photometry from balloon-borne telescopes. - Passive thermal control and stabilization of balloon-borne OTAs (Optical Tube Assemblies). Recent modeling suggests that an appropriate arrangement of sunshields, earth-shields and telescope insulation can reduce diurnal temperature excursions from more than 40°C to less than 2°C. Furthermore, modeling also suggests that the steadystate temperature of an OTA can be reduced to temperatures near 180 K, an advantage for infrared observing programs. However, most modeling packages (e.g., Thermal Desktop) do not accurately account for convection in the 3 torr or 8 torr environment of zeropressure or super-pressure balloons. In fact, it is hard to tell whether radiation or convection is a more significant cooling mechanism at super-pressure balloon altitudes. We propose to verify or update Thermal Desktop results with a series of experiments using an instrumented OTA and sun- and earth-shields. The payoff from this experiment will be balloon-borne telescopes that exhibit extremely stable temperatures through daynight cycles and, in turn, avoid optical misalignment due to temperature excursions. - Orthogonal Transfer CCDs as solid-state motion compensation devices. In order to stay within a wavefront error budget that is comparable to WFIRST or HST, a balloon-borne imaging system cannot afford a single mediocre optical element. Fine steering mirrors are especially problematic, since they are often thin, lightweight and mounted to a fastmoving mechanism. We will test the performance of OTCCDs on actual balloon platforms to assess how they can compensate for focal plane motion in flight. In addition, we will measure the photometric stability afforded by OTCCDs, and whether purposely moving a point source in a pattern can improve photometry by PSF-shaping and spreading the signal over many array elements. - In-flight wavefront error measurements. During a 100-day mission, it will be useful to monitor the focus and optical alignment of the telescope and the attached instruments. A Shack-Hartmann array located at an exit pupil will provide a detailed breakdown of the optical system: compact commercial units often provide over 15 Zernike polynomials. We want to test another method, the Curvature Wavefront Sensing method (aka, the Roddier method). The CWS method only requires images on either side of focus. It does not require extra hardware nor access to an exit pupil. We want to demonstrate the CWS method in flight and compare its results to a conventional Shack-Hartmann array. All of these projects leverage prior work, some supported by previous APRA projects, some part of NASA's ongoing GHAPS project (Gondola for High Altitude Planetary Science). We propose two domestic flights with a 24-in instrumented telescope and a gondola capable of coarse pointing. This project will involve students from the University of Virginia and the University of Colorado.
Venous air embolism in consecutive balloon kyphoplasties visualised on CT imaging.
Tins, Bernhard J; Cassar-Pullicino, Victor N; Lalam, Radhesh; Haddaway, Mike
2012-09-01
We noted a large amount of intravenous gas during balloon kyphoplasty on CT imaging. Formal assessment to understand the extent, possible causes and implications was undertaken. Ten consecutive cases of balloon kyphoplasty were performed under general anaesthesia in the prone position, on a single vertebral level using a two-step technique under combined fluoroscopic and CT guidance. CT of the affected vertebra was performed before, after, and intermittently during the procedure. In 2 cases delayed CT was carried out in the supine position. Gas was seen on CT imaging, but not on conventional fluoroscopy. The gas is most likely to be air introduced during the procedure and was seen in the epidural and paravertebral venous plexus, posterior intercostal veins, renal veins, IVC and azygos vein. The average measured volume of gas seen on the post-procedure CT imaging was 1.07 mL, range 0.16-3.97 mL. There was no correlation of the measured amount of gas to the procedure duration or location, the use of a curette or the injected cement volume. Delayed CT in the supine position no longer showed air in the local venous system. Balloon kyphoplasty is associated with the fluoroscopically invisible introduction of air into the vertebral and paravertebral veins and deep systemic veins and is likely to be much more extensive than identified on CT imaging. There is potential for serious air embolism in kyphoplasty and if there is a sudden deterioration in patient condition during the procedure the possibility of this complication needs to be considered.
NASA Astrophysics Data System (ADS)
Renard, Jean-Baptiste; Dulac, François; Berthet, Gwenaël; Lurton, Thibaut; Vignelles, Damien; Jégou, Fabrice; Tonnelier, Thierry; Jeannot, Matthieu; Couté, Benoit; Akiki, Rony; Verdier, Nicolas; Mallet, Marc; Gensdarmes, François; Charpentier, Patrick; Mesmin, Samuel; Duverger, Vincent; Dupont, Jean-Charles; Elias, Thierry; Crenn, Vincent; Sciare, Jean; Zieger, Paul; Salter, Matthew; Roberts, Tjarda; Giacomoni, Jérôme; Gobbi, Matthieu; Hamonou, Eric; Olafsson, Haraldur; Dagsson-Waldhauserova, Pavla; Camy-Peyret, Claude; Mazel, Christophe; Décamps, Thierry; Piringer, Martin; Surcin, Jérémy; Daugeron, Daniel
2016-08-01
In the companion (Part I) paper, we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter), based on scattering measurements at angles of 12 and 60°. That allows for some typology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size-segregated counting in a large diameter range from 0.2 µm up to possibly more than 100 µm depending on sampling conditions (Renard et al., 2016). Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 µm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAVs) and at ground level. We illustrate here the first LOAC airborne results obtained from a UAV and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.
NASA Astrophysics Data System (ADS)
Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelles, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J. C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.
2015-09-01
In the companion paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosol Counter) based on scattering measurements at angles of 12 and 60° that allows some topology identification of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overpass those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC's light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Vienna (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.
NASA Astrophysics Data System (ADS)
Renard, J.-B.; Dulac, F.; Berthet, G.; Lurton, T.; Vignelle, D.; Jégou, F.; Tonnelier, T.; Thaury, C.; Jeannot, M.; Couté, B.; Akiki, R.; Mineau, J.-L.; Verdier, N.; Mallet, M.; Gensdarmes, F.; Charpentier, P.; Mesmin, S.; Duverger, V.; Dupont, J.-C.; Elias, T.; Crenn, V.; Sciare, J.; Giacomoni, J.; Gobbi, M.; Hamonou, E.; Olafsson, H.; Dagsson-Waldhauserova, P.; Camy-Peyret, C.; Mazel, C.; Décamps, T.; Piringer, M.; Surcin, J.; Daugeron, D.
2015-01-01
In a companion (Part 1) paper (Renard et al., 2015), we have described and evaluated a new versatile optical particle counter/sizer named LOAC (Light Optical Aerosols Counter) based on scattering measurements at angles of 12 and 60°. that allows some speciation of particles (droplets, carbonaceous, salts, and mineral dust) in addition to size segregated counting in a large diameter range from 0.2 up to possibly more than 100 μm depending on sampling conditions. Its capabilities overwhelm those of preceding optical particle counters (OPCs) allowing the characterization of all kind of aerosols from submicronic-sized absorbing carbonaceous particles in polluted air to very coarse particles (> 10-20 μm in diameter) in desert dust plumes or fog and clouds. LOAC light and compact design allows measurements under all kinds of balloons, on-board unmanned aerial vehicles (UAV) and at ground level. We illustrate here the first LOAC airborne results obtained from an unmanned aerial vehicle (UAV) and a variety of scientific balloons. The UAV was deployed in a peri-urban environment near Bordeaux in France. Balloon operations include (i) tethered balloons deployed in urban environments in Wien (Austria) and Paris (France), (ii) pressurized balloons drifting in the lower troposphere over the western Mediterranean (during the Chemistry-Aerosol Mediterranean Experiment - ChArMEx campaigns), (iii) meteorological sounding balloons launched in the western Mediterranean region (ChArMEx) and from Aire-sur-l'Adour in south-western France (VOLTAIRE-LOAC campaign). More focus is put on measurements performed in the Mediterranean during (ChArMEx) and especially during African dust transport events to illustrate the original capability of balloon-borne LOAC to monitor in situ coarse mineral dust particles. In particular, LOAC has detected unexpected large particles in desert sand plumes.
VisibleWind: wind profile measurements at low altitude
NASA Astrophysics Data System (ADS)
Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell
2009-09-01
VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other remote wind sensors must operate.
Initial Results from the Radiation Dosimetry Experiment (RaD-X) Balloon Flight Mission
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.
2015-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. The four dosimeters flown on the RaD-X science payload are a Hawk version 3.0 Tissue Equivalent Proportional Counter (TEPC) manufactured by Far West Technologies, a Liulin dosimeter-spectrometer produced by the Solar Research and Technology Institute, Bulgarian Academy of Sciences, a total ionizing dose detector manufactured by Teledyne Microelectronic Technologies, and the RaySure detector provided by the University of Surrey.
Balloonborne Lidar Experiment.
1980-12-24
predictable. 1he balloon will be launched with the lidar in standby mode. When an altitude of ib km has been attained, the baroswitch will be opened ...loon will be vaiveo cown to lower altitudes (-bU,0UU ft) and the balloon ruptured on command. lhe payload parachute will open ano the payloac will...values of the quantum efficiencies of the photomultipliers were used, as well as transmission and reflection efficiencies of the optics. The field of
The Balloon-Based Manometry Evaluation of Swallowing in Patients with Amyotrophic Lateral Sclerosis
Tomik, Jerzy; Tomik, Barbara; Gajec, Sebastian; Ceranowicz, Piotr; Pihut, Małgorzata; Olszanecki, Rafał; Stręk, Paweł; Składzień, Jacek
2017-01-01
The aim of the study was to analyse the disturbances of the oro-pharyngeal swallowing phase of dysphagia in amyotrophic lateral sclerosis (ALS) patients with the use of specific manometric measurements and to evaluate their plausible association with the duration of the disease. Seventeen patients with ALS were evaluated with manometric examinations of the oral and pharyngeal part of the gastrointestinal tract. Tests were carried out by using the oesophageal balloon-based method with four balloon transducers located 5 cm away from each other. The following manometric parameters were analysed: the base of tongue contraction (BTC) and the upper oesophageal sphincter pressure (UESP), and the hypopharyngeal suction pump (HSP) as well as the oro-pharyngeal, pharyngeal and hypopharyngeal transit time and average pharyngeal bolus velocity (oropharyngeal transit time (OTT), pharyngeal transit time (PTT), hypopharyngeal transit time (HTT) and average pharyngeal bolus velocity (APBV), respectively). Manomatric examinations during swallowing in patients with ALS showed significant weakness of BTC, a decrease of HSP and a decrease of the velocity of bolus transit inside the pharynx which were particularly marked between the first and the third examination. Manometric examinations of the oro-pharyngeal part of the gastrointestinal tract are useful and supportive methods in the analysis of swallowing disturbances in ALS patients. PMID:28346382
X-Ray Astronomy Research at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Austin, Robert A.
1999-01-01
For at least twenty years, NASA's Marshall Space Flight Center (MSFC) has played a major role in the development of X-ray astronomy in the United States. MSFC scientists and engineers are currently involved in a wide range of programs which will contribute to the growth of X-ray astronomy well into the next century. Areas of activity include calibration of X-ray astronomy instrumentation using Marshall's world-class X-ray Calibration Facility (XRCF), development of high-throughput, replicated X-ray optics, X-ray detector development, balloon-based X-ray astronomy, and analysis of Active Galactic Nuclei (AGNs) and clusters of galaxies. Recent milestones include the successful calibration of NASA's premier X-ray Astronomy Satellite - AXAF (recently renamed Chandra), a balloon flight of a large area (1000 sq cm) micro-strip proportional counter, and work on a hard X-ray (30-100 keV) telescope called HERO, capable of high quality spectroscopy and imaging through the use of grazing incidence optics and an Imaging Gas Scintillation Proportional Counter (IGSPC). In my presentation, I will provide a general overview of our research and facilities. I will conclude with a more detailed discussion of our High Energy Replicated Optics (HERO) program and plans for long duration (>100 days) balloon flights which will take place in the near future.
Overview of the NASA Suborbital Program
NASA Astrophysics Data System (ADS)
Jones, W. Vernon
2014-08-01
The NASA Suborbital Program consists of Sounding Rocket and Balloon Projects managed, respectively, by the Heliophysics and Astrophysics Divisions of the Science Mission Directorate, which maintains “Program” Offices at the NASA Wallops Flight Facility. Suborbital missions have for several decades enabled investigations with significant results from relatively modest investments. Some have been competitive with orbital missions, while others have enabled orbital missions. NASA launches suborbital missions from sites established in the U.S. and around the world to meet investigators’ needs. A sea change in scientific ballooning occurred with the inauguration of 8 - 20 day flights around Antarctica in the early 1990’s. The U.S. National Science Foundation supports these circumpolar flights, which have been spectacularly successful with many investigations utilizing multiple flights of payloads that are recovered, refurbished, and reused to minimize life-cycle costs. The attainment of 25 - 32 day and 35 - 55 day flights in two and three circumnavigations, respectively, of the Antarctic continent has greatly increased expectations of scientific users. The 55-day Super-TIGER flight over Antarctica during the 2012-13 season broke the 42-day CREAM record during the 2004-05 season, as well as the 54-day super pressure balloon test flight in 2008-09. Qualification of super pressure flights to support 1000 kg science instruments for up to 100 days at 33 km have proceeded in parallel with plans to increase the altitude for less massive instruments requiring less atmospheric overburden. The nearly constant volume of super-pressure balloons allows stable altitude flights at non-polar latitudes. Long-duration flights in both polar and non-polar regions will confirm the important contributions that ballooning can make in traditional Astrophysics, Solar and Heliophysics, and Earth Science disciplines. With two comets approaching the sun in 2013-14, the Planetary Science community has shown increased interest in remote observations of comets, planets, and other objects in the Solar System.
DOT National Transportation Integrated Search
1975-10-01
This report details the result of an experiment performed by the Transportation Systems Center of the Department of Transportation to evaluate candidate voice and data modulation systems for use in an L-Band Air Traffic Control System. The experiment...
NASA Technical Reports Server (NTRS)
Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.
1990-01-01
Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.
Trande, Paolo; Mussetto, Alessandro; Mirante, Vincenzo G; De Martinis, Elvira; Olivetti, Giampiero; Conigliaro, Rita L; De Micheli, Enrico A
2010-09-01
Overweight and obesity lead to serious health consequences, so that many strategies were recommended for preventing or curing this emerging problem. Treatments are various: diet, physical activity, psychotherapy, drugs, and bariatric surgery. Moreover, during these years, the use of intragastric balloon (BIB) to treat obesity increased rapidly, aimed to (1) reduce bariatric surgical risks; (2) reduce general surgical risks; (3) lead to a significant reduction in the prevalence of cardiovascular diseases, diabetes, musculoskeletal disorders and some cancers. Recently, a new device inflated with air to reduce weight has been developed since 2004 (Heliosphere BAG). Between March 2006 and September 2006, in our unit, intragastric air-filled balloon insertion was performed under general anesthesia and endoscopic control. The balloons were removed after 6 months. We evaluated efficacy, tolerance, and safety of this technique. Seventeen patients (eight men, nine women), with a mean age of 43 +/- 10 years (range 18-65), mean basal BMI of 46 +/- 8 (range 35-58) were included, after providing informed consent. Weight and BMI loss were evaluated in all patients. BMI decreased 4 +/- 3 (range +0.33/-11), weight loss was 11 +/- 9 kg (range +1/-29.5; 8.5%). 14/17 patients maintain a BMI > 35 at the time of balloon removal. The difference between initial weight and BMI was statistically significant (p = 0.02 for weight and p < 0.01 for BMI, T Student test). Tolerance was very good, limited only to some dyspeptic symptoms during the first 3 days after insertion. One asymptomatic gastric ulcer was seen at the removal of balloon. Only one severe adverse effect was registered at the time of insertion (acute coronary syndrome in patient with chronic coronary disease). No serious technical problems were noted at balloon insertion. Balloon removal was more difficult and successful in 15/17 cases (one distal migration and one patient led to surgery because of balloon fragmentation). Intragastric air-filled balloon showed a good profile of efficacy and tolerance. Weight loss appeared to be equivalent to other type of balloons. On the other hand, technical problems (especially at the time of removal) probably linked to the device's material, set a low safety profile.
Rigidity Spectra of Protons and Helium as Measured in the First Flight of the ATIC Experiment
NASA Technical Reports Server (NTRS)
Zatsepin, V. I.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Batkov, K. E.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.
2003-01-01
ATIC (Advanced Thin Ionization Calorimeter) is a balloon borne experiment designed to measure cosmic ray composition for elements from hydrogen to iron and their energy spectra from 30 GeV to near 100 TeV. It is comprised of a fully active BGO calorimeter, a carbon interaction target, scintillator hodoscopes, and a silicon matrix that is used as a charge detector in the experiment. ATIC had two successful balloon flights in Antarctica: from 28 Dec 2000 to 13 Jan 2001 (ATIC-1) and from 29 Dec 2002 to 18 Jan 2003 (ATIC-2). Preliminary rigidity spectra of protons and helium nuclei and their ratio are presented for the test flight (ATIC-1). Particular attention is given to problems associated with measuring energy.
Amaral Gonçalves Fusatto, Helena; Castilho de Figueiredo, Luciana; Ragonete Dos Anjos Agostini, Ana Paula; Sibinelli, Melissa; Dragosavac, Desanka
2018-01-01
The aim of this study was to identify pulmonary dysfunction and factors associated with prolonged mechanical ventilation, hospital stay, weaning failure and mortality in patients undergoing coronary artery bypass grafting with use of intra-aortic balloon pump (IABP). This observational study analyzed respiratory, surgical, clinical and demographic variables and related them to outcomes. We analyzed 39 patients with a mean age of 61.2 years. Pulmonary dysfunction, characterized by mildly impaired gas exchange, was present from the immediate postoperative period to the third postoperative day. Mechanical ventilation time was influenced by the use of IABP and PaO2/FiO2, female gender and smoking. Intensive care unit (ICU) stay was influenced by APACHE II score and use of IABP. Mortality was strongly influenced by APACHE II score, followed by weaning failure. Pulmonary dysfunction was present from the first to the third postoperative day. Mechanical ventilation time was influenced by female gender, smoking, duration of IABP use and PaO2/FiO2 on the first postoperative day. ICU stay was influenced by APACHE II score and duration of IABP. Mortality was influenced by APACHE II score, followed by weaning failure. Copyright © 2017 Sociedade Portuguesa de Cardiologia. Publicado por Elsevier España, S.L.U. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fetterly, K; Mathew, V
Purpose: Transcatheter aortic valve replacement (TAVR) procedures provide a method to implant a prosthetic aortic valve via a minimallyinvasive, catheter-based procedure. TAVR procedures require use of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane to minimize prosthetic valve positioning error due to x-ray imaging parallax. The purpose of this work is to calculate the continuous range of interventional fluoroscopy c-arm projection angles which are aligned with the aortic valve plane from a single planar image of a valvuloplasty balloon inflated across the aortic valve. Methods: Computational methods to measure the 3D angular orientation of themore » aortic valve were developed. Required inputs include a planar x-ray image of a known valvuloplasty balloon inflated across the aortic valve and specifications of x-ray imaging geometry from the DICOM header of the image. A-priori knowledge of the species-specific typical range of aortic orientation is required to specify the sign of the angle of the long axis of the balloon with respect to the x-ray beam. The methods were validated ex-vivo and in a live pig. Results: Ex-vivo experiments demonstrated that the angular orientation of a stationary inflated valvuloplasty balloon can be measured with precision less than 1 degree. In-vivo pig experiments demonstrated that cardiac motion contributed to measurement variability, with precision less than 3 degrees. Error in specification of x-ray geometry directly influences measurement accuracy. Conclusion: This work demonstrates that the 3D angular orientation of the aortic valve can be calculated precisely from a planar image of a valvuloplasty balloon inflated across the aortic valve and known x-ray geometry. This method could be used to determine appropriate c-arm angular projections during TAVR procedures to minimize x-ray imaging parallax and thereby minimize prosthetic valve positioning errors.« less
Upper atmosphere research satellite program. [to study the chemistry energetics, and dynamics
NASA Technical Reports Server (NTRS)
Huntress, W. T., Jr.
1978-01-01
A satellite program to conduct research on the chemistry, energetics, and dynamics of the upper atmosphere was developed. The scientific goals of the Upper Atmospheric Research Program, the program requirements, and the approach toward meeting those requirements are outlined. An initial series of two overlapping spacecraft missions is described. Both spacecraft are launched and recovered by the STS, one in the winter of 1983 at a 56 deg inclination, and the other a year later at a 70 deg inclination. The duration of each mission is 18 months, and each carries instruments to make global measurements of the temperature, winds, composition, irradation, and radiance in the stratosphere, mesosphere, and lower thermosphere between the tropopause and 120 km altitude. The program requires a dedicated ground-based data system and a science team organization that leads to a strong interaction between the experiments and theory. The program includes supportive observations from other platforms such as rockets, balloons, and the Spacelab.
Japanese-American Cooperative Emulsion Experiment /JACEE/. [high energy cosmic ray studies
NASA Technical Reports Server (NTRS)
Huggett, R. W.; Hunter, S. D.; Jones, W. V.; Takahashi, Y.; Ogata, T.; Saito, T.; Holynski, R.; Jurak, A.; Wolter, W.; Parnell, T. A.
1981-01-01
The instrumentation and results of long duration balloon flights carried out jointly by U.S. and Japan researchers to examine high energy cosmic rays are reported. Basic detector geometries are 2.5 sq m sr with operation at altitudes with 3-4 g/sq cm pressure, with observations thus far of over 100 hr. Energies from 2-100 TeV are recorded for nucleus-nucleus and hadron-nucleus interactions, and searches are made for new particle or interactions. The detector is an emulsion chamber which comprises doubly-coated nuclear emulsions on 800 micron thick methacryl substrates, X-ray films, etchable detectors, low density spacers, and lead sheets. Segmentation of the instrument into a primary charge module, a target section, a spacer section, and a lead-emulsion calorimeter allows accurate charge measurement for primary nuclei, reliable energy resolution, and a large geometrical factor for collecting high energy events. A primary Ca nucleus of 300 TeV has been observed.
A 3D Printed Implantable Device for Voiding the Bladder Using Shape Memory Alloy (SMA) Actuators.
Hassani, Faezeh Arab; Peh, Wendy Yen Xian; Gammad, Gil Gerald Lasam; Mogan, Roshini Priya; Ng, Tze Kiat; Kuo, Tricia Li Chuen; Ng, Lay Guat; Luu, Percy; Yen, Shih-Cheng; Lee, Chengkuo
2017-11-01
Underactive bladder or detrusor underactivity (DU) is defined as a reduction of contraction strength or duration of the bladder wall. Despite the serious healthcare implications of DU, there are limited solutions for affected individuals. A flexible 3D printed implantable device driven by shape memory alloys (SMA) actuators is presented here for the first time to physically contract the bladder to restore voluntary control of the bladder for individuals suffering from DU. This approach is used initially in benchtop experiments with a rubber balloon acting as a model for the rat bladder to verify its potential for voiding, and that the operating temperatures are safe for the eventual implantation of the device in a rat. The device is then implanted and tested on an anesthetized rat, and a voiding volume of more than 8% is successfully achieved for the SMA-based device without any surgical intervention or drug injection to relax the external sphincter.
Project Hermes 'Use of Smartphones for Receiving Telemetry and Commanding a Satellite'
NASA Technical Reports Server (NTRS)
Maharaja, Rishabh (Principal Investigator)
2016-01-01
TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility. TCPIP protocols can be applied for satellite command, control, and data transfer. Project Hermes was an experiment set-up to test the use of the TCPIP protocol for communicating with a space bound payload. The idea was successfully demonstrated on high altitude balloon flights and on a sub-orbital sounding rocket launched from NASAs Wallops Flight Facility.
NASA Technical Reports Server (NTRS)
Lee, R. B., III; Gandrud, B. W.; Robbins, D. E.; Rossi, L. C.; Swann, N. R. W.
1982-01-01
The Limb Infrared Monitor of the Stratosphere (LIMS) LIP balloon experiment was used to obtain correlative temperature, ozone, water vapor, and nitric acid data at altitudes between 10 and 36 kilometers. The performance of the LIMS sensor flown on the Nimbus 7 Satellite was assessed. The LIP consists of the modified electrochemical concentration cell ozonesonde, the ultraviolet absorption photometric of ozone, the water vapor infrared radiometer sonde, the chemical absorption filter instrument for nitric acid vapor, and the infrared radiometer for nitric acid vapor. The limb instrument package (LIP), its correlative sensors, and the resulting data obtained from an engineering and four correlative flights are described.
Werner, Gerald S; Schofer, Joachim; Sievert, Horst; Kugler, Chad; Reifart, Nicolaus J
2011-06-01
The major challenge for the interventional treatment of chronic total coronary occlusion (CTO) is a low primary success rate. A common problem is the passage of the recanalisation wire into a subintimal position. New devices, which were evaluated in the first multicentre study in CTOs resistant to a conventional wire approach, may help to facilitate a controlled re-entry into the true lumen. The aim of this study was to assess the safety and efficacy of this approach, with successful true lumen distal wire passage as the primary endpoint. Forty-two patients were enrolled in four centres with high expertise in PCI for CTOs. All CTOs were of at least three months duration, and were initially attempted with dedicated recanalisation wires. After failure to pass or creation of a subintimal dissection, the BridgePoint devices were applied, consisting of a ball-tipped catheter (CrossBoss) to pass the proximal occlusion cap, and a flat-shaped balloon catheter (Stingray catheter) to be inflated within the subintimal space to guide the re-entry into the true vessel lumen with a special wire (Stingray guidewire). The primary endpoint was met in 67% of all patients. A higher success rate seemed to be possible when all devices were used in sequenced beginning with the CrossBoss, and in the case of a subintimal passage, followed by the Stingray. True lumen re-entry failed because of the loss of distally contrast filling and thus loss of a target for re-entry, and by a failure to advance the Stingray balloon far enough distal and parallel to the distal lumen. There were no severe device related complications. In patients with complex CTOs referred to dedicated centres with high experience in CTOs, these results demonstrate the potential of a guided re-entry from a subintimal wire position by use of the BridgePoint devices.
NASA Astrophysics Data System (ADS)
Didier, Joy
The E and B EXperiment (EBEX) is a pointed balloon-borne telescope designed to measure the polarization of the cosmic microwave background (CMB) as well as that from Galactic dust. The instrument is equipped with a 1.5 meter aperture Gregorian-Dragone telescope, providing an 8' beam at three frequency bands centered on 150, 250 and 410 GHz. The telescope is designed to measure or place an upper limit on inflationary B-mode signals and to probe B-modes originating from gravitationnal lensing of the CMB. The higher EBEX frequencies are designed to enable the measurement and removal of polarized Galactic dust foregrounds which currently limit the measurement of inflationary B-modes. Polarimetry is achieved by rotating an achromatic half-wave plate (HWP) on a superconducting magnetic bearing. In January 2013, EBEX completed 11 days of observations in a flight over Antarctica covering 6,000 square degrees of the southern sky. This marks the first time that kilo-pixel TES bolometer arrays have made science observations on a balloon-borne platform. In this thesis we report on the construction, deployment and data analysis of EBEX. We review the development of the pointing sensors and software used for real-time attitude determination and control, including pre-flight testing and calibration. We then report on the 2013 long duration flight (LD2013) and review all the major stages of the analysis pipeline used to transform the ˜1 TB of raw data into polarized sky maps. We review "LEAP", the software framework developed to support the analysis pipeline. We discuss in detail the novel program developed to reconstruct the attitude post-flight and estimate the effect of attitude errors on measured B-mode signals. We describe the bolometer time-stream cleaning procedure including removing the HWP-synchronous signal, and we detail the map making procedure. Finally we present a novel method to measure and subtract instrumental polarization, after which we show Galaxy and CMB maps.
The Bess-Polar II Long Duration Flight Above Antarctica
NASA Technical Reports Server (NTRS)
Sasaki, Makoto; Yamamoto, Akira; Yoshimura, Koji; Makida, Yasuhiro; Matsuda, Shinya; Hasegawa, Masaya; Horikoshi, Atsushi; Tanaka, Ken-ichi; Suzuki, Junichi; Nishimura, Jun;
2008-01-01
The Balloon-borne Experiment with a Superconducting Spectrometer, BESS, has been developed to study elementary particle phenomena in the early universe through measurements of low energy antiprotons to investigate their origin and through a search for antihelium. The BESS collaboration carried out nine northern latitude flights between 1993 and 2002. BESS-Polar is an advanced program of the BESS collaboration to study these topics with much greater precision using long duration flights above Antarctica. The BESS-Polar spectrometer was successfully developed to accumulate much larger numbers of events during long duration flights around the South Pole. Approximately a factor of four reductions in the amount of material in the particle beam enables measurement of much lower energy antiprotons down to 100 MeV (at top of atmosphere). The first BESS-Polar flight (BESS-Polar I) of 8.5 days was carried out above Antarctica in December 2004. recording 900 million cosmic-ray events. The second BESS-Polar flight (BESS-Polar 11) was successfully carried out in the austral summer season of 2007-2008. Based on experience with BESS-Polar I, the spectrometer was improved in performance and achieved long term stability during the flight. A newly constructed magnet with a larger liquid He capacity and improved thermal insulation and an upgraded data storage system with larger capacity of hard disk drives (HDDs) enabled longer observation time. BESS-Polar II was launched on December 22, 2007 from Williams Field, McMurdo Station, in Antarctica. The spectrometer worked properly and observed cosmic rays for about 24.5 days at float altitude, recording 4.6 billion events on the HDDs until the limit of the magnet operation was reached on January 16, 2008. The flight was terminated and the spectrometer was safely landed on the West Antarctic ice sheet (1000 km from the South Pole) on January 21, 2008. Here, the BESS-Polar instrument is discussed, highlighting improvements made for BESS-Polar II, and overviews of the flight and performance are reported.
The balloon-borne exoplanet spectroscopy experiment (BETSE)
NASA Astrophysics Data System (ADS)
Pascale, E.
2015-10-01
The balloon-borne exoplanet spectroscopy experiment (BETSE) is a proposed balloon spectrometer operating in the 1-5 μm band with spectral resolution of R = 100. Using a 50 cm diameter telescope, BETSE is desgnied to have sufficient sensitivity and control of systematics to measure the atmospheric spectra of representative sample of known hot Jupiters, few warm Neptunes, and some of the exoplanets TESS will soon begin to discover. This would for the first time allow us to place strict observational constraints on the nature of exo-atmospheres and on models of planetary formation. In a LDB flight from Antarctica, BETSE would be able to characterize the atmospheres of 20 planets. If a ULDB flight is available, the combination of a longer flight and night time operations would enable BETSE to ground-breakingly characterize the atmospheres of more than 40 planets. Prior to an LDB or ULDB flight, BETSE would be tested in a 24 hr flight from Fort Sumner, NM, in order to test all subsystems, also observing more than 4 planets with SNR greater than 5.
NASA Astrophysics Data System (ADS)
Voss, H. D.; Dailey, J. F.; Takehara, D.; Krueger, J. M.
2009-12-01
Over a seven-year period Taylor University, an undergraduate liberal art school, has successfully launched and recovered over 200 sophisticated student payloads to altitudes between 20-33 km (100% success with rapid recovery) with flight times between 2 to 6 hrs. All of the payloads included two GPS tracking systems, cameras and monitors, a 110 kbit down link, an uplink command capability for educational experiments (K-12 and undergrad). Launches were conducted during the day and night, with multiple balloons, with up to 10 payloads for experiments, and under varying weather and upper atmospheric conditions. The many launches in a short period of time allowed the payload bus design to evolve toward increased performance, reliability, standardization, simplicity, and modularity for low-cost launch services. Through NSF and NASA grants, the program has expanded leading to over 50 universities trained at workshops to implement high altitude balloon launches in the classroom. A spin-off company (StraoStar Systems LLC) now sells the high-altitude balloon system and facilitates networking between schools. This high-altitude balloon program helps to advance knowledge and understanding across disciplines by giving students and faculty rapid and low-cost access to earth/ecology remote sensing from high altitude, insitu and limb atmospheric measurements, near-space stratosphere measurements, and IR/UV/cosmic ray access to the heavens. This new capability is possible by exposing students to recent advances in MEMS technology, nanotechnology, wireless telecommunication systems, GPS, DSPs and other microchip miniaturizations to build < 4 kg payloads. The high-altitude balloon program provides an engaging laboratory, gives challenging field experiences, reaches students from diverse backgrounds, encourages collaboration among science faculty, and provides quantitative assessment of the learning outcomes. Furthermore this program has generated many front page news reports along with significant TV coverage because of its connection to hands-on learning for students and adults of all ages, connection to understanding climate change and ways to mitigate global warming, and the excitement of taking measurements in a much uncharted region of our atmosphere. Teaching the scientific method or learning cycle (theory, research, instrumentation, operations, data analysis, and presentation) is a significant pedagogical building block that stimulates and retains students and prepares them well for graduate school and professional careers. Students obtain a personal ownership of their education when they engage in state-of-the-art balloon launch capability into the "unknown" with real-time data (50 Kb) with command interaction. The scientific method comes alive with creativity, problem solving, fun, and multidisciplinary hands-on team work. More students in basic science (and liberal arts) and public have an awareness of the environment, atmosphere, space, and heavens by direct probing and remote sensing from "New Heights" (over 98% of atmosphere at 30 km altitude).
Barbalias, Dimitrios; Lappas, Georgios; Ravazoula, Panagiotia; Liourdi, Despoina; Kyriazis, Iason; Liatsikos, Evangelos; Kallidonis, Panagiotis
2018-05-01
Urethral strictures are a common urologic problem that could require complex reconstructive procedures. Urethral dilatation represents a frequent practiced intervention associated with high recurrence rates. Drug-coated percutaneous angioplasty balloons (DCBs) with cytostatic drugs have been effectively used for the prevention of vascular restenosis after balloon dilatation. To reduce restenosis rates of urethral dilatation, these balloons could be used in the urethra. Nevertheless, the urothelium is different than the endothelium and these drugs may not be distributed to the outer layers of the urethra. Thus, an experiment was performed to evaluate the distribution of paclitaxel (PTX) in the rabbit urethra after the inflation of a PTX-coated balloon (PCB). Eleven rabbits underwent dilatation of the posterior urethra with common endoscopic balloons after urethrography. Nine of these rabbits were additionally treated with PCB. The urethras of the two control animals were removed along with three more dilated with PCB urethras immediately after the dilatation. The remaining of the urethras were removed after 24 (n = 3) and 48 hours (n = 3). The posterior segments of the urethras were evaluated with hematoxylin and eosin staining as well as with immunohistochemistry with polyclonal anti-PTX antibody. The two control specimens showed denudation of the urothelium after balloon dilatations and no PTX was observed. All specimens from dilated PCB urethras showed distribution of PTX to all layers of the urethra. The specimens that were immediately removed exhibited denudation of the urothelium without any inflammation. The specimens removed at 24 and 48 hours showed mild acute inflammation. PTX was distributed to the urothelial, submucosal, and smooth muscle layers of the normal rabbit urethra immediately after dilatation with a DCB. PTX and mild inflammation were present at the site 24 and 48 hours after the dilatation.
Use of Sengstaken-Blakemore intrahepatic balloon: an alternative for liver-penetrating injuries.
Fraga, Gustavo Pereira; Zago, Thiago Messias; Pereira, Bruno Monteiro; Calderan, Thiago Rodrigues Araujo; Silveira, Henrique Jose Virgili
2012-09-01
Severe lesions in the liver are associated with a high mortality rate. Alternative surgical techniques such as the use of an intrahepatic balloon may be effective and reduce mortality in severe hepatic lesions. This study aimed to demonstrate the experience of a university hospital in the use of the Sengstaken-Blakemore balloon in patients with transfixing penetrating hepatic injury as an alternative way to treat these challenging injuries. A retrospective study based on the trauma registry of a university hospital was performed. All patients admitted with hepatic penetrating injuries and treated with the Sengstaken-Blakemore balloon within the period 1990-2010 were reviewed. Forty-six patients with transfixing hepatic injuries were treated with the Sengstaken-Blakemore balloon in the study period. The most frequent cause of injury was gunshot wound (87 % of the patients). The mean trauma scores on admission were Revised Trauma Score (RTS) = 7.12 ± 1.46, Injury Severity Score (ISS) = 22.4 ± 9.7, and Abdominal Trauma Index (ATI) = 19.5 ± 11. According to the severity of the hepatic trauma, 71.8 % of patients had grade III, 23.9 % grade IV, and 4.3 % grade V injuries. Associated abdominal injuries were found in 89.1 % of the patients. The most frequent liver-related complications were hepatic abscess postoperative bleeding (8.6 %), biliary fistula (8.6 %), (4.3 %), and biliary peritonitis (2.1 %). Surgical reintervention was necessary in 14 patients (31.1 %). From those 14, only 3 had the balloon removed. The overall morbidity and mortality rates were 56.5 % and 23.9 % (11 patients), respectively. The knowledge of alternative surgical techniques is essential in improving survival in patients with severe penetrating hepatic injuries. The use of intrahepatic balloon is a viable surgical strategy.
Rahme, Ralph; Grande, Andrew; Jimenez, Lincoln; Abruzzo, Todd A; Ringer, Andrew J
2014-08-01
The conventional technique of intracranial aneurysm embolization using Onyx HD-500 (ev3 Neurovascular, Irvine, CA, USA) involves repetitive balloon inflation-deflation cycles under general anesthesia. By limiting parent artery occlusion to 5 minutes, this cyclic technique is thought to minimize cerebral ischemia. However, intermittent balloon deflation may lengthen procedure time and allow balloon migration, resulting in intimal injury or Onyx leakage. We report our experience using a modified technique of uninterrupted Onyx injection with continuous balloon occlusion under conscious sedation. All Onyx embolization procedures for unruptured aneurysms performed by the senior author (A.J.R.) between September 2008 and April 2010 were retrospectively reviewed. Demographic, clinical, angiographic, and procedural data were recorded. Twenty-four embolization procedures were performed in 21 patients with 23 aneurysms, including four recurrences. Twenty aneurysms (87%) involved the paraclinoid or proximal supraclinoid internal carotid artery. Size ranged from 2.5 to 24mm and neck diameter from 2 to 8mm. The modified technique was employed in 19 cases. All but one patient (94.4%) tolerated continuous balloon inflation. Complete occlusion was achieved in 20 aneurysms (83.3%) and subtotal occlusion in three (12.5%). Stable angiographic results were seen in 85%, 94%, 94%, and 100% of patients at 6, 12, 24, and 36months, respectively. There were no deaths. Permanent non-disabling neurological morbidity occurred in one patient (4.2%). Minor, transient, and/or angiographic complications were seen in three patients (12.5%), none related to the technique itself. Onyx embolization of unruptured intracranial aneurysms can be safely and effectively performed using continuous balloon inflation under conscious sedation. Copyright © 2014 Elsevier Ltd. All rights reserved.
A local network integrated into a balloon-borne apparatus
NASA Astrophysics Data System (ADS)
Imori, Masatosi; Ueda, Ikuo; Shimamura, Kotaro; Maeno, Tadashi; Murata, Takahiro; Sasaki, Makoto; Matsunaga, Hiroyuki; Matsumoto, Hiroshi; Shikaze, Yoshiaki; Anraku, Kazuaki; Matsui, Nagataka; Yamagami, Takamasa
A local network is incorporated into an apparatus for a balloon-borne experiment. A balloon-borne system implemented in the apparatus is composed of subsystems interconnected through a local network, which introduces modular architecture into the system. The network decomposes the balloon-borne system into subsystems, which are similarly structured from the point of view that the systems is kept under the control of a ground station. The subsystem is functionally self-contained and electrically independent. A computer is integrated into a subsystem, keeping the subsystem under the control. An independent group of batteries, being dedicated to a subsystem, supplies the whole electricity of the subsystem. The subsystem could be turned on and off independently of the other subsystems. So communication among the subsystems needs to be based on such a protocol that could guarantee the independence of the individual subsystems. An Omninet protocol is employed to network the subsystems. A ground station sends commands to the balloon-borne system. The command is received and executed at the system, then results of the execution are returned to the ground station. Various commands are available so that the system borne on a balloon could be controlled and monitored remotely from the ground station. A subsystem responds to a specific group of commands. A command is received by a transceiver subsystem and then transferred through the network to the subsystem to which the command is addressed. Then the subsystem executes the command and returns results to the transceiver subsystem, where the results are telemetered to the ground station. The network enhances independence of the individual subsystems, which enables programs of the individual subsystems to be coded independently. Independence facilitates development and debugging of programs, improving the quality of the system borne on a balloon.
High Altitude Infrasound Measurements using Balloon-Borne Arrays
NASA Astrophysics Data System (ADS)
Bowman, D. C.; Johnson, C. S.; Gupta, R. A.; Anderson, J.; Lees, J. M.; Drob, D. P.; Phillips, D.
2015-12-01
For the last fifty years, almost all infrasound sensors have been located on the Earth's surface. A few experiments consisting of microphones on poles and tethered aerostats comprise the remainder. Such surface and near-surface arrays likely do not capture the full diversity of acoustic signals in the atmosphere. Here, we describe results from a balloon mounted infrasound array that reached altitudes of up to 38 km (the middle stratosphere). The balloon drifted at the ambient wind speed, resulting in a near total reduction in wind noise. Signals consistent with tropospheric turbulence were detected. A spectral peak in the ocean microbarom range (0.12 - 0.35 Hz) was present on balloon-mounted sensors but not on static infrasound stations near the flight path. A strong 18 Hz signal, possibly related to building ventilation systems, was observed in the stratosphere. A wide variety of other narrow band acoustic signals of uncertain provenance were present throughout the flight, but were absent in simultaneous recordings from nearby ground stations. Similar phenomena were present in spectrograms from the last balloon infrasound campaign in the 1960s. Our results suggest that the infrasonic wave field in the stratosphere is very different from that which is readily detectable on surface stations. This has implications for modeling acoustic energy transfer between the lower and upper atmosphere as well as the detection of novel acoustic signals that never reach the ground. Our work provides valuable constraints on a proposed mission to detect earthquakes on Venus using balloon-borne infrasound sensors.
Development and Testing of a Magnetically Actuated Capsule Endoscopy for Obesity Treatment
Do, Thanh Nho; Seah, Tian En Timothy; Yu, Ho Khek; Phee, Soo Jay
2016-01-01
Intra-gastric balloons (IGB) have become an efficient and less invasive method for obesity treatment. The use of traditional IGBs require complex insertion tools and flexible endoscopes to place and remove the balloon inside the patient’s stomach, which may cause discomfort and complications to the patient. This paper introduces a new ingestible weight-loss capsule with a magnetically remote-controlled inflatable and deflatable balloon. To inflate the balloon, biocompatible effervescent chemicals are used. As the source of the actuation is provided via external magnetic fields, the magnetic capsule size can be significantly reduced compared to current weight-loss capsules in the literature. In addition, there are no limitations on the power supply. To lose weight, the obese subject needs only to swallow the magnetic capsule with a glass of water. Once the magnetic capsule has reached the patient’s stomach, the balloon will be wirelessly inflated to occupy gastric space and give the feeling of satiety. The balloon can be wirelessly deflated at any time to allow the magnetic capsule to travel down the intestine and exit the body via normal peristalsis. The optimal ratio between the acid and base to provide the desired gas volume is experimentally evaluated and presented. A prototype capsule (9.6mm x 27mm) is developed and experimentally validated in ex-vivo experiments. The unique ease of delivery and expulsion of the proposed magnetic capsule is slated to make this development a good treatment option for people seeking to lose excess weight. PMID:26815309
Endoscopic management of post-laparoscopic sleeve gastrectomy stenosis.
Al Sabah, Salman; Al Haddad, Eliana; Siddique, Iqbal
2017-09-01
Laparoscopic sleeve gastrectomy (LSG) is becoming an increasingly popular form of bariatric surgery, accounting for more than 50% of these procedures performed in the USA. Given this popularity, more is being understood about the complications associated with LSG, which, though uncommon, include the formation of strictures and stenosis. The purpose of this study is to establish a safe and effective protocol for the treatment of stenosis post-LSG using endoscopic balloon dilatation. This is a prospective review of 26 patients who had undergone LSG in Kuwait, followed by sleeve gastrectomy stenosis (SGS) and were then referred to Amiri Hospital for endoscopic balloon dilatation from October 2008 up to June 2016. A total of 26 patients (four males; 22 females) presented with symptoms of stenosis post-LSG during the study period. The mean age of the patients was 34.6 ± 10.8 years. The mean body mass index at the time of surgery was 43 ± 1.6 kg/m 2 . The median interval from the initial LSG surgery was 95 days. Nine patients had an early presentation (≤3 months from surgery), while 17 presented late (>3 months). The patients were followed for a mean duration of 156 ± 20 days from the last endoscopic balloon dilatation. A total of 23 (88.5%) patients had complete resolution of their symptoms. Adverse events were observed in one patients, who was removed from the study. Gastric stenosis is a rare but potentially serious complication of LSG. Serial dilatation of SGS employing endoscopic balloons is a safe method of treatment, with high efficacy rates. This new method may offer a less invasive alternative to surgical revision. However, if endoscopic treatment fails, surgery is necessary.
The High Energy Replicated Optics to Explore the Sun (HEROES)
NASA Astrophysics Data System (ADS)
Christe, S.; Shih, A. Y.; Rodriguez, M.; Cramer, A.; Garcia, I.; Gaskin, J.; Chavis, K.; Smith, L.
2012-12-01
Set to fly in the Fall of 2013 from Ft. Sumner, NM, the High Energy Replicated Optics to Explore the Sun (HEROES) mission is a collaboration between NASA Marshall Space Flight Center and Goddard Space Flight Center to upgrade an existing payload to make unique scientific measurements of the Sun (during the day) and astrophysical targets (at night) during a single flight. HEROES will use grazing-incidence x-ray focusing optics combined with position-sensitive detectors to make new high energy (>20 keV) observations of the Sun in order to understand particle acceleration in solar flares. The HEROES science payload consists of 8 mirror modules, housing 110 grazing incidence replicated optics, mounted on a carbon-fiber-Aluminum optical bench 6 m from a matching array of focal-plane detectors (high pressure xenon gas scintillation proportional counters). The solar science objectives for HEROES are to (1) investigate electron acceleration in the non-flaring solar corona by searching for the hard X-ray signature of energetic electrons and to (2) investigate the acceleration and transport of energetic electrons in solar flares. HEROES will image the Sun with an angular resolution of 20 arcsec (FWHM) and will have a sensitivity up to ~100 times better than RHESSI at 20 keV. During 6 hours of solar observations (a minimum requirement for a typical balloon flight), HEROES has a ~75% chance of observing at least one flare with a GOES class above C1, and a ~20% chance of at least one flare above M1. HEROES is expected to observe the faint HXR emission from electrons streaming down the legs of magnetic loops or escaping along open magnetic field lines. Information from this flight will be used to design of a new balloon payload (SuperHERO) capable of capable of observing the Sun for 2-4 weeks using a Long Duration Balloon. This mission is funded by the NASA HOPE (Hands On Project Experience) Training Opportunity awarded by the NASA Academy of Program/Project and Engineering Leadership in partnership with NASA's Science Mission Directorate, Office of the Chief Engineer, and Office of the Chief Technologist.
Imaging spectrometer using a liquid crystal tunable filter
NASA Astrophysics Data System (ADS)
Chrien, Thomas G.; Chovit, Christopher; Miller, Peter J.
1993-09-01
A demonstration imaging spectrometer using a liquid crystal tunable filter (LCTF) was built and tested on a hot air balloon platform. The LCTF is a tunable polarization interference or Lyot filter. The LCTF enables a small, light weight, low power, band sequential imaging spectrometer design. An overview of the prototype system is given along with a description of balloon experiment results. System model performance predictions are given for a future LCTF based imaging spectrometer design. System design considerations of LCTF imaging spectrometers are discussed.
Materials for Slack Diaphragms
NASA Technical Reports Server (NTRS)
Puschmann, Traute
1940-01-01
This report deals with systematic experiments carried out on five diaphragm materials with different pretreatment, for the purpose of ascertaining the suitability of such materials for slack diaphragms. The relationship of deflection and load, temperature and moisture, was recorded. Of the explored materials, synthetic leather, balloon cloth, goldbeaters skin, Igelit and Buna, synthetic leather treated with castor oil is the most suitable material for the small pressure range required. Balloon cloth is nearly as good, while goldbeaters skin, Igelit and Buna were found to be below the required standards.
A servo-controlled canine model of stable severe ischemic left ventricular failure.
Wagner, Richard L; Hood, William B; Howland, Peter A
2009-12-01
Reversible left ventricular failure was produced in conscious dogs by compromise of the coronary circulation. In animals with prior left anterior descending coronary artery occlusion, mean left atrial pressure (LAP) was incorporated into an automatic feedback control system used to inflate a balloon cuff on the circumflex (Cfx) coronary artery. The system could produce stable increases in LAP to 15-20 mm Hg. The dominating system transfer function was the ratio of LAP to balloon volume (BV), which was characterized by a fixed delay (5 s), with LAP/BV = (8e(-jomegatau ))/(0.02 + jomega). The system was stabilized by a phase lead network to reduce oscillations of LAP. A total of seven experiments were conducted in three dogs, and testing of inotropic agents was possible in three experiments under stable conditions with the pump off after an hour or more of operation. Problems encountered were 0.003-0.008 Hz oscillations in LAP in three experiments, which could usually be controlled by reducing the system gain. Late stage ventricular fibrillation occurred in all three animals, but defibrillation was easily accomplished after deflating the Cfx balloon. This system produces reversible left ventricular failure solely due to ischemia, thus closely simulating clinical heart failure due to coronary insufficiency.
NASA Astrophysics Data System (ADS)
Ertley, Camden
2014-01-01
The degree of linear polarization of hard X-rays (50-500 keV) can provide a better understanding of the particle acceleration mechanisms and the emission of radiation during solar flares. Difficulties in measuring the linear polarization has limited the ability of past experiments to place constraints on solar flare models. The Gamma RAy Polarimeter Experiment (GRAPE) is a balloon-borne Compton polarimeter designed to measure polarization in the 50 - 500 keV energy range. This energy range minimizes the thermal contamination that can potentially affect measurements at lower energies. This research focuses on the analysis of data acquired during the first high altitude balloon flight of the GRAPE payload in 2011. During this 26 hour balloon flight two M-class flares were observed. The analysis effort includes the development of a Monte Carlo simulation of the full instrument payload with the GEANT4 toolkit. The simulations were used in understanding the background environment, creating a response matrix for the deconvolution of the energy loss spectra, and determining the modulation factor for a 100% linearly polarized source. We report on the results from the polarization analysis of the solar flare data. The polarization and spectral data can be used to further our understanding of particle acceleration in the context of current solar flare models.
Cosmic radiation dose measurements from the RaD-X flight campaign
NASA Astrophysics Data System (ADS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric; Wiley, Scott; Gersey, Brad; Wilkins, Richard; Xu, Xiaojing
2016-10-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5°N, 104.2°W) on 25 September 2015. Over 18 h of flight data were obtained from each of the four different science instruments at altitudes above 20 km. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
Cosmic Radiation Dose Measurements from the RaD-X Flight Campaign
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Gronoff, Guillaume P.; Norman, Ryan B.; Hayes, Bryan M.; Lusby, Terry C.; Straume, Tore; Tobiska, W. Kent; Hands, Alex; Ryden, Keith; Benton, Eric;
2016-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) stratospheric balloon flight mission obtained measurements for improving the understanding of cosmic radiation transport in the atmosphere and human exposure to this ionizing radiation field in the aircraft environment. The value of dosimetric measurements from the balloon platform is that they can be used to characterize cosmic ray primaries, the ultimate source of aviation radiation exposure. In addition, radiation detectors were flown to assess their potential application to long-term, continuous monitoring of the aircraft radiation environment. The RaD-X balloon was successfully launched from Fort Sumner, New Mexico (34.5 degrees North, 104.2 degrees West) on 25 September 2015. Over 18 hours of flight data were obtained from each of the four different science instruments at altitudes above 20 kilometers. The RaD-X balloon flight was supplemented by contemporaneous aircraft measurements. Flight-averaged dosimetric quantities are reported at seven altitudes to provide benchmark measurements for improving aviation radiation models. The altitude range of the flight data extends from commercial aircraft altitudes to above the Pfotzer maximum where the dosimetric quantities are influenced by cosmic ray primaries. The RaD-X balloon flight observed an absence of the Pfotzer maximum in the measurements of dose equivalent rate.
AIAA Educator Academy: The Space Weather Balloon Module
NASA Astrophysics Data System (ADS)
Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.
2013-12-01
Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each provided with an AIAA professional member as a mentor for themselves and/or their students. These curriculum modules, provided by AIAA are available to any K-12 teachers as well as EPO officers for use in formal or informal education settings.
Air: Simple Experiments for Young Scientists.
ERIC Educational Resources Information Center
White, Larry
This book contains simple experiments through which students explore air and its properties. Some of the topics discussed include alternative energy, bacteria, carbon dioxide, motion, weather, and flight. Experiments include: blowing a balloon up in a bottle; seeing air in water; making a lunch-bag kite, weather vanes, and paper glider;…
Vertical laser beam propagation through the troposphere
NASA Technical Reports Server (NTRS)
Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.
1974-01-01
The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.
Inquiry-Based Learning in Remote Sensing: A Space Balloon Educational Experiment
ERIC Educational Resources Information Center
Mountrakis, Giorgos; Triantakonstantis, Dimitrios
2012-01-01
Teaching remote sensing in higher education has been traditionally restricted in lecture and computer-aided laboratory activities. This paper presents and evaluates an engaging inquiry-based educational experiment. The experiment was incorporated in an introductory remote sensing undergraduate course to bridge the gap between theory and…
1987-07-01
and Fatiguing flandgrip,, 45 LiST OF TABLES NUMBER P AG F. I Anthroponetric Data of Subjects ...................... 29 2 (:harges In Peso , MBP and...Pressure ( Peso ): Intraesophageal pressut) wam measured from inflated esophageal balloons attached to a pressure transducer and taken to be a...during inspiration and less negative (upward) deflection during expiration. Peso was recorded foe the entire duration of the experimental period
Evaluation and Improvement of Earth Radiation Budget Data Sets
NASA Technical Reports Server (NTRS)
Haeffelin, Martial P. A.
2001-01-01
The tasks performed during this grant are as follows: (1) Advanced scan patterns for enhanced spatial and angular sampling of ground targets; (2) Inter-calibration of polar orbiter in low Earth orbits (LEO) and geostationary (GEO) broadband radiance measurements; (3) Synergism between CERES on TRMM and Terra; (4) Improved surface solar irradiance measurements; (5) SW flux observations from Ultra Long Duration Balloons at 35 km altitude; (6) Nighttime cloud property retrieval algorithm; (7) Retrievals of overlapped and mixed-phase clouds.
Long distance cell communication using spherical tether balloons
NASA Astrophysics Data System (ADS)
Manchanda, R. K.; Rajagopalan, Vasudevan; Vasudevan, Rajagopalan; Mehrotra, R. K.; Sreenivasan, S.; Pawaskar, M.; Subba Rao Jonnalagadda, Venkata; Buduru, Suneelkumar; Kulkarni, P. M.
A proof-of-concept experiment was conducted for long-range cell communication for rural tele-phony and internet. We designed and fabricated a spherical tether balloon to carry the con-ventional micro base transceiver station (BTS) along with three slotted antenna to cover 2-pi radius. AC power and optical fiber were anchored along with the tether line. A special fre-quency license was obtained from Wireless Planning Commission (WPC) wing of Department of Telecommunication (DoT), India for the period of experiment so as not to affect the opera-tional networks. The experiments were carried out for different BTS heights up to 500 meter. Signal measurement both in data mode and voice quality were done in different quadrant using mobile vans. This paper describes the methodology (under patenting) and utility of technique for operational application.
SuperHERO: Design of a New Hard X-Ray Focusing Telescope
NASA Technical Reports Server (NTRS)
Gaskin, Jessica; Elsner, Ronald; Ramsey, Brian; Wilson-Hodge, Colleen; Tennant, Allyn; Christe, Steven; Shih, Albert; Kiranmayee, Kilaru; Swartz, Douglas; Seller, Paul;
2015-01-01
SuperHERO is a hard x-ray (20-75 keV) balloon-borne telescope, currently in its proposal phase, that will utilize high angular-resolution grazing-incidence optics, coupled to novel CdTe multi-pixel, fine-pitch (250 micrometers) detectors. The high-resolution electroformed-nickel, grazing-incidence optics were developed at MSFC, and the detectors were developed at the Rutherford Appleton Laboratory in the UK, and are being readied for flight at GSFC. SuperHERO will use two active pointing systems; one for carrying out astronomical observations and another for solar observations during the same flight. The telescope will reside on a light-weight, carbon-composite structure that will integrate the Wallops Arc Second Pointer into its frame, for arcsecond or better pointing. This configuration will allow for Long Duration Balloon flights that can last up to 4 weeks. This next generation design, which is based on the High Energy Replicated Optics (HERO) and HERO to Explore the Sun (HEROES) payloads, will be discussed, with emphasis on the core telescope components.
SuperHERO: The Next Generation Hard X-Ray HEROES Telescope
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Gaskin, Jessica A.; Christe, Steven D.; Elsner, Ronald F.; Ramsey, Brian D.; Seller, Paul; Shih, Albert Y.; Stuchlik, David W.; Swartz, Douglas A.; Tenant, Allyn F.;
2014-01-01
SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.
SuperHERO: The Next Generation Hard X-ray HEROES Telescope
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Christe, Steven D.; Wilson-Hodge, Colleen; Shih, Albert Y. M.; Ramsey, Brian D.; Tennant, Allyn F.; Swartz, Douglas A.
2014-01-01
SuperHERO is a new high-sensitivity Long Duration Balloon (LDB)-capable, hard-x-ray (20-75 keV) telescope for making novel astrophysics and heliophysics observations. The proposed SuperHERO payload will be developed jointly by the Astrophysics Office at NASA Marshall Space Flight Center, the Solar Physics Laboratory and Wallops Flight Facility at NASA Goddard Space Flight Center. SuperHERO is a follow-on payload to the High Energy Replicated Optics to Explore the Sun (HEROES) balloon-borne telescope that recently launched from Fort Sumner, NM in September of 2013. The HEROES core instrument is a hard x-ray telescope consisting of x-ray 109 optics configured into 8 modules. Each module is aligned to a matching gas-filled detector at a focal length of 6 m. SuperHERO will make significant improvements to the HEROES payload, including: new solid-state multi-pixel CdTe detectors, additional optics, the Wallops Arc-Second Pointer, alignment monitoring systems and lighter gondola.
Thermal architecture for the SPIDER flight cryostat
NASA Astrophysics Data System (ADS)
Gudmundsson, J. E.; Ade, P. A. R.; Amiri, M.; Benton, S. J.; Bihary, R.; Bock, J. J.; Bond, J. R.; Bonetti, J. A.; Bryan, S. A.; Burger, B.; Chiang, H. C.; Contaldi, C. R.; Crill, B. P.; Doré, O.; Farhang, M.; Filippini, J.; Fissel, L. M.; Gandilo, N. N.; Golwala, S. R.; Halpern, M.; Hasselfield, M.; Hilton, G.; Holmes, W.; Hristov, V. V.; Irwin, K. D.; Jones, W. C.; Kuo, C. L.; MacTavish, C. J.; Mason, P. V.; Montroy, T. E.; Morford, T. A.; Netterfield, C. B.; O'Dea, D. T.; Rahlin, A. S.; Reintsema, C. D.; Ruhl, J. E.; Runyan, M. C.; Schenker, M. A.; Shariff, J. A.; Soler, J. D.; Trangsrud, A.; Tucker, C.; Tucker, R. S.; Turner, A. D.
2010-07-01
We describe the cryogenic system for SPIDER, a balloon-borne microwave polarimeter that will map 8% of the sky with degree-scale angular resolution. The system consists of a 1284 L liquid helium cryostat and a 16 L capillary-filled superfluid helium tank, which provide base operating temperatures of 4 K and 1.5 K, respectively. Closed-cycle 3He adsorption refrigerators supply sub-Kelvin cooling power to multiple focal planes, which are housed in monochromatic telescope inserts. The main helium tank is suspended inside the vacuum vessel with thermally insulating fiberglass flexures, and shielded from thermal radiation by a combination of two vapor cooled shields and multi-layer insulation. This system allows for an extremely low instrumental background and a hold time in excess of 25 days. The total mass of the cryogenic system, including cryogens, is approximately 1000 kg. This enables conventional long duration balloon flights. We will discuss the design, thermal analysis, and qualification of the cryogenic system.
Study of high energy phenomena from near space using low-cost meteorological balloons
NASA Astrophysics Data System (ADS)
Chakrabarti, Sandip K.; Sarkar, Ritabrata; Bhowmick, Debashis; Bhattacharya, Arnab
2017-06-01
Indian Centre for Space Physics has taken a novel strategy to study low energy cosmic rays and astrophysical X-ray sources which involve very light weight payloads up to about five kilograms on board a single or multiple balloons which are used for meteorological purposes. The mission duration could be anywhere from 3-12 hours. Our strategy provides extreme flexibility in mission preparation and its operation using a very economical budget. There are several limitations but our innovative approach has been able to extract significant amount of scientific data out of these missions. So far, over one hundred missions have been completed by us to near space and a wealth of data has been collected. The payloads are recovered and are used again. Scientific data is stored on board computer and the atmospheric data or payload location is sent to ground in real time. Since each mission is different, we present here the general strategy for a typical payload and provide some results we obtained in some of these missions.
Crest: A Balloon-borne Instrument to Measure Cosmic-ray Electrons above TeV Energies
NASA Astrophysics Data System (ADS)
Nutter, S.; Anderson, T.; Coutu, S.; Geske, M.; Bower, C.; Musser, J.; Muller, D.; Park, N.; Wakely, S.; Schubnell, M.; Tarle, G.; Yagi, A.
2009-05-01
The flux of high-energy (>1 TeV) electrons provides information about the spatial distribution and abundance of nearby cosmic ray sources. CREST, a balloon-borne array of 1024 BaF2 crystals viewed by PMTs, will measure the spectrum of multi-TeV electrons through detection of the x-ray synchrotron photons generated as the electrons traverse the Earth's magnetic field. This method naturally discriminates against the proton and gamma ray backgrounds, and achieves very large detector apertures, since the instrument need only intersect a portion of the kilometers-long line of photons and not the electron itself. Thus CREST's acceptance is several times its geometric area up to energies of 50 TeV, ˜10 times higher in energy than ground based techniques can reach. This measurement will overlap the recent HESS results and extend to higher energies. CREST is scheduled to fly in a long duration circumpolar orbit over Antarctica in 2010. An overview of the detector design and status will be presented.
NASA Astrophysics Data System (ADS)
Dulac, François; Renard, Jean-Baptiste
LOAC (Light Optical Aerosol Counter) is a new small optical particle counter/sizer of 250 grams designed to fly under all kinds of balloons. The measurements are conducted at two scattering angles: the first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.2-100 mm; the second angle, at 60°, is used to discriminate between different types of particles dominating different size classes. The sensor particularly discriminates wet or liquid particles, mineral dust, soot carbon particles and salts. Comparisons with measurements from other sensors at the surface are shown. We shall give a quick review of balloon-borne experiences since 2011 with LOAC under all kinds of balloons including tethered, sounding, open stratospheric, and new boundary-layer pressurized drifting balloons (BLBP) from CNES. Observation domains include the atmospheric surface layer, the boundary layer, the free troposphere and the lower stratosphere up to more than 35 km in altitude. Operations encompass a variety of environments including the Arctic (Reykjavik, Island, and Kiruna, Sweden), Brazil (Sao Paolo), the western Mediterranean Basin, southwestern France, peri-urban (Ile de France) and urban areas (Paris and Vienna). Results from the various campaigns will be illustrated including the study of fog events, urban aerosols, Saharan dust transport over France, stratospheric soot... Emphasis will be put on the ChArMEx campaign (the Chemistry-Aerosol Mediterranean Experiment) performed in summer 2013 in the Mediterranean basin: 19 LOAC flights have been performed under meteorological balloons and 12 under low altitude drifting balloons, most of them from Minorca Island (Spain) in June and early July and others from Levant Island (south of France) in late July and early August. Most of the flights were coupled with ozone concentration measurements (see presentation by F. Gheusi et al.). LOAC balloons were especially, but not only, dedicated to study the various Saharan dust events that occurred during the campaign. In particular, a series of flights were conducted every 12 hours during the 15-19 June dust event. Forest fire smoke from North America was also sampled in late June over Minorca, as well as anthropogenic polluted layers in various occasions. LOAC data are used to identify the various turbid layers with the help of coincident lidar and sun photometer remote sensing measurements in Menorca and air mass trajectories. The sounding flights allow one to determine the vertical extent of the various aerosol layers, and to follow the particle size distribution and the concentration evolution along the vertical. The low altitude drifting balloons, which stayed roughly at constant altitude between 350 and 3330 m up to more than 25 h, allow us to study the time-evolution of the aerosol concentrations in the same air mass. Under both balloon types, LOAC has detected larges particles up to 30 mum in diameter. The flights drifting within dust layers indicate that there is a relatively stable particle size distribution during transport over the sea, with no clear sedimentation loss of large particles.
Qureshi, Adnan I.; Qureshi, Mushtaq H.; Majidi, Shahram; Gilani, Waqas I.; Siddiq, Farhan
2014-01-01
Objective To determine the effect of supratentorial intraparenchymal mass lesions of various volumes on dural venous sinuses structure and transluminal pressures. Methods Three set of preparations were made using adult isolated head derived from fresh human cadaver. A supratentorial intraparenchymal balloon was introduced and inflated at various volumes and effect on dural venous sinuses was assessed by serial intravascular ultrasound, computed tomographic (CT), and magnetic resonance (MR) venograms. Contrast was injected through a catheter placed in sigmoid sinus for both CT and MR venograms. Serial trasluminal pressures were measured from middle part of superior sagittal sinus in another set of experiments. Results At intraparenchymal balloon inflation of 90 cm3, there was attenuation of contrast enhancement of superior sagittal sinus with compression visualized in posterior part of the sinus without any evidence of compression in the remaining sinus. At intraparenchymal balloon inflation of 180 and 210 cm3, there was compression and obliteration of superior sagittal sinus throughout the length of the sinus. In the coronal sections, at intraparenchymal balloon inflations of 90 and 120 cm3, compression and obliteration of the posterior part of superior sagittal sinus were visualized. In the axial images, basal veins were not visualized with intraparenchymal balloon inflation of 90 cm3 or greater although straight sinus was visualized at all levels of inflation. Trasluminal pressure in the middle part of superior sagittal sinus demonstrated a mild increase from 0 cm H2O to 0.4 cm H2O and 0.5 cm H2O with inflation of balloon to volume of 150 and 180 cm3, respectively. There was a rapid increase in transluminal pressure from 6.8 cm H2O to 25.6 cm H2O as the supratentorial mass lesion increased from 180 to 200 cm3. Conclusions Our experiments identified distortion and segmental and global obliteration of dural venous sinuses secondary to supratentorial mass lesion and increase in transluminal pressure with large volume lesions. The secondary involvement of dural venous sinuses may represent a mechanism for refractory intracranial hypertension. PMID:24920987
Zhang, Ning; Lou, Wei-hua; Zhang, Xue-bin; Fu, Jia-ning; Chen, Yun-yan; Zhuang, Zhi-guo; Lin, Jian-hua
2017-01-01
The increasing incidence of morbidly adherent placenta (MAP) is placing women at a higher risk of life-threatening massive hemorrhage. The involvement of interventional radiology to manage this complex condition by performing prophylactic iliac artery balloon occlusion has been reported recently. However, the effectiveness and safety of this technique have not been fully determined. Here we report the case of a 25-year-old woman with placenta increta with preemptive bilateral internal iliac artery balloons who had external iliac artery thrombosis detected by computed tomography angiography (CTA) 72 h post cesarean section. A digital subtraction angiogram (DSA) and intra-arterial thrombolysis were instantly performed followed by supplementary conservative treatments, leading to a desirable resolution of thrombus without sequela. This is the first report of vascular complications with successful interventional thrombolysis in this setting. Our experience suggests that prophylactic iliac artery balloon occlusion should be used cautiously in cases of MAP and consideration given to minimizing vascular complications given the hypercoagulable state of pregnancy. PMID:28271663
Report on the Brazilian Scientific Balloon Program
NASA Astrophysics Data System (ADS)
Braga, Joao
We report on the recent scientific ballooning activities in Brazil, including important international collaborations, and present the plans for the next few years. We also present the recent progress achieved in the development and calibration of the protoMIRAX balloon experiment, especially about the detector system. protoMIRAX is a balloon-borne X-ray imaging telescope under development at INPE as a pathfinder for the MIRAX (Monitor e Imageador de Raios X) satellite mission. The experiment consists essentially in a hard X-ray (30-200 keV) coded-aperture imager which employs a square array of 196 10mm x 10mm x 2mm CdZnTe (CZT) planar detector. A collimator defines a fully-coded field-of-view of 20(°) x 20(°) , with 4(°) x 4(°) of full sensitivity. The angular resolution will be of 1.7(°) , defined by the use of a 1mm-thick lead coded-mask with an extended (˜4x4) 13x13 MURA pattern will 20mm-side cells, placed at a distance of 650 mm from the detector plane. We describe the design and development of the front-end electronics, with charge preamplifiers and shaping amplifiers customized for these detectors. We present spectral results obtained in the laboratory as well as initial calibration results of the acquisition system designed to get positions and energies in the detector plane. We show simulations of the flight background and the expected flight images of bright sources.
Biogenic nonmethane hydrocarbon emissions estimated from tethered balloon observations
NASA Technical Reports Server (NTRS)
Davis, K. J.; Lenschow, D. H.; Zimmerman, P. R.
1994-01-01
A new technique for estimating surface fluxes of trace gases, the mixed-layer gradient technique, is used to calculate isoprene and terpene emissions from forests. The technique is applied to tethered balloon measurements made over the Amazon forest and a pine-oak forest in Alabama at altitudes up to 300 m. The observations were made during the dry season Amazon Boundary Layer Experiment (ABLE 2A) and the Rural Oxidants in the Southern Environment 1990 experiment (ROSE I). Results from large eddy simulations of scalar transport in the clear convective boundary layer are used to infer fluxes from the balloon profiles. Profiles from the Amazon give a mean daytime emission of 3630 +/- 1400 micrograms isoprene sq m/h, where the uncertainty represents the standard deviation of the mean of eight flux estimates. Twenty profiles from Alabama give emissions of 4470 +/- 3300 micrograms isoprene sq m/h, 1740 +/- 1060 micrograms alpha-pinene sq m/h, and 790 +/- 560 micrograms beta-pinene sq m/h, respectively. These results are in agreement with emissions derived from chemical budgets. The emissions may be overestimated because of uncertainty about how to incorporate the effects of the canopy on the mixed-layer gradients. The large variability in these emission estimates is probably due to the relatively short sampling times of the balloon profiles, though spatially heterogeneous emissions may also play a role. Fluxes derived using this technique are representative of an upwind footprint of several kilometers and are independent of hydrocarbon oxidation rate and mean advection.
NASA Technical Reports Server (NTRS)
Mertens, Christopher J.; Alston, Erica J.; Straume, Tore; Gersey, Brad; Lusby, Terry C.; Norman, Ryan B.; Gronoff, Guillaume P.; Tobiska, W. Kent; Wilkins, Rick
2015-01-01
The NASA Radiation Dosimetry Experiment (RaD-X) high-altitude balloon mission was successfully launched from Fort Sumner, New Mexico USA on 25 September, 2015. Over 15 hours of science data were obtained from four dosimeters at altitudes above about 25 km. One of the main goals of the RaD-X mission is to improve aviation radiation model characterization of cosmic ray primaries by taking dosimetric measurements above the Pfotzer maximum before the production of secondary particles occurs. The second goal of the RaD-X mission is to facilitate the pathway toward real-time, data assimilative predictions of atmospheric cosmic radiation exposure by identifying and characterizing low-cost radiation measurement solutions.
Radiation measurement platform for balloon flights based on the TriTel silicon detector telescope
NASA Astrophysics Data System (ADS)
Zabori, Balazs; Hirn, Attila; Pazmandi, Tamas; Apathy, Istvan; Szanto, Peter; Deme, Sandor
Several measurements have been performed on the cosmic radiation field from the surface of the Earth up to the maximum altitudes of research airplanes. However the cosmic radiation field is not well known between 15 km and 30 km. Our experiment idea based on to study the radiation environment in the stratosphere. The main technical goals of our experiment were to test at first time the TriTel 3D silicon detector telescope system for future ISS missons and to develop a balloon technology platform for advanced cosmic radiation and dosimetric measurements. The main scientific goals were to give an assessment of the cosmic radiation field at the altitude of the BEXUS balloons, to use the TriTel system to determine dosimetric and radiation quantities during the ballon flight and to intercompare the TriTel and Pille results to provide a correction factor definition method for the Pille ISS measurements. To fulfil the scientific and technological objectives several different dosimeter systems were included in the experiment: an advanced version of the TriTel silicon detector telescope, Geiger-Müller counters, Pille passive thermoluminescent dosimeters and Solid State Nuclear Track Detectors. The experiment was built by students from Hungarian universities and flew on board the BEXUS stratospheric balloon in Northern Sweden (from ESRANGE Space Center). The float altitude was approximately 28.6 km and the total flight time was about 4 hours. The active instruments measured in real time and the ground team received the collected data continuously during the mission. The main technical goals were received since the operation of the TriTel experienced no failures and the experiment worked as it expected. This paper presents the scientific goals and results. From the TriTel measurements the deposited energy spectra, the Linear Energy Transfer spectra, the average quality factor of the cosmic radiation as well as the absorbed dose and the dose equivalent were determined for the three axis. TriTel data evaluation and error estimations were studied in details. The evaluated deposited energy spectra measured with the improved TriTel instrument were compared with the count rates measured with the GM counters to calibrate them for dose rate in the cosmic radiation field at the altitude of the stratospheric balloons. From the SSNTD results the contribution of thermal neutrons was determined. In the frame of the TriTel and Pille intercomparison a correction factor calculation method was determined for future ISS data evaluation. The results will be used in the future scientific data evaluation in case of the ISS measurements. As a future outlook a short overview will be given about planned rocket radiation experiments.
Performance of large area x-ray proportional counters in a balloon experiment
NASA Astrophysics Data System (ADS)
Roy, J.; Agrawal, P. C.; Dedhia, D. K.; Manchanda, R. K.; Shah, P. B.; Chitnis, V. R.; Gujar, V. M.; Parmar, J. V.; Pawar, D. M.; Kurhade, V. B.
2016-10-01
ASTROSAT is India's first satellite fully devoted to astronomical observations covering a wide spectral band from optical to hard X-rays by a complement of 4 co-aligned instruments and a Scanning Sky X-ray Monitor. One of the instruments is Large Area X-ray Proportional Counter with 3 identical detectors. In order to assess the performance of this instrument, a balloon experiment with two prototype Large Area X-ray Proportional Counters (LAXPC) was carried out on 2008 April 14. The design of these LAXPCs was similar to those on the ASTROSAT except that their field of view (FOV) was 3 ∘ × 3 ∘ versus FOV of 1 ∘ × 1 ∘ for the LAXPCs on the ASTROSAT. The LAXPCs are aimed at the timing and spectral studies of X-ray sources in 3-80 keV region. In the balloon experiment, the LAXPC, associated electronics and support systems were mounted on an oriented platform which could be pre-programmed to track any source in the sky. A brief description of the LAXPC design, laboratory tests, calibration and the detector characteristics is presented here. The details of the experiment and background counting rates of the 2 LAXPCs at the float altitude of about 41 km are presented in different energy bands. The bright black hole X-ray binary Cygnus X-1 (Cyg X-1) was observed in the experiment for ˜ 3 hours. Details of Cyg X-1 observations, count rates measured from it in different energy intervals and the intensity variations of Cyg X-1 detected during the observations are presented and briefly discussed.
NASA Astrophysics Data System (ADS)
Said, M.
Pumpkin type super pressure balloons require much less stringent mechanical requirements on the envelope film material when compared to spherical super pressure type balloons. However, since suitable thin films are typically viscoelastic in nature, their creep characteristics must be fully characterized and must not exceed specific and predetermined design limits. Proper assessment of materials limits to meet these design limits requires creep-load-temperature data that characterizes the performance of the material over a time that exceeds the duration of the design service life by some specified margin. Contrary to the behavior of materials with purely elastic response, visco-elastic materials such as these considered for the ULDB design, change their geometry under sustained loading over time. This change is usually reflected by exhibiting a significant visco-elastic component over the service life of the mission. For that regime of large visco-elastic response, where the material is highly nonlinear, a certain load-temperature threshold can be reached where the creep is limited by an asymptote that depends on both the temperature and load level. Such creep is recoverable, although the recovery period may be much longer than the 100 day design service life of the ULDB structure plus the factor of safety required for the design. For a typical flight, the most significant creep occurs at the highest temperature, which also produces the highest internal pressure. At mid- latitudes a significant portion of the service life is spent at night, i.e. at low temperature and low load; for the ULDB film, this nighttime contribution to creep is insignificant in comparison to any daytime contribution. By contrast, flight exposure in an Antarctic summer is at an almost constant high temperature and corresponding high pressure. This response behavior must be sufficiently characterized to serve the needs of the structural design and performance predictions of the vehicle in service. In this work, a special emphasis will be given to the creep and dynamic characteristics of selected coextruded films and their dependence on the loading level and temperature. Preliminary testing has suggested t at the creep behavior of theh coextruded linear low density resin films is highly dependent on temperature and that the dynamic response depends on the make up of the composite film. In addition, the paper will, in general, highlight the process of qualify ing thin films for the pumpkin class of super pressure balloons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nasser, Felipe; Rocha, Rafael Dahmer, E-mail: rafaeldrocha@gmail.com; Falsarella, Priscila Mina
PurposeTo report a novel modified occlusion balloon technique to treat biliary leaks.MethodsA 22-year-old female patient underwent liver transplantation with biliary-enteric anastomosis. She developed thrombosis of the common hepatic artery and extensive ischemia in the left hepatic lobe. Resection of segments II and III was performed and a biliary-cutaneous leak originating at the resection plane was identified in the early postoperative period. Initial treatment with percutaneous transhepatic drainage was unsuccessful. Therefore, an angioplasty balloon was coaxially inserted within the biliary drain and positioned close to the leak.ResultsThe fistula output abruptly decreased after the procedure and stopped on the 7th day. Atmore » the 3-week follow-up, cholangiography revealed complete resolution of the leakage.ConclusionThis novel modified occlusion balloon technique was effective and safe. However, greater experience and more cases are necessary to validate the technique.« less
Pereira, Nigel; Grias, Irene; Foster, Sarah E; Della Badia, Carl R
2013-01-01
Cervical ectopic pregnancy is uncommon, with no universally accepted protocol for conservative management of acute hemorrhage due to residual cervical ectopic pregnancy. Herein is presented the case of a 33-year-old woman with profuse vaginal bleeding 3 months after receiving treatment including intraamniotic potassium chloride injection, systemic methotrexate, and uterine artery embolization because of a cervical ectopic pregnancy. A residual cervical pregnancy was suspected. Hemorrhage was controlled using curettage, tamponade with a Bakri balloon, and cerclage. The balloon and cerclage were removed on postoperative day 2, with no recurrence of symptoms. Our experience suggests that a combination of curettage, balloon tamponade, and cerclage may be considered in the management of cervical ectopic pregnancies with acute hemorrhage, in particular in patients desiring future childbearing. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.
Access to a New Plasma Edge State with High Density and Pressures using Quiescent H-mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, Wayne M.; Snyder, P. B.; Burrell, K. H.
2014-07-01
A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over standard edge localized mode (ELM)ing H-mode at these parameters. The thermal energy confinement time increases both as a result of the increased pedestal height and improvements in the core transport and reduced low-k turbulence. Calculations of the pedestal height and width asmore » a function of density using constraints imposed by peeling-ballooning and kinetic-ballooning theory are in quantitative agreement with the measurements.« less
ERIC Educational Resources Information Center
School Science Review, 1972
1972-01-01
Six new experiments are described for use in elementary school classrooms. Phenomena explored include friction, mass of air, kinetic energy, air condensers, and hot-air balloons. Instructions are explicit. (PS)
NASA Astrophysics Data System (ADS)
Kyrazis, Demos T.; Eaton, Frank D.; Black, Don G.; Black, Wiley T.; Black, Alastair
2009-08-01
Balloons, similar to those used for meteorological observations, are commonly used to carry a small instrumentation package for measuring optical turbulence in the atmosphere as a function of altitude. Two temperature sensors, one meter apart, measure a single point of the temperature structure function. The raw data is processed to provided the value of CT2, and the results transmitted to a ground receiving site. These data are converted to the index of refraction structure constant, Cn2. The validity of these measurements depend on the correctness of a number of assumptions. These include local isotropy of the turbulence and the existence of the Kolmogorov inertial subrange, and that the data is not contaminated by the wake of the ascending balloon. A variety of experiments on other platforms, and in the laboratory, demonstrate that the assumptions upon which these balloon measurements are made are not valid for a large percentage of the above described flights. In order to collect data whose interpretation did not require preconceived assumptions, the balloon ring instrumentation system was developed. The ring is 8.69 meters in diameter, with a cross-sectional diameter of 14 cm. The ring is hung just below the balloon, so that the wake goes through the center of the ring, and the sensors are mounted tangent to the circumference of the ring. The raw data is transmitted to the ground with a bandwidth extending to 1.25 kHz. A sample of the measurements taken during a flight at Vandenberg Air Force Base, Calif. is presented.
Umakanthan, Ramanan; Dubose, Robert; Byrne, John G; Ahmad, Rashid M
2010-10-01
The management of acute myocardial infarction with resultant acute ischemic mitral regurgitation and acute multi-organ failure can prove to be a very challenging scenario. The presence of concomitant vascular disease can only serve to further compromise the complexity of the situation. We demonstrate a new indication for the transthoracic intra-aortic balloon pump as a preoperative means of unloading the heart and improving clinical outcome in such high-risk patients with severe vascular disease. We present the case of a 75-year-old man with a history of severe vascular disease who was transferred emergently to Vanderbilt University Medical Center with an acute inferolateral wall myocardial infarction resulting in severe acute ischemic mitral regurgitation and acute multi-organ failure. He presented with shock liver (serum glutamic-oxaloacetic transaminase [SGOT] of 958), renal failure (creatinine of 3.0), and respiratory failure with a pH of 7.18. Emergent cardiac catheterization revealed 100% occlusion of the left circumflex artery as well as severe ileofemoral disease. The advanced nature of his ileofemoral disease was such that the arterial access catheter occluded the right femoral artery. The duration of time that the catheter was in the artery led to transient limb ischemia with an elevation of his creatine phosphokinase (CPK) to 10,809. Balloon angioplasty followed by stent placement was successfully performed, which restored flow to the coronary vessel. Given the grave nature of the patient's condition, we were very concerned that immediate operative intervention for his condition would entail prohibitively high risk. In fact, the Society of Thoracic Surgeons predicted risk adjusted mortality was calculated to be 56%. In order to minimize patient mortality and morbidity, it was critical to help restore perfusion and organ recovery. Therefore, we decided that the chances for this patient's survival would improve if his condition could be optimized by placement of an intra-aortic balloon pump before undergoing surgery. Given the limb ischemia following arterial sheath insertion, femoral placement of an intra-aortic balloon pump was not an option. Placement of the intra-aortic balloon pump was attempted via a left subclavian artery cutdown, but was not successful. Therefore, a sternotomy was performed, and we placed a transthoracic intra-aortic balloon pump in order to stabilize the patient's hemodynamics and allow for organ recovery. The patient showed immediate improvement, and 4 days later, the multi-organ failure resolved and he successfully underwent mitral valve replacement. The patient was ultimately discharged to a local rehabilitation facility in satisfactory condition. This case demonstrates the utility of a transthoracic intra-aortic balloon pump as a preoperative means of stabilization in very high risk patients with severe peripheral vascular disease in whom the conventional approaches are not possible.
Controlled dilatation of the uterine cervix--an experimental visceral pain model.
Bajaj, Priti; Drewes, Asbjørn M; Gregersen, Hans; Petersen, Poul; Madsen, Hans; Arendt-Nielsen, Lars
2002-10-01
Pain originating from the female reproductive organs is a substantial clinical problem to treat. Experimental models may be a tool for the study of visceral pain mechanisms and hence provide information to aid in formulating new treatment strategies. The aim was to develop and evaluate the performance and safety of a model for nociceptive stimulation of the uterine cervix by balloon dilatation using impedance planimetry. Three consecutive (repeated) dilatations at 1 ml/min, an isovolumetric and a fast dilatation at 2 ml/min were performed. Pilot studies were conducted in vitro on hysterectomy specimens, followed by application of the model in 14 healthy females. Subjects indicated the quality of perception and pain during dilatations by verbal reports and the McGill Pain Questionnaire (MPQ), and the intensity by a continuous electronic visual analog scale. The pain location was marked on an anatomical map. The balloon cross-sectional area (CSA) was measured simultaneously. The experimental procedure was atraumatic. Pain was evoked in all subjects, with referral to the hypogastric and low back regions. The word descriptors on the MPQ and the areas of referred sensations were similar to that seen clinically in abortion, labor and menstrual pain. The pain intensity correlated with balloon CSA (r=0.9, P<0.001). No significant differences were found for the balloon volumes (4.2, 3.8 and 3.9 ml) or CSA (163, 122 and 123 mm(2)) to pain threshold (PT) for repeated dilatations, suggesting the reliability of the model. There was significant correlation between the balloon volume and CSA to reach the PT for single and repeated cervical dilatations. During isovolumetric distension, greater overall pain intensity was demonstrated for the prolonged as compared to the shorter duration cervical stimulation. In conclusion, this is the first human experimental pain model for dilatation of the uterine cervix, providing a safe, controlled, quantifiable stimulus that evoked reliable pain scores. The model thus provides a new possibility to study gynecological pain and may lead to better characterization and treatment of female visceral pain syndromes.
Nonlinear Stability and Saturation of Ballooning Modes in Tokamaks*
NASA Astrophysics Data System (ADS)
Ham, C. J.; Cowley, S. C.; Brochard, G.; Wilson, H. R.
2016-06-01
The theory of tokamak stability to nonlinear "ballooning" displacements of elliptical magnetic flux tubes is presented. Above a critical pressure profile the energy stored in the plasma may be lowered by finite (but not infinitesimal) displacements of such tubes (metastability). Above a higher pressure profile, the linear stability boundary, such tubes are linearly and nonlinearly unstable. The predicted saturated flux tube displacement can be of the order of the pressure gradient scale length. Plasma transport from these displaced flux tubes may explain the rapid loss of confinement in some experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Qing-Guo; Wang, Sai; Zhao, Wen, E-mail: huangqg@itp.ac.cn, E-mail: wangsai@itp.ac.cn, E-mail: wzhao7@ustc.edu.cn
2015-10-01
By taking into account the contamination of foreground radiations, we employ the Fisher matrix to forecast the future sensitivity on the tilt of power spectrum of primordial tensor perturbations for several ground-based (AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G), balloon-borne (EBEX, Spider) and satellite (CMBPol, COrE, LiteBIRD) experiments of B-mode polarizations. For the fiducial model n{sub t}=0, our results show that the satellite experiments give good sensitivity on the tensor tilt n{sub t} to the level σ{sub n{sub t}}∼<0.1 for r∼>2×10{sup −3}, while the ground-based and balloon-borne experiments give worse sensitivity. By considering the BICEP2/Keck Array and Planck (BKP) constraint onmore » the tensor-to-scalar ratio r, we see that it is impossible for these experiments to test the consistency relation n{sub t}=−r/8 in the canonical single-field slow-roll inflation models.« less
Jayakumar, P. N.; Desai, S.; Srikanth, S. G.; Ravishankar, S.; Kovoor, J. M. E.
2004-01-01
Summary P2 segment aneurysms are located on the posterior cerebral artery (PCA) between the junction of the posterior communicating artery with the PCA and the quadrigeminal cisternal part of the PCA. We reviewed our experience with endovascular coiling in such aneurysms. Clinical and pre-procedural data from four patients, referred for endovascular treatment of P2 segment aneurysms, were retrospectively studied for factors influencing post-interventional neurological deficits caused by ischemia of the PCA distal territory. Balloon occlusion was done in three patients and patient tolerance was assessed using clinical and anatomic criteria. Embryologic and anatomic features of the PCA were reviewed. Balloon occlusion test and endovascular coiling of aneurysms was possible in three patients. Control angiogram after embolization showed elimination of aneurysms from the circulation and the distal PCA filled through leptomeningeal anastomoses. One patient deteriorated due to aneurysmal rupture soon after the balloon occlusion test and coiling could not be done. In the other three patients post-intervention CT and MRI images showed PCA territory infarcts in spite of demonstration of good collateral circulation distal to the occluded PCA. In conclusion, P2 aneurysms can be effectively treated by endovascular coiling without a balloon occlusion test. While the balloon occlusion test does not contribute to clinical decision-making it may be associated with potential morbidity and mortality. PMID:20587236
CdZnTe Background Measurements at Balloon Altitudes with PoRTIA
NASA Technical Reports Server (NTRS)
Parsons, A.; Barthelmy, S.; Bartlett, L.; Gehrels, N.; Naya, J.; Stahle, C. M.; Tueller, J.; Teegarden, B.
2003-01-01
Measurements of the CdZnTe internal background at balloon altitudes are essential to determine which physical processes make the most important background contributions. We present results from CdZnTe background measurements made by PoRTIA, a small CdZnTe balloon instrument that was flown three times in three different shielding configurations. PoRTIA was passively shielded during its first flight from Palestine, Texas and actively shielded as a piggyback instrument on the GRIS balloon experiment during its second and third flights from Alice Springs, Australia, using the thick GRIS Nal anticoincidence shield. A significant CdZnTe background reduction was achieved during the third flight with PoRTIA placed completely inside the GRIS shield and blocking crystal, and thus completely surrounded by 15 cm of Nal. A unique balloon altitude background data set is provided by CdZnTe and Ge detectors simultaneously surrounded by the same thick anticoincidence shield; the presence of a single coxial Ge detector inside the shield next to PoRTIA allowed a measurement of the ambient neutron flux inside the shield throughout the flight. These neutrons interact with the detector material to produce isomeric states of the Cd, Zn and Te nuclei that radiatively decay; calculations are presented that indicate that these decays may explain most of the fully shielded CdZnTe background.
A Nominal Balloon Instrument Payload to Address Questions from the Planetary Decadal Survey
NASA Astrophysics Data System (ADS)
Young, Eliot; Kremic, Tibor; Dankanich, John
The Planetary Science Decadal Survey (entitled "Visions and Voyages for Planetary Science in the Decade 2013 - 2022", available online at https://solarsystem.nasa.gov/2013decadal/) serves as a roadmap for activities to be pursued by the Planetary Science Division of NASA's Science Mission Directorate. This document outlines roughly 200 key research areas and questions in chapters covering different parts of the solar system (e.g., Mars, Small Bodies, etc.). We have reviewed the Decadal Survey to assess whether any of the key questions can be addressed by high altitude balloon-borne payloads. Although some questions can only be answered by in situ experiments, we found that approximately one quarter of the key questions were well suited to balloon payloads. In many of those cases, balloons were competitive or superior to other existing facilities, including HST, SOFIA or Keck telescopes. We will present specific telescope and instrument bench designs that are capable of addressing key questions in the Decadal Survey. The instrument bench takes advantage of two of the main benefits of high-altitude observations: diffraction-limited imaging in visible and UV wavelengths and unobstructed spectroscopy in near-IR (1 - 5 microns) wavelengths. Our optical prescription produces diffraction-limited PSFs in both visible and IR beams. We will discuss pointing and thermal stability, two of the main challenges facing a balloon-borne telescope.
Schrag, Yann; Tremea, Alessandro; Lagger, Cyril; Ohana, Noé; Mohr, Christine
2016-01-01
Studies indicated that people behave less responsibly after exposure to information containing deterministic statements as compared to free will statements or neutral statements. Thus, deterministic primes should lead to enhanced risk-taking behavior. We tested this prediction in two studies with healthy participants. In experiment 1, we tested 144 students (24 men) in the laboratory using the Iowa Gambling Task. In experiment 2, we tested 274 participants (104 men) online using the Balloon Analogue Risk Task. In the Iowa Gambling Task, the free will priming condition resulted in more risky decisions than both the deterministic and neutral priming conditions. We observed no priming effects on risk-taking behavior in the Balloon Analogue Risk Task. To explain these unpredicted findings, we consider the somatic marker hypothesis, a gain frequency approach as well as attention to gains and / or inattention to losses. In addition, we highlight the necessity to consider both pro free will and deterministic priming conditions in future studies. Importantly, our and previous results indicate that the effects of pro free will and deterministic priming do not oppose each other on a frequently assumed continuum. PMID:27018854
Schrag, Yann; Tremea, Alessandro; Lagger, Cyril; Ohana, Noé; Mohr, Christine
2016-01-01
Studies indicated that people behave less responsibly after exposure to information containing deterministic statements as compared to free will statements or neutral statements. Thus, deterministic primes should lead to enhanced risk-taking behavior. We tested this prediction in two studies with healthy participants. In experiment 1, we tested 144 students (24 men) in the laboratory using the Iowa Gambling Task. In experiment 2, we tested 274 participants (104 men) online using the Balloon Analogue Risk Task. In the Iowa Gambling Task, the free will priming condition resulted in more risky decisions than both the deterministic and neutral priming conditions. We observed no priming effects on risk-taking behavior in the Balloon Analogue Risk Task. To explain these unpredicted findings, we consider the somatic marker hypothesis, a gain frequency approach as well as attention to gains and / or inattention to losses. In addition, we highlight the necessity to consider both pro free will and deterministic priming conditions in future studies. Importantly, our and previous results indicate that the effects of pro free will and deterministic priming do not oppose each other on a frequently assumed continuum.
Bittl, John A; Chew, Derek P; Topol, Eric J; Kong, David F; Califf, Robert M
2004-03-17
We conducted a systematic overview (meta-analysis) of randomized trials of balloon angioplasty versus coronary atherectomy, laser angioplasty, or cutting balloon atherotomy to evaluate the effects of plaque modification during percutaneous coronary intervention. Several mechanical approaches have been developed that ablate or section atheromatous plaque during percutaneous coronary interventions to optimize acute results, minimize intimal injury, and reduce complications and restenosis. Sixteen trials (9,222 patients) constitute the randomized controlled experience with atherectomy, laser, or atherotomy versus balloon angioplasty with or without coronary stenting. Each trial tested the hypothesis that ablative therapy would result in better clinical or angiographic results than balloon dilation alone. Short-term death rates (<31 days) were not improved by the use of ablative procedures (0.3% vs. 0.4%, odds ratio [OR] 0.94 [95% confidence interval 0.46 to 1.92]), but periprocedural myocardial infarctions (4.4% vs. 2.5%, OR 1.83 [95% CI 1.43 to 2.34]) and major adverse cardiac events (5.1% vs. 3.3%, OR 1.54 [95% CI 1.25 to 1.89]) were increased. Angiographic restenosis rates (6,958 patients) were not improved with the ablative devices (38.9% vs. 37.4%, OR 1.06 [95% CI 0.97 to 1.17]). No reduction in revascularization rates (25.2% vs. 24.5%, OR 1.04 [95% CI 0.94 to 1.14]) or cumulative adverse cardiac events rates up to one year after treatment were seen with ablative devices (27.8% vs. 26.1%, OR 1.09 [95% CI 0.99 to 1.20]). The combined experience from randomized trials suggests that ablative devices failed to achieve predefined clinical and angiographic outcomes. This meta-analysis does not support the hypothesis that routine ablation or sectioning of atheromatous tissue is beneficial during percutaneous coronary interventions.
NASA Astrophysics Data System (ADS)
Saad, Marissa Elizabeth
The United States must provide quality science, technology, engineering, and math (STEM) education in order to maintain a leading role in the global economy. Numerous initiatives have been established across the United States that promote and encourage STEM education within the middle school curriculum. Integrating active learning pedagogy into instructors' lesson plans will prepare the students to think critically - a necessary skill for the twenty first century. This study integrated a three-week long Near Space Balloon project into six eighth grade Earth Science classes from Valley Middle School in Grand Forks, North Dakota. It was hypothesized that after the students designed, constructed, launched, and analyzed their payload experiments, they would have an increased affinity for high school science and math classes. A pre- and post-survey was distributed to the students (n=124), before and after the project to analyze how effective this engineering and space mission was regarding high school STEM interests. The surveys were statistically analyzed, comparing means by the Student's t-Test, specifically the Welch-Satterthwaite test. Female students displayed a 57.1% increase in math and a 63.6% increase in science; male students displayed a 46.6% increase in science and 0% increase in math. Most Likert-scale survey questions experienced no statistically significant change, supporting the null hypothesis. The only survey question that supported the hypothesis was, "I Think Engineers Work Alone," which experienced a 0.24% decrease in student understanding. The results suggest that integrating a three-week long Near Space Balloon project into middle school curricula will not directly influence the students' excitement to pursue STEM subjects and careers. An extensive, yearlong ballooning mission is recommended so that it can be integrated with multiple core subjects. Using such an innovative pedagogy method as with this balloon launch will help students master the scientific process and experience real team collaboration, as they did in this successful mission.
NASA Astrophysics Data System (ADS)
Dimiduk, D.; Caylor, M.; Williamson, D.; Larson, L.
1995-01-01
The High Altitude Balloon Experiment demonstration of Acquisition, Tracking, and Pointing (HABE-ATP) is a system built around balloon-borne payload which is carried to a nominal 26-km altitude. The goal is laser tracking thrusting theater and strategic missiles, and then pointing a surrogate laser weapon beam, with performance levels end a timeline traceable to operational laser weapon system requirements. This goal leads to an experiment system design which combines hardware from many technology areas: an optical telescope and IR sensors; an advanced angular inertial reference; a flexible multi-level of actuation digital control system; digital tracking processors which incorporate real-time image analysis and a pulsed, diode-pumped solid state tracking laser. The system components have been selected to meet the overall experiment goals of tracking unmodified boosters at 50- 200 km range. The ATP system on HABE must stabilize and control a relative line of sight between the platform and the unmodified target booster to a 1 microrad accuracy. The angular pointing reference system supports both open loop and closed loop track modes; GPS provides absolute position reference. The control system which positions the line of sight for the ATP system must sequence through accepting a state vector handoff, closed-loop passive IR acquisition, passive IR intermediate fine track, active fine track, and then finally aimpoint determination and maintenance modes. Line of sight stabilization to fine accuracy levels is accomplished by actuating wide bandwidth fast steering mirrors (FSM's). These control loops off-load large-amplitude errors to the outer gimbal in order to remain within the limited angular throw of the FSM's. The SWIR acquisition and MWIR intermediate fine track sensors (both PtSi focal planes) image the signature of the rocket plume. After Hard Body Handover (HBHO), active fine tracking is conducted with a visible focal plane viewing the laser-illuminated target rocket body. The track and fire control performance must be developed to the point that an aimpoint can be selected, maintained, and then track performance scored with a low-power 'surrogate' weapon beam. Extensive instrumentation monitors not only the optical sensors and the video data, but all aspects of each of the experiment subsystems such as the control system, the experiment flight vehicle, and the tracker. Because the system is balloon-borne and recoverable, it is expected to fly many times during its development program.
TLE Balloon experiment campaign carried out on 25 August 2006 in Japan
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Chikada, S.; Yoshida, A.; Adachi, T.; Sakanoi, T.
2006-12-01
The balloon observation campaign for TLE and lightning study was carried out 25 August 2006 in Japan by Tohoku University, supported by JAXA. The balloon was successfully launched at 18:33 LT at Sanriku Balloon Center of JAXA located in the east coast of northern part of Japan (Iwate prefecture). Three types of scientific payloads were installed at the 1 m-cubic gondola, that is, 3-axis VLF electric filed antenna and receiver (VLFR), 4 video frame CCD cameras (CCDI) and 2-color photometer (PM). The video images were stored in 4 HD video recorders, which have 20GB memories respectively, at 30 frames/sec and VLFR and PM data were put into digital data recorder with 30 GB memory at sampling rate of 100 kHz. The balloon floated at the altitude of 13 km until about 20:30 LT, going eastward and went up to 26 km at a distance of 130 km from the coast. And it went back westward at the altitude of 26 km until midnight. The total observation period is about 5 hours. Most of the equipments worked properly except for one video recorder. Some thunderstorms existed within the direct FOV from the balloon in the range of 400-600 km and more than about 400 lightning flashes were recorded as video images. We confirmed that, at least, one sprite halo was captured by CCDI which occurred in the oceanic thunderstorm at a distance of about 500 km from balloon. This is the first TLE image obtained by a balloon-borne camera. Simultaneous measurements of VLF sferics and lightning/TLE images will clarify the role of intracloud (IC) currents in producing and/or modulating TLEs as well as cloud-to-ground discharges (CG). Especially the effect of horizontal components will be investigated in detail, which cannot be detected on the ground, to explain the unsolved properties of TLEs, such as long time delay of TLE from the timing of stroke and large horizontal displacement between CG and TLEs.
2017-04-01
Holden A, Merrilees S, Buckley B, et al. First-in-human experience with the Gore balloon-expandable covered endoprosthesis in iliac artery occlusive disease. J Endovasc Ther. 2017;24:11-18. doi: 10.1177/1526602816680570 .
Lifting options for stratospheric aerosol geoengineering: advantages of tethered balloon systems.
Davidson, Peter; Burgoyne, Chris; Hunt, Hugh; Causier, Matt
2012-09-13
The Royal Society report 'Geoengineering the Climate' identified solar radiation management using albedo-enhancing aerosols injected into the stratosphere as the most affordable and effective option for geoengineering, but did not consider in any detail the options for delivery. This paper provides outline engineering analyses of the options, both for batch-delivery processes, following up on previous work for artillery shells, missiles, aircraft and free-flying balloons, as well as a more lengthy analysis of continuous-delivery systems that require a pipe connected to the ground and supported at a height of 20 km, either by a tower or by a tethered balloon. Towers are shown not to be practical, but a tethered balloon delivery system, with high-pressure pumping, appears to have much lower operating and capital costs than all other delivery options. Instead of transporting sulphuric acid mist precursors, such a system could also be used to transport slurries of high refractive index particles such as coated titanium dioxide. The use of such particles would allow useful experiments on opacity, coagulation and atmospheric chemistry at modest rates so as not to perturb regional or global climatic conditions, thus reducing scale-up risks. Criteria for particle choice are discussed, including the need to minimize or prevent ozone destruction. The paper estimates the time scales and relatively modest costs required if a tethered balloon system were to be introduced in a measured way with testing and development work proceeding over three decades, rather than in an emergency. The manufacture of a tether capable of sustaining the high tensions and internal pressures needed, as well as strong winds, is a significant challenge, as is the development of the necessary pumping and dispersion technologies. The greatest challenge may be the manufacture and launch of very large balloons, but means have been identified to significantly reduce the size of such balloons or aerostats.
SiPM-based azimuthal position sensor in ANITA-IV Hi-Cal Antarctic balloon experiment
NASA Astrophysics Data System (ADS)
Novikov, A.; Besson, D.; Chernysheva, I.; Dmitrenko, V.; Grachev, V.; Petrenko, D.; Prohira, S.; Shustov, A.; Ulin, S.; Uteshev, Z.; Vlasik, K.
2017-01-01
Hi-Cal (High-Altitude Calibration) is a balloon-borne experiment that will be launched in December, 2016 in Antarctica following ANITA-IV (Antarctic Impulsive Transient Antenna) and will generate a broad-band pulse over the frequency range expected from radiation induced by a cosmic ray shower. Here, we describe a device based on an array of silicon photomultipliers (SiPMs) for determination of the azimuthal position of Hi-Cal. The angular resolution of the device is about 3 degrees. Since at the float altitude of ˜38 km the pressure will be ˜0.5 mbar and temperature ˜ - 20 °C, the equipment has been tested in a chamber over a range of corresponding pressures (0.5 ÷ 1000) mbar and temperatures (-40 ÷ +50) °C.
NASA Astrophysics Data System (ADS)
de Schrijver, E.; Chameleva, H.; Degroote, C.; D'Haese, Z.; Paice, C.; Plas, H.; Van den Bossche, A.; Vander Donckt, L.; Vander Vost, J.
2015-09-01
Flight opportunities on high-altitude ASGARD balloons offered to secondary schools worldwide since 20 1 1 have led to an ever more rapidly increasing number of project proposals. The introduction of beginners' and ‘advanced classes of experiments is hoped to draw in even larger numbers of interested school teams. Furthermore, and in cooperation with ESERO (European Space Education Resources Office), workshops and documentation are being prepared to introduce teachers and students alike to the world of microcontrollers and sensors. A student parabolic flight programme called BIFROST (Brussels' Initiative to provide Flight Research Opportunities to STudents) was initiated to meet the rising demand for hands-on space education projects and the desire to cover the widest possible range of scientific and/or technical domains, which essentially calls for a variety of flight platforms: cansats, balloons and parabolic flight.
A Daytime Aspect Camera for Balloon Altitudes
NASA Technical Reports Server (NTRS)
Dietz, Kurt L.; Ramsey, Brian D.; Alexander, Cheryl D.; Apple, Jeff A.; Ghosh, Kajal K.; Swift, Wesley R.; Six, N. Frank (Technical Monitor)
2001-01-01
We have designed, built, and flight-tested a new star camera for daytime guiding of pointed balloon-borne experiments at altitudes around 40km. The camera and lens are commercially available, off-the-shelf components, but require a custom-built baffle to reduce stray light, especially near the sunlit limb of the balloon. This new camera, which operates in the 600-1000 nm region of the spectrum, successfully provided daytime aspect information of approximately 10 arcsecond resolution for two distinct star fields near the galactic plane. The detected scattered-light backgrounds show good agreement with the Air Force MODTRAN models, but the daytime stellar magnitude limit was lower than expected due to dispersion of red light by the lens. Replacing the commercial lens with a custom-built lens should allow the system to track stars in any arbitrary area of the sky during the daytime.