Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long
NASA Technical Reports Server (NTRS)
Czeisler, Charles A.; Barger, Laura K.; Wright, Kenneth P., Jr.; Ronda, Joseph
2009-01-01
Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crew members during long-duration stays on the space station.
NASA Astrophysics Data System (ADS)
Cohu, Christopher M.; Lombardi, Elizabeth; Adams, William W.; Demmig-Adams, Barbara
2014-02-01
Low levels of radiation during spaceflight increase the incidence of eye damage and consumption of certain carotenoids (especially zeaxanthin), via a whole-food-based diet (rather than from supplements), is recommended to protect human vision against radiation damage. Availability of fresh leafy produce has, furthermore, been identified as desirable for morale during long spaceflight missions. We report that only trace amounts of zeaxanthin are retained post-harvest in leaves grown under conditions conducive to rapid plant growth. We show that growth of plants under cool temperatures and very high light can trigger a greater retention of zeaxanthin, while, however, simultaneously retarding plant growth. We here introduce a novel growth condition—low growth light supplemented with several short daily light pulses of higher intensity—that also triggers zeaxanthin retention, but without causing any growth retardation. Moreover, two plant varieties with different hardiness exhibited a different propensity for zeaxanthin retention. These findings demonstrate that growth light environment and plant variety can be exploited to simultaneously optimize nutritional quality (with respect to zeaxanthin and two other carotenoids important for human vision, lutein and β-carotene) as well as biomass production of leafy greens suitable as bioregenerative systems for long-duration manned spaceflight missions.
Williams during Sleep-Long Experiment in the US Lab during Expedition 15
2007-05-24
ISS015-E-09447 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, enters data in a computer for the Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) experiment in the Destiny laboratory of the International Space Station. Sleep-Long will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crewmembers during long-duration stays on the station.
Williams during Sleep-Long Experiment in the US Lab during Expedition 15
2007-05-24
ISS015-E-09449 (24 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, enters data in a computer for the Sleep-Wake Actigraphy and Light Exposure During Spaceflight-Long (Sleep-Long) experiment in the Destiny laboratory of the International Space Station. Sleep-Long will examine the effects of spaceflight and ambient light exposure on the sleep-wake cycles of the crewmembers during long-duration stays on the station.
Meck, J V; Reyes, C J; Perez, S A; Goldberger, A L; Ziegler, M G
2001-01-01
The incidence of postflight orthostatic intolerance after short-duration spaceflight is about 20%. However, the incidence after long-duration spaceflight was unknown. The purpose of this study was to test the hypothesis that orthostatic intolerance is more severe after long-duration than after short-duration flight. We performed tilt tests on six astronauts before and after long-duration (129-190 days) spaceflights and compared these data with data obtained during stand tests before and after previous short-duration missions. Five of the six astronauts studied became presyncopal during tilt testing after long-duration flights. Only one had become presyncopal during stand testing after short-duration flights. We also compared the long-duration flight tilt test data to tilt test data from 20 different astronauts who flew on the short-duration Shuttle missions that delivered and recovered the astronauts to and from the Mir Space Station. Five of these 20 astronauts became presyncopal on landing day. Heart rate responses to tilt were no different between astronauts on long-duration flights and astronauts on short-duration flights, but long-duration subjects had lower stroke volumes and cardiac outputs than short-duration presyncopal subjects, suggesting a possible decrease in cardiac contractile function. One subject had subnormal norepinephrine release with upright posture after the long flight but not after the short flight. Plasma volume losses were not greater after long flights. Long-duration spaceflight markedly increases orthostatic intolerance, probably with multiple contributing factors.
Securing Safety - Spaceflight Standards for the Mass Market
NASA Astrophysics Data System (ADS)
Goh, G.
The projected total revenue of the space tourism industry is expected to exceed USD $1 billion by 2021. The vast economic potential of space tourism has fuelled ambitious plans for commercial orbital and suborbital flights, in addition to longer- duration spaceflights on board the International Space Station (ISS) and other planned orbiting habitats. International and national legal frameworks are challenged to provide regulations to ensure minimum standards of spaceflight safety for a high risk activity that aims to enter the mainstream tourism market. Thrown into the mix are various considerations of the number of spaceflight participants per flight, the economic viability of stringent safety standards, the plethora of possible flight vehicles and the compensation mechanism in case of violations of safety regulations. This paper surveys the legal challenges in the regulation of safety in commercial manned spaceflight, including issues of jurisdiction, authorization, licensing and liability. Drawing on analogous developments in other fields of law related to international carriage, a safety regulation framework with minimum international standards is proposed. This proposed framework considers both accident avoidance and emergency response in light of international legal, policy and economic perspectives.
Regional muscle loss after short duration spaceflight.
LeBlanc, A; Rowe, R; Schneider, V; Evans, H; Hedrick, T
1995-12-01
Muscle strength and limb girth measurements during Skylab and Apollo missions suggested that loss of muscle mass may occur as a result of spaceflight. Extended duration spaceflight is important for the economical and practical use of space. The loss of muscle mass during spaceflight is a medical concern for long duration flights to the planets or extended stays aboard space stations. Understanding the extent and temporal relationships of muscle loss is important for the development of effective spaceflight countermeasures. We hypothesized that significant and measurable changes in muscle volume would occur in Shuttle crewmembers following 8 d of weightlessness. MRI was used to obtain the muscle volumes of the calf, thigh and lower back before and after the STS-47 Shuttle mission. Statistical analyses demonstrated that the soleus-gastrocnemius (-6.3%), anterior calf (-3.9%), hamstrings (-8.3%), quadriceps (-6.0%) and intrinsic back (-10.3%) muscles were decreased, p < 0.05, compared to baseline, 24 h after landing. At 2 weeks post recovery, the hamstrings and intrinsic lower back muscles were still below baseline, p < 0.05. These results demonstrate that even short duration spaceflight can result in significant muscle atrophy.
Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000
NASA Technical Reports Server (NTRS)
Porterfield, D. M.; Neichitailo, G. S.; Mashinski, A. L.; Musgrave, M. E.
2003-01-01
The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Spaceflight hardware for conducting plant growth experiments in space: the early years 1960-2000.
Porterfield, D M; Neichitailo, G S; Mashinski, A L; Musgrave, M E
2003-01-01
The best strategy for supporting long-duration space missions is believed to be bioregenerative life support systems (BLSS). An integral part of a BLSS is a chamber supporting the growth of higher plants that would provide food, water, and atmosphere regeneration for the human crew. Such a chamber will have to be a complete plant growth system, capable of providing lighting, water, and nutrients to plants in microgravity. Other capabilities include temperature, humidity, and atmospheric gas composition controls. Many spaceflight experiments to date have utilized incomplete growth systems (typically having a hydration system but lacking lighting) to study tropic and metabolic changes in germinating seedlings and young plants. American, European, and Russian scientists have also developed a number of small complete plant growth systems for use in spaceflight research. Currently we are entering a new era of experimentation and hardware development as a result of long-term spaceflight opportunities available on the International Space Station. This is already impacting development of plant growth hardware. To take full advantage of these new opportunities and construct innovative systems, we must understand the results of past spaceflight experiments and the basic capabilities of the diverse plant growth systems that were used to conduct these experiments. The objective of this paper is to describe the most influential pieces of plant growth hardware that have been used for the purpose of conducting scientific experiments during the first 40 years of research. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Ocular Counter Rolling in Astronauts After Short- and Long-Duration Spaceflight.
Reschke, Millard F; Wood, Scott J; Clément, Gilles
2018-05-17
Ocular counter-rolling (OCR) is a reflex generated by the activation of the gravity sensors in the inner ear that stabilizes gaze and posture during head tilt. We compared the OCR measures that were obtained in 6 astronauts before, during, and after a spaceflight lasting 4-6 days with the OCR measures obtained from 6 astronauts before and after a spaceflight lasting 4-9 months. OCR in the short-duration fliers was measured using the afterimage method during head tilt at 15°, 30°, and 45°. OCR in the long-duration fliers was measured using video-oculography during whole body tilt at 25°. A control group of 7 subjects was used to compare OCR measures during head tilt and whole body tilt. No OCR occurred during head tilt in microgravity, and the response returned to normal within 2 hours of return from short-duration spaceflight. However, the amplitude of OCR was reduced for several days after return from long-duration spaceflight. This decrease in amplitude was not accompanied by changes in the asymmetry of OCR between right and left head tilt. These results indicate that the adaptation of otolith-driven reflexes to microgravity is a long-duration process.
Femoral Head Bone Loss Following Short and Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Blaber, E. A.; Cheng-Campbell, M.; Almeida, E. A. C.
2016-01-01
Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31% decrease in bone volume ratio, a 14% decrease in trabecular thickness, and a 20% decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1.This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration persists during long-duration spaceflight. Furthermore, spaceflight femurs from BionM1 indicate onset of an accelerated aging-like phenotype with signs of osteoarthritic disease shown by disruption of the epiphyseal boundary and endochondral ossification. These effects are likely caused by a failure of stem cells to regenerate degraded tissues and may have significant implications for bone and cartilage health following extensive periods of mechanical unloading during long-duration spaceflight.
Femoral Head Bone Loss Following Short and Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Blaber, Elizabeth A.; Cheng-Campbell, Margareth A.; Almeida, Eduardo A. C.
2016-01-01
Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration persists during long-duration spaceflight. Furthermore, spaceflight femurs from BionM1 indicate onset of an accelerated aging-like phenotype with signs of osteoarthritic disease shown by disruption of the epiphyseal boundary and endochondral ossification. These effects are likely caused by a failure of stem cells to regenerate degraded tissues and may have significant implications for bone and cartilage health following extensive periods of mechanical unloading during long-duration spaceflight.
Plasma Cytokine Levels During Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Zwart, Sara R.; Quiriarte, Heather A.; Smith, Scott M.; Sams, Clarence F.
2011-01-01
Reduced T cell, granulocyte, NK and monocyte function have all been reported following both long and short duration spaceflight, however these data indicate crews are generally not experiencing inflammatory or adaptive immune activation during spaceflight. There appear to be varied individual crew responses, and specific relationships between cytokines and markers of iron status and muscle turnover that warrant further evaluation. Increases in growth factors and chemokines may indicate other types of adaptation occurring during spaceflight, such as attempts to overcome diminished immunocyte function.
Review of Human Cognitive Performance in Spaceflight
NASA Technical Reports Server (NTRS)
Strangman, Gary; Bevan, Gary
2012-01-01
Human space exploration is inherently hazardous, particularly for lon g duration (LD) missions (22 days or longer). Maintenance of cognitive functioning is essential, but flight environments pose numerous pote ntial risks to the brain and cognitive performance (eg, radiation, to xins, chronic stress, sleep deprivation, hypercarbia, fluid shifts, h ormone imbalances, and injury). There have been persistent anecdotal reports of cognitive deficits during missions, but an up?-to-date rev iew of the evidence for such changes has remained unavailable. Method s: We identified and reviewed English language publications found via electronic searches in PubMed, PsycInfo, Inspec, the NASA Technical Report Server, and the Defense Technical Information Center, plus rec ursive searches of publication bibliographies. Search terms included the word cognition, cognitive, or performance along with spaceflight, flight, mission, or closely related terms. Results: Inter?-study variability precluded meta?-analysis. Some 32 published studies involving cognitive assessment during spaceflight were identified, involving a total of 110 participants (mean: 3.4 participants per study). The lo ngest?-duration study spanned 438 days, with six additional studies i nvolving flight durations of 90 days, and 11 more studies involved fl ight durations exceeding 21 days. The available evidence failed to st rongly support or refute the existence of cognitive deficits in LD sp aceflight, in part due to inadequate power or control conditions. Evi dence of increased variability in cognitive performance during spacef light, both within and between individuals, was common. Discussion: T hese results represent a negative finding based on small numbers of s ubjects for any given cognitive function. The increased variability within and (particularly) between individuals highlights the potential danger of generalizing from case studies. A mismatch therefore remain s between anecdotal reports describing generalized cognitive slowing, attention and memory problems during missions and the experimental e vidence supporting such deficits. Since a major justification for man ned spaceflight rests with the cognitive flexibility of humans, addit ional studies and further analysis of existing operational data appea rs warranted.
Altered Innate and Lymphocytic Immunity in Murine Splenocytes Following Short-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Hwang, Shen-An; Actor, Jeffrey K.; Quiriarte, Heather; Sams, Clarence F.
2011-01-01
Immune dysregulation has been demonstrated following spaceflight of varying durations and limited in-flight studies indicate this phenomenon may persist during spaceflight. Causes may include microgravity, physiological stress, isolation, confinement and disrupted circadian rhythms. To further investigate the mechanisms associated with flight-associated immune changes, murine splenocytes immune parameters were assessed following 14 day space flight on Space Shuttle mission STS-135.
Vitamin K Status in Spaceflight and Ground-Based Models of Spaceflight
Zwart, Sara R; Booth, Sarah L; Peterson, James W; Wang, Zuwei; Smith, Scott M
2011-01-01
Bone loss is a well-documented change during and after long-duration spaceflight. Many types of countermeasures to bone loss have been proposed, including vitamin K supplementation. The objective of this series of studies was to measure change in vitamin K status in response to microgravity under a variety of spaceflight and spaceflight analog (model) conditions, including long-duration spaceflight studies (n = 15), three bed rest studies (n = 15, 49, and 24), and a 14-day saturation dive (n= 6). In crew members who flew 2–6 months on the International Space Station, in-flight and postflight plasma phylloquinone concentrations were unchanged from the preflight mean. Consistent with this finding, urinary γ-carboxyglutamic acid (GLA), a measure of vitamin K-dependent protein turnover, did not change in response to flight. Serum undercarboxylated osteocalcin (%ucOC), a measure of vitamin K function, was generally unchanged in response to flight. Spaceflight findings were corroborated by findings of no changes in phylloquinone, urinary GLA, or %ucOC during or after bed rest in three separate bed rest studies (21–90 days in duration) or after a 14-day saturation dive. The data presented here do not support either a need for vitamin K supplementation during spaceflight or the suggestion of using vitamin K as a bone loss countermeasure in spaceflight. © 2011 American Society for Bone and Mineral Research. PMID:21541997
2000-05-01
Research scientist Greg Goins monitors radish growth under a sulfur-microwave light at Hangar L at the Cape Canaveral Air Force Station. The research he is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardshi
2000-05-01
Research scientist Greg Goins monitors radish growth under a sulfur-microwave light at Hangar L at the Cape Canaveral Air Force Station. The research he is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardshi
A model for plasma volume changes during short duration spaceflight
NASA Technical Reports Server (NTRS)
Davis, John E.
1989-01-01
It is well established that plasma volume decreases during spaceflight and simulated weightlessness (bedrest). The decrement in plasma volume is thought to contribute to the orthostatic intolerance that has been observed in some crew members following spaceflight. To date, no studies have evaluated the effectiveness of fluid countermeasures of varying osmolality in the restoration of plasma volume and orthostatic tolerance in a controlled study. The overall objectives of this project were to: (1) provide a model that would rapidly and safely produce a fluid loss comparable to that which occurs during short duration spaceflight; and (2) design a study that would determine the optimal drink solution to restore orthostatic tolerance and describe the mechanism(s) whereby orthostatic tolerance is restored. In summary, Lasix can be used as a way of simulating the plasma volume changes that occur during short duration spaceflight. The total loss of plasma is comparable to spaceflight. Lasix is fast acting, and has relatively few side effects. The present design for evaluating the optimal fluid countermeasures will have important implications in restoring orthostatic tolerance and function in the latter stages of spaceflight when it is essential for safe operation of the spacecraft.
NASA Technical Reports Server (NTRS)
Levine, Benjamin D.; Bungo, Michael W.; Platts, Steven H.; Hamilton, Douglas R.; Johnston, Smith L.
2009-01-01
Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias (Integrated Cardiovascular) will quantify the extent of long-duration space flightassociated cardiac atrophy (deterioration) on the International Space Station crewmembers.
Alterations in adaptive immunity persist during long-duration spaceflight.
Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2015-01-01
It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8 + T-cell maturation. A reduction in general T-cell function (both CD4 + and CD8 + ) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4 + T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions.
Alterations in adaptive immunity persist during long-duration spaceflight
Crucian, Brian; Stowe, Raymond P; Mehta, Satish; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2015-01-01
Background: It is currently unknown whether immune system alterations persist during long-duration spaceflight. In this study various adaptive immune parameters were assessed in astronauts at three intervals during 6-month spaceflight on board the International Space Station (ISS). AIMS: To assess phenotypic and functional immune system alterations in astronauts participating in 6-month orbital spaceflight. Methods: Blood was collected before, during, and after flight from 23 astronauts participating in 6-month ISS expeditions. In-flight samples were returned to Earth within 48 h of collection for immediate analysis. Assays included peripheral leukocyte distribution, T-cell function, virus-specific immunity, and mitogen-stimulated cytokine production profiles. Results: Redistribution of leukocyte subsets occurred during flight, including an elevated white blood cell (WBC) count and alterations in CD8+ T-cell maturation. A reduction in general T-cell function (both CD4+ and CD8+) persisted for the duration of the 6-month spaceflights, with differential responses between mitogens suggesting an activation threshold shift. The percentage of CD4+ T cells capable of producing IL-2 was depressed after landing. Significant reductions in mitogen-stimulated production of IFNγ, IL-10, IL-5, TNFα, and IL-6 persisted during spaceflight. Following lipopolysaccharide (LPS) stimulation, production of IL-10 was reduced, whereas IL-8 production was increased during flight. Conclusions: The data indicated that immune alterations persist during long-duration spaceflight. This phenomenon, in the absence of appropriate countermeasures, has the potential to increase specific clinical risks for crewmembers during exploration-class deep space missions. PMID:28725716
Short-Duration Spaceflight Does Not Prolong QTc Intervals in Male Astronauts
NASA Technical Reports Server (NTRS)
Mitchell, Brett M.; Meck, Janice V.
2004-01-01
Although ventricular dysrhythmias are not increased during, and QTc intervals are not prolonged after, short-duration (5 to 16 days) spaceflights, QTc intervals have not previously been reported during these shorter flights. Holter monitor recordings, obtained in 11 male astronauts who flew on shuttle missions ranging from 5 to 10 days, showed that QTc intervals did not change significantly 10 days before launch, on 2 separate days of spaceflight, and 2 days after landing. Taken together, these data and our previous report show that QTc interval prolongation occurs sometime between the 9th and 30th days of spaceflight.
Workplace Social Support and Behavioral Health Prior to Long-Duration Spaceflight.
Deming, Charlene A; Vasterling, Jennifer J
2017-06-01
Preparation and training for long-duration spaceflight bring with them psychosocial stressors potentially affecting the well-being and performance of astronauts, before and during spaceflight. Social support from within the workplace may mitigate behavioral health concerns arising during the preflight period and enhance resiliency before and during extended missions. The purpose of this review was to evaluate evidence addressing the viability of workplace social support as a pre-mission countermeasure, specifically addressing: 1) the observed relationships between workplace social support and behavioral health; 2) perceived need, acceptability, and format preference for workplace social support among high-achievers; 3) potential barriers to delivery/receipt of workplace social support; 4) workplace social support interventions; and 5) delivery timeframe and anticipated duration of workplace social support countermeasure benefits. We conducted an evidence review examining workplace social support in professional contexts sharing one or more characteristics with astronauts and spaceflight. Terms included populations of interest, social support constructs, and behavioral health outcomes. Abstracts of matches were subsequently reviewed for relevance and quality. Research findings demonstrate clear associations between workplace social support and behavioral health, especially following exposure to stress. Further, studies indicate strong need for support and acceptability of support countermeasures, despite barriers. Our review revealed two general formats for providing support (i.e., direct provision of support and training to optimize skills in provision and receipt of support) with potential differentiation of expected duration of benefits, according to format. Workplace social support countermeasures hold promise for effective application during pre-mission phases of long-duration spaceflight. Specific recommendations are provided.Deming CA, Vasterling JJ. Workplace social support and behavioral health prior to long-duration spaceflight. Aerosp Med Hum Perform. 2017; 88(6):565-573.
Building a Shared Definitional Model of Long Duration Human Spaceflight
NASA Technical Reports Server (NTRS)
Orr, M.; Whitmire, A.; Sandoval, L.; Leveton, L.; Arias, D.
2011-01-01
In 1956, on the eve of human space travel Strughold first proposed a simple classification of the present and future stages of manned flight that identified key factors, risks and developmental stages for the evolutionary journey ahead. As we look to optimize the potential of the ISS as a gateway to new destinations, we need a current shared working definitional model of long duration human space flight to help guide our path. Initial search of formal and grey literature augmented by liaison with subject matter experts. Search strategy focused on both the use of term long duration mission and long duration spaceflight, and also broader related current and historical definitions and classification models of spaceflight. The related sea and air travel literature was also subsequently explored with a view to identifying analogous models or classification systems. There are multiple different definitions and classification systems for spaceflight including phase and type of mission, craft and payload and related risk management models. However the frequently used concepts of long duration mission and long duration spaceflight are infrequently operationally defined by authors, and no commonly referenced classical or gold standard definition or model of these terms emerged from the search. The categorization (Cat) system for sailing was found to be of potential analogous utility, with its focus on understanding the need for crew and craft autonomy at various levels of potential adversity and inability to gain outside support or return to a safe location, due to factors of time, distance and location.
Medication use by U.S. crewmembers on the International Space Station.
Wotring, Virginia E
2015-11-01
The environment on the International Space Station (ISS) includes a variety of potential physiologic stressors, including low gravity, elevated exposure to radiation, confined living and working quarters, a heavy workload, and high public visibility. This retrospective study examined medication use during long-duration spaceflights (>30 d). Medication records from 24 crewmembers on 20 missions longer than 30 d over a 10 yr period were examined for trends in usage rates, efficacy, and indication, as well as adverse event quality, frequency, and severity. Results were compared with those from crewmembers on shorter space shuttle missions (>16 d) and other reports of medication use by healthy adults. The most frequently used medications on the ISS were for sleep problems, pain, congestion, or allergy. Medication use during spaceflight missions was similar to that noted on the Space Shuttle and in adult ambulatory medicine, except that usage of sleep aids was about 10 times higher during spaceflight missions. There were also 2 apparent treatment failures in cases of skin rash, raising questions about the efficacy or suitability of the treatments used. Many spaceflight-related medication uses (at least 10%) were linked to extravehicular activities, exercise protocols, or equipment and operationally driven schedule changes. It seems likely that alterations in spaceflight mission operations (schedule-shifting and lighting) or hardware (extravehicular activity suits and exercise equipment) could reduce the need for a sizable fraction of medication uses. © FASEB.
Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight
NASA Technical Reports Server (NTRS)
Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar;
2017-01-01
Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural resources are required to process vestibular input.
NASA Technical Reports Server (NTRS)
Massa, G. D.; Wheeler, R. M.; Romeyn, M. W.; Hummerick, M. E.; Spencer, L. E.; Morrow, R. C.; Mitchell, C. A.; Burgner, S.; Whitmire, A. M.; Young, M. H.;
2018-01-01
Growth of fresh, nutritious, palatable produce for crew consumption during spaceflight may provide health-promoting, bioavailable nutrients and enhance the dietary experience as we move toward longer-duration missions. Tending plants also may serve as a countermeasure for crew psychological stresses associated with long duration spaceflight. However, requirements to support consistent growth of a variety of high quality, nutritious crops under spaceflight environmental conditions is unknown. This study is exploring the potential to grow plants for food production on the International Space Station (ISS) using the Veggie vegetable production system. Ground testing is underway to compare the impacts of several fertilizer and lighting treatments on growth, quality, and nutritional composition of the leafy green crop mizuna, and the dwarf tomato crop Red Robin when subjected to Veggie ISS environmental conditions. Early testing focused on the leafy crop Tokyo Bekana Chinese cabbage, but ground tests indicated that this plant suffered from stress responses when grown under LEDs and the chronically elevated CO2 levels found on the ISS. Mizuna, a related leafy variety that grows well in the presence of high CO2, and has excellent organoleptic characteristics, was selected as an alternate crop. Tomato crops have been grown using two fertilizer formulations and two pollination techniques, and growth tests using different red:blue lighting environments are underway. Chemical analysis is also being conducted and these data, when coupled with the growth results, will be used to down-select to the two best lighting treatments and best fertilizer treatment for future testing of each crop on the ISS. Additionally, seed-source testing has become important, with mizuna seeds from two different vendors growing very differently. A seed source has been selected, and seed-surface-sanitizing methods have been confirmed for mizuna, but these remain under development for tomato. A crop-handling protocol is also being evaluated to support food safety. All harvests reserve a subset of samples for microbial analysis to determine baseline microbial levels and help establish critical control points for food safety. Testing was initially conducted in hardware analogs of the standard Veggie plant pillows. However, a new Veggie watering system, the Passive Orbital Nutrient Delivery System or PONDS, has been designed and is being prepared for future flight experiments. With the selection of this growth system, ground tests have shifted to analog PONDS systems. Crop tests on ISS, designated VEG-04 for mizuna and VEG-05 for tomato, are planned in 2018 to evaluate any additional impacts of spaceflight on the light and fertilizer conditions down-selected from ground tests. A set of Veggie-specific questions has been developed to characterize the psychological impacts of plant growth and plant-care activities during spaceflight. Organoleptic questionnaires have been developed to assess produce attributes in microgravity taste sessions. These tests for plants growing in the Veggie hardware on ISS will help to mitigate the risk of an inadequate food supply for long duration missions by developing methods and determining hardware requirements to integrate fresh vegetables as a dietary supplement. This research was co-funded by the Human Research Program and Space Biology (MTL1075) in the ILSRA 2015 NRA call.
Brainard, George C; Barger, Laura K; Soler, Robert R; Hanifin, John P
2016-11-01
The review addresses the development of a new solid-state lighting system for the International Space Station (ISS) that is intended to enhance the illumination of the working and living environment of astronauts and to improve sleep, circadian entrainment, and daytime alertness. Spaceflight missions often expose astronauts and mission support ground crews to atypical sleep-wake cycles and work schedules. A recent, extensive study describes the sleep characteristics and use of sleep-promoting pharmaceuticals in astronauts before, during, and after spaceflight. The acceptability, feasibility, and efficacy of the new ISS solid-state lighting systems are currently being tested in ground-based, analog studies. Installation of this lighting system on the ISS is scheduled to begin later this year. In-flight testing of this lighting system is planned to take place during ISS spaceflight expeditions. If the new ISS lighting system is capable of improving circadian entrainment and sleep during spaceflight, it should enhance astronaut health, performance, well-being, and safety. Such an advance would open the door to future lighting applications for humans living on Earth.
Comparison of Echocardiographic Measurements Before and After Short and Long Duration Spaceflight
NASA Technical Reports Server (NTRS)
Fritsch-Yelle, Janice M.; South, Donna A.; Wood, Margie L.; Bungo, Michael W.
2000-01-01
Previous echocardiography studies in astronauts before and after short duration (4 - 17 days) missions have demonstrated a decrease in resting left ventricular (LV) stroke volume (SV), but maintained ejection fraction (EF) and cardiac output. Similar studies before and after long duration (129 - 144 days) spaceflight have been rare and their overall results equivocal. The purpose of this work was to compare the echocardiographic measurements (M-mode, 2-D and Doppler) from short duration (n = 13) and long duration (n = 4) crewmembers. Compared to short duration astronauts, long duration crewmembers had a significantly greater percent decrease in EF (+6+/-0.02 vs.-10.5+/-0.03, p = 0.005) and percent fractional shortening (+7+/-0.03 vs. -11+/-0.07, p = 0.0 15), and an increase in LV end systolic volume (-12+/-0.06 vs. +39+/-0.24, p = 0.011). These data suggest a reduction in cardiac function that relates to mission duration. As the changes in blood pressure and circulating blood volume (9% - 12%) are reported to be similar after short and long duration flights, the drop in EF after longer spaceflights is likely due to a decrease in cardiac function rather than altered blood volume.
NASA Technical Reports Server (NTRS)
Crician, Brian E.; Zwart, Sara R.; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather A.; Pierson, Duane; Sams, Clarence F.; Smith, Scott M.
2013-01-01
Background: Aspects of immune system dysregulation associated with long-duration spaceflight have yet to be fully characterized, and may represent a clinical risk to crewmembers during deep space missions. Plasma cytokine concentration may serve as an indicator of in vivo physiological changes or immune system mobilization. Methods: The plasma concentrations of 22 cytokines were monitored in 28 astronauts during long-duration spaceflight onboard the International Space Station. Blood samples were collected three times before flight, 3-5 times during flight (depending on mission duration), at landing and 30 days post-landing. Analysis was performed by bead array immunoassay. Results: With few exceptions, minimal detectable mean plasma levels (<10 pg/ml) were observed at baseline (launch minus 180) for innate inflammatory cytokines or adaptive regulatory cytokines, however IL-1ra and several chemokines were constitutively present. An increase in the plasma concentration IL-8, IL-1ra, Tpo, CCL4, CXCL5, TNF(alpha), GM-CSF and VEGF was observed associated with spaceflight. Significant post-flight increases were observed for IL-6 and CCL2. No significant alterations were observed during or following spaceflight for adaptive/T-regulatory cytokines (IL-2, IFN(gamma), IL-17, IL4, IL-5, IL-10). Conclusions: This pattern of cytokine dysregulation suggests multiple physiological adaptations persist during flight, including inflammation, leukocyte recruitment, angiogenesis and thrombocyte regulation.
NASA Astrophysics Data System (ADS)
Barger, Laura K.; Wright, Kenneth P.; Burke, Tina M.; Chinoy, Evan D.; Ronda, Joseph M.; Lockley, Steven W.; Czeisler, Charles A.
2014-01-01
The success of long-duration space missions depends on the ability of crewmembers and mission support specialists to be alert and maintain high levels of cognitive function while operating complex, technical equipment. We examined sleep, nocturnal melatonin levels and cognitive function of crewmembers and the sleep and cognitive function of mission controllers who participated in a high-fidelity 105-day simulated spaceflight mission at the Institute of Biomedical Problems (Moscow). Crewmembers were required to perform daily mission duties and work one 24-h extended duration work shift every sixth day. Mission controllers nominally worked 24-h extended duration shifts. Supplemental lighting was provided to crewmembers and mission controllers. Participants' sleep was estimated by wrist-actigraphy recordings. Overall, results show that crewmembers and mission controllers obtained inadequate sleep and exhibited impaired cognitive function, despite countermeasure use, while working extended duration shifts. Crewmembers averaged 7.04±0.92 h (mean±SD) and 6.94±1.08 h (mean±SD) in the two workdays prior to the extended duration shifts, 1.88±0.40 h (mean±SD) during the 24-h work shift, and then slept 10.18±0.96 h (mean±SD) the day after the night shift. Although supplemental light was provided, crewmembers' average nocturnal melatonin levels remained elevated during extended 24-h work shifts. Naps and caffeine use were reported by crewmembers during ˜86% and 45% of extended night work shifts, respectively. Even with reported use of wake-promoting countermeasures, significant impairments in cognitive function were observed. Mission controllers slept 5.63±0.95 h (mean±SD) the night prior to their extended duration work shift. On an average, 89% of night shifts included naps with mission controllers sleeping an average of 3.4±1.0 h (mean±SD) during the 24-h extended duration work shift. Mission controllers also showed impaired cognitive function during extended duration work shifts. These findings indicate that extended duration work shifts present a significant challenge to crewmembers and mission support specialists during long-duration space mission operations. Future research is needed to evaluate the efficacy of alternative work schedules and the development and implementation of more effective countermeasures will be required to maintain high levels of performance.
Vitamin K status in spaceflight and ground-based models of spaceflight
USDA-ARS?s Scientific Manuscript database
Bone loss is a well-documented change during and after long-duration spaceflight. Many types of countermeasures to bone loss have been proposed, including vitamin K supplementation. The objective of this series of studies was to measure change in vitamin K status in response to microgravity under a ...
Effect of long-duration spaceflight on postural control during self-generated perturbations
NASA Technical Reports Server (NTRS)
Layne, C. S.; Mulavara, A. P.; McDonald, P. V.; Pruett, C. J.; Kozlovskaya, I. B.; Bloomberg, J. J.
2001-01-01
This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure (COP) motion associated with arm movement of eight subjects who experienced long-duration spaceflight (3--6 mo) aboard the Mir space station. Surface electromyography, arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions before and after spaceflight. Subjects generally displayed compromised postural control after flight, as evidenced by modified COP peak-to-peak anterior-posterior and mediolateral excursion, and pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e., when subjects were attempting to maintain upright posture in response to self-generated perturbations). These findings suggest that, although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long-duration spaceflight.
Effect of Long-Duration Spaceflight on Postural Control During Self-Generated Perturbations
NASA Technical Reports Server (NTRS)
Layne, Charles S.; Mulavera, Ajitkumar P.; McDonald, P. Vernon; Pruett, Casey J.; Kozlovskaya, Innessa B.; Bloomberg, Jacob J.
2001-01-01
This report is the first systematic evaluation of the effects of prolonged weightlessness on the bipedal postural control processes during self-generated perturbations produced by voluntary upper limb movements. Spaceflight impacts humans in a variety of ways, one of which is compromised postflight postural control. We examined the neuromuscular activation characteristics and center of pressure motion (COP) associated with arm movement of eight subjects who experienced long duration spaceflight (3-6 months) aboard the Mir space station. Surface electromyography (EMG), arm acceleration, and COP motion were collected while astronauts performed rapid unilateral shoulder flexions prior to and after spaceflight. Subjects displayed compromised postural control after flight as evidenced by modified peak-to-peak COP anterior-posterior and medio-lateral motion and COP pathlength relative to preflight values. These changes were associated with disrupted neuromuscular activation characteristics, particularly after the completion of arm acceleration (i.e. when subjects were attempting to maintain their upright posture). These findings suggest that although the subjects were able to assemble coordination modes that enabled them to generate rapid arm movements, the subtle control necessary to maintain bipedal equilibrium evident in their preflight performance is compromised after long duration spaceflight.
Effects of Radiation on Rat Retina after 18 days of Space Flight
NASA Technical Reports Server (NTRS)
Philpott, D.; Corbett, R.; Turnbill, C.; Black, S.; Dayhoff, D.; McGourty, J.; Lee, R.; Harrison, G.; Savick, L.
1978-01-01
Although cumulative effects an retina from low-dose radiation during prolonged spaceflight are not known, ary impairment of vision could set limits for spaceflight duration. Cosmic rays are now considered to be the cause of the "light flashes" seen during spaceflight by activating retina cells as they pass through the photoreceptors. Previous studies have also shown retinal cellular alterations and cell necrosis from high-energy, particle (HZE) radiation. Ten rats, 5 centrifuged during flight (FC) to simulate gravity and 5 in-flight stationary (FS) experiencing hypogravity, orbited Earth for 18.5 days on Cosmos 936. The animals were sacrificed 25 days post-recovery and the eyes flown to Ames Res. Ctr. The pattern of cell necrosis in the retinas from the FC group showed the same response to radiation as the FS. This would indicate that hypogravity was not a factor in the observed results. Also the cellular response in the retinas exposed in the Berkeley accelerator again matched both the FC and FS eyes. Thus all three conditions provide comparable changes and indicate HZE particles as the possible cause of the cellular alterations, channels, and breakdown.
NASA Technical Reports Server (NTRS)
Brown, A. H.; Odowd, P.; Loercher, L.; Kuniewicz, R.; Dahl, A. O.
1979-01-01
The Arabidopsis thaliana plant species is tested to determine how a higher plant will develop from seed to maturity when deprived of all gravitational information that it might use to control its growth. Experimental results show that Arabidopsis seedlings can develop to maturity by means of a light-dependent but CO2-independent metabolism that feeds on organic compounds derived from the culture medium. This process is identified as photoassimilation. The ability of a higher plant to nourish itself by photoassimilation and thereby to survive in a heremetically sealed chamber of small dimensions is more than a biochemical curiosity. It allows the botanical investigator to design a culture system convenient for space-flight applications, which ensures isolation of each test plant from the gaseous environment of the spacecraft.
Sleep-Wake Actigraphy and Light Exposure During Spaceflight - Short
NASA Technical Reports Server (NTRS)
Czeisler, Charles A.; Wright, Kenneth P., Jr.; Ronda, Joseph
2009-01-01
Sleep-Wake Actigraphy and Light Exposure During Spaceflight - Short (Sleep-Short) will examine the effects of spaceflight on the sleep of the astronauts during space shuttle missions. Advancing state-of-the-art technology for monitoring, diagnosing and assessing treatment of sleep patterns is vital to treating insomnia on Earth and in space.
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Spector, Elizabeth R.; Ploutz-Snyder, R.; Evans, H. J.; King, L.; Watts, N. B.; Hans, D.; Smith, S. A.
2013-01-01
Spaceflight is a potential risk factor for secondary osteoporosis in astronauts. Although lumbar spine (LS) BMD declines rapidly, more than expected for age, there have been no fragility fractures in astronauts that can clearly be attributed to spaceflight. Recently, astronauts have been returning from 6-month spaceflights with absolute BMD still above young adult mean BMD. In spite of these BMD measurements, we project that the rapid loss in bone mass over long-duration spaceflight affects the bone microarchitecture of the LS which might predispose astronauts to premature vertebral fractures. Thus, we evaluated TBS, a novel texture index correlated with vertebral bone microarchitecture, as a means of monitoring changes to bone microarchitecture in astronauts as they age. We previously reported that TBS detects an effect of spaceflight (6-month duration), independent of BMD, in 51 astronauts (47+/-4 y) (Smith et al, J Clin Densitometry 2014). Hence, TBS was evaluated in serial DXA scans (Hologic Discovery W) conducted triennially in all active and retired astronauts and more frequently (before spaceflight, after spaceflight and until recovery) in the subset of astronauts flying 4-6- month missions. We used non-linear models to describe trends in observations (BMD or TBS) plotted as a function of astronaut age. We fitted 1175 observations of 311 astronauts, pre-flight and then postflight starting 3 years after landing or after astronaut's BMD for LS was restored to within 2% of preflight BMD. Observations were then grouped and defined as follows: 1) LD: after exposure to at least one long-duration spaceflight > 100 days and 2) SD: before LD and after exposure to at least one short-duration spaceflight < 30 days. Data from males and females were analyzed separately. Models of SD observations revealed that TBS and BMD had similar curvilinear declines with age for both male and female astronauts. However, models of LD observations showed TBS declining with age while BMD appeared stable or trending upward. For females (n=8) LD observations were too few to discern a trend. Notably, models describing trends in TBS appeared to be more sensitive to the effects of age than the models for BMD. We conclude that TBS may provide an additional index for the lumbar spine to monitor the combined changes due to spaceflight and due to aging. This increased knowledge may enhance the ability to identify an intervention trigger for premature vertebral fractures in astronauts.
NASA Technical Reports Server (NTRS)
Flynn-Evans, Erin; Gregory, Kevin; Arsintescu, Lucia; Whitmire, Alexandra
2016-01-01
Sleep loss, circadian desynchronization, and work overload occur to some extent for ground and flight crews, prior to and during spaceflight missions. Ground evidence indicates that such risk factors may lead to performance decrements and adverse health outcomes, which could potentially compromise mission objectives. Efforts are needed to identify the environmental and mission conditions that interfere with sleep and circadian alignment, as well as individual differences in vulnerability and resiliency to sleep loss and circadian desynchronization. Specifically, this report highlights a collection of new evidence to better characterize the risk and reveals new gaps in this risk as follows: Sleep loss is apparent during spaceflight. Astronauts consistently average less sleep during spaceflight relative to on the ground. The causes of this sleep loss remain unknown, however ground-based evidence suggests that the sleep duration of astronauts is likely to lead to performance impairment and short and long-term health consequences. Further research is needed in this area in order to develop screening tools to assess individual astronaut sleep need in order to quantify the magnitude of sleep loss during spaceflight; current and planned efforts in BHP's research portfolio address this need. In addition, it is still unclear whether the conditions of spaceflight environment lead to sleep loss or whether other factors, such as work overload lead to the reduced sleep duration. Future data mining efforts and continued data collection on the ISS will help to further characterize factors contributing to sleep loss. Sleep inertia has not been evaluated during spaceflight. Ground-based studies confirm that it takes two to four hours to achieve optimal performance after waking from a sleep episode. Sleep inertia has been associated with increased accidents and reduced performance in operational environments. Sleep inertia poses considerable risk during spaceflight when emergency situations necessitate that crewmembers wake from sleep and make quick decisions. A recently completed BHP investigation assesses the effects of sleep inertia upon abrupt awakening, with and without hypnotics currently used in spaceflight; results from this investigation will help to inform strategies relative to sleep inertia effects on performance. Circadian desynchrony has been observed during spaceflight. Circadian desynchrony during spaceflight develops due to schedule constraints requiring non-24 operations or 'slam-shifts' and due to insufficient or mis-timed light exposure. In addition, circadian misalignment has been associated with reduced sleep duration and increased medication use. In ground-based studies, circadian desynchrony has been associated with significant performance impairment and increased risk of accidents when operations coincide with the circadian nadir. There is a great deal of information available on how to manage circadian misalignment, however, there are currently no easily collected biomarkers that can be used during spaceflight to determine circadian phase. Current research efforts are addressing this gap. Work overload has been documented during current spaceflight operations. NASA has established work hour guidelines that limit shift duration, however, schedule creep, where duty requirements necessitate working beyond scheduled work hours, has been reported. This observation warrants the documentation of actual work hours in order to improve planning and in order to ensure that astronauts receive adequate down time. In addition to concerns about work overload, ground based evidence suggests that work underload may be a concern during deep space missions, where torpor may develop and physically demanding workload will be exchanged for monitoring of autonomous systems. Given that increased automation is anticipated for exploration vehicles, fatigue effects in the context of such systems needs to be further understood. Performance metrics are needed to evaluate fitness-for-duty during spaceflight. Although ground-based evidence supports the notion that sleep loss, circadian desynchronization and work overload lead to performance impairment, inconsistency in the measures used to evaluate performance during spaceflight make it difficult to evaluate the magnitude of performance impairment during spaceflight. Work is underway to standardize measures of performance evaluation during spaceflight. Once established, such performance indicators need to be correlated with operational performance. Individual differences in sleep need and circadian preference, phase shifting ability and period have been documented in ground-based studies. Individual differences in response to sleep loss and circadian misalignment have also been documented and are presumed to be associated with genetic polymorphisms. No studies have systematically reported individual differences in sleep or circadian-related outcomes during spaceflight. More work is needed in this area in order to identify genetic or phenotypic biomarkers that predict resilience or vulnerability to sleep loss in order to personalize countermeasure strategies and mitigate performance impairment during spaceflight. Two laboratory and field investigations specific to this topic are currently ongoing; additional efforts, including an effort to mine existing biological data from spaceflight relative to sleep and circadian outcomes, are planned. Sex differences in sleep need and circadian period and phase have been reported in ground-based studies. The impact of these sex differences on performance is unclear. Sex differences in sleep need and circadian rhythms have not been systematically studied during spaceflight, presumably due to the small number of women that have flown in space. More research is needed in this area to evaluate whether any of the observed sex differences in physiology lead to altered performance in spaceflight and on the ground.
The role of psychoneuroendocrine factors on spaceflight-induced immunological alterations
NASA Technical Reports Server (NTRS)
Meehan, R.; Whitson, P.; Sams, C.
1993-01-01
This paper summarizes previous in-flight infections and novel conditions of spaceflight that may suppress immune function. Granulocytosis, monocytosis, and lymphopenia are routinely observed following short duration orbital flights. Subtle changes within the monocyte and T cell populations can also be noted by flow cytometric analysis. The similarity between the immunological changes observed after spaceflight and other diverse environmental stressors suggest that most of these alterations may be neuroendocrine-mediated. Available data support the hypothesis that spaceflight and other environmental stressors modulate normal immune regulation via stress hormones, other than exclusively glucocorticoids. It will be essential to simultaneously collect in-flight endocrine, immunologic, and infectious illness data to determine the clinical significance of these results. Additional research that delineates the neuroendocrine mechanisms of stress-induced changes in normal immune regulation will allow clinicians in the future to initiate prophylactic immunomodulator therapy to restore immune competence altered by the stress of long-duration spaceflight and therefore reduce morbidity from infectious illness, autoimmune disease, or malignancy.
NASA Technical Reports Server (NTRS)
Locke, James; Leveton, Lauren; Keeton, Kathryn; Whitmire, Alexandra
2009-01-01
Astronauts report significant difficulties with sleep during Space missions. Psychological, physiological, and habitability factors are all thought to play a role in spaceflight insomnia. Crewmembers gain experience with the spaceflight sleep environment as their missions progress, but this knowledge is not formally collected and communicated to subsequent crews. This lack of information transfer prevents crews from optimizing their capability to sleep during mission, which leads to fatigue and its potentially deleterious effects. The goal of this project is astronauts with recent spaceflight experience to gather their knowledge of and insights into sleep in Space. Structured interviews consisting of standardized closed and open-ended questionnaires are administered to astronauts who have flown on the Space Shuttle since the Columbia disaster. It is hoped that review and analysis of the pooled responses to the interview questions will lead to greater understanding of the sleep environment during short duration spaceflight, with attention placed on problem aspects and their potential solutions.
Spaceflight alters autonomic regulation of arterial pressure in humans
NASA Technical Reports Server (NTRS)
Fritsch-Yelle, Janice M.; Charles, John B.; Jones, Michele M.; Beightol, Larry A.; Eckberg, Dwain L.
1994-01-01
Spaceflight is associated with decreased orthostatic tolerance after landing. Short-duration spaceflight (4 - 5 days) impairs one neutral mechanism: the carotid baroreceptor-cardiac reflex. To understand the effects of longer-duration spaceflight on baroreflex function, we measured R-R interval power spectra, antecubital vein plasma catecholamine levels, carotid baroreceptor-cardiac reflex responses, responses to Valsalva maneuvers, and orthostatic tolerance in 16 astronauts before and after shuttle missions lasting 8 - 14 days. We found the following changes between preflight and landing day: (1) orthostatic tolerance decreased; (2) R-R interval spectral power in the 0.05- to 0.15-Hz band increased; (3) plasma norepinephrine and epinephrine levels increased; (4) the slope, range, and operational point of the carotid baroreceptor cardiac reflex response decreased; and (5) blood pressure and heart rate responses to Valsalva maneuvers were altered. Autonomic changes persisted for several days after landing. These results provide further evidence of functionally relevent reductions in parasympathetic and increases in sympathetic influences on arterial pressure control after spaceflight.
Sng, Natasha J.; Zupanska, Agata K.; Krishnamurthy, Aparna; Schultz, Eric R.; Ferl, Robert J.
2017-01-01
Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0, suggesting that the in-space light environment affects physiological adaptation, which implies that manipulating the local habitat can also substantially impact the metabolic cost of spaceflight adaptation. PMID:28662188
Paul, Anna-Lisa; Sng, Natasha J; Zupanska, Agata K; Krishnamurthy, Aparna; Schultz, Eric R; Ferl, Robert J
2017-01-01
Experimentation on the International Space Station has reached the stage where repeated and nuanced transcriptome studies are beginning to illuminate the structural and metabolic differences between plants grown in space compared to plants on the Earth. Genes that are important in establishing the spaceflight responses are being identified, their roles in spaceflight physiological adaptation are increasingly understood, and the fact that different genotypes adapt differently is recognized. However, the basic question of whether these spaceflight responses are actually required for survival has yet to be posed, and the fundamental notion that spaceflight responses may be non-adaptive has yet to be explored. Therefore the experiments presented here were designed to ask if portions of the plant spaceflight response can be genetically removed without causing loss of spaceflight survival and without causing increased stress responses. The CARA experiment compared the spaceflight transcriptome responses in the root tips of two Arabidopsis ecotypes, Col-0 and WS, as well as that of a PhyD mutant of Col-0. When grown with the ambient light of the ISS, phyD plants displayed a significantly reduced spaceflight transcriptome response compared to Col-0, suggesting that altering the activity of a single gene can actually improve spaceflight adaptation by reducing the transcriptome cost of physiological adaptation. The WS genotype showed an even simpler spaceflight transcriptome response in the ambient light of the ISS, more broadly indicating that the plant genotype can be manipulated to reduce the cost of spaceflight adaptation, as measured by transcriptional response. These differential genotypic responses suggest that genetic manipulation could further reduce, or perhaps eliminate the metabolic cost of spaceflight adaptation. When plants were germinated and then left in the dark on the ISS, the WS genotype actually mounted a larger transcriptome response than Col-0, suggesting that the in-space light environment affects physiological adaptation, which implies that manipulating the local habitat can also substantially impact the metabolic cost of spaceflight adaptation.
Immune System Dysregulation and Herpesvirus Reactivation Persist During Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Mehta, S.; Stowe, R. P.; Uchakin, P.; Quiriarte, H.; Pierson, D.; Sams, C. F.
2011-01-01
This poster presentation reviews a study that is designed to address immune system dysregulation and the risk to crewmembers in long duration exploration class missions. This study will address these objectives: (1) Determine the status of adaptive immunity physiological stress, viral immunity, latent herpesvirus reactivation in astronauts during 6 month missions to the International Space Station; (2) determine the clinical risk related to immune dysregulation for exploration class spaceflight; and (3) determine an appropriate monitoring strategy for spaceflight-associated immune dysfunction that could be used for the evaluation of countermeasures. The study anticipates 17 subjects, and for this presentation, (midpoint study data) 10 subjects are reviewed.
Spaceflight Activates Lipotoxic Pathways in Mouse Liver
Jonscher, Karen R.; Alfonso-Garcia, Alba; Suhalim, Jeffrey L.; Orlicky, David J.; Potma, Eric O.; Ferguson, Virginia L.; Bouxsein, Mary L.; Bateman, Ted A.; Stodieck, Louis S.; Levi, Moshe; Friedman, Jacob E.; Gridley, Daila S.; Pecaut, Michael J.
2016-01-01
Spaceflight affects numerous organ systems in the body, leading to metabolic dysfunction that may have long-term consequences. Microgravity-induced alterations in liver metabolism, particularly with respect to lipids, remain largely unexplored. Here we utilize a novel systems biology approach, combining metabolomics and transcriptomics with advanced Raman microscopy, to investigate altered hepatic lipid metabolism in mice following short duration spaceflight. Mice flown aboard Space Transportation System -135, the last Shuttle mission, lose weight but redistribute lipids, particularly to the liver. Intriguingly, spaceflight mice lose retinol from lipid droplets. Both mRNA and metabolite changes suggest the retinol loss is linked to activation of PPARα-mediated pathways and potentially to hepatic stellate cell activation, both of which may be coincident with increased bile acids and early signs of liver injury. Although the 13-day flight duration is too short for frank fibrosis to develop, the retinol loss plus changes in markers of extracellular matrix remodeling raise the concern that longer duration exposure to the space environment may result in progressive liver damage, increasing the risk for nonalcoholic fatty liver disease. PMID:27097220
Cognitive Assessment in Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Kane, Robert; Seaton, Kimberly; Sipes, Walter
2011-01-01
This slide presentation reviews the development and use of a tool for assessing spaceflight cognitive ability in astronauts. This tool. the Spaceflight Cognitive Assessment Tool for Windows (WinSCAT) has been used to provide ISS flight surgeons with an objective clinical tool to monitor the astronauts cognitive status during long-duration space flight and allow immediate feedback to the astronaut. Its use is medically required for all long-duration missions and it contains a battery of five cognitive assessment subtests that are scheduled monthly and compared against the individual preflight baseline.
The role of cytokines in immune changes induced by spaceflight
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Miller, E. S.
1993-01-01
It has become apparent that spaceflight alters many immune responses. Among the regulatory components of the immune response that have been shown to be affected by spaceflight is the cytokine network. Spaceflight, as well as model systems of spaceflight, have been shown to affect the production and action of various cytokines including interferons, interleukins, colony stimulating factors, and tumor necrosis factors. These changes have been shown not to involve a general shutdown of the cytokine network but, rather, to involve selective alterations of specific cytokine functions by spaceflight. The full breadth of changes in cytokines induced by spaceflight, as well as mechanisms, duration, adaptation, reversibility, and significance to resistance to infection and neoplastic diseases, remains to be established.
NASA Technical Reports Server (NTRS)
Charles, John B.; Platts, S. H.
2011-01-01
The advent of the Space Shuttle era elevated cardiovascular deconditioning from a research topic in gravitational physiology to a concern with operational consequences during critical space mission phases. NASA has identified three primary cardiovascular risks associate with short-duration (less than 18 d) spaceflight: orthostatic intolerance; decreased maximal oxygen uptake; and cardiac arrhythmias. Orthostatic hypotension (OH) was observed postflight in Mercury astronauts, studied in Gemini and Apollo astronauts, and tracked as it developed in-flight during Skylab missions. A putative hypotensive episode in the pilot during an early shuttle landing, and well documented postflight hypotension in a quarter of crewmembers, catalyzed NASA's research effort to understand its mechanisms and develop countermeasures. Shuttle investigations documented the onset of OH, tested mechanistic hypotheses, and demonstrated countermeasures both simple and complex. Similarly, decreased aerobic capacity in-flight threatened both extravehicular activity and post-landing emergency egress. In one study, peak oxygen uptake and peak power were significantly decreased following flights. Other studies tested hardware and protocols for aerobic conditioning that undergird both current practice on long-duration International Space Station (ISS) missions and plans for interplanetary expeditions. Finally, several studies suggest that cardiac arrhythmias are of less concern during short-duration spaceflight than during long-duration spaceflight. Duration of the QT interval was unchanged and the frequency of premature atrial and ventricular contractions was actually shown to decrease during extravehicular activity. These investigations on short-duration Shuttle flights have paved the way for research aboard long-duration ISS missions and beyond. Efforts are already underway to study the effects of exploration class missions to asteroids and Mars.
Cellular immunity and lymphokine production during spaceflights
NASA Technical Reports Server (NTRS)
Konstantinova, I. V.; Sonnenfeld, G.; Lesniak, A. T.; Shaffar, L.; Mandel, A.; Rykova, M. P.; Antropova, E. N.; Ferrua, B.
1991-01-01
Results are presented on changes in cellular immunity and in the production of lymphokine in spacecrews during spaceflights. Measurements were carried out on blood samples collected from 50 cosmonauts before and after spaceflights of different duration, on board Salyut-6, Salyut-7, or Mir. Additional data were obtained from rats flown on board the Cosmos-1667 and Cosmos-1887 biosatellites. The parameters measured included the PHA responsiveness of T lymphocytes, the activity of T-helper cells and of nonspecific T suppressors, the activity of the so-called natural killer lymphocytes, the production of gamma-interferon, and the cell-surface markers. Results showed that the frequency and the extent of changes in the immunologic resistance of subjects depended on the duration of the flight. However, even after the most prolonged (365 days) spaceflight, the changes observed were mostly of a functional character with subsequent rapid return to normal.
Synthetic Biology and Human Health: Potential Applications for Spaceflight
NASA Technical Reports Server (NTRS)
Karouia, Fathi; Carr, Christopher; Cai, Yizhi; Chen, Y.; Grenon, Marlene; Larios-Sanz, Maia; Jones, Jeffrey A.; Santos, Orlando
2011-01-01
Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. Spaceflight-related changes have been reported in the musculo-skeletal, cardiovascular, neurovestibular, endocrine, and immune systems. The spacecraft environment further subjects the traveler to noise and gravitational forces, as well as airborne chemical, microbiological contaminants, and radiation exposure. As humans prepare for longer duration missions effective countermeasures must be developed, verified, and implemented to ensure mission success. Over the past ten years, synthetic biology has opened new avenues for research and development in areas such as biological control, biomaterials, sustainable energy production, bioremediation, and biomedical therapies. The latter in particular is of great interest to the implementation of long-duration human spaceflight capabilities. This article discusses the effects of spaceflight on humans, and reviews current capabilities and potential needs associated with the health of the astronauts where synthetic biology could play an important role in the pursuit of space exploration.
Wu, Xiaorui; Li, Dong; Liu, Junlian; Diao, Lihong; Ling, Shukuan; Li, Yuheng; Gao, Jianyi; Fan, Quanchun; Sun, Weijia; Li, Qi; Zhao, Dingsheng; Zhong, Guohui; Cao, Dengchao; Liu, Min; Wang, Jiaping; Zhao, Shuang; Liu, Yu; Bai, Guie; Shi, Hongzhi; Xu, Zi; Wang, Jing; Xue, Chunmei; Jin, Xiaoyan; Yuan, Xinxin; Li, Hongxing; Liu, Caizhi; Sun, Huiyuan; Li, Jianwei; Li, Yongzhi; Li, Yingxian
2017-01-01
Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE), which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS), alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.
Wu, Xiaorui; Li, Dong; Liu, Junlian; Diao, Lihong; Ling, Shukuan; Li, Yuheng; Gao, Jianyi; Fan, Quanchun; Sun, Weijia; Li, Qi; Zhao, Dingsheng; Zhong, Guohui; Cao, Dengchao; Liu, Min; Wang, Jiaping; Zhao, Shuang; Liu, Yu; Bai, Guie; Shi, Hongzhi; Xu, Zi; Wang, Jing; Xue, Chunmei; Jin, Xiaoyan; Yuan, Xinxin; Li, Hongxing; Liu, Caizhi; Sun, Huiyuan; Li, Jianwei; Li, Yongzhi; Li, Yingxian
2017-01-01
Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE), which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS), alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions. PMID:28611667
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Kuang, A.; Brown, C. S.; Matthews, S. W.
1998-01-01
Leaf structure and function under spaceflight conditions have received little study despite their important implications for biological life support systems using plants. Previous reports described disruption of the membrane apparatus for photosynthesis and a general decrease in carbohydrate content in foliage. During a series of three short-duration experiments (Chromex-03, -04, -05) on the US space shuttle (STS-54, STS-51, STS-68), we examined Arabidopsis thaliana leaves. The plants were at the rosette stage at the time of loading onto the space shuttle, and received the same light, temperature, carbon dioxide and humidity regimes in the orbiter as in ground controls. The experiments differed according to the regime provided in the headspace around the plants: this was either sealed (on mission STS-54); sealed with high levels of carbon dioxide (on mission STS-51) or vented to the cabin air through a filtration system (on mission STS-68). Immediately post-flight, leaf materials were fixed for microscopy or frozen in liquid nitrogen for subsequent analyses of chlorophyll and foliar carbohydrates. At the ultrastructural level, no aberrations in membrane structure were observed in any of the experiments. When air-flow was provided, plastids developed large starch grains in both spaceflight and ground controls. In the experiments with sealed chambers, spaceflight plants differed from ground controls with regard to measured concentrations of carbohydrate and chlorophyll, but the addition of airflow eliminated these differences. The results point to the crucial importance of consideration of the foliage microenvironment when spaceflight effects on leaf structure and metabolism are studied.
NASA Astrophysics Data System (ADS)
De Morais Mendonca Teles, Antonio; Gonçalves, Cristiane
2016-07-01
Well, we propose a series of long-period medical simulations in scientific bases at the Arctic, at Antarctica and aboard the International Space Station (ISS), involving natural ophthalmic diseases such as radiation, solar and trauma retinopathy, keratoconus, cataract, glaucoma, etc., and ophthalmic alterations by accidental injuries. These natural diseases, without a previous diagnosis, specially those specific retinopathy, appear after 1 month to 1.5 year, in average. Such studies will be valuable for the human deep-space exploration because during long-duration spaceflight, such as staying at the ISS, a Moon base and a manned trip to planet Mars, requires several months within such environments, and during such periods ophthalmic diseases and accidents might eventually occur, which could seriously affect the 'round-the-clock' work schedule of the astronauts and the long-duration spaceflight manned program.
Immune Function Changes during a Spaceflight-Analog Undersea Mission
NASA Technical Reports Server (NTRS)
Crucian, Brian; Stowe, Raymond; Mehta, Satish; Quiniarte, Heather; Yetman, Deborah; Pierson, Duane; Sams, Clarence
2008-01-01
There is ample evidence to suggest that space flight leads to immune system dysregulation. This may be a result of microgravity, confinement, physiological stress, radiation, environment or other mission-associated factors. It is attractive to utilize ground-based spaceflight analogs as appropriate to investigate this phenomenon. For spaceflight-associated immune dysregulation (SAID), the authors believe the most appropriate analogs might be NEEMO (short duration, Shuttle analog), Antarctic winter-over (long-duration, ISS analog) and the Haughton Mars Project in the Canadian Arctic (intermediate-duration). Each of these analogs replicate isolation, mission-associated stress, disrupted circadian rhythms, and other aspects of flight thought to contribute to SAID. To validate NEEMO as a flight analog with respect to SAID, a pilot study was conducted during the NEEMO-12 and 13 missions during 2007. Assays were performed that assessed immune status, physiological stress and latent viral reactivation. Blood and saliva samples were collected at pre-, mid-, and post-mission timepoints.
Space immunology - Past, present and future
NASA Technical Reports Server (NTRS)
Coulter, Gary R.; Taylor, Gerald R.; Sonnenfeld, Gerald
1989-01-01
Research results on the causes and mechanisms of change in immune systems during spaceflight are briefly reviewed. The most reliable conclusion from the sparse existing data is that postflight crew members exhibit a transient neutrophilia, eosinopenia, monocytopenia, reduced numbers of circulating T cells, and an often pronounced decrease in the ability of their T cells to respond to mitogen stimulation. Clinically, no direct predictive relationship between any of these measurements and increased health risk or disease has been established. Future areas of research are suggested in light of NASA's emerging requirements to support long-duration missions.
Human spaceflight in the UK: the cost of non-participation
NASA Astrophysics Data System (ADS)
Fong, Kevin
2004-06-01
Human space exploration is not considered a strategic priority in the United Kingdom at present. However the UK would benefit from participating in human spaceflight, for both scientific and social reasons. From the point of view of medical science there are many parallels between the physiology of spaceflight and terrestrial disease processes, and studies of the response of astronauts to long-duration spaceflight can therefore help in the development of therapeutic strategies on Earth. On the social side, human spaceflight is an attractive vehicle for stimulating the interest of young people in science and engineering, something that must be of value for an aspiring ‘knowledge-based’ economy.
Nutritional Biochemistry of Spaceflight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2000-01-01
Adequate nutrition is critical for crew health and safety during spaceflight. To ensure adequate nutrition, the nutrient requirements need to be both accurate and available from the spaceflight food system. The existing nutritional requirements for extended-duration spaceflight have been defined largely by extrapolation from ground-based research. However, nutritional requirements are influenced by most of the physiological consequences of spaceflight, including loss of lean, adipose, and bone tissue; changes in blood composition; and increased risk of renal stone formation. This review focuses on key areas where information has been gained in recent years: dietary intake and energy metabolism, bone health, fluid and electrolyte homeostasis, and hematological changes. Areas in which specific nutrients have the potential to serve as countermeasures to the negative effects of spaceflight are also reviewed. Dietary Intake
NASA Astrophysics Data System (ADS)
Blaber, Elizabeth; Almeida, Eduardo; Grigoryan, Eleonora; Globus, Ruth
Scientific understanding of the effects of microgravity on mammalian physiology has been limited to short duration spaceflight experiments (10-15 days). As long duration and inter-planetary missions are being initiated, there is a great need to understand the long-term effects of spaceflight on various physiological processes, including stem cell-based tissue regeneration. Bion-M1, for the first time, enabled the possibility of studying the effects of 30-days of microgravity exposure on a mouse model with sufficient sample size to enable statistical analysis. In this experiment, we hypothesized that microgravity negatively impacts stem cell based tissue regeneration, such as bone remodeling and regeneration from hematopoietic and mesenchymal precursors, thereby resulting in tissue degeneration in mice exposed to spaceflight. To test this hypothesis we collected the pelvis and proximal femur from space-flown mice and asynchronous ground controls and analyzed bone and bone marrow using techniques including Microcomputed Tomography (MicroCT), and in-vitro differentiation and differentiating cell motility assays. To determine the effects of 30-days spaceflight on bone tissue mass, we used MicroCT to analyze the trabecular bone of the femoral head and the cortical bone of the femoral neck and mid-shaft. We found that spaceflight caused a 45% decrease in bone volume ratio, a 17% decrease in trabecular thickness, a 25% decrease in trabecular number, and a 17% increase in trabecular spacing of trabecular bone. Furthermore, structural model index and trabecular pattern factor were increased by 32% and 82% respectively indicating that 30-days spaceflight resulted not only in a large loss of trabecular bone but also in a decrease of bone strength indicators. Analysis of the femoral neck cortical bone showed an increase in marrow area and cortical porosity indicating an overall widening of the femoral neck. Interestingly, no significant alterations were found in the cortical bone of the femoral mid-shaft. To determine the regenerative potential of osteoblasts derived from mesenchymal stem cells flown in microgravity we conducted post-flight in-vitro osteoblastogenesis and mineralized nodule formation assays. We found an increase in post-flight differentiation and mineralization of microgravity-flown osteogenic cells, suggesting an accumulation of precursor cells that fail to fully differentiate in space, and then resume vigorous osteogenesis upon reloading at 1g. Overall, these preliminary results indicate that exposure to 30-days spaceflight causes significant trabecular bone loss in the femoral head, a decrease in trabecular bone strength indicators, and compensatory widening of the femoral neck. These results, coupled with diminished regenerative potential of bone marrow stem cells during mechanical unloading in microgravity, have potentially serious implications for bone health and fracture risk during long-duration spaceflight.
Countermeasures for Maintenance of Cardiovascular and Muscle Function in Space Flight
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session FA2, the discussion focuses on the following topics: Effects of Repeated Long Duration +2Gz Load on Man's Cardiovascular Function; Certain Approaches to the Development of On-Board Automated Training System; Cardiac, Arterial, and Venous Adaptation to Og during 6 Month MIR-Spaceflights with and without "Thigh Cuffs" (93-95); Space Cycle(TM) Induced Physiologic Responses; Muscular Deconditioning During Long-term Spaceflight Exercise Recommendations to Optimize Crew Performance; Structure And Function of Knee Extensors After Long-Duration Spaceflight in Man, Effects of Countermeasure Exercise Training; Force and power characteristics of an exercise ergometer designed for use in space; and The simulating of overgravity conditions for astronauts' motor apparatus at the conditions of the training for orbital flights.
NASA Technical Reports Server (NTRS)
Ellman, Rachel; Sibonga, Jean; Bouxsein, Mary
2010-01-01
This slide presentation reviews bone loss in males and compares it to female bone loss during long duration spaceflight. The study indicates that males suffer greater bone loss than females and have a greater risk of hip fracture. Two possible reason for the greater male bone loss are that the pre-menopausal females have the estrogen protection and the greater strength of men max out the exercise equipment that provide a limited resistance to 135 kg.
Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight.
Verheyden, B; Beckers, F; Couckuyt, K; Liu, J; Aubert, A E
2007-12-01
Astronauts commonly return from space with altered short-term cardiovascular dynamics and blunted baroreflex sensitivity. Although many studies have addressed this issue, post-flight effects on the dynamic circulatory control remain incompletely understood. It is not clear how long the cardiovascular system needs to recover from spaceflight as most post-flight investigations only extended between a few days and 2 weeks. In this study, we examined the effect of short-duration spaceflight (1-2 weeks) on respiratory-mediated cardiovascular rhythms in five cosmonauts. Two paced-breathing protocols at 6 and 12 breaths min(-1) were performed in the standing and supine positions before spaceflight, and after 1 and 25 days upon return. Dynamic baroreflex function was evaluated by transfer function analysis between systolic pressure and the RR intervals. Post-flight orthostatic blood pressure control was preserved in all cosmonauts. In the standing position after spaceflight there was an increase in heart rate (HR) of approx. 20 beats min(-1) or more. Averaged for all five cosmonauts, respiratory sinus dysrhythmia and transfer gain reduced to 40% the day after landing, and had returned to pre-flight levels after 25 days. Low-frequency gain decreased from 6.6 (3.4) [mean (SD)] pre-flight to 3.9 (1.6) post-flight and returned to 5.7 (1.3) ms mmHg(-1) after 25 days upon return to Earth. Unlike alterations in the modulation of HR, blood pressure dynamics were not significantly different between pre- and post-flight sessions. Our results indicate that short-duration spaceflight reduces respiratory modulation of HR and decreases cardiac baroreflex gain without affecting post-flight arterial blood pressure dynamics. Altered respiratory modulation of human autonomic rhythms does not persist until 25 days upon return to Earth.
Carotid and Femoral Arterial Wall Distensibility During Long-Duration Spaceflight.
Arbeille, Philippe; Provost, Romain; Zuj, Kathryn
2017-10-01
This study aimed to assess changes in common carotid (CA) and superficial femoral (FA) arterial stiffness during long-duration spaceflight. Ultrasound imaging was used to investigate the CA and FA of 10 astronauts preflight (PRE), on flight day 15 (FD15), after 4-5 mo (FD4-5m), and 4 d after return to Earth (R+4). Arterial wall properties were assessed through the calculation of strain, stiffness (β), pressure-strain elastic modulus (Ep), and distensibility (DI). Stiffness indices were assessed for potential correlations to measurements of intima-media thickness (IMT). Significant effects of spaceflight were found for all CA stiffness indices, indicating an increase in arterial stiffness. CA strain was reduced by 34 ± 31% on FD15 and 50 ± 16% on FD4-5m and remained reduced by 42 ± 14% on R+4 with respect to PRE values. On FD4-5m, with respect to PRE values, DI was reduced by 46 ± 25% and β and Ep were increased by 124 ± 95% and 118 ± 92%, respectively. FA arterial stiffness indices appeared to show similar changes; however, a main effect of spaceflight was only found for strain. Correlation analysis showed weak but significant relationships between measurements of CA IMT and arterial stiffness indices, but no relationships were found for FA measurements. The observed change in CA and FA stiffness indices suggest that spaceflight results in an increase in arterial stiffness. That these changes were not strongly related to measurements of IMT suggests the possibility of different mechanisms contributing to the observed results.Arbeille P, Provost R, Zuj K. Carotid and femoral arterial wall distensibility during long-duration spaceflight. Aerosp Med Hum Perform. 2017; 88(10):924-930.
Urolithiasis and Genitourinary Systems Issues for Spaceflight
NASA Astrophysics Data System (ADS)
Jones, Jeffrey A.; Sargsyan, Ashot; Pietryzk, Robert; Sams, C.; Stepaniak, Phillip; Whitson, P.
2008-09-01
Genitourinary medical events have shown to be an issue for both short duration and long duration spaceflight, and are anticipated to also be a potential issue for future exploration missions as well. This is based on actual historical pre-, in- and post-flight medical events, as well as assessment of what future flight challenges lay ahead. For this study, retrospective record review, as well as prospective studies of ultrasound and contingency management procedure development, and oral urinary stone prophylaxis were conducted. Results showed that the incidence of prior urinary calculi in- and post-flight was a risk driver for development of on-orbit countermeasures, as well as diagnostic and therapeutic methods for a possible in-flight calculus contingency. Oral potassium citrate and bisphosphonate preparations show promise for prophylaxis in spaceflight risk reduction. We conclude that a properly developed approach of selection, monitoring, and preventive medicine with effective countermeasures, along with early imaging diagnosis and minimally-invasive contingency intervention, should prevent issues such as urinary calculi from having a significant mission impact for exploration-class spaceflight.
Intraocular Lens Use in an Astronaut During Long Duration Spaceflight.
Mader, Thomas H; Gibson, C Robert; Schmid, Josef F; Lipsky, William; Sargsyan, Ashot E; Garcia, Kathleen; Williams, Jeffrey N
2018-01-01
The purpose of this paper is to report the first use of an intraocular lens (IOL) in an astronaut during long duration spaceflight (LDSF). An astronaut developed a unilateral cataract and underwent phacoemulsification with insertion of an acrylic IOL. Approximately 15 mo later he flew on a Soyuz spacecraft to the International Space Station (ISS), where he successfully completed a 6-mo mission. Ocular examination, including ultrasound (US), was performed before, during, and after his mission and he was questioned regarding visual changes during each portion of his flight. We documented no change in IOL position during his space mission. This astronaut reported excellent and stable vision during liftoff, entry into microgravity (MG), 6 mo on the ISS, descent, and landing. Our results suggest that modern IOLs are stable, effective, and well tolerated during LDSF.Mader TH, Gibson CR, Schmid JF, Lipsky W, Sargsyan AE, Garcia K, Williams JN. Intraocular lens use in an astronaut during long duration spaceflight. Aerosp Med Hum Perform. 2018; 89(1):63-65.
Pilot Field Test: Results of Tandem Walk Performance Following Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Cerisano, J. M.; Reschke, M. F.; Kofman, I. S.; Fisher, E. A.; Gadd, N. E.; Phillips, T. R.; Lee, S. M. C.; Laurie, S. S.; Stenger, M. B.; Bloomberg, J. J.;
2016-01-01
Coordinated locomotion has proven to be challenging for many astronauts following long duration spaceflight. As NASA's vision for spaceflight points toward interplanetary travel and missions to distant objects, astronauts will not have assistance once they land. Thus, it is vital to develop a knowledge base from which operational guidelines can be written that define when astronauts can be expected to safely perform certain tasks. Data obtained during the Field Test experiment will add important insight to this knowledge base. Specifically, we aim to develop a recovery timeline of functional sensorimotor performance during the first 24 hours and several days after landing. A forerunner of the full Field Test study, the Pilot Field Test (PFT) comprised a subset of the tasks and measurements to be included in the ultimate set.
Future human bone research in space
NASA Technical Reports Server (NTRS)
LeBlanc, A.; Shackelford, L.; Schneider, V.
1998-01-01
Skylab crewmembers demonstrated negative calcium (Ca) balance reaching about -300 mg/day by flight day 84. Limited bone density (BMD) measurements documented that bone was not lost equally from all parts of the skeleton. Subsequent BMD studies during long duration Russian flights documented the regional extent of bone loss. These studies demonstrated mean losses in the spine, femur neck, trochanter, and pelvis of about 1%-1.6% with large differences between individuals as well as between bone sites in a given individual. Limited available data indicate postflight bone recovery occurred in some individuals, but may require several years for complete restoration. Long duration bedrest studies showed a similar pattern of bone loss and calcium balance (-180 mg/day) as spaceflight. During long duration bedrest, resorption markers were elevated, formation markers were unchanged, 1,25 vitamin D (VitD) and calcium absorption were decreased, and serum ionized Ca was increased. Although this information is a good beginning, additional spaceflight research is needed to assess architectural and subregional bone changes, elucidate mechanisms, and develop efficient as well as effective countermeasures. Space research poses a number of unique problems not encountered in ground-based laboratory research. Therefore, researchers contemplating human spaceflight research need to consider a number of unique problems related to spaceflight in their experimental design.
2014 Summer Series - Josh Alwood - To the Bone: Spaceflight and the Skeletal System
2014-08-05
During spaceflight, astronauts experience weightlessness and are exposed to novel types of radiation. These environmental conditions may contribute to bone loss and reduction of structural integrity of the skeleton, which have negative implications for long-duration missions. The aim of this talk is to provide an overview of skeletal changes observed both in astronauts and in ground-based models of spaceflight, focusing on the fundamental biology and the prevention of deleterious skeletal changes.
Space: The Final Frontier of Bone Density
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.
2011-01-01
It is a medical requirement at NASA to evaluate the skeletal integrity of "long-duration" astronauts by measuring bone mineral density [BMD] with DXA technology. A long-duration mission is a spaceflight that is greater than 30 days but is typically the continuous 120-180 day missions aboard the International Space Station [ISS]. Not only does NASA use the BMD index to monitor fracture risk in this astronaut population, but these measures are also used to describe the effects of spaceflight, to certify skeletal health readiness for flight, to monitor the recovery of lost bone mass after return to earth, and to evaluate the efficacy of countermeasures to bone loss. However, despite the fact that DXA-based BMD is a widely-applied surrogate for bone strength that is grounded in an abundance of population-based fracture data, its applicability to the long-duration astronaut is limited. The cohort of long-duration astronauts is not the typical group for evaluating osteoporosis or determining age-related fracture risk. The cohort is young (< 55 years), predominantly male and exposed to novel risk factors for bone loss besides the weightlessness of space. NASA is concerned about early onset osteoporosis in the astronaut exposed to long-duration spaceflight, especially since any detectable symptoms are likely to manifest after return to earth and perhaps years after space travel. This risk raises the question: is NASA doing enough now to mitigate a fracture event that may manifest later? This presentation will discuss the limitations and constraints to understanding skeletal changes due to prolonged spaceflight and the recommendations, by clinical experts in osteoporosis and BMD, to transition research technologies for clinical decision-making by NASA.
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Westby, Christian M.; Stenger, Michael B.; Ploutz-Snyder, Robert J.; Smith, Scott M.; Platts, Steven H.
2011-01-01
Future human space travel will primarily consist of long-duration missions aboard the International Space Station (ISS) or exploration class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage primarily from radiation, but also from psychological stress, reduced physical activity, diminished nutritional status, and, in the case of extravehicular activity, hyperoxic exposure. There is evidence that increased oxidative damage and inflammation can accelerate the development of atherosclerosis. PURPOSE The purpose of this proposal is to identify biomarkers of oxidative and inflammatory stress and to correlate them to indices of atherosclerosis risk before, during, and after long-duration spaceflight. METHODS To meet the objectives of the study, we will study astronauts before, during, and up to 5 years after long-duration missions aboard ISS. Biomarkers of oxidative and inflammatory stress, some of which we have previously shown to be elevated with spaceflight, will be measured before, during, and after spaceflight. Arterial structure will be monitored using ultrasound to measure carotid intima-medial thickness before, during, and after weightlessness. Carotid intima-medial thickness has been shown to be a better indicator than Framingham Risk scores for prediction of atherosclerosis. Arterial function will be monitored using brachial flow-mediated dilation before flight and after landing. Brachial flow-mediated dilation is a good index of endothelium-dependent vasodilation, which is a sensitive predictor of atherosclerotic risk. This is the first study to propose assessing atherosclerotic risk using biochemical, structural, and functional measures before, during, and immediately after spaceflight and structural functional measures for up to 5 years after landing. EXPECTED RESULTS We hypothesize that these biomarkers of oxidative and inflammatory stress will be increased with spaceflight and will correlate with increased carotid intima-medial thickness in- and postflight and with decreased flow-mediated dilation after the mission. Furthermore, we hypothesize that measures of oxidative stress will return to baseline after flight, but that biomarkers of inflammatory stress and vascular indices of atherosclerosis risk will remain elevated.
Building a Shared Definitional Model of Long Duration Human Spaceflight
NASA Technical Reports Server (NTRS)
Arias, Diana; Orr, Martin; Whitmire, Alexandra; Leveton, Lauren; Sandoval, Luis
2012-01-01
Objective: To establish the need for a shared definitional model of long duration human spaceflight, that would provide a framework and vision to facilitate communication, research and practice In 1956, on the eve of human space travel, Hubertus Strughold first proposed a "simple classification of the present and future stages of manned flight" that identified key factors, risks and developmental stages for the evolutionary journey ahead. As we look to new destinations, we need a current shared working definitional model of long duration human space flight to help guide our path. Here we describe our preliminary findings and outline potential approaches for the future development of a definition and broader classification system
NASA Astrophysics Data System (ADS)
Trappe, Todd
2012-07-01
On-orbit and ground-based microgravity simulation studies have provided a wealth of information regarding the efficacy of exercise countermeasures for protecting skeletal muscle and cardiovascular function during long-duration spaceflights. While it appears that exercise will be the central component to maintaining skeletal muscle and cardiovascular health of astronauts, the current exercise prescription is not completely effective and is time consuming. This lecture will focus on recent exercise physiology studies examining high intensity, low volume exercise in relation to muscle specific and cardiovascular health. These studies provide the basis of the next generation exercise prescription currently being implemented during long-duration space missions on the International Space Station.
NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation?
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Chouker, A.; Feuerecker, M.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.
2011-01-01
This poster paper reviews the use of 14 day undersea missions as a possible analog for short duration spaceflight for the study of immune system dysregulation. Sixteen subjects from the the NASA Extreme Enviro nment Mission Operations (NEEMO) 12, 13 and 14 missions were studied for immune system dysregulation. The assays that are presented in this poster are the Virleukocyte subsets, the T Cell functions, and the intracellular/secreted cytokine profiles. Other assays were performed, but are not included in this presntation.
Koppelmans, Vincent; Erdeniz, Burak; De Dios, Yiri E; Wood, Scott J; Reuter-Lorenz, Patricia A; Kofman, Igor; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D
2013-12-18
Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system functions such as cognition is yet largely unknown, but of importance in consideration of the health and performance of crewmembers both in- and post-flight. We are therefore conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor and cognitive performance changes. Here we present the protocol of our study. This study includes three groups (astronauts, bed rest subjects, ground-based control subjects) for which each the design is single group with repeated measures. The effects of spaceflight on the brain will be investigated in astronauts who will be assessed at two time points pre-, at three time points during-, and at four time points following a spaceflight mission of six months. To parse out the effect of microgravity from the overall effects of spaceflight, we investigate the effects of seventy days head-down tilted bed rest. Bed rest subjects will be assessed at two time points before-, two time points during-, and three time points post-bed rest. A third group of ground based controls will be measured at four time points to assess reliability of our measures over time. For all participants and at all time points, except in flight, measures of neurocognitive performance, fine motor control, gait, balance, structural MRI (T1, DTI), task fMRI, and functional connectivity MRI will be obtained. In flight, astronauts will complete some of the tasks that they complete pre- and post flight, including tasks measuring spatial working memory, sensorimotor adaptation, and fine motor performance. Potential changes over time and associations between cognition, motor-behavior, and brain structure and function will be analyzed. This study explores how spaceflight induced brain changes impact functional performance. This understanding could aid in the design of targeted countermeasures to mitigate the negative effects of long-duration spaceflight.
Reduction in Dynamic Visual Acuity Reveals Gaze Control Changes Following Spaceflight
NASA Technical Reports Server (NTRS)
Peters, Brian T.; Brady, Rachel A.; Miller, Chris; Lawrence, Emily L.; Mulavara Ajitkumar P.; Bloomberg, Jacob J.
2010-01-01
INTRODUCTION: Exposure to microgravity causes adaptive changes in eye-head coordination that can lead to altered gaze control. This could affect postflight visual acuity during head and body motion. The goal of this study was to characterize changes in dynamic visual acuity after long-duration spaceflight. METHODS: Dynamic Visual Acuity (DVA) data from 14 astro/cosmonauts were collected after long-duration (6 months) spaceflight. The difference in acuity between seated and walking conditions provided a metric of change in the subjects ability to maintain gaze fixation during self-motion. In each condition, a psychophysical threshold detection algorithm was used to display Landolt ring optotypes at a size that was near each subject s acuity threshold. Verbal responses regarding the orientation of the gap were recorded as the optotypes appeared sequentially on a computer display 4 meters away. During the walking trials, subjects walked at 6.4 km/h on a motorized treadmill. RESULTS: A decrement in mean postflight DVA was found, with mean values returning to baseline within 1 week. The population mean showed a consistent improvement in DVA performance, but it was accompanied by high variability. A closer examination of the individual subject s recovery curves revealed that many did not follow a pattern of continuous improvement with each passing day. When adjusted on the basis of previous long-duration flight experience, the population mean shows a "bounce" in the re-adaptation curve. CONCLUSION: Gaze control during self-motion is altered following long-duration spaceflight and changes in postflight DVA performance indicate that vestibular re-adaptation may be more complex than a gradual return to normal.
Exercise as a countermeasure for physiological adaptation to prolonged spaceflight
NASA Technical Reports Server (NTRS)
Convertino, V. A.
1996-01-01
Exercise represents the primary countermeasure used during spaceflight to maintain or restore maximal aerobic capacity (VO2max), musculoskeletal structure, and orthostatic function. However, no single exercise or combination of prescriptions has proven entirely effective in restoring cardiovascular and musculoskeletal functions to preflight levels following prolonged spaceflight. As human spaceflight exposures increase in duration, assessment and development of various effective exercise-based protective procedures become paramount. This must involve improvement in specific countermeasure prescription as well as development of additional approaches that will allow space travelers greater flexibility and medical safety during long flights. Effective exercise prescription will be based on identification of basic physiological stimuli that maintain normal function in terrestrial gravity and understanding of how specific combinations of exercise characteristics e.g., duration, frequency, intensity, mode) can mimic these stimuli and affect the overall process of adaptation to microgravity. This can be accomplished only with greater emphasis of research on ground-based experiments. Future attention must be directed to improving exercise compliance while minimizing both crew time and the impact of the exercise on life-support resources.
Zhang, Li-Fan; Hargens, Alan R
2018-01-01
Visual impairment intracranial pressure (VIIP) syndrome is considered an unexplained major risk for future long-duration spaceflight. NASA recently redefined this syndrome as Spaceflight-Associated Neuro-ocular Syndrome (SANS). Evidence thus reviewed supports that chronic, mildly elevated intracranial pressure (ICP) in space (as opposed to more variable ICP with posture and activity on Earth) is largely accounted for by loss of hydrostatic pressures and altered hemodynamics in the intracranial circulation and the cerebrospinal fluid system. In space, an elevated pressure gradient across the lamina cribrosa, caused by a chronic but mildly elevated ICP, likely elicits adaptations of multiple structures and fluid systems in the eye which manifest themselves as the VIIP syndrome. A chronic mismatch between ICP and intraocular pressure (IOP) in space may acclimate the optic nerve head, lamina cribrosa, and optic nerve subarachnoid space to a condition that is maladaptive to Earth, all contributing to the pathogenesis of space VIIP syndrome. Relevant findings help to evaluate whether artificial gravity is an appropriate countermeasure to prevent this seemingly adverse effect of long-duration spaceflight. Copyright © 2018 the American Physiological Society.
Focal Gray Matter Plasticity as a Function of Long Duration Head-down Tilt Bed Rest
NASA Technical Reports Server (NTRS)
Koppelmans, Vincent; Erdeniz, Burak; DeDios, Yiri; Wood, Scott; Reuter-Lorenz, Patricia; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael
2014-01-01
Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes may be related to structural and functional brain changes is yet unknown. However, increased intracranial pressure that by itself has been related to microgravity-induced bodily fluid shifts: [1] has been associated with white matter microstructural damage, [2] Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head-down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system, [3] Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure, and [4] Here we present results of the first eight subjects.
NASA Technical Reports Server (NTRS)
Morey-Holton, Emily; Globus, Ruth K.; Kaplansky, Alexander; Durnova, Galina
2004-01-01
The hindlimb unloading (HU) rodent model is used extensively to study the response of many physiological systems to certain aspects of spaceflight, as well as to disuse and recovery from disuse for Earth benefits. This chapter describes the evolution of HU, and is divided into three sections. The first section examines the characteristics of 1063 articles using or reviewing the HU model, published between 1976 and April 1, 2004. The characteristics include number of publications, journals, countries, major physiological systems, method modifications, species, gender, genetic strains and ages of rodents, experiment duration, and countermeasures. The second section provides a comparison of results between space flown and Hu animals from the 14-day Cosmos 2044 mission. The final section describes modifications to HU required by different experimental paradigms and a method to protect the tail harness for long duration studies. HU in rodents has enabled improved understanding of the responses of the musculoskeletal, cardiovascular, immune, renal, neural, metabolic, and reproductive systems to unloading and/or to reloading on Earth with implications for both long-duration human spaceflight and disuse on Earth.
NASA Astrophysics Data System (ADS)
Spielmann, G.; Laughlin, M. S.; Kunz, H.; Crucian, B. E.; Quiriarte, H. D.; Mehta, S. K.; Pierson, D. L.; Simpson, R. J.
2018-05-01
Long duration spaceflights are associated with profound dysregulation of the immune system and latent viral reactivations. However, little is known on the impact of long duration spaceflight on innate immunity which raises concerns on crewmembers' ability to fight infections during a mission. The aim of this study was to determine the effects of spaceflight on plasma antimicrobial proteins (AMPs) and how these changes impact latent herpesvirus reactivations. Plasma, saliva and urine samples were obtained from 23 crewmembers before, during and after a 6-month mission on the International Space Station (ISS). Plasma AMP concentrations were determined by ELISA, and saliva Epstein-Barr virus (EBV) and varicella zoster virus (VZV) and urine cytomegalovirus (CMV) DNA levels were quantified by Real-Time PCR. There was a non-significant increase in plasma HNP1-3 and LL-37 during the early and middle stages of the missions, which was significantly associated with changes in viral DNA during and after spaceflight. Plasma HNP1-3 and Lysozyme increased at the late mission stages in astronauts who had exhibited EBV and VZV reactivations during the early flight stages. Following return to Earth and during recovery, HNP1-3 and lysozyme concentrations were associated with EBV and VZV viral DNA levels, reducing the magnitude of viral reactivation. Reductions in plasma LL-37 upon return were associated with greater CMV reactivation. This study shows that biomarkers of innate immunity appeared to be partially restored after 6-months in space and suggests that following adaptation to the space environment, plasma HNP1-3 and lysozyme facilitate the control of EBV and VZV reactivation rate and magnitude in space and upon return on earth. However, the landing-associated decline in plasma LL-37 may enhance the rate of CMV reactivation in astronauts following spaceflight, potentially compromising crewmember health after landing.
NASA Technical Reports Server (NTRS)
2010-01-01
It seems very likely that the actions of administered drugs on crewmembers during spaceflight are different than they are on Earth, but even after more than 40 years of spaceflight experience, the answers to most questions about medication use during missions remain unanswered. Use of medications with insufficient knowledge about their actual activities may result in inadequate treatment and may even reduce performance and well-being in particular circumstances. There is evidence that this has already occurred during and immediately after spaceflights. The spaceflight pharmaceutical activity knowledge base must be improved to enable flight surgeons and crewmembers to make better decisions about using pharmaceuticals inflight. The spaceflight environment induces changes in human physiology, and these changes have been the subject of much study over the past few decades. These studies are confounded by the small number of potential subjects, as well by the inability to separate the different stressors of spaceflight (radiation exposure from microgravity, for example). In every physiological system, the details of spaceflight-induced physiological changes are not well understood. Despite this fact, crewmembers are treated with pharmaceuticals to reduce or prevent medical problems, with insufficient information as to drug function on their altered physiological systems. There are two major concerns about pharmaceutical use in the unusual environment of spaceflight. The actions of pharmaceuticals on physiology altered by a spaceflight environment are currently assumed to be the same as the actions in terrestrial use. This has yet to be established. The wide range of physiological systems altered by spaceflight and the degree of change experienced in some of them make it very likely that alterations in pharmaceutical action will be seen. As the duration of missions lengthens to include more distant exploration, it becomes more likely that problems will be encountered. Secondly, the integrity of stored pharmaceuticals must be established to ensure that adequate amounts of active compounds are available in each dose and that degradation to toxic compounds is minimized. This risk is also dependent on mission duration, since longer missions will require that drugs be stored much longer than their usual terrestrial shelf-lives.
Calcium and Bone Metabolism During Spaceflight
NASA Technical Reports Server (NTRS)
Smith, Scott M.
2002-01-01
The ability to understand and counteract weightlessness-induced bone loss will be critical for crew health and safety during and after space station or exploration missions lasting months or years, respectively. Until its deorbit in 2001 , the Mir Space Station provided a valuable platform for long-duration space missions and life sciences research. Long-duration flights are critical for studying bone loss, as the 2- to 3-week Space Shuttle flights are not long enough to detect changes in bone mass. This review will describe human spaceflight data, focusing on biochemical surrogates of bone and calcium metabolism. This subject has been reviewed previously. 1-
Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight
NASA Technical Reports Server (NTRS)
Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.
2011-01-01
Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.
NASA Technical Reports Server (NTRS)
Massa, G. D.; Wheeler, R. M.; Hummerick, M. E.; Morrow, R. C.; Mitchell, C. A.; Whitmire, A. M.; Ploutz-Snyder, R. J.; Douglas, G. L.
2016-01-01
The capability to grow nutritious, palatable food for crew consumption during spaceflight has the potential to provide health-promoting, bioavailable nutrients, enhance the dietary experience, and reduce launch mass as we move toward longer-duration missions. However, studies of edible produce during spaceflight have been limited, leaving a significant knowledge gap in the methods required to grow safe, acceptable, nutritious crops for consumption in space. Researchers from Kennedy Space Center, Johnson Space Center, Purdue University and ORBITEC have teamed up to explore the potential for plant growth and food production on the International Space Station (ISS) and future exploration missions. KSC, Purdue, and ORBITEC bring a history of plant and plant-microbial interaction research for ISS and for future bioregenerative life support systems. JSC brings expertise in Advanced Food Technology (AFT), Behavioral Health and Performance (BHP), and statistics. The Veggie vegetable-production system on the ISS offers an opportunity to develop a pick-and-eat fresh vegetable component to the ISS food system as a first step to bioregenerative supplemental food production. We propose growing salad plants in the Veggie unit during spaceflight, focusing on the impact of light quality and fertilizer formulation on crop morphology, edible biomass yield, microbial food safety, organoleptic acceptability, nutritional value, and behavioral health benefits of the fresh produce. The first phase of the project will involve flight tests using leafy greens, with a small Chinese cabbage variety, Tokyo bekana, previously down selected through a series of research tests as a suitable candidate. The second phase will focus on dwarf tomato. Down selection of candidate varieties have been performed, and the dwarf cultivar Red Robin has been selected as the test crop. Four light treatments and three fertilizer treatments will be tested for each crop on the ground, to down select to two light treatments and one fertilizer treatment to test on ISS. Our work will help define light colors, levels, and horticultural best practices to achieve high yields of safe, nutritious leafy greens and tomatoes to supplement a space diet of prepackaged food. Our final deliverable will be the development of growth protocols for these crops in a spaceflight vegetable production system. With this work, and potentially with other pending joint projects, we will continue the synergistic research to help close gaps in the human research roadmap, and enable humans to venture to Mars and beyond. This research was co-funded by the Human Research Program and Space Biology (MTL1075) in the ILSRA 2015 NRA call.
Modification of reproductive development in Arabidopsis thaliana under spaceflight conditions
NASA Technical Reports Server (NTRS)
Kuang, A.; Musgrave, M. E.; Matthews, S. W.
1996-01-01
Reproductive development in Arabidopsis thaliana (L.) Heynh. cv. Columbia plants was investigated under spaceflight conditions on shuttle mission STS-51. Plants launched just prior to initiation of the reproductive phase developed flowers and siliques during the 10-d flight. Approximately 500 flowers were produced in total by the 12 plants in both the ground control and spaceflight material, and there was no significant difference in the number of flowers in each size class. The flower buds and siliques of the spaceflight plants were not morphologically different from the ground controls. Pollen viability tests immediately post-flight using fluorescein diacetate indicated that about 35% of the pollen was viable in the spaceflight material. Light-microscopy observations on this material showed that the female gametophytes also had developed normally to maturity. However, siliques from the spaceflight plants contained empty, shrunken ovules, and no evidence of pollen transfer to stigmatic papillae was found by light microscopy immediately post-flight or by scanning electron microscopy on fixed material. Short stamen length and indehiscent anthers were observed in the spaceflight material, and a film-like substance inside the anther that connected to the tapetum appeared to restrict the release of pollen from the anthers. These observations indicate that given appropriate growing conditions, early reproductive development in A. thaliana can occur normally under spaceflight conditions. On STS-51, reproductive development aborted due to obstacles in pollination or fertilization.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.
2006-01-01
Introduction: The loss of bone mineral in astronauts during spaceflight has been investigated throughout the more than 40 years of bone research in space. Consequently, it is a medical requirement at NASA that changes in bone mass be monitored in crew members by measurements of bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA). This report is the first to evaluate medical data to address the recovery of bone mineral that is lost during spaceflight. Methods: DXA scans are performed before and after flight in astronauts who serve on long-duration missions (4-6 months) to ensure that medical standards for flight certification are met, to evaluate the effects of spaceflight and to monitor the restoration to preflight BMD status after return to Earth. Through cooperative agreements with the Russian Space Agency, the Bone and Mineral Lab at NASA Johnson Space Center (Houston, TX), also had access to BMD data from cosmonauts who had flown on long-duration missions yielding data from a total of 45 individual crew members. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing); plotted data were fitted to an exponential mathematical model that determined i) BMD change at day 0 after landing and ii) the number of days after which 50% of the lost bone was recovered ("Recovery Half-Life"). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. Results: In sum, averaged losses of bone mineral after spaceflight ranged between 2-9% for sites in the axial and appendicular skeleton. The fitted postflight BMD values predicted a 50% recovery of bone loss for all sites within 9 months.
Multicultural factors for international spaceflight.
Kring, J P
2001-06-01
Spaceflight operations, including the International Space Station (ISS) and a mission to Mars, depend on international cooperation. Accordingly, safety, performance, and mission success rely on how well crews and operational personnel with different cultural backgrounds operate together. This paper outlines 10 areas related to spaceflight that are influenced by the national culture and backgrounds of personnel: (a) Communication, (b) Cognition and Decision Making, (c) Technology Interfacing, (d) Interpersonal Interactions, (e) Work, Management, and Leadership Style, (f) Personal Hygiene and Clothing, (g) Food Preparation and Meals, (h) Religion and Holidays, (i) Recreation, and (j) Habitat Aesthetics. Research findings and recommendations are presented, as well as a multicultural training approach to reduce potential challenges for long-duration spaceflight.
Sun, Gwo-Shing; Tou, Janet C; Yu, Diane; Girten, Beverly E; Cohen, Jacob
2014-02-01
Rodents have been the most frequently flown animal model used to study physiological responses to the space environment. In support of future of space exploration, the National Aeronautics and Space Administration (NASA) envisions an animal research program focused on rodents. Therefore, the development of a rodent diet that is suitable for the spaceflight environment including long duration spaceflight is a high priority. Recognizing the importance of nutrition in affecting spaceflight physiological responses and ensuring reliable biomedical and biological science return, NASA developed the nutrient-upgraded rodent food bar (NuRFB) as a standard diet for rodent spaceflight. Depending on future animal habitat hardware and planned spaceflight experiments, modification of the NuRFB or development of a new diet formulation may be needed, particularly for long term spaceflights. Research in this area consists primarily of internal technical reports that are not readily accessible. Therefore, the aims of this contribution are to provide a brief history of the development of rodent spaceflight diets, to review the present diet used in rodent spaceflight studies, and to discuss some of the challenges and potential solutions for diets to be used in future long-term rodent spaceflight studies. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz, B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.
2014-01-01
We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. With the bedrest study, we will be able to determine the neural and neurocognitive effects of extended duration unloading, reduced sensory inputs, and increased cephalic fluid distribution. This will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe in the flight study. In this presentation I will discuss preliminary results from six participants who have undergone the bed rest protocol. These individuals show decrements in balance and functional mobility, and alterations in brain structure and function, in association with extended bed rest.
The effect of spaceflight and microgravity on the human brain.
Van Ombergen, Angelique; Demertzi, Athena; Tomilovskaya, Elena; Jeurissen, Ben; Sijbers, Jan; Kozlovskaya, Inessa B; Parizel, Paul M; Van de Heyning, Paul H; Sunaert, Stefan; Laureys, Steven; Wuyts, Floris L
2017-10-01
Microgravity, confinement, isolation, and immobilization are just some of the features astronauts have to cope with during space missions. Consequently, long-duration space travel can have detrimental effects on human physiology. Although research has focused on the cardiovascular and musculoskeletal system in particular, the exact impact of spaceflight on the human central nervous system remains to be determined. Previous studies have reported psychological problems, cephalic fluid shifts, neurovestibular problems, and cognitive alterations, but there is paucity in the knowledge of the underlying neural substrates. Previous space analogue studies and preliminary spaceflight studies have shown an involvement of the cerebellum, cortical sensorimotor, and somatosensory areas and the vestibular pathways. Extending this knowledge is crucial, especially in view of long-duration interplanetary missions (e.g., Mars missions) and space tourism. In addition, the acquired insight could be relevant for vestibular patients, patients with neurodegenerative disorders, as well as the elderly population, coping with multisensory deficit syndromes, immobilization, and inactivity.
Certain aspects of human metabolism during spaceflights of varying duration
NASA Technical Reports Server (NTRS)
Grigoryev, A. I.; Popova, I. A.; Ushakov, A. S.
1988-01-01
A comparative analysis is made of hormone reactions after short and long term spaceflights. Endocrinological indicators from venous blood and daily urine samples of cosmonauts completing flights lasting from 7 to 237 days were examined. No pathological indicators were found in the metabolic shifts in the erythrocytes and disruption of the functional state of their membranes.
Invited review: what do we know about the effects of spaceflight on bone?
NASA Technical Reports Server (NTRS)
Turner, R. T.
2000-01-01
This review of the peer-reviewed literature focuses on the effects of spaceflight on bone. Studies performed in humans and laboratory animals have revealed abnormalities in bone and mineral metabolism that suggest that long-duration spaceflight will have detrimental effects on the skeleton. However, because of large gaps in our knowledge, it is not presently possible to estimate the magnitude of the health risk, individual variations in risk, effective countermeasures, or mechanism(s) of action. Specific recommendations are made for future research to ascertain risk and develop appropriate countermeasures.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Evans, H. J.; Sung, H. G.; Spector, E. R.; Lang, T. F.; Oganov, V. S.; Bakulin, A. V.; Shackelford, L. C.; LeBlanc, A. D.
2007-01-01
The loss of bone mineral in NASA astronauts during spaceflight has been investigated throughout the more than 40 years of space travel. Consequently, it is a medical requirement at NASA Johnson Space Center (JSC) that changes in bone mass be monitored in crew members by measuring bone mineral density (BMD) with dual-energy x-ray absorptiometry (DXA) before and after flight on astronauts who serve on long-duration missions (4-6 months). We evaluated this repository of medical data to track whether there is recovery of bone mineral that was lost during spaceflight. Our analysis was supplemented by BMD data from cosmonauts ( by convention, a space traveler formally employed by the Russia Aviation and Space Agency or by the previous Soviet Union) who had also flown on long-duration missions. Data from a total of 45 individual crew members -- a small number of whom flew on more than one mission -- were used in this analysis. Changes in BMD (between 56 different sets of pre- and postflight measurements) were plotted as a function of time (days after landing). Plotted BMD changes were fitted to an exponential mathematical function that estimated: i) BMD change on landing day (day 0) and ii) the number of days after landing when 50% of the lost bone would be recovered ("50% recovery time") in the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. In sum, averaged losses of bone mineral after long-duration spaceflight ranged between 2-9% across all sites with our recovery model predicting a 50% restoration of bone loss for all sites to be within 9 months.
2013-01-01
Background Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether spaceflight also affects other central nervous system functions such as cognition is yet largely unknown, but of importance in consideration of the health and performance of crewmembers both in- and post-flight. We are therefore conducting a controlled prospective longitudinal study to investigate the effects of spaceflight on the extent, longevity and neural bases of sensorimotor and cognitive performance changes. Here we present the protocol of our study. Methods/design This study includes three groups (astronauts, bed rest subjects, ground-based control subjects) for which each the design is single group with repeated measures. The effects of spaceflight on the brain will be investigated in astronauts who will be assessed at two time points pre-, at three time points during-, and at four time points following a spaceflight mission of six months. To parse out the effect of microgravity from the overall effects of spaceflight, we investigate the effects of seventy days head-down tilted bed rest. Bed rest subjects will be assessed at two time points before-, two time points during-, and three time points post-bed rest. A third group of ground based controls will be measured at four time points to assess reliability of our measures over time. For all participants and at all time points, except in flight, measures of neurocognitive performance, fine motor control, gait, balance, structural MRI (T1, DTI), task fMRI, and functional connectivity MRI will be obtained. In flight, astronauts will complete some of the tasks that they complete pre- and post flight, including tasks measuring spatial working memory, sensorimotor adaptation, and fine motor performance. Potential changes over time and associations between cognition, motor-behavior, and brain structure and function will be analyzed. Discussion This study explores how spaceflight induced brain changes impact functional performance. This understanding could aid in the design of targeted countermeasures to mitigate the negative effects of long-duration spaceflight. PMID:24350728
NASA Technical Reports Server (NTRS)
Beven, G. E.
2017-01-01
NASA astronauts on active status require medical certification for aircraft flying duties as well as readiness for long duration spaceflight training, launch to the International Space Station (ISS), and mission continuation during spaceflight operations. Behavioral fitness and adaptability is an inherent component of medical certification at NASA and requires a unique approach that spans the professional life-span of all active astronauts. TOPIC: This presentation will address the Behavioral Health and Performance (BHP) operations program at the Johnson Space Center. Components of BHP operations include astronaut selection, as well as annual, elective, preflight, inflight, and postflight BHP assessments. Each aspect of the BHP operations program will be discussed, with a focus on behavioral fitness determination and resultant outcomes. Specifically, astronaut selection generates a rating of suitability for long duration spaceflight as well as psychiatric qualification; annual, preflight and postflight BHP assessments provoke a decision regarding the presence of any aeromedical concerns; and inflight assessment requires a conclusion pertaining to mission impact. The combination of these elements provide for a unique, comprehensive approach to flight and spaceflight adaptability. APPLICATIONS: Attendees will understand the differing facets of NASA's comprehensive BHP operations program that occurs over the course of an astronaut's career and be able to compare and contrast this to the Adaptability Rating for Military Aviation (ARMA) and proposed models presented by others on this panel.
Spaceflight-induced cardiovascular changes and recovery during NASA's Functional Task Test
NASA Astrophysics Data System (ADS)
Arzeno, Natalia M.; Stenger, Michael B.; Bloomberg, Jacob J.; Platts, Steven H.
2013-11-01
Microgravity-induced physiologic changes could impair a crewmember's performance upon return to a gravity environment. The Functional Task Test aims to correlate these physiologic alterations with changes in performance during mission-critical tasks. In this study, we evaluated spaceflight-induced cardiovascular changes during 11 functional tasks in 7 Shuttle astronauts before spaceflight, on landing day, and 1, 6, and 30 days after landing. Mean heart rate was examined during each task and autonomic activity was approximated by heart rate variability during the Recovery from Fall/Stand Test, a 2-min prone rest followed by a 3-min stand. Heart rate was increased on landing day during all of the tasks, and remained elevated 6 days after landing during 6 of the 11 tasks. Parasympathetic modulation was diminished and sympathovagal balance was increased on landing day. Additionally, during the stand test 6 days after landing, parasympathetic modulation remained suppressed and heart rate remained elevated compared to preflight levels. Heart rate and autonomic activity were not different from preflight levels 30 days after landing. We detected changes in heart rate and autonomic activity during a 3-min stand and a variety of functional tasks, where cardiovascular deconditioning was still evident 6 days after returning from short-duration spaceflight. The delayed recovery times for heart rate and parasympathetic modulation indicate the necessity of assessing functional performance after long-duration spaceflight to ensure crew health and safety.
Immune System Dysregulation, Viral Reactivation and Stress During Short-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Pierson, Duane; Sams, Clarence; Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather
2010-01-01
The objective of this NASA Short-Duration Bioastronautics Investigation (SDBI) was to assess spaceflight-associated immune dysregulation. Many previous studies have investigated this phenomenon post-flight, and found altered distribution and function of the peripheral leukocyte populations. Alterations in cytokine production profiles have also been reported. Unfortunately, post-flight data may be altered by the stress associated with high-G re-entry and readaptation to unit gravity following deconditioning. Therefore, the current study collected blood and saliva samples from crewmembers immediately before landing, and returned those samples to Earth for terrestrial analysis. Assays include peripheral comprehensive immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. A total of 18 short duration crewmembers completed the study and the final data will be presented.
NASA Technical Reports Server (NTRS)
Savage, P. D.; Hayward, E. F.; Dalton, Bonnie P. (Technical Monitor)
1997-01-01
A habitat for housing up to 32 black body beetles (Trigonoscelis gigas) has been developed at Ames Research Center for conducting studies to evaluate the effects of long duration spaceflight upon insect circadian timing systems. This habitat, identified as the Beetle Kit Assembly, provides an automatically controlled lighting system and activity and temperature recording devices, as well as individual beetle enclosures. Each of the 32 enclosures allows for ad lib movement of the beetle, as well as providing a simple food source and allowing ventilation of the beetle volume via an externally operated hand pump. The Beetle Kit Assemblies will be launched on STS-84 (Shuttle-Mir Mission-06) in May, 1997 and will be transferred to the Priroda module of the Russian Mir space station. he beetles will remain on Mir for approximately 125 days, and will be returned to earth on STS-86 in September, 1997.
Medication Use by U.S. Crewmembers on the International Space Station
NASA Technical Reports Server (NTRS)
Wotring, V. E.
2015-01-01
This study examined medication use during long-duration. Medication records from 24 crewmembers on 20 missions (greater than 30 days duration) were examined for trends in usage rates, efficacy, indication, as well as adverse event qualities, frequencies and severities. No controls were possible in this observational, retrospective analysis of available data; comparisons are made to similar studies of individuals on shortduration spaceflights and submarine deployments. The most frequently used medications were for sleep problems, pain, congestion or allergy. Medication use during spaceflight missions was similar to what is seen in adult ambulatory medicine; one notable exception is that usage of sleep aids was about 10 times higher in spaceflight. There were also two apparent treatment failures in cases of skin rash, raising questions about the efficacy or suitability of the treatments used. Many spaceflight-related medication uses were linked to extravehicular-activities and operationally-driven schedule changes. The data suggest that sleep and skin rash merit additional study prior to longer space exploration missions. It also seems likely that alterations in schedule-shifting or extravehicular activity suits would reduce the need for many medication uses, preserving resources as well as improving crew quality of life.
Midodrine as a Countermeasure for Post-spaceflight Orthostatic Hypotension
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Ziegler, Michael G.; Waters, Wendy W.; Meck, Janice V.
2007-01-01
Up to 30 % of astronauts exhibit post-spaceflight orthostatic hypotension due to inadequate norepinephrine release during upright posture following short duration spaceflight. We hypothesize that the (alpha)1-adrenergic agonist midodrine will be an effective countermeasure. This study is being conducted in 2 phases. The first phase is complete and consisted testing six short duration crew members. All of these subjects participated in preflight and postflight tilt testing on a control flight as well as on the test flights, where midodrine was administered after landing, 1 hour before testing. Hemodynamic variables were compared between the 2 flights. Midodrine improved stroke volume, cardiac output, systolic pressure and heart rate, without increasing vascular resistance. None of these subjects experienced orthostatic hypotension on landing day. Phase II is similar to phase I, except that midodrine is ingested in flight (near TIG) and the tilt test is performed immediately after landing on the CTV. One crewmember has completed phase II testing. This crewmember had no evidence of orthostatic hypotension or presyncope, four additional crewmembers have volunteered for this study. To date, midodrine has been shown to be a safe and effective countermeasure to post-spaceflight orthostatic hypotension.
Alterations in hematologic indices during long-duration spaceflight.
Kunz, Hawley; Quiriarte, Heather; Simpson, Richard J; Ploutz-Snyder, Robert; McMonigal, Kathleen; Sams, Clarence; Crucian, Brian
2017-01-01
Although a state of anemia is perceived to be associated with spaceflight, to date a peripheral blood hematologic assessment of red blood cell (RBC) indices has not been performed during long-duration space missions. This investigation collected whole blood samples from astronauts participating in up to 6-months orbital spaceflight, and returned those samples (ambient storage) to Earth for analysis. As samples were always collected near undock of a returning vehicle, the delay from collection to analysis never exceeded 48 h. As a subset of a larger immunologic investigation, a complete blood count was performed. A parallel stability study of the effect of a 48 h delay on these parameters assisted interpretation of the in-flight data. We report that the RBC and hemoglobin were significantly elevated during flight, both parameters deemed stable through the delay of sample return. Although the stability data showed hematocrit to be mildly elevated at +48 h, there was an in-flight increase in hematocrit that was ~3-fold higher in magnitude than the anticipated increase due to the delay in processing. While susceptible to the possible influence of dehydration or plasma volume alterations, these results suggest astronauts do not develop persistent anemia during spaceflight.
NASA's human system risk management approach and its applicability to commercial spaceflight.
Law, Jennifer; Mathers, Charles H; Fondy, Susan R E; Vanderploeg, James M; Kerstman, Eric L
2013-01-01
As planning continues for commercial spaceflight, attention is turned to NASA to assess whether its human system risk management approach can be applied to mitigate the risks associated with commercial suborbital and orbital flights. NASA uses a variety of methods to assess the risks to the human system based on their likelihood and consequences. In this article, we review these methods and categorize the risks in the system as "definite," "possible," or "least" concern for commercial spaceflight. As with career astronauts, these risks will be primarily mitigated by screening and environmental control. Despite its focus on long-duration exploration missions, NASA's human system risk management approach can serve as a preliminary knowledge base to help medical planners prepare for commercial spaceflights.
Artificial gravity for long duration spaceflight
NASA Technical Reports Server (NTRS)
Cohen, Malcolm M.
1989-01-01
This paper reviews the fundamental physical properties of gravitational and centrifugal forces, describes the physiological changes that result from long-term exposure to the nearly gravity-free environment of space, and explores the nature of these changes. The paper then cites currently employed and advanced techniques that can be used to prevent some of these changes. Following this review, the paper examines the potential use of artificial gravity as the ultimate technique to maintain terrestrial levels of physiological functioning in space, and indicates some of the critical studies that must be conducted and some of the trade-offs that must be made before artificial gravity can intelligently be used for long duration spaceflight.
Douglas, G L; Voorhies, A A
2017-10-13
Spaceflight impacts multiple aspects of human physiology, which will require non-invasive countermeasures as mission length and distance from Earth increases and the capability for external medical intervention decreases. Studies on Earth have shown that probiotics have the potential to improve some of the conditions that have manifested during spaceflight, such as gastrointestinal distress, dermatitis, and respiratory infections. The constraints and risks of spaceflight make it imperative that probiotics are carefully selected based on their strain-specific benefits, doses, delivery mechanisms, and relevance to likely crew conditions prior to evaluation in astronauts. This review focuses on probiotics that have been incorporated into healthy human gastrointestinal microbiomes and associated clinically with improvements in inflammatory state or alleviation of symptoms of crew-relevant illness. These studies provide an evidence base for probiotic selection with the greatest potential to support crew health and well-being in spaceflight.
The Effects of Long-Duration Spaceflight on Training Retention and Transfer
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Healy, Alice; Dempsey, Donna L.; McGuire, Kerry M.; Landon, Lauren B.
2018-01-01
Training our crew members for long duration, exploration-class missions will have to maximize long-term retention and transfer of the trained skills. The expected duration of the missions, our inability to predict all the possible tasks the crew will be called upon to perform, and the low training-to-mission time ratio require that the training be maximally effective such that the skills acquired during training will be retained and will be transferrable across a wide range of specific tasks that are different from the particular tasks used during training. However, to be able to design training that can achieve these ambitious goals, we must first understand the ways in which long-duration spaceflight affects training retention and transfer. Current theories of training retention and transfer are largely based on experimental studies conducted at university laboratories using undergraduate students as participants. Furthermore, all such studies have been conducted on Earth. We do not know how well the results of these studies predict the performance of crew members. More specifically, we do not know how well the results of these studies predict the performance of crew members in space and especially during long-duration missions. To address this gap in our knowledge, the current on-going study seeks to test the null hypothesis that performance of university undergraduate students on Earth on training retention and transfer tests do in fact predict accurately the performance of crew members during long-duration spaceflights. To test this hypothesis, the study employs a single 16-month long experimental protocol with 3 different participant groups: undergraduate university students, crew members on the ground, and crew members in space. Results from this study will be presented upon its completion. This poster presents results of study trials of the two tasks used in this study: a data entry task and a mapping task. By researching established training principles, by examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
The Effects of Long-Duration Spaceflight on Training Retention and Transfer
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Healy, Alice; Dempsey, Donna L.; Mcguire, Kerry; Landon, Lauren
2017-01-01
Training our crew members for long duration, exploration-class missions will have to maximize long-term retention and transfer of the trained skills. The expected duration of the missions, our inability to predict all the possible tasks the crew will be called upon to perform, and the low training-to-mission time ratio require that the training be maximally effective such that the skills acquired during training will be retained and will be transferrable across a wide range of specific tasks that are different from the particular tasks used during training. However, to be able to design training that can achieve these ambitious goals, we must first understand the ways in which long-duration spaceflight affects training retention and transfer. Current theories of training retention and transfer are largely based on experimental studies conducted at university laboratories using undergraduate students as participants. Furthermore, all such studies have been conducted on Earth. We do not know how well the results of these studies predict the performance of crew members. More specifically, we do not know how well the results of these studies predict the performance of crew members in space and especially during long-duration missions. To address this gap in our knowledge, the current on-going study seeks to test the null hypothesis that performance of university undergraduate students on Earth on training retention and transfer tests do in fact predict accurately the performance of crew members during long-duration spaceflights. To test this hypothesis, the study employs a single 16-month long experimental protocol with 3 different participant groups: undergraduate university students, crew members on the ground, and crew members in space. Results from this study will be presented upon its completion. This poster presents results of study trials of the two tasks used in this study: a data entry task and a mapping task. By researching established training principles, by examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
Walk on Floor Eyes Closed Test: A Unique Test of Spaceflight Induced Ataxia
NASA Technical Reports Server (NTRS)
Reschke, M. F.; Fisher, E. A.; Kofman, I. S.; Cerisano, J. M.; Harm, D. L.; Bloomberg, J. J.
2011-01-01
Measurement and quantification of posture and locomotion following spaceflight is an evolving process. Based on the data obtained from the current investigation we believe that the walk on the floor line test with the eyes closed (WOFEC) provides a unique procedure for quantifying postflight ataxia. As a part of an ongoing investigation designed to look at functional changes in astronauts returning from spaceflight seven astronauts (5 short duration with flights of 12-16 days; 2 long duration crewmembers with flights of 6 months) were tested twice before flight, on landing day (short duration only), and 1, 6, and 30 days after flight. The WOFEC consisted of walking for 10 steps (repeated twice) with the feet heel to toe in tandem, arms folded across the chest and the eyes closed. The performance metric (scored by three examiners from video) was the percentage of correct steps completed over the three trials. A step was not counted as correct if the crewmember side-stepped, opened their eyes, or paused for more than three seconds between steps. The data reveled a significant decrease in percentage of correct steps on landing day (short duration crew) and on the first day following landing (long duration) with partial recovery the following day, and full recovery beginning on day sixth after flight. Both short and long duration fliers appeared to be unaware of foot position relative to their bodies or the floor. Postflight, deviation from a straight path was common, and seemed to be determined by the angle of foot placement relative to their body. While deviation from a straight line could be either left or right, primary deviations were observed to occur to the right. Furthermore, the test for two crewmembers elicited motion sickness symptoms. These data clearly demonstrate the sensorimotor challenges facing crewmembers after returning from spaceflight. The WOFEC test has value providing the investigator or crew surgeon with a simple method to quantify vestibular ataxia, as well as providing instant feedback of postural ataxia without the use of complex test equipment.
NASA Astrophysics Data System (ADS)
Holden, Todd; Gadura, N.; Dehipawala, S.; Cheung, E.; Tuffour, M.; Schneider, P.; Tremberger, G., Jr.; Lieberman, D.; Cheung, T.
2011-10-01
Technologically important extremophiles including oil eating microbes, uranium and rocket fuel perchlorate reduction microbes, electron producing microbes and electrode electrons feeding microbes were compared in terms of their 16S rRNA sequences, a standard targeted sequence in comparative phylogeny studies. Microbes that were reported to have survived a prolonged dormant duration were also studied. Examples included the recently discovered microbe that survives after 34,000 years in a salty environment while feeding off organic compounds from other trapped dead microbes. Shannon entropy of the 16S rRNA nucleotide composition and fractal dimension of the nucleotide sequence in terms of its atomic number fluctuation analyses suggest a selected range for these extremophiles as compared to other microbes; consistent with the experience of relatively mild evolutionary pressure. However, most of the microbes that have been reported to survive in prolonged dormant duration carry sequences with fractal dimension between 1.995 and 2.005 (N = 10 out of 13). Similar results are observed for halophiles, red-shifted chlorophyll and radiation resistant microbes. The results suggest that prolonged dormant duration, in analogous to high salty or radiation environment, would select high fractal 16S rRNA sequences. Path analysis in structural equation modeling supports a causal relation between entropy and fractal dimension for the studied 16S rRNA sequences (N = 7). Candidate choices for high fractal 16S rRNA microbes could offer protection for prolonged spaceflights. BioBrick gene network manipulation could include extremophile 16S rRNA sequences in synthetic biology and shed more light on exobiology and future colonization in shielded spaceflights. Whether the high fractal 16S rRNA sequences contain an asteroidlike extra-terrestrial source could be speculative but interesting.
Proceedings of the NASA Microbiology Workshop
NASA Technical Reports Server (NTRS)
Roman, M. C.; Jan, D. L.
2012-01-01
Long-term spaceflight is characterized by extraordinary challenges to maintain the life-supporting instrumentation free from microbial contamination and the crew healthy. The methodology currently employed for microbial monitoring in space stations or short spaceflights within the orbit of Earth have been instrumental in safeguarding the success of the missions, but suffers certain shortcomings that are critical for long spaceflights. This workshop addressed current practices and methodologies for microbial monitoring in space systems, and identified and discussed promising alternative methodologies and cutting-edge technologies for pursuit in the microbial monitoring that hold promise for supporting future NASA long-duration space missions.
Short-duration spaceflight impairs human carotid baroreceptor-cardiac reflex responses
NASA Astrophysics Data System (ADS)
Fritsch, Janice M.; Charles, John B.; Bennett, Barbara S.; Jones, Michele M.; Eckberg, Dwain L.
1992-08-01
The effect of a spaceflight on the vagally mediated baroreceptor-cardiac reflex responses of humans were investigated by measuring the responses (provoked by neck pressure changes) in supine position and the heart rate and blood pressure in the supine and standing positions in 16 astronauts before and after 4- to 5-day long Space Shuttle missions. The results showed that exposures to spaceflight resulted in reduced baseline levels of the vagal-cardiac outflow and the vagally mediated responses to changes of the arterial baroreceptor input and that these changes contribute to postflight reductions of astronauts' ability to maintain standing arterial pressures.
The natural cytotoxicity in cosmonauts on board space stations
NASA Astrophysics Data System (ADS)
Meshkov, D.; Rykova, M.
The nature of the changes of resistance to infection seems to be very important. Our studies indicate that different functions of natural killers could be depressed after the spaceflight. The decrease of the percentage of the lymphocytes that can bind target cells lead to the lowering of the "active" NK level and this can be resulted in the depression of total NK activity and lowering of resistance to viral and tumor antigens. The investigation of natural killer cells in cosmonauts before and after short and long-term spaceflights also revealed the important role of spaceflight duration, stress and individual immune reactivity.
Basner, Mathias; Dinges, David F; Mollicone, Daniel; Ecker, Adrian; Jones, Christopher W; Hyder, Eric C; Di Antonio, Adrian; Savelev, Igor; Kan, Kevin; Goel, Namni; Morukov, Boris V; Sutton, Jeffrey P
2013-02-12
The success of interplanetary human spaceflight will depend on many factors, including the behavioral activity levels, sleep, and circadian timing of crews exposed to prolonged microgravity and confinement. To address the effects of the latter, we used a high-fidelity ground simulation of a Mars mission to objectively track sleep-wake dynamics in a multinational crew of six during 520 d of confined isolation. Measurements included continuous recordings of wrist actigraphy and light exposure (4.396 million min) and weekly computer-based neurobehavioral assessments (n = 888) to identify changes in the crew's activity levels, sleep quantity and quality, sleep-wake periodicity, vigilance performance, and workload throughout the record-long 17 mo of mission confinement. Actigraphy revealed that crew sedentariness increased across the mission as evident in decreased waking movement (i.e., hypokinesis) and increased sleep and rest times. Light exposure decreased during the mission. The majority of crewmembers also experienced one or more disturbances of sleep quality, vigilance deficits, or altered sleep-wake periodicity and timing, suggesting inadequate circadian entrainment. The results point to the need to identify markers of differential vulnerability to hypokinesis and sleep-wake changes during the prolonged isolation of exploration spaceflight and the need to ensure maintenance of circadian entrainment, sleep quantity and quality, and optimal activity levels during exploration missions. Therefore, successful adaptation to such missions will require crew to transit in spacecraft and live in surface habitats that instantiate aspects of Earth's geophysical signals (appropriately timed light exposure, food intake, exercise) required for temporal organization and maintenance of human behavior.
International Space Station medical standards and certification for space flight participants.
Bogomolov, Valery V; Castrucci, Filippo; Comtois, Jean-Marc; Damann, Volker; Davis, Jeffrey R; Duncan, J Michael; Johnston, Smith L; Gray, Gary W; Grigoriev, Anatoly I; Koike, Yu; Kuklinski, Paul; Matveyev, Vladimir P; Morgun, Valery V; Pochuev, Vladimir I; Sargsyan, Ashot E; Shimada, Kazuhito; Straube, Ulrich; Tachibana, Shoichi; Voronkov, Yuri V; Williams, Richard S
2007-12-01
The medical community of the International Space Station (ISS) has developed joint medical standards and evaluation requirements for Space Flight Participants ("space tourists") which are used by the ISS medical certification board to determine medical eligibility of individuals other than professional astronauts (cosmonauts) for short-duration space flight to the ISS. These individuals are generally fare-paying passengers without operational responsibilities. By means of this publication, the medical standards and evaluation requirements for the ISS Space Flight Participants are offered to the aerospace medicine and commercial spaceflight communities for reference purposes. It is emphasized that the criteria applied to the ISS spaceflight participant candidates are substantially less stringent than those for professional astronauts and/or crewmembers of visiting and long-duration missions to the ISS. These medical standards are released by the government space agencies to facilitate the development of robust medical screening and medical risk assessment approaches in the context of the evolving commercial human spaceflight industry.
Policy issues in space analogues
NASA Astrophysics Data System (ADS)
Auger, Robin N.; Facktor, Debra D.
Space mission planning is increasingly focusing on destinations beyond Earth orbit. Advancements in technology will inevitably be required to enable long-duration human spaceflight missions, and breakthroughs in the policy arena will also be needed to achieve success in such missions. By exploring how policy issues have been addressed in analogous extreme environments, policymakers can develop a framework for addressing these issues as they apply to long-term human spaceflight. Policy issues that need to be addressed include: crew selection, training, organization, and activities, medical testing, illness, injury, and death; communication; legal accountability and liability; mission safety and risk management; and environmental contamination. This paper outlines the approach of a study underway by The George Washington University and ANSER to examine how these policy issues have been addressed in several analogues and how the experiences of these analogues can help formulate policies for long-duration human spaceflight missions. Analogues being studied include Antarctic bases, submarine voyages, undersea stations, Biosphere 2, and the U.S. Skylab and Russian Mir space stations.
NASA Technical Reports Server (NTRS)
Rojdev, Kristina; Graves, Russell; Golden, John; Atwell, William; O'Rouke, Mary Jane; Hill, Charles; Alred, John
2011-01-01
NASA's exploration goals include extending human presence beyond low earth orbit (LEO). As a result, habitation for crew is a critical requirement for meeting this goal. However, habitats are very large structures that contain a multitude of subsystems to sustain human life over long-durations in space, and one of the key challenges has been keeping weight to a minimum in order to reduce costs. Thus, light-weight and multifunctional structural materials are of great interest for habitation. NASA has started studying polymeric composite materials as potential lightweight and multifunctional structural materials for use in long-duration spaceflight. However, little is known about the survivability of these materials when exposed to the space environment outside of LEO for long durations. Thus, a study has been undertaken to investigate the durability of composite materials when exposed to long-duration radiation. Furthermore, as an addition to the primary study, a secondary preliminary investigation has been started on the micrometeoroid and orbital debris (MMOD) susceptibility of these materials after radiation exposure. The combined effects of radiation and MMOD impacts are the focus of this paper.
NASA Technical Reports Server (NTRS)
Martin, D. S.; Meck, J. V.
2004-01-01
The overall prevalence of orthostatic hypotension after short duration (6-18 d) spaceflight is 20% with existing countermeasures. However, it is not known if the outcomes of stand tests for orthostatic tolerance are consistent within individuals on subsequent flights, or if first time fliers are more (or less) likely to experience orthostatic hypotension and presyncope than are veteran astronauts. Fifty astronauts were studied retrospectively. Stand test data, which had been collected before and after spaceflight, were compared from at least two flights for each astronaut. For twenty-five of these astronauts, their first flight in this database was also their first time to fly into space. For the remaining 25, their first flight in this database was their second, third or fourth flight, as data were available. No subject became presyncopal during preflight testing. Of the 50 subjects, 45 (90%) had the same outcome on their first and second fligh ts of this study. Of 14 subjects on whom we had data from a third mission, 12 had the same stand test outcome on all three flights (86% same outcome across three flights). There was no correlation between flight duration and orthostatic tolerance (r = 0.39). These data support the idea that astronauts are predisposed to orthostatic tolerance/intolerance after spaceflight and that this predisposition is not altered by subsequent flights. Flight durations within this data set did not alter the likelihood of orthostatic intolerance and rookie fliers were no more likely to experience orthostatic intolerance than were veteran astronauts.
Garcia, Kathleen M; Harrison, Michael F; Sargsyan, Ashot E; Ebert, Douglas; Dulchavsky, Scott A
2018-04-01
Back pain is one of the most common conditions of astronauts during spaceflight and is hypothesized to be attributed to pathologic anatomic changes. Ultrasound (US) represents the only available imaging modality on the International Space Station, but a formal US protocol for imaging the structures of the spinal column does not exist. This investigation developed a method of acquiring diagnostic-quality images of the anterior lumbar and cervical regions of the spine during long-duration spaceflight. Comprehensive spinal US examinations were conducted on 7 long-duration spaceflight astronauts before flight, in flight, and after flight and compared to preflight and postflight magnetic resonance imaging data. In-flight scans were conducted after just-in-time training assisted by remote expert tele-US guidance. Novice users were able to obtain diagnostic-quality spinal images with a 92.5% success rate. Thirty-three anomalous or pathologic findings were identified during the preflight US analysis, and at least 14 new findings or progressions were identified during the postflight US analysis. Common findings included disk desiccation, osteophytes, and qualitative changes in the intervertebral disk height and angle. Ultrasound has proven efficacy as a portable and versatile diagnostic imaging modality under austere conditions. We demonstrated a potential role for US to evaluate spinal integrity and alterations in the extreme environment of space on the International Space Station. Further investigations should be performed to corroborate this imaging technique and to create a larger database related to in-flight spinal conditions during long-duration spaceflight. © 2017 by the American Institute of Ultrasound in Medicine.
A Psychiatric Formulary for Long-Duration Spaceflight.
Friedman, Eric; Bui, Brian
2017-11-01
Behavioral health is essential for the safety, well-being, and performance of crewmembers in both human spaceflight and Antarctic exploration. Over the past five decades, psychiatric issues have been documented in orbital spaceflight. In Antarctica, literature suggests up to 5% of wintering crewmembers could meet criteria for a psychiatric illness, including mood disorders, stressor-related disorders, sleep-wake disorders, and substance-related disorders. Experience from these settings indicates that psychiatric disorders on deep space missions must be anticipated. An important part of planning for the psychological health of crewmembers is the onboard provision of psychotropic drugs. These medications have been available on orbital missions. A greater variety and supply of these drugs exist at Antarctic facilities. The size and diversity of a deep space psychiatric formulary will be greater than that provided on orbital missions. Drugs to be provisioned include anxiolytics, antidepressants, mood stabilizers, antipsychotics, and hypnotics. Each drug category should include different medications, providing diverse pharmacokinetic, pharmacodynamic, and side effect profiles. The formulary itself should be rigorously controlled, given the abuse potential of some medications. In-flight treatment strategies could include psychological monitoring of well-being and early intervention for significant symptoms. Psychiatric emergencies would be treated aggressively with behavioral and pharmacological interventions to de-escalate potentially hazardous situations. On long-duration space missions, a robust psychiatric formulary could provide crewmembers autonomy and flexibility in treating a range of behavioral issues from depression to acute psychosis. This will contribute to the safety, health, and performance of crewmembers, and to mission success.Friedman E, Bui B. A psychiatric formulary for long-duration spaceflight. Aerosp Med Hum Perform. 2017; 88(11):1024-1033.
NASA Astrophysics Data System (ADS)
Roman, M. C.; Ott, C. M.
2015-03-01
NASA has been looking at microbial monitoring technologies that could be used in long duration missions. This presentation will provide an overview of the microbial monitoring technologies that are been considered for use inside spacecrafts and planetary habitats.
NASA Astrophysics Data System (ADS)
Marshall-Bowman, Karina; Barratt, Michael R.; Gibson, C. Robert
2013-06-01
For many years, there have been anecdotal reports of vision changes by astronauts following short and long-duration spaceflight. Much of this was attributed to hyperopic shifts related to the age of the flying population. However, it has recently been recognized that vision changes are actually quite common in astronauts and are associated with a constellation of findings including elevated intracranial pressure, optic disc edema, globe flattening, optic nerve sheath thickening, hyperopic shifts and retinal changes. With advanced imaging modalities available on the ground along with the fidelity of in-flight diagnostic capabilities previously unavailable, information on this newly recognized syndrome is accumulating. As of this writing, 11 cases of visual impairment experienced by astronauts during missions on-board the International Space Station (ISS) have been documented and studied. Although the exact mechanisms of the vision changes are unknown, it is hypothesized that increased intracranial pressure (ICP) is a contributing factor. Microgravity is the dominant cause of many physiological changes during spaceflight and is thought to contribute significantly to the observed ophthalmic changes. However, several secondary factors that could contribute to increased ICP and vision changes in spaceflight have been proposed. Possible contributors include microgravity-induced cephalad fluid shift, venous obstruction due to microgravity-induced anatomical shifts, high levels of spacecraft cabin carbon dioxide, heavy resistive exercise, and high sodium diet. Individual susceptibility to visual impairment is not fully understood, though a demographic of affected astronauts is emerging. This paper describes the current understanding of this newly recognized syndrome, presents data from 11 individual cases, and discusses details of potential contributing factors. The occurrence of visual changes in long duration missions in microgravity is one of the most significant clinical issues to date for the human spaceflight community, and a comprehensive understanding of the issue at whole is critical to ensure safe space exploration in the future.
Zwart, Sara R; Pierson, Duane; Mehta, Satish; Gonda, Steve; Smith, Scott M
2010-05-01
NF-kappaB is a transcriptional activator of many genes, including some that lead to muscle atrophy and bone resorption-significant concerns for astronauts. NF-kappaB activation is inhibited by eicosapentaenoic acid (EPA), but the influence of this omega-3 fatty acid on the effects of weightlessness are unknown. We report here cellular, ground analogue, and spaceflight findings. We investigated the effects of EPA on differentiation of RAW264.7 monocyte/macrophage cells induced by receptor activator of NF-kappaB ligand (RANKL) and on activation of NF-kappaB by tumor necrosis factor alpha (TNF-alpha) or exposure to modeled weightlessness. EPA (50 microM for 24 hours) inhibited RANKL-induced differentiation and decreased activation of NF-kappaB induced by 0.2 microg/mL of TNF-alpha for 30 minutes or by modeled weightlessness for 24 hours (p < .05). In human studies, we evaluated whether NF-kappaB activation was altered after short-duration spaceflight and determined the relationship between intake of omega-3 fatty acids and markers of bone resorption during bed rest and the relationship between fish intake and bone mineral density after long-duration spaceflight. NF-kappaB was elevated in crew members after short-duration spaceflight, and higher consumption of fish (a rich source of omega-3 fatty acids) was associated with reduced loss of bone mineral density after flight (p < .05). Also supporting the cell study findings, a higher intake of omega-3 fatty acids was associated with less N-telopeptide excretion during bed rest (Pearson r = -0.62, p < .05). Together these data provide mechanistic cellular and preliminary human evidence of the potential for EPA to counteract bone loss associated with spaceflight. (c) 2010 American Society for Bone and Mineral Research.
Immune System Dysregulation, Viral Reactivation and Stress During Short-Duration Space Flight
NASA Technical Reports Server (NTRS)
Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Pierson, Duane; Sams, Clarence
2010-01-01
This slide presentation reviews a study that was conducted to ascertain if the immune system dysregulation, viral reactivation and stress from short duration space flight were a result of the stress of landing and readjustment to gravity. The objectives of the study were to replace several recent immune studies with one comprehensive study that will include in-flight sampling; address lack of in-flight data: (i.e., determine the in-flight status of immunity, physiological stress, viral immunity/reactivation); determine the clinical risk related to immune dysregulation for exploration class spaceflight; and determine the appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures.
Orwoll, Eric S; Adler, Robert A; Amin, Shreyasee; Binkley, Neil; Lewiecki, E Michael; Petak, Steven M; Shapses, Sue A; Sinaki, Mehrsheed; Watts, Nelson B; Sibonga, Jean D
2013-06-01
Concern about the risk of bone loss in astronauts as a result of prolonged exposure to microgravity prompted the National Aeronautics and Space Administration to convene a Bone Summit with a panel of experts at the Johnson Space Center to review the medical data and research evidence from astronauts who have had prolonged exposure to spaceflight. Data were reviewed from 35 astronauts who had served on spaceflight missions lasting between 120 and 180 days with attention focused on astronauts who (1) were repeat fliers on long-duration missions, (2) were users of an advanced resistive exercise device (ARED), (3) were scanned by quantitative computed tomography (QCT) at the hip, (4) had hip bone strength estimated by finite element modeling, or (5) had lost >10% of areal bone mineral density (aBMD) at the hip or lumbar spine as measured by dual-energy X-ray absorptiometry (DXA). Because of the limitations of DXA in describing the effects of spaceflight on bone strength, the panel recommended that the U.S. space program use QCT and finite element modeling to further study the unique effects of spaceflight (and recovery) on bone health in order to better inform clinical decisions. Copyright © 2013 American Society for Bone and Mineral Research.
Effects of Sex and Gender on Adaptation to Space: Neurosensory Systems
Cohen, Helen S.; Cerisano, Jody M.; Clayton, Janine A.; Cromwell, Ronita; Danielson, Richard W.; Hwang, Emma Y.; Tingen, Candace; Allen, John R.; Tomko, David L.
2014-01-01
Abstract Sex and gender differences have long been a research topic of interest, yet few studies have explored the specific differences in neurological responses between men and women during and after spaceflight. Knowledge in this field is limited due to the significant disproportion of sexes enrolled in the astronaut corps. Research indicates that general neurological and sensory differences exist between the sexes, such as those in laterality of amygdala activity, sensitivity and discrimination in vision processing, and neuronal cell death (apoptosis) pathways. In spaceflight, sex differences may include a higher incidence of entry and space motion sickness and of post-flight vestibular instability in female as opposed to male astronauts who flew on both short- and long-duration missions. Hearing and auditory function in crewmembers shows the expected hearing threshold differences between men and women, in which female astronauts exhibit better hearing thresholds. Longitudinal observations of hearing thresholds for crewmembers yield normal age-related decrements; however, no evidence of sex-related differences from spaceflight has been observed. The impact of sex and gender differences should be studied by making spaceflight accessible and flying more women into space. Only in this way will we know if increasingly longer-duration missions cause significantly different neurophysiological responses in men and women. PMID:25401941
Computational Modeling of Space Physiology
NASA Technical Reports Server (NTRS)
Lewandowski, Beth E.; Griffin, Devon W.
2016-01-01
The Digital Astronaut Project (DAP), within NASAs Human Research Program, develops and implements computational modeling for use in the mitigation of human health and performance risks associated with long duration spaceflight. Over the past decade, DAP developed models to provide insights into space flight related changes to the central nervous system, cardiovascular system and the musculoskeletal system. Examples of the models and their applications include biomechanical models applied to advanced exercise device development, bone fracture risk quantification for mission planning, accident investigation, bone health standards development, and occupant protection. The International Space Station (ISS), in its role as a testing ground for long duration spaceflight, has been an important platform for obtaining human spaceflight data. DAP has used preflight, in-flight and post-flight data from short and long duration astronauts for computational model development and validation. Examples include preflight and post-flight bone mineral density data, muscle cross-sectional area, and muscle strength measurements. Results from computational modeling supplement space physiology research by informing experimental design. Using these computational models, DAP personnel can easily identify both important factors associated with a phenomenon and areas where data are lacking. This presentation will provide examples of DAP computational models, the data used in model development and validation, and applications of the model.
Incidence of clinical symptoms during long-duration orbital spaceflight.
Crucian, Brian; Babiak-Vazquez, Adriana; Johnston, Smith; Pierson, Duane L; Ott, C Mark; Sams, Clarence
2016-01-01
The environment of spaceflight may elevate an astronaut's clinical risk for specific diseases. The purpose of this study was to derive, as accurately as currently possible, an assessment of in-flight clinical "incidence" data, based on observed clinical symptoms in astronauts on board the International Space Station (ISS). Electronic medical records were examined from 46 long-duration ISS crew members, each serving approximately a 6-month mission on board the ISS, constituting 20.57 total flight years. Incidence for immunological-related adverse health events or relevant clinical symptoms was tabulated in a non-identifiable fashion. Event categories included infectious diseases, allergies, and rashes/hypersensitivities. A subsequent re-evaluation of more notable events, either of prolonged duration or unresponsive to treatment, was performed. For the disease/symptom categories used in this evaluation, the ISS incidence rate was 3.40 events per flight year. Skin rashes were the most reported event (1.12/flight year) followed by upper respiratory symptoms (0.97/flight year) and various other (non-respiratory) infectious processes. During flight, 46% of crew members reported an event deemed "notable". Among the notable events, 40% were classified as rashes/hypersensitivities. Characterization of on-orbit rashes manifested as redness with irritation, and could present on a variety of body locations. Based on reported symptoms, astronauts experience adverse medical events of varying severity during long-duration spaceflights. The data suggests caution, from both a vehicle design and biomedical countermeasures perspective, as space agencies plan for prolonged deep space exploration missions.
Evidence Report: Risk of Adverse Health Effects Due to Host-Microorganism Interactions
NASA Technical Reports Server (NTRS)
Ott, C. Mark; Oubre, Cherie; Wallace, Sarah; Mehta, Satish; Pierson, Duane
2016-01-01
While preventive measures limit the presence of many medically significant microorganisms during spaceflight missions, microbial infection of crewmembers cannot be completely prevented. Spaceflight experiments over the past 50 years have demonstrated a unique microbial response to spaceflight culture, although the mechanisms behind those responses and their operational relevance were unclear. In 2007, the operational importance of these microbial responses was emphasized as the results of an experiment aboard STS-115 demonstrated that the enteric pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) increased in virulence in a murine model of infection. The experiment was reproduced in 2008 aboard STS-123 confirming this finding. In response to these findings, the Institute of Medicine of the National Academies recommended that NASA investigate this risk and its potential impact on the health of the crew during spaceflight. NASA assigned this risk to the Human Research Program. To better understand this risk, evidence has been collected and reported from both spaceflight analog systems and actual spaceflight including Mir, Space Shuttle, and ISS missions. Although the performance of virulence studies during spaceflight are challenging and often impractical, additional information has been and continues to be collected to better understand the risk to crew health. Still, the uncertainty concerning the extent and severity of these alterations in host-microorganism interactions is very large and requires more investigation as the focus of human spaceflight shifts to longer-duration exploration class missions.
Ade, C J; Broxterman, R M; Moore, A D; Barstow, T J
2017-04-01
We have previously predicted that the decrease in maximal oxygen uptake (V̇o 2max ) that accompanies time in microgravity reflects decrements in both convective and diffusive O 2 transport to the mitochondria of the contracting myocytes. The aim of this investigation was therefore to quantify the relative changes in convective O 2 transport (Q̇o 2 ) and O 2 diffusing capacity (Do 2 ) following long-duration spaceflight. In nine astronauts, resting hemoglobin concentration ([Hb]), V̇o 2max , maximal cardiac output (Q̇ Tmax ), and differences in arterial and venous O 2 contents ([Formula: see text]-[Formula: see text]) were obtained retrospectively for International Space Station Increments 19-33 (April 2009-November 2012). Q̇o 2 and Do 2 were calculated from these variables via integration of Fick's Principle of Mass Conservation and Fick's Law of Diffusion. V̇o 2max significantly decreased from pre- to postflight (-53.9 ± 45.5%, P = 0.008). The significant decrease in Q̇ Tmax (-7.8 ± 9.1%, P = 0.05), despite an unchanged [Hb], resulted in a significantly decreased Q̇o 2 (-11.4 ± 10.5%, P = 0.02). Do 2 significantly decreased from pre- to postflight by -27.5 ± 24.5% ( P = 0.04), as did the peak [Formula: see text]-[Formula: see text] (-9.2 ± 7.5%, P = 0.007). With the use of linear regression analysis, changes in V̇o 2max were significantly correlated with changes in Do 2 ( R 2 = 0.47; P = 0.04). These data suggest that spaceflight decreases both convective and diffusive O 2 transport. These results have practical implications for future long-duration space missions and highlight the need to resolve the specific mechanisms underlying these spaceflight-induced changes along the O 2 transport pathway. NEW & NOTEWORTHY Long-duration spaceflight elicited a significant decrease in maximal oxygen uptake. Given the adverse physiological adaptations to microgravity along the O 2 transport pathway that have been reported, an integrative approach to the determinants of postflight maximal oxygen uptake is needed. We demonstrate that both convective and diffusive oxygen transport are decreased following ~6 mo International Space Station missions. Copyright © 2017 the American Physiological Society.
Functional Foods Baseline and Requirements Analysis
NASA Technical Reports Server (NTRS)
Cooper, M. R.; Bermudez-Aguirre, L. D.; Douglas, G.
2015-01-01
Current spaceflight foods were evaluated to determine if their nutrient profile supports positioning as a functional food and if the stability of the bioactive compound within the food matrix over an extended shelf-life correlated with the expected storage duration during the mission. Specifically, the research aims were: Aim A. To determine the amount of each nutrient in representative spaceflight foods immediately after processing and at predetermined storage time to establish the current nutritional state. Aim B. To identify the requirements to develop foods that stabilize these nutrients such that required concentrations are maintained in the space food system throughout long duration missions (up to five years). Aim C. To coordinate collaborations with health and performance groups that may require functional foods as a countermeasure.
Fibroblast Growth Factor 23 in Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Bokhari, R.; Zwart, S. R.; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.
2015-01-01
Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight.
A survey of some regenerative physico-chemical life support technology
NASA Technical Reports Server (NTRS)
Wydeven, Theodore
1988-01-01
To date, manned spaceflight has used the relatively simple support methodology of bringing all the necessary water, oxygen, and food for the duration of the mission, and collecting and storing waste products for return to Earth. This is referred to as an open system. It was recognized early, as manned missions became longer and crew size increased, that the weight, volume, and transportation penalties of storing or routinely resupplying consumables would at some point become too expensive. Since the early 1960's regenerative ECLSS technology has been under development, and there now exists a foundation in both systems definition and subsystem technology to support long-duration manned missions. In many cases this development has reached the engineering prototype stage for physico-chemical subsystems and in this article some of these subsystems are described. Emphasis is placed on physico-chemical waste conversion and related processes which provide sustenance and not on environmental factors or subsystems, e.g., temperature and humidity control, spacecraft architecture, lighting, etc.
NASA Technical Reports Server (NTRS)
Mason, Sara; Foy, Millennia; Sargsyan, Ashot; Garcia, Kathleen; Wear, Mary L.; Bedi, Deepak; Ernst, Randy; Van Baalen, Mary
2015-01-01
Ultrasonography is increasingly used to quickly measure optic nerve sheath diameter (ONSD) when increased intracranial pressure (ICP) is suspected. NASA Space and Clinical Operations Division has been using ground and on-orbit ultrasound since 2009 as a proxy for ICP in non-acute monitoring for space medicine purposes. In the terrestrial emergency room population, an ONSD greater than 0.59 cm is considered highly predictive of elevated intracranial pressure. However, this cut-off limit is not applicable to the spaceflight setting since over 50% of US Operating Segment (USOS) astronauts have an ONSD greater than 0.60 cm even before launch. Crew Surgeon clinical decision-making is complicated by the fact that many astronauts have history of previous spaceflights. Our data characterize the distribution of baseline ONSD in the astronaut corps, its longitudinal trends in long-duration spaceflight, and the predictive power of this measure related to increased ICP outcomes.
Planning for long-duration space exploration: Interviews with NASA subject matter experts
NASA Astrophysics Data System (ADS)
McIntosh, Tristan; Mulhearn, Tyler; Gibson, Carter; Mumford, Michael D.; Yammarino, Francis J.; Connelly, Shane; Day, Eric A.; Vessey, William B.
2016-12-01
Planning is critical to organizations, especially for those involved in pursuing technologic, scientific, and innovative ventures. Examination of planning processes is particularly important in high-stake and high-risk environments. In the present study, to highlight the significance of planning in the context of long-duration space missions, 11 current and former National Aeronautics and Space Administration (NASA) personnel were interviewed to gain a better understanding of astronaut and Mission Control leadership in preparing for and carrying out space missions. Interviewees focused their responses on perceptions of leadership and thoughts on how long-duration spaceflight leadership should be different from current and short-term spaceflight. Notes from these interviews were content coded and qualitatively analyzed. We found that cognitive planning skills and case-based reasoning were among the variables that were most highly rated for being critical to the success of long-duration space missions. Moreover, qualitative analyses revealed new considerations for long-duration space missions, such as granting greater autonomy to crewmembers and the need for more near-term forecasting. The implications of these findings for understanding the planning processes and necessary characteristics of individuals tasked with planning are discussed.
ERIC Educational Resources Information Center
Hixson, Katharine
2013-01-01
Due to the long-duration and long distance nature of future exploration missions, coupled with significant communication delays from ground-based personnel, NASA astronauts will be living and working within confined, isolated environments for significant periods of time. This extreme environment poses concerns for the flight crews' ability to…
Circadian misalignment affects sleep and medication use before and during spaceflight
Flynn-Evans, Erin E; Barger, Laura K; Kubey, Alan A; Sullivan, Jason P; Czeisler, Charles A
2016-01-01
Sleep deficiency and the use of sleep-promoting medication are prevalent during spaceflight. Operations frequently dictate work during the biological night and sleep during the biological day, which contribute to circadian misalignment. We investigated whether circadian misalignment was associated with adverse sleep outcomes before (preflight) and during spaceflight missions aboard the International Space Station (ISS). Actigraphy and photometry data for 21 astronauts were collected over 3,248 days of long-duration spaceflight on the ISS and 11 days prior to launch (n=231 days). Sleep logs, collected one out of every 3 weeks in flight and daily on Earth, were used to determine medication use and subjective ratings of sleep quality. Actigraphy and photometry data were processed using Circadian Performance Simulation Software to calculate the estimated endogenous circadian temperature minimum. Sleep episodes were classified as aligned or misaligned relative to the estimated endogenous circadian temperature minimum. Mixed-effects regression models accounting for repeated measures were computed by data collection interval (preflight, flight) and circadian alignment status. The estimated endogenous circadian temperature minimum occurred outside sleep episodes on 13% of sleep episodes during preflight and on 19% of sleep episodes during spaceflight. The mean sleep duration in low-Earth orbit on the ISS was 6.4±1.2 h during aligned and 5.4±1.4 h (P<0.01) during misaligned sleep episodes. During aligned sleep episodes, astronauts rated their sleep quality as significantly better than during misaligned sleep episodes (66.8±17.7 vs. 60.2±21.0, P<0.01). Sleep-promoting medication use was significantly higher during misaligned (24%) compared with aligned (11%) sleep episodes (P<0.01). Use of any medication was significantly higher on days when sleep episodes were misaligned (63%) compared with when sleep episodes were aligned (49%; P<0.01). Circadian misalignment is associated with sleep deficiency and increased medication use during spaceflight. These findings suggest that there is an immediate need to deploy and assess effective countermeasures to minimize circadian misalignment and consequent adverse sleep outcomes both before and during spaceflight. PMID:28725719
Circadian misalignment affects sleep and medication use before and during spaceflight.
Flynn-Evans, Erin E; Barger, Laura K; Kubey, Alan A; Sullivan, Jason P; Czeisler, Charles A
2016-01-01
Sleep deficiency and the use of sleep-promoting medication are prevalent during spaceflight. Operations frequently dictate work during the biological night and sleep during the biological day, which contribute to circadian misalignment. We investigated whether circadian misalignment was associated with adverse sleep outcomes before (preflight) and during spaceflight missions aboard the International Space Station (ISS). Actigraphy and photometry data for 21 astronauts were collected over 3,248 days of long-duration spaceflight on the ISS and 11 days prior to launch ( n =231 days). Sleep logs, collected one out of every 3 weeks in flight and daily on Earth, were used to determine medication use and subjective ratings of sleep quality. Actigraphy and photometry data were processed using Circadian Performance Simulation Software to calculate the estimated endogenous circadian temperature minimum. Sleep episodes were classified as aligned or misaligned relative to the estimated endogenous circadian temperature minimum. Mixed-effects regression models accounting for repeated measures were computed by data collection interval (preflight, flight) and circadian alignment status. The estimated endogenous circadian temperature minimum occurred outside sleep episodes on 13% of sleep episodes during preflight and on 19% of sleep episodes during spaceflight. The mean sleep duration in low-Earth orbit on the ISS was 6.4±1.2 h during aligned and 5.4±1.4 h ( P <0.01) during misaligned sleep episodes. During aligned sleep episodes, astronauts rated their sleep quality as significantly better than during misaligned sleep episodes (66.8±17.7 vs. 60.2±21.0, P <0.01). Sleep-promoting medication use was significantly higher during misaligned (24%) compared with aligned (11%) sleep episodes ( P <0.01). Use of any medication was significantly higher on days when sleep episodes were misaligned (63%) compared with when sleep episodes were aligned (49%; P <0.01). Circadian misalignment is associated with sleep deficiency and increased medication use during spaceflight. These findings suggest that there is an immediate need to deploy and assess effective countermeasures to minimize circadian misalignment and consequent adverse sleep outcomes both before and during spaceflight.
Latent virus reactivation in astronauts on the international space station.
Mehta, Satish K; Laudenslager, Mark L; Stowe, Raymond P; Crucian, Brian E; Feiveson, Alan H; Sams, Clarence F; Pierson, Duane L
2017-01-01
Reactivation of latent herpes viruses was measured in 23 astronauts (18 male and 5 female) before, during, and after long-duration (up to 180 days) spaceflight onboard the international space station . Twenty age-matched and sex-matched healthy ground-based subjects were included as a control group. Blood, urine, and saliva samples were collected before, during, and after spaceflight. Saliva was analyzed for Epstein-Barr virus, varicella-zoster virus, and herpes simplex virus type 1. Urine was analyzed for cytomegalovirus. One astronaut did not shed any targeted virus in samples collected during the three mission phases. Shedding of Epstein-Barr virus, varicella-zoster virus, and cytomegalovirus was detected in 8 of the 23 astronauts. These viruses reactivated independently of each other. Reactivation of Epstein-Barr virus, varicella-zoster virus, and cytomegalovirus increased in frequency, duration, and amplitude (viral copy numbers) when compared to short duration (10 to 16 days) space shuttle missions. No evidence of reactivation of herpes simplex virus type 1, herpes simplex virus type 2, or human herpes virus 6 was found. The mean diurnal trajectory of salivary cortisol changed significantly during flight as compared to before flight ( P = 0.010). There was no statistically significant difference in levels of plasma cortisol or dehydoepiandosterone concentrations among time points before, during, and after flight for these international space station crew members, although observed cortisol levels were lower at the mid and late-flight time points. The data confirm that astronauts undertaking long-duration spaceflight experience both increased latent viral reactivation and changes in diurnal trajectory of salivary cortisol concentrations.
Incidence of clinical symptoms during long-duration orbital spaceflight
Crucian, Brian; Babiak-Vazquez, Adriana; Johnston, Smith; Pierson, Duane L; Ott, C Mark; Sams, Clarence
2016-01-01
Background The environment of spaceflight may elevate an astronaut’s clinical risk for specific diseases. The purpose of this study was to derive, as accurately as currently possible, an assessment of in-flight clinical “incidence” data, based on observed clinical symptoms in astronauts on board the International Space Station (ISS). Methods Electronic medical records were examined from 46 long-duration ISS crew members, each serving approximately a 6-month mission on board the ISS, constituting 20.57 total flight years. Incidence for immunological-related adverse health events or relevant clinical symptoms was tabulated in a non-identifiable fashion. Event categories included infectious diseases, allergies, and rashes/hypersensitivities. A subsequent re-evaluation of more notable events, either of prolonged duration or unresponsive to treatment, was performed. Results For the disease/symptom categories used in this evaluation, the ISS incidence rate was 3.40 events per flight year. Skin rashes were the most reported event (1.12/flight year) followed by upper respiratory symptoms (0.97/flight year) and various other (non-respiratory) infectious processes. During flight, 46% of crew members reported an event deemed “notable”. Among the notable events, 40% were classified as rashes/hypersensitivities. Characterization of on-orbit rashes manifested as redness with irritation, and could present on a variety of body locations. Conclusion Based on reported symptoms, astronauts experience adverse medical events of varying severity during long-duration spaceflights. The data suggests caution, from both a vehicle design and biomedical countermeasures perspective, as space agencies plan for prolonged deep space exploration missions. PMID:27843335
Balance in Astronauts Performing Jumps, Walking and Quiet Stance Following Spaceflight
NASA Technical Reports Server (NTRS)
Reschke, Millard F.; Bloomberg, J. J.; Wood, S. J.; Harm, D. L.
2011-01-01
Introduction: Both balance and locomotor ataxia is severe in astronauts returning from spaceflight with serious implications for unassisted landings. As a part of an ongoing effort to demonstrate the functional significance of the postflight ataxia problem our laboratory has evaluated jumping, walking heel-to-toe and quite stance balance immediately following spaceflight. Methods: Six astronauts from 12-16 day flights and three from 6-month flights were asked to perform three self-initiated two-footed jumps from a 30-cm-high platform, walking for 10 steps (three trials) placing the feet heel to toe in tandem, arms folded across the chest and the eyes closed, and lastly, recover from a simulated fall by standing from a prone position on the floor and with eyes open maintain a quiet stance for 3 min with arms relaxed along the side of the body and feet comfortably positioned on a force plate. Crewmembers were tested twice before flight, on landing day (short-duration), and days 1, 6, and 30 following all flight durations. Results/Conclusions: Many of astronauts tested fell on their first postflight jump but recovered by the third jump showing a rapid learning progression. Changes in take-off strategy were clearly evident in duration of time in the air between the platform and the ground (significant reduction in time to land), and also in increased asymmetry in foot latencies on take-off postflight. During the tandem heel-to-toe walking task there was a significant decrease in percentage of correct steps on landing day (short-duration crew) and on first day following landing (long-duration) with only partial recovery the following day. Astronauts for both short and long duration flight times appeared to be unaware of foot position relative to their bodies or the floor. During quite stance most of crewmembers tested exhibited increased stochastic activity (larger short-term COP diffusion coefficients postflight in all planes and increases in mean sway speed).
Alteration of renal function of rats following spaceflight.
Wade, C E; Morey-Holton, E
1998-10-01
Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.
Alteration of renal function of rats following spaceflight
NASA Technical Reports Server (NTRS)
Wade, C. E.; Morey-Holton, E.
1998-01-01
Following spaceflight, changes in renal function of humans have been suggested. To assess the effects of readaptation on renal function, urine was collected from male rats ( approximately 245 g) over a 2-wk period following a 14-day spaceflight. Rats were assigned to three groups: flight animals (n = 6), flight controls (n = 6) housed in the flight cages on the ground, and vivarium controls (n = 5) housed in standard shoe box cages. Animals were placed into individual metabolic cages for urine collection. Urine output was significantly increased for 3 days following flight. Excretion rates of Na+ and K+ were increased, resulting in an increased osmotic excretion rate. Creatinine excretion rate increased over the first two postflight days. Glomerular filtration rate increased immediately following spaceflight without changes in plasma creatinine, Na+, K+, or osmolality. Increased excretion of solute was thus the result of increased delivery and a decreased percent reabsorption of the filtered load. Osmolal clearance was increased immediately postflight while free water clearance was decreased. In growing rats, the diuresis after short-duration spaceflight is the result of an increase in solute excretion with an accompanying reduction in free water clearance.
Dysrhythmias in Laypersons During Centrifuge-Simulated Suborbital Spaceflight.
Suresh, Rahul; Blue, Rebecca S; Mathers, Charles H; Castleberry, Tarah L; Vanderploeg, James M
2017-11-01
There are limited data on cardiac dysrhythmias in laypersons during hypergravity exposure. We report layperson electrocardiograph (ECG) findings and tolerance of dysrhythmias during centrifuge-simulated suborbital spaceflight. Volunteers participated in varied-length centrifuge training programs of 2-7 centrifuge runs over 0.5-2 d, culminating in two simulated suborbital spaceflights of combined +Gz and +Gx (peak +4.0 Gz, +6.0 Gx, duration 5 s). Monitors recorded pre- and post-run mean arterial blood pressure (MAP), 6-s average heart rate (HR) collected at prespecified points during exposures, documented dysrhythmias observed on continuous 3-lead ECG, self-reported symptoms, and objective signs of intolerance on real-time video monitoring. Participating in the study were 148 subjects (43 women). Documented dysrhythmias included sinus pause (N = 5), couplet premature ventricular contractions (N = 4), bigeminy (N = 3), accelerated idioventricular rhythm (N = 1), and relative bradycardia (RB, defined as a transient HR drop of >20 bpm; N = 63). None were associated with subjective symptoms or objective signs of acceleration intolerance. Episodes of RB occurred only during +Gx exposures. Subjects had a higher post-run vs. pre-run MAP after all exposures, but demonstrated no difference in pre- and post-run HR. RB was more common in men, younger individuals, and subjects experiencing more centrifuge runs. Dysrhythmias in laypersons undergoing simulated suborbital spaceflight were well tolerated, though RB was frequently noted during short-duration +Gx exposure. No subjects demonstrated associated symptoms or objective hemodynamic sequelae from these events. Even so, heightened caution remains warranted when monitoring dysrhythmias in laypersons with significant cardiopulmonary disease or taking medications that modulate cardiac conduction.Suresh R, Blue RS, Mathers CH, Castleberry TL, Vanderploeg JM. Dysrhythmias in laypersons during centrifuge-stimulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(11):1008-1015.
NASA Technical Reports Server (NTRS)
Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.
2010-01-01
Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can concurrently improve musculoskeletal and cardiovascular conditioning in ambulatory subjects, but further work is required to validate its use as countermeasure to spaceflight-induced deconditioning.
Nicholas, J M; Penwell, L W
1995-01-01
This paper presents a literature review of leader characteristics and associated outcomes from four environments considered as analogs to long-duration spaceflight: aviation, submersibles, polar stations, and expeditions. Evidence from 23 sources indicates that, despite differences in the analog settings, effective leaders share a common core of personal traits and leadership-style attributes. The general profile that emerges is a person who works hard to achieve mission objectives, is optimistic, holds the respect of the crew, ordinarily uses participative decision-making but takes charge during critical situations, is sensitive to and makes crew members feel valued for their expertise and their personal qualities, and maintains group harmony and cohesion. Results have implications for selecting leaders for future long-duration space missions.
Effects of spaceflight and simulated weightlessness on longitudinal bone growth
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Zhang, M.; Evans, G. L.; Westerlind, K. C.; Cavolina, J. M.; Morey-Holton, E.; Turner, R. T.
2000-01-01
Indirect measurements have suggested that spaceflight impairs bone elongation in rats. To test this possibility, our laboratory measured, by the fluorochrome labeling technique, bone elongation that occurred during a spaceflight experiment. The longitudinal growth rate (LGR) in the tibia of rats in spaceflight experiments (Physiological Space Experiments 1, 3, and 4 and Physiological-Anatomical Rodent Experiment 3) and in two models of skeletal unloading (hind-limb elevation and unilateral sciatic neurotomy) were calculated. The effects of an 11 day spaceflight on gene expression of cartilage matrix proteins in rat growth plates were also determined by northern analysis and are reported for the first time in this study. Measurements of longitudinal growth indicate that skeletal unloading generally did not affect LGR, regardless of age, strain, gender, duration of unloading, or method of unloading. There was, however, one exception with 34% suppression in LGR detected in slow-growing, ovariectomized rats skeletally unloaded for 8 days by hind-limb elevation. This detection of reduced LGR by hind-limb elevation is consistent with changes in steady-state mRNA levels for type II collagen (-33%) and for aggrecan (-53%) that were detected in rats unloaded by an 11 day spaceflight. The changes detected in gene expression raise concern that spaceflight may result in changes in the composition of extracellular matrix, which could have a negative impact on conversion of growth-plate cartilage into normal cancellous bone by endochondral ossification.
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Zwart, S. R.; Shackelford, L.; Heer, M.
2009-01-01
Bone loss is not only a well-documented effect of spaceflight on astronauts, but also a condition that affects millions of men and women on Earth each year. Many countermeasures aimed at preventing bone loss during spaceflight have been proposed, and many have been evaluated to some degree. To date, those showing potential have focused on either exercise or pharmacological interventions, but none have targeted dietary intake alone as a factor to predict or minimize bone loss during spaceflight. The "Dietary Intake Can Predict and Protect against Changes in Bone Metabolism during Spaceflight and Recovery" investigation ("Pro K") is one of the first inflight evaluations of a dietary countermeasure to lessen bone loss of astronauts. This protocol will test the hypothesis that the ratio of acid precursors to base precursors (specifically animal protein to potassium) in the diet can predict directional changes in bone mineral during spaceflight and recovery. The ratio of animal protein to potassium in the diet will be controlled for multiple short (4-day) periods before and during flight. Based on multiple sets of bed rest data, we hypothesize that a higher ratio of the intake of animal protein to the intake of potassium will yield higher concentrations of markers of bone resorption and urinary calcium excretion during flight and during recovery from bone mineral loss after long-duration spaceflight.
Spaceflight and the Mouse Eye: Results from Experiments on Shuttle Missions STS-133 and STS-135
NASA Technical Reports Server (NTRS)
Zanello, Susana B.; Theriot, Corey A.; Ponce, Claudia Prospero; Chevez-Barrios, Patricia
2013-01-01
Vision alterations associated with globe flattening, chorodial folds and papilledema, shown in some crew members returning from long duration missions. Hypothesis: Ocular neuroanatomical changes observed in the VIIP syndrome are accompanied by retinal changes at the molecular and cellular level that may affect retinal health and physiology. Objective: Investigate evidence of ocular (retinal) changes associated with spaceflight: (1) histological markers of cellular death and damage (2) molecular markers of oxidative stress (3) gene expression markers of stress
[Psychological issues in manned spaceflight].
Zhang, Q J; Bai, Y Q
1999-04-01
As the duration of manned spaceflight becomes longer and as crews become more heterogeneous, psychological and interpersonal factors will be more important in affecting the safety of crew and flight mission. In space environment there are four types of stressors: physical, physiological, psychological and interpersonal. Psychological issues include "Asthenia", alteration in time sense, transcendent experiences, sleep problem, career motivation, psychosomatic symptoms and psychiatric issues. Interpersonal issues include interpersonal tension, interpersonal relationships decreased cohesiveness and deprivation, displacement [correction of dispiacement] of anger to outside personnel over time.
Antarctica Meta-Analysis: Psychosocial Factors Related to Long Duration Isolation and Confinement
NASA Technical Reports Server (NTRS)
Leveton, Lauren; Shea, Camille; Slack, Kelley J.; Keeton, Kathryn E.; Palinkas, Lawrence A.
2009-01-01
This meta-analysis is examining the psychological effects of wintering-over in Antarctica. As an isolated, confined, and extreme (ICE) environment, Antarctica provides invaluable opportunities to experience stressors more common to spaceflight than to the average person s everyday life. Increased prevalence of psychological symptoms, syndromes, and psychiatric disorders, as well as positive effects, are expected to be associated with various demographic and environmental factors. Implications for spaceflight are discussed. Findings from statistical review of the Antarctic articles will be shared.
Evidence-Based Recommendations for Optimizing Light in Day-to-Day Spaceflight Operations
NASA Technical Reports Server (NTRS)
Whitmire, Alexandra; Leveton, Lauren; Barger, Laura; Clark, Toni; Bollweg, Laura; Ohnesorge, Kristine; Brainard, George
2015-01-01
NASA Behavioral Health and Performance Element (BHP) personnel have previously reported on efforts to transition evidence-based recommendations for a flexible lighting system on the International Space Station (ISS). Based on these recommendations, beginning in 2016 the ISS will replace the current fluorescent-based lights with an LED-based system to optimize visual performance, facilitate circadian alignment, promote sleep, and hasten schedule shifting. Additional efforts related to lighting countermeasures in spaceflight operations have also been underway. As an example, a recent BHP research study led by investigators at Harvard Medical School and Brigham and Women's Hospital, evaluated the acceptability, feasibility, and effectiveness of blue-enriched light exposure during exercise breaks for flight controllers working the overnight shift in the Mission Control Center (MCC) at NASA Johnson Space Center. This effort, along with published laboratory studies that have demonstrated the effectiveness of appropriately timed light for promoting alertness, served as an impetus for new light options, and educational protocols for flight controllers. In addition, a separate set of guidelines related to the light emitted from electronic devices, were provided to the Astronaut Office this past year. These guidelines were based on an assessment led by NASA's Lighting Environment Test Facility that included measuring the spectral power distribution, irradiance, and radiance of light emitted from ISS-grade laptops and I-Pads, as well as Android devices. Evaluations were conducted with and without the use of off-the-shelf screen filters as well as a software application that touts minimizing the short-wave length of the visible light spectrum. This presentation will focus on the transition for operations process related to lighting countermeasures in the MCC, as well as the evidence to support recommendations for optimal use of laptops, I-Pads, and Android devices during all phases of spaceflight operations.
The ICV Study: Integrated Cardiovascular
NASA Technical Reports Server (NTRS)
Levine, Benjamin D.; Bungo, Michael W.
2009-01-01
This viewgraph presentation describes the effects of long duration manned spaceflight on heart structure and function. Clinical consequences for orthostatic tolerance, cardiac arrhythmias, and countermeasures to prevent clinical problems are also discussed.
Operational Psychology Perspective
NASA Technical Reports Server (NTRS)
Holland, Al
2009-01-01
This slide presentation reviews the history of long duration spaceflight, and the changes in the International Space Station crew and the effect that this has had on the psychology of astronaut selection and training.
Strategies for crew selection for long duration missions
NASA Technical Reports Server (NTRS)
Helmreich, Robert L.; Holland, Albert W.; Santy, Patricia A.; Rose, Robert M.; Mcfadden, Terry J.
1990-01-01
Issues surrounding psychological reactions to long duration spaceflight are discussed with respect to the definition of criteria for selecting crewmembers for such expeditions. Two broad dimensions of personality and behavior are defined - Instrumentality including achievement orientation, leadership, and ability to perform under pressure and Expressivity encompassing interpersonal sensitivity and competence. A strategy for validating techniques to select in candidates with the optimum psychological profile to perform successfully on long duration missions is described.
Research on sleep, circadian rhythms and aging - Applications to manned spaceflight
NASA Technical Reports Server (NTRS)
Czeisler, Charles A.; Chiasera, August J.; Duffy, Jeanne F.
1991-01-01
Disorders of sleep and circadian rhythmicity are characteristic of both advancing age and manned spaceflight. Sleep fragmentation, reduced nocturnal sleep tendency and sleep efficiency, reduced daytime alertness, and increased daytime napping are common to both of these conditions. Recent research on the pathophysiology and treatment of disrupted sleep in older people has led to a better understanding of how the human circadian pacemaker regulates the timing of the daily sleep-wake cycle and how it responds to the periodic changes in the light-dark cycle to which we are ordinarily exposed. These findings have led to new treatments for some of the sleep disorders common to older individuals, using carefully timed exposure to bright light and darkness to manipulate the phase and/or amplitude of the circadian timing system. These insights and treatment approaches have direct applications in the design of countermeasures allowing astronauts to overcome some of the challenges which manned spaceflight poses for the human circadian timing system. We have conducted an operational feasibility study on the use of scheduled exposure to bright light and darkness prior to launch in order to facilitate adaptation of the circadian system of a NASA Space Shuttle crew to the altered sleep-wake schedule required for their mission. The results of this study illustrate how an understanding of the properties of the human circadian timing system and the consequences of circadian disruption can be applied to manned spaceflight.
Research on sleep, circadian rhythms and aging: applications to manned spaceflight.
Czeisler, C A; Chiasera, A J; Duffy, J F
1991-01-01
Disorders of sleep and circadian rhythmicity are characteristic of both advancing age and manned spaceflight. Sleep fragmentation, reduced nocturnal sleep tendency and sleep efficiency, reduced daytime alertness, and increased daytime napping are common to both of these conditions. Recent research on the pathophysiology and treatment of disrupted sleep in older people has led to a better understanding of how the human circadian pacemaker regulates the timing of the daily sleep-wake cycle and how it responds to the periodic changes in the light-dark cycle to which we are ordinarily exposed. These findings have led to new treatments for some of the sleep disorders common to older individuals, using carefully timed exposure to bright light and darkness to manipulate the phase and/or amplitude of the circadian timing system. These insights and treatment approaches have direct applications in the design of countermeasures allowing astronauts to overcome some of the challenges which manned spaceflight poses for the human circadian timing system. We have conducted an operational feasibility study on the use of scheduled exposure to bright light and darkness prior to launch in order to facilitate adaptation of the circadian system of a NASA space shuttle crew to the altered sleep-wake schedule required for their mission. The results of this study illustrate how an understanding of the properties of the human circadian timing system and the consequences of circadian disruption can be applied to manned spaceflight.
NASA Astrophysics Data System (ADS)
Dana Carpenter, R.; LeBlanc, Adrian D.; Evans, Harlan; Sibonga, Jean D.; Lang, Thomas F.
2010-07-01
To determine the long-term effects of long-duration spaceflight, we measured bone mineral density and bone geometry of International Space Station (ISS) crewmembers using quantitative computed tomography (QCT) before launch, immediately upon their return, one year after return, and 2-4.5 years after return from the ISS. Eight crew members (7 male, 1 female, mean age 45±4 years at start of mission) who spent an average of 181 days (range 161-196 days) aboard the ISS took part in the study. Integral bone mineral density (iBMD), trabecular BMD (tBMD), bone mineral content (BMC), and vertebral cross-sectional area (CSA) were measured in the lumbar spine, and iBMD, tBMD, cortical BMD (cBMD), BMC, CSA, volume, and femoral neck section modulus were measured in the hip. Spine iBMD was 95% of the average preflight value upon return from the ISS and reached its preflight value over the next 2-4.5 years. Spine tBMD was 97% of the average preflight value upon return from the ISS and tended to decrease throughout the course of the study. Vertebral CSA remained essentially unchanged throughout the study. Hip iBMD was 91% of the preflight value upon return from the ISS and was 95% of the preflight value after 2-4.5 years of recovery. Hip tBMD was 88% of the preflight value upon return and recovered to only 93% of the preflight value after 1 year. At the 2- to 4.5-year time point, average tBMD was 88% of the preflight value. During the recovery period the total volume and cortical bone volume in the hip reached values of 114% and 110% of their preflight values, respectively. The combination of age-related bone loss, long-duration spaceflight, and re-adaptation to the 1-g terrestrial environment presumably produced these changes. These long-term data suggest that skeletal changes that occur during long-duration spaceflight persist even after multiple years of recovery. These changes have important implications for the skeletal health of crew members, especially those who make repeat trips to space.
The effectiveness of RNAi in Caenorhabditis elegans is maintained during spaceflight.
Etheridge, Timothy; Nemoto, Kanako; Hashizume, Toko; Mori, Chihiro; Sugimoto, Tomoko; Suzuki, Hiromi; Fukui, Keiji; Yamazaki, Takashi; Higashibata, Akira; Szewczyk, Nathaniel J; Higashitani, Atsushi
2011-01-01
Overcoming spaceflight-induced (patho)physiologic adaptations is a major challenge preventing long-term deep space exploration. RNA interference (RNAi) has emerged as a promising therapeutic for combating diseases on Earth; however the efficacy of RNAi in space is currently unknown. Caenorhabditis elegans were prepared in liquid media on Earth using standard techniques and treated acutely with RNAi or a vector control upon arrival in Low Earth Orbit. After culturing during 4 and 8 d spaceflight, experiments were stopped by freezing at -80°C until analysis by mRNA and microRNA array chips, microscopy and Western blot on return to Earth. Ground controls (GC) on Earth were simultaneously grown under identical conditions. After 8 d spaceflight, mRNA expression levels of components of the RNAi machinery were not different from that in GC (e.g., Dicer, Argonaute, Piwi; P>0.05). The expression of 228 microRNAs, of the 232 analysed, were also unaffected during 4 and 8 d spaceflight (P>0.05). In spaceflight, RNAi against green fluorescent protein (gfp) reduced chromosomal gfp expression in gonad tissue, which was not different from GC. RNAi against rbx-1 also induced abnormal chromosome segregation in the gonad during spaceflight as on Earth. Finally, culture in RNAi against lysosomal cathepsins prevented degradation of the muscle-specific α-actin protein in both spaceflight and GC conditions. Treatment with RNAi works as effectively in the space environment as on Earth within multiple tissues, suggesting RNAi may provide an effective tool for combating spaceflight-induced pathologies aboard future long-duration space missions. Furthermore, this is the first demonstration that RNAi can be utilised to block muscle protein degradation, both on Earth and in space.
The Effectiveness of RNAi in Caenorhabditis elegans Is Maintained during Spaceflight
Hashizume, Toko; Mori, Chihiro; Sugimoto, Tomoko; Suzuki, Hiromi; Fukui, Keiji; Yamazaki, Takashi; Higashibata, Akira; Szewczyk, Nathaniel J.; Higashitani, Atsushi
2011-01-01
Background Overcoming spaceflight-induced (patho)physiologic adaptations is a major challenge preventing long-term deep space exploration. RNA interference (RNAi) has emerged as a promising therapeutic for combating diseases on Earth; however the efficacy of RNAi in space is currently unknown. Methods Caenorhabditis elegans were prepared in liquid media on Earth using standard techniques and treated acutely with RNAi or a vector control upon arrival in Low Earth Orbit. After culturing during 4 and 8 d spaceflight, experiments were stopped by freezing at −80°C until analysis by mRNA and microRNA array chips, microscopy and Western blot on return to Earth. Ground controls (GC) on Earth were simultaneously grown under identical conditions. Results After 8 d spaceflight, mRNA expression levels of components of the RNAi machinery were not different from that in GC (e.g., Dicer, Argonaute, Piwi; P>0.05). The expression of 228 microRNAs, of the 232 analysed, were also unaffected during 4 and 8 d spaceflight (P>0.05). In spaceflight, RNAi against green fluorescent protein (gfp) reduced chromosomal gfp expression in gonad tissue, which was not different from GC. RNAi against rbx-1 also induced abnormal chromosome segregation in the gonad during spaceflight as on Earth. Finally, culture in RNAi against lysosomal cathepsins prevented degradation of the muscle-specific α-actin protein in both spaceflight and GC conditions. Conclusions Treatment with RNAi works as effectively in the space environment as on Earth within multiple tissues, suggesting RNAi may provide an effective tool for combating spaceflight-induced pathologies aboard future long-duration space missions. Furthermore, this is the first demonstration that RNAi can be utilised to block muscle protein degradation, both on Earth and in space. PMID:21673804
Thyroid function changes related to use of iodinated water in the U.S. Space Program.
McMonigal, K A; Braverman, L E; Dunn, J T; Stanbury, J B; Wear, M L; Hamm, P B; Sauer, R L; Billica, R D; Pool, S L
2000-11-01
The National Aeronautics and Space Administration (NASA) has used iodination as a method of microbial disinfection of potable water systems in U.S. spacecraft and long-duration habitability modules. A review of thyroid function tests of NASA astronauts who had consumed iodinated water during spaceflight was conducted. Thyroid function tests of all past and present astronauts were reviewed. Medical records of astronauts with a diagnosis of thyroid disease were reviewed. Iodine consumption by space crews from water and food was determined. Serum thyroid-stimulating hormone (TSH) and urinary iodine excretion from space crews were measured following modification of the Space Shuttle potable water system to remove most of the iodine. Mean TSH significantly increased in 134 astronauts who had consumed iodinated water during spaceflight. Serum TSH, and urine iodine levels of Space Shuttle crewmembers who flew following modification of the potable water supply system to remove iodine did not show a statistically significant change. There was no evidence supporting association between clinical thyroid disease and the number of spaceflights, amount of iodine consumed, or duration of iodine exposure. It is suggested that pharmacological doses of iodine consumed by astronauts transiently decrease thyroid function, as reflected by elevated serum TSH values. Although adverse effects of excess iodine consumption in susceptible individuals are well documented, exposure to high doses of iodine during spaceflight did not result in a statistically significant increase in long-term thyroid disease in the astronaut population.
Effects of One Year of Spaceflight on Neurocognitive Function
NASA Technical Reports Server (NTRS)
Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Kofman, I. S.; Cassady, K.; Yuan , P.; De Dios, Y. E.; Gadd, N.; Riascos, R. F.; Wood, S. J.;
2017-01-01
It is known that spaceflight adversely affects human sensorimotor function. With interests in longer duration deep space missions it is important to understand microgravity dose-response relationships. NASA's One Year Mission project allows for comparison of the effects of one year in space with those seen in more typical six month missions to the International Space Station. In the Neuromapping project we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre- to post-spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad-ranging battery of sensory, motor, and cognitive assessments that are conducted pre-flight, during flight, and post-flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. With the one year mission we had one crewmember participate in all of the same measures pre-, per- and post-flight as in our ongoing study. During this presentation we will provide an overview of the magnitude of changes observed with our brain and behavioral assessments for the one year crewmember in comparison to participants that have completed our six month study to date.
Reduced heart rate variability during sleep in long-duration spaceflight.
Xu, D; Shoemaker, J K; Blaber, A P; Arbeille, P; Fraser, K; Hughson, R L
2013-07-15
Limited data are available to describe the regulation of heart rate (HR) during sleep in spaceflight. Sleep provides a stable supine baseline during preflight Earth recordings for comparison of heart rate variability (HRV) over a wide range of frequencies using both linear, complexity, and fractal indicators. The current study investigated the effect of long-duration spaceflight on HR and HRV during sleep in seven astronauts aboard the International Space Station up to 6 mo. Measurements included electrocardiographic waveforms from Holter monitors and simultaneous movement records from accelerometers before, during, and after the flights. HR was unchanged inflight and elevated postflight [59.6 ± 8.9 beats per minute (bpm) compared with preflight 53.3 ± 7.3 bpm; P < 0.01]. Compared with preflight data, HRV indicators from both time domain and power spectral analysis methods were diminished inflight from ultralow to high frequencies and partially recovered to preflight levels after landing. During inflight and at postflight, complexity and fractal properties of HR were not different from preflight properties. Slow fluctuations (<0.04 Hz) in HR presented moderate correlations with movements during sleep, partially accounting for the reduction in HRV. In summary, substantial reduction in HRV was observed with linear, but not with complexity and fractal, methods of analysis. These results suggest that periodic elements that influence regulation of HR through reflex mechanisms are altered during sleep in spaceflight but that underlying system complexity and fractal dynamics were not altered.
Jones, J A; Johnston, S; Campbell, M; Miles, B; Billica, R
1999-05-01
The risk of a urinary calculus during an extended duration mission into the reduced gravity environment of space is significant. For medical operations to develop a comprehensive strategy for the spaceflight stone risk, both preventive countermeasures and contingency management (CM) plans must be included. A feasibility study was conducted to demonstrate the potential CM technique of endoscopic ureteral stenting with ultrasound guidance for the possible in-flight urinary calculus contingency. The procedure employed the International Space Station/Human Research Facility ultrasound unit for guide wire and stent localization, a flexible cystoscope for visual guidance, and banded, biocompatible soft ureteral stents to successfully stent porcine ureters bilaterally in zero gravity (0g). The study demonstrated that downlinked endoscopic surgical and ultrasound images obtained in 0g are comparable in quality to 1g images, and therefore are useful for diagnostic clinical utility via telemedicine transmission. In order to be successful, surgical procedures in 0g require excellent positional stability of the operating surgeon, assistant, and patient, relative to one another. The technological development of medical procedures for long-duration spaceflight contingencies may lead to improved terrestrial patient care methodology and subsequently reduced morbidity.
NASA Technical Reports Server (NTRS)
Jones, J. A.; Johnston, S.; Campbell, M.; Miles, B.; Billica, R.
1999-01-01
OBJECTIVES: The risk of a urinary calculus during an extended duration mission into the reduced gravity environment of space is significant. For medical operations to develop a comprehensive strategy for the spaceflight stone risk, both preventive countermeasures and contingency management (CM) plans must be included. METHODS: A feasibility study was conducted to demonstrate the potential CM technique of endoscopic ureteral stenting with ultrasound guidance for the possible in-flight urinary calculus contingency. The procedure employed the International Space Station/Human Research Facility ultrasound unit for guide wire and stent localization, a flexible cystoscope for visual guidance, and banded, biocompatible soft ureteral stents to successfully stent porcine ureters bilaterally in zero gravity (0g). RESULTS: The study demonstrated that downlinked endoscopic surgical and ultrasound images obtained in 0g are comparable in quality to 1g images, and therefore are useful for diagnostic clinical utility via telemedicine transmission. CONCLUSIONS: In order to be successful, surgical procedures in 0g require excellent positional stability of the operating surgeon, assistant, and patient, relative to one another. The technological development of medical procedures for long-duration spaceflight contingencies may lead to improved terrestrial patient care methodology and subsequently reduced morbidity.
NASA Technical Reports Server (NTRS)
Buckey, J. C. Jr; Musiek, F. E.; Kline-Schoder, R.; Clark, J. C.; Hart, S.; Havelka, J.
2001-01-01
BACKGROUND: Temporary and, in some cases, permanent hearing loss has been documented after long-duration spaceflights. METHODS: We examined all existing published data on hearing loss after space missions to characterize the losses. RESULTS: Data from Russian missions suggest that the hearing loss, when it occurs, affects mainly mid to high frequencies and that using hearing protection often might prevent the loss. Several significant questions remain about hearing loss in space. While the hearing loss has been presumed to be noise-induced, no clear link has been established between noise exposure and hearing loss during spaceflight. In one documented case of temporary hearing loss from the Shuttle-Mir program, the pattern of loss was atypical for a noise-induced loss. Continuous noise levels that have been measured on the Mir and previous space stations, while above engineering standards, are not at levels usually associated with hearing loss in ground-based studies (which have usually been limited to 8-10 h exposure periods). Attempts to measure hearing in space using threshold-based audiograms have been unsuccessful in both the American and Russian programs due to noise interference with the measurements. CONCLUSIONS: The existing data highlight the need for reliable monitoring of both hearing and noise in long-duration spaceflight.
Fish Inner Ear Otolith Growth Under Real Microgravity (Spaceflight) and Clinorotation
NASA Astrophysics Data System (ADS)
Anken, Ralf; Brungs, Sonja; Grimm, Dennis; Knie, Miriam; Hilbig, Reinhard
2016-06-01
Using late larval stages of cichlid fish ( Oreochromis mossambicus) we have shown earlier that the biomineralization of otoliths is adjusted towards gravity by means of a neurally guided feedback loop. Centrifuge experiments, e.g., revealed that increased gravity slows down otolith growth. Microgravity thus should yield an opposite effect, i.e., larger than normal otoliths. Consequently, late larval cichlids (stage 14, vestibular system operational) were subjected to real microgravity during the 12 days FOTON-M3 spaceflight mission (OMEGAHAB-hardware). Controls were kept at 1 g on ground within an identical hardware. Animals of another batch were subsequently clinorotated within a submersed fast-rotating clinostat with one axis of rotation (2d-clinostat), a device regarded to simulate microgravity. Temperature and light conditions were provided in analogy to the spaceflight experiment. Controls were maintained at 1 g within the same aquarium. After all experiments, animals had reached late stage 21 (fish can swim freely). Maintenance under real microgravity during spaceflight resulted in significantly larger than normal otoliths (both lapilli and sagittae, involved in sensing gravity and the hearing process, respectively). This result is fully in line with an earlier spaceflight study in the course of which otoliths from late-staged swordtails Xiphophorus helleri were analyzed. Clinorotation resulted in larger than 1 g sagittae. However, no effect on lapilli was obtained. Possibly, an effect was present but too light to be measurable. Overall, spaceflight obviously induces an adaptation of otolith growth, whereas clinorotation does not fully mimic conditions of microgravity regarding late larval cichlids.
Leukocyte subsets and neutrophil function after short-term spaceflight
NASA Technical Reports Server (NTRS)
Stowe, R. P.; Sams, C. F.; Mehta, S. K.; Kaur, I.; Jones, M. L.; Feeback, D. L.; Pierson, D. L.
1999-01-01
Changes in leukocyte subpopulations and function after spaceflight have been observed but the mechanisms underlying these changes are not well defined. This study investigated the effects of short-term spaceflight (8-15 days) on circulating leukocyte subsets, stress hormones, immunoglobulin levels, and neutrophil function. At landing, a 1.5-fold increase in neutrophils was observed compared with preflight values; lymphocytes were slightly decreased, whereas the results were variable for monocytes. No significant changes were observed in plasma levels of immunoglobulins, cortisol, or adrenocorticotropic hormone. In contrast, urinary epinephrine, norepinephrine, and cortisol were significantly elevated at landing. Band neutrophils were observed in 9 of 16 astronauts. Neutrophil chemotactic assays showed a 10-fold decrease in the optimal dose response after landing. Neutrophil adhesion to endothelial cells was increased both before and after spaceflight. At landing, the expression of MAC-1 was significantly decreased while L-selectin was significantly increased. These functional alterations may be of clinical significance on long-duration space missions.
Sleep in High Stress Occupations
NASA Technical Reports Server (NTRS)
Flynn-Evans, Erin
2014-01-01
High stress occupations are associated with sleep restriction, circadian misalignment and demanding workload. This presentation will provide an overview of sleep duration, circadian misalignment and fatigue countermeasures and performance outcomes during spaceflight and commercial aviation.
Development of task network models of human performance in microgravity
NASA Technical Reports Server (NTRS)
Diaz, Manuel F.; Adam, Susan
1992-01-01
This paper discusses the utility of task-network modeling for quantifying human performance variability in microgravity. The data are gathered for: (1) improving current methodologies for assessing human performance and workload in the operational space environment; (2) developing tools for assessing alternative system designs; and (3) developing an integrated set of methodologies for the evaluation of performance degradation during extended duration spaceflight. The evaluation entailed an analysis of the Remote Manipulator System payload-grapple task performed on many shuttle missions. Task-network modeling can be used as a tool for assessing and enhancing human performance in man-machine systems, particularly for modeling long-duration manned spaceflight. Task-network modeling can be directed toward improving system efficiency by increasing the understanding of basic capabilities of the human component in the system and the factors that influence these capabilities.
Cardiovascular adaptation to spaceflight
NASA Technical Reports Server (NTRS)
Hargens, A. R.; Watenpaugh, D. E.
1996-01-01
This article reviews recent flight and ground-based studies of cardiovascular adaptation to spaceflight. Prominent features of microgravity exposure include loss of gravitational pressures, relatively low venous pressures, headward fluid shifts, plasma volume loss, and postflight orthostatic intolerance and reduced exercise capacity. Many of these short-term responses to microgravity extend themselves during long-duration microgravity exposure and may be explained by altered pressures (blood and tissue) and fluid balance in local tissues nourished by the cardiovascular system. In this regard, it is particularly noteworthy that tissues of the lower body (e.g., foot) are well adapted to local hypertension on Earth, whereas tissues of the upper body (e.g., head) are not as well adapted to increase in local blood pressure. For these and other reasons, countermeasures for long-duration flight should include reestablishment of higher, Earth-like blood pressures in the lower body.
Drug stability analyzer for long duration spaceflights
NASA Astrophysics Data System (ADS)
Shende, Chetan; Smith, Wayne; Brouillette, Carl; Farquharson, Stuart
2014-06-01
Crewmembers of current and future long duration spaceflights require drugs to overcome the deleterious effects of weightlessness, sickness and injuries. Unfortunately, recent studies have shown that some of the drugs currently used may degrade more rapidly in space, losing their potency well before their expiration dates. To complicate matters, the degradation products of some drugs can be toxic. Consequently there is a need for an analyzer that can determine if a drug is safe at the time of use, as well as to monitor and understand space-induced degradation, so that drug types, formulations, and packaging can be improved. Towards this goal we have been investigating the ability of Raman spectroscopy to monitor and quantify drug degradation. Here we present preliminary data by measuring acetaminophen, and its degradation product, p-aminophenol, as pure samples, and during forced degradation reactions.
NASA Technical Reports Server (NTRS)
Mills, P. J.; Meck, J. V.; Waters, W. W.; D'Aunno, D.; Ziegler, M. G.
2001-01-01
OBJECTIVE: The objective of this study was to determine the effects of spaceflight duration on immune cells and their relationship to catecholamine levels. METHODS: Eleven astronauts who flew aboard five different US Space Shuttle flights ranging in duration from 4 to 16 days were studied before launch and after landing. RESULTS: Consistent with prior studies, spaceflight was associated with a significant increase in the number of circulating white blood cells (p <.01), including neutrophils (p <.01), monocytes (p <.05), CD3+CD4+ T-helper cells (p <.05), and CD19+ B cells (p <.01). In contrast, the number of CD3-CD16+56+ natural killer cells was decreased (p <.01). Plasma norepinephrine levels were increased at landing (p <.01) and were significantly correlated with the number of white blood cells (p <.01), neutrophils (p <.01), monocytes (p <.01), and B cells (p <.01). Astronauts who were in space for approximately 1 week showed a significantly larger increase on landing in plasma norepinephrine (p =.02) and epinephrine (p =.03) levels, as well as number of circulating CD3+CD4+ T-helper cells (p <.05) and CD3+CD8+ T-cytotoxic cells (p <.05) as compared with astronauts in space for approximately 2 weeks. CONCLUSIONS: The data suggest that the stress of spaceflight and landing may lead to a sympathetic nervous system-mediated redistribution of circulating leukocytes, an effect potentially attenuated after longer missions.
Plant reproduction in spaceflight environments
NASA Technical Reports Server (NTRS)
Musgrave, M. E.; Kuang, A.; Porterfield, D. M.
1997-01-01
Because plant reproduction is a complex developmental process there are many possible sites of perturbation by the unusual environments of orbital spacecraft. Previous long-duration experiments on Soviet platforms shared features of slowed development through the vegetative stage of plant growth and aborted reproductive function. Our goal has been to understand how special features of the spaceflight environment impact physiological function and reproductive development. In a series of short-duration experiments in the Shuttle mid-deck we studied early reproductive development in Arabidopsis thaliana. Pollen and ovule development aborted at an early stage in the first experiment on STS-54 which utilized closed plant growth chambers. Post-flight analysis suggested that the plants may have been carbon dioxide limited. Subsequent experiments utilized carbon dioxide enrichment (on STS-51) and cabin air flow-through with an air exchange system (on STS-68). Both modifications allowed pollen and ovule development to occur normally on orbit, and full reproductive development up to the stage of an immature seed occurred on STS-68. However, analysis of plant roots from these experiments demonstrated a limitation in rootzone aeration in the spaceflight material that was not mitigated by these procedures. In the future, additional resources (crew time, upgraded flight hardware, and special platforms) will invite more elaborate, long-duration experimentation. On the ISS, a variable speed centrifuge and upgraded plant habitats will permit detailed experiments on the role of gravity in shaping the plant micro-environment, and what influence this plays during reproduction.
Changes in toe clearance during treadmill walking after long-duration spaceflight.
Miller, Christopher A; Peters, Brian T; Brady, Rachel R; Richards, Jason R; Ploutz-Snyder, Robert J; Mulavara, Ajitkumar P; Bloomberg, Jacob J
2010-10-01
Astronauts exhibit sensorimotor changes upon return from long-duration spaceflight that can result in altered gait kinematics and possibly an increased risk of tripping. Toe trajectory during locomotion is a precise motor control task involving both legs, thus providing a composite metric of locomotor control. The purpose of this study was to determine whether astronauts are at an increased risk of tripping after their return from long-duration spaceflight. This was accomplished by assessing the pre- to postflight changes in toe clearance during treadmill walking. Ten crewmembers walked on a treadmill while performing a visual-acuity task pre- and postflight. In the three subjects on whom landing day data were available, each exhibited a characteristic of increased tripping risk on landing day: either a decreased median toe clearance or an increased interquartile range (a measure of variance). For all crewmembers, toe clearance median and interquartile range were not significantly different from preflight for the other postflight sessions (the earliest being 1 d after landing). A follow-up analysis showed that changes in foot pitch, ankle dorsiflexion, and pelvis roll angles were significant predictors of changes in toe clearance. The landing-day observations indicated an increased risk of tripping, which may pose a hazard during locomotion immediately upon return to Earth, especially in an emergency scenario. However, tripping risk on subsequent days was not different than preflight. The joint angle analysis suggested that the crewmembers tried to reestablish their normal walking pattern postflight, instead of developing a new motor control strategy.
Protein kinetics during and after long-duration spaceflight on MIR
NASA Technical Reports Server (NTRS)
Stein, T. P.; Leskiw, M. J.; Schluter, M. D.; Donaldson, M. R.; Larina, I.
1999-01-01
Human spaceflight is associated with a loss of body protein. Bed rest studies suggest that the reduction in the whole body protein synthesis (PS) rate should be approximately 15%. The objectives of this experiment were to test two hypotheses on astronauts and cosmonauts during long-duration (>3 mo) flights on MIR: that 1) the whole body PS rate will be reduced and 2) dietary intake and the PS rate should be increased postflight because protein accretion is occurring. The 15N glycine method was used for measuring whole body PS rate before, during, and after long-duration spaceflight on the Russian space station MIR. Dietary intake was measured together with the protein kinetics. Results show that subjects lost weight during flight (4.64 +/- 1.0 kg, P < 0.05). Energy intake was decreased inflight (2,854 +/- 268 vs. 2,145 +/- 190 kcal/day, n = 6, P < 0.05), as was the PS rate (226 +/- 24 vs. 97 +/- 11 g protein/day, n = 6, P < 0.01). The reduction in PS correlated with the reduction in energy intake (r2 = 0.86, P < 0.01, n = 6). Postflight energy intake and PS returned to, but were not increased over, the preflight levels. We conclude that the reduction in PS found was greater than predicted from ground-based bed rest experiments because of the shortfall in dietary intake. The expected postflight anabolic state with increases in dietary intake and PS did not occur during the first 2 wk after landing.
Medical qualification of a commercial spaceflight participant: not your average astronaut.
Jennings, Richard T; Murphy, David M F; Ware, David L; Aunon, Serena M; Moon, Richard E; Bogomolov, Valery V; Morgun, Valeri V; Voronkov, Yuri I; Fife, Caroline E; Boyars, Michael C; Ernst, Randy D
2006-05-01
Candidates for commercial spaceflight may be older than the typical astronaut and more likely to have medical problems that place them at risk during flight. Since the effects of microgravity on many medical conditions are unknown, physicians have little guidance when evaluating and certifying commercial spaceflight participants. This dynamic new era in space exploration may provide important data for evaluating medical conditions, creating appropriate medical standards, and optimizing treatment alternatives for long-duration spaceflight. A 57-yr-old spaceflight participant for an ISS mission presented with medical conditions that included moderately severe bullous emphysema, previous spontaneous pneumothorax with talc pleurodesis, a lung parenchymal mass, and ventricular and atrial ectopy. The medical evaluation required for certification was extensive and included medical studies and monitoring conducted in analogue spaceflight environments including altitude chambers, high altitude mixed-gas simulation, zero-G aircraft, and high-G centrifuge. To prevent recurrence of pneumothorax, we performed video-assisted thoracoscopic pleurodesis, and to assess lung masses, several percutaneous or direct biopsies. The candidate's 10-d mission was without incident. Non-career astronauts applying for commercial suborbital and orbital spaceflight will, at least in the near future, challenge aerospace physicians with unknowns regarding safety during training and flight, and highlight important ethical and risk-assessment problems. The information obtained from this new group of space travelers will provide important data for the evaluation and in-flight treatment of medical problems that space programs have not yet addressed systematically, and may improve the medical preparedness of exploration-class missions.
NASA Technical Reports Server (NTRS)
Smith, S. M.; Davis-Street, J. E.; Rice, B. L.; Nillen, J. L.; Gillman, P. L.; Block, G.
2001-01-01
Adequate nutrition is critical during long-term spaceflight, as is the ability to easily monitor dietary intake. A comprehensive nutritional status assessment profile was designed for use before, during and after flight. It included assessment of both dietary intake and biochemical markers of nutritional status. A spaceflight food-frequency questionnaire (FFQ) was developed to evaluate intake of key nutrients during spaceflight. The nutritional status assessment protocol was evaluated during two ground-based closed-chamber studies (60 and 91 d; n = 4/study), and was implemented for two astronauts during 4-mo stays on the Mir space station. Ground-based studies indicated that the FFQ, administered daily or weekly, adequately estimated intake of key nutrients. Chamber subjects maintained prechamber energy intake and body weight. Astronauts tended to eat 40--50% of WHO-predicted energy requirements, and lost >10% of preflight body mass. Serum ferritin levels were lower after the chamber stays, despite adequate iron intake. Red blood cell folate concentrations were increased after the chamber studies. Vitamin D stores were decreased by > 40% on chamber egress and after spaceflight. Mir crew members had decreased levels of most nutritional indices, but these are difficult to interpret given the insufficient energy intake and loss of body mass. Spaceflight food systems can provide adequate intake of macronutrients, although, as expected, micronutrient intake is a concern for any closed or semiclosed food system. These data demonstrate the utility and importance of nutritional status assessment during spaceflight and of the FFQ during extended-duration spaceflight.
Molecular Mechanisms of Circadian Regulation During Spaceflight
NASA Technical Reports Server (NTRS)
Zanello, Susana; Boyle, Richard
2011-01-01
Disruption of the regular environmental circadian cues in addition to stringent and demanding operational schedules are two main factors that undoubtedly impact sleep patterns and vigilant performance in the astronaut crews during spaceflight. Most research is focused on the behavioral aspects of the risk of circadian desynchronization, characterized by fatigue and health and performance decrement. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate this risk. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. The molecular clock consists of sets of proteins that perform different functions within the clock machinery: circadian oscillators (genes whose expression levels cycle during the day, keep the pass of cellular time and regulate downstream effector genes), the effector or output genes (those which impact the physiology of the tissue or organism), and the input genes (responsible for sensing the environmental cues that allow circadian entrainment). The main environmental cue is light. As opposed to the known photoreceptors (rods and cones), the non-visual light stimulus is received by a subset of the population of retinal ganglion cells called intrinsically photosensitive retinal ganglion cells (ipRGC) that express melanopsin (opsin 4 -Opn4-) as the photoreceptor. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight. To answer this question, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (animal enclosure module) mice were used as ground controls. Opn4 expression was analyzed by real time RT/qPCR and retinal sections were stained for Opn4 immunofluorescence. Opn4 was decreased (abrogated in one case) in retinas that concurrently showed higher evidence of oxidative stress. We propose that oxidative stress can lead to a decrease in melanopsin expression, likely via ipRGC loss or impairment, and thus, it can be a contributing factor to circadian disruption during spaceflight. Countermeasures contemplating the use of light should therefore be complemented with melanopsin expression maintenance and/or reduction in oxidative stress.
Adaptive Effects on Locomotion Performance Following Exposure to a Rotating Virtual Environment
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Richards, J. T.; Marshburn, A. M.; Bucello, R.; Bloomberg, J. J.
2003-01-01
During long-duration spaceflight, astronauts experience alterations in vestibular and somatosensory cues that result in adaptive disturbances in balance and coordination upon return to Earth. These changes can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate the adaptive sensorimotor component underlying the locomotor disturbances that occur after spaceflight. Therefore, the goal of this study is to develop an inflight training regimen that facilitates recovery of locomotor function after long-duration spaceflight. The countermeasure we are proposing is based on the concept of adaptive generalization. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, i.e., the subject learns response generalizability or the ability to "learn to learn." under a variety of environmental constraints. We are developing an inflight countermeasure built around treadmill exercise activities. By manipulating the sensory conditions of exercise by varying visual flow patterns, body load and speed we will systematically and repeatedly promote adaptive change in locomotor behavior. It has been shown that variable practice training increases adaptability to novel visuo-motor situations. While walking over ground in a stereoscopic virtual environment that oscillated in roll, subjects have shown compensatory torso rotation in the direction of scene rotation that resulted in positional variation away from a desired linear path. Thus, postural sway and locomotor stability in 1-g can be modulated by visual flow patterns and used during inflight treadmill training to promote adaptive generalization. The purpose of this study was to determine if adaptive modification in locomotor performance could be achieved by viewing simulated self-motion in a passive-immersive virtual ' environment over a prolonged period during treadmill locomotion.
Chang, Douglas G; Healey, Robert M; Snyder, Alexander J; Sayson, Jojo V; Macias, Brandon R; Coughlin, Dezba G; Bailey, Jeannie F; Parazynski, Scott E; Lotz, Jeffrey C; Hargens, Alan R
2016-12-15
Prospective case series. Evaluate lumbar paraspinal muscle (PSM) cross-sectional area and intervertebral disc (IVD) height changes induced by a 6-month space mission on the International Space Station. The long-term objective of this project is to promote spine health and prevent spinal injury during space missions and here on Earth. National Aeronautics and Space Administration (NASA) crewmembers have a 4.3 times higher risk of herniated IVDs, compared with the general and military aviator populations. The highest risk occurs during the first year after a mission. Microgravity exposure during long-duration spaceflights results in approximately 5 cm lengthening of body height, spinal pain, and skeletal deconditioning. How the PSMs and IVDs respond during spaceflight is not well described. Six NASA crewmembers were imaged supine with a 3 Tesla magnetic resonance imaging. Imaging was conducted preflight, immediately postflight, and then 33 to 67 days after landing. Functional cross-sectional area (FCSA) measurements of the PSMs were performed at the L3-4 level. FCSA was measured by grayscale thresholding within the posterior lumbar extensors to isolate lean muscle on T2-weighted scans. IVD heights were measured at the anterior, middle, and posterior sections of all lumbar levels. Repeated measures analysis of variance was used to determine significance at P < 0.05, followed by post-hoc testing. Paraspinal lean muscle mass, as indicated by the FCSA, decreased from 86% of the total PSM cross-sectional area down to 72%, immediately after the mission. Recovery of 68% of the postflight loss occurred during the next 6 weeks, still leaving a significantly lower lean muscle fractional content compared with preflight values. In contrast, lumbar IVD heights were not appreciably different at any time point. The data reveal lumbar spine PSM atrophy after long-duration spaceflight. Some FCSA recovery was seen with 46 days postflight in a terrestrial environment, but it remained incomplete compared with preflight levels. 4.
Functional and cellular adaptation to weightlessness in primates
NASA Technical Reports Server (NTRS)
Bodine-Fowler, Sue C.; Pierotti, David J.; Talmadge, Robert J.
1995-01-01
Considerable data has been collected on the response of hindlimb muscles to unloading due to both spaceflight and hindlimb suspension. One generalized response to a reduction in load is muscle fiber atrophy, although not all muscles respond the same. Our understanding of how muscles respond to microgravity, however, has come primarily from the examination of hindlimb muscles in the unrestrained rate in space. The non-human primate spaceflight paradigm differs considerably from the rodent paradigm in that the monkeys are restrained, usually in a sitting position, while in space. Recently, we examined the effects of microgravity on muscles of the Rhesus monkey by taking biopsies of selected hindlimb muscles prior to and following spaceflights of 14 and 12 day durations (Cosmos 2044 and 2229). Our results revealed that the monkey's response to microgravity differs from that of the rat. The apparent differences in the atrophic response of the hindlimb muscles of the monkey and rat to spaceflight may be attributed to the following: (1) a species difference; (2) a difference in the manner in which the animals were maintained during the flight (i.e., chair restraint or 'free-floating'); and/or (3) an ability of the monkeys to counteract the effects of spaceflight with resistive exercise.
Measurement of venous compliance (8-IML-1)
NASA Technical Reports Server (NTRS)
Thirsk, R. B.
1992-01-01
The prime objective of this International Microgravity Laboratory (IML-1) investigation is to measure the bulk compliance (distensibility) of the veins in the lower leg before, during, and after spaceflight. It is of particular interest whether venous compliance over the range of both positive and negative transmural pressures (various states of venous distention and collapse) changes throughout the duration of spaceflight. Information concerning the occurrence and character of compliance changes could have implications for the design of improved antigravity suits and further the understanding of inflight and postflight venous hemodynamics.
Contamination Mitigation Strategies for Long Duration Human Spaceflight Missions
NASA Technical Reports Server (NTRS)
Lewis, Ruthan; Lupisella, Mark; Bleacher, Jake; Farrell, William
2017-01-01
Contamination control issues are particularly challenging for long-term human spaceflight and are associated with the search for life, dynamic environmental conditions, human-robotic-environment interaction, sample collection and return, biological processes, waste management, long-term environmental disturbance, etc. These issues impact mission success, human health, planetary protection, and research and discovery. Mitigation and control techniques and strategies may include and integrate long-term environmental monitoring and reporting, contamination control and planetary protection protocols, habitation site design, habitat design, and surface exploration and traverse pathways and area access planning.
NASA Technical Reports Server (NTRS)
Laughlin, Mitzi S.; Murray, Jocelyn D.; Wear, Mary L.; Van Baalen, Mary
2016-01-01
Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors.
Effects of Long Duration Spaceflight on Venous and Arterial Compliance in Astronants
NASA Technical Reports Server (NTRS)
Platts, Steven; Ribeiro, L. Christine
2014-01-01
1. Project Overview Visual impairment and intracranial pressure (VIIP) is a spaceflight-associated medical condition affecting at least a third of American astronauts who have flown International Space Station (ISS) missions. VIIP is defined primarily by visual acuity deficits and anatomical changes to eye structures. In some astronauts, eye-related changes do not revert back to the preflight state upon return to Earth. Our team will study some of the possible causes for this syndrome. This will be achieved by reviewing previous astronaut data for factors that may predispose astronauts to higher rates of developing this syndrome or greater severity of symptoms. Additionally, we will conduct 3 separate experiments that will characterize vessels in the head and neck and measure the effects of the experimental conditions on ocular structures and function. 2. Technical Summary The primary objective of this study is to determine whether vascular compliance is altered by spaceflight and whether such adaptations are related to the incidence of the VIIP. In particular, we will measure ocular parameters and vascular compliance in vessels of the head and neck in astronauts who have no spaceflight experience (Ground), in astronauts before, during, and after spaceflight (Flight), and in bed rest subjects with conditions similar to spaceflight (Bed Rest). Additionally, we will analyze astronaut data from the Lifetime Surveillance of Astronaut Health (LSAH) archives to determine which factors might be predictive of the development of VIIP (Data Mining). The project will be conducted in four separate, but related parts. Hypothesis The central hypothesis of this proposal is that exposure to the spaceflight environment aboard the ISS may lead to development of the VIIP syndrome (increased intracranial pressure and impaired visual acuity) and that this may be related to alterations in venous and/or arterial compliance in the head and neck. Specific Aims 1. To determine whether noninvasive measures of venous and arterial compliance are altered by long-duration spaceflight exposure in ISS astronauts and whether these changes are related to the development of the VIIP syndrome. (Flight) 2. To determine whether previous spaceflight experience predispose astronauts to lower venous compliance and/or the development of the VIIP syndrome. (Ground + Flight) 3. To use a 14-day, 6deg head-down-tilt bed rest as a model of spaceflight, to evaluate the effect of aging on vascular compliance using a subject population similar to younger (25-35 yr) and older (45-55 yr) astronaut cohorts. (Bed Rest) 4. To determine what factors contribute to lower venous compliance and/or the development of the VIIP syndrome in astronauts. (Data Mining) 3. Earth Applications This research may inform the mechanisms that regulate blood/fluid flow in and out of the brain in the head and neck. This information may help with understanding of the mechanisms behind idiopathic intracranial hypertension. 4. Link to NASA Taskbook Entry Not Yet Available
NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.
2010-01-01
BACKGROUND Spaceflight-associated immune dysregulation (SAID) occurs during spaceflight and may represent specific clinical risks for exploration-class missions. An appropriate ground analog for spaceflight-associated immune dysregulation would offer a platform for ground-evaluation of various potential countermeasures. This study evaluated the NASA Undersea Mission Operations ( NEEMO ), consisting of 14 day undersea deployment at the Aquarius station, as an analog for SAID. Sixteen Aquanauts from missions NEEMO-12, 13 and 14 participated in the study. RESULTS Mid-mission alterations leukocyte distribution occurred, including granulocytosis and elevations in central-memory CD8+ T-cells. General T cell function was reduced during NEEMO missions in roughly 50% of subjects. Secreted cytokines profiles were evaluated following whole blood stimulation with CD3/CD28 (T cells) or LPS (monocytes). T cell production of IFNg, IL-5, IL-10, IL-2, TNFa and IL-6 were all reduced before and during the mission. Conversely, monocyte production of TNFa, IL-10, IL-6, IL-1b and IL-8 were elevated during mission, moreso at the MD-14 timepoint. Antibodies to Epstein-Barr virus (EBV) viral capsid antigen and early antigen were increased in approximately 40% of the subjects. Changes in EBV tetramer-positive CD8+ T-cells exhibited a variable pattern. Antibodies against Cytomegalovirus (CMV) were marginally increased during the mission. Herpesvirus reactivation was determined by PCR. EBV viral load was generally elevated at L-6. Higher levels of salivary EBV were found during the NEEMO mission than before and after as well as than the healthy controls. No VZV or CMV was found in any pre, during and after NEEMO mission or control samples. Plasma cortisol was elevated at L-6. CONCLUSION Unfortunately, L-6 may be too near to mission start to be an appropriate baseline measurement. The general immune changes in leukocyte distribution, T cell function, cytokine production, virus specific immunity and viral reactivation are similar to those observed during or following spaceflight. The NEEMO platform may thus have utility for short-duration, ground-based spaceflight-immune research, such as investigations of mechanism or countermeasures validation.
Black Molecular Adsorber Coatings for Spaceflight Applications
NASA Technical Reports Server (NTRS)
Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.
2014-01-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Black molecular adsorber coatings for spaceflight applications
NASA Astrophysics Data System (ADS)
Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.
2014-09-01
The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.
Training for long duration space missions
NASA Technical Reports Server (NTRS)
Goldberg, Joseph H.
1987-01-01
The successful completion of an extended duration manned mission to Mars will require renewed research effort in the areas of crew training and skill retention techniques. The current estimate of inflight transit time is about nine months each way, with a six month surface visit, an order of magnitude beyond previous U.S. space missions. Concerns arise when considering the level of skill retention required for highly critical, one time operations such as an emergency procedure or a Mars orbit injection. The factors responsible for the level of complex skill retention are reviewed, optimal ways of refreshing degraded skills are suggested, and a conceptual crew training design for a Mars mission is outlined. Currently proposed crew activities during a Mars mission were reviewed to identify the spectrum of skills which must be retained over a long time period. Skill retention literature was reviewed to identify those factors which must be considered in deciding when and which tasks need retraining. Task, training, and retention interval factors were identified. These factors were then interpreted in light of the current state of spaceflight and adaptive training systems.
Human skeletal muscle protein breakdown during spaceflight
NASA Technical Reports Server (NTRS)
Stein, T. P.; Schluter, M. D.
1997-01-01
Human spaceflight is associated with a loss of body protein. Excretion of 3-methylhistidine (3-MH) in the urine is a useful measurement of myofibrillar protein breakdown. Bed rest, particularly with 6 degrees head-down tilt, is an accepted ground-based model for human spaceflight. The objectives of this report were to compare 3-MH excretion from two Life Sciences shuttle missions (duration 9.5 and 15 days, n = 9) and from 17 days of bed rest (n = 7) with 6 degrees head-down tilt. The bed rest study was designed to mimic an actual Life Sciences spaceflight and so incorporated an extensive battery of physiological tests focused on the musculoskeletal system. Results showed that nitrogen retention, based on excretion of nitrogen in the urine, was reduced during both bed rest [from 22 +/- 1 to 1 +/- 5 mg N x kg(-1) x day(-1) (n = 7; P < 0.05)] and spaceflight [from 57 +/- 9 to 19 +/- 3 mg N x kg(-1) x day(-1) (n = 9; P < 0.05)]. 3-MH excretion was unchanged with either bed rest [pre-bed rest 5.30 +/- 0.29 vs. bed rest 5.71 +/- 0.30 micromol 3-MH x kg(-1) x day(-1), n = 7; P = not significant (NS)] or spaceflight [preflight 4.98 +/- 0.37 vs. 4.59 +/- 0.39 micromol 3-MH x kg(-1) x day(-1) in-flight, n = 9; P = NS]. We conclude that 1) 3-MH excretion was unaffected by spaceflight on the shuttle or with bed rest plus exercise, and 2) because protein breakdown (elevated 3-MH) was increased on Skylab but not on the shuttle, it follows that muscle protein breakdown is not an inevitable consequence of spaceflight.
Human behavioral research in space: quandaries for research subjects and researchers
NASA Technical Reports Server (NTRS)
Shepanek, Marc
2005-01-01
With the advent of long-duration spaceflight on board the International Space Station (ISS) and possible future missions beyond low Earth orbit (LEO) such as Mars, it is critical that those at NASA have a realistic assessment of the challenges that will face individuals on long-duration missions so that they can develop preventive and real-time countermeasures to behavioral health issues. While space travellers are very interested in having countermeasures to the deleterious effects of space missions, they have a powerful disincentive to participate in this research if they feel it could in any way negatively affect their flight status. The behavioral issues of isolation and confinement for extended-duration space missions are reviewed. Areas of basic and clinical behavioral research are listed. And the classical clinical model for research is not considered appropriate for the current configuration of the space program. The use of analogue environments and advanced statistical analysis are suggested as ways to address the limited spaceflight research opportunities. The challenge of research subject or patient confidentiality vs. mission safety and issues of personal flight status are addressed.
Water: A Critical Material Enabling Space Exploration
NASA Technical Reports Server (NTRS)
Pickering, Karen D.
2014-01-01
Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.
Microgravity-Induced Fluid Shift and Ophthalmic Changes
Nelson, Emily S.; Mulugeta, Lealem; Myers, Jerry G.
2014-01-01
Although changes to visual acuity in spaceflight have been observed in some astronauts since the early days of the space program, the impact to the crew was considered minor. Since that time, missions to the International Space Station have extended the typical duration of time spent in microgravity from a few days or weeks to many months. This has been accompanied by the emergence of a variety of ophthalmic pathologies in a significant proportion of long-duration crewmembers, including globe flattening, choroidal folding, optic disc edema, and optic nerve kinking, among others. The clinical findings of affected astronauts are reminiscent of terrestrial pathologies such as idiopathic intracranial hypertension that are characterized by high intracranial pressure. As a result, NASA has placed an emphasis on determining the relevant factors and their interactions that are responsible for detrimental ophthalmic response to space. This article will describe the Visual Impairment and Intracranial Pressure syndrome, link it to key factors in physiological adaptation to the microgravity environment, particularly a cephalad shifting of bodily fluids, and discuss the implications for ocular biomechanics and physiological function in long-duration spaceflight. PMID:25387162
Human behavioral research in space: quandaries for research subjects and researchers.
Shepanek, Marc
2005-06-01
With the advent of long-duration spaceflight on board the International Space Station (ISS) and possible future missions beyond low Earth orbit (LEO) such as Mars, it is critical that those at NASA have a realistic assessment of the challenges that will face individuals on long-duration missions so that they can develop preventive and real-time countermeasures to behavioral health issues. While space travellers are very interested in having countermeasures to the deleterious effects of space missions, they have a powerful disincentive to participate in this research if they feel it could in any way negatively affect their flight status. The behavioral issues of isolation and confinement for extended-duration space missions are reviewed. Areas of basic and clinical behavioral research are listed. And the classical clinical model for research is not considered appropriate for the current configuration of the space program. The use of analogue environments and advanced statistical analysis are suggested as ways to address the limited spaceflight research opportunities. The challenge of research subject or patient confidentiality vs. mission safety and issues of personal flight status are addressed.
Using Tri-Axial Accelerometers to Assess the Dynamic Control of Head Posture During Gait
NASA Technical Reports Server (NTRS)
Lawrence, John H., III
2003-01-01
Long duration spaceflight is known to cause a variety of biomedical stressors to the astronaut. One of the more functionally destabilizing effects of spaceflight involves microgravity-induced changes in vestibular or balance control. Balance control requires the integration of the vestibular, visual, and proprioceptive systems. In the microgravity environment, the normal gravity vector present on Earth no longer serves as a reference for the balance control system. Therefore, adaptive changes occur to the vestibular system to affect control of body orientation with altered, or non-present, gravity and/or proprioceptive inputs. Upon return to a gravity environment, the vestibular system must re-incorporate the gravity vector and gravity-induced proprioceptive inputs into the balance control regime. The result is often a period of postural instability, which may also be associated with space motion sickness (oscillopsia, nausea, and vertigo). Previous studies by the JSC Neuroscience group have found that returning astronauts often employ alterations in gait mechanics to maintain postural control during gait. It is believed that these gait alterations are meant to decrease the transfer of heel strike shock energy to the head, thus limiting the contradictory head and eye movements that lead to gait instability and motion sickness symptoms. We analyzed pre- and post-spaceflight tri-axial accelerometer data from the NASA/MIR long duration spaceflight missions to assess the heel to head transfer of heel strike shock energy during locomotion. Up to seven gait sessions (three preflight, four postflight) of head and shank (lower leg) accelerometer data was previously collected from six astronauts who engaged in space flights of four to six months duration. In our analysis, the heel to head transmission of shock energy was compared using peak vertical acceleration (a), peak jerk (j) ratio, and relative kinetic energy (a). A host of generalized movement variables was produced in an effort to isolate those that best highlighted vestibular adaptation due to spaceflight. Data suggest that astronauts used either head or body centered control to reduce the effects of heel strike shock on head position during normal walking at self-selected speeds. Moreover, the form of that control appears to fall under one of two categories: homeostatic or adaptive. Homeostatic control refers to tight constraint (small error) over the value of a given variable before and after spaceflight with little or no adaptive changes. Adaptive control refers to lesser constraint over a given movement variable with clear adaptation to earth gravity upon return from spaceflight. Heel strike shock absorption (ratio of heel to head peak acceleration) best-discriminated head and body centered control strategies. Further, peak jerk data was useful for illustrating pre- and postflight differences in segmental (shank versus head) movement energy. Results from kinetic energy analysis show high consistency between subjects and across test dates. Whether this result highlights a control strategy or is an artifact of approximating body segments using anthropometric tables is, at this point, unclear.
Arabidopsis gene expression patterns during spaceflight
NASA Astrophysics Data System (ADS)
Paul, A.-L.; Ferl, R. J.
The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments resulted in the differential expression of hundreds of genes. A 5 day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β -Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on two fronts. First, expression patterns visualized with the Adh/GUS transgene were used to address specifically the possibility that spaceflight induces a hypoxic stress response, and to assess whether any spaceflight response was similar to control terrestrial hypoxia-induced gene expression patterns. (Paul et al., Plant Physiol. 2001, 126:613). Second, genome-wide patterns of native gene expression were evaluated utilizing the Affymetrix ATH1 GeneChip? array of 8,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes identified with the arrays was further characterized with quantitative Real-Time RT PCR (ABI - TaqmanTM). Comparison of the patterns of expression for arrays of hybridized with RNA isolated from plants exposed to spaceflight compared to the control arrays revealed hundreds of genes that were differentially expressed in response to spaceflight, yet most genes that are hallmarks of hypoxic stress were unaffected. These results will be discussed in light of current models for plant responses to the spaceflight environment, and with regard to potential future flight opportunities.
What Happens to bone health during and after spaceflight?
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Evans, Harlan J.; Spector, Elisabeth R.; Maddocks, Mary J.; Smith, Scott A.; Shackelford, Linda C.; LeBlanc, Adrian D.
2006-01-01
Weightless conditions of space flight accelerate bone loss. There are no reports to date that address whether the bone that is lost during spaceflight could ever be recovered. Spaceinduced bone loss in astronauts is evaluated at the Johnson Space Center (JSC) by measurement of bone mineral density (BMD) by Dual-energy x-ray absorptiometry (DXA) scans. Astronauts are routinely scanned preflight and at various time points postflight (greater than or equal to Return+2 days). Two sets of BMD data were used to model spaceflight-induced loss and skeletal recovery in crewmembers following long-duration spaceflight missions (4-6 months). Group I was from astronauts (n=7) who were systematically scanned at multiple time points during the postflight period as part of a research protocol to investigate skeletal recovery. Group II came from a total of 49 sets of preflight and postflight data obtained by different protocols. These data were from 39 different crewmembers some of whom served on multiple flights. Changes in BMD (between pre- and postflight BMD) were plotted as a function of time (days-after-landing); plotted data were fitted to an exponential equation which enabled estimations of i) BMD change at day 0 after landing and ii) the number of days by which 50% of the lost bone is recovered (half-life). These fits were performed for BMD of the lumbar spine, trochanter, pelvis, femoral neck and calcaneus. There was consistency between the models for BMD recovery. Based upon the exponential model of BMD restoration, recovery following long-duration missions appears to be substantially complete in crewmembers within 36 months following return to Earth.
NASA Technical Reports Server (NTRS)
Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz. B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.
2014-01-01
We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. Our ongoing bed rest participants are also engaging in exercise studies directed by Dr. Lori Ploutz Snyder. In this presentation, I will briefly highlight the existing literature linking exercise and fitness to brain and behavioral functions. I will also overview the metrics from my study that could be investigated in relation to the exercise and control subgroups.
Rodent Research-1 Validation of Rodent Hardware
NASA Technical Reports Server (NTRS)
Globus, Ruth; Beegle, Janet
2013-01-01
To achieve novel science objectives, validation of a rodent habitat on ISS will enable - In-flight analyses during long duration spaceflight- Use of genetically altered animals- Application of modern analytical techniques (e.g. genomics, proteomics, and metabolomics)
Nutrition in space: lessons from the past applied to the future.
Lane, H W; Smith, S M; Rice, B L; Bourland, C T
1994-11-01
From the basic impact of nutrient intake on health maintenance to the psychosocial benefits of mealtime, the role of nutrition in space is evident. In this discussion, dietary intake data from three space programs, Apollo, Space Shuttle, and Skylab, are presented. Data examination reveals that energy and fluid intakes are almost always lower than predicted. Nutrition in space has many areas of impact, including provision of required nutrients and maintenance of endocrine, immune, and musculoskeletal systems. Long-duration missions will require quantitation of nutrient requirements for maintenance of health and protection against the effects of microgravity. Psychosocial aspects of nutrition will also be important for more productive missions and crew morale. Realization of the full role of nutrition during spaceflight is critical for the success of extended-duration missions. Research conducted to determine the impact of spaceflight on human physiology and subsequent nutritional requirements will also have direct and indirect applications in Earth-based nutrition research.
Update of the Bisphosphonate ISS Flight Experiment
NASA Technical Reports Server (NTRS)
LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackelford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elisabeth; Ploutz-Snyder, Robert;
2014-01-01
The bisphosphonate study is an international collaboration between the NASA and JAXA space agencies to investigate the potential value of antiresorptive drugs to mitigate the well-established bone changes associated with long-duration spaceflight. Our hypothesis is that an antiresorptive drug in combination with in-flight exercise will ameliorate bone loss and hypercalcuria during long-duration spaceflight. We have completed data analysis for 7 crewmembers treated with alendronate during flight and 3 of 10 controls without treatment. We previously reported the pre/postflight changes in bone density and the pre versus in-flight changes in various biomarkers in crewmembers taking alendronate during flight. The purpose of this report is to compare these results with the 12- month follow-up data. The table below presents these data as a percentage change from baseline either immediately postflight or in-flight (biochemical markers) with a 1-year follow-up.
Molecular Mechanisms of Circadian Regulation During Spaceflight
NASA Technical Reports Server (NTRS)
Zanello, S. B.; Boyle, R.
2012-01-01
The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ipRGC and melanopsin expression, which may be a contributing cause of circadian disruption during spaceflight.
NASA's Human Research Program at The Glenn Research Center: Progress and Opportunities
NASA Technical Reports Server (NTRS)
Nall, Marsha; Griffin, DeVon; Myers, Jerry; Perusek, Gail
2008-01-01
The NASA Human Research Program is aimed at correcting problems in critical areas that place NASA human spaceflight missions at risk due to shortfalls in astronaut health, safety and performance. The Glenn Research Center (GRC) and partners from Ohio are significant contributors to this effort. This presentation describes several areas of GRC emphasis, the first being NASA s path to creating exercise hardware requirements and protocols that mitigate the effects of long duration spaceflight. Computational simulations will be a second area that is discussed. This includes deterministic models that simulate the effects of spaceflight on the human body, as well as probabilistic models that bound and quantify the probability that adverse medical incidents will happen during an exploration mission. Medical technology development for exploration will be the final area to be discussed.
Is Animal Age a Factor In the Response of Bone to Spaceflight?
NASA Technical Reports Server (NTRS)
Morey-Holton, E. R.; Garetto, L. P.; Doty, S. B.; Halloran, B. P.; Turner, R. T.; Dalton, Bonnie (Technical Monitor)
2002-01-01
The rodent bone response to spaceflight may be influenced by a multitude of actors including flight duration, strain, and housing. Review of bone formation rates during spaceflight suggests that age may also play a role in the response. Weanling rats show fewer bone changes than older rats. To determine if the long bones of weanling rats were insensitive to weight-bearing, a hindlimb unloading experiment was conducted simultaneously with a 9d shuttle flight in 34d old group-housed male rats. All animals were injected with bone markers 7d and 1d before flight and euthanized at landing, 24hr, and 72hr following recovery. If no differences in body weight, bone length, or bone formation at the tibiofibular junction were noted at the different time points, data were combined for each group. No significant differences in body weight were found at any time period among the groups. The humerus, tibia, and femur elongated significantly during the flight period with no difference in lengths between groups at the end of the flight period. The group-housed flight rats showed no change in cortical bone formation rate compared to preflight values, flight controls, or vivarium controls. However, the hindlimb unloading group showed a significant 30% decrease in bone formation rate compared to all other groups. Individually-housed 38d old animals flown for 14d showed approx. 10% suppression of cortical growth. We speculate that the mechanical threshold required for cross-sectional bone growth is reached in group-house weanling rats during spaceflight, perhaps, through physical interactions, and that the weanling animals are sensitive to loading. However, the threshold is not fully reached in either singly-housed flight or hindlimb unloaded weanling rats. Older singly-housed flight animals appear to show equal or greater bone changes compared to hindlimb unloaded rats. We conclude that age, flight duration, strain, and housing have important roles in rodent skeletal responses to spaceflight.
Risk of Cardiac Rhythm Problems During Spaceflight
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Stenger, Michael B.; Laurie, Steven S.; Macias, Brandon R.
2017-01-01
NASA has concerns regarding the incidence and clinical significance of cardiac arrhythmias that could occur during long-term exposure to the spaceflight environment, such as on the International Space Station (ISS) or during a prolonged (e.g., up to 3 years) sojourn to Mars or on the Moon. There have been some anecdotal reports and a few documented cases of cardiac arrhythmias in space, including one documented episode of non-sustained ventricular tachycardia. The potential catastrophic nature of a sudden cardiac death in the remote space environment has led to concerns from the early days of the space program that spaceflight might be arrhythmogenic. Indeed, there are known and well-defined changes in the cardiovascular system with spaceflight: a) plasma volume is reduced, b) left ventricular mass is decreased, and c) the autonomic nervous system adapts to the weightless environment. Combined, these physiologic adaptations suggest that changes in cardiac structure and neuro-humoral environment during spaceflight could alter electrical conduction, although the evidence supporting this contention consists mostly of minor changes in QT interval (the time between the start of the Q wave and the end of the T wave on an electrocardiogram tracing) in a small number of astronauts after long-duration spaceflight. Concurrent with efforts by NASA Medical Operations to refine and improve screening techniques relevant to arrhythmias and cardiovascular disease, as NASA enters the era of exploration-class missions it will be critical to determine with the highest degree of certainty whether spaceflight by itself alters cardiac structure and function sufficiently to increase the risk of arrhythmias.
Recent Pharmacology Studies on the International Space Station
NASA Technical Reports Server (NTRS)
Wotring, Virginia
2014-01-01
The environment on the International Space Station (ISS) includes a variety of potential stressors including the absence of Earth's gravity, elevated exposure to radiation, confined living and working quarters, a heavy workload, and high public visibility. The effects of this extreme environment on pharmacokinetics, pharmacodynamics, and even on stored medication doses, are not yet understood. Dr. Wotring will discuss recent analyses of medication doses that experienced long duration storage on the ISS and a recent retrospective examination of medication use during long-duration spaceflights. She will also describe new pharmacology experiments that are scheduled for upcoming ISS missions. Dr. Virginia E. Wotring is a Senior Scientist in the Division of Space Life Sciences in the Universities Space Research Association, and Pharmacology Discipline Lead at NASA's Johnson Space Center, Human Heath and Countermeasures Division. She received her doctorate in Pharmacological and Physiological Science from Saint Louis University after earning a B.S. in Chemistry at Florida State University. She has published multiple studies on ligand gated ion channels in the brain and spinal cord. Her research experience includes drug mechanisms of action, drug receptor structure/function relationships and gene & protein expression. She joined USRA (and spaceflight research) in 2009. In 2012, her book reviewing pharmacology in spaceflight was published by Springer: Space Pharmacology, Space Development Series.
NASA Technical Reports Server (NTRS)
Heathcote, David G.
1992-01-01
In 1978, in response to an announcement of opportunity by NASA, two independent groups proposed related investigations to study the response of seedling plants to photostimulations at microgravity. The spaceflight experiment is known by its NASA acronym, FOTRAN. The scientific objectives behind the experiment are outlined, and a brief description of the spaceflight equipment and the experimental procedures developed to accomplish the aims of the experiment are presented. By reference to the results of ground-based studies, the likely scientific returns of the FOTRAN experiment will be assessed. The experiment is designed to investigate the effects of a range of blue light stimulations on the movements of wheat coleoptiles at zero-g. The seedlings will be dark-grown, and their movements assessed from infrared time-lapse video recordings made during flight. The photostimulus may be expected to modulate circumnutations of the coleoptiles, by synchronizing, initiating or amplifying these rhythmic movements, and to initiate the classic phototropic response.
Space environment effects (M0006)
NASA Technical Reports Server (NTRS)
Angelo, J. A., Jr.; Madonna, R. G.; Altadonna, L. P.; Dagostino, M. D.; Chang, J. Y.; Alfano, R. R.; Caplan, V. L.
1984-01-01
The effects of long term exposure to the near Earth space environment on advanced electrooptical and radiation sensor components were examined. The effect of long duration spaceflight on the germination rate of selected terrestrial plant seeds is observed in exobiological experiments.
Change in Mouse Bone Turnover in Response to Microgravity on RR-1
NASA Technical Reports Server (NTRS)
Cheng-Campbell, Margareth A.; Blaber, Elizabeth A.; Almeida, Eduardo A. C.
2016-01-01
Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1ap21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23 decrease in bone fraction (p0.005) and 11.91 decrease in bone thickness (p0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n10) and vivarium controls (n10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.
Changes in Mouse Bone Turnover in Response to Microgravity
NASA Technical Reports Server (NTRS)
Cheng-Campbell, M.; Blaber, E.; Almeida, E.
2016-01-01
Mechanical unloading during spaceflight is known to adversely affect mammalian physiology. Our previous studies using the Animal Enclosure Module on short duration Shuttle missions enabled us to identify a deficit in stem cell based-tissue regeneration as being a significant concern for long-duration spaceflight. Specifically, we found that mechanical unloading in microgravity resulted in inhibition of differentiation of mesenchymal and hematopoietic stem cells in the bone marrow compartment. Also, we observed overexpression of a cell cycle arrest molecule, CDKN1a/p21, in osteoprecursor cells on the bone surface, chondroprogenitors in the articular cartilage, and in myofibers attached to bone tissue. Specifically in bone tissue during both short (15-day) and long (30-day) microgravity experiments, we observed significant loss of bone tissue and structure in both the pelvis and the femur. After 15-days of microgravity on STS-131, pelvic ischium displayed a 6.23% decrease in bone fraction (p=0.005) and 11.91% decrease in bone thickness (p=0.002). Furthermore, during long-duration spaceflight we observed onset of an accelerated aging-like phenotype and osteoarthritic disease state indicating that stem cells within the bone tissue fail to repair and regenerate tissues in a normal manner, leading to drastic tissue alterations in response to microgravity. The Rodent Research Hardware System provides the capability to investigate these effects during long-duration experiments on the International Space Station. During the Rodent Research-1 mission 10 16-week-old female C57Bl/6J mice were exposed to 37-days of microgravity. All flight animals were euthanized and frozen on orbit for future dissection. Ground (n=10) and vivarium controls (n=10) were housed and processed to match the flight animal timeline. During this study we collected pelvis, femur, and tibia from all animal groups to test the hypothesis that stem cell-based tissue regeneration is significantly altered after 37-days of spaceflight. To do this, we will analyze differences in bone morphometric parameters using MicroCT. The pelvis, femur, and tibia are key in supporting and distributing weight under normal conditions. Therefore, we expect to see altered remodeling in flight animals in response to microgravity with respect to ground controls. In combination with histomorphometry, these results will help elucidate the complex mechanisms underlying bone tissue maintenance and stem cell regeneration.
Effects of spaceflight on rhesus quadrupedal locomotion after return to 1G
NASA Technical Reports Server (NTRS)
Recktenwald, M. R.; Hodgson, J. A.; Roy, R. R.; Riazanski, S.; McCall, G. E.; Kozlovskaya, I.; Washburn, D. A.; Fanton, J. W.; Edgerton, V. R.; Rumbaugh, D. M. (Principal Investigator)
1999-01-01
Effects of spaceflight on Rhesus quadrupedal locomotion after return to 1G. Locomotor performance, activation patterns of the soleus (Sol), medial gastrocnemius (MG), vastus lateralis (VL), and tibialis anterior (TA) and MG tendon force during quadrupedal stepping were studied in adult Rhesus before and after 14 days of either spaceflight (n = 2) or flight simulation at 1G (n = 3). Flight simulation involved duplication of the spaceflight conditions and experimental protocol in a 1G environment. Postflight, but not postsimulation, electromyographic (EMG) recordings revealed clonus-like activity in all muscles. Compared with preflight, the cycle period and burst durations of the primary extensors (Sol, MG, and VL) tended to decrease postflight. These decreases were associated with shorter steps. The flexor (TA) EMG burst duration postflight was similar to preflight, whereas the burst amplitude was elevated. Consequently, the Sol:TA and MG:TA EMG amplitude ratios were lower following flight, reflecting a "flexor bias." Together, these alterations in mean EMG amplitudes reflect differential adaptations in motor-unit recruitment patterns of flexors and extensors as well as fast and slow motor pools. Shorter cycle period and burst durations persisted throughout the 20-day postflight testing period, whereas mean EMG returned to preflight levels by 17 days postflight. Compared with presimulation, the simulation group showed slight increases in the cycle period and burst durations of all muscles. Mean EMG amplitude decreased in the Sol, increased in the MG and VL, and was unchanged in the TA. Thus adaptations observed postsimulation were different from those observed postflight, indicating that there was a response unique to the microgravity environment, i.e., the modulations in the nervous system controlling locomotion cannot merely be attributed to restriction of movement but appear to be the result of changes in the interpretation of load-related proprioceptive feedback to the nervous system. Peak MG tendon force amplitudes were approximately two times greater post- compared with preflight or presimulation. Adaptations in tendon force and EMG amplitude ratios indicate that the nervous system undergoes a reorganization of the recruitment patterns biased toward an increased recruitment of fast versus slow motor units and flexor versus extensor muscles. Combined, these data indicate that some details of the control of motor pools during locomotion are dependent on the persistence of Earth's gravitational environment.
Comparison of Postural Recovery Following Short and Long Duration Spaceflights
NASA Technical Reports Server (NTRS)
Wood, S. J.; Fiedler, J.; Taylor, L. C.; Kozlovskaya, I.; Black, F. O.; Paloski, W. H.
2010-01-01
INTRODUCTION: Post-flight postural ataxia reflects adaptive changes to vestibulo-spinal reflexes and control strategies adopted for movement in weightlessness. Quantitative measures obtained during computerized dynamic posturography (CDP) from US and Russian programs provide insight into the effect of spaceflight duration in terms of both the initial decrements and recovery of postural stability. METHODS: CDP was obtained on 117 crewmembers following Shuttle flights lasting 4-17 days, and on 64 crewmembers following long-duration missions lasting 48-380 days. Although the number and timing of sessions varied, the goal was to characterize postural recovery pooling similar measures from different research and flight medicine programs. This report focuses on eyes closed, head erect conditions with either a fixed or sway-referenced base of support. A smaller subset of subjects repeated the sway-referenced condition while making pitch head movements (+/- 20deg at 0.33Hz). Equilibrium scores were derived from peak-to-peak anterior-posterior sway. Fall probability was modeled using Bayesian statistical methods to estimate parameters of a logit function. RESULTS: The standard Romberg condition was the least sensitive. Longer duration flights led to larger decrements in stability with sway-reference support during the first 1-2 days, although the timecourse of recovery was similar across flight duration with head erect. Head movements led to increased incidence of falls during the first week, with a significantly longer recovery following long duration flights. CONCLUSIONS: The diagnostic assessment of postural instability, and differences in the timecourse of postural recovery between short and long flight durations, are more pronounced during unstable support conditions requiring active head movements.
Integrating Bioregenerative Foods into the Exploration Spaceflight Food System
NASA Technical Reports Server (NTRS)
Douglas, Grace L.
2017-01-01
Food, the nutrition it provides, and the eating experiences surrounding it, are central to performance, health, and psychosocial wellbeing on long duration spaceflight missions. Exploration missions will require a spaceflight food system that is safe, nutritious, and acceptable for up to five years, possibly without cold storage. Many of the processed and packaged spaceflight foods currently used on the International Space Station will not retain acceptable quality or required levels of key nutrients under these conditions. The addition of bioregenerative produce to exploration missions may become an important countermeasure to the nutritional gaps and a resource to support psychosocial health. Bioregenerative produce will be central to establishment of Earth-independence as exploration extends deeper into space. However, bioregenerative foods introduce food safety and scarcity risks that must be eliminated prior to crew reliance on these systems. The pathway to Earth independence will require small-scale integration and validation prior to large scale bioregenerative dependence. Near term exploration missions offer the opportunity to establish small scale supplemental salad crop and fruit systems and validate infrastructure reliability, nutritional potential, and the psychosocial benefits necessary to promote further bioregenerative integration.
Assessing the Effect of Spaceflight on the Propensity for Astronauts to Develop Disc Herniation
NASA Technical Reports Server (NTRS)
Feiveson, A.; Mendez, C.; Somers, J.
2015-01-01
A previous study reported that the instantaneous risk of developing a Herniated Nucleus Pulposus (HNP) was higher in astronauts who had flown at least one mission, as compared with those in the corps who had not yet flown. However, the study only analyzed time to HNP after the first mission (if any) and did not account for the possible effects of multiple missions. While many HNPs occurred well into astronauts' careers or in somecases years after retirement, the higher incidence of HNPs relatively soon after completion of space missions appears to indicate that spaceflight may lead to an increased risk of HNP. In addition, when an HNP occurs after spaceflight, is it related to previous spaceflight exposure? The purpose of this study was to investigate whether multiple missions, sex, age, vehicle landing dynamics, and flight duration affect the risk of developing an HNP usinga competing risks model. The outcome of the study will inform the Human System Risk Board assessment of back pain, inform the risk of injury due to dynamic loads, and update the previous dataset, which contained events up to December 31, 2006.
Plasma Cytokine Levels During Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Zwart, Sara R.; Quiriarte, Heather A.; Smith, Scott M.; Sams, Clarence F.
2012-01-01
Determine the in-flight status of immunity, physiological stress, viral immunity/reactivation. Specific measurements include leukocyte distribution, T cell function, cytokine production profiles (mRNA, intracellular, secreted, plasma), virus-specific T cell number/function, latent herpesvirus reactivation, stress hormone levels. Determine the clinical risk related to immune dysregulation for exploration class spaceflight, as well as an appropriate monitoring strategy for spaceflight-associated immune dysfunction, that could be used for the evaluation of countermeasures. Specific Study Objectives: Determine the nutritional status of astronauts before, during, and after spaceflight ensure adequate intake of energy, protein, and vitamins during missions. The Clinical Nutritional Status Assessment measures dietary intake, body composition, protein, bone, iron, mineral, vitamin, and antioxidant status (60 total analytes). Currently, it is a medical requirement for U.S. crewmembers on-board the ISS. The results of data analysis are used both to understand the connections between nutrition and human health during space flight, and to develop effective dietary strategies to reduce adverse health impacts (including bone loss, loss of important vitamins and minerals, and increased genetic damage from radiation).
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Alberts, J. R.
2000-01-01
The events of parturition (labor, delivery, maternal care, placentophagia, and onset of nursing) were analyzed in female Norway rats (Rattus norvegicus) flown on either 11- or 9-day-long spaceflights beginning at the approximate midpoint of their pregnancies. Each space shuttle flight landed on the 20th day of the rats' pregnancies, just 48-72 h before parturition. After spaceflight, dams were continuously monitored and recorded by time-lapse videography throughout the completion of parturition and onset of nursing (days 22 and 23). Analyses of parturition revealed that, compared with ground controls, flight dams displayed twice the number of lordosis contractions, the predominant labor contraction type in rats. The number of vertical contractions (those that immediately precede expulsion of a pup from the womb), the duration of labor, fetal wastage, number of neonates born, neonatal birth weights, placentophagia, and maternal care during parturition, including the onset of nursing, were comparable in flight and ground control dams. Our findings indicate that, with the exception of labor contractions, mammalian pregnancy and parturition remain qualitatively and quantitatively intact after spaceflight during pregnancy.
NASA Technical Reports Server (NTRS)
Stenger, Michael; Hargens, Alan; Dulchavsky, Scott
2014-01-01
Future human space travel will primarily consist of long duration missions onboard the International Space Station or exploration class missions to Mars, its moons, or nearby asteroids. Current evidence suggests that long duration missions might increase risk of permanent ocular structural and functional changes, possibly due to increased intracranial pressure resulting from a spaceflight-induced cephalad (headward) fluid shift.
Changes in Near Visual Acuity of Over Time in the Astronaut Corps
NASA Technical Reports Server (NTRS)
Taiym, Wafa; Wear, Mary L.; Locke, James; Mason, Sara; VanBaalen, Mary
2014-01-01
We hypothesized that visual impairment due to intracranial pressure (VIIP) would increase the rate of which presbyopia would occur in the astronaut population, with long durations flyers at an especially high risk. Presbyopia is characterized as the gradual loss of near visual acuity overtime due to a loss in ability to accommodate. It generally develops in the mid-40s and progresses until about age 65. This analysis considered annual vision exams conducted on active NASA astronauts with spaceflight experience currently between the ages of 40 to 60 years of age. Onset of presbyopia was characterized as a shift of at least 20 units on the standard Snellen test from one annual exam to the next. There were 236 short duration and 48 long duration flyers, the majority of whom did experience onset of presbyopia between age 40 and 60. This shift however, did not necessarily come after spaceflight. In comparing the short and long duration flyers the mean age of onset was 47 years old (SD+/-3.7). The mean of onset within the general population is 45 to 47 years old [1, 2]. The mean age of the onset of presbyopia as compared to the general population indicates that space flight does not induce early development of presbyopia.
NASA Technical Reports Server (NTRS)
Ott, C. Mark
2007-01-01
Microbiological requirements for spaceflight are based on assessments of infectious disease risk which could impact crew health or mission success. The determination of risk from infectious disease is composed of several factors including (1) crew susceptibility, (2) crew exposure to the infectious disease agent, (3) the concentration of the infectious agent, and (4) the characteristics of the infectious agent. As a result of the Health Stabilization Program, stringent monitoring, and cleaning protocols, in-flight environmental microbial monitoring is not necessary for short-duration spaceflights. However, risk factors change for long-duration missions, as exemplified by the presence of medically significant organisms in the environments of both the Mir and International Space Station (ISS). Based upon this historical evidence, requirements for short duration usage aboard the Orion Crew Exploration Vehicle and Lunar Lander Vehicle will not require in-flight monitoring; however, as mission duration increases with a Lunar Outpost, an ability to detect microbial hazard will be necessary. The nature of the detection requirements will depend on the maturity of technology in a rapidly evolving marketplace. Regardless, the hardware will still need to maximize information to discipline experts and the crew, while minimizing the size, mass, power consumption, and crew time usage. The refinement of these monitors will be a major goal in our efforts to travel successfully to Mars.
Living aloft: Human requirements for extended spaceflight
NASA Technical Reports Server (NTRS)
Connors, M. M.; Harrison, A. A.; Akins, F. R.
1985-01-01
Human psychological and social adjustment to space is investigated. Studies and experiences bearing on human performance capability, psychological well being, and social organization, as they relate to space, were identified and assessed, and suggestions offered as to where further research could ease the Earth/space transition. Special emphasis was given to the variables of crew size, crew diversity, and mission duration, all of which can be expected to increase in future spaceflight. By providing a conceptual framework in which issues and related information can be integrated, the hope is to aid in discovering those conditions under which future space travelers can flourish.
Plant growth strategies are remodeled by spaceflight.
Paul, Anna-Lisa; Amalfitano, Claire E; Ferl, Robert J
2012-12-07
Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length) was uniformly smaller than comparably aged Ground Control plants in both cultivars. Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS - suggesting that other tropisms (such as for oxygen and temperature) do not influence skewing. An aspect of the spaceflight environment also retards the rate of early Arabidopsis growth.
Plant growth strategies are remodeled by spaceflight
2012-01-01
Background Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. Results In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length) was uniformly smaller than comparably aged Ground Control plants in both cultivars. Conclusions Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS – suggesting that other tropisms (such as for oxygen and temperature) do not influence skewing. An aspect of the spaceflight environment also retards the rate of early Arabidopsis growth. PMID:23217113
Spaceflight-induced neuroplasticity in humans as measured by MRI: what do we know so far?
Van Ombergen, Angelique; Laureys, Steven; Sunaert, Stefan; Tomilovskaya, Elena; Parizel, Paul M; Wuyts, Floris L
2017-01-01
Space travel poses an enormous challenge on the human body; microgravity, ionizing radiation, absence of circadian rhythm, confinement and isolation are just some of the features associated with it. Obviously, all of the latter can have an impact on human physiology and even induce detrimental changes. Some organ systems have been studied thoroughly under space conditions, however, not much is known on the functional and morphological effects of spaceflight on the human central nervous system. Previous studies have already shown that central nervous system changes occur during and after spaceflight in the form of neurovestibular problems, alterations in cognitive function and sensory perception, cephalic fluid shifts and psychological disturbances. However, little is known about the underlying neural substrates. In this review, we discuss the current limited knowledge on neuroplastic changes in the human central nervous system associated with spaceflight (actual or simulated) as measured by magnetic resonance imaging-based techniques. Furthermore, we discuss these findings as well as their future perspectives, since this can encourage future research into this delicate and intriguing aspect of spaceflight. Currently, the literature suffers from heterogeneous experimental set-ups and therefore, the lack of comparability of findings among studies. However, the cerebellum, cortical sensorimotor and somatosensory areas and vestibular-related pathways seem to be involved across different studies, suggesting that these brain regions are most affected by (simulated) spaceflight. Extending this knowledge is crucial, especially with the eye on long-duration interplanetary missions (e.g. Mars) and space tourism.
Slow Wave Sleep and Long Duration Spaceflight
NASA Technical Reports Server (NTRS)
Orr, M.; Whitmire, A.; Arias, D.; Leveton, L.
2011-01-01
To review the literature on slow wave sleep (SWS) in long duration space flight, and place this within the context of the broader literature on SWS particularly with respect to analogous environments such as the Antarctic. Explore how SWS could be measured within the International Space Station (ISS) context with the aim to utilize the ISS as an analog for future extra-orbital long duration missions. Discuss the potential use of emergent minimally intrusive wireless technologies like ZEO for integrated prelaunch, flight, and return to Earth analysis and optimization of SWS (and general quality of sleep).
NASA Technical Reports Server (NTRS)
Crucian, Brian E.; Cubbage, Michael L.; Sams, Clarence F.
1999-01-01
In this study, we have attempted to combine standard immunological assays with the cellular resolving power of the flow cytometer to positively identify the specific cell types involved in spaceflight-induced immune alterations. We have obtained whole blood samples from 27 astronauts collected at three timepoints (L-10, R+0 and R+3) surrounding four recent space shuttle missions. The duration of these missions ranged from 10 to 18 days. Assays performed included serum/urine cortisol, comprehensive subset phenotyping, assessment of cellular activation markers and intracellular cytokine production following mitogenic stimulation. Absolute levels of peripheral granulocytes were significantly elevated following spaceflight, but the levels of circulating lymphocytes and monocytes were unchanged. Lymphocyte subset analysis demonstrated trends towards a decreased percentage of T cells and an increased percentage of B cells. Nearly all of the astronauts exhibited an increased CD4:CD8 ratio, which was dramatic in some individuals. Assessment of memory (CD45RA+) vs. naive (CD45RO+) CD4+ T cell subsets was more ambiguous, with subjects tending to group more as a flight crew. All subjects from one mission demonstrated an increased CD45RA:CD45RO ratio, while all subjects from another Mission demonstrated a decreased ratio. While no significant trend was seen in the monocyte population as defined by scatter, a decreased percentage of the CD14+ CD16+ monocyte subset was seen following spaceflight in all subjects tested. In general, most of the cellular changes described above which were assessed at R+O and compared to L-10 trended to pre-flight levels by R+3. Although no significant differences were seen in the expression of the cellular activation markers CD69 and CD25 following exposure to microgravity, significant alterations were seen in cytokine production in response to mitogenic activation for specific subsets. T cell (CD3+) production of IL-2 was significantly decreased after at R+O as was IL-2 production by both CD4+ and CD8+ T cell subsets for most subjects. Production of IFN(sub gamma) did not appear to be affected by microgravity exposure in either T cells in general or in the CD8+ T cell subset. There was a spaceflight-induced decrease in IFN(sub gamma) production in the CD4+ T cell subset, however it did not reach statistical significance. Serum and urine stress-hormone analysis indicated significant physiologic stresses in astronauts following spaceflight. In summary, these results demonstrate alterations in the peripheral immune system of astronauts immediately after spaceflight of 10 to 18 days duration and support continued research regarding microgravity and immunology (including in-flight sampling) prior to routine long-term spaceflight for astronauts.
Speed Kills: Highly Relativistic Spaceflight Would be Fatal for People and Instruments
NASA Astrophysics Data System (ADS)
Edelstein, William; Edelstein, Arthur
2010-02-01
Stories, books and movies about space travel often describe journeys at near-light velocities. Such high speed is desirable, as the resulting relativistic time dilation reduces the duration of the trip, at least for the travelers, so that they can cover interstellar distances in a reasonable amount of time (by their own clocks) and live long enough to reach their destination. The relativistic rocket equation shows the enormous difficulty of achieving such velocities. As spaceship velocities approach the speed of light, interstellar hydrogen, although only present on average at a density of about 2 atoms per cm^3, impinges on the spacecraft and turns into intense radiation (Purcell, 1963) that would quickly kill passengers and destroy instrumentation. In addition, the energy loss of ionizing radiation passing through the ship's hull represents an increasing heat load which necessitates large expenditures of energy to cool the ship. Preventing this irradiation by the use of material or electromagnetic shields is a daunting and, as far as we know, unsolvable problem. The presence of interstellar hydrogen is yet another formidable obstacle to interstellar travel. )
Effects of space flight on locomotor control
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Layne, Charles S.; McDonald, P. Vernon; Peters, Brian T.; Huebner, William P.; Reschke, Millard F.; Berthoz, Alain; Glasauer, Stefan; Newman, Dava; Jackson, D. Keoki
1999-01-01
In the microgravity environment of spaceflight, the relationship between sensory input and motor output is altered. During prolonged missions, neural adaptive processes come into play to recalibrate central nervous system function, thereby permitting new motor control strategies to emerge in the novel sensory environment of microgravity. However, the adaptive state achieved during spaceflight is inappropriate for a unit gravity environment and leads to motor control alterations upon return to Earth that include disturbances in locomotion. Indeed, gait and postural instabilities following the return to Earth have been reported in both U.S. astronauts and Russian cosmonauts even after short duration (5- to 10-day) flights. After spaceflight, astronauts may: (1) experience the sensation of turning while attempting to walk a straight path, (2) encounter sudden loss of postural stability, especially when rounding corners, (3) perceive exaggerated pitch and rolling head movements during walking, (4) experience sudden loss of orientation in unstructured visual environments, or (5) experience significant oscillopsia during locomotion.
Human space exploration the next fifty years.
Williams, David R; Turnock, Matthew
2011-06-01
Preparation for the fiftieth anniversary of human spaceflight in the spring of 2011 provides the space faring nations with an opportunity to reflect on past achievements as well as consider the next fifty years of human spaceflight. The International Space Station is a unique platform for long duration life science research that will play a critical role in preparing for future human space exploration beyond low earth orbit. Some feel the future path back to the Moon and on to Mars may be delayed with the current commitment of the United States to support the development of human-rated commercial spacecraft. Others see this as a unique opportunity to leverage the capability of the private sector in expanding access to space exploration. This article provides an overview of the past achievements in human spaceflight and discusses future missions over the next fifty years and the role space medicine will play in extending the time-distance constant of human space exploration.
[Effects of Gravity on Attachment of Tendon to Bone
NASA Technical Reports Server (NTRS)
Johnson, Roger B.
1997-01-01
We have received and processed all samples for either light or scanning electron microscopic analysis and have completed the histomorphometric analysis. We have characterized the changes caused by spaceflight to tendon attachments to the calcaneus, tibia, fibula and femur and compared them to hindlimbs and forelimbs from NIH.RZ. Soleus muscle histomorphometry has also been completed. Our results suggest severe osteoporosis in the femur, fibula and tibia of animals coincident to spaceflight, which had not resolved after 4-5 days following return to earth. This was evident at all sites, including sites of tendon attachments. This atrophy was not evident in the calcaneus. No muscle atrophy was evident. Comparison of scanning photomicrographs of flight animals with other lactating animals demonstrated structural similarities and suggested that it might be worthwhile to assess whether lactation is a factor in development of the osteoporosis in the spaceflight animals. In addition, evaluation of total calcium utilization by spaceflight animals would be beneficial.
Chang, DG; Healey, RM; Snyder, AJ; Sayson, JV; Macias, BR; Coughlin, DG; Bailey, JF; Parazynski, SE; Lotz, JC; Hargens, AR
2017-01-01
Study Design Prospective case series Objective Evaluate lumbar paraspinal muscle (PSM) cross-sectional area and intervertebral disc (IVD) height changes induced by a 6-month space mission on the International Space Station (ISS). The long-term objective of this project is to promote spine health and prevent spinal injury during space missions as well as here on Earth. Summary of Background NASA crewmembers have a 4.3 times higher risk of herniated IVDs, compared to the general and military aviator populations. The highest risk occurs during the first year after a mission. Microgravity exposure during long-duration spaceflights results in ~5cm lengthening of body height, spinal pain, and skeletal deconditioning. How the PSMs and IVDs respond during spaceflight is not well described. Methods Six NASA crewmembers were imaged supine with a 3T MRI. Imaging was conducted pre-flight, immediately post-flight and then 33 to 67 days after landing. Functional cross-sectional area (FCSA) measurements of the PSMs were performed at the L3-4 level. FCSA was measured by grayscale thresholding within the posterior lumbar extensors to isolate lean muscle on T2-weighted scans. IVD heights were measured at the anterior, middle and posterior sections of all lumbar levels. Repeated measures ANOVA was used to determine significance at p<0.05, followed by post-hoc testing. Results Paraspinal lean muscle mass, as indicated by the FCSA, decreased from 86% of the total PSM cross-sectional area down to 72%, immediately after the mission. Recovery of 68% of the post-flight loss occurred over the next 6 weeks, still leaving a significantly lower lean muscle fractional content compared to pre-flight values. In contrast, lumbar IVD heights were not appreciably different at any time point. Conclusions The data reveal lumbar spine PSM atrophy after long-duration spaceflight. Some FCSA recovery was seen with 46 days post-flight in a terrestrial environment, but it remained incomplete compared to pre-flight levels. PMID:27779600
Cerebral vascular reactivity on return from the International Space Station
NASA Astrophysics Data System (ADS)
Zuj, Kathryn; Greaves, Danielle; Shoemaker, Kevin; Blaber, Andrew; Hughson, Richard L.
Returning from spaceflight, astronauts experience a high incidence of orthostatic intolerance and syncope. Longer duration space flight may result in greater adaptations to microgravity which could increase the post-flight incidence of syncope. CCISS (Cardiovascular and Cerebovascular Control on return from the International Space Station) is an ongoing project designed to help determine adaptations that occur during spaceflight which may contribute to orthostatic intolerance. One component of this project involves looking at cerebral vascular responses before and after long duration spaceflight. As a known vasodilator, carbon dioxide (CO2) has been frequently used to assess changes in cerebral vascular reactivity. In this experiment, end tidal PCO2 was manipulated through changes in respired air. Two breaths of a 10% CO2 gas mixture were administered at 1-min intervals resulting in an increase in end tidal PCO2 . Throughout the testing, cerebral blood flow velocity (CBFV) was determined using transcranial Doppler ultrasound. The cerebral resistance index (RI) was calculated from the Doppler wave form using the equation; RI=(CBFVsystolic-CBFVdiastolic)/CBFVsystolic. Changes in this index have been shown to reflect changes in cerebral vascular resistance. Peak responses to the CO2 stimulus were determined and compared to baseline measures taken at the beginning of the testing. Cerebral blood flow velocity increased and RI decreased with the two breaths of CO2. Preliminary data show a 36.0% increase in CBFV and a 9.0% decrease in RI pre-flight. Post flight, the response to CO2 appears to change showing a potentially blunted decrease in resistance (6.8%) and a smaller increase in CBFV (22.8%). Long term spaceflight may result in cerebrovascular changes which could decrease the vasodilatory capacity of cerebral resistance vessels. Further investigations in the CCISS project will reveal the interactive role of CO2 and arterial blood pressure on maintenance of brain blood flow that is critical for crew health and safety on return from long-duration missions to ISS or future flights to the moon and Mars. Supported by Canadian Space Agency.
Efficacy of Antimicrobials on Bacteria Cultured in a Spaceflight Analogue
NASA Technical Reports Server (NTRS)
Nickerson, CA; Wotring, Virginia; Barrila, Jennifer; Crabbe, Aurelie; Castro, Sarah; Davis, Richard; Rideout, April; McCarthy, Breanne; Ott, C. Mark
2014-01-01
As humans travel in space, they will interact with microbial flora from themselves, other crewmembers, their food, and the environment. While evaluations of microbial ecology aboard the Mir and ISS suggest a predominance of common environmental flora, the presence of (and potential for) infectious agents has been well documented. Likewise, pathogens have been detected during preflight monitoring of spaceflight food, resulting in the disqualification of that production lot from flight. These environmental and food organisms range from the obligate pathogen, Salmonella enterica serovar Typhimurium (S. Typhimurium), which has been responsible for disqualification and removal of food destined for ISS and has previously been reported from Shuttle crew refuse, to the opportunistic pathogen Staphylococcus aureus, isolated numerous times from ISS habitable compartments and the crew. Infectious disease events have affected spaceflight missions, including an upper respiratory infection that delayed the launch of STS-36 and an incapacitating Pseudomonas aeruginosa urinary tract infection of a crewmember during Apollo 13. These observations indicate that the crew has the potential to be exposed to obligate and opportunistic pathogens. This risk of exposure is expected to increase with longer mission durations and increased use of regenerative life support systems. As antibiotics are the primary countermeasure after infection, determining if their efficacy during spaceflight missions is comparable to terrestrial application is of critical importance. The NASA Rotating Wall Vessel (RWV) culture system has been successfully used as a spaceflight culture analogue to identify potential alterations in several key microbial characteristics, such as virulence and gene regulation, in response to spaceflight culture. We hypothesized that bacteria cultured in the low fluid shear RWV environment would demonstrate changes in efficacy of antibiotics compared to higher fluid shear controls. This study investigated the response of three medically significant microorganisms grown in the RWV to antibiotics that could be used on spaceflight missions. Our findings suggest potential alterations in antibiotic efficacy during spaceflight and indicate that future studies on the antibiotic response require additional basic research using the RWV and/or true spaceflight. However, while this analogue has reinforced these potential alterations, the results suggest the best approach for applied forward work is evaluating an in vivo system during spaceflight, including human and rodent studies. The complex nature of the analysis for many antibiotics and organism suggests the best approach to determine in vivo responses during pharmaceutical treatment is evaluating an in vivo system during spaceflight.
Exercise Effects on the Course of Gray Matter Changes Over 70 Days of Bed Rest
NASA Technical Reports Server (NTRS)
Koppelmans, V.; Ploutz-Snyder, L.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.
2014-01-01
Long duration spaceflight affects posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes through direct effects on peripheral changes that result from reduced vestibular stimulation and body unloading. Effects of microgravity on sensorimotor function have been investigated on earth using bed rest studies. Long duration bed rest serves as a space-flight analogue because it mimics microgravity in body unloading and bodily fluid shifts. It has been hypothesized that the cephalad fluid shift that has been observed in microgravity could potentially affect central nervous system function and structure, and thereby indirectly affect sensorimotor or cognitive functioning. Preliminary results of one of our ongoing studies indeed showed that 70 days of long duration head down-tilt bed rest results in focal changes in gray matter volume from pre-bed rest to various time points during bed rest. These gray matter changes that could reflect fluid shifts as well as neuroplasticity were related to decrements in motor skills such as maintenance of equilibrium. In consideration of the health and performance of crewmembers both inand post-flight we are currently conducting a study that investigates the potential preventive effects of exercise on gray matter and motor performance changes that we observed over the course of bed rest. Numerous studies have shown beneficial effects of aerobic exercise on brain structure and cognitive performance in healthy and demented subjects over a large age range. We therefore hypothesized that an exercise intervention in bed rest could potentially mitigate or prevent the effects of bed rest on the central nervous system. Here we present preliminary outcomes of our study.
Effect of In-Flight Exercise and Extravehicular Activity on Postflight Stand Tests
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Moore, Alan D., Jr.; Fritsch-Yelle, Janice; Greenisen, Michael; Schneider, Suzanne M.; Foster, Philip P.
2000-01-01
The purpose of this study was to determine whether exercise performed by Space Shuttle crewmembers during short-duration spaceflights (9-16 days) affects the heart rate (HR) and blood pressure (BP) responses to standing within 2-4 hr of landing. Thirty crewmembers performed self-selected in-flight exercise and maintained exercise logs to monitor their exercise intensity and duration. A 10min stand test, preceded by at least 6 min of quiet supine rest, was completed 10- 15 d before launch (PRE) and within four hours of landing (POST). Based upon their in-flight exercise records, subjects were grouped as either high (HIex: = 3x/week, HR = 70% ,HRMax, = 20 min/session, n = 11), medium (MEDex: = 3x/week, HR = 70% HRmax, = 20 min/session, n = 10), or low (LOex: = 3x/week, HR and duration variable, n = 11) exercisers. HR and BP responses to standing were compared between groups (ANOVA, or analysis of variance, P < 0.05). There were no PRE differences between the groups in supine or standing HR and BP. Although POST supine HR was similar to PRE, all groups had an increased standing HR compared to PRE. The increase in HR upon standing was significantly greater after flight in the LOex group (36+/-5 bpm) compared to HIex or MEDex groups (25+/-1bpm; 22+/-2 bpm). Similarly, the decrease in pulse pressure (PP) from supine to standing was unchanged after spaceflight in the MEDex and HIex groups, but was significantly less in the LOex group (PRE: -9+/- 3, POST: -19+/- 4 mmHg). Thus, moderate to high levels of in-flight exercise attenuated HR and PP responses to standing after spaceflight compared.
Spaceflight Sensorimotor Analogs: Simulating Acute and Adaptive Effects
NASA Technical Reports Server (NTRS)
Taylor, Laura C.; Harm, Deborah L.; Kozlovskaya, Inessa; Reschke, Millard F.; Wood, Scott J.
2009-01-01
Adaptive changes in sensorimotor function during spaceflight are reflected by spatial disorientation, motion sickness, gaze destabilization and decrements in balance, locomotion and eye-hand coordination that occur during and following transitions between different gravitational states. The purpose of this study was to conduct a meta-synthesis of data from spaceflight analogs to evaluate their effectiveness in simulating adaptive changes in sensorimotor function. METHODS. The analogs under review were categorized as either acute analogs used to simulate performance decrements accompanied with transient changes, or adaptive analogs used to drive sensorimotor learning to altered sensory feedback. The effectiveness of each analog was evaluated in terms of mechanisms of action, magnitude and time course of observed deficits compared to spaceflight data, and the effects of amplitude and exposure duration. RESULTS. Parabolic flight has been used extensively to examine effects of acute variation in gravitational loads, ranging from hypergravity to microgravity. More recently, galvanic vestibular stimulation has been used to elicit acute postural, locomotor and gaze dysfunction by disrupting vestibular afferents. Patient populations, e.g., with bilateral vestibular loss or cerebellar dysfunction, have been proposed to model acute sensorimotor dysfunction. Early research sponsored by NASA involved living onboard rotating rooms, which appeared to approximate the time course of adaptation and post-exposure recovery observed in astronauts following spaceflight. Exposure to different bed-rest paradigms (6 deg head down, dry immersion) result in similar motor deficits to that observed following spaceflight. Shorter adaptive analogs have incorporated virtual reality environments, visual distortion paradigms, exposure to conflicting tilt-translation cues, and exposure to 3Gx centrifugation. As with spaceflight, there is considerable variability in responses to most of the analogs reviewed. DISCUSSION. A true ground-based flight analog for sensorimotor function is not feasible. A combination of flight analogs; however, can be used to selectively mimic different aspects of the spaceflight-induced sensorimotor performance decrements.
Hughson, Richard L; Peterson, Sean D; Yee, Nicholas J; Greaves, Danielle K
2017-11-01
Pulse contour analysis of the noninvasive finger arterial pressure waveform provides a convenient means to estimate cardiac output (Q̇). The method has been compared with standard methods under a range of conditions but never before during spaceflight. We compared pulse contour analysis with the Modelflow algorithm to estimates of Q̇ obtained by rebreathing during preflight baseline testing and during the final month of long-duration spaceflight in nine healthy male astronauts. By Modelflow analysis, stroke volume was greater in supine baseline than seated baseline or inflight. Heart rate was reduced in supine baseline so that there were no differences in Q̇ by Modelflow estimate between the supine (7.02 ± 1.31 l/min, means ± SD), seated (6.60 ± 1.95 l/min), or inflight (5.91 ± 1.15 l/min) conditions. In contrast, rebreathing estimates of Q̇ increased from seated baseline (4.76 ± 0.67 l/min) to inflight (7.00 ± 1.39 l/min, significant interaction effect of method and spaceflight, P < 0.001). Pulse contour analysis utilizes a three-element Windkessel model that incorporates parameters dependent on aortic pressure-area relationships that are assumed to represent the entire circulation. We propose that a large increase in vascular compliance in the splanchnic circulation invalidates the model under conditions of spaceflight. Future spaceflight research measuring cardiac function needs to consider this important limitation for assessing absolute values of Q̇ and stroke volume. NEW & NOTEWORTHY Noninvasive assessment of cardiac function during human spaceflight is an important tool to monitor astronaut health. This study demonstrated that pulse contour analysis of finger arterial blood pressure to estimate cardiac output failed to track the 46% increase measured by a rebreathing method. These results strongly suggest that alternative methods not dependent on pulse contour analysis are required to track cardiac function in spaceflight. Copyright © 2017 the American Physiological Society.
Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures.
Clément, Gilles; Allaway, Heather C M; Demel, Michael; Golemis, Adrianos; Kindrat, Alexandra N; Melinyshyn, Alexander N; Merali, Tahir; Thirsk, Robert
2015-01-01
The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5-6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70-30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of "illusory" depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues.
The Digital Astronaut Project Bone Remodeling Model
NASA Technical Reports Server (NTRS)
Pennline, James A.; Mulugeta, Lealem; Lewandowski, Beth E.; Thompson, William K.; Sibonga, Jean D.
2014-01-01
Under the conditions of microgravity, astronauts lose bone mass at a rate of 1% to 2% a month, particularly in the lower extremities such as the proximal femur: (1) The most commonly used countermeasure against bone loss has been prescribed exercise, (2) However, current exercise countermeasures do not completely eliminate bone loss in long duration, 4 to 6 months, spaceflight, (3,4) leaving the astronaut susceptible to early onset osteoporosis and a greater risk of fracture later in their lives. The introduction of the Advanced Resistive Exercise Device, coupled with improved nutrition, has further minimized the 4 to 6 month bone loss. But further work is needed to implement optimal exercise prescriptions, and (5) In this light, NASA's Digital Astronaut Project (DAP) is working with NASA physiologists to implement well-validated computational models that can help understand the mechanisms of bone demineralization in microgravity, and enhance exercise countermeasure development.
Effect of Real and Simulated Microgravity on Muscle Function
NASA Technical Reports Server (NTRS)
1997-01-01
In this session, Session JA3, the discussion focuses on the following topics: Changes in Calf Muscle Performance, Energy Metabolism, and Muscle Volume Caused by Long Term Stay on Space Station MIR; Vibrografic Signs of Autonomous Muscle Tone Studied in Long Term Space Missions; Reduction of Muscle Strength After Long Duration Space Flights is Associated Primarily with Changes in Neuromuscular Function; The Effects of a 115-Day Spaceflight on Neuromuscular Function in Crewman; Effects of 17-Day Spaceflight on Human Triceps Surae Electrically-Evoked Contractions; Effects of Muscle Unloading on EMG Spectral Parameters; and Myofiber Wound-Mediated FGF Release and Muscle Atrophy During Bedrest.
Spaceflight Effects on Neurocognitive Performance: Extent, Longevity and Neural Bases
NASA Technical Reports Server (NTRS)
Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Kofman, I. S.; Cassady, K.; Yuan, P.; De Dios, Y. E.; Gadd, N.; Riascos, R. F.; Wood, S. J.;
2017-01-01
We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that are conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. We have collected data on several crewmembers and preliminary findings will be presented. Eventual comparison to results from our parallel bed rest study will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe.
Paroxysmal Atrial Fibrillation in a Mission-Assigned Astronaut
NASA Technical Reports Server (NTRS)
Bauer, Peter A.; Polk, J. D.
2010-01-01
This presentation will explore the clinical and administrative conundrums faced by the flight surgeon upon discovering asymptomatic paroxysmal atrial fibrillation seven months prior to scheduled long duration spaceflight. The presenter will discuss the decision-making process as well as the clinical and operational outcomes.
Immune changes during short-duration missions
NASA Technical Reports Server (NTRS)
Taylor, G. R.
1993-01-01
Spaceflight materially influences the immune mechanism of humans and animals. Effects resulting from missions of less than 1 month are examined. Effects from longer missions are discussed in the companion paper by Konstantinova et al. Most immunology studies have involved analyses of subjects and samples from subjects obtained after flight, with the data being compared with similar data obtained before flight. These studies have demonstrated that short-duration missions can result in a postflight depression in blast cell transformation, major changes in cytokine function, and alterations in the relative numbers of immune cell populations. In addition to these post- vs. preflight studies, some data have been produced in flight. However, these in vitro analyses have been less than satisfactory because of differences between in-flight and ground-control conditions. Recently, both the U.S. and Russian space programs have started collecting in-flight, in vivo, cell-mediated immunity data. These studies have confirmed that the human cell-mediated immune system is blunted during spaceflight.
Immune changes during short-duration missions.
Taylor, G R
1993-09-01
Spaceflight materially influences the immune mechanism of humans and animals. Effects resulting from missions of less than 1 month are examined. Effects from longer missions are discussed in the companion paper by Konstantinova et al. Most immunology studies have involved analyses of subjects and samples from subjects obtained after flight, with the data being compared with similar data obtained before flight. These studies have demonstrated that short-duration missions can result in a postflight depression in blast cell transformation, major changes in cytokine function, and alterations in the relative numbers of immune cell populations. In addition to these post- vs. preflight studies, some data have been produced in flight. However, these in vitro analyses have been less than satisfactory because of differences between in-flight and ground-control conditions. Recently, both the U.S. and Russian space programs have started collecting in-flight, in vivo, cell-mediated immunity data. These studies have confirmed that the human cell-mediated immune system is blunted during spaceflight.
NASA Technical Reports Server (NTRS)
Keprta, Sean R.; Tarver, William; Van Baalen, Mary; McCoy, Torin
2015-01-01
United States Astronauts have a very unique occupational exposure profile. In order to understand these risks and properly address them, the National Aeronautics and Atmospheric Administration, NASA, originally created the Longitudinal Study of Astronaut Health, LSAH. The first LSAH was designed to address a variety of needs regarding astronaut health and included a 3 to 1 terrestrial control population in order to compare United States "earth normal" disease and aging to that of a microgravity exposed astronaut. Over the years that program has been modified, now termed Lifetime Surveillance of Astronaut Health, still LSAH. Astronaut spaceflight exposures have also changed, with the move from short duration shuttle flights to long duration stays on international space station and considerable terrestrial training activities. This new LSAH incorporates more of an occupational health and medicine model to the study of occupationally exposed astronauts. The presentation outlines the baseline exposures and monitoring of the astronaut population to exposures, both terrestrial, and in space.
Lambrecht, Gunda; Petersen, Nora; Weerts, Guillaume; Pruett, Casey; Evetts, Simon; Stokes, Maria; Hides, Julie
2017-01-01
Spaceflight and exposure to microgravity have wide-ranging effects on many systems of the human body. At the European Space Agency (ESA), a physiotherapist plays a key role in the multidisciplinary ESA team responsible for astronaut health, with a focus on the neuro-musculoskeletal system. In conjunction with a sports scientist, the physiotherapist prepares the astronaut for spaceflight, monitors their exercise performance whilst on the International Space Station (ISS), and reconditions the astronaut when they return to Earth. This clinical commentary outlines the physiotherapy programme, which was developed over nine long-duration missions. Principles of physiotherapy assessment, clinical reasoning, treatment programme design (tailored to the individual) and progression of the programme are outlined. Implications for rehabilitation of terrestrial populations are discussed. Evaluation of the reconditioning programme has begun and challenges anticipated after longer missions, e.g. to Mars, are considered. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Ott, C. Mark
2014-01-01
Spaceflight microbiology is composed of both operational and experimental components that complement each other in our understanding of microbial interactions and their responses in the microgravity of spaceflight. Operationally, efforts to mitigate microbiological risk to the crew and the spacecraft have historically focused on minimizing the number of detectable organisms, relying heavily on preventative measures, including appropriate vehicle design, crew quarantine prior to flight, and stringent microbial monitoring. Preflight monitoring targets have included the astronauts, spaceflight foods, potable water systems, the vehicle air and surfaces, and the cargo carried aboard the spacecraft. This approach has been very successful for earlier missions; however, the construction and long-term habitation of the International Space Station (ISS) has created the need for additional inflight monitoring of the environment and potable water systems using hardware designed for both in-flight microbial enumeration and sample collection and return to Earth. In addition to operational activities, the ISS is providing a research platform to advance our understanding of microbiomes in the built environment. Adding to the research possibilities of this system are multiple reports of unique changes in microbial gene expression and phenotypic responses, including virulence and biofilm formation, in response to spaceflight culture. The tremendous potential of the ISS research platform led the National Research Council to recommend that NASA utilize the ISS as a microbial observatory. Collectively, the findings from operational and research activities on the ISS are expected to both enable future space exploration and translate to basic and applied research on Earth.
Macaulay, Timothy R; Siamwala, Jamila H; Hargens, Alan R; Macias, Brandon R
2017-12-01
Previously our laboratory documented increases in calvaria bone volume and thickness in mice exposed to 15 days of spaceflight aboard the NASA Shuttle mission STS-131. However, the tissues were not processed for gene expression studies to determine what bone formation pathways might contribute to these structural adaptations. Therefore, this study was designed to investigate both the structural and molecular changes in mice calvariae after a longer duration of spaceflight. The primary purpose was to determine the calvaria bone volume and thickness of mice exposed to 30 days of spaceflight using micro-computed tomography for comparison with our previous findings. Because sclerostin, the secreted glycoprotein of the Sost gene, is a potent inhibitor of bone formation, our second aim was to quantify Sost mRNA expression using quantitative PCR. Calvariae were obtained from six mice aboard the Russian 30-day Bion-M1 biosatellite and seven ground controls. In mice exposed to 30 days of spaceflight, calvaria bone structure was not significantly different from that of their controls (bone volume was about 5% lower in spaceflight mice, p = 0.534). However, Sost mRNA expression was 16-fold (16.4 ± 0.4, p < 0.001) greater in the spaceflight group than that in the ground control group. Therefore, bone formation may have been suppressed in mice exposed to 30 days of spaceflight. Genetic responsiveness (e.g. sex or strain of animals) or in-flight environmental conditions other than microgravity (e.g. pCO 2 levels) may have elicited different bone adaptations in STS-131 and Bion-M1 mice. Although structural results were not significant, this study provides biochemical evidence that calvaria mechanotransduction pathways may be altered during spaceflight, which could reflect vascular and interstitial fluid adaptations in non-weight bearing bones. Future studies are warranted to elucidate the processes that mediate these effects and the factors responsible for discordant calvaria bone adaptations between STS-131 and Bion-M1 mice.
Adaptation of the Skeletal System during Long-duration Spaceflight
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.; Cavanagh, Peter R.; Lang, Thomas F.; LeBlanc, Adrian D.; Schneider, Victor S.; Shackelford, Linda C.; Smith, Scott M.; Vico, Laurence
2008-01-01
This review will highlight evidence from crew members flown on space missions greater than 90 days to suggest that the adaptations of the skeletal system to mechanical unloading may predispose crew members to an accelerated onset of osteoporosis after return to Earth. By definition, osteoporosis is a skeletal disorder - characterized by low bone mineral density and structural deterioration - that reduces the ability of bones to resist fracture under the loading of normal daily activities. Involutional or agerelated osteoporosis is readily recognized as a syndrome afflicting the elderly population because of the insipid and asymptomatic nature of bone loss that does not typically manifest as fractures until after age approximately 60. It is not the thesis of this review to suggest that spaceflight-induced bone loss is similar to bone loss induced by metabolic bone disease; rather this review draws parallels between the rapid and earlier loss in females that occurs with menopause and the rapid bone loss in middle-aged crew members that occurs with spaceflight unloading and how the cumulative effects of spaceflight and ageing could be detrimental, particularly if skeletal effects are totally or partially irreversible. In brief, this report will provide detailed evidence that long-duration crew members, exposed to the weightlessness of space for the typical long-duration (4-6 months) mission on Mir or the International Space Station -- 1. Display bone resorption that is aggressive, that targets normally weight-bearing skeletal sites, that is uncoupled to bone formation and that results in areal BMD deficits that can range between 6-20% of preflight BMD; 2. Display compartment-specific declines in volumetric BMD in the proximal femur (a skeletal site of clinical interest) that significantly reduces its compressive and bending strength and which may account for the loss in hip bone strength (i.e., force to failure); 3. Recover BMD over a post-flight time period that exceeds spaceflight exposure but for which the restoration of whole bone strength remains an open issue and may involve structural alteration; and 4. Display risk factors for bone loss -- such as the negative calcium balance and down-regulated calcium-regulating hormones in response to bone atrophy -- that can be compounded by the constraints of conducting mission operations (inability to provide essential nutrients and vitamins). The full characterization of the skeletal response to mechanical unloading in space is not complete. In particular, countermeasures used to date have been inadequate and it is not yet known whether more appropriate countermeasures can prevent the changes in bone that have been found in previous flights, knowledge gaps related to the effects of prolonged (greater than or equal to 6 months) space exposure and to partial gravity environments are substantial, and longitudinal measurements on crew members after spaceflight are required to assess the full impact on skeletal recovery.
Oxidant damage during and after spaceflight
NASA Technical Reports Server (NTRS)
Stein, T. P.; Leskiw, M. J.
2000-01-01
The objectives of this study were to assess oxidant damage during and after spaceflight and to compare the results against bed rest with 6 degrees head-down tilt. We measured the urinary excretion of the F(2) isoprostane, 8-iso-prostaglandin (PG) F(2alpha), and 8-oxo-7,8-dihydro-2 deoxyguanosine (8-OH DG) before, during, and after long-duration spaceflight (4-9 mo) on the Russian space station MIR, short-duration spaceflight on the shuttle, and 17 days of bed rest. Sample collections on MIR were obtained between 88 and 186 days in orbit. 8-iso-PGF(2alpha) and 8-OH DG are markers for oxidative damage to membrane lipids and DNA, respectively. Data are mean +/- SE. On MIR, isoprostane levels were decreased inflight (96. 9 +/- 11.6 vs. 76.7 +/- 14.9 ng. kg(-1). day(-1), P < 0.05, n = 6) due to decreased dietary intake secondary to impaired thermoregulation. Isoprostane excretion was increased postflight (245.7 +/- 55.8 ng. kg(-1). day(-1), P < 0.01). 8-OH DG excretion was unchanged with spaceflight and increased postflight (269 +/- 84 vs 442 +/- 180 ng. kg(-1). day(-1), P < 0.05). On the shuttle, 8-OH DG excretion was unchanged in- and postflight, but 8-iso-PGF(2alpha) excretion was decreased inflight (15.6 +/- 4.3 vs 8.0 +/- 2.7 ng. kg(-1). day(-1), P < 0.05). No changes were found with bed rest, but 8-iso-PGF(2alpha) was increased during the recovery phase (48.9 +/- 23.0 vs 65.4 +/- 28.3 ng. kg(-1). day(-1), P < 0.05). The changes in isoprostane production were attributed to decreased production of oxygen radicals from the electron transport chain due to the reduced energy intake inflight. The postflight increases in the excretion of the products of oxidative damage were attributed to a combination of an increase in metabolic activity and the loss of some host antioxidant defenses inflight. We conclude that 1) oxidative damage was decreased inflight, and 2) oxidative damage was increased postflight.
In-Space Manufacturing at NASA Marshall Space Flight Center: Enabling Technologies for Exploration
NASA Technical Reports Server (NTRS)
Bean, Quincy; Johnston, Mallory; Ordonez, Erick; Ryan, Rick; Prater, Tracie; Werkeiser, Niki
2015-01-01
NASA Marshall Space Flight Center is currently engaged in a number of in-space manufacturing(ISM)activities that have the potential to reduce launch costs, enhance crew safety, and provide the capabilities needed to undertake long duration spaceflight safely and sustainably.
Barger, Laura K; Flynn-Evans, Erin E; Kubey, Alan; Walsh, Lorcan; Ronda, Joseph M; Wang, Wei; Wright, Kenneth P; Czeisler, Charles A
2014-09-01
Sleep deprivation and fatigue are common subjective complaints among astronauts. Previous studies of sleep and hypnotic drug use in space have been limited to post-flight subjective survey data or in-flight objective data collection from a small number of crew members. We aimed to characterise representative sleep patterns of astronauts on both short-duration and long-duration spaceflight missions. For this observational study, we recruited crew members assigned to Space Transportation System shuttle flights with in-flight experiments between July 12, 2001, and July 21, 2011, or assigned to International Space Station (ISS) expeditions between Sept 18, 2006, and March 16, 2011. We assessed sleep-wake timing objectively via wrist actigraphy, and subjective sleep characteristics and hypnotic drug use via daily logs, in-flight and during Earth-based data-collection intervals: for 2 weeks scheduled about 3 months before launch, 11 days before launch until launch day, and for 7 days upon return to Earth. We collected data from 64 astronauts on 80 space shuttle missions (26 flights, 1063 in-flight days) and 21 astronauts on 13 ISS missions (3248 in-flight days), with ground-based data from all astronauts (4014 days). Crew members attempted and obtained significantly less sleep per night as estimated by actigraphy during space shuttle missions (7·35 h [SD 0·47] attempted, 5·96 h [0·56] obtained), in the 11 days before spaceflight (7·35 h [0·51], 6·04 h [0·72]), and about 3 months before spaceflight (7·40 h [0·59], 6·29 h [0·67]) compared with the first week post-mission (8·01 h [0·78], 6·74 h [0·91]; p<0·0001 for both measures). Crew members on ISS missions obtained significantly less sleep during spaceflight (6·09 h [0·67]), in the 11 days before spaceflight (5·86 h [0·94]), and during the 2-week interval scheduled about 3 months before spaceflight (6·41 h [SD 0·65]) compared with in the first week post-mission (6·95 h [1·04]; p<0·0001). 61 (78%) of 78 shuttle-mission crew members reported taking a dose of sleep-promoting drug on 500 (52%) of 963 nights; 12 (75%) of 16 ISS crew members reported using sleep-promoting drugs. Sleep deficiency in astronauts was prevalent not only during space shuttle and ISS missions, but also throughout a 3 month preflight training interval. Despite chronic sleep curtailment, use of sleep-promoting drugs was pervasive during spaceflight. Because chronic sleep loss leads to performance decrements, our findings emphasise the need for development of effective countermeasures to promote sleep. The National Aeronautics and Space Administration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gene Expression and Structural Skeletal Responses to Long-Duration Simulated Microgravity in Rats
NASA Technical Reports Server (NTRS)
Shirazi-Fard, Yasaman; Rael, Victoria E.; Torres, Samantha; Steczina, Sonette; Bryant, Sheenah; Tahimic, Candice; Globus, Ruth K.
2017-01-01
In this study, we aim to examine skeletal responses to simulated long-duration spaceflight (90 days) and weight-bearing recovery on bone loss using the ground-based hindlimb unloading (HU) model in adolescent (3-month old) male rats. We hypothesized that simulated microgravity leads to the temporal regulation of oxidative defense genes and pro-bone resorption factors, where there is a progression and eventual plateau; furthermore, early transient changes in these pathways precede skeletal adaptations.
NASA Technical Reports Server (NTRS)
D'Amelio, F.; Daunton, N. G.
1992-01-01
The effects of spaceflight upon the "slow" muscle adductor longus were examined in rats flown in the Soviet Biosatellite COSMOS 2044. The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leukocytes and mononuclear cells. Neural cell adhesion molecule immunoreactivity (N-CAM-IR) was seen on the myofiber surface and in regenerating myofibers. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with apparent preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments. The principal electron microscopic changes of the neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles replaced by microtubules and neurofilaments, degeneration of axon terminals, vacant axonal spaces and changes suggestive of axonal sprouting. The present observations suggest that alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.
Physical Training for Long-Duration Spaceflight.
Loehr, James A; Guilliams, Mark E; Petersen, Nora; Hirsch, Natalie; Kawashima, Shino; Ohshima, Hiroshi
2015-12-01
Physical training has been conducted on the International Space Station (ISS) for the past 10 yr as a countermeasure to physiological deconditioning during spaceflight. Each member space agency has developed its own approach to creating and implementing physical training protocols for their astronauts. We have divided physical training into three distinct phases (preflight, in-flight, and postflight) and provided a description of each phase with its constraints and limitations. We also discuss how each member agency (NASA, ESA, CSA, and JAXA) prescribed physical training for their crewmembers during the first 10 yr of ISS operations. It is important to understand the operational environment, the agency responsible for the physical training program, and the constraints and limitations associated with spaceflight to accurately design and implement exercise training or interpret the exercise data collected on ISS. As exploration missions move forward, resolving agency differences in physical training programs will become important to maximizing the effectiveness of exercise as a countermeasure and minimizing any mission impacts.
Anesthesia during and Immediately after Spaceflight
NASA Technical Reports Server (NTRS)
Seubert, Christoph N.; Price, Catherine; Janelle, Gregory M.
2006-01-01
The increasing presence of humans in space and long-duration manned missions to the Moon or Mars pose novel challenges to the delivery of medical care. Even now, cumulative person-days in space exceed 80 years and preparations for a return to the Moon are actively underway. Medical care after an emergent de-orbit or an accident during a non-nominal landing must not only address the specific disease or injuries but also the challenges posed by physiologic adaptations to microgravity. In the highly autonomous situation of a long-term space mission the situation is even more complex, because personnel, equipment, specific training, and clinical experience are by definition limited. To summarize our current knowledge specifically for anesthetic care during and immediately after spaceflight, we will review physiologic adaptations to microgravity with particular emphasis on the resulting anesthetic risks, discuss veterinary experiences with anesthesia in weightlessness or in animals adapted to microgravity, describe current research that pertains to anesthesia and spaceflight and point out unresolved questions for future investigation.
Towards human exploration of space: The THESEUS review series on immunology research priorities
Frippiat, Jean-Pol; Crucian, Brian E; de Quervain, Dominique J-F; Grimm, Daniela; Montano, Nicola; Praun, Siegfried; Roozendaal, Benno; Schelling, Gustav; Thiel, Manfred; Ullrich, Oliver; Choukèr, Alexander
2016-01-01
Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact. PMID:28725745
Towards human exploration of space: The THESEUS review series on immunology research priorities.
Frippiat, Jean-Pol; Crucian, Brian E; de Quervain, Dominique J-F; Grimm, Daniela; Montano, Nicola; Praun, Siegfried; Roozendaal, Benno; Schelling, Gustav; Thiel, Manfred; Ullrich, Oliver; Choukèr, Alexander
2016-01-01
Dysregulation of the immune system occurs during spaceflight and may represent a crew health risk during exploration missions because astronauts are challenged by many stressors. Therefore, it is crucial to understand the biology of immune modulation under spaceflight conditions in order to be able to maintain immune homeostasis under such challenges. In the framework of the THESEUS project whose aim was to develop an integrated life sciences research roadmap regarding human space exploration, experts working in the field of space immunology, and related disciplines, established a questionnaire sent to scientists around the world. From the review of collected answers, they deduced a list of key issues and provided several recommendations such as a maximal exploitation of currently available resources on Earth and in space, and to increase increments duration for some ISS crew members to 12 months or longer. These recommendations should contribute to improve our knowledge about spaceflight effects on the immune system and the development of countermeasures that, beyond astronauts, could have a societal impact.
Contribution of Spaceflight Environmental Factors to Vision Risks
NASA Technical Reports Server (NTRS)
Zanello, Susana
2012-01-01
The recognition of a risk of visual impairment and intracranial pressure increase as a result of spaceflight has directed our attention and research efforts to the eye. While the alterations observed in astronauts returning from long duration missions include reportable vision and neuroanatomical changes observed by non-invasive methods, other effects and subsequent tissue responses at the molecular and cellular level can only be studied by accessing the tissue itself. As a result of this need, several studies are currently taking place that use animal models for eye research within the HHC Element. The implementation of these studies represents a significant addition to the capabilities of the biomedical research laboratories within the SK3 branch at JSC.
A Comparison of Tandem Walk Performance Between Bed Rest Subjects and Astronauts
NASA Technical Reports Server (NTRS)
Miller, Chris; Peters, Brian; Kofman, Igor; Philips, Tiffany; Batson, Crystal; Cerisano, Jody; Fisher, Elizabeth; Mulavara, Ajitkumar; Feiveson, Alan; Reschke, Millard;
2015-01-01
Astronauts experience a microgravity environment during spaceflight, which results in a central reinterpretation of both vestibular and body axial-loading information by the sensorimotor system. Subjects in bed rest studies lie at 6deg head-down in strict bed rest to simulate the fluid shift and gravity-unloading of the microgravity environment. However, bed rest subjects still sense gravity in the vestibular organs. Therefore, bed rest isolates the axial-unloading component, thus allowing for the direct study of its effects. The Tandem Walk is a standard sensorimotor test of dynamic postural stability. In a previous abstract, we compared performance on a Tandem Walk test between bed rest control subjects, and short- and long-duration astronauts both before and after flight/bed rest using a composite index of performance, called the Tandem Walk Parameter (TWP), that takes into account speed, accuracy, and balance control. This new study extends the previous data set to include bed rest subjects who performed exercise countermeasures. The purpose of this study was to compare performance during the Tandem Walk test between bed rest subjects (with and without exercise), short-duration (Space Shuttle) crewmembers, and long-duration International Space Station (ISS) crewmembers at various time points during their recovery from bed rest or spaceflight.
NASA Technical Reports Server (NTRS)
Charles, John B.; Fritsch-Yelle, Janice M.; Whitson, Peggy A.; Wood, Margie L.; Brown, Troy E.; Fortner, G. William
1999-01-01
Spaceflight causes adaptive changes in cardiovascular function that may deleteriously affect crew health and safety. Over the last three decades, symptoms of cardiovascular changes have ranged from postflight orthostatic tachycardia and decreased exercise capacity to serious cardiac rhythm disturbances during extravehicular activities (EVA). The most documented symptom of cardiovascular dysfunction, postflight orthostatic intolerance, has affected a significant percentage of U.S. Space Shuttle astronauts. Problems of cardiovascular dysfunction associated with spaceflight are a concern to NASA. This has been particularly true during Shuttle flights where the primary concern is the crew's physical health, including the pilot's ability to land the Orbiter, and the crew's ability to quickly egress and move to safety should a dangerous condition arise. The study of astronauts during Shuttle activities is inherently more difficult than most human research. Consequently, sample sizes have been small and results have lacked consistency. Before the Extended Duration Orbiter Medical Project (EDOMP), there was a lack of normative data on changes in cardiovascular parameters during and after spaceflight. The EDOMP for the first time allowed studies on a large enough number of subjects to overcome some of these problems. There were three primary goals of the Cardiovascular EDOMP studies. The first was to establish, through descriptive studies, a normative data base of cardiovascular changes attributable to spaceflight. The second goal was to determine mechanisms of cardiovascular changes resulting from spaceflight (particularly orthostatic hypotension and cardiac rhythm disturbances). The third was to evaluate possible countermeasures. The Cardiovascular EDOMP studies involved parallel descriptive, mechanistic, and countermeasure evaluations.
Arabidopsis gene expression patterns are altered during spaceflight
NASA Astrophysics Data System (ADS)
Paul, Anna-Lisa; Popp, Michael P.; Gurley, William B.; Guy, Charles; Norwood, Kelly L.; Ferl, Robert J.
The exposure of Arabidopsis thaliana (Arabidopsis) plants to spaceflight environments results in differential gene expression. A 5-day mission on orbiter Columbia in 1999 (STS-93) carried transgenic Arabidopsis plants engineered with a transgene composed of the alcohol dehydrogenase (Adh) gene promoter linked to the β-Glucuronidase (GUS) reporter gene. The plants were used to evaluate the effects of spaceflight on gene expression patterns initially by using the Adh/GUS transgene to address specifically the possibility that spaceflight induces a hypoxic stress response (Paul, A.L., Daugherty, C.J., Bihn, E.A., Chapman, D.K., Norwood, K.L., Ferl, R.J., 2001. Transgene expression patterns indicate that spaceflight affects stress signal perception and transduction in arabidopsis, Plant Physiol. 126, 613-621). As a follow-on to the reporter gene analysis, we report here the evaluation of genome-wide patterns of native gene expression within Arabidopsis shoots utilizing the Agilent DNA array of 21,000 Arabidopsis genes. As a control for the veracity of the array analyses, a selection of genes was further characterized with quantitative Real-Time RT PCR (ABI - Taqman®). Comparison of the patterns of expression for arrays probed with RNA isolated from plants exposed to spaceflight compared to RNA isolated from ground control plants revealed 182 genes that were differentially expressed in response to the spaceflight mission by more than 4-fold, and of those only 50 genes were expressed at levels chosen to support a conservative change call. None of the genes that are hallmarks of hypoxic stress were induced to this level. However, genes related to heat shock were dramatically induced - but in a pattern and under growth conditions that are not easily explained by elevated temperatures. These gene expression data are discussed in light of current models for plant responses to the spaceflight environment and with regard to potential future spaceflight experiment opportunities.
Long-Duration Spaceflight Increases Depth Ambiguity of Reversible Perspective Figures
Clément, Gilles; Allaway, Heather C. M.; Demel, Michael; Golemis, Adrianos; Kindrat, Alexandra N.; Melinyshyn, Alexander N.; Merali, Tahir; Thirsk, Robert
2015-01-01
The objective of this study was to investigate depth perception in astronauts during and after spaceflight by studying their sensitivity to reversible perspective figures in which two-dimensional images could elicit two possible depth representations. Other ambiguous figures that did not give rise to a perception of illusory depth were used as controls. Six astronauts and 14 subjects were tested in the laboratory during three sessions for evaluating the variability of their responses in normal gravity. The six astronauts were then tested during four sessions while on board the International Space Station for 5–6 months. They were finally tested immediately after return to Earth and up to one week later. The reaction time decreased throughout the sessions, thus indicating a learning effect. However, the time to first percept reversal and the number of reversals were not different in orbit and after the flight compared to before the flight. On Earth, when watching depth-ambiguous perspective figures, all subjects reported seeing one three-dimensional interpretation more often than the other, i.e. a ratio of about 70–30%. In weightlessness this asymmetry gradually disappeared and after 3 months in orbit both interpretations were seen for the same duration. These results indicate that the perception of “illusory” depth is altered in astronauts during spaceflight. This increased depth ambiguity is attributed to the lack of the gravitational reference and the eye-ground elevation for interpreting perspective depth cues. PMID:26146839
Cardiovascular Adaptations to Long Duration Head-Down Tilt Bed Rest
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Martin, David S.; Perez, Sondar A.; Ribeiro, Christine; Stenger, Michael B.; Summers, Richard; Meck, Janice V.
2008-01-01
INTRODUCTION: Orthostatic hypotension is a serious risk for crewmembers returning from spaceflight. Numerous cardiovascular mechanisms have been proposed to account for this problem, including vascular and cardiac dysfunction, which we studied during bed rest. METHODS: Thirteen subjects were studied before and during bed rest. Statistical analysis was limited to the first 49-60 days of bed rest, and compared to pre-bed rest data. Ultrasound data were collected on vascular and cardiac structure and function. Tilt testing was conducted for 30 minutes or until presyncopal symptoms intervened. RESULTS: Plasma volume was significantly reduced by day 7 of bed rest. Flow-mediated dilation in the leg was significantly increased at bed rest day 49. Arterial responses to nitroglycerin differed in the arm and leg, but did not change as a result of bed rest. Intimal-medial thickness markedly decreased at bed rest days 21, 35 and 49. Several cardiac functional parameters including isovolumic relaxation time, ejection time and myocardial performance index were significantly increased (indicating a decrease in cardiac function) during bed rest. There was a trend for decreased orthostatic tolerance following 60 days of bed rest. DISCUSSION: These data suggest that 6 head-down tilt bed rest alters cardiovascular structure and function in a pattern similar to short duration spaceflight. Additionally, the vascular alterations are primarily seen in the lower body, while vessels of the upper body are unaffected. KEY WORDS: spaceflight, orthostatic intolerance, hypotension, fluid-shift, plasma volume
On Orbit Osteobiology Experiments: from "STROMA" to "MDS" -from in vitro to in vivo
NASA Astrophysics Data System (ADS)
Liu, Yi; Cancedda, Ranieri
Spaceflight causes profound changes in the skeleton, in particular, in the weight-loading bones. Uncoupling of bone remodeling equilibrium between bone formation and resorption is con-sidered responsible for the microgravity-induced bone loss. These changes result in weak-ened and brittle bones prone to fracture on re-entry and in accelerated osteoporosis, making bone deterioration a major problem obstructing the prospects of long-duration manned space flight. Osteoblasts (bone forming cells) and osteocytes (bone resorption cells) are known to be mechano-sensors. Short-exposure of osteoblasts to simulated microgravity ensnarled cell adhe-sion and cytoskeleton. Also osteoblast precursors such as bone marrow stroma cells (BMSC) were shown to be sensitive to mechanical loading. We performed a series of STROMA space-flight experiments by culturing BMSC or co-culturing osteoblasts and osteoclast precursors in automated bioreactors on orbit. Genechip analysis revealed an inhibition of cell proliferation and an unexpected activation of nervous system development genes by spaceflight. To unravel effects of microgravity on genes governing bone mass, transgenic mice with a higher bone mass were flown to orbit inside the Mice Drawer System (MDS) payload. The MDS experiment was launched inside Shuttle Discovery in STS-128 on August 28 2009 at 23:58 EST, and returned to earth by Shuttle Atlantis in STS129 on November 27 2009 at 9:47 EST, marking it as the first long duration animal experiment on the International Space Station (ISS).
The Astronaut-Athlete: Optimizing Human Performance in Space.
Hackney, Kyle J; Scott, Jessica M; Hanson, Andrea M; English, Kirk L; Downs, Meghan E; Ploutz-Snyder, Lori L
2015-12-01
It is well known that long-duration spaceflight results in deconditioning of neuromuscular and cardiovascular systems, leading to a decline in physical fitness. On reloading in gravitational environments, reduced fitness (e.g., aerobic capacity, muscular strength, and endurance) could impair human performance, mission success, and crew safety. The level of fitness necessary for the performance of routine and off-nominal terrestrial mission tasks remains an unanswered and pressing question for scientists and flight physicians. To mitigate fitness loss during spaceflight, resistance and aerobic exercise are the most effective countermeasure available to astronauts. Currently, 2.5 h·d, 6-7 d·wk is allotted in crew schedules for exercise to be performed on highly specialized hardware on the International Space Station (ISS). Exercise hardware provides up to 273 kg of loading capability for resistance exercise, treadmill speeds between 0.44 and 5.5 m·s, and cycle workloads from 0 and 350 W. Compared to ISS missions, future missions beyond low earth orbit will likely be accomplished with less vehicle volume and power allocated for exercise hardware. Concomitant factors, such as diet and age, will also affect the physiologic responses to exercise training (e.g., anabolic resistance) in the space environment. Research into the potential optimization of exercise countermeasures through use of dietary supplementation, and pharmaceuticals may assist in reducing physiological deconditioning during long-duration spaceflight and have the potential to enhance performance of occupationally related astronaut tasks (e.g., extravehicular activity, habitat construction, equipment repairs, planetary exploration, and emergency response).
Carotid Intima Media Thickness in the Astronaut Corps: Association to Spacecraft
NASA Technical Reports Server (NTRS)
Suffredini, John; Locke, James; Johnston, Smith; Charvat, Jacqueline; Young, Millennia; Garcia, Kathleen; Sargsyan, Ashot E.; Tarver, William
2017-01-01
Background: Carotid Intima Media Thickness (CIMT) has been demonstrated to be predictive of future cardiovascular events. Within various populations, radiation exposure, stress, and physical confinement have all been linked to an increased CIMT. Recent research discovered CIMT was significantly increased in ten long duration astronauts from pre-flight to four days post flight. The relationship between spaceflight and CIMT is not understood and trends in CIMT within the larger astronaut population are unknown. Methods: In 2010, CIMT was offered as part of the astronaut annual exam at the JSC Flight Medicine Clinic using a standardized CIMT screening protocol and professional sonographers. Between 2010 and 2016, CIMT measurements were collected on 213 NASA astronauts and payload specialists. The values used in this retrospective chart review are the mean of the CIMT from the right and left. Spaceflight exposure was categorized based on the total number of days spent in space at the time of the ground-based ultrasound (0, 1-29, 30-100, 101-200, =200). Linear regression with generalized estimating equations were used to estimate the association between spaceflight exposures and CIMT. Results: 530 studies were completed among 213 astronauts with a mean of 2.5 studies (range 1-6) per astronaut over the six year period. As in other populations, CIMT was significantly associated with age; however, gender was not. While there was no significant direct correlation between total spaceflight exposure and CIMT found, astronauts with 30-100 spaceflight days and astronauts with greater than 100 spaceflight days had significantly increased CIMT over astronauts who had never flown (p=0.002 and p=<0.0001 respectively) after adjustment for age. Conclusion: Further work is needed to fully understand CIMT and its association to spaceflight. Current occupational surveillance activities are under way to study CIMT values in conjunction with other cardiovascular risk factors among astronauts as compared to the general population.
Validation of Procedures for Monitoring Crewmember Immune Function
NASA Technical Reports Server (NTRS)
Pierson, Duane; Crucian, Brian; Mehta, Satish; Stowe, Raymond; Uchakin, Peter; Quiriarte, Heather; Sams, Clarence
2010-01-01
The objective of this Supplemental Medical Objective (SMO) is to determine the status of the immune system, physiological stress and latent viral reactivation (a clinical outcome that can be measured) during both short and long-duration spaceflight. In addition, this study will develop and validate an immune monitoring strategy consistent with operational flight requirements and constraints. Pre-mission, in-flight and post-flight blood and saliva samples will be obtained from participating crewmembers. Assays included peripheral immunophenotype, T cell function, cytokine profiles, viral-specific immunity, latent viral reactivation (EBV, CMV, VZV), and stress hormone measurements. To date, 18 short duration (now completed) and 8 long-duration crewmembers have completed the study. The long-duration phase of this study is ongoing. For this presentation, the final data set for the short duration subjects will be discussed.
Spaceflight Effect on White Matter Structural Integrity
NASA Technical Reports Server (NTRS)
Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.
2017-01-01
Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.
NASA Technical Reports Server (NTRS)
Feiveson, Alan H.; Lee, Stuart M. C.; Stenger, Michael B.; Stein, Sydney P.; Platts, Steven H.
2011-01-01
Typical methodology for evaluating the effects of spaceflight on orthostatic hypotension (OH) has been survival analysis of tolerance times from 80 head-up tilt tests. However when scheduled test durations are short, there may not be enough failures to allow survival analysis to adequately estimate and compare the effects of flight phase (e.g. pre-flight, number of days post-flight), flight duration, and their interaction, as well as interactions with effects of interventions or countermeasures. The problem is exacerbated in the presence of a repeated measures design, in which subjects participate in tilt tests during various flight phases. Here we show how it is possible to dramatically improve the efficiency of statistical inference in this setting by making use of the additional information contained in minute-by-minute observations of cardiovascular parameters thought to be reflective of progression towards presyncope during tilt testing. Methods: We retrospectively examined operational tilt test (OTT; 10 -min 80 head-up tilt) data from 20 International Space Station (ISS) and 66 Shuttle astronauts 10 d before launch (L-10), on landing day (R+0) and during recovery (R+1, R+3, R+6-10) depending on the level of participation. Data from 5 ISS astronauts tested on R+0 or R+1 who used non-standard countermeasures were excluded. In addition to OTT survival time, 8 cardiovascular parameters (CP: heart rate, systolic, diastolic, and mean arterial blood pressure, pulse pressure, stroke volume, cardiac output, and total peripheral resistance) that might be predictive of progression towards presyncope were measured every minute of each OTT. Statistical analysis was predicated on a two ]stage model of causation. In the first stage, flight duration and time from landing affect the astronauts' degree of OH, which is manifested in the time trends and variation of the above CPs during OTTs. In the second stage, the behavior of these parameters directly affects OTT survival time. Actual analysis proceeded in the opposite direction. First we identified those CPs or linear combinations that best predicted OTT survival regardless of what spaceflight conditions led to OTT completion or presyncope. From these, we calculated a summary statistic (one per OTT) that best predicted survival. We then used mixed ]model regression analysis to relate changes in the summary statistic to flight phase and duration. Inference on the effects of phase, duration, and their interaction on OH follows directly from this second analysis. Results: A linear combination (W) of diastolic blood pressure (DBP) and stroke volume (SV) was found to be the best predictor of OTT survival using the complete data set of minute-by-minute observations of CPs for each OTT. Furthermore, the log-transformed standard deviation of W (Z = log SW) was found to be a strong predictor of survival in the reduced data set consisting of one observation per OTT. In other words, this measure of variability of W during an OTT was the best indicator of whether or not the subject could complete the 10-min test, with higher variability (i.e. higher values of Z) being associated with greater probability of failure. In the mixed-model regression analysis where Z was now treated as a outcome with flight phase and duration groups (ISS and STS) as predictors, we found that there was a significantly more variability in W (higher values of Z) for both groups at R+0, but with no evidence of an interaction until R+3, when the ISS group still had inflated variability, but not the STS group. Conclusions: Variability of the cardiovascular index W recovers more slowly after long-compared to short-duration spaceflight. Since high variability of W has also been shown to be predictive of OTT failure, a primary manifestation of OH, a logical conclusion is that recovery from OH also is slower after long-duration compared to short-duration spaceflights.
Humanly space objects-Perception and connection with the observer
NASA Astrophysics Data System (ADS)
Balint, Tibor S.; Hall, Ashley
2015-05-01
Expanding humanity into space is an inevitable step in our quest to explore our world. Yet space exploration is costly, and the awaiting environment challenges us with extreme cold, heat, vacuum and radiation, unlike anything encountered on Earth. Thus, the few pioneers who experience it needed to be well protected throughout their spaceflight. The resulting isolation heightens the senses and increases the desire to make humanly connections with any other perceived manifestation of life. Such connections may occur via sensory inputs, namely vision, touch, sound, smell, and taste. This then follows the process of sensing, interpreting, and recognizing familiar patterns, or learning from new experiences. The desire to connect could even transfer to observed objects, if their movements and characteristics trigger the appropriate desires from the observer. When ordered in a familiar way, for example visual stimuli from lights and movements of an object, it may create a perceived real bond with an observer, and evoke the feeling of surprise when the expected behavior changes to something no longer predictable or recognizable. These behavior patterns can be designed into an object and performed autonomously in front of an observer, in our case an astronaut. The experience may introduce multiple responses, including communication, connection, empathy, order, and disorder. While emotions are clearly evoked in the observer and may seem one sided, in effect the object itself provides a decoupled bond, connectivity and communication between the observer and the artist-designer of the object. In this paper we will discuss examples from the field of arts and other domains, including robotics, where human perception through object interaction was explored, and investigate the starting point for new innovative design concepts and future prototype designs, that extend these experiences beyond the boundaries of Earth, while taking advantage of remoteness and the zero gravity environment. Through a form of emotional connection and design, these concepts will focus on the connection and brief emotional bond between a humanly animate object in space and a co-located observer in spaceflight. We conclude that beyond providing creative expressions for humanly contacts, these experiences may also provide further insights into human perception in spaceflight, and could be tested on the International Space Station, and serve as a stepping-stone towards use on long-duration spaceflight to Mars.
Russian Countermeasure Systems for Adverse Effects of Microgravity on Long-Duration ISS Flights.
Kozlovskaya, Inessa B; Yarmanova, E N; Yegorov, A D; Stepantsov, V I; Fomina, E V; Tomilovaskaya, E S
2015-12-01
The system of countermeasures for the adverse effects of microgravity developed in the USSR supported the successful implementation of long-duration spaceflight (LDS) programs on the Salyut and Mir orbital stations and was subsequently adapted for flights on the International Space Station (ISS). From 2000 through 2010, crews completed 26 ISS flight increments ranging in duration from 140 to 216 d, with the participation of 27 Russian cosmonauts. These flights have made it possible to more precisely determine a crew-member's level of conditioning, better assess the advantages and disadvantages of training processes, and determine prospects for future developments.
Factors Impacting Habitable Volume Requirements: Results from the 2011 Habitable Volume Workshop
NASA Technical Reports Server (NTRS)
Simon, M.; Whitmire, A.; Otto, C.; Neubek, D. (Editor)
2011-01-01
This report documents the results of the Habitable Volume Workshop held April 18-21, 2011 in Houston, TX at the Center for Advanced Space Studies-Universities Space Research Association. The workshop was convened by NASA to examine the factors that feed into understanding minimum habitable volume requirements for long duration space missions. While there have been confinement studies and analogs that have provided the basis for the guidance found in current habitability standards, determining the adequacy of the volume for future long duration exploration missions is a more complicated endeavor. It was determined that an improved understanding of the relationship between behavioral and psychosocial stressors, available habitable and net habitable volume, and interior layouts was needed to judge the adequacy of long duration habitat designs. The workshop brought together a multi-disciplinary group of experts from the medical and behavioral sciences, spaceflight, human habitability disciplines and design professionals. These subject matter experts identified the most salient design-related stressors anticipated for a long duration exploration mission. The selected stressors were based on scientific evidence, as well as personal experiences from spaceflight and analogs. They were organized into eight major categories: allocation of space; workspace; general and individual control of environment; sensory deprivation; social monotony; crew composition; physical and medical issues; and contingency readiness. Mitigation strategies for the identified stressors and their subsequent impact to habitat design were identified. Recommendations for future research to address the stressors and mitigating design impacts are presented.
NASA Technical Reports Server (NTRS)
Antonsen, Erik
2016-01-01
The Exploration Medical Capabilities (ExMC) Element of NASA's Human Research Program is charged with identifying medical capabilities that can address the challenges of prevention, diagnosis, and treatment of disease and injuries that could occur during exploration missions beyond Earth's orbit. Faced with the obstacle of access to in-flight medical care, and limitations of vehicle space, time, and communications; it is necessary to prioritize what medical consumables are manifested for the flight, and which medical conditions are addressed. Studies of astronaut health establish the incidence of common and high risk medical conditions that require medical intervention during long-duration exploration missions. In 2000, the Institute of Medicine (IOM) convened a committee of experts, Committee on Creating a Vision for Space Medicine during Travel beyond Earth Orbit, to examine the issues surrounding astronaut health and safety for long duration space missions. Two themes run throughout the committee's final report: (1) that not enough is known about the risks to human health during long-duration missions beyond Earth's orbit or about what can effectively mitigate those risks to enable humans to travel and work safely in the environment of deep space and (2) that everything reasonable should be done to gain the necessary information before humans are sent on missions of space exploration (IOM, 2001). Although several spaceflight focused pharmaceutical research studies have been conducted, few have provided sufficient data regarding medication usage or potency changes during spaceflight. The Du pharmaceutical stability study assessed medications flown on space shuttles to and from the International Space Station (ISS) from 2006 until 2008; of which some medications were still viable beyond their expiration dates (Du et al, 2011). However, as with many spaceflight studies, the small 'n' associated with this study limits the ability to draw strong conclusions from it. Dr. Wotring and others have recently published articles containing information regarding medication usage, indications, and efficacy gleaned from spaceflight records (Wotring et al, 2015, 2016; Barger et al, 2014; Basner and Dinges, 2014). Although some conclusions can be drawn from these studies, the inability to fully quantify medication usage, indications, side effects, and effectiveness, limits insight as to which medications should be prioritized for further research.
Delivery of Probiotics in the Space Food System
NASA Technical Reports Server (NTRS)
Castro, S. L.; Ott, C. M.; Douglas, G. L.
2014-01-01
The addition of probiotic bacteria to the space food system is expected to confer immunostimulatory benefits on crewmembers during spaceflight, counteracting the immune dysregulation that has been documented in spaceflight. Specifically, the probiotic Lactobacillus acidophilus has been shown to promote health benefits including antagonism towards and inhibition of virulence related gene expression in pathogens, mucosal stimulation of immune cells, and a reduction in the occurrence and duration of cold and flu-like symptoms. The optimum delivery system for probiotics has not been determined for spaceflight, where the food system is shelf stable and the lack of refrigeration prevents the use of traditional dairy delivery methods. This work proposes to determine whether L. acidophilus is more viable, and therefore more likely to confer immune benefit, when delivered in a capsule form or when delivered in nonfat dry milk powder with a resuscitation opportunity upon rehydration, following 0, 4, and 8 months of storage at -80degC, 4degC, and 22degC, and both prior to and after challenge with simulated gastric and intestinal juices. We hypothesize that the low moisture neutral dairy matrix provided by the nonfat dry milk, and the rehydration step prior to consumption, will extend probiotic viability and stress tolerance compared to a capsule during potential storage conditions in spaceflight and in simulated digestion conditions.
Delivery of Probiotics in the Space Food System
NASA Technical Reports Server (NTRS)
Castro, S. L.; Ott, C. M.; Douglas, G. L.
2014-01-01
The addition of probiotic bacteria to the space food system is expected to confer immunostimulatory benefits on crewmembers during spaceflight, counteracting the immune dysregulation that has been documented in spaceflight [1]. Specifically, the probiotic Lactobacillus acidophilus has been shown to promote health benefits including antagonism towards and inhibition of virulence related gene expression in pathogens, mucosal stimulation of immune cells, and a reduction in the occurrence and duration of cold and flu-like symptoms [2-5]. The optimum delivery system for probiotics has not been determined for spaceflight, where the food system is shelf stable and the lack of refrigeration prevents the use of traditional dairy delivery methods. This work proposes to determine whether L. acidophilus is more viable, and therefore more likely to confer immune benefit, when delivered in a capsule form or when delivered in nonfat dry milk powder with a resuscitation opportunity upon rehydration, following 0, 4, and 8 months of storage at -80degC, 4degC, and 22degC, and both prior to and after challenge with simulated gastric and intestinal juices. We hypothesize that the low moisture neutral dairy matrix provided by the nonfat dry milk, and the rehydration step prior to consumption, will extend probiotic viability and stress tolerance compared to a capsule during potential storage conditions in spaceflight and in simulated digestion conditions.
The Functional Task Test: Results from the One-Year Mission
NASA Technical Reports Server (NTRS)
Bloomberg, J. J; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2017-01-01
Exposure to the microgravity conditions of spaceflight causes astronauts to experience alterations in multiple physiological systems including sensorimotor disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. Some or all of these changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on a planetary surface. The goal of our recently completed Functional Task Test (FTT) study was to determine the effects of spaceflight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. The FTT is comprised of seven functional tests and a corresponding set of interdisciplinary physiological measures specifically targeting the sensorimotor, cardiovascular and muscular changes associated with exposure to spaceflight. Both Shuttle and International Space Station (ISS) astronauts were tested before and after spaceflight. Additionally, we conducted a supporting study in which subjects performed the FTT protocol before and after 70 days of 6 deg head-down bed rest, an analog for spaceflight. Two groups of bed rest subjects were studied: one group who performed aerobic and resistive exercise during bed rest using protocols similar to astronauts and one group who served as non-exercise controls. The bed rest analog allowed us to isolate the impact of body unloading without other spaceflight environmental factors on both functional tasks and on the underlying physiological factors that lead to decrements in performance, and then to compare those results with the results obtained in our spaceflight study. As an extension to the FTT study we collected data from one ISS crewmember who experienced 340 days in space using the same FTT protocol used previously to test spaceflight and bed rest subjects. Data were collected three times preflight and 1.7, 7.5 and 36.5 days after landing. The FTT one-year results will be presented at the meeting, and a comparison will be made with data previously obtained using the same protocol on astronauts tested before and after 6 months in space. Future work will focus on collecting data from additional subjects from one-year flights to gain a better assessment of extreme long-duration exposure to spaceflight on both functional measure of performance and physiological metrics.
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Westby, Christian M.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara; Ploutz-Snyder, Robert J.; Platts, Steven H.
2014-01-01
Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis. PURPOSE The purpose of this investigation is to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and investigate if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. This is the first study to propose assessing atherosclerotic risk using biochemical, structural, and functional measures before, during, and immediately after spaceflight, and structural and functional measures for up to 5 years after landing. METHODS We will study 12 astronauts before, during, and up to 5 years after long-duration ISS missions. A panel of biomarkers of oxidative and inflammatory stress will be measured twice before flight, early (flight days 15 and 60) and late (2 weeks before landing) during the mission, and early in the postflight recovery phase (approx 3 days after landing). Arterial structure and vascular compliance will be measured at the same times and also at 1, 3, and 5 years after landing (surveillance). Arterial function will be measured using the same preflight, postflight, and surveillance schedule as arterial structure and vascular compliance measures, but will not be measured inflight. Biomarkers, some of which we have previously shown to be elevated with spaceflight, will be measured in venous blood samples and 24-h (in-flight) and 48-h (pre- and post-flight) urine pools. Arterial structure will be assessed from measures of carotid intima-media thickness, which have been shown to be better indicators of atherosclerotic than the Framingham Risk Score. Arterial function will be assessed using brachial flow-mediated dilation, a well-validated measure used to assess endothelium-dependent vasodilation and is a sensitive predictor of atherosclerotic risk. Arterial pulse pressure measured in the brachial artery and stroke volume measured from cardiac ultrasound will be used to assess hemodynamic status, cardiac function, and systemic vascular compliance. Three astronauts are actively participating in the preflight data collection and training activities. One astronaut has completed all preflight activities and will participate in the first in-flight data collection sessions by the end of 2013. The first post-flight data collection sessions will occur in the spring of 2014. EXPECTED RESULTS We hypothesize that biomarkers of oxidative and inflammatory stress will increased with spaceflight and will correlate with increased carotid intima-media thickness during and after flight and with decreased flow-mediated dilation after the mission. Furthermore, we hypothesize that measures of oxidative stress will return to baseline after flight, but biomarkers of inflammatory stress and vascular indices of atherosclerotic risk will remain elevated.
Effects of Spaceflight on Astronaut Brain Structure as Indicated on MRI.
Roberts, Donna R; Albrecht, Moritz H; Collins, Heather R; Asemani, Davud; Chatterjee, A Rano; Spampinato, M Vittoria; Zhu, Xun; Chimowitz, Marc I; Antonucci, Michael U
2017-11-02
There is limited information regarding the effects of spaceflight on the anatomical configuration of the brain and on cerebrospinal fluid (CSF) spaces. We used magnetic resonance imaging (MRI) to compare images of 18 astronauts' brains before and after missions of long duration, involving stays on the International Space Station, and of 16 astronauts' brains before and after missions of short duration, involving participation in the Space Shuttle Program. Images were interpreted by readers who were unaware of the flight duration. We also generated paired preflight and postflight MRI cine clips derived from high-resolution, three-dimensional imaging of 12 astronauts after long-duration flights and from 6 astronauts after short-duration flights in order to assess the extent of narrowing of CSF spaces and the displacement of brain structures. We also compared preflight ventricular volumes with postflight ventricular volumes by means of an automated analysis of T 1 -weighted MRIs. The main prespecified analyses focused on the change in the volume of the central sulcus, the change in the volume of CSF spaces at the vertex, and vertical displacement of the brain. Narrowing of the central sulcus occurred in 17 of 18 astronauts after long-duration flights (mean flight time, 164.8 days) and in 3 of 16 astronauts after short-duration flights (mean flight time, 13.6 days) (P<0.001). Cine clips from a subgroup of astronauts showed an upward shift of the brain after all long-duration flights (12 astronauts) but not after short-duration flights (6 astronauts) and narrowing of CSF spaces at the vertex after all long-duration flights (12 astronauts) and in 1 of 6 astronauts after short-duration flights. Three astronauts in the long-duration group had optic-disk edema, and all 3 had narrowing of the central sulcus. A cine clip was available for 1 of these 3 astronauts, and the cine clip showed upward shift of the brain. Narrowing of the central sulcus, upward shift of the brain, and narrowing of CSF spaces at the vertex occurred frequently and predominantly in astronauts after long-duration flights. Further investigation, including repeated postflight imaging conducted after some time on Earth, is required to determine the duration and clinical significance of these changes. (Funded by the National Aeronautics and Space Administration.).
2014-06-05
ISS040-E-007676 (5 June 2014) --- One of the Expedition 40 crew members on the International Space Station took a series of photos of the Vegetable Production System (Veggie) recently added to the orbital outpost. The experiment deals with the growth and development of ‘Outredgeous’ Lettuce (Lactuca sativa) seedlings in the spaceflight environment and the effects of the spaceflight environment on composition of microbial flora on the Veggie-grown plants and the Veggie facility. The purple light is the wavelength that is supposed to best promote photosynthesis and growth for the plants.
2014-06-05
ISS040-E-007672 (5 June 2014) --- One of the Expedition 40 crew members on the International Space Station photographed his hand working with the Vegetable Production System (Veggie) recently added to the orbital outpost. The experiment deals with the growth and development of ‘Outredgeous’ Lettuce (Lactuca sativa) seedlings in the spaceflight environment and the effects of the spaceflight environment on composition of microbial flora on the Veggie-grown plants and the Veggie facility. The purple light is the wavelength that is supposed to best promote photosynthesis and growth for the plants.
NASA Technical Reports Server (NTRS)
Roman, Monsi C.; Ott, C. Mark
2015-01-01
The purpose of this presentation is to start a conversation including the Crew Health, ECLSS, and Planetary Protection communities about the best approach for inflight microbial monitoring as part of a risk mitigation strategy to prevent forward and back contamination while protecting the crew and vehicle.
Micro-scale Plasma Arc Gasification for Waste Treatment and Energy Production Project
NASA Technical Reports Server (NTRS)
Caraccio, Anne
2015-01-01
As NASA continues to develop technology for spaceflight beyond low earth orbit, we must develop the right systems for sustaining human life on a long duration or planetary mission. Plasma arc gasification (PAG) is an energy efficient mechanism of waste management for power generation and synthetic gas(syngas) production.
Increased core body temperature in astronauts during long-duration space missions.
Stahn, Alexander C; Werner, Andreas; Opatz, Oliver; Maggioni, Martina A; Steinach, Mathias; von Ahlefeld, Victoria Weller; Moore, Alan; Crucian, Brian E; Smith, Scott M; Zwart, Sara R; Schlabs, Thomas; Mendt, Stefan; Trippel, Tobias; Koralewski, Eberhard; Koch, Jochim; Choukèr, Alexander; Reitz, Günther; Shang, Peng; Röcker, Lothar; Kirsch, Karl A; Gunga, Hanns-Christian
2017-11-23
Humans' core body temperature (CBT) is strictly controlled within a narrow range. Various studies dealt with the impact of physical activity, clothing, and environmental factors on CBT regulation under terrestrial conditions. However, the effects of weightlessness on human thermoregulation are not well understood. Specifically, studies, investigating the effects of long-duration spaceflight on CBT at rest and during exercise are clearly lacking. We here show that during exercise CBT rises higher and faster in space than on Earth. Moreover, we observed for the first time a sustained increased astronauts' CBT also under resting conditions. This increase of about 1 °C developed gradually over 2.5 months and was associated with augmented concentrations of interleukin-1 receptor antagonist, a key anti-inflammatory protein. Since even minor increases in CBT can impair physical and cognitive performance, both findings have a considerable impact on astronauts' health and well-being during future long-term spaceflights. Moreover, our findings also pinpoint crucial physiological challenges for spacefaring civilizations, and raise questions about the assumption of a thermoregulatory set point in humans, and our evolutionary ability to adapt to climate changes on Earth.
Structure of potato tubers formed during spaceflight
NASA Technical Reports Server (NTRS)
Croxdale, J.; Cook, M.; Tibbitts, T. W.; Brown, C. S.; Wheeler, R. M.
1997-01-01
Potato (Solanum tuberosum L. cv. Norland) explants, consisting of a leaf, axillary bud, and small stem segment, were used as a model system to study the influence of spaceflight on the formation of sessile tubers from axillary buds. The explants were flown on the space shuttle Columbia (STS-73, 20 October to 5 November 1995) in the ASTROCULTURE (TM) flight package, which provided a controlled environment for plant growth. Light and scanning electron microscopy were used to compare the precisely ordered tissues of tubers formed on Earth with those formed during spaceflight. The structure of tubers produced during spaceflight was similar to that of tubers produced in a control experiment. The size and shape of tubers, the geometry of tuber tissues, and the distribution of starch grains and proteinaceous crystals were comparable in tubers formed in both environments. The shape, surface texture, and size range of starch grains from both environments were similar, but a greater percentage of smaller starch grains formed in spaceflight than on Earth. Since explant leaves must be of given developmental age before tubers form, instructions regarding the regular shape and ordered tissue geometry of tubers may have been provided in the presence of gravity. Regardless of when the signalling occurred, gravity was not required to produce a tuber of typical structure.
NASA Astrophysics Data System (ADS)
Riley, D. A.
We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.
Riley, D A
1998-01-01
We have examined the light and electron microscopic properties of hindlimb muscles of rats flown in space for 1-2 weeks on Cosmos biosatellite flights 1887 and 2044 and Space Shuttle missions Spacelab-3, Spacelab Life Sciences-1 and Spacelab Life Sciences-2. Tissues were obtained both inflight and postflight permitting definition of primary microgravity-induced changes and secondary reentry and gravity reloading-induced alterations. Spaceflight causes atrophy and expression of fast fiber characteristics in slow antigravity muscles. The stresses of reentry and reloading reveal that atrophic muscles show increased susceptibility to interstitial edema and ischemic-anoxic necrosis as well as muscle fiber tearing with disruption of contractile proteins. These results demonstrate that the effects of spaceflight on skeletal muscle are multifaceted, and major changes occur both inflight and following return to Earth's gravity.
Space Experiment on Tuber Development and Starch Accumulation for CELSS
NASA Technical Reports Server (NTRS)
Tibbitts,Theodore W.; Croxdale, Judith C.; Brown, Christopher S.
1997-01-01
Potato explants (leaf, small stem section, and axillary bud), flown on STS-73, developed tubers of 1.5 cm diameter and 1.7 g mass during the 16 day period of spaceflight. The experiment was undertaken in the ASTROCULTURE(Trademark) experiment package under controlled temperature, humidity, lighting, and carbon dioxide concentrations. The tubers formed in the explant system under microgravity had the same gross morphology, the same anatomical configuration of cells and tissues, and the same sizes, shapes, and surface character of starch granules as tubers formed in a 1 g environment. The total accumulation of starch and other energy containing compounds was singular in space flight and ground control tubers. Enzyme activity of starch synthase, starch phosphorylase, and total hydrolase was similar in spaceflight and ground controls but activity of ADP-glucose pyrophosphorylase was reduced in the spaceflight tuber tissue. This experiment documented that potatoes will metabolize and accumulate starch as effectively in spaceflight as on the ground and thus this data provides the potential for effective utilization of potatoes in life support systems of space bases.
NASA Technical Reports Server (NTRS)
Lee, S. M. C.; Martin, D. S.; Smith, S. M.; Zwart, S. R.; Laurie, S. S; Ribeiro, L. C.; Stenger, M. B.
2017-01-01
Current human space travel consists primarily of long-duration missions onboard the International Space Station (ISS), but in the future may include exploration-class missions to nearby asteroids, Mars, or its moons. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative stress and inflammation can accelerate the development of atherosclerosis.
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Stenger, Michael B.; Smith, Scott M.; Zwart, Sara R.
2016-01-01
Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. These missions will expose astronauts to increased risk of oxidative and inflammatory damage from a variety of sources, including radiation, psychological stress, reduced physical activity, diminished nutritional status, and hyperoxic exposure during extravehicular activity. Evidence exists that increased oxidative damage and inflammation can accelerate the development of atherosclerosis.
Behavioral, psychiatric, and sociological problems of long-duration space missions
NASA Technical Reports Server (NTRS)
Kanas, N. A.; Fedderson, W. E.
1971-01-01
A literature search was conducted in an effort to isolate the problems that might be expected on long-duration space missions. Primary sources of the search include short-term space flights, submarine tours, Antarctic expeditions, isolation-chamber tests, space-flight simulators, and hypodynamia studies. Various stressors are discussed including weightlessness and low sensory input; circadian rhythms (including sleep); confinement, isolation, and monotony; and purely psychiatric and sociological considerations. Important aspects of crew selection are also mentioned. An attempt is made to discuss these factors with regard to a prototype mission to Mars.
A health care system for the Space Station
NASA Technical Reports Server (NTRS)
1992-01-01
Life science will be one of the pacing technologies for long duration manned spaceflight. The ability to effectively deliver state-of-the-art inflight medical care will have a major impact on crew health and mission success. The future Space Station crews will participate in missions of extended duration with limited capability for emergency return. This factor alone places great responsibility on program designers to ensure the health, safety, and well-being of the crews. The Health Maintenance Facility (HMF) under development at the Johnson Space Center is described.
Galactic cosmic ray composition and energy spectra
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.
1994-01-01
Galactic cosmic ray nuclei represent a significant risk to long-duration spaceflight outside the magnetosphere. We review briefly existing measurements of the composition and energy spectra of heavy cosmic ray nuclei, pointing out which species and energy ranges are most critical to assessing cosmic ray risks for spaceflight. Key data sets are identified and a table of cosmic ray abundances is presented for elements from H to Ni (Z = 1 to 28). Because of the 22-year nature of the solar modulation cycle, data from the approaching 1998 solar minimum is especially important to reducing uncertainties in the cosmic ray radiation hazard. It is recommended that efforts to model this hazard take advantage of approaches that have been developed to model the astrophysical aspects of cosmic rays.
NASA Technical Reports Server (NTRS)
Crucian, Brian E,; Feuerecker, M.; Salam, A. P.; Rybka, A.; Stowe, R. P.; Morrels, M.; Mehta, S. K.; Quiriarte, H.; Quintens, Roel; Thieme, U.;
2011-01-01
For ground-based space physiological research, the choice of analog must carefully match the system of interest. Antarctica winter-over at the European Concordia Station is potentially a ground-analog for spaceflight-associated immune dysregulation (SAID). Concordia missions consist of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation, disrupted circadian rhythms and international crews. The ESA-NASA CHOICE study assess innate and adaptive immunity, viral reactivataion and stress factors during Concordia winter-over deployment. To date, not all samples have been analyzed. Here, only data will be preliminary presented for those parameters where sample/data analysis is completed (i.e., Leukocyte subsets, T cell function, and intracellular/secreted cytokine profiles.)
NASA Technical Reports Server (NTRS)
Daunton, N. G.; DAmelio, F.; Wu, L.; Ilyina-Kakueva, E. I.; Krasnov, I. B.; Hyde, T. M.; Sigworth, S. K.
1994-01-01
The effects of spaceflight upon the 'slow' muscle adductor longus was examined in rats flown in the Soviet Biosatellite COSMOS 2044. Three groups - synchronous, vivarium and basal served as controls. The techniques employed included standard methods for light microscopy, N-CAM immunocytochemistry and electron microscopy. Light microscopic observations revealed myofiber atrophy, contraction bands and segmental necrosis accompanied by cellular infiltrates composed of macrophages, leucocytes and mononuclear cells. N-CAM immunoreactivity was seen (N-CAM-IR) on the myofiber surface, satellite cells and in regenerating myofibers reminiscent of myotubes. Ultrastructural alterations included Z band streaming, disorganization of myofibrillar architecture, sarcoplasmic degradation, extensive segmental necrosis with preservation of the basement membrane, degenerative phenomena of the capillary endothelium and cellular invasion of necrotic areas. Regenerating myofibers were identified by the presence of increased amounts of ribosomal aggregates and chains of polyribosomes associated with myofilaments that displayed varied distributive patterns. The principal electron microscopic changes of the neuromuscular junctions consisted of a decrease or absence of synaptic vesicles, degeneration of axon terminals, increased number of microtubules, vacant axonal spaces and axonal sprouting. The present observations indicate that major alterations such as myofibrillar disruption and necrosis, muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight.
Ferl, Robert J; Paul, Anna-Lisa
2016-01-01
Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes. PMID:28725721
Fibroblast Growth Factor-23 in Bed Rest and Spaceflight
NASA Technical Reports Server (NTRS)
Bokhari, R.; Zwart, S. R; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.
2014-01-01
Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight. Presented with an imbalanced dietary phosphorus to calcium ratio, increased secretion of FGF23 will inhibit renal phosphorus reabsorption, resulting in increased excretion and reduced circulating phosphorus. Increased intake and excretion of phosphorus is associated with increased kidney stone risk in both the terrestrial and microgravity environments. Highly processed foods and carbonated beverages are associated with higher phosphorus content. Ideally, the dietary calcium to phosphorus ratio should be at minimum 1:1. Nutritional requirements for spaceflight suggest that this ratio not be less than 0.67 (3), while the International Space Station (ISS) menu provides 1020 mg Ca and 1856 mg P, for a ratio of 0.55 (3). Subjects in NASA's bed rest studies, by design, have consumed intake ratios much closer to 1.0 (4). FGF23 also has an inhibitory influence on PTH secretion and 1(alpha)-hydroxylase, both of which are required for activating vitamin D with the conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. Decreased 1,25-dihydroxyvitamin D will result in decreased intestinal phosphorus absorption, and increased urinary phosphorus excretion (via decreased renal reabsorption). Should a decrease in 1,25- dihydroxyvitamin D be necessary to reduce intestinal phosphorus absorption, calcium absorption will also proportionally be reduced, potentially leading to skeletal demineralization. Demineralization of bone can increase kidney stone risk, a medical issue that could prove detrimental to mission success. Given the interrelationships described above, we sought to determine circulating FGF23 concentrations in spaceflight and ground analog studies to better understand the potential effects of dietary phosphorus on bone and calcium metabolism. We analyzed serum from ISS astronauts participating in studies of bone biochemistry, including the Nutrition SMO and Pro K experiments, and we also evaluated FGF23 during extended-duration bed rest. Serum intact FGF23 levels were determined using an ELISA kit from Kainos laboratories in Japan. While initial evaluation of the data showed no changes over time during flight or bed rest, evaluation continues of FGF23 data in light of dietary factors, PTH, vitamin D status, and other biochemical and endocrine factors.
Blaber, Andrew P; Bondar, Roberta L; Kassam, Mahmood S
2004-01-01
Background Upon return from space many astronauts experience symptoms of orthostatic intolerance. Research has implicated altered autonomic cardiovascular regulation due to spaceflight with further evidence to suggest that there might be pre-flight autonomic indicators of post-flight orthostatic intolerance. We used heart rate variability (HRV) to determine whether autonomic regulation of the heart in astronauts who did or did not experience post-flight orthostatic intolerance was different pre-flight and/or was differentially affected by short duration (8 – 16 days) spaceflight. HRV data from ten-minute stand tests collected from the 29 astronauts 10 days pre-flight, on landing day and three days post-flight were analysed using coarse graining spectral analysis. From the total power (PTOT), the harmonic component was extracted and divided into high (PHI: >0.15 Hz) and low (PLO: = 0.15 Hz) frequency power regions. Given the distribution of autonomic nervous system activity with frequency at the sinus node, PHI/PTOT was used as an indicator of parasympathetic activity; PLO/PTOT as an indicator of sympathetic activity; and, PLO/PHI as an estimate of sympathovagal balance. Results Twenty-one astronauts were classified as finishers, and eight as non-finishers, based on their ability to remain standing for 10 minutes on landing day. Pre-flight, non-finishers had a higher supine PHI/PTOT than finishers. Supine PHI/PTOT was the same pre-flight and on landing day in the finishers; whereas, in the non-finishers it was reduced. The ratio PLO/PHI was lower in non-finishers compared to finishers and was unaffected by spaceflight. Pre-flight, both finishers and non-finishers had similar supine values of PLO/PTOT, which increased from supine to stand. Following spaceflight, only the finishers had an increase in PLO/PTOT from supine to stand. Conclusions Both finishers and non-finishers had an increase in sympathetic activity with stand on pre-flight, yet only finishers retained this response on landing day. Non-finishers also had lower sympathovagal balance and higher pre-flight supine parasympathetic activity than finishers. These results suggest pre-flight autonomic status and post-flight impairment in autonomic control of the heart may contribute to orthostatic intolerance. The mechanism by which higher pre-flight parasympathetic activity might contribute to post-flight orthostatic intolerance is not understood and requires further investigation. PMID:15113425
Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences
Zhang, Ye; Moreno-Villanueva, Maria; Krieger, Stephanie; Ramesh, Govindarajan T.; Neelam, Srujana; Wu, Honglu
2017-01-01
In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space. PMID:28561779
Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences.
Zhang, Ye; Moreno-Villanueva, Maria; Krieger, Stephanie; Ramesh, Govindarajan T; Neelam, Srujana; Wu, Honglu
2017-05-31
In space, living organisms are exposed to multiple stress factors including microgravity and space radiation. For humans, these harmful environmental factors have been known to cause negative health impacts such as bone loss and immune dysfunction. Understanding the mechanisms by which spaceflight impacts human health at the molecular level is critical not only for accurately assessing the risks associated with spaceflight, but also for developing effective countermeasures. Over the years, a number of studies have been conducted under real or simulated space conditions. RNA and protein levels in cellular and animal models have been targeted in order to identify pathways affected by spaceflight. Of the many pathways responsive to the space environment, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) network appears to commonly be affected across many different cell types under the true or simulated spaceflight conditions. NF-κB is of particular interest, as it is associated with many of the spaceflight-related health consequences. This review intends to summarize the transcriptomics studies that identified NF-κB as a responsive pathway to ground-based simulated microgravity or the true spaceflight condition. These studies were carried out using either human cell or animal models. In addition, the review summarizes the studies that focused specifically on NF-κB pathway in specific cell types or organ tissues as related to the known spaceflight-related health risks including immune dysfunction, bone loss, muscle atrophy, central nerve system (CNS) dysfunction, and risks associated with space radiation. Whether the NF-κB pathway is activated or inhibited in space is dependent on the cell type, but the potential health impact appeared to be always negative. It is argued that more studies on NF-κB should be conducted to fully understand this particular pathway for the benefit of crew health in space.
2005-01-01
instability, or allow oxygen- ation of a patient suffering from a severe respiratory insult such as a massive toxic inhalation , but would be unsatisfactory... trehalose survive freeze-drying. Cryobiology 2001; 42:79–87. 151. Fischer TH, Merricks EP, Bode AP, et al. Thrombus formation with rehydrated
Cardiovascular and Cerebrovascular Control on Return from ISS
NASA Technical Reports Server (NTRS)
Hughson, Richard Lee; Shoemaker, Joel Kevin; Blaber, Andrew Philip; Arbeille, Philippe; Greaves, Danielle Kathleen
2008-01-01
Cardiovascular and Cerebrovascular Control on Return from ISS (CCISS) will study the effects of long-duration spaceflight on crew members' heart functions and their blood vessels that supply the brain. Learning more about the cardiovascular and cerebrovascular systems could lead to specific countermeasures that might better protect future space travelers. This experiment is collaborative with the Canadian Space Agency.
Comparison of Ocular Outcomes in Two 14-Day Bed Rest Studies
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.; Zanello, S. B.; Yarbough, P. O.; Tabbi, G.; Vizzeri, G.
2012-01-01
Reports of astronauts' visual changes have raised concern about ocular health during long-duration spaceflight. Some of these findings include globe flattening with hyperopic shifts, choroidal folds, optic disc edema, retinal nerve fiber layer (RNFL) thickening, and cotton wool spots. While the etiology remains unknown, it is hypothesized that, in predisposed individuals, hypertension in the brain may follow cephalad fluid shifts during spaceflight. This possible mechanism of ocular changes may also apply to analogous cases of idiopathic intracranial hypertension (IIH) or pseudotumor cerebri on Earth patients. Head-down t ilt (HDT) bed rest is a spaceflight analog that induces cephalad fluid shifts. Previous studies of the HDT position demonstrated body fluid shifts associated with changes in intraocular pressure (IOP) but the conditions of bed rest varied among experiments, making it difficult to compare data and draw conclusions. For these reasons, vision evaluation of bed rest subjects was implemented for NASA bed rest studies since 2010, in an attempt to monitor vision health in subjects subjected to bed rest. Vision monitoring is thus currently performed in all NASA-conducted bed rest campaigns
Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes
NASA Technical Reports Server (NTRS)
Smith, S. M.; Wastney, M. E.; Morukov, B. V.; Larina, I. M.; Nyquist, L. E.; Abrams, S. A.; Taran, E. N.; Shih, C. Y.; Nillen, J. L.; Davis-Street, J. E.;
1999-01-01
The loss of bone during spaceflight is considered a physiological obstacle for the exploration of other planets. This report of calcium metabolism before, during, and after long-duration spaceflight extends results from Skylab missions in the 1970s. Biochemical and endocrine indexes of calcium and bone metabolism were measured together with calcium absorption, excretion, and bone turnover using stable isotopes. Studies were conducted before, during, and after flight in three male subjects. Subjects varied in physical activity, yet all lost weight during flight. During flight, calcium intake and absorption decreased up to 50%, urinary calcium excretion increased up to 50%, and bone resorption (determined by kinetics or bone markers) increased by over 50%. Osteocalcin and bone-specific alkaline phosphatase, markers of bone formation, increased after flight. Subjects lost approximately 250 mg bone calcium per day during flight and regained bone calcium at a slower rate of approximately 100 mg/day for up to 3 mo after landing. Further studies are required to determine the time course of changes in calcium homeostasis during flight to develop and assess countermeasures against flight-induced bone loss.
Analogs of microgravity: head-down tilt and water immersion.
Watenpaugh, Donald E
2016-04-15
This article briefly reviews the fidelity of ground-based methods used to simulate human existence in weightlessness (spaceflight). These methods include horizontal bed rest (BR), head-down tilt bed rest (HDT), head-out water immersion (WI), and head-out dry immersion (DI; immersion with an impermeable elastic cloth barrier between subject and water). Among these, HDT has become by far the most commonly used method, especially for longer studies. DI is less common but well accepted for long-duration studies. Very few studies exist that attempt to validate a specific simulation mode against actual microgravity. Many fundamental physical, and thus physiological, differences exist between microgravity and our methods to simulate it, and between the different methods. Also, although weightlessness is the salient feature of spaceflight, several ancillary factors of space travel complicate Earth-based simulation. In spite of these discrepancies and complications, the analogs duplicate many responses to 0 G reasonably well. As we learn more about responses to microgravity and spaceflight, investigators will continue to fine-tune simulation methods to optimize accuracy and applicability. Copyright © 2016 the American Physiological Society.
NASA Astrophysics Data System (ADS)
De La Torre, Gabriel G.; van Baarsen, Berna; Ferlazzo, Fabio; Kanas, Nick; Weiss, Karine; Schneider, Stefan; Whiteley, Iya
2012-12-01
Recently the psychological effects of space flight have gained in attention. In uncovering the psychological challenges that individuals and teams can face, we need research options that integrate psychosocial aspects with behavioral, performance, technical and environmental issues. Future perspectives in Space Psychology and Human Spaceflight are reviewed in this paper. The topics covered include psychosocial and neurobehavioural aspects, neurocognitive testing tools, decision making, autonomy and delayed communications, well being, mental health, situational awareness, and methodology. Authors were members of a European Space Agency (ESA) Research Topical Team on Psychosocial and Behavioral Aspects of Human Spaceflight. They discuss the different topics under a common perspective of a theoretical and practical framework, showing interactions, relationships and possible solutions for the different aspects and variables in play. Recommendations for every topic are offered and summarized for future research in the field. The different proposed research ideas can be accomplished using analogs and simulation experiments, short- and long-duration bed rest, and in-flight microgravity studies. These topics are especially important for future Moon and Mars mission design and training.
Skeletal Responses to Long-Duration Simulated Weightlessness in Rats
NASA Technical Reports Server (NTRS)
Adams, Julia; Torres, Samantha; Schreurs, Ann-Sofie; Alwood, Joshua S.; Shirazi-Fard, Yasaman; Tahimic, Candice; Globus, Ruth
2017-01-01
Damaging effects due to spaceflight and long-duration weightlessness are seen in the musculoskeletal system, specifically with regards to bone loss, bone resorption, and changes in overall bone structure. These adverse effects are all seen with indicators of oxidative stress and a variation in the levels of oxidative gene expression. Once gravity is restored, however, the recovery is slow and incomplete. Despite this, few reports have investigated the correlation between oxidative damage and general modifications within the bone. In this project, we will make use of a ground-based model of simulated weightlessness (hindlimb unloading, HU) in order to observe skeletal changes in response to induced microgravity due to changes in oxidative pressures. With this model we will analyze samples at 14-day and 90-day time points following HU for the determination of acute and chronic effects, each with corresponding controls. We hypothesize that simulated microgravity will lead to skeletal adaptations including time-dependent activation of pro-oxidative processes and pro-osteoclastogenic signals related to the progression, plateau, and recovery of the bone. Microcomputed tomography techniques will be utilized to measure skeletal changes in response to HU. With the results of this study, we hope to further the understanding of skeletal affects as a result of long-duration weightlessness and develop countermeasures to combat bone loss in spaceflight and osteoporosis on Earth.
Enhanced-Adhesion Multi-Walled Carbon Nanotubes on Titanium Substrates for Stray Light Control
NASA Technical Reports Server (NTRS)
Hagopian, John; Getty, Stephanie; Quijada, Manuel
2012-01-01
Carbon nanotubes previously grown on silicon have extremely low reflectance, making them a good candidate for stray light suppression. Silicon, however, is not a good structural material for stray light components such as tubes, stops, and baffles. Titanium is a good structural material and can tolerate the 700 C nanotube growth process. The ability to grow carbon nanotubes on a titanium substrate that are ten times blacker than the current NASA state-of-the-art paints in the visible to near infrared spectra has been achieved. This innovation will allow significant improvement of stray light performance in scientific instruments or any other optical system. This innovation is a refinement of the utilization of multiwalled carbon nano tubes for stray light suppression in spaceflight instruments. The innovation is a process to make the surface darker and improve the adhesion to the substrate, improving robustness for spaceflight use. Bright objects such as clouds or ice scatter light off of instrument structures and components and make it difficult to see dim objects in Earth observations. A darker material to suppress this stray light has multiple benefits to these observations, including enabling scientific observations not currently possible, increasing observational efficiencies in high-contrast scenes, and simplifying instruments and lowering their cost by utilizing fewer stray light components and achieving equivalent performance. The prior art was to use commercially available black paint, which resulted in approximately 4% of the light being reflected (hemispherical reflectance or total integrated scatter, or TIS). Use of multiwalled carbon nanotubes on titanium components such as baffles, entrance aperture, tubes, and stops, can decrease this scattered light by a factor of ten per bounce over the 200-nm to 2,500-nm wavelength range. This can improve system stray light performance by orders of magnitude. The purpose of the innovation is to provide an enhanced stray light control capability by making a blacker surface treatment for typical stray light control components. Since baffles, stops, and tubes used in scientific observations often undergo loads such as vibration, it was critical to develop this surface treatment on structural materials. The innovation is to optimize the carbon nanotube growth for titanium, which is a strong, lightweight structural material suitable for spaceflight use. The titanium substrate carbon nanotubes are more robust than those grown on silicon and allow for easier utilization. They are darker than current surface treatments over larger angles and larger wavelength range. The primary advantage of titanium substrate is that it is a good structural material, and not as brittle as silicon.
The Complete Book of Spaceflight: From Apollo 1 to Zero Gravity
NASA Astrophysics Data System (ADS)
Darling, David
2002-11-01
A commanding encyclopedia of the history and principles of spaceflight-from earliest conceptions to faster-than-light galaxy-hopping Here is the first truly comprehensive guide to space exploration and propulsion, from the first musings of the Greeks to current scientific speculation about interstellar travel using "warp drives" and wormholes. Space buffs will delight in its in-depth coverage of all key manned and unmanned missions and space vehicles-past, present, and projected-and its clear explanations of the technologies involved. Over the course of more than 2,000 extensively cross-referenced entries, astronomer David Darling also provides fascinating insights into the cultural development of spaceflight. In vivid accounts of the major characters and historical events involved, he provides fascinating tales of early innovators, the cross-pollination that has long existed between science fiction and science fact, and the sometimes obscure links between geopolitics, warfare, and advances in rocketry.
Pollen and ovule development in Arabidopsis thaliana under spaceflight conditions
NASA Technical Reports Server (NTRS)
Kuang, A.; Musgrave, M. E.; Matthews, S. W.; Cummins, D. B.; Tucker, S. C.
1995-01-01
The development of pollen and ovules in Arabidopsis thaliana on the space shuttle 'Endeavour' (STS-54) was investigated. Plants were grown on nutrient agar for 14 days prior to loading into closed plant growth chambers that received light and temperature control inside the Plant Growth Unit flight hardware on the shuttle middeck. After 6 days in spaceflight the plants were retrieved and immediately dissected and processed for light and electron microscope observation. Reproductive development aborted at an early stage. Pistils were collapsed and ovules inside were seen to he empty. No viable pollen was observed from STS-54 plants; young microspores were deformed and empty. At a late stage, the cytoplasm of the pollen contracted and became disorganized, but the pollen wall developed and the exine appeared normal. The tapetum in the flight flowers degenerated at early stages. Ovules from STS-54 flight plants stopped growing and the integuments and nucellus collapsed and degenerated. The megasporocytes appeared abnormal and rarely underwent meiosis. Apparently they enlarged, or occasionally produced a dyad or tetrad, to assume the form of a female gametophyte with the single nucleus located in an egglike cell that lacks a cell wall. Synergids, polar nuclei, and antipodals were not observed. The results demonstrate the types of lesions occurring in plant reproductive material under spaceflight conditions.
NASA Lighting Research, Test, & Analysis
NASA Technical Reports Server (NTRS)
Clark, Toni
2015-01-01
The Habitability and Human Factors Branch, at Johnson Space Center, in Houston, TX, provides technical guidance for the development of spaceflight lighting requirements, verification of light system performance, analysis of integrated environmental lighting systems, and research of lighting-related human performance issues. The Habitability & Human Factors Lighting Team maintains two physical facilities that are integrated to provide support. The Lighting Environment Test Facility (LETF) provides a controlled darkroom environment for physical verification of lighting systems with photometric and spetrographic measurement systems. The Graphics Research & Analysis Facility (GRAF) maintains the capability for computer-based analysis of operational lighting environments. The combined capabilities of the Lighting Team at Johnson Space Center have been used for a wide range of lighting-related issues.
Human cerebral autoregulation before, during and after spaceflight.
Iwasaki, Ken-ichi; Levine, Benjamin D; Zhang, Rong; Zuckerman, Julie H; Pawelczyk, James A; Diedrich, André; Ertl, Andrew C; Cox, James F; Cooke, William H; Giller, Cole A; Ray, Chester A; Lane, Lynda D; Buckey, Jay C; Baisch, Friedhelm J; Eckberg, Dwain L; Robertson, David; Biaggioni, Italo; Blomqvist, C Gunnar
2007-03-15
Exposure to microgravity alters the distribution of body fluids and the degree of distension of cranial blood vessels, and these changes in turn may provoke structural remodelling and altered cerebral autoregulation. Impaired cerebral autoregulation has been documented following weightlessness simulated by head-down bed rest in humans, and is proposed as a mechanism responsible for postspaceflight orthostatic intolerance. In this study, we tested the hypothesis that spaceflight impairs cerebral autoregulation. We studied six astronauts approximately 72 and 23 days before, after 1 and 2 weeks in space (n = 4), on landing day, and 1 day after the 16 day Neurolab space shuttle mission. Beat-by-beat changes of photoplethysmographic mean arterial pressure and transcranial Doppler middle cerebral artery blood flow velocity were measured during 5 min of spontaneous breathing, 30 mmHg lower body suction to simulate standing in space, and 10 min of 60 deg passive upright tilt on Earth. Dynamic cerebral autoregulation was quantified by analysis of the transfer function between spontaneous changes of mean arterial pressure and cerebral artery blood flow velocity, in the very low- (0.02-0.07 Hz), low- (0.07-0.20 Hz) and high-frequency (0.20-0.35 Hz) ranges. Resting middle cerebral artery blood flow velocity did not change significantly from preflight values during or after spaceflight. Reductions of cerebral blood flow velocity during lower body suction were significant before spaceflight (P < 0.05, repeated measures ANOVA), but not during or after spaceflight. Absolute and percentage reductions of mean (+/- s.e.m.) cerebral blood flow velocity after 10 min upright tilt were smaller after than before spaceflight (absolute, -4 +/- 3 cm s(-1) after versus -14 +/- 3 cm s(-1) before, P = 0.001; and percentage, -8.0 +/- 4.8% after versus -24.8 +/- 4.4% before, P < 0.05), consistent with improved rather than impaired cerebral blood flow regulation. Low-frequency gain decreased significantly (P < 0.05) by 26, 23 and 27% after 1 and 2 weeks in space and on landing day, respectively, compared with preflight values, which is also consistent with improved autoregulation. We conclude that human cerebral autoregulation is preserved, and possibly even improved, by short-duration spaceflight.
Effects and Responses to Spaceflight in the Mouse Retina
NASA Technical Reports Server (NTRS)
Zanello, Susana B.; Theriot, Corey; Westby, Christian; Boyle, Richard
2011-01-01
Several stress environmental factors are combined in a unique fashion during spaceflight, affecting living beings widely across their physiological systems. Recently, attention has been placed on vision changes in astronauts returning from long duration missions. Alterations include hyperoptic shift, globe flattening, choroidal folds and optic disc edema, which are probably associated with increased intracranial pressure. These observations justify a better characterization of the ocular health risks associated with spaceflight. This study investigates the impact of spaceflight on the biology of the mouse retina. Within a successful tissue sharing effort, eyes from albino Balb/cJ mice aboard STS-133 were collected for histological analysis and gene expression profiling of the retina at 1 and 7 days after landing. Both vivarium and AEM (Animal Enclosure Module) mice were used as ground controls. Oxidative stress-induced DNA damage was higher in the flight samples compared to controls on R+1, and decreased on R+7. A trend toward higher oxidative and cellular stress response gene expression was also observed on R+1 compared to AEM controls, and these levels decreased on R+7. Several genes coding for key antioxidant enzymes, namely, heme-oxygenase-1, peroxiredoxin, and catalase, were among those upregulated after flight. Likewise, NF B and TGFbeta1, were upregulated in one flight specimen that overall showed the most elevated oxidative stress markers on R+1. In addition, retinas from vivarium control mice evidenced higher oxidative stress markers, NF B and TGFbeta1, likely due to the more intense illumination in vivarium cages versus the AEM. These preliminary data suggest that spaceflight represents a source of environmental stress that translates into oxidative and cellular stress in the retina, which is partially reversible upon return to Earth. Further work is needed to dissect the contribution of the various spaceflight factors (microgravity, radiation) and to evaluate the impact of the stress response on retinal health.
Spaceflight-Induced Cardiovascular Changes and Recovery During NASA's Functional Task Test
NASA Technical Reports Server (NTRS)
Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, S. H.
2010-01-01
Microgravity-induced physiological changes could impair a crewmember s performance upon return to a gravity environment. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in mission-critical tasks. The Recovery from Fall/Stand Test (RFST) simulates one such task, measuring the ability to recover from a prone position and the cardiovascular response to orthostasis. The purpose of this study was to evaluate spaceflight-induced cardiovascular changes during the FTT. METHODS: Five astronauts participated in the FTT before 10-15 day missions, on landing day (R+0), and one (R+1), six (R+6) and thirty (R+30) days after landing. The RFST consisted of a 2-minute prone rest followed by a 3-minute stand during which heart rate (HR, Holter) and continuous blood pressure (BP, Finometer) were measured. Spectral heart rate variability (HRV) was calculated during the RFST to approximate autonomic function. Statistical analysis was performed with two-factor repeated measures ANOVA. RESULTS: During RFST, HR was higher on R+0 than preflight (p<0.004). This increase in HR persisted on R+1 and R+6 during the stand portion of RFST (p<0.026). BP was well-regulated on all test days. Parasympathetic activity was diminished on R+0 (p=0.035). Sympathovagal balance tended to be affected by spaceflight (main effect, p=0.072), appearing to be slightly elevated during postflight RFST except on R+30. Additionally, analysis of HR during the functional tasks yielded a higher HR on R+0 than preflight during 8 of 11 tasks analyzed, where all tasks had HR return to preflight values by R+30 (p<0.05). CONCLUSION: Spaceflight causes an increase in HR, decrease in parasympathetic activity, and increase in sympathovagal balance, which we confirmed during RFST. These spaceflight-induced changes seen in the RFST, along with the increased postflight HR in most functional tasks, can be used to assess functional performance after short-duration spaceflight.
The Effects of Training on Anxiety and Task Performance in Simulated Suborbital Spaceflight.
Blue, Rebecca S; Bonato, Frederick; Seaton, Kimberly; Bubka, Andrea; Vardiman, Johnené L; Mathers, Charles; Castleberry, Tarah L; Vanderploeg, James M
2017-07-01
In commercial spaceflight, anxiety could become mission-impacting, causing negative experiences or endangering the flight itself. We studied layperson response to four varied-length training programs (ranging from 1 h-2 d of preparation) prior to centrifuge simulation of launch and re-entry acceleration profiles expected during suborbital spaceflight. We examined subject task execution, evaluating performance in high-stress conditions. We sought to identify any trends in demographics, hemodynamics, or similar factors in subjects with the highest anxiety or poorest tolerance of the experience. Volunteers participated in one of four centrifuge training programs of varied complexity and duration, culminating in two simulated suborbital spaceflights. At most, subjects underwent seven centrifuge runs over 2 d, including two +Gz runs (peak +3.5 Gz, Run 2) and two +Gx runs (peak +6.0 Gx, Run 4) followed by three runs approximating suborbital spaceflight profiles (combined +Gx and +Gz, peak +6.0 Gx and +4.0 Gz). Two cohorts also received dedicated anxiety-mitigation training. Subjects were evaluated on their performance on various tasks, including a simulated emergency. Participating in 2-7 centrifuge exposures were 148 subjects (105 men, 43 women, age range 19-72 yr, mean 39.4 ± 13.2 yr, body mass index range 17.3-38.1, mean 25.1 ± 3.7). There were 10 subjects who withdrew or limited their G exposure; history of motion sickness was associated with opting out. Shorter length training programs were associated with elevated hemodynamic responses. Single-directional G training did not significantly improve tolerance. Training programs appear best when high fidelity and sequential exposures may improve tolerance of physical/psychological flight stressors. The studied variables did not predict anxiety-related responses to these centrifuge profiles.Blue RS, Bonato F, Seaton K, Bubka A, Vardiman JL, Mathers C, Castleberry TL, Vanderploeg JM. The effects of training on anxiety and task performance in simulated suborbital spaceflight. Aerosp Med Hum Perform. 2017; 88(7):641-650.
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Rana, Brinda K.; Stenger, Michael B.; Sears, Dorothy D.; Smith, Scott M.; Macias, Brandon R.; Hargens, Alan R.; Sharma, Kumar; De Vivo, Immaculata
2016-01-01
Background: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and one ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine the spaceflight-related atherosclerosis risk independent of the confounding factors associated with different genotypes. Purpose: The purpose of this investigation is to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we will simultaneously assess gene expression and DNA methylation in leukocytes. Hypothesis: We predict that the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift that is associated with elevated atherosclerosis risk factors. Conversely, these will not be observed in the ground-based twin. Methods: We will measure blood and urine biomarkers of oxidative stress and inflammation as well as arterial structure and function (carotid intima-medial thickness and brachial artery flow-mediated dilation) in one twin astronaut before, during, and after long-duration spaceflight and in his twin serving as a ground-based control. Furthermore, we will measure metabolomics (targeted and untargeted approaches) and genomic markers (DNA methylation, mRNA gene expression, telomere length) to elucidate the molecular mechanisms involved. A panel of biomarkers of oxidative and inflammatory stress will be measured in venous blood samples and 24-hour (in-flight) and 48-hour (pre- and post-flight) urine pools twice before flight, early (flight days 15 and 60) and late (2 weeks before landing) during the mission, and early in the post-flight recovery phase (approximately 3-5 days after landing). Arterial structure, assessed from measures of intima-media thickness, will be measured at the same times. Arterial function will be assessed using brachial flow-mediated dilation, a well-validated measure used to assess endothelium-dependent vasodilation and a sensitive predictor of atherosclerotic risk, only before and after spaceflight. Discussion: Pre- and in-flight data collection is in progress for the space-flown twin, and similar data have been obtained from the ground-based twin. Blood and urine samples will be batch processed when received from ISS after the conclusion of the 1-year mission. Results from these individual subjects will be compared to the larger complement of subjects participating in the companion study currently ongoing in ISS astronauts.
Seeking the Light: Gravity Without the Influence of Gravity
NASA Technical Reports Server (NTRS)
Sack, Fred; Kern, Volker; Reed, Dave; Etheridge, Guy (Technical Monitor)
2002-01-01
All living things sense gravity like humans might sense light or sound. The Biological Research In Canisters (BRIC-14) experiment, explores how moss cells sense and respond to gravity and light. This experiment studies how gravity influences the internal structure of moss cells and seeks to understand the influences of the spaceflight environment on cell growth. This knowledge will help researchers understand the role of gravity in the evolution of cells and life on earth.
NASA Technical Reports Server (NTRS)
Jones, Patricia M.; Fiedler, Edna
2010-01-01
Human factors is a critical discipline for human spaceflight. Nearly every human factors research area is relevant to space exploration -- from the ergonomics of hand tools used by astronauts, to the displays and controls of a spacecraft cockpit or mission control workstation, to levels of automation designed into rovers on Mars, to organizational issues of communication between crew and ground. This chapter focuses more on the ways in which the space environment (especially altered gravity and the isolated and confined nature of long-duration spaceflight) affects crew performance, and thus has specific novel implications for human factors research and practice. We focus on four aspects of human performance: neurovestibular integration, motor control and musculo-skeletal effects, cognitive effects, and behavioral health. We also provide a sampler of recent human factors studies from NASA.
Nutritional criteria for closed-loop space food systems
NASA Technical Reports Server (NTRS)
Rambaut, P. C.
1980-01-01
The nutritional requirements for Skylab crews are summarized as a data base for long duration spaceflight nutrient requirements. Statistically significant increases in energy consumption were detected after three months, along with CO2/O2 exhalation during exercise and thyroxine level increases. Linoleic acid amounting to 3-4 g/day was found to fulfill all fat requirements, and carbohydrate and protein (amino acid) necessities are discussed, noting that vigorous exercise programs avoid deconditioning which enhances nitrogen loss. Urinary calcium losses continued at a rate 100% above a baseline figure, a condition which ingestion of vitamin D2 did not correct. Projections are given that spaceflights lasting more than eight years will necessitate recycling of human waste for nutrient growth, which can be processed into highly efficient space food with a variety of tastes.
Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats
NASA Technical Reports Server (NTRS)
Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.
1990-01-01
The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.
Astronaut Shannon Lucid and family after STS-79 Landing
NASA Technical Reports Server (NTRS)
1996-01-01
Surrounded by her family and looking very fit and happy, U.S. astronaut Shannon W. Lucid answers questions about her record- setting stay aboard the Russian Space Station Mir. From left are husband Michael, daughter Kawai, son Michael, son-in-law Jeff Richeson, and daughter Shandara. Lucid returned to Earth earlier today aboard the orbiter Atlantis, wrapping up a 188-day spaceflight that represents a U.S. long-duration spaceflight record as well as the longest stay in space by a woman. Lucid and the other five STS-79 astronauts are spending the night here in the Operations and Checkout Building before returning to Johnson Space Center in Houston. Atlantis touched down on Runway 15 of KSC's Shuttle Landing Facility at 8:13:15 a.m. EDT.
Energy and thermal regulation during bed rest and spaceflight
NASA Technical Reports Server (NTRS)
Greenleaf, John E.
1989-01-01
This paper presents data available from bed-rest and flight studies on the energy metabolism and thermoregulatory parameters and their changes during long-duration space missions which may influence requirements of astronauts for food and water. It is calculated, on the basis of 3100 kcal and 2.2 l water a day, with 1 h/day moderate exercise, that the requirements for a 2-yr flight would be 2,263,000 kcal and 1606 l water for each astronaut. One daily 5-h-long extravehicular sortie would require an additional 529,250 kcal and 1,095 l of water per year. Changes in the efficiency of work or metabolism would affect these nutritional requirements for long spaceflights. Factors that would increase food and water requirements are discussed.
The loneliness of the long-duration astronaut.
Cooper, H S
1996-01-01
This paper investigates the psychological implications of long duration spaceflight. Initial psychological problems associated with a heavy workload were identified during Skylab missions. Since then, most of our knowledge of psychological problems has come from experience onboard Russian spacecraft. Noted problems include anxiety, boredom, crew interactions, problems associated with isolation and confinement, and others. Efforts to alleviate or prevent these problems are discussed, as well as comparisons to similar environments such as arctic regions or submarines. As the U.S. participates in longer space missions, it will be wise to study psychological issues and to learn from our Russian counterparts.
Long-duration orbital effects on optical coating materials
NASA Technical Reports Server (NTRS)
Herzig, Howard; Toft, Albert R.; Fleetwood, Charles M., Jr.
1993-01-01
We flew specimens of eight different optical coating materials in low earth orbit as part of the Long Duration Exposure Facility manifest to determine their ability to withstand exposure to the residual atomic 0 and other environmental effects at those altitudes. We included samples of Al, Au, Ir, Os, Pt, Al + MgF2, Al + SiO(x), and chemical-vapor-deposited SiC, representing reflective optical applications from the vacuum ultraviolet through the visible portions of the spectrum. We found that the majority of the materials suffered sufficient reflectance degradation to warrant careful consideration in the design of future space-flight instrumentation.
Assessment of Proficiency During Simulated Rover Operations Following Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Wood, S. J.; Dean, S. L.; De Dios, Y. E.; MacDougall, H. G.; Moore, S. T.
2011-01-01
Following long-duration space travel, pressurized rovers will enhance crew mobility to explore Mars and other planetary surfaces. Adaptive changes in sensorimotor function may limit the crew s proficiency when performing some rover operations shortly after transition to the new gravitoinertial environment. The primary goal of this investigation is to quantify postflight decrements in operational proficiency in a motion-based rover simulation after International Space Station (ISS) expeditions. Given that postflight performance will also be influenced by the level of preflight proficiency attained, a ground-based normative study was conducted to characterize the acquisition of skills over multiple sessions.
Evaluation of Mid-Size Male Hybrid III Models for use in Spaceflight Occupant Protection Analysis
NASA Technical Reports Server (NTRS)
Putnam, J.; Somers, J.; Wells, J.; Newby, N.; Currie-Gregg, N.; Lawrence, C.
2016-01-01
Introduction: In an effort to improve occupant safety during dynamic phases of spaceflight, the National Aeronautics and Space Administration (NASA) has worked to develop occupant protection standards for future crewed spacecraft. One key aspect of these standards is the identification of injury mechanisms through anthropometric test devices (ATDs). Within this analysis, both physical and computational ATD evaluations are required to reasonably encompass the vast range of loading conditions any spaceflight crew may encounter. In this study the accuracy of publically available mid-size male HIII ATD finite element (FE) models are evaluated within applicable loading conditions against extensive sled testing performed on their physical counterparts. Methods: A series of sled tests were performed at the Wright Patterson Air force Base (WPAFB) employing variations of magnitude, duration, and impact direction to encompass the dynamic loading range for expected spaceflight. FE simulations were developed to the specifications of the test setup and driven using measured acceleration profiles. Both fast and detailed FE models of the mid-size male HIII were ran to quantify differences in their accuracy and thus assess the applicability of each within this field. Results: Preliminary results identify the dependence of model accuracy on loading direction, magnitude, and rate. Additionally the accuracy of individual response metrics are shown to vary across each model within evaluated test conditions. Causes for model inaccuracy are identified based on the observed relationships. Discussion: Computational modeling provides an essential component to ATD injury metric evaluation used to ensure the safety of future spaceflight occupants. The assessment of current ATD models lays the groundwork for how these models can be used appropriately in the future. Identification of limitations and possible paths for improvement aid in the development of these effective analysis tools.
NASA HRP Immunology Discipline - Use of Terrestrial Analogs
NASA Technical Reports Server (NTRS)
Crucian, Brian
2014-01-01
Due to the cost and operational constraints, as well as technical implementation limitations, it is desirous to perform relevant space physiology investigations first in terrestrial 'space analogs'. This is particularly true for initial investigations, which may then provide appropriate focus for subsequent flight investigations, or for mechanistic investigations that simply cannot be performed during spaceflight. Appropriate analog choice is extremely important. There are a wide variety of terrestrial space analogs, each relevant to a particular physiological discipline (or disciplines) and each with a particular fidelity (or lack thereof) to spaceflight, and each with unique operational constraints. The HRP Immunology Discipline is tasked with managing the HRP Risk concerning clinical risk for Astronaut crews related to spaceflight-associated immune dysregulation. Such dysregulation has been documented to occur during spaceflight, and found to persist for the duration of a 6-month ISS mission. Studies continue to characterize the onorbit phenomenon, but it generally consists of diminished immunocyte function, dysregulated cytokine profiles, and persistent herpesvirus reactivation. Causes are thought to synergistically include microgravity, psychological or physiological stress, radiation, and/or circadian misalignment. An appropriate terrestrial analog for immune dysregulation would replicate as many of these influences as possible. Such analogs may include clinostat or bioreactor cell culture (microgravity), hindlimb suspension (stress, fluid shifts, hypokinesis), or human deployment to remote or extreme environments (isolation, stress, circadian). Also, the laboratory setting may be used as an analog, or to augment analogs, such as sleep deprivation/misalignment or human centrifugation to replicate gravitational stress. As an appropriate example of a NASA Disciplines use of Terrestrial space analogs, this talk will discuss spaceflight associated immune dysregulation, terrestrial immune analogs, and recent analog investigations.
NASA Technical Reports Server (NTRS)
Stenger, M. B.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Laurie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Lui, J.;
2015-01-01
INTRODUCTION: Mechanisms responsible for the ocular structural and functional changes that characterize the visual impairment and intracranial pressure (ICP) syndrome (VIIP) are unclear, but hypothesized to be secondary to the cephalad fluid shift experienced in spaceflight. This study will relate the fluid distribution and compartmentalization associated with long-duration spaceflight with VIIP symptoms. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, can be predicted preflight with acute hemodynamic manipulations, and also if lower body negative pressure (LBNP) can reverse the VIIP effects. METHODS: Physiologic variables will be examined pre-, in- and post-flight in 10 International Space Station crewmembers including: fluid compartmentalization (D2O and NaBr dilution); interstitial tissue thickness (ultrasound); vascular dimensions and dynamics (ultrasound and MRI (including cerebrospinal fluid pulsatility)); ocular measures (optical coherence tomography, intraocular pressure, ultrasound); and ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight measures will be assessed while upright, supine and during 15 deg head-down tilt (HDT). In-flight measures will occur early and late during 6 or 12 month missions. LBNP will be evaluated as a countermeasure during HDT and during spaceflight. RESULTS: The first two crewmembers are in the preflight testing phase. Preliminary results characterize the acute fluid shifts experienced from upright, to supine and HDT postures (increased stroke volume, jugular dimensions and measures of ICP) which are reversed with 25 millimeters Hg LBNP. DISCUSSION: Initial results indicate that acute cephalad fluid shifts may be related to VIIP symptoms, but also may be reversible by LBNP. The effect of a chronic fluid shift has yet to be evaluated. Learning Objectives: Current spaceflight VIIP research is described, including novel hardware and countermeasures.
Spaceflight Influences both Mucosal and Peripheral Cytokine Production in PTN-Tg and Wild Type Mice
Liu, Yi; Kalmokoff, Martin; Brooks, Stephen P. J.; Green-Johnson, Julia M.
2013-01-01
Spaceflight is associated with several health issues including diminished immune efficiency. Effects of long-term spaceflight on selected immune parameters of wild type (Wt) and transgenic mice over-expressing pleiotrophin under the human bone-specific osteocalcin promoter (PTN-Tg) were examined using the novel Mouse Drawer System (MDS) aboard the International Space Station (ISS) over a 91 day period. Effects of this long duration flight on PTN-Tg and Wt mice were determined in comparison to ground controls and vivarium-housed PTN-Tg and Wt mice. Levels of interleukin-2 (IL-2) and transforming growth factor-beta1 (TGF-β1) were measured in mucosal and systemic tissues of Wt and PTN-Tg mice. Colonic contents were also analyzed to assess potential effects on the gut microbiota, although no firm conclusions could be made due to constraints imposed by the MDS payload and the time of sampling. Spaceflight-associated differences were observed in colonic tissue and systemic lymph node levels of IL-2 and TGF-β1 relative to ground controls. Total colonic TGF-β1 levels were lower in Wt and PTN-Tg flight mice in comparison to ground controls. The Wt flight mouse had lower levels of IL-2 and TGF-β1 compared to the Wt ground control in both the inguinal and brachial lymph nodes, however this pattern was not consistently observed in PTN-Tg mice. Vivarium-housed Wt controls had higher levels of active TGF-β1 and IL-2 in inguinal lymph nodes relative to PTN-Tg mice. The results of this study suggest compartmentalized effects of spaceflight and on immune parameters in mice. PMID:23874826
Evaluation of Mid-Size Male Hybrid III Models for use in Spaceflight Occupant Protection Analysis
NASA Technical Reports Server (NTRS)
Putnam, Jacob B.; Sommers, Jeffrey T.; Wells, Jessica A.; Newby, Nathaniel J.; Currie-Gregg, Nancy J.; Lawrence, Chuck
2016-01-01
In an effort to improve occupant safety during dynamic phases of spaceflight, the National Aeronautics and Space Administration (NASA) has worked to develop occupant protection standards for future crewed spacecraft. One key aspect of these standards is the identification of injury mechanisms through anthropometric test devices (ATDs). Within this analysis, both physical and computational ATD evaluations are required to reasonably encompass the vast range of loading conditions any spaceflight crew may encounter. In this study the accuracy of publically available mid-size male HIII ATD finite element (FE) models are evaluated within applicable loading conditions against extensive sled testing performed on their physical counterparts. Methods: A series of sled tests were performed at the Wright Patterson Air force Base (WPAFB) employing variations of magnitude, duration, and impact direction to encompass the dynamic loading range for expected spaceflight. FE simulations were developed to the specifications of the test setup and driven using measured acceleration profiles. Both fast and detailed FE models of the mid-size male HIII were ran to quantify differences in their accuracy and thus assess the applicability of each within this field. Results: Preliminary results identify the dependence of model accuracy on loading direction, magnitude, and rate. Additionally the accuracy of individual response metrics are shown to vary across each model within evaluated test conditions. Causes for model inaccuracy are identified based on the observed relationships. Discussion: Computational modeling provides an essential component to ATD injury metric evaluation used to ensure the safety of future spaceflight occupants. The assessment of current ATD models lays the groundwork for how these models can be used appropriately in the future. Identification of limitations and possible paths for improvement aid in the development of these effective analysis tools.
Control of red blood cell mass during spaceflight
NASA Technical Reports Server (NTRS)
Lane, H. W.; Alfrey, C. P.; Driscoll, T. B.; Smith, S. M.; Nyquist, L. E.
1996-01-01
Data are reviewed from twenty-two astronauts from seven space missions in a study of red blood cell mass. The data show that decreased red cell mass in all astronauts exposed to space for more than nine days, although the actual dynamics of mass changes varies with flight duration. Possible mechanisms for these changes, including alterations in erythropoietin levels, are discussed.
Effects of Long Duration Spaceflight on Venous and Arterial Compliance: Bed Rest
NASA Technical Reports Server (NTRS)
Ribeiro, L. Christine; Platts, Steven H.; Laurie, Steven S.; Lee, Stuart M. C.; Martin, David S.; Ploutz-Snyder, Robert J.; Stenger, Michael B.
2017-01-01
The primary objective was to determine whether a high sodium diet during bed rest induced alterations in vascular compliance and was related to the incidence of VIIP. Ocular structural and functional measures and vascular ultrasound of the head and neck were acquired in bed rest subjects completing 10-14 days in 6deg head-down tilt.
NASA Technical Reports Server (NTRS)
Massa, G. D.; Wheeler, R. M.; Romeyn, M. W.; Hummerick, M. E.; Spencer, L. E.; Morrow, R. C.; Mitchell, C. A.; Burgner, S.; Williams, T. J.; Young, M. H.;
2017-01-01
The capability to grow nutritious, palatable food for crew consumption during spaceflight has the potential to provide health-promoting, bioavailable nutrients, enhance the dietary experience, and reduce launch mass as we move toward longer-duration missions. Studies of edible produce during spaceflight have been limited, leaving a significant knowledge gap in the methods required to grow safe, acceptable, nutritious crops for consumption in space. Researchers from Kennedy Space Center, Johnson Space Center, Purdue University and ORBITEC have teamed up to explore the potential for plant growth and food production on the International Space Station (ISS) and future exploration missions. Ground testing of Chinese cabbage and dwarf tomato crops under different LED lighting and fertilizer conditions is being conducted to allow for a preliminary down selection of the two best lighting recipes and the best fertilizer treatment. Two trials of Chinese cabbage and one trial on dwarf tomato have been completed in on-going ground tests. Horticultural data on crop growth and productivity and chemical data on specific nutrients have been collected and are being analyzed to allow preliminary down selection. Taste test evaluations are planned on the preliminary down selection treatments to allow a final down selection for flight testing. Microbial assessment for hazard analysis critical control points (HACCP) evaluation is also underway to enable implementation of food consumption. Following down selection flight preparation will commence for testing these crops in the Veggie vegetable-production system on the ISS. A crew questionnaire has been developed to better understand the impact of crop growth in Veggie on crew behavioral health. A single Veggie plant growth chamber is currently installed on ISS, and preparations are underway to launch a second Veggie, allowing side-by-side testing under different lighting conditions. Veg-04 will be the first mission that will use this dual-Veggie capability, where the selected cultivar of Tokyo bekana Chinese cabbage will be grown under two different red-to-blue light ratios. ORBITEC has developed custom lighting software allowing independent selection of red and blue light levels. The VEG-05 experiment will test similar light treatments using Red Robin dwarf tomato. These tests offer an opportunity to develop a pick-and-eat fresh vegetable component to the ISS food system as a first step to regular supplemental food production. Our work will help define light colors, levels, and horticultural best practices to achieve high yields of safe, nutritious leafy greens and tomatoes to supplement a space diet of prepackaged food. With this work we will continue the synergistic research to help close gaps in the human research roadmap, and enable humans to venture to Mars and beyond. This research was co-funded by the Human Research Program and Space Biology (MTL1075) in the ILSRA 2015 NRA call.
2014 SRP Integration Transcript
NASA Technical Reports Server (NTRS)
Steinberg, Susan
2014-01-01
HRP's mission is to reduce the risks to human health and performance during long-duration spaceflight. The HRP Integrated Research Plan (IRP) contains the research plans for the 32 risks that require research to characterize and mitigate. From its inception the "integrate" aspect of the IRP has denoted the integrated nature of risks to human health and performance. Even though each risk in the IRP has its own research plan and is tracked separately, the interrelated nature of health and performance requires that they be addressed in an integrative or holistic fashion so that the connectedness of physiological systems within the human body and the integrated response to spaceflight can be addressed. Common characteristics of the spaceflight environment include altered gravity, atmospheres, and light/dark cycles; space radiation; isolation; noise; and periods of high or low workload. Long-term exposure to this unique environment produces a suite of physiological effects such as stress; vision, neurocognitive, and anthropometric changes; circadian misalignment; fluid shifts; cardiovascular deconditioning; immune dysregulation; and altered nutritional requirements. Expanding cross-disciplinary integrative approaches that synthesize concepts or data from two or more disciplines would improve the identification and characterization risk factors, and enable the development of countermeasures relevant to multiple risks. Cross-disciplinary approaches might also help to illuminate problem areas that may arise when a countermeasure adversely impacts risks other than those which it was developed to mitigate, or to identify groupings of physiological changes that are likely to occur that may impact the overall risk posture. In 2014 HRP embarked on a pilot study that combined four SRPs (and 12 HRP risks) - Behavioral Health, Sensorimotor, Cardiovascular, and Bone/Muscle - specifically to discuss cross-disciplinary integration. The points outlined below were suggested to seed the discussion, within the bounding constraint that research plans must be feasible and relevant to the HRP mission. While these were suggested starting points, the overall guiding principle was to allow free discussion from panel members on any aspect of integrated research that they felt was important, Existing cross-disciplinary integration as documented in the IRP (HRR), Existing or needed integration already identified by HRP, but not yet well defined within the IRP, Areas of integration that are missing.
Recovery of postural equilibrium control following space flight
NASA Technical Reports Server (NTRS)
Paloski, William H.; Reschke, Millard F.; Black, F. Owen; Dow, R. S.
1999-01-01
DSO 605 represents the first large study of balance control following spaceflight. Data collected during DSO 605 confirm the theory that postural ataxia following short duration spaceflight is of vestibular origin. We used the computerized dynamic posturography technique developed by Nashner et al. to study the role of the vestibular system in balance control in astronauts during quiet stance before and after spaceflight. Our results demonstrate unequivocally that balance control is disrupted in all astronauts immediately after return from space. The most severely affected returning crew members performed in the same way as vestibular deficient patients exposed to this test battery. We conclude that otolith mediated spatial reference provided by the terrestrial gravitational force vector is not used by the astronauts balance control systems immediately after spaceflight. Because the postflight ataxia appears to be mediated primarily by CNS adaptation to the altered vestibular inputs caused by loss of gravitational stimulation, we believe that intermittent periods of exposure to artificial gravity may provide an effective in-flight countermeasure. Specifically, we propose that in-flight centrifugation will allow crew members to retain their terrestrial sensory-motor adapted states while simultaneously developing microgravity adapted states. The dual-adapted astronaut should be able to make the transition from microgravity to unit gravity with minimal sensory-motor effects. We have begun a ground based program aimed at developing short arm centrifuge prescriptions designed to optimize adaptation to altered gravitational environments. Results from these experiments are expected to lead directly to in-flight evaluation of the proposed centrifuge countermeasure. Because our computerized dynamic posturography system was able to (1) quantify the postflight postural ataxia reported by crew members and observed by flight surgeons and scientists, (2) track the recovery of normal (preflight) balance control, (3) differentiate between rookie and veteran subjects, and (4) provide normative and clinical databases for comparison, and because our study successfully characterized postflight balance control recovery in a large cross-section of Shuttle crew members, we recommend that this system and protocol be adopted as a standard dependent measure for evaluating the efficacy of countermeasures and/or evaluating the postflight effects of changing mission durations or activities.
Bisphosphonate ISS Flight Experiment
NASA Technical Reports Server (NTRS)
LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert;
2014-01-01
The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+<2 week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control groups suggests significant but incomplete improvement in maintaining BMD using the newer exercise protocols compared to earlier resistive exercise protocols. Quantitative characterization of this improvement requires additional measurements in the ARED control group that we are currently collecting. In conclusion, these results indicate that an antiresorptive may be an effective adjunct to exercise during long-duration spaceflight.
NASA Technical Reports Server (NTRS)
Ade, Carl J.; Moore, A. D.
2014-01-01
Spaceflight reduces aerobic capacity and may be linked with maladaptations in the O2 transport pathway. The aim was to 1) evaluate the cardiorespiratory adaptations following 6 months aboard the International Space Station and 2) model the contributions of convective (Q (raised dot) O2) and peripheral diffusive (DO2) components of O2 transport to changes in peak O2 uptake (V (raised dot) O2PEAK). To date, 1 male astronaut (XX yrs) completed an incremental exercise test to measure V (raised dot) O2PEAK prior to and 2 days post-flight. Cardiac output (Q (raised dot) ) was measured at three submaximal work rates via carbon dioxide rebreathing. The Q (raised dot) :V (raised dot) O2 relationship was extrapolated to V (raised dot) O2PEAK to determine Q (raised dot) PEAK. Hemoglobin concentration was measured at rest via a venous blood sample. These measurements were used to model the changes in Q (raised dot) O2 and DO2 using Fick's principle of mass conservation and Law of Diffusion as established by Wagner and colleagues (Annu. Rev. Physiol 58: 21-50, 1996 and J. Appl. Physiol. 73: 1067-1076, 1992). V (raised dot) O2PEAK decreased postflight from 3.72 to 3.45 l min-1, but Q (raised dot) PEAK increased from 24.5 to 27.7 l min-1. The decrease in V (raised dot) O2PEAK post-flight was associated with a 21.2% decrease in DO2, an 18.6% decrease in O2 extraction, but a 3.4% increase in Q (raised dot) O2. These preliminary data suggest that long-duration spaceflight reduces peripheral diffusing capacity and that it largely contributes to the post-flight decrease in aerobic capacity.
Sides, Marian B; Vernikos, Joan; Convertino, Victor A; Stepanek, Jan; Tripp, Lloyd D; Draeger, Jorg; Hargens, Alan R; Kourtidou-Papadeli, Chrysoula; Pavy-LeTraon, Anne; Russomano, Thais; Wong, Julielynn Y; Buccello, Regina R; Lee, Peter H; Nangalia, Vishal; Saary, M Joan
2005-09-01
Long-duration space missions, as well as emerging civilian tourist space travel activities, prompted review and assessment of data available to date focusing on cardiovascular risk and available risk mitigation strategies. The goal was the creation of tools for risk priority assessments taking into account the probability of the occurrence of an adverse cardiovascular event and available and published literature from spaceflight data as well as available risk mitigation strategies. An international group of scientists convened in Bellagio, Italy, in 2004 under the auspices of the Aerospace Medical Association to review available literature for cardiac risks identified in the Bioastronautics Critical Path Roadmap (versions 2000, 2004). This effort led to the creation of a priority assessment framework to allow for an objective assessment of the hazard, probability of its occurrence, mission impact, and available risk mitigation measures. Spaceflight data are presented regarding evidence/ no evidence of cardiac dysrhythmias, cardiovascular disease, and cardiac function as well as orthostatic intolerance, exercise capacity, and peripheral resistance in presyncopal astronauts compared to non-presyncopal astronauts. Assessment of the priority of different countermeasures was achieved with a tabular framework with focus on probability of occurrence, mission impact, compliance, practicality, and effectiveness of countermeasures. Special operational settings and circumstances related to sensitive portions of any mission and the impact of environmental influences on mission effectiveness are addressed. The need for development of diagnostic tools, techniques, and countermeasure devices, food preparation, preservation technologies and medication, as well as an infrastructure to support these operations are stressed. Selected countermeasure options, including artificial gravity and pharmacological countermeasures need to be systematically evaluated and validated in flight, especially after long-duration exposures. Data need to be collected regarding the emerging field of suborbital and orbital civilian space travel, to allow for sound risk assessment.
Khine, Htet W; Steding-Ehrenborg, Katarina; Hastings, Jeffrey L; Kowal, Jamie; Daniels, James D; Page, Richard L; Goldberger, Jeffery J; Ng, Jason; Adams-Huet, Beverley; Bungo, Michael W; Levine, Benjamin D
2018-05-01
The prevalence of atrial fibrillation (AF) in active astronauts is ≈5%, similar to the general population but at a younger age. Risk factors for AF include left atrial enlargement, increased number of premature atrial complexes, and certain parameters on signal-averaged electrocardiography, such as P-wave duration, root mean square voltage for the terminal 20 ms of the signal-averaged P wave, and P-wave amplitude. We aimed to evaluate changes in atrial structure, supraventricular beats, and atrial electrophysiology to determine whether spaceflight could increase the risk of AF. Thirteen astronauts underwent cardiac magnetic resonance imaging to assess atrial structure and function before and after 6 months in space and high-resolution Holter monitoring for multiple 48-hour time periods before flight, during flight, and on landing day. Left atrial volume transiently increased after 6 months in space (12±18 mL; P =0.03) without changing atrial function. Right atrial size remained unchanged. No changes in supraventricular beats were noted. One astronaut had a large increase in supraventricular ectopic beats but none developed AF. Filtered P-wave duration did not change over time, but root mean square voltage for the terminal 20 ms decreased on all fight days except landing day. No changes in P-wave amplitude were seen in leads II or V 1 except landing day for lead V 1 . Six months of spaceflight may be sufficient to cause transient changes in left atrial structure and atrial electrophysiology that increase the risk of AF. However, there was no definite evidence of increased supraventricular arrhythmias and no identified episodes of AF. © 2018 American Heart Association, Inc.
Choi, Sungshin; Ray, Hami E; Lai, San-Huei; Alwood, Joshua S; Globus, Ruth K
2016-01-01
Even with recent scientific advancements, challenges posed by limited resources and capabilities at the time of sample dissection continue to limit the collection of high quality tissues from experiments that can be conducted only infrequently and at high cost, such as in space. The resources and time it takes to harvest tissues post-euthanasia, and the methods and duration of long duration storage, potentially have negative impacts on sample quantity and quality, thereby limiting the scientific outcome that can be achieved. The goals of this study were to optimize methods for both sample recovery and science return from rodent experiments, with possible relevance to both ground based and spaceflight studies. The first objective was to determine the impacts of tissue harvest time post-euthanasia, preservation methods, and storage duration, focusing on RNA quality and enzyme activities in liver and spleen as indices of sample quality. The second objective was to develop methods that will maximize science return by dissecting multiple tissues after long duration storage in situ at -80°C. Tissues of C57Bl/6J mice were dissected and preserved at various time points post-euthanasia and stored at -80°C for up to 11 months. In some experiments, tissues were recovered from frozen carcasses which had been stored at -80°C up to 7 months. RNA quantity and quality was assessed by measuring RNA Integrity Number (RIN) values using an Agilent Bioanalyzer. Additionally, the quality of tissues was assessed by measuring activities of hepatic enzymes (catalase, glutathione reductase and GAPDH). Fresh tissues were collected up to one hour post-euthanasia, and stored up to 11 months at -80°C, with minimal adverse effects on the RNA quality of either livers or RNAlater-preserved spleens. Liver enzyme activities were similar to those of positive controls, with no significant effect observed at any time point. Tissues dissected from frozen carcasses that had been stored for up to 7 months at -80°C had variable results, depending on the specific tissue analyzed. RNA quality of liver, heart, and kidneys were minimally affected after 6-7 months of storage at -80°C, whereas RNA degradation was evident in tissues such as small intestine, bone, and bone marrow when they were collected from the carcasses frozen for 2.5 months. These results demonstrate that 1) the protocols developed for spaceflight experiments with on-orbit dissections support the retrieval of high quality samples for RNA expression and some protein analyses, despite delayed preservation post-euthanasia or prolonged storage, and 2) many additional tissues for gene expression analysis can be obtained by dissection even following prolonged storage of the tissue in situ at -80°C. These findings have relevance both to high value, ground-based experiments when sample collection capability is severely constrained, and to spaceflight experiments that entail on-orbit sample recovery by astronauts.
Muscle volume, strength, endurance, and exercise loads during 6-month missions in space.
Gopalakrishnan, Raghavan; Genc, Kerim O; Rice, Andrea J; Lee, Stuart M C; Evans, Harlan J; Maender, Christian C; Ilaslan, Hakan; Cavanagh, Peter R
2010-02-01
Decrements in muscular strength during long-duration missions in space could be mission-critical during construction and exploration activities. The purpose of this study was to quantify changes in muscle volume, strength, and endurance of crewmembers on the International Space Station (ISS) in the context of new measurements of loading during exercise countermeasures. Strength and muscle volumes were measured from four male ISS crewmembers (49.5 +/- 4.7 yr, 179.3 +/- 7.1 cm, 85.2 +/- 10.4 kg) before and after long-duration spaceflight (181 +/- 15 d). Preflight and in-flight measurements of forces between foot and shoe allowed comparisons of loading from 1-g exercise and exercise countermeasures on ISS. Muscle volume change was greater in the calf (-10 to 16%) than the thigh (-4% to -7%), but there was no change in the upper arm (+0.4 to -0.8%). Isometric and isokinetic strength changes at the knee (range -10.4 to -24.1%), ankle (range -4 to -22.3%), and elbow (range -7.5 to -16.7%) were observed. Although there was an overall postflight decline in total work (-14%) during the endurance test, an increase in postflight resistance to fatigue was observed. The peak in-shoe forces during running and cycling on ISS were approximately 46% and 50% lower compared to 1-g values. Muscle volume and strength were decreased in the lower extremities of crewmembers during long-duration spaceflight on ISS despite the use of exercise countermeasures. in-flight countermeasures were insufficient to replicate the daily mechanical loading experienced by the crewmembers before flight. Future exercise protocols need careful assessment both in terms of intensity and duration to maximize the "dose" of exercise and to increase loads compared to the measured levels.
Impaired cerebrovascular autoregulation and reduced CO₂ reactivity after long duration spaceflight.
Zuj, K A; Arbeille, Ph; Shoemaker, J K; Blaber, A P; Greaves, D K; Xu, D; Hughson, R L
2012-06-15
Long duration habitation on the International Space Station (ISS) is associated with chronic elevations in arterial blood pressure in the brain compared with normal upright posture on Earth and elevated inspired CO(2). Although results from short-duration spaceflights suggested possibly improved cerebrovascular autoregulation, animal models provided evidence of structural and functional changes in cerebral vessels that might negatively impact autoregulation with longer periods in microgravity. Seven astronauts (1 woman) spent 147 ± 49 days on ISS. Preflight testing (30-60 days before launch) was compared with postflight testing on landing day (n = 4) or the morning 1 (n = 2) or 2 days (n = 1) after return to Earth. Arterial blood pressure at the level of the middle cerebral artery (BP(MCA)) and expired CO(2) were monitored along with transcranial Doppler ultrasound assessment of middle cerebral artery (MCA) blood flow velocity (CBFV). Cerebrovascular resistance index was calculated as (CVRi = BP(MCA)/CBFV). Cerebrovascular autoregulation and CO(2) reactivity were assessed in a supine position from an autoregressive moving average (ARMA) model of data obtained during a test where two breaths of 10% CO(2) were given four times during a 5-min period. CBFV and Doppler pulsatility index were reduced during -20 mmHg lower body negative pressure, with no differences pre- to postflight. The postflight indicator of dynamic autoregulation from the ARMA model revealed reduced gain for the CVRi response to BP(MCA) (P = 0.017). The postflight responses to CO(2) were reduced for CBFV (P = 0.056) and CVRi (P = 0.047). These results indicate that long duration missions on the ISS impaired dynamic cerebrovascular autoregulation and reduced cerebrovascular CO(2) reactivity.
SpaceDock: A Performance Task Platform for Spaceflight Operations
NASA Technical Reports Server (NTRS)
Marshburn, Thomas H.; Strangman, Gary E.; Strauss, Monica S.; Sutton, Jeffrey P.
2003-01-01
Preliminary evidence during both short- and long-duration spaceflight indicates that perceptual-motor coordination changes occur and persist in-flight. However, there is presently no in-flight method for evaluating astronaut performance on mission-critical tasks such as docking. We present a portable platform we have developed for attempting and evaluating docking, and describe the results of a pilot study wherein flight novices learned the docking task. Methods: A dual-joystick, six degrees of freedom platform-called SpaceDock-was developed to enable portable, adaptable performance testing in a spaceflight operations setting. Upon this platform, a simplified docking task was created, involving a constant rate of approach towards a docking target and requiring the user to correct translation in two dimensions and attitude orientation along one dimension (either pitch or roll). Ten flight naive subjects performed the task over a 45 min period and all joystick inputs and timings were collected, from which we could successfully reconstruct travel paths, input profiles and relative target displacements. Results: Subjects exhibited significant improvements in docking over the course of the experiment. Learning to compensate for roll-alterations was robust, whereas compensation for pitch-alterations was not in evidence in this population and relatively short training period. Conclusion: The SpaceDock platform can provide a novel method for training and testing subjects, on a spaceflight-relevant task, and can be used to examine behavioral learning, strategy use, and has been adapted for use in brain imaging experiments.
Hyperoxia Inhibits T Cell Activation in Mice
NASA Astrophysics Data System (ADS)
Hughes-Fulford, M.; Meissler, J.; Aguayo, E. T.; Globus, R.; Aguado, J.; Candelario, T.
2013-02-01
Background: The immune response is blunted in mice and humans in spaceflight. The effects of hyperoxia in mice alter expression of some of the same immune response genes. If these two conditions are additive, there could be an increased risk of infection in long duration missions. Immunosuppression is seen in healthy astronauts who have flown in space; however little is known about the mechanisms that cause the reduced immunity in spaceflight. Here we examine the role of oxidative stress on mice exposed to periods of high O2 levels mimicking pre-breathing protocols and extravehicular activity (EVA). To prevent decompression sickness, astronauts are exposed to elevated oxygen (hyperoxia) before and during EVA activities. Spaceflight missions may entail up to 24 hours of EVA per crewmember per week to perform construction and maintenance tasks. The effectiveness and success of these missions depends on designing EVA systems and protocols that maximize human performance and efficiency while minimizing health and safety risks for crewmembers. To our knowledge, no studies have been conducted on the immune system under 100% oxygen exposures to determine the potential for immune compromise due to prolonged and repeated EVAs. Methods: Animals were exposed to hyperoxic or control conditions for 8 hours per day over a period of 3 days, initiated 4 hours into the dark cycle (12h dark/12h light), using animal environmental control cabinets and oxygen controller (Biospherix, Lacona, NY). Experimental mice were exposed to 98-100% oxygen as a model for pre-breathing and EVA conditions, while control mice were maintained in chambers supplied with compressed air. These are ground control studies where we use real-time RTPCR (qRTPCR) to measure gene expression of the early immune gene expression during bead activation of splenocytes of normoxic and hyperoxic mice. All procedures were reviewed and approved by the IACUC at Ames Research Center. After the last 8h of hyperoxic exposure, spleens were removed and the splenocytes were isolated and kept as individual biological samples. We have also examined transcription factors (JASPAR) and pathways of the immune system to help us understand the mechanism of regulation. Results: Our recent mouse immunology experiment aboard STS-131 suggests that the early T cell immune response was inhibited in animals that have been exposed to spaceflight, even 24 hours after return to earth. Moreover, recent experiments in hyperoxic mice show that many of the same genes involved in early T cell activation were altered. Specifically, expression of IL-2Rα, Cxcl2, TNFα, FGF2, LTA and BCL2 genes are dysregulated in mice exposed to hyperoxia. Conclusions: If these hyperoxia-induced changes of gene expression in early T cell activation are additive to the changes seen in the microgravity of spaceflight, there could be an increased infection risk to EVA astronauts, which should be addressed prior to conducting a Mars or other long-term mission.
NASA's Current Evidence and Hypothesis for the Visual Impairment and Intracranial Pressure Risk
NASA Technical Reports Server (NTRS)
Otto, Christian A.; Norsk, Peter; Oubre, Cherie M.; Pass, Anastas F.; Tarver, William
2012-01-01
While 40 years of human spaceflight exploration has reported visual decrement to a certain extent in a subgroup of astronauts, recent data suggests that there is indeed a subset of crewmembers that experience refraction changes (hyperoptic shift), cotton wool spot formation, choroidal fold development, papilledema, optic nerve sheath distention and/or posterior globe flattening with varying degrees of severity and permanence. Pre and postflight ocular measures have identified a potential risk of permanent visual changes as a result of microgravity exposure, which has been defined as the Visual Impairment and Intracranial Pressure risk (VIIP). The combination of symptoms are referred to as the VIIP syndrome. It is thought that the ocular structural and optic nerve changes are caused by events precipitated by the cephalad fluid shift crewmembers experience during long-duration spaceflight. Three important systems, ocular, cardiovascular, and central nervous, seem to be involved in the development of symptoms, but the etiology is still under speculation. It is believed that some crewmembers are more susceptible to these changes due to genetic/anatomical predisposition or lifestyle (fitness) related factors. Future research will focus on determining the etiology of the VIIP syndrome and development of mechanisms to mitigate the spaceflight risk.
Evidence Report: Risk Factor of Inadequate Nutrition
NASA Technical Reports Server (NTRS)
Smith, Scott M.; Zwart, Sara R.; Heer, Martina
2015-01-01
The importance of nutrition in exploration has been documented repeatedly throughout history, where, for example, in the period between Columbus' voyage in 1492 and the invention of the steam engine, scurvy resulted in more sailor deaths than all other causes of death combined. Because nutrients are required for the structure and function of every cell and every system in the body, defining the nutrient requirements for spaceflight and ensuring provision and intake of those nutrients are primary issues for crew health and mission success. Unique aspects of nutrition during space travel include the overarching physiological adaptation to weightlessness, psychological adaptation to extreme and remote environments, and the ability of nutrition and nutrients to serve as countermeasures to ameliorate the negative effects of spaceflight on the human body. Key areas of clinical concern for long-duration spaceflight include loss of body mass (general inadequate food intake), bone and muscle loss, cardiovascular and immune system decrements, increased radiation exposure and oxidative stress, vision and ophthalmic changes, behavior and performance, nutrient supply during extravehicular activity, and general depletion of body nutrient stores because of inadequate food supply, inadequate food intake, increased metabolism, and/or irreversible loss of nutrients. These topics are reviewed herein, based on the current gap structure.
NASA Astrophysics Data System (ADS)
Evetts, S. N.
2014-08-01
The human exploration of space is pushing the boundaries of what is technically feasible. The space industry is preparing for the New Space era, the momentum for which will emanate from the commercial human spaceflight sector, and will be buttressed by international solar system exploration endeavours. With many distinctive technical challenges to be overcome, human spaceflight requires that numerous biological and physical systems be examined under exceptional circumstances for progress to be made. To effectively tackle such an undertaking significant intra- and international coordination and collaboration is required. Space life and biomedical science research and development (R & D) will support the Global Exploration Roadmap (GER) by enabling humans to 'endure' the extreme activity that is long duration human spaceflight. In so doing the field will discover solutions to some of our most difficult human health issues, and as a consequence benefit society as a whole. This space-specific R&D will drive a significant amount of terrestrial biomedical research and as a result the international community will not only gain benefits in the form of improved healthcare in space and on Earth, but also through the growth of its science base and industry.
An Evidence-Based Approach To Exercise Prescriptions on ISS
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2009-01-01
This presentation describes current exercise countermeasures and exercise equipment for astronauts onboard the ISS. Additionally, a strategy for evaluating evidence supporting spaceflight exercise is described and a new exercise prescription is proposed. The current exercise regimen is not fully effective as the ISS exercise hardware does not allow for sufficient exercise intensity, the exercise prescription is adequate and crew members are noncompliant with the prescription. New ISS hardware is proposed, Advanced Resistance Exercise Device (ARED), which allows additional exercises, is instrumented for data acquisition and offers improved loading. The new T2 hardware offers a better harness and subject loading system, is instrumented to allow ground reaction force data, and offers improved speed. A strategy for developing a spaceflight exercise prescription is described and involves identifying exercise training programs that have been shown to maximize adaptive benefits of people exercising in both 0 and 1 g environments. Exercise intensity emerged as an important factor in maintaining physiologic adaptations in the spaceflight environment and interval training is suggested. New ISS exercise hardware should allow for exercise at intensities high enough to elicit adaptive responses. Additionally, new exercise prescriptions should incorporate higher intensity exercises and seek to optimize intensity, duration and frequency for greater efficiency.
Hackney, Kyle J.; English, Kirk L.
2014-01-01
Long-duration spaceflight results in muscle atrophy and a loss of bone mineral density. In skeletal muscle tissue, acute exercise and protein (e.g., essential amino acids) stimulate anabolic pathways (e.g., muscle protein synthesis) both independently and synergistically to maintain neutral or positive net muscle protein balance. Protein intake in space is recommended to be 12%–15% of total energy intake (≤1.4 g∙kg−1∙day−1) and spaceflight is associated with reduced energy intake (~20%), which enhances muscle catabolism. Increasing protein intake to 1.5–2.0 g∙kg−1∙day−1 may be beneficial for skeletal muscle tissue and could be accomplished with essential amino acid supplementation. However, increased consumption of sulfur-containing amino acids is associated with increased bone resorption, which creates a dilemma for musculoskeletal countermeasures, whereby optimizing skeletal muscle parameters via essential amino acid supplementation may worsen bone outcomes. To protect both muscle and bone health, future unloading studies should evaluate increased protein intake via non-sulfur containing essential amino acids or leucine in combination with exercise countermeasures and the concomitant influence of reduced energy intake. PMID:25370374
Changes in Liver Metabolic Gene Expression after Radiation Exposure
NASA Technical Reports Server (NTRS)
Peters, C. P.; Wotring, Virginia E.
2012-01-01
The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand any effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments.
Concepts for NASA longitudinal health studies
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.; Pool, S. L.; Leach, C. S.; Moseley, E.; Rambaut, P. C.
1983-01-01
Clinical data collected from a 15-year study of the homogenous group of pre-Shuttle astronauts have revealed no significant long-term effects from spaceflight. The current hypothesis suggests that repeated exposures to the space environment in the Shuttle era will similarly have no long-term health effects. However, a much more heterogenous group of astronauts and non-astronaut scientists will fly in Shuttle, and data on this group's adaptation to the space environment and readaptation to earth are currently sparse. In addition, very little information is available concerning the short- and long-term medical consequences of long duration exposure to space and subsequent readaptation to the earth environment. In this paper, retrospective clinical information on astronauts is reviewed and concepts for conducting epidemiological studies examining long-term health effects of spaceflight on humans, including associated occupational risks factors, are presented.
Responds of Bone Cells to Microgravity: Ground-Based Research
NASA Astrophysics Data System (ADS)
Zhang, Jian; Li, Jingbao; Xu, Huiyun; Yang, Pengfei; Xie, Li; Qian, Airong; Zhao, Yong; Shang, Peng
2015-11-01
Severe loss of bone occurs due to long-duration spaceflight. Mechanical loading stimulates bone formation, while bone degradation happens under mechanical unloading. Bone remodeling is a dynamic process in which bone formation and bone resorption are tightly coupled. Increased bone resorption and decreased bone formation caused by reduced mechanical loading, generally result in disrupted bone remodeling. Bone remodeling is orchestrated by multiple bone cells including osteoblast, osteocyte, osteoclast and mesenchymal stem cell. It is yet not clear that how these bone cells sense altered gravity, translate physical stimulus into biochemical signals, and then regulate themselves structurally and functionally. In this paper, studies elucidating the bioeffects of microgravity on bone cells (osteoblast, osteocyte, osteoclast, mesenchymal stem cell) using various platforms including spaceflight and ground-based simulated microgravity were summarized. Promising gravity-sensitive signaling pathways and protein molecules were proposed.
Space radiation concerns for manned exploration.
Stanford, M; Jones, J A
1999-07-01
Spaceflight exposes astronaut crews to natural ionizing radiation. To date, exposures in manned spaceflight have been well below the career limits recommended to NASA by the National Council of Radiation Protection and Measurements (NCRP). This will not be the case for long-duration exploratory class missions. Additionally. International Space Station (ISS) crews will receive higher doses than earlier flight crews. Uncertainties in our understanding of long-term bioeffects, as well as updated analyses of the Hiroshima. Nagasaki and Chernobyl tumorigenesis data, have prompted the NCRP to recommend further reductions by 30-50% for career dose limit guidelines. Intelligent spacecraft design and material selection can provide a shielding strategy capable of maintaining crew exposures within recommended guidelines. Current studies on newer radioprotectant compounds may find combinations of agents which further diminish the risk of radiation-induced bioeffects to the crew.
Space exploration, Mars, and the nervous system.
Kalb, Robert; Solomon, David
2007-04-01
When human beings venture back to the moon and then on to Mars in the coming decade or so, we will be riding on the accumulated data and experience from approximately 50 years of manned space exploration. Virtually every organ system functions differently in the absence of gravity, and some of these changes are maladaptive. From a biologic perspective, long duration spaceflight beyond low Earth orbit presents many unique challenges. Astronauts traveling to Mars will live in the absence of gravity for more than 1 year en route and will have to transition between weightlessness and planetary gravitational forces at the beginning, middle, and end of the mission. We discuss some of what is known about the effects of spaceflight on nervous system function, with emphasis on the neuromuscular and vestibular systems because success of a Mars mission will depend on their proper functioning.
USDA-ARS?s Scientific Manuscript database
Tree fruits (e.g., apples, plums, cherries) are appealing constituents of a crew menu for long-duration exploration missions (i.e., Mars), both in terms of their nutritive and menu diversity contributions. Although appealing, tree fruit species have long been precluded as candidate crops for use in...
Research experiments at Hangar L
NASA Technical Reports Server (NTRS)
2000-01-01
Visiting scientist Cheryl Frazier monitors a prototype composting machine in Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.
2009-06-06
ISS020-E-007566 (6 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, prepares to put samples in the Minus Eighty Laboratory Freezer for ISS (MELFI) in the Kibo laboratory of the International Space Station. Samples were taken as part of the Nutritional Status Assessment (Nutrition) with Repository experiment, a study done by NASA to date of human physiologic changes during long-duration spaceflight.
2000-05-29
Research assistant Trisha Bruno performs an analysis on potato samples at Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Visiting scientist Cheryl Frazier monitors a prototype composting machine in Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Visiting scientist Cheryl Frazier monitors a prototype composting machine in Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research assistant Trisha Bruno performs an analysis on potato samples at Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research assistant Trisha Bruno performs an analysis on potato samples at Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research assistant Trisha Bruno performs an analysis on potato samples at Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Vadim Rygalov describes a new low-pressure water-recycling experiment being designed to help simulate plant growth conditions on Mars. The research he is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Vadim Rygalov describes a new low-pressure water-recycling experiment being designed to help simulate plant growth conditions on Mars. The research he is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
Research experiments at Hangar L
NASA Technical Reports Server (NTRS)
2000-01-01
Research assistant Trisha Bruno performs an analysis on potato samples at Hangar L at the Cape Canaveral Air Force Station. The research she is performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.
NASA Biological Specimen Repository
NASA Technical Reports Server (NTRS)
Pietrzyk, Robert; McMonigal, K. A.; Sams, C. F.; Johnson, M. A.
2009-01-01
The NASA Biological Specimen Repository (NBSR) has been established to collect, process, annotate, store, and distribute specimens under the authority of the NASA/JSC Committee for the Protection of Human Subjects. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The NBSR is a secure controlled storage facility that is used to maintain biological specimens over extended periods of time, under well-controlled conditions, for future use in approved human spaceflight-related research protocols. The repository supports the Human Research Program, which is charged with identifying and investigating physiological changes that occur during human spaceflight, and developing and implementing effective countermeasures when necessary. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can validate clinical hypotheses, study space-flight related changes, and investigate physiological markers All samples collected require written informed consent from each long duration crewmember. The NBSR collects blood and urine samples from all participating long duration ISS crewmembers. These biological samples are collected pre-flight at approximately 45 days prior to launch, during flight on flight days 15, 30, 60 120 and within 2 weeks of landing. Postflight sessions are conducted 3 and 30 days following landing. The number of inflight sessions is dependent on the duration of the mission. Operations began in 2007 and as of October 2009, 23 USOS crewmembers have completed or agreed to participate in this project. As currently planned, these human biological samples will be collected from crewmembers covering multiple ISS missions until the end of U.S. presence on the ISS or 2017. The NBSR will establish guidelines for sample distribution that are consistent with ethical principles, protection of crewmember confidentiality, prevailing laws and regulations, intellectual property policies, and consent form language. A NBSR Advisory Board composed of representatives of all participating agencies will be established to evaluate each request by an investigator for use of the samples to ensure the request reflects the mission of the NBSR.
Catauro, Patricia M; Perchonok, Michele H
2012-01-01
To determine the suitability of retort processed foods to support long-duration spaceflight, a series of 36-mo accelerated shelf life studies were performed on 13 representative retort pouch products. Combined sensory evaluations, physical properties assessments, and nutritional analyses were employed to determine shelf life endpoints for these foods, which were either observed during the analysis or extrapolated via mathematical projection. Data obtained through analysis of these 13 products were later used to estimate the shelf life values of all retort-processed spaceflight foods. In general, the major determinants of shelf life appear to be the development of off-flavor and off-color in products over time. These changes were assumed to be the result of Maillard and oxidation reactions, which can be initiated or accelerated as a result of the retort process and product formulation. Meat products and other vegetable entrées are projected to maintain their quality the longest, between 2 and 8 y, without refrigeration. Fruit and dessert products (1.5 to 5 y), dairy products (2.5 to 3.25 y), and starches, vegetable, and soup products (1 to 4 y) follow. Aside from considerable losses in B and C vitamin content, nutritional value of most products was maintained throughout shelf life. Fortification of storage-labile vitamins was proposed as a countermeasure to ensure long-term nutritive value of these products. The use of nonthermal sterilization technologies was also recommended, as a means to improve initial quality of these products and extend their shelf life for use in long-duration missions. Data obtained also emphasize the importance of low temperature storage in maintaining product quality. Retort sterilized pouch products are garnering increased commercial acceptance, largely due to their improved convenience and quality over metal-canned products. Assessment of the long-term stability of these products with ambient storage can identify potential areas for improvement, and ultimately increase consumer satisfaction with these technologies. Journal of Food Science © 2011 Institute of Food Technologists® No claim to original US government works.
Effects of microgravity on muscle and cerebral cortex: a suggested interaction
NASA Astrophysics Data System (ADS)
D'Amelio, F.; Fox, R. A.; Wu, L. C.; Daunton, N. G.; Corcoran, M. L.
The ``slow'' antigravity muscle adductor longus was studied in rats after 14 days of spaceflight (SF). The techniques employed included standard methods for light microscopy, neural cell adhesion molecule (N-CAM) immunocytochemistry and electron microscopy. Light and electron microscopy revealed myofiber atrophy, segmental necrosis and regenerative myofibers. Regenerative myofibers were N-CAM immunoreactive (N-CAM-IR). The neuromuscular junctions showed axon terminals with a decrease or absence of synaptic vesicles, degenerative changes, vacant axonal spaces and changes suggestive of axonal sprouting. No alterations of muscle spindles was seen either by light or electron microscopy. These observations suggest that muscle regeneration and denervation and synaptic remodeling at the level of the neuromuscular junction may take place during spaceflight. In a separate study, GABA immunoreactivity (GABA-IR) was evaluated at the level of the hindlimb representation of the rat somatosensory cortex after 14 days of hindlimb unloading by tail suspension (``simulated'' microgravity). A reduction in number of GABA-immunoreactive cells with respect to the control animals was observed in layer Va and Vb. GABA-IR terminals were also reduced in the same layers, particularly those terminals surrounding the soma and apical dendrites of pyramidal cells in layer Vb. On the basis of previous morphological and behavioral studies of the neuromuscular system after spaceflight and hindlimb suspension it is suggested that after limb unloading there are alterations of afferent signaling and feedback information from intramuscular receptors to the cerebral cortex due to modifications in the reflex organization of hindlimb muscle groups. We propose that the changes observed in GABA immunoreactivity of cells and terminals is an expression of changes in their modulatory activity to compensate for the alterations in the afferent information.
Biocompatibility studies in preparation for a spaceflight experiment on plant tropisms (TROPI)
NASA Astrophysics Data System (ADS)
Kiss, John Z.; Kumar, Prem; Bowman, Robert N.; Steele, Marianne K.; Eodice, Michael T.; Correll, Melanie J.; Edelmann, Richard E.
The interaction among tropisms is important in determining the growth form of a plant. Thus, we have developed a project to study the interaction between two key tropistic responses (i.e., gravitropism and phototropism) to be performed in microgravity on the International Space Station (ISS). Specifically, we are interested in the role of red-light-absorbing phytochrome pigments in modulating tropisms in seedlings of Arabidopsis thaliana. This project, termed TROPI for tropisms, is to be performed on the European Modular Cultivation System (EMCS), which provides an incubator with atmospheric control, lighting, and high-resolution video. The EMCS has two rotating centrifuge platforms so that our experiments can be performed at microgravity, 1g (control), and fractional g-levels. In order to optimize these spaceflight experiments, we have continued ground-based technical tests as well as basic science experiments. Since the seeds will have to be stored for several months in hardware prior to use on the ISS, we tested the effects of long-term storage of seeds in the TROPI EUE (experimental unique equipment) on germination rates and plant growth. The EUE consists of five seedling cassettes with LED lighting and a water delivery system in an Experimental Container (EC). Preliminary studies showed that there were reduced seed germination and plant growth after several months of storage in the EUE. We determined that the likely source of this biocompatibility problem was the conformal coating of electrical components of the EUE, which was required by NASA for safety reasons. In order to alleviate this problem, carbon filters were added to both the seedling cassettes and to the base of the EC. We expect that these improvements to the hardware will result in healthy plants capable of robust tropistic responses in our spaceflight experiments.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey D.; Cromwell, Ronita L.; Kundrot, Craig E.; Charles, John B.
2011-01-01
Early on, bed rest was recognized as a method for inducing many of the physiological changes experienced by spaceflight. Head-down tilt (HDT) bed rest was first introduced as an analog for spaceflight by a Soviet team led by Genin and Kakurin. Their study was performed in 1970 (at -4 degrees) and lasted for 30 days; results were reported in the Russian Journal of Space Biology (Kosmicheskaya Biol. 1972; 6(4): 26-28 & 45-109). The goal was to test physiological countermeasures for cosmonauts who would soon begin month-long missions to the Salyut space station. HDT was chosen to produce a similar sensation of blood flow to the head reported by Soyuz cosmonauts. Over the next decade, other tilt angles were studied and comparisons with spaceflight were made, showing that HDT greater than 4 degrees was superior to horizontal bed rest for modeling acute physiological changes observed in space; but, at higher angles, subjects experienced greater discomfort without clearly improving the physiological comparison to spaceflight. A joint study performed by US and Soviet investigators, in 1979, set the goal of standardization of baseline conditions and chose 6-degrees HDT. This effectively established 6-degree HDT bed rest as the internationally-preferred analog for weightlessness and, since 1990, nearly all further studies have been conducted at 6-degrees HDT. A thorough literature review (1970-2010) revealed 534 primary scientific journal articles which reported results from using HDT as a physiological analog for spaceflight. These studies have ranged from as little as 10 minutes to the longest duration of 370 days. Long-term studies lasting four weeks or more have resulted in over 170 primary research articles. Today, the 6-degree HDT model provides a consistent, thoroughly-tested, ground-based analog for spaceflight and allows the proper scientific controls for rigorous testing of physiological countermeasures; however, all models have their strengths and limits. The 6-degrees HDT model must continue to be scrutinized, re-examined, validated and compared to other analog environments whenever possible. Only by understanding the strengths and limits of this model, will it continue to serve as a critical physiological analog to spaceflight for many more years to come.
Locomotor exercise in weightlessness
NASA Technical Reports Server (NTRS)
Thornton, W.; Whitmore, H.
1991-01-01
The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.
Behavioral health in Antarctica: implications for long-duration space missions
NASA Technical Reports Server (NTRS)
Lugg, Desmond J.
2005-01-01
Ideally, evidence from long-duration spaceflight should be used to predict likely occurrences of behavioral health events and for planning management strategies for such events. With small numbers of space travelers, and limited long-duration missions of a year or more, Earth analogues and simulations must be used as the evidence base, despite such analogues lacking microgravity, radiation, rapidly altering photoperiodicity, and fidelity to space. Antarctic health data are reviewed and an assessment made of the likely frequency of behavioral health events. Based on the Antarctic evidence, the likelihood of behavioral health problems in space is low. However, such cases may be serious and of high consequence, placing considerable demands on the mission crew and ground support to achieve a successful outcome, given the availability of pharmaceuticals and resources.
NASA Technical Reports Server (NTRS)
Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan
2017-01-01
The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition, the comments were scored for sentiment using a polarity scoring algorithm to identify both positive and negative comments for particular groups and clusters, allowing the team to make analytically informed decisions regarding future hardware and operating procedures. The use of polarity scoring with time series analysis was used to provide insight into how crew health and habitability is changing throughout various spaceflight increments or the station lifecycle as a whole. Finally, a visualization framework was developed to address the needs of the end users to search for and analyze comments by user, category or mission. This paper will discuss how the use of an analytical framework in conjunction with the current human interface, improved the understanding of crew perspective and shortened the time for analysis allowing for more informed decisions and rapid development of improvements. These methods are significantly optimizing the way that this valuable data can be assessed and applied to current and future spaceflight design and development. This collaboration allows the FCI OpsHab team to effectively analyze and share data in a more automated and timely fashion. Trends are no longer derived manually and can be illustrated effectively and accurately with these evolving techniques to an ever growing group of human spaceflight end users.
NASA Technical Reports Server (NTRS)
Platts, Steven H.; Lee, Stuart M. C.; Westby, Christian M.; Ribeiro, L. Christine; Stenger, Michael B.
2011-01-01
Orthostatic intolerance following spaceflight has been observed since the early days of manned spaceflight, and no countermeasure has been 100% effective. During re-entry NASA astronauts currently wear an inflatable anti-gravity suit (AGS) which compresses the legs and abdomen, but this device is uncomfortable and loses effectiveness upon egress from the Space Shuttle. We previously reported that foot-to-thigh, gradient compression stockings were comfortable and effective during standing after Shuttle missions. More recently we showed in a ground-based model of spaceflight that the addition of splanchnic compression to the foot-to-thigh compression stockings, creating foot-to-breast high compression, improved orthostatic tolerance in hypovolemic subjects to a level similar to the AGS. Purpose: To evaluate a new three-piece, foot-to-breast high gradient compression garment as a countermeasure to post-spaceflight orthostatic intolerance. Methods: Fourteen astronauts completed this experiment (7 control, 7 treatment) following Space Shuttle missions lasting 12-16 days. Treatment subjects were custom-fitted for a three-piece, foot-to-breast high compression garment consisting of shorts and foot-to-thigh stockings. The garments were constructed to provide 55 mmHg compression at the ankle and decreased gradually to 15 mmHg over the abdomen. Orthostatic testing occurred 30 days before flight (without garments) and 2 hours after flight (with garments for treatment group only) on landing day. Blood pressure (BP) and heart rate (HR) were acquired for 2 minutes while the subject lay prone and then for 3.5 minutes after the subject stood. Data are reported as mean +/- SE. Results: The compression garment successfully prevented the tachycardia and hypotension typically seen post-spaceflight. On landing day, treatment subjects had a smaller change in HR (11+/-1 vs. 21+/-4 beats/min, p< or =0.05) and no decrease in systolic BP (2+/-4 vs. -9+/-2 mmHg, p< or =0.05). Garments also received good comfort ratings and were relatively easy to don. Conclusion: In this small group of astronauts, foot-to-breast high gradient compression garments seem to have prevented these negative effects of spaceflight on the cardiovascular responses to standing.
Kaleri works with the Pilot experiment during Expedition 8
2003-10-31
ISS008-E-05179 (31 October 2003) --- Cosmonaut Alexander Y. Kaleri, Expedition 8 flight engineer, works with the Russian biomedical Pilot experiment (MBI-15) in the Zvezda Service Module on the International Space Station (ISS). The experiment, which looks at psychological and physiological changes in crew performance during long-duration spaceflight, requires a worktable, ankle restraint system and two control handles for testing piloting skill. Kaleri represents Rosaviakosmos.
GeoLab Concept: The Importance of Sample Selection During Long Duration Human Exploration Mission
NASA Technical Reports Server (NTRS)
Calaway, M. J.; Evans, C. A.; Bell, M. S.; Graff, T. G.
2011-01-01
In the future when humans explore planetary surfaces on the Moon, Mars, and asteroids or beyond, the return of geologic samples to Earth will be a high priority for human spaceflight operations. All future sample return missions will have strict down-mass and volume requirements; methods for in-situ sample assessment and prioritization will be critical for selecting the best samples for return-to-Earth.
Timing of neuron development in the rodent vestibular system
NASA Technical Reports Server (NTRS)
Keefe, J. R.
1982-01-01
The timing of cell generation (onset and duration) in the developing rat vestibular and proprioceptive systems is investigated. The results clearly indicate a defined time-span for generation of all neurons in the central nervous system nuclei studied. This cytogenetic period in both vestibular and proprioceptive sensory nuclei is determined to occur during and immediately after placentation, a potentially critical period for spaceflight exposure due to alterations in maternal physiology.
2009-06-06
ISS020-E-007577 (6 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, returns a dewar tray to the Minus Eighty Laboratory Freezer for ISS (MELFI) after inserting biological samples into the trays in the Kibo laboratory of the International Space Station. Samples were taken as part of the Nutritional Status Assessment (Nutrition) with Repository experiment, a study done by NASA to date of human physiologic changes during long-duration spaceflight.
Food Fortification Stability Study
NASA Technical Reports Server (NTRS)
Sirmons, T. A.; Cooper, M. R.; Douglas, G. L.
2016-01-01
This study aims to assess the stability of vitamin content, sensory acceptability and color variation in fortified spaceflight foods over a period of 2 years. Findings will identify optimal formulation, processing, and storage conditions to maintain stability and acceptability of commercially available fortification nutrients. Changes in food quality are being monitored to indicate whether fortification affects quality over time (compared to the unfortified control), thus indicating their potential for use on long-duration missions.
Food Fortification Stability Study
NASA Technical Reports Server (NTRS)
Sirmons, T. A.; Cooper, M. R.; Douglas, G. L.
2017-01-01
This study aimed to assess the stability of vitamin content, sensory acceptability and color variation in fortified spaceflight foods over a period of two years. Findings will help to identify optimal formulation, processing, and storage conditions to maintain stability and acceptability of commercially available fortification nutrients. Changes in food quality were monitored to indicate whether fortification affects quality over time (compared to the unfortified control), thus indicating their potential for use on long-duration missions.
2000-05-29
Research scientist Oscar Monje records data associated with ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Oscar Monje records data associated with ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
Effects of materials surface preparation for use in spacecraft potable water storage tanks
NASA Astrophysics Data System (ADS)
Wallace, William T.; Wallace, Sarah L.; Loh, Leslie J.; Kuo, C. K. Mike; Hudson, Edgar K.; Marlar, Tyler J.; Gazda, Daniel B.
2017-12-01
Maintaining a safe supply of potable water is of utmost importance when preparing for long-duration spaceflight missions, with the minimization of microbial growth being one major aspect. While biocides, such as ionic silver, historically have been used for microbial control in spaceflight, their effectiveness is sometimes limited due to surface reactions with the materials of the storage containers that reduce their concentrations below the effective range. For the Multi-Purpose Crew Vehicle, the primary wetted materials of the water storage system are stainless steel and a titanium alloy, and ionic silver has been chosen to serve as the biocide. As an attempt to understand what processes might reduce the known losses of silver, different treatment processes were attempted and samples of the wetted materials were tested, individually and together, to determine the relative loss of biocide under representative surface area-to-volume ratios. The results of testing presented here showed that the materials could be treated by a nitric acid rinse or a high-concentration silver spike to reduce the loss of silver and bacterial growth. It was also found that the minimum biocidal concentration could be maintained for over 28 days. These results have pointed to approaches that could be used to successfully maintain silver in spacecraft water systems for long-duration missions.
NASA Astrophysics Data System (ADS)
Leveton, Lauren B.; Robinson, Judith L.; Charles, John B.
2000-01-01
Human exploration of space requires the ability to understand and mitigate risks to crews exposed to the conditions associated with such missions. This becomes a greater imperative as we prepare for interplanetary expeditions involving humans who will be subjected to long transit periods in microgravity as they travel to a distant planet such as Mars, embark and live on the planet's surface for an extended time, and finally, return to the 1 g environment of Earth. We need to know, more definitively, what the human health, safety, and performance risks are, and how to prevent or counteract them throughout all phases of a long duration mission. The Johnson Space Center's Space and Life Sciences Directorate along with the National Space Biomedical Research Institute (NSBRI) have been engaged in a strategic planning effort that identifies the most critical risks confronting humans who will venture forth on such missions and the types of research and technology efforts required to mitigate and otherwise reduce the probability and/or severity of those risks. This paper describes the unique approach used to define, assess and prioritize the risks and presents the results of the assessment with an emphasis on the research and technology priorities that will help us to meet the challenge of long duration human spaceflight missions. .
The Critical Path Roadmap Project: Biomedical Risk Reduction for Extended Spaceflight
NASA Technical Reports Server (NTRS)
Charles, John B.; Leveton, Lauren B.
2000-01-01
Human exploration of space requires an understanding of the risks to which crews will be exposed during such missions, and the mitigation of those risks to the fullest extent practical. This becomes a greater imperative as we prepare for interplanetary expeditions involving long periods in weightlessness in transit to and then from the destination (a planet, such as Mars, or perhaps a point in space, such as the Lagrangian point L2), and exposure to the unique environment of the destination itself. We need to know, more definitively, what the risks are to human health, safety, and performance, and how to prevent or counteract them throughout all phases of a long duration mission. The Johnson Space Center's Space and Life Sciences Directorate and the National Space Biomedical Research Institute (NSBRI) have implemented an effort to identify the most critical risks confronting humans on such mission and the types of research and technology efforts required to mitigate and otherwise reduce the probability and severity of those risks. This paper describes the "Critical Path Roadmap Project" to define, assess and prioritize the risks and present the results of the assessment with an emphasis on the research and technology priorities to meet the challenge of long duration human spaceflight mission.
NASA Technical Reports Server (NTRS)
Leveton, Lauren B.; Robinson, Judith L.; Charles, John B.
2000-01-01
Human exploration of space requires the ability to understand and mitigate risks to crews exposed to the conditions associated with such missions. This becomes a greater imperative as we prepare for interplanetary expeditions involving humans who will be subjected to long transit periods in microgravity as they travel to a distant planet such as Mars, embark and live on the planet's surface for an extended time, and finally, return to the 1 g environment of Earth. We need to know, more definitively, what the human health, safety, and performance risks are, and how to prevent or counteract them throughout all phases of a long duration mission. The Johnson Space Center's Space and Life Sciences Directorate along with the National Space Biomedical Research Institute (NSBRI) have been engaged in a strategic planning effort that identifies the most critical risks confronting humans who will venture forth on such missions and the types of research and technology efforts required to mitigate and otherwise reduce the probability and/or severity of those risks. This paper describes the unique approach used to define, assess and prioritize the risks and presents the results of the assessment with an emphasis on the research and technology priorities that will help us to meet the challenge of long duration human spaceflight missions.
Development of an Advanced Animal Habitat for Spaceflight
NASA Technical Reports Server (NTRS)
Baer, L.; Vasques, M.; Martwick, F.; Hines, M.; Grindeland, R. E.
1994-01-01
It is necessary to fly a group-housed animals for many Life Science spaceflight studies. Currently, group-housed rodents are flown aboard the shuttle in the Animal Enclosure Module (AEM). Although the AEM has been used successfully for a number of flights, it has significant limitations in the number of animals it can accommodate, limited flight duration, passive temperature control and limited in flight data acquisition capability. An Advanced Animal Habitat (AAH) is being developed, which can be flown on the shuttle middeck, both spacelab and spacehab shuttle payload modules, and the space station. The AAH is designed to house 12 rats or 30 mice for up to 30 days. The AAH will have active temperature control, a window mechanism to facilitate video monitoring/recording of the animals, and biotelemetry capabilities. In addition, the design will permit access to the animals for experimental manipulations in space. The AAH can be refitted to experiment-specific requirements as needed. In initial 7-day hardware tests 12 male rats and 10 female mice show no adverse affects with respect to final body and organ weights as compared to vivarium. controls. The Advanced Animal Habitat will provide the science community opportunities to perform a greater variety of studies for longer duration in the microgravity environment than the current Animal Enclosure Module.
An overview of the endocrine and metabolic changes in manned space flight
NASA Technical Reports Server (NTRS)
Leach, C. S.
1981-01-01
Analyses of endocrinological and metabolic data from humans during spaceflight, particularly the Skylab crews, are summarized to define the levels of knowledge of these processes and the techniques for studying them. The glomerular filtration rate was tested by urine and blood samples, yielding indications of a creatinine clearance increase. The mechanisms for an increase of free water clearance, implying an increase of antidiuretic hormone, are uncertain, and tests are also under way to evaluate the role of prostaglandins in-flight, to account for decreases in catecholamine excretion. Bone mineral losses of 7.9% were observed at the end of 84 days, and processes are suggested for the calcium metabolism. Finally, the observation of almost universal weight loss among space crewmembers is examined, and a loss of muscle tone due to decreased metabolic efficiency is cited as a feature of long duration spaceflight.
2017-06-26
NASA didn’t miss a (heart)beat when the opportunity arose to study the cardiovascular systems of identical twin astronauts, one aboard the International Space Station and the other on Earth. Results from the Cardio Ox investigation, part of the research of the One Year Mission of astronaut Scott Kelly, may provide a better understanding of cardiovascular disease risk that astronauts encounter during and after long-duration spaceflight. Stuart Lee, the lead scientist for the Cardiovascular and Vision Laboratory at NASA’s Johnson Space Center, explains the importance of spaceflight weightlessness research on the cardiovascular system and how results could be used to create countermeasures, preventing potential health consequences for future space travelers as well as those of us on Earth. For more on ISS science, follow us on Twitter: @ISS_research or at https://twitter.com/ISS_Research or at: https://www.nasa.gov/mission_pages/station/research/index.html
1996-09-26
KENNEDY SPACE CENTER, FLA. -- The STS-79 mission comes to a successful conclusion as the orbiter Atlantis touches down on Runway 15 of KSC's Shuttle Landing Facility at 8:13:15 a.m. EDT, September 26. On board is U.S. astronaut Shannon W. Lucid, who has been living and working on the Russian Space Station Mir for about six months. Lucid has spent 188 days in space from launch aboard Atlantis in March to her return today, establishing a U.S. record for long-duration spaceflight as well as representing the longest spaceflight for a woman. Succeeding Lucid on Mir is U.S. astronaut John E. Blaha, who embarked to Mir with the STS-79 crew. The commander of Mission STS-79 is William F. Readdy; Terrence W. Wilcutt is the pilot, and the three mission specialists are Jay Apt, Thomas D. Akers and Carl E. Walz.
1996-09-26
KENNEDY SPACE CENTER, FLA. -- A KSC fire truck stands on alert as the STS-79 Space Shuttle Atlantis hurtles down Runway 15 of KSC's Shuttle Landing Facility, its drag chute billowing behind it. Atlantis touched down at 8:13:15 a.m. EDT, September 26. On board is U.S. astronaut Shannon W. Lucid, who has been living and working on the Russian Space Station Mir for about six months. Lucid has spent 188 days in space from launch aboard Atlantis in March to her return today, establishing a U.S. record for long-duration spaceflight as well as representing the longest spaceflight for a woman. Succeeding Lucid on Mir is U.S. astronaut John E. Blaha, who embarked to Mir with the STS-79 crew. The commander of Mission STS-79 is William F. Readdy; Terrence W. Wilcutt is the pilot, and the three mission specialists are Jay Apt, Thomas D. Akers and Carl E. Walz
1996-09-26
KENNEDY SPACE CENTER, FLA. -- The STS-79 mission comes to a successful conclusion as the orbiter Atlantis touches down on Runway 15 of KSC's Shuttle Landing Facility at 8:13:15 a.m. EDT, September 26. On board is U.S. astronaut Shannon W. Lucid, who has been living and working on the Russian Space Station Mir for about six months. Lucid has spent 188 days in space from launch aboard Atlantis in March to her return today, establishing a U.S. record for long-duration spaceflight as well as representing the longest spaceflight for a woman. Succeeding Lucid on Mir is U.S. astronaut John E. Blaha, who embarked to Mir with the STS-79 crew. The commander of Mission STS-79 is William F. Readdy; Terrence W. Wilcutt is the pilot, and the three mission specialists are Jay Apt, Thomas D. Akers and Carl E. Walz
Expedition 8 Crew Interviews: C. Michael Foale - CDR
NASA Technical Reports Server (NTRS)
2003-01-01
C. Michael Foale, Commander of the Expedition 8 crew to the International Space Station (ISS), answers interview questions in this video. The questions cover: 1) The goals of the Expedition; 2) How his Mir experience prepared him for long-duration spaceflight; 3) The reaction the Columbia accident where he was training in Star City, Russia; 4) Why the rewards of spaceflight are worth the risks; 5) Why he wanted to become an astronaut; 6) His career path; 7) His influences; 8) His path of study; 9) His responsibilities on a mission; 10) What a Soyuz capsule is like; 11) What the oncoming and offgoing ISS crews will do together; 12) How the ISS science mission will be advanced during his stay; 13) Training and plans for extravehicular activity (EVA); 14) Return to Flight of Shuttle; 15) What is needed to make his mission a success; 16) The most valuable contribution of the ISS.
Stewart, Lowan H; Trunkey, Donald; Rebagliati, G Steve
2007-01-01
Recent events, including the development of space tourism and commercial spaceflight, have increased the need for specialists in space medicine. With increased duration of missions and distance from Earth, medical and surgical events will become inevitable. Ground-based medical support will no longer be adequate when return to Earth is not an option. Pending the inclusion of sub-specialists, clinical skills and medical expertise will be required that go beyond those of current physician-astronauts, yet are well within the scope of Emergency Medicine. Emergency physicians have the necessary broad knowledge base as well as proficiency in basic surgical skills and management of the critically ill and injured. Space medicine shares many attributes with extreme conditions and environments that many emergency physicians already specialize in. This article is an introduction to space medicine, and a review of current issues in the emergent management of medical and surgical disease during spaceflight.
Distance and Size Perception in Astronauts during Long-Duration Spaceflight
Clément, Gilles; Skinner, Anna; Lathan, Corinna
2013-01-01
Exposure to microgravity during spaceflight is known to elicit orientation illusions, errors in sensory localization, postural imbalance, changes in vestibulo-spinal and vestibulo-ocular reflexes, and space motion sickness. The objective of this experiment was to investigate whether an alteration in cognitive visual-spatial processing, such as the perception of distance and size of objects, is also taking place during prolonged exposure to microgravity. Our results show that astronauts on board the International Space Station exhibit biases in the perception of their environment. Objects’ heights and depths were perceived as taller and shallower, respectively, and distances were generally underestimated in orbit compared to Earth. These changes may occur because the perspective cues for depth are less salient in microgravity or the eye-height scaling of size is different when an observer is not standing on the ground. This finding has operational implications for human space exploration missions. PMID:25369884
Microbial Monitoring of Crewed Habitats in Space—Current Status and Future Perspectives
Yamaguchi, Nobuyasu; Roberts, Michael; Castro, Sarah; Oubre, Cherie; Makimura, Koichi; Leys, Natalie; Grohmann, Elisabeth; Sugita, Takashi; Ichijo, Tomoaki; Nasu, Masao
2014-01-01
Previous space research conducted during short-term flight experiments and long-term environmental monitoring on board orbiting space stations suggests that the relationship between humans and microbes is altered in the crewed habitat in space. Both human physiology and microbial communities adapt to spaceflight. Microbial monitoring is critical to crew safety in long-duration space habitation and the sustained operation of life support systems on space transit vehicles, space stations, and surface habitats. To address this critical need, space agencies including NASA (National Aeronautics and Space Administration), ESA (European Space Agency), and JAXA (Japan Aerospace Exploration Agency) are working together to develop and implement specific measures to monitor, control, and counteract biological contamination in closed-environment systems. In this review, the current status of microbial monitoring conducted in the International Space Station (ISS) as well as the results of recent microbial spaceflight experiments have been summarized and future perspectives are discussed. PMID:25130885
Are Medications Involved in Vision and Intracranial Pressure Changes Seen in Spaceflight?
NASA Technical Reports Server (NTRS)
Wotring, V. E.
2015-01-01
Some crewmembers have experienced changes in their vision after long-duration spaceflight on the ISS. These impairments include visual performance decrements, development of cotton-wool spots or choroidal folds, optic-disc edema, optic nerve sheath distention, and/or posterior globe flattening with varying degrees of severity and permanence. These changes are now used to define the visual impairment/intracranial pressure (VIIP) syndrome. It is known that many medications can have side effects that are similar to VIIP symptoms. Some medications raise blood pressure, which can affect intracranial pressure. Many medications that act in the central nervous system can affect intracranial pressures and/or vision. About 40% of the medications in the ISS kit are known to cause side effects involving changes in blood pressure, intracranial pressure and/or vision. For this reason, we have begun an investigation of the potential relationship between ISS medications and their risk of causing or exacerbating VIIP-like symptoms.
NASA Technical Reports Server (NTRS)
Cassady, K.; Koppelmans, V.; Yuan, P.; Cooke, K.; De Dios, Y.; Stepanyan, V.; Szecsy, D.; Gadd, N.; Wood, S.; Reuter-Lorenz, P.;
2015-01-01
Long duration spaceflight has been associated with detrimental alterations in human sensorimotor systems and neurocognitive performance. Prolonged exposure to a head-down tilt position during long duration bed rest can resemble several effects of the microgravity environment such as reduced sensory inputs, body unloading and increased cephalic fluid distribution. The question of whether microgravity affects other central nervous system functions such as brain functional connectivity and its relationship with neurocognitive performance is largely unknown, but of potential importance to the health and performance of astronauts both during and post-flight. The aims of the present study are 1) to identify changes in sensorimotor resting state functional connectivity that occur with extended bed rest exposure, and to characterize their recovery time course; 2) to evaluate how these neural changes correlate with neurocognitive performance. Resting-state functional magnetic resonance imaging (rsfMRI) data were collected from 17 male participants. The data were acquired through the NASA bed rest facility, located at the University of Texas Medical Branch (Galveston, TX). Participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. RsfMRI data were obtained at seven time points: 7 and 12 days before bed rest; 7, 50, and 65 days during bed rest; and 7 and 12 days after bed rest. Functional connectivity magnetic resonance imaging (fcMRI) analysis was performed to measure the connectivity of sensorimotor networks in the brain before, during, and post-bed rest. We found a decrease in left putamen connectivity with the pre- and post-central gyri from pre bed rest to the last day in bed rest. In addition, vestibular cortex connectivity with the posterior cingulate cortex decreased from pre to post bed rest. Furthermore, connectivity between cerebellar right superior posterior fissure and other cerebellar regions decreased from pre bed rest to the last day in bed rest. In contrast, connectivity within the default mode network remained stable over the course of bed rest. We also utilized a battery of behavioral measures including spatial working memory tasks and measures of functional mobility and balance. These behavioral measurements were collected before, during, and after bed rest. We will report the preliminary findings of correlations observed between brain functional connectivity and behavioral performance changes. Our results suggest that sensorimotor brain networks exhibit decoupling with extended periods of reduced usage. The findings from this study could aid in the understanding and future design of targeted countermeasures to alleviate the detrimental health and neurocognitive effects of long-duration spaceflight.
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Feiveson, Alan H.; Stenger, Michael B.; Stein, Sydney P.; Platts, Steven H.
2011-01-01
Our laboratory previously reported that the incidence of orthostatic hypotension (OH) was greater after long- than short-duration spaceflight in astronauts who participated in Mir Space Station and Space Shuttle missions. To confirm and extend these findings, we retrospectively examined tilt test data from International Space Station (ISS) and Shuttle astronauts. We anticipated that the proportion of ISS astronauts experiencing OH would be high on landing day and the number of days to recover greater after long- than short-duration missions. Methods: Twenty ISS and 66 Shuttle astronauts participated in 10-min 80? head-up tilt tests 10 d before launch (L-10), on landing day (R+0) or 1 d after landing (R+1). Data from 5 ISS astronauts tested on R+0 or R+1 who used non-standard countermeasures were excluded. Many astronauts repeated the test 3 d (R+3) after landing. Fisher?s Exact Test was used to compare the ability of ISS and Shuttle astronauts to complete the tilt test on R+0. Cox regression was used to identify cardiovascular parameters that were associated with test completion across all tests, and mixed model analysis was used to compare the change and recovery rates between ISS and Shuttle astronauts. In these analyses, ISS data from R+0 and R+1 were pooled to provide sufficient statistical power. Results: The proportion of astronauts who completed the tilt test on R+0 without OH was less in ISS than in Shuttle astronauts (p=0.03). On R+0, only 2 of 6 ISS astronauts completed the test compared to 53 of 66 (80%) Shuttle astronauts. However, 8 of 9 ISS astronauts completed the test on R+1. On R+3, 13 of 15 (87%) of the ISS and 19 of 19 (100%) of the Shuttle astronauts completed the 10-min test. An index comprised of stroke volume and diastolic blood pressure provided a very good prediction of overall tilt survival. This index was altered by spaceflight similarly for both groups soon after landing (pooled R+0 and R+ 1), but ISS astronauts did not recover at the same rate as Shuttle astronauts (p=0.007). Conclusions: The proportion of ISS astronauts who could not complete the tilt test on R+0 due to OH (4 of 6) is similar to that reported in astronauts who flew on Mir (5 of 6). Further, cardiovascular parameters most closely associated with OH recover more slowly after long- compared to short-duration spaceflight.
NASA Exercise Physiology and Countermeasures Project Overview
NASA Technical Reports Server (NTRS)
Loerch, Linda; Ploutz-Snyder, Lori
2009-01-01
Efficient exercise countermeasures are necessary to offset or minimize spaceflight-induced deconditioning and to maximize crew performance of mission tasks. These countermeasure protocols should use the fewest crew and vehicle resources. NASA s Exercise Physiology and Countermeasures (ExPC) Project works to identify, collect, interpret, and summarize evidence that results in effective exercise countermeasure protocols which protect crew health and performance during International Space Station (ISS) and future exploration-class missions. The ExPC and NASA s Human Research Program are sponsoring multiple studies to evaluate and improve the efficacy of spaceflight exercise countermeasures. First, the Project will measure maximal aerobic capacity (VO2max) during cycle ergometry before, during, and after ISS missions. Second, the Project is sponsoring an evaluation of a new prototype harness that offers improved comfort and increased loading during treadmill operations. Third, the Functional Tasks Test protocol will map performance of anticipated lunar mission tasks with physiologic systems before and after short and long-duration spaceflight, to target system contributions and the tailoring of exercise protocols to maximize performance. In addition to these studies that are actively enrolling crewmember participants, the ExPC is planning new studies that include an evaluation of a higher-intensity/lower-volume exercise countermeasure protocol aboard the ISS using the Advanced Resistive Exercise Device and second-generation treadmill, studies that evaluate bone loading during spaceflight exercise, and ground-based studies that focus on fitness for duty standards required to complete lunar mission tasks and for which exercise protocols need to protect. Summaries of these current and future studies and strategies will be provided to international colleagues for knowledge sharing and possible collaboration.
Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Griko, Yuri V.; Rask, Jon C.; Raychev, Raycho
2017-01-01
As the world's space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organism's self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as "pathfinders," which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes. In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.
Advantage of Animal Models with Metabolic Flexibility for Space Research Beyond Low Earth Orbit
NASA Technical Reports Server (NTRS)
Griko, Yuri V.; Rask, Jon C.; Raychev, Raycho
2017-01-01
As the worlds space agencies and commercial entities continue to expand beyond Low Earth Orbit (LEO), novel approaches to carry out biomedical experiments with animals are required to address the challenge of adaptation to space flight and new planetary environments. The extended time and distance of space travel along with reduced involvement of Earth-based mission support increases the cumulative impact of the risks encountered in space. To respond to these challenges, it becomes increasingly important to develop the capability to manage an organisms self-regulatory control system, which would enable survival in extraterrestrial environments. To significantly reduce the risk to animals on future long duration space missions, we propose the use of metabolically flexible animal models as pathfinders, which are capable of tolerating the environmental extremes exhibited in spaceflight, including altered gravity, exposure to space radiation, chemically reactive planetary environments and temperature extremes.In this report we survey several of the pivotal metabolic flexibility studies and discuss the importance of utilizing animal models with metabolic flexibility with particular attention given to the ability to suppress the organism's metabolism in spaceflight experiments beyond LEO. The presented analysis demonstrates the adjuvant benefits of these factors to minimize damage caused by exposure to spaceflight and extreme planetary environments. Examples of microorganisms and animal models with dormancy capabilities suitable for space research are considered in the context of their survivability under hostile or deadly environments outside of Earth. Potential steps toward implementation of metabolic control technology in spaceflight architecture and its benefits for animal experiments and manned space exploration missions are discussed.
Effects of a spaceflight analog environment on brain connectivity and behavior.
Cassady, Kaitlin; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Castenada, Roy Riascos; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar; Seidler, Rachael
2016-11-01
Sensorimotor functioning is adaptively altered following long-duration spaceflight. The question of whether microgravity affects other central nervous system functions such as brain network organization and its relationship with behavior is largely unknown, but of importance to the health and performance of astronauts both during and post-flight. In the present study, we investigate the effects of prolonged exposure to an established spaceflight analog on resting state brain functional connectivity and its association with behavioral changes in 17 male participants. These bed rest participants remained in bed with their heads tilted down six degrees below their feet for 70 consecutive days. Resting state functional magnetic resonance imaging (rs-fMRI) and behavioral data were obtained at seven time points averaging around: 12 and 8days prior to bed rest; 7, 50, and 70days during bed rest; and 8 and 12days after bed rest. To assess potential confounding effects due to scanning interval or task practice, we also acquired rs-fMRI and behavioral measurements from 14 control participants at four time points. 70days of head-down tilt (HDT) bed rest resulted in significant changes in the functional connectivity of motor, somatosensory, and vestibular areas of the brain. Moreover, several of these network alterations were significantly associated with changes in sensorimotor and spatial working memory performance, which suggests that neuroplasticity mechanisms may facilitate adaptation to the microgravity analog environment. The findings from this study provide novel insights into the underlying neural mechanisms and operational risks of spaceflight analog-related changes in sensorimotor performance. Copyright © 2016 Elsevier Inc. All rights reserved.
Bone Loss During Spaceflight: Available Models and Counter-Measures
NASA Technical Reports Server (NTRS)
Morris, Jonathan; Bach, David; Geller, David
2015-01-01
There is ongoing concern for human health during spaceflights. Of particular interest is the uncoupling of bone remodeling and its resultant effect on calcium metabolism and bone loss. The calculated average loss of bone mineral density (BMD) is approximately 1-1.5% per month of spaceflight. The effect of decreased BMD on associated fractures in astronauts is not known. Currently on the International Space Station (ISS), bone loss is managed through dietary supplements and modifications and resistance exercise regimen. As the duration of space flights increases, a review of the current methods available for the prevention of bone loss is warranted. The goal of this project is to review and summarize recent studies that have focused on maintaining BMD during exposure to microgravity. Interventions were divided into physical (Table 1), nutritional (Table 2), or pharmacologic (Table 3) categories. Physical modalities included resistance exercise, low level vibration, and low intensity pulsed ultrasound. Nutritional interventions included altering protein, salt, and fat intake; and vitamin D supplementation. Pharmacologic interventions included the use of bisphosphonates and beta blockers. Studies reported outcomes based on bone density determined by DXA bone scan, micro-architecture of histology and microCT, and serum and urine markers of bone turnover. The ground analog models utilized to approximate osseous physiology in microgravity included human patients previously paralyzed or subjects confined to bedrest. Ground analog animal models include paralysis, immobilization and ovariectomies. As a result of the extensive research performed there is a multi-modality approach available for the management of BMD during spaceflight that includes resistance training, nutrition and dietary supplements. However, there is a paucity of literature describing a formalized tiered protocol to guide investigators through the progression from animal models to human patient ground analogs to experiments on the ISS. With regards to testing, further evaluation to determine the association between non-invasive tests and fracture during and after spaceflight needs to be performed.
Griko, Yuri; Regan, Matthew D
2018-02-01
Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may enable this to be done as practically and inexpensively as possible. Published by Elsevier Ltd.
The Challenges and Achievements in 50 Years of Human Spaceflight
NASA Astrophysics Data System (ADS)
Hawley, Steven A.
2012-01-01
On April 12, 1961 the era of human spaceflight began with the orbital flight of Cosmonaut Yuri Gagarin. On May 5, 1961 The United States responded with the launch of Alan Shepard aboard Freedom 7 on the first flight of Project Mercury. The focus of the first 20 years of human spaceflight was developing the fundamental operational capabilities and technologies required for a human mission to the Moon. The Mercury and Gemini Projects demonstrated launch and entry guidance, on-orbit navigation, rendezvous, extravehicular activity, and flight durations equivalent to a round-trip to the Moon. Heroes of this epoch included flight directors Chris Kraft, Gene Kranz, and Glynn Lunney along with astronauts like John Young, Jim Lovell, Tom Stafford, and Neil Armstrong. The "Race to the Moon” was eventually won by the United States with the landing of Apollo 11 on July 20, 1969. The Apollo program was truncated at 11 missions and a new system, the Space Shuttle, was developed which became the focus of the subsequent 30 years. Although never able to meet the flight rate or cost promises made in the 1970s, the Shuttle nevertheless left a remarkable legacy of accomplishment. The Shuttle made possible the launch and servicing of the Hubble Space Telescope and diverse activities such as life science research and classified national security missions. The Shuttle launched more than half the mass ever put into orbit and its heavy-lift capability and large payload bay enabled the on-orbit construction of the International Space Station. The Shuttle also made possible spaceflight careers for scientists who were not military test pilots - people like me. In this talk I will review the early years of spaceflight and share my experiences, including two missions with HST, from the perspective of a five-time flown astronaut and a senior flight operations manager.
NASA Astrophysics Data System (ADS)
Griko, Yuri; Regan, Matthew D.
2018-02-01
Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may enable this to be done as practically and inexpensively as possible.
Man in space: The use of animal models
NASA Astrophysics Data System (ADS)
Ballard, Rodney W.; Souza, Kenneth A.
Animals have traditionally preceded man into space. During animal and human travels in space over the past almost 30 years, numerous anatomical, physiological, and biochemical changes have been observed. In order to safely qualify humans for extended duration space missions, scientific research needs to be performed. It may be possible to achieve many of these research goals with flight crews serving as experimental subjects; however, to do this with human subjects alone is impractical. Therefore, the use of animal surrogates as experimental subjects is essential to provide the missing information on the effects of spaceflights, to validate countermeasures, and to test medical treatment techniques which will be necessary for long duration missions. This research to assure human health, safety, and productivity in future extended duration space flights will include flights on NASA's Space Shuttle, unmanned biosatellites, and the Space Station Freedom.
Man in space: the use of animal models.
Ballard, R W; Souza, K A
1991-01-01
Animals have traditionally preceded man into space. During animal and human travels in space over the past almost 30 years, numerous anatomical, physiological, and biochemical changes have been observed. In order to safely qualify humans for extended duration space missions, scientific research needs to be performed. It may be possible to achieve many of these research goals with flight crews serving as experimental subjects; however, to do this with human subjects alone is impractical. Therefore, the use of animal surrogates as experimental subjects is essential to provide the missing information on the effects of spaceflights, to validate countermeasures, and to test medical treatment techniques which will be necessary for long duration missions. This research to assure human health, safety, and productivity in future extended duration space flights will include flights on NASA's Space Shuttle, unmanned biosatellites, and the Space Station Freedom.
Electronic Repair Concepts for Long-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Easton, John; Pettegrew, Richard D.; Struk, Peter M.
2007-01-01
Constraints on the mass and volume that can be allocated for electronics spares and repair equipment on long-duration space missions mean that NASA must look at repair strategies beyond the traditional approach, which has been to replace faulty subsystems in a modular form, termed Orbital Replacement Units or Line Replacement Units. Other possible strategies include component and board-level replacement, modular designs that allow reprogramming of less-critical systems to take the place of more critical failed systems, and a blended approach which uses elements of each of these approaches, along with a limited number of Line Replacement Units. This paper presents some of the constraints and considerations that affect the decision on how to approach electronics repair for long duration space missions, and discusses the benefits and limitations of each of the previously mentioned strategies.
Medically induced amenorrhea in female astronauts
Jain, Varsha; Wotring, Virginia E
2016-01-01
Medically induced amenorrhea can be achieved through alterations in the normal regulatory hormones via the adoption of a therapeutic agent, which prevents menstrual flow. Spaceflight-related advantages for medically induced amenorrhea differ according to the time point in the astronaut’s training schedule. Pregnancy is contraindicated for many pre-flight training activities as well as spaceflight, therefore effective contraception is essential. In addition, the practicalities of menstruating during pre-flight training or spaceflight can be challenging. During long-duration missions, female astronauts have often continuously taken the combined oral contraceptive pill to induce amenorrhea. Long-acting reversible contraceptives (LARCs) are safe and reliable methods used to medically induce amenorrhea terrestrially but as of yet, not extensively used by female astronauts. If LARCs were used, daily compliance with an oral pill is not required and no upmass or trash would need disposal. Military studies have shown that high proportions of female personnel desire amenorrhea during deployment; better education has been recommended at recruitment to improve uptake and autonomous decision-making. Astronauts are exposed to similar austere conditions as military personnel and parallels can be drawn with these results. Offering female astronauts up-to-date, evidence-based, comprehensive education, in view of the environment in which they work, would empower them to make informed decisions regarding menstrual suppression while respecting their autonomy. PMID:28725726
Medically induced amenorrhea in female astronauts.
Jain, Varsha; Wotring, Virginia E
2016-01-01
Medically induced amenorrhea can be achieved through alterations in the normal regulatory hormones via the adoption of a therapeutic agent, which prevents menstrual flow. Spaceflight-related advantages for medically induced amenorrhea differ according to the time point in the astronaut's training schedule. Pregnancy is contraindicated for many pre-flight training activities as well as spaceflight, therefore effective contraception is essential. In addition, the practicalities of menstruating during pre-flight training or spaceflight can be challenging. During long-duration missions, female astronauts have often continuously taken the combined oral contraceptive pill to induce amenorrhea. Long-acting reversible contraceptives (LARCs) are safe and reliable methods used to medically induce amenorrhea terrestrially but as of yet, not extensively used by female astronauts. If LARCs were used, daily compliance with an oral pill is not required and no upmass or trash would need disposal. Military studies have shown that high proportions of female personnel desire amenorrhea during deployment; better education has been recommended at recruitment to improve uptake and autonomous decision-making. Astronauts are exposed to similar austere conditions as military personnel and parallels can be drawn with these results. Offering female astronauts up-to-date, evidence-based, comprehensive education, in view of the environment in which they work, would empower them to make informed decisions regarding menstrual suppression while respecting their autonomy.
NASA Astrophysics Data System (ADS)
Townsend, Molly T.; Sarigul-Klijn, Nesrin
2018-04-01
Living in reduced gravitational environments for a prolonged duration such, as a fly by mission to Mars or an extended stay at the international space station, affects the human body - in particular, the spine. As the spine adapts to spaceflight, morphological and physiological changes cause the mechanical integrity of the spinal column to be compromised, potentially endangering internal organs, nervous health, and human body mechanical function. Therefore, a high fidelity computational model and simulation of the whole human spine was created and validated for the purpose of investigating the mechanical integrity of the spine in crew members during exploratory space missions. A spaceflight exposed spine has been developed through the adaptation of a three-dimensional nonlinear finite element model with the updated Lagrangian formulation of a healthy ground-based human spine in vivo. Simulation of the porohyperelastic response of the intervertebral disc to mechanical unloading resulted in a model capable of accurately predicting spinal swelling/lengthening, spinal motion, and internal stress distribution. The curvature of this space adaptation exposed spine model was compared to a control terrestrial-based finite element model, indicating how the shape changed. Finally, the potential of injury sites to crew members are predicted for a typical 9 day mission.
Effects of 17-day spaceflight on knee extensor muscle function and size
NASA Technical Reports Server (NTRS)
Tesch, Per A.; Berg, Hans E.; Bring, Daniel; Evans, Harlan J.; LeBlanc, Adrian D.
2005-01-01
It is generally held that space travelers experience muscle dysfunction and atrophy during exposure to microgravity. However, observations are scarce and reports somewhat inconsistent with regard to the time course, specificity and magnitude of such changes. Hence, we examined four male astronauts (group mean approximately 43 years, 86 kg and 183 cm) before and after a 17-day spaceflight (Space Transport System-78). Knee extensor muscle function was measured during maximal bilateral voluntary isometric and iso-inertial concentric, and eccentric actions. Cross-sectional area (CSA) of the knee extensor and flexor, and gluteal muscle groups was assessed by means of magnetic resonance imaging. The decrease in strength (P<0.05) across different muscle actions after spaceflight amounted to 10%. Eight ambulatory men, examined on two occasions 20 days apart, showed unchanged (P>0.05) muscle strength. CSA of the knee extensor and gluteal muscles, each decreased (P<0.05) by 8%. Knee flexor muscle CSA showed no significant (P>0.05) change. The magnitude of these changes concord with earlier results from ground-based studies of similar duration. The results of this study, however, do contrast with the findings of no decrease in maximal voluntary ankle plantar flexor force previously reported in the same crew.
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Feuerecker, M.; Salam, A. P.; Rybka, A.; Stowe, R. P.; Morrels, M.; Meta, S. K.; Quiriarte, H.; Quintens, Roel; Thieme, U.;
2011-01-01
Immune system dysregulation occurs during spaceflight and consists of altered peripheral leukocyte distribution, reductions in immunocyte function and altered cytokine production profiles. Causes may include stress, confinement, isolation, and disrupted circadian rhythms. All of these factors may be replicated to some degree in terrestrial environments. NASA is currently evaluating the potential for a ground-based analog for immune dysregulation, which would have utility for mechanistic investigations and countermeasures evaluation. For ground-based space physiology research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over, consisting of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation and disrupted circadian rhythms, is potentially a good ground-analog for spaceflight-associated immune dysregulation. Of all Antarctica bases, the French-Italian Concordia Station, may be the most appropriate to replicate spaceflight/exploration conditions. Concordia is an interior base located in harsh environmental conditions, and has been constructed to house small, international crews in a station-environment similar to what should be experienced by deep space astronauts. The ESA-NASA CHOICE study assessed innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. The study was conducted over two winterover missions in 2009 and 2010. Final study data from NASA participation in these missions will be presented.
Microbial Contamination in the Spacecraft
NASA Technical Reports Server (NTRS)
Pierson, Duane L.
2001-01-01
Spacecraft and space habitats supporting human exploration contain a diverse population of microorganisms. Microorganisms may threaten human habitation in many ways that directly or indirectly impact the health, safety, or performance of astronauts. The ability to produce and maintain spacecraft and space stations with environments suitable for human habitation has been established over 40 years of human spaceflight. An extensive database of environmental microbiological parameters has been provided for short-term (< 20 days) spaceflight by more than 100 missions aboard the Space Shuttle. The NASA Mir Program provided similar data for long-duration missions. Interestingly, the major bacterial and fungal species found in the Space Shuttle are similar to those encountered in the nearly 15-year-old Mir. Lessons learned from both the US and Russian space programs have been incorporated into the habitability plan for the International Space Station. The focus is on preventive measures developed for spacecraft, cargo, and crews. On-orbit regular housekeeping practices complete with visual inspections are essential, along with microbiological monitoring. Risks associated with extended stays on the Moon or a Mars exploration mission will be much greater than previous experiences because of additional unknown variables. The current knowledge base is insufficient for exploration missions, and research is essential to understand the effects of spaceflight on biological functions and population dynamics of microorganisms in spacecraft.
NASA Astrophysics Data System (ADS)
Sugimoto, Manabu; Gusev, Oleg; Wheeler, Raymond; Levinskikh, Margarita; Sychev, Vladimir; Bingham, Gail; Hummerick, Mary; Oono, Youko; Matsumoto, Takashi; Yazawa, Takayuki
We have developed a plant growth system, namely Lada, which was installed in ISS to study and grow plants, including vegetables in a spaceflight environment. We have succeeded in cultivating Mizuna, tomato, pea, radish, wheat, rice, and barley in long-term spaceflight. Transcription levels of superoxide dismutase, glutamyl transferase, catalase, and ascorbate peroxidase were increased in the barley germinated and grown for 26 days in Lada, though the whole-plant growth and development of the barley in spaceflight were the same as in the ground control barley. In this study, we investigated the response of the ROS gene network in Mizuna, Brassica rapa var. nipposinica, cultivated under spaceflight condition. Seeds of Mizuna were sown in the root module of LADA aboard the Zvezda module of ISS and the seedlings were grown under 24h lighting in the leaf chamber. After 27 days of cultivation, the plants were harvested and stored at -80(°) C in MELFI aboard the Destiny module, and were transported to the ground at < -20(°) C in GLACIER aboard Space Shuttle. Ground control cultivation was carried out under the same conditions in LADA. Total RNA isolated from leaves was subjected to mRNA-Seq using next generation sequencing (NGS) technology. A total of 20 in 32 ROS oxidative marker genes were up-regulated, including high expression of four hallmarks, and preferentially expressed genes associated with ROS-scavenging including thioredoxin, glutaredoxin, and alternative oxidase genes. In the transcription factors of the ROS gene network, MEKK1-MKK4-MPK3, OXI1-MKK4-MPK3, and OXI1-MPK3 of MAP cascades, induction of WRKY22 by MEKK1-MKK4-MPK3 cascade, induction of WRKY25 and repression of Zat7 by Zat12 were suggested. These results revealed that the spaceflight environment induced oxidative stress and the ROS gene network activation in the space-grown Mizuna.
Peak Oxygen Uptake during and after Long-duration Space Flight
NASA Technical Reports Server (NTRS)
Moore, Alan D., Jr.; Downs, Meghan E.; Lee, Stuart M. C.; Feiveson, Alan H.; Knudsen, Poul; Evetts, Simon N.; Ploutz-Snyder, Lori
2014-01-01
Aerobic capacity (VO2peak) previously has not been measured during or after long-duration spaceflight. PURPOSE: To measure VO2peak and submaximal exercise responses during and after International Space Station (ISS) missions. METHODS: Astronauts (9 M, 5 F: 49 +/- 5 yr, 175 +/- 7 cm, 77.2 +/- 15.1 kg, 40.6 +/- 6.4 mL/kg/min [mean +/-SD]) performed graded peak cycle tests 90 days before spaceflight, 15 d (FD15) after launch and every 30 d thereafter during flight, and 1 (R+1), 10 (R+10), and 30 d (R+30) after landing. Oxygen consumption (VO2) and heart rate (HR) were measured from rest to peak exercise, while cardiac output (Q), stroke volume (SV), and arterial-venous oxygen difference (a-vO2diff) were measured only during rest and submaximal exercise. Data were analyzed using mixed-model linear regression. Body mass contributed significantly to statistical models, and thus results are reported as modeled estimates for an average subject. RESULTS: Early inflight (FD15) VO2peak was 17% lower (95% CI = - 22%, -13%) than preflight. VO2peak increased during spaceflight (0.001 L/min/d, P = 0.02) but did not return to preflight levels. On R+1 VO2peak was 15% (95% CI = -19%, -10%) lower than preflight but recovered to within 2% of preflight by R+30 (95% CI = -6%, +3%). Peak HR was not significantly different from preflight at any time. Inflight submaximal VO2 and a-vO2diff were generally lower than preflight, but the Q vs. VO2 slope was unchanged. In contrast, the SV vs. VO2 slope was lower (P < 0.001), primarily due to elevated SV at rest, and the HR vs. VO2 slope was greater (P < 0.001), largely due to elevated HR during more intense exercise. On R+1 although the relationships between VO2 and Q, SV, and HR were not statistically different than preflight, resting and submaximal exercise SV was lower (P < 0.001), resting and submaximal exercise HR was higher (P < 0.002), and a-vO2diff was unchanged. HR and SV returned to preflight levels by R+30. CONCLUSION: In the average astronaut VO2peak was reduced during spaceflight and immediately after landing but factors contributing to lower VO2peak may be different during spaceflight and recovery. Maintaining Q while VO2 is reduced inflight may be suggestive of an elevated blood flow to vascular beds other than exercising muscles, but decreased SV after flight likely reduces Q at peak exertion.
NASA Technical Reports Server (NTRS)
Yuy, R. I.
1975-01-01
During spaceflight, the organism is subjected to the influence of various extremal factors such as acceleration, vibration, irradiation, etc. The study of the influence of these factors on metabolism, especially carbohydrate and protein metabolism, in young rabbits is of great significance in simulation experiments. Dynamic factors and irradiation, depending on dose and duration, lead to reduced RNA and protein metabolism.
Foale works with the Pilot experiment during Expedition 8
2003-10-31
ISS008-E-05181 (31 October 2003) --- Astronaut C. Michael Foale, Expedition 8 mission commander and NASA ISS science officer, works with the Russian biomedical Pilot experiment (MBI-15) in the Zvezda Service Module on the International Space Station (ISS). The experiment, which looks at psychological and physiological changes in crew performance during long-duration spaceflight, requires a worktable, ankle restraint system and two control handles for testing piloting skill.
2009-06-06
ISS020-E-007603 (7 June 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, removes a dewar tray from the Minus Eighty Laboratory Freezer for ISS (MELFI) in order to insert biological samples into the trays in the Kibo laboratory of the International Space Station. Samples were taken as part of the Nutritional Status Assessment (Nutrition) with Repository experiment, a study done by NASA to date of human physiologic changes during long-duration spaceflight.
Advanced Environmental Monitoring Technologies
NASA Technical Reports Server (NTRS)
Jan, Darrell
2004-01-01
Viewgraphs on Advanced Environmental Monitoring Technologies are presented. The topics include: 1) Monitoring & Controlling the Environment; 2) Illustrative Example: Canary 3) Ground-based Commercial Technology; 4) High Capability & Low Mass/Power + Autonomy = Key to Future SpaceFlight; 5) Current Practice: in Flight; 6) Current Practice: Post Flight; 7) Miniature Mass Spectrometer for Planetary Exploration and Long Duration Human Flight; 8) Hardware and Data Acquisition System; 9) 16S rDNA Phylogenetic Tree; and 10) Preview of Porter.
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Gary Stutte displays a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-29
Research scientist Gary Stutte displays a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-22
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
The pig-tailed monkey (Macaca nemestrina) as a space-flight candidate. [for cardiovascular studies
NASA Technical Reports Server (NTRS)
Pace, N.; Rahlmann, D. F.; Kodama, A. M.; Grunbaum, B. W.; Mains, R. C.
1977-01-01
Scientific attributes which make the pig-tailed monkey an optimal candidate for studing the nature of cardiovascular and respiratory adaptations in man during exposure to high altitutes for long periods of time include: a calm, quiet, patient temperament; a short tail and the presence of ischial callosities permitting comfortable seated restraint during long duration experiments; and the close phylogenetic relationships and comparable body size to man.
Concepts for a Shroud or Propellant Tank Derived Deep Space Habitat
NASA Technical Reports Server (NTRS)
Howard, Robert L.
2012-01-01
Long duration human spaceflight missions beyond Low Earth Orbit will require much larger spacecraft than capsules such as the Russian Soyuz or American Orion Multi-Purpose Crew Vehicle. A concept spacecraft under development is the Deep Space Habitat, with volumes approaching that of space stations such as Skylab, Mir, and the International Space Station. This paper explores several concepts for Deep Space Habitats constructed from a launch vehicle shroud or propellant tank. It also recommends future research using mockups and prototypes to validate the size and crew station capabilities of such a habitat. Keywords: Exploration, space station, lunar outpost, NEA, habitat, long duration, deep space habitat, shroud, propellant tank.
NASA Technical Reports Server (NTRS)
Kern, Volker D.; Schwuchow, Jochen M.; Reed, David W.; Nadeau, Jeanette A.; Lucas, Jessica; Skripnikov, Alexander; Sack, Fred D.
2005-01-01
In addition to shoots and roots, the gravity (g)-vector orients the growth of specialized cells such as the apical cell of dark-grown moss protonemata. Each apical cell of the moss Ceratodon purpureus senses the g-vector and adjusts polar growth accordingly producing entire cultures of upright protonemata (negative gravitropism). The effect of withdrawing a constant gravity stimulus on moss growth was studied on two NASA Space Shuttle (STS) missions as well as during clinostat rotation on earth. Cultures grown in microgravity (spaceflight) on the STS-87 mission exhibited two successive phases of non-random growth and patterning, a radial outgrowth followed by the formation of net clockwise spiral growth. Also, cultures pre-aligned by unilateral light developed clockwise hooks during the subsequent dark period. The second spaceflight experiment flew on STS-107 which disintegrated during its descent on 1 February 2003. However, most of the moss experimental hardware was recovered on the ground, and most cultures, which had been chemically fixed during spaceflight, were retrieved. Almost all intact STS-107 cultures displayed strong spiral growth. Non-random culture growth including clockwise spiral growth was also observed after clinostat rotation. Together these data demonstrate the existence of default non-random growth patterns that develop at a population level in microgravity, a response that must normally be overridden and masked by a constant g-vector on earth.
Cosmos 1887: morphology, histochemistry, and vasculature of the growing rat tibia
NASA Technical Reports Server (NTRS)
Doty, S. B.; Morey-Holton, E. R.; Durnova, G. N.; Kaplansky, A. S.
1990-01-01
Light microscopy, electron microscopy, and enzyme histochemistry were used to study the effects of spaceflight on metaphyseal and cortical bone of the rat tibia. Cortical cross-sectional area and perimeter were not altered by a 12.5-day spaceflight in 3-month-old male rats. The endosteal osteoblast population and the vasculature near the periosteal surface in flight rats compared with ground controls showed more pronounced changes in cortical bone than in metaphyseal bone. The osteoblasts demonstrated greater numbers of transitional Golgi vesicles, possibly caused by a decreased cellular metabolic energy source, but no difference in the large Golgi saccules or the cell membrane-associated alkaline phosphatase activity. The periosteal vasculature in the diaphysis of flight rats often showed lipid accumulations within the lumen of the vessels, occasional degeneration of the vascular wall, and degeneration of osteocytes adjacent to vessels containing intraluminal deposits. These changes were not found in the metaphyseal region of flight animals. The focal vascular changes may be due to ischemia of bone or a developing fragility of the vessel walls as a result of spaceflight.
Potato leaf explants as a spaceflight plant test system
NASA Technical Reports Server (NTRS)
Wheeler, R. M.
1986-01-01
The use of explant tissues or organs may circumvent limitations facing whole-plant experimentation during spaceflight. In the case of potato, a crop currently being studied for application to bioregenerative life support systems, excised leaves and their subtended axillary buds can be used to test a variety of stem growth and development phases ranging from tubers through stolons (horizontal stems) to upright leafy shoots. The leaves can be fit well into small-volume test packages and sustained under relatively low irradiance levels using light-weight growing media. Tubers formed on potato leaf cuttings can yield up from 0.5 to 1.0 g fresh mass 10 days after excision and up to 2.0 g or more, 14 days from excision.
Effect of spaceflight on rat hepatocytes - A morphometric study
NASA Technical Reports Server (NTRS)
Racine, Richard N.; Cormier, Susan M.
1992-01-01
Hepatic tissue from flight, synchronous, vivarium, and tail-suspended rats was examined by light microscopy and computer-assisted image analysis. Glycogen levels in flight rats were found to be significantly elevated over those in controls. Lipid was also higher but not significantly different. Hepatocytes appeared larger in flight animals because of area attributed to increased glycogen. Sinusoids were less prominent in flight animals than in controls. The total Kupffer cell population appeared to be reduced in flight animals and may represent changes in defensive capacity of the liver. Alterations in the storage of glycogen and number of Kupffer cells suggest an important effect of spacefligtht on the function of the liver that may have important implications for long-term spaceflight.
Therapeutic effectiveness of medications taken during spaceflight
NASA Technical Reports Server (NTRS)
Pool, Sam L.; Putcha, Lakshmi
1992-01-01
The therapeutic effectiveness of medications during spaceflight is considered in light of extensive anecdotal and experimental evidence. Attention is given to a range of medications for space motion sickness, sleeplessness, and physical discomfort. About 70 individual cases are reviewed in which crewmembers used such medications as: (1) scopolamine hydrobromide, dextroamphetamine sulfate, and promethazine hydrochloride for motion sickness; (2) metoclopramide hydrochloride and naloxone hydrochloride for bowel motility; and (3) aspirin and acetaminophen for headache and back pain. The effectiveness of orally ingested medications for space motion sickness is shown to be very low, while promethazine hydrochloride is effective when administered intramuscularly. The medications for pain are shown to be generally effective, and the use of sleep-inducing medications is limited by potentially detrimental performance effects.
Development and Provision of Functional Foods to Promote Health on Long-Duration Space Missions
NASA Technical Reports Server (NTRS)
Bermudez-Aguirre, D.; Cooper, M. R.; Douglas, G.; Smith, S.
2016-01-01
During long-duration NASA space missions, such as proposed missions to Mars, astronauts may experience negative physiological effects such as bone loss. Functional foods such as high-lycopene, high-flavonoids and high-omega-3 products and fruits and vegetables may mitigate the negative effects of spaceflight on physiological factors including the bone health of crewmembers. Previous studies showed that current ISS provisions provide high-lycopene and high-omega-3 food items but the variety is limited, which could promote menu fatigue. Bioactive compounds can degrade like other chemical compounds and lose functionality. The native concentrations and stability of bioactive compounds have never been determined in spaceflight foods, and adequate information is not available for commercial products for the storage durations required for space exploration (5 years). The purpose of this task is to develop new spaceflight foods that are high in omega-3 fatty acids, lycopene, or flavonoids, identify commercial products with these bioactive compounds that meet spaceflight requirements, and define the stability of these nutrients in storage to enable purposeful functional food incorporation into the space food system. The impact of storage temperature on the stability of lutein, lycopene, beta-carotene, omega-3 fatty acids, phenolics, anthocyanins and sterols is being studied in 12 ISS menu items stored at three different temperatures (4, 21, 35 degree C) over 2 years. Additionally, nutrient and quality stability are being assessed on a larger food set stored at 21 degree C over 2 years that contains twelve newly developed foods, 10 commercial products repackaged to spaceflight requirements, and another 5 current ISS menu items expected to be good sources of omega-3 fatty acids, lycopene, or flavonoids. All items were shipped overnight to the Linus Pauling Institute at Oregon State University (Corvalis, OR) after processing and 1-year of storage and analyzed for bioactive compound concentrations. Sensory evaluation was conducted on the newly developed functional foods and commercial products with untrained panelists (n is greater than or equal to 25) using a 9-point Hedonic scale to test sensory attributes and overall acceptability after processing and 1-year of storage (21 degree C). Repeat nutritional and sensory analyses will be conducted in the same foods after the 2-year storage period is completed. The stability of bioactive compounds in the selected foods was dependent on storage temperature and food matrix. Omega-3 showed excellent stability in the analyzed products after 1-year of storage, regardless of the storage temperature; phenolic compounds also showed good stability. Lycopene was more stable in oil-based products rather than water-based products because of the protection that lipids offer to lycopene molecules. Also, lycopene was more stable in freeze-dried products than in high moisture foods. The 12 newly developed functional foods showed good overall acceptability in sensory attributes after processing (average score 7.2 out of 9.0) and maintained sensory quality through 1-year (21 degree C); the overall acceptability was on average 7.1 after storage. Similar behavior was observed for the 10 commercial products after 1 year. The developed products are good sources of omega-3 (both plant and marine), vegetables (7 vegetable-based products), and good sources of carotenoids, such as the Curry Pumpkin Soup and the Sweet and Savory Kale. Nine of the new products, such as Mango Salad, Pickled Beets, and Braised Red Cabbage, are rich in phenolic compounds. Stability of most of the studied nutrients seems to be adequate after 1-year of storage in most of the tested foods. However, storage temperature of the food must be considered during long-duration space missions to achieve stability of all nutrients. Likewise, more information is needed regarding nutrient retention after 2-years of storage to identify nutritional gaps that may be expected over the 5-year shelf life required for a Mars mission. New developed products will be filling a gap in the current space food system to minimize menu fatigue, provide specific nutrients to reduce the negative effects of long-duration space missions and maintain crew members' health. Information about bioactive compounds in developed products after 1-year and 2-year of storage will provide the knowledge base for further product development.
Barger, Laura K.; Flynn-Evans, Erin E.; Kubey, Alan; Walsh, Lorcan; Ronda, Joseph M.; Wang, Wei; Wright, Kenneth P.; Czeisler, Charles A.
2014-01-01
Background Sleep deprivation and fatigue are common subjective complaints among astronauts. We conducted the first large-scale evaluation of objectively-estimated sleep of astronauts on both short- and long-duration spaceflight missions. Methods Allnon-Russian crewmembers assigned to space shuttle flights with inflight experiments from July 2001 until July 2011 or ISS Expeditions from 2006 –2011 were eligible to participate. We objectively assessed, via wrist actigraphy and daily logs, sleep-wake timing of 64 astronauts on 80 Space Shuttle missions, encompassing 26 Space Transportation System flights (1,063 inflight days), and 21 astronauts on the International Space Station (ISS) (3,248 inflight days) and, for each astronaut, during two Earth-based data-collection intervals prior to and one following spaceflight (4,013 ground-based days). Findings Astronauts attempted and obtained significantly less actigraphically-estimated sleep per night on space shuttle missions (7·35 ± 0·47 and 5·96 ± 0·56 hours, respectively), in the 11-days before spaceflight (7·35 ± 0·51 and 6·04 ± 0·72 hours, respectively) and even three months before spaceflight (7·40 ± 0·59 and 6·29 ± 0·67 hours, respectively) than they did upon their return to Earth (8·01 ± 0·78 and 6·74 ± 0·91 hours, respectively) (p < 0·0001 for each) Astronauts on ISS missions also obtained significantly less sleep three months prior (6.41 ± 0.65), in the 11 days prior (5.86 ± 0.94) and during spaceflight (6.09 ± 0.67 hours), as compared to the first week post-mission (6.95 ± 1.04 hours; p < 0·0001). Seventy-eight percent (61/78) of shuttle mission-crewmembers reported taking a dose of sleep-promoting medications on 52% of nights (500/963) and 2 doses on 17% of nights during flight (87/500); 75% of ISS crewmembers (12/16) reported using sleep-promoting medications. Interpretation Sleep deficiency in astronauts was prevalent not only during space shuttle and ISS missions, but also throughout a 3-month pre-flight training interval. Despite chronic sleep curtailment, sleeping pill use was pervasive during spaceflight. As chronic sleep loss produces performance decrements, these findings highlight the need for development of effective counter measures to promote sleep. Funding The study was supported by NASA cooperative agreement NCC 9–119. Drs. Czeisler and Barger received support from the NSBRI (HFP01601). PMID:25127232
GeneLab: A Systems Biology Platform for Spaceflight Omics Data
NASA Technical Reports Server (NTRS)
Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph
2015-01-01
NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and deep curation of metadata for integrative analysis, allowing researchers to uncover cellular networks as observed in systems biology platforms. Consequently, the scientific community will have access to a more complete picture of functional and regulatory networks responsive to the spaceflight environment.. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and enable emerging terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space. As a result, open access to the data will foster new hypothesis-driven research for future spaceflight studies spanning basic science to translational science.
NASA Technical Reports Server (NTRS)
Reinsch, S. S.; Galazka, J..; Berrios, D. C; Chakravarty, K.; Fogle, H.; Lai, S.; Bokyo, V.; Timucin, L. R.; Tran, P.; Skidmore, M.
2016-01-01
NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. The GeneLab Data System (GLDS) is NASA's premier open-access omics data platform for biological experiments. GLDS houses standards-compliant, high-throughput sequencing and other omics data from spaceflight-relevant experiments. The GeneLab project at NASA-Ames Research Center is developing the database, and also partnering with spaceflight projects through sharing or augmentation of experiment samples to expand omics analyses on precious spaceflight samples. The partnerships ensure that the maximum amount of data is garnered from spaceflight experiments and made publically available as rapidly as possible via the GLDS. GLDS Version 1.0, went online in April 2015. Software updates and new data releases occur at least quarterly. As of October 2016, the GLDS contains 80 datasets and has search and download capabilities. Version 2.0 is slated for release in September of 2017 and will have expanded, integrated search capabilities leveraging other public omics databases (NCBI GEO, PRIDE, MG-RAST). Future versions in this multi-phase project will provide a collaborative platform for omics data analysis. Data from experiments that explore the biological effects of the spaceflight environment on a wide variety of model organisms are housed in the GLDS including data from rodents, invertebrates, plants and microbes. Human datasets are currently limited to those with anonymized data (e.g., from cultured cell lines). GeneLab ensures prompt release and open access to high-throughput genomics, transcriptomics, proteomics, and metabolomics data from spaceflight and ground-based simulations of microgravity, radiation or other space environment factors. The data are meticulously curated to assure that accurate experimental and sample processing metadata are included with each data set. GLDS download volumes indicate strong interest of the scientific community in these data. To date GeneLab has partnered with multiple experiments including two plant (Arabidopsis thaliana) experiments, two mice experiments, and several microbe experiments. GeneLab optimized protocols in the rodent partnerships for maximum yield of RNA, DNA and protein from tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected on the ground. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and as well as yield terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space environments.
Use It or Lose It: Skeletal Muscle Function and Performance Results from Space Shuttle
NASA Technical Reports Server (NTRS)
Ryder, Jeffrey
2011-01-01
The Space Shuttle Program provided a wealth of valuable information regarding the adaptations of skeletal muscle to weightlessness. Studies conducted during the Extended Duration Orbiter Medical Project (EDOMP) represented ground breaking work on the effects of spaceflight on muscle form and function from applied human research to cellular adaptations. Results from detailed supplementary objective (DSO) 477 demonstrated that muscle strength losses could occur rapidly in response to short-duration spaceflight. The effects of spaceflight-induced unloading were primarily restricted to postural muscles such as those of the back as well as the knee extensors. DSO 606 provided evidence from MRI that the observed strength losses were partially accounted for by a reduction in the size of the individual muscles. Muscle biopsy studies conducted during DSO 475 were able to show muscle atrophy in individual muscle fibers from the quadriceps muscles. Reduced quadriceps muscle size and strength was also observed during the 17-d Life and Microgravity Spacelab mission aboard STS-78. Multiple maximal strength tests were conducted in flight on the calf muscles and it has been hypothesized that these high force contractions may have acted as a countermeasure. Muscle fiber mechanics were studied on calf muscle samples pre- and postflight. While some responses were crewmember specific, the general trend was that muscle fiber force production dropped and shortening velocity increased. The increased shortening velocity helped to maintain muscle fiber power. Numerous rodent studies performed during Shuttle missions suggest that many of the effects reported in Shuttle crewmembers could be due to lesions in the cellular signaling pathways that stimulate protein synthesis as well as an increase in the mechanisms that up-regulate protein breakdown. The results have important implications regarding the overall health and performance capabilities of future crewmembers that will venture beyond low-Earth orbit. Learning Objective: Overview of the Space Shuttle Program regarding adaptive changes in skeletal muscle function and performance, including what was learned from research and what was implemented for countermeasures.
Engineering plants for spaceflight environments
NASA Technical Reports Server (NTRS)
Bugbee, B.
1999-01-01
The conversion efficiency of radiation into biomass and yield has steadily increased for centuries because of continued improvement in both plant genetics and environmental control. Considerable effort has gone into improving the environment for plant growth in space, but work has only begun to engineer plants for spaceflight. Genetic manipulation offers tremendous potential to improve our ability to study gravitational effects. Genetic manipulation will also be necessary to build an efficient regenerative life support system. We cannot fully characterize plant response to the spaceflight environment without understanding and manipulating their genetic composition. Identification and selection of the existing germplasm is the first step. There are thousands of cultivars of each of our major crop plants, each specifically adapted to a unique environment on our planet. Thousands of additional lines are held in national germplasm collections to maintain genetic diversity. Spaceflight imposes the need to tap this diversity. Existing lines need to be evaluated in the environment that is characteristic of closed-system spaceflight conditions. Many of the plant growth challenges we confront in space can be better solved through genetic change than by hardware engineering. Ten thousand years of plant breeding has demonstrated the value of matching genetics with the environment. For example, providing continuous light can increase plant growth in space, but this often induces calcium deficiencies because Ca is not supplied by guttation during a dark period. This deficiency cannot be eliminated through increased root-zone and foliar Ca applications. It can be solved, in wheat, through genetic selection of lines that do not have the deficiency. Subsequent comparison of lines with and without the Ca deficiency has also helped us understand the nature of the problem.
Use of Potassium Citrate to Reduce the Risk of Renal Stone Formation During Spaceflight
NASA Technical Reports Server (NTRS)
Whitson, P. A.; Pietrzyk, R. A.; Sams, C. F.; Jones, J. A.; Nelman-Gonzalez, M.; Hudson, E. K.
2008-01-01
Introduction: NASA s Vision for Space Exploration centers on exploration class missions including the goals of returning to the moon and landing on Mars. One of NASA s objectives is to focus research on astronaut health and the development of countermeasures that will protect crewmembers during long duration voyages. Exposure to microgravity affects human physiology and results in changes in the urinary chemical composition favoring urinary supersaturation and an increased risk of stone formation. Nephrolithiasis is a multifactorial disease and development of a renal stone is significantly influenced by both dietary and environmental factors. Previous results from long duration Mir and short duration Shuttle missions have shown decreased urine volume, pH, and citrate levels and increased calcium. Citrate, an important inhibitor of calcium-containing stones, binds with urinary calcium reducing the amount of calcium available to form stones. Citrate inhibits renal stone recurrence by preventing crystal growth, aggregation, and nucleation and is one of the most common therapeutic agents used to prevent stone formation. Methods: Thirty long duration crewmembers (29 male, 1 female) participated in this study. 24-hour urines were collected and dietary monitoring was performed pre, in, and postflight. Crewmembers in the treatment group received two potassium citrate (KCIT) pills, 10 mEq/pill, ingested daily beginning 3 days before launch, all inflight days and through 14 days postflight. Urinary biochemical and dietary analyses were completed. Results: KCIT treated subjects exhibited decreased urinary calcium excretion and maintained the levels of calcium oxalate supersaturation risk at their preflight levels. The increased urinary pH levels in these subjects reduced the risk of uric acid stones. Discussion: The current study investigated the use of potassium citrate as a countermeasure to minimize the risk of stone formation during ISS missions. Results suggest that supplementation with potassium citrate decreases the risk of stone formation during and immediately after spaceflight.
Renal Stone Risk during Spaceflight: Assessment and Countermeasure Validation
NASA Technical Reports Server (NTRS)
Whitson, Peggy A.; Pietrzyk, Robert A.; Jones, Jeffery A.; Sams, Clarence F.; Hudson, Ed K.; Nelman-Gonzalez, Mayra
2009-01-01
NASA's Vision for Space Exploration centers on exploration class missions including the goals of returning to the moon and landing on Mars. One of NASA's objectives is to focus research on astronaut health and the development of countermeasures that will protect crewmembers during long duration voyages. Exposure to microgravity affects human physiology and results in changes in the urinary chemical composition favoring urinary supersaturation and an increased risk of stone formation. Nephrolithiasis is a multifactorial disease and development of a renal stone is significantly influenced by both dietary and environmental factors. Previous results from long duration Mir and short duration Shuttle missions have shown decreased urine volume, pH, and citrate levels and increased calcium. Citrate, an important inhibitor of calcium-containing stones, binds with urinary calcium reducing the amount of calcium available to form stones. Citrate inhibits renal stone recurrence by preventing crystal growth, aggregation, and nucleation and is one of the most common therapeutic agents used to prevent stone formation. Methods: Thirty long duration crewmembers (29 male, 1 female) participated in this study. 24-hour urines were collected and dietary monitoring was performed pre-, in-, and postflight. Crewmembers in the treatment group received two potassium citrate (KCIT) pills, 10 mEq/pill, ingested daily beginning 3 days before launch, all in-flight days and through 14 days postflight. Urinary biochemical and dietary analyses were completed. Results: KCIT treated subjects exhibited decreased urinary calcium excretion and maintained the levels of calcium oxalate supersaturation risk at their preflight levels. The increased urinary pH levels in these subjects reduced the risk of uric acid stones. Discussion: The current study investigated the use of potassium citrate as a countermeasure to minimize the risk of stone formation during ISS missions. Results suggest that supplementation with potassium citrate decreases the risk of stone formation during and immediately after spaceflight.
Managing the Risk for Early Onset Osteoporosis in Long-Duration Astronauts Due to Spaceflight
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.
2010-01-01
Early Onset Osteoporosis is probably the most recognized but poorly understood long-term health risk due to spaceflight. Osteoporosis management is primarily prophylactic and clinical interventions rely upon the ability to predict fractures which is currently determined by surrogate measures of bone strength. The RMAT for Early Onset Osteoporosis identified some open issues related to the fact that long-duration astronauts compose a unique group of subjects for which clinical approaches for osteoporosis management do not apply. Long-duration astronauts are healthy, young (25 to 55 years of age), predominantly male, and physical fit relative to the typical osteoporosis patient. Moreover, during prolonged space missions (typically 6-month missions) the skeleton not only adapts to weightlessness, but is influenced by numerous risk factors induced by operational constraints, e.g., inability to maintain preflight weight-bearing and aerobic activities, sub-optimal dietary intake (e.g., high sodium content for food stability, lack of fresh fruit and vegetables), suppression of vitamin D metabolism by uv shielding, and remote medicine care. Moreover, adaptation results in novel changes to astronauts bones that cannot be detected by current medically-useful measures. Consequently, a panel of clinicians (recognized leaders and policy-makers in osteoporosis) was convened to review the dataset of bone measures and bone loss risk factors in long-duration astronauts. Driven by the queries in the RMAT, the panel was charged to determine 1) if an intervention is required to prevent this risk, 2) what type and at what time would intervention be optimal, 3) what is the clinical trigger that would require a medical response from flight surgeons and 4) how should research data be used in the clinical care of astronauts. Hence, the RMAT determined that a bone health policy need to be formulated specific for this unique cohort subjected to a novel skeletal condition
A Quantitative Risk-Benefit Analysis of Prophylactic Surgery Prior to Extended-Duration Spaceflight
NASA Technical Reports Server (NTRS)
Carroll, Danielle; Reyes, David; Kerstman, Eric; Walton, Marlei; Antonsen, Erik
2017-01-01
INTRODUCTION: Among otherwise healthy astronauts undertaking deep space missions, the risks for acute appendicitis (AA) and cholecystitis (AC) are not zero. If these conditions were to occur during spaceflight they may require surgery for definitive care. The proposed study quantifies and compares the risks of developing de novo AA and AC in-flight to the surgical risks of prophylactic laparoscopic appendectomy (LA) and cholecystectomy (LC) using NASA's Integrated Medical Model (IMM). METHODS: The IMM is a Monte Carlo simulation that forecasts medical events during spaceflight missions and estimates the impact of these medical events on crew health. In this study, four Design Reference Missions (DRMs) were created to assess the probability of an astronaut developing in-flight small-bowel obstruction (SBO) following prophylactic 1) LA, 2) LC, 3) LA and LC, or 4) neither surgery (SR# S-20160407-351). Model inputs were drawn from a large, population-based 2011 Swedish study that examined the incidence and risks of post-operative SBO over a 5-year follow-up period. The study group included 1,152 patients who underwent LA, and 16,371 who underwent LC. RESULTS: Preliminary results indicate that prophylactic LA may yield higher mission risks than the control DRM. Complete analyses are pending and will be subsequently available. DISCUSSION: The risk versus benefits of prophylactic surgery in astronauts to decrease the probability of acute surgical events during spaceflight has only been qualitatively examined in prior studies. Within the assumptions and limitations of the IMM, this work provides the first quantitative guidance that has previously been lacking to this important question for future deep space exploration missions.
Comparison of soleus muscles from rats exposed to microgravity for 10 versus 14 days
NASA Technical Reports Server (NTRS)
Staron, R. S.; Kraemer, W. J.; Hikida, R. S.; Reed, D. W.; Murray, J. D.; Campos, G. E.; Gordon, S. E.
1998-01-01
The effects of two different duration space-flights on the extent of atrophy, fiber type composition, and myosin heavy chain (MHC) content of rat soleus muscles were compared. Adult male Fisher rats (n=12) were aboard flight STS-57 and exposed to 10 days of microgravity and adult ovariectomized female Spraque-Dawley rats (n=12) were aboard flight STS-62 for 14 days. Soleus muscles were bilaterally removed from the flight and control animals and frozen for subsequent analyses. Muscle wet weights, fiber types (I, IC, IIC, and IIA), cross-sectional area, and MHC content were determined. Although a significant difference was found between the soleus wet weights of the two ground-based control groups, they were similar with regard to MHC content (ca 90% MHCI and ca 10% MHCIIa) and fiber type composition. Unloading of the muscles caused slow-to-fast transformations which included a decrease in the percentage of type I fibers and MHCI, an increase in fibers classified as type IC, and the expression of two fast myosin heavy chains not found in the control rat soleus muscles (MHCIId and MHCIIb). Although the amount of atrophy (ca 26%) and the extent of slow-to-fast transformation (decrease in the percentage of MHCI from 90% to 82.5%) in the soleus muscles were similar between the two spaceflights, the percentages of the fast MHCs differed. After 14 days of spaceflight, the percentage of MHCIIa was significantly lower and the percentages of MHCIId and MHCIIb were significantly higher than the corresponding MHC content of the soleus muscles from the 10-day animals. Indeed, MHCIId became the predominant fast MHC after 14 days in space. These data suggest fast-to-faster transformations continued during the longer spaceflight.
NASA Technical Reports Server (NTRS)
Kuang, A.; Xiao, Y.; Musgrave, M. E.
1996-01-01
Successful development of seeds under spaceflight conditions has been an elusive goal of numerous long-duration experiments with plants on orbital spacecraft. Because carbohydrate metabolism undergoes changes when plants are grown in microgravity, developing seed storage reserves might be detrimentally affected during spaceflight. Seed development in Arabidopsis thaliana plants that flowered during 11 d in space on shuttle mission STS-68 has been investigated in this study. Plants were grown to the rosette stage (13 d) on a nutrient agar medium on the ground and loaded into the Plant Growth Unit flight hardware 18 h prior to lift-off. Plants were retrieved 3 h after landing and siliques were immediately removed from plants. Young seeds were fixed and processed for microscopic observation. Seeds in both the ground control and flight plants are similar in their morphology and size. The oldest seeds from these plants contain completely developed embryos and seed coats. These embryos developed radicle, hypocotyl, meristematic apical tissue, and differentiated cotyledons. Protoderm, procambium, and primary ground tissue had differentiated. Reserves such as starch and protein were deposited in the embryos during tissue differentiation. The aleurone layer contains a large quantity of storage protein and starch grains. A seed coat developed from integuments of the ovule with gradual change in cell composition and cell material deposition. Carbohydrates were deposited in outer integument cells especially in the outside cell walls. Starch grains decreased in number per cell in the integument during seed coat development. All these characteristics during seed development represent normal features in the ground control plants and show that the spaceflight environment does not prevent normal development of seeds in Arabidopsis.
Midodrine as a Countermeasure for Post-Spaceflight Orthostatic Hypotension
NASA Technical Reports Server (NTRS)
Stenger, Michael B.; Stein, Sydney P.; Meck, Janice V.; Platts, Steven H.
2008-01-01
One possible mechanism for post-spaceflight orthostatic hypotension, which affects approximately 30% of astronauts after short duration shuttle missions, is inadequate norepinephrine release during upright posture. We performed a two phased study to determine the effectiveness of an alpha1-adrenergic agonist, midodrine, as a countermeasure to post-spaceflight orthostatic hypotension. The first phase of the study examined the landing day orthostatic responses of six veteran astronauts after oral midodrine (10 mg) administered on the ground within approximately two hours of wheel stop. One female crewmember exhibited orthostatic hypotension in a previous flight but not after midodrine. Five male crewmembers, who did not exhibit orthostatic hypotension during previous flights, also did not show signs of orthostatic hypotension after midodrine. Additionally, phase one showed that midodrine did not cause hypertension in these crewmembers. In the second phase of this study, midodrine is ingested inflight (near time of ignition, TIG) and orthostatic responses are determined immediately upon landing via an 80 degree head-up tilt test performed on the crew transport vehicle (CTV). Four of ten crewmembers have completed phase two of this study. Two crewmembers completed the landing day tilt tests, while two tests were ended early due to presyncopal symptoms. All subjects had decreased landing day stroke volumes and increased heart rates compared to preflight. Midodrine appears to have increased total peripheral resistance in one crewmember who was able to complete the landing day tilt test. The effectiveness of midodrine as a countermeasure to immediate post-spaceflight orthostatic hypotension has yet to be determined; interpretation is made more difficult due to low subject number and the lack of control subjects on the CTV.
NASA Technical Reports Server (NTRS)
Lewandowski, B. E.; DeWitt, J. K.; Gallo, C. A.; Gilkey, K. M.; Godfrey, A. P.; Humphreys, B. T.; Jagodnik, K. M.; Kassemi, M.; Myers, J. G.; Nelson, E. S.;
2017-01-01
MOTIVATION: Spaceflight countermeasures mitigate the harmful effects of the space environment on astronaut health and performance. Exercise has historically been used as a countermeasure to physical deconditioning, and additional countermeasures including lower body negative pressure, blood flow occlusion and artificial gravity are being researched as countermeasures to spaceflight-induced fluid shifts. The NASA Digital Astronaut Project uses computational models of physiological systems to inform countermeasure design and to predict countermeasure efficacy.OVERVIEW: Computational modeling supports the development of the exercise devices that will be flown on NASAs new exploration crew vehicles. Biomechanical modeling is used to inform design requirements to ensure that exercises can be properly performed within the volume allocated for exercise and to determine whether the limited mass, volume and power requirements of the devices will affect biomechanical outcomes. Models of muscle atrophy and bone remodeling can predict device efficacy for protecting musculoskeletal health during long-duration missions. A lumped-parameter whole-body model of the fluids within the body, which includes the blood within the cardiovascular system, the cerebral spinal fluid, interstitial fluid and lymphatic system fluid, estimates compartmental changes in pressure and volume due to gravitational changes. These models simulate fluid shift countermeasure effects and predict the associated changes in tissue strain in areas of physiological interest to aid in predicting countermeasure effectiveness. SIGNIFICANCE: Development and testing of spaceflight countermeasure prototypes are resource-intensive efforts. Computational modeling can supplement this process by performing simulations that reduce the amount of necessary experimental testing. Outcomes of the simulations are often important for the definition of design requirements and the identification of factors essential in ensuring countermeasure efficacy.
Warren, Paul; Golden, Andy; Hanover, John; Love, Dona; Shephard, Freya; Szewczyk, Nathaniel J
2013-06-01
The Student Spaceflight Experiments Program (SSEP) is a United States national science, technology, engineering, and mathematics initiative that aims to increase student interest in science by offering opportunities to perform spaceflight experiments. The experiment detailed here was selected and flown aboard the third SSEP mission and the first SSEP mission to the International Space Station (ISS). Caenorhabditis elegans is a small, transparent, self-fertilizing hermaphroditic roundworm that is commonly used in biological experiments both on Earth and in Low Earth Orbit. Past experiments have found decreased expression of mRNA for several genes whose expression can be controlled by the FOXO transcription factor DAF-16. We flew a daf-16 mutant and control worms to determine if the effects of spaceflight on C. elegans are mediated by DAF-16. The experiment used a Type Two Fluids Mixing Enclosure (FME), developed by Nanoracks LLC, and was delivered to the ISS aboard the SpaceX Dragon and returned aboard the Russian Soyuz. The short time interval between experiment selection and the flight rendered preflight experiment verification tests impossible. In addition, published research regarding the viability of the FME in life science experiments was not available. The experiment was therefore structured in such a way as to gather the needed data. Here we report that C. elegans can survive relatively short storage and activation in the FME but cannot produce viable populations for post-flight analysis on extended missions. The FME appears to support short-duration life science experiments, potentially on supply or crew exchange missions, but not on longer ISS expeditions. Additionally, the flown FME was not properly activated, reportedly due to a flaw in training procedures. We suggest that a modified transparent FME could prevent similar failures in future flight experiments.
NASA Astrophysics Data System (ADS)
Warren, Paul; Golden, Andy; Hanover, John; Love, Dona; Shephard, Freya; Szewczyk, Nathaniel J.
2013-06-01
The Student Spaceflight Experiments Program (SSEP) is a United States national science, technology, engineering, and mathematics initiative that aims to increase student interest in science by offering opportunities to perform spaceflight experiments. The experiment detailed here was selected and flown aboard the third SSEP mission and the first SSEP mission to the International Space Station (ISS). Caenorhabditis elegans is a small, transparent, self-fertilizing hermaphroditic roundworm that is commonly used in biological experiments both on Earth and in Low Earth Orbit. Past experiments have found decreased expression of mRNA for several genes whose expression can be controlled by the FOXO transcription factor DAF-16. We flew a daf-16 mutant and control worms to determine if the effects of spaceflight on C. elegans are mediated by DAF-16. The experiment used a Type Two Fluids Mixing Enclosure (FME), developed by Nanoracks LLC, and was delivered to the ISS aboard the SpaceX Dragon and returned aboard the Russian Soyuz. The short time interval between experiment selection and the flight rendered preflight experiment verification tests impossible. In addition, published research regarding the viability of the FME in life science experiments was not available. The experiment was therefore structured in such a way as to gather the needed data. Here we report that C. elegans can survive relatively short storage and activation in the FME but cannot produce viable populations for post-flight analysis on extended missions. The FME appears to support short-duration life science experiments, potentially on supply or crew exchange missions, but not on longer ISS expeditions. Additionally, the flown FME was not properly activated, reportedly due to a flaw in training procedures. We suggest that a modified transparent FME could prevent similar failures in future flight experiments.
Warren, Paul; Golden, Andy; Hanover, John; Love, Dona; Shephard, Freya; Szewczyk, Nathaniel J.
2013-01-01
The Student Spaceflight Experiments Program (SSEP) is a United States national science, technology, engineering, and mathematics initiative that aims to increase student interest in science by offering opportunities to perform spaceflight experiments. The experiment detailed here was selected and flown aboard the third SSEP mission and the first SSEP mission to the International Space Station (ISS). Caenorhabditis elegans is a small, transparent, self-fertilizing hermaphroditic roundworm that is commonly used in biological experiments both on Earth and in Low Earth Orbit. Past experiments have found decreased expression of mRNA for several genes whose expression can be controlled by the FOXO transcription factor DAF-16. We flew a daf-16 mutant and control worms to determine if the effects of spaceflight on C. elegans are mediated by DAF-16. The experiment used a Type Two Fluids Mixing Enclosure (FME), developed by Nanoracks LLC, and was delivered to the ISS aboard the SpaceX Dragon and returned aboard the Russian Soyuz. The short time interval between experiment selection and the flight rendered preflight experiment verification tests impossible. In addition, published research regarding the viability of the FME in life science experiments was not available. The experiment was therefore structured in such a way as to gather the needed data. Here we report that C. elegans can survive relatively short storage and activation in the FME but cannot produce viable populations for post-flight analysis on extended missions. The FME appears to support short-duration life science experiments, potentially on supply or crew exchange missions, but not on longer ISS expeditions. Additionally, the flown FME was not properly activated, reportedly due to a flaw in training procedures. We suggest that a modified transparent FME could prevent similar failures in future flight experiments. PMID:23794777
Wakata and Thirsk with MELFI in KIBO
2009-06-15
ISS020-E-010021 (15 June 2009) --- Canadian Space Agency astronaut Robert Thirsk (left) and Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, both Expedition 20 flight engineers, prepare to put samples in the Minus Eighty Laboratory Freezer for ISS (MELFI) in the Kibo laboratory of the International Space Station. Samples were taken as part of the Nutritional Status Assessment (Nutrition) with Repository experiment, a study done by NASA to date of human physiologic changes during long-duration spaceflight.
Research experiments at Hangar L
NASA Technical Reports Server (NTRS)
2000-01-01
Research technician Lisa Ruffa works with a wheat sample that is part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. The payload process testing is one of many studies being performed at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship.
2012-02-17
Project Gemini: On Jan. 3, 1962, NASA announced the advanced Mercury Mark II project had been named "Gemini." After 12 missions – 2 uncrewed and 10 crewed – Project Gemini ended Nov. 15, 1966, following a nearly four-day, 59 orbit-flight. Its achievements included long-duration spaceflight, rendezvous and docking of two spacecraft in Earth orbit, extravehicular activity, and precision-controlled re-entry and landing of the spacecraft. Poster designed by Kennedy Space Center Graphics Department/Greg Lee. Credit: NASA
NASA Technical Reports Server (NTRS)
Rafalik, Kerrie
2017-01-01
Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.
NASA Technical Reports Server (NTRS)
Rafalik, Kerrie K.
2017-01-01
Johnson Space Center (JSC) provides research, engineering, development, integration, and testing of hardware and software technologies for exercise systems applications in support of human spaceflight. This includes sustaining the current suite of on-orbit exercise devices by reducing maintenance, addressing obsolescence, and increasing reliability through creative engineering solutions. Advanced exercise systems technology development efforts focus on the sustainment of crew's physical condition beyond Low Earth Orbit for extended mission durations with significantly reduced mass, volume, and power consumption when compared to the ISS.
Valbuena, Miguel A; Manzano, Aránzazu; Vandenbrink, Joshua P; Pereda-Loth, Veronica; Carnero-Diaz, Eugénie; Edelmann, Richard E; Kiss, John Z; Herranz, Raúl; Medina, F Javier
2018-06-08
Red light is able to compensate for deleterious effects of microgravity on root cell growth and proliferation. Partial gravity combined with red light produces differential signals during the early plant development. Light and gravity are environmental cues used by plants throughout evolution to guide their development. We have investigated the cross-talk between phototropism and gravitropism under altered gravity in space. The focus was on the effects on the meristematic balance between cell growth and proliferation, which is disrupted under microgravity in the dark. In our spaceflight experiments, seedlings of three Arabidopsis thaliana genotypes, namely the wild type and mutants of phytochrome A and B, were grown for 6 days, including red-light photoactivation for the last 2 days. Apart from the microgravity and the 1g on-board control conditions, fractional gravity (nominally 0.1g, 0.3g, and 0.5g) was created with on-board centrifuges. In addition, a simulated microgravity (random positioning machine, RPM) experiment was performed on ground, including both dark-grown and photostimulated samples. Photoactivated samples in spaceflight and RPM experiments showed an increase in the root length consistent with phototropic response to red light, but, as gravity increased, a gradual decrease in this response was observed. Uncoupling of cell growth and proliferation was detected under microgravity in darkness by transcriptomic and microscopic methods, but red-light photoactivation produced a significant reversion. In contrast, the combination of red light and partial gravity produced small but consistent variations in the molecular markers of cell growth and proliferation, suggesting an antagonistic effect between light and gravity signals at the early plant development. Understanding these parameters of plant growth and development in microgravity will be important as bioregenerative life support systems for the colonization of the Moon and Mars.
The metabolic cost of an integrated exercise program performed during 14 days of bed rest.
Scott, Jessica M; Hackney, Kyle; Downs, Meghan; Guined, Jamie; Ploutz-Snyder, Robert; Fiedler, James; Cunningham, David; Ploutz-Snyder, Lori
2014-06-01
Exercise countermeasures designed to mitigate muscle atrophy during long-duration spaceflight may not be as effective if crewmembers are in negative energy balance (energy output > energy input). This study determined the energy cost of supine exercise (resistance, interval, aerobic) during the spaceflight analogue of bed rest. Nine subjects (eight men and one woman; 34.5 +/- 8.2 yr) completed 14 d of bed rest and concomitant exercise countermeasures. Body mass and basal metabolic rate (BMR) were assessed before and during bed rest. Exercise energy expenditure was measured during and immediately after [excess post-exercise oxygen consumption (EPOC)] each of five different exercise protocols (30-s, 2-min, and 4-min intervals, continuous aerobic, and a variety of resistance exercises) during bed rest. On days when resistance and continuous aerobic exercise were performed daily, energy expenditure was significantly greater (2879 +/- 280 kcal) than 2-min (2390 +/- 237 kcal), 30-s (2501 +/- 264 kcal), or 4-min (2546 +/- 264 kcal) exercise. There were no significant differences in BMR (pre-bed rest: 1649 +/- 216 kcal; week 1: 1632 +/- 174 kcal; week 2:1657 +/- 176 kcal) or body mass (pre-bed rest: 75.2 +/- 10.1 kg; post-bed rest: 75.2 +/- 9.6 kg). These findings highlight the importance of energy balance for long-duration crewmembers completing a high-intensity exercise program with multiple exercise sessions daily.
Bone Research at NASA: Career Pathway to the Space Program
NASA Technical Reports Server (NTRS)
Sibonga, Jean D.
2007-01-01
This viewgraph document is comprised of two presentations about Bone Research at NASA. The first document has slides that show the percent of bone loss from specific bones as demonstrated from research of the Mir cosmonauts, and the required preflight and postflight BMD measurements for long duration flights. The second presentation entitled "Recovery of Spaceflight-induced Bone Loss: Bone Mineral Density after Long-duration Missions as Fitted with an Exponential Function" reviews the recovery of Bone Mineral Density (BMD) after long duration missions. Between 1990 and 2004, 56 missions were flown with 45 crewmembers for an average of 181 days +/- 47 days. For each of these flights the change in BMD was calculated after the flight. The BMD changes were plotted against the number of days for bone recovery after the landing. The plots for the bones that were measured are shown.
Visible-Light Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification
NASA Technical Reports Server (NTRS)
Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian A.; Richards, Jeffrey T.
2014-01-01
Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure.
Heart Rate Response During Mission-Critical Tasks After Space Flight
NASA Technical Reports Server (NTRS)
Arzeno, Natalia M.; Lee, S. M. C.; Stenger, M. B.; Lawrence, E. L.; Platts, S. H.; Bloomberg, J. J.
2010-01-01
Adaptation to microgravity could impair crewmembers? ability to perform required tasks upon entry into a gravity environment, such as return to Earth, or during extraterrestrial exploration. Historically, data have been collected in a controlled testing environment, but it is unclear whether these physiologic measures result in changes in functional performance. NASA?s Functional Task Test (FTT) aims to investigate whether adaptation to microgravity increases physiologic stress and impairs performance during mission-critical tasks. PURPOSE: To determine whether the well-accepted postflight tachycardia observed during standard laboratory tests also would be observed during simulations of mission-critical tasks during and after recovery from short-duration spaceflight. METHODS: Five astronauts participated in the FTT 30 days before launch, on landing day, and 1, 6, and 30 days after landing. Mean heart rate (HR) was measured during 5 simulations of mission-critical tasks: rising from (1) a chair or (2) recumbent seated position followed by walking through an obstacle course (egress from a space vehicle), (3) translating graduated masses from one location to another (geological sample collection), (4) walking on a treadmill at 6.4 km/h (ambulation on planetary surface), and (5) climbing 40 steps on a passive treadmill ladder (ingress to lander). For tasks 1, 2, 3, and 5, astronauts were encouraged to complete the task as quickly as possible. Time to complete tasks and mean HR during each task were analyzed using repeated measures ANOVA and ANCOVA respectively, in which task duration was a covariate. RESULTS: Landing day HR was higher (P < 0.05) than preflight during the upright seat egress (7%+/-3), treadmill walk (13%+/-3) and ladder climb (10%+/-4), and HR remained elevated during the treadmill walk 1 day after landing. During tasks in which HR was not elevated on landing day, task duration was significantly greater on landing day (recumbent seat egress: 25%+/-14 and mass translation: 26%+/-12; P < 0.05). CONCLUSION: Elevated HR and increased task duration during postflight simulations of mission-critical tasks is suggestive of spaceflight-induced deconditioning. Following short-duration microgravity missions (< 16 d), work performance may be transiently impaired, but recovery is rapid.
Alperin, Noam; Bagci, Ahmet M
2018-01-01
Most of the astronauts onboard the International Space Station (ISS) develop visual impairment and ocular structural changes that are not fully reversible upon return to earth. Current understanding assumes that the so-called visual impairments/intracranial pressure (VIIP) syndrome is caused by cephalad vascular fluid shift. This study assesses the roles of cerebrospinal fluid (CSF) and intracranial pressure (ICP) in VIIP. Seventeen astronauts, 9 who flew a short-duration mission on the space shuttle (14.1 days [SD 1.6]) and 7 who flew a long-duration mission on the ISS (188 days [SD 22]) underwent MRI of the brain and orbits to assess the pre-to-post spaceflight changes in four categories: VIIP severity measures: globe flattening and nerve protrusion; orbital and ventricular CSF volumes; cortical gray and white matter volumes; and MR-derived ICP (MRICP). Significant pre-to-post-flight increase in globe flattening and optic nerve protrusion occurred only in the long-duration cohort (0.031 [SD 0.019] vs -0.001 [SD 0.006], and 0.025 [SD 0.013] vs 0.001 [SD 0.006]; p < 0.00002 respectively). The increased globe deformations were associated with significant increases in orbital and ventricular CSF volumes, but not with increased tissue vascular fluid content. Additionally, a moderate increase in MRICP of 6 mmHg was observed in only two ISS astronauts with large ocular structure changes. These findings are evidence for the primary role of CSF and a lesser role for intracranial cephalad fluid-shift in the formation of VIIP. VIIP is caused by a prolonged increase in orbital CSF spaces that compress the globes' posterior pole, even without a large increase in ICP.
Relationships Among Lower Body Strength, Power, and Performance of Functional Tasks
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori; Ryder, J.; Hackney, K.; Scott-Pandorf, M.; Redd, E.; Buxton, R.; Bloomberg, J.
2010-01-01
There is a large degree of variability among crewmembers with respect to decrements in muscle strength and power following long duration spaceflight, ranging from 0 to approx.30% reductions. The purpose of this study was to investigate the influence of varying decrements in lower body muscle strength and power (relative to body weight) on the performance of 2 occupationally relevant tasks (ladder climb and supine egress & walk). Seventeen participants with leg strength similar to US crewmembers performed a leg press power test, an isokinetic knee extension strength test and they were asked to complete the 2 functional tasks as quickly as possible. On additional test days the participants were asked to repeat the functional tasks under 3 conditions where a different external load was applied each time using a weighted suit in order to experimentally manipulate participants strength/body weight and power/body weight ratios. The weight in the suit ranged from 20-120% of body weight and was distributed in proportion to limb segment weights to minimize changes in center of gravity. The ladder task consisted of climbing 40 rungs on a ladder treadmill as fast as possible. The supine egress & walk task consisted of rising from a supine position and walking through an obstacle course. Results show a relatively linear relationship between strength/body weight and task time and power/body weight with task time such that the fastest performance times are associated with higher strength and power with about half the variance in task time is accounted for by a single variable (either strength or power). For the average person, a 20% reduction in power/body weight (from 18 to 14.4 W/kg) induces an increase (slowing) of about 10 seconds in the ladder climb task from 14 to 24 seconds (approx.70%) and a slowing of the supine egress & walk task from 14 to 21 seconds (approx.50%). Similar relationships were observed with strength/body weight and task performance. For the average person, a 20% reduction in strength/body weight (from 2.1 to 1.7 Nm/kg) resulted in a slowing of the ladder climb from 10.5 to 24 seconds (approx.128%) and a slowing of the supine egress & walk from 11 to 20 seconds (approx.82%). These data suggest that the single variable of either low body muscle strength or power, relative to body weight is predictive of about 50% of the variance in task performance time, and that considerable slowing in task performance is associated with relatively typical decrements in muscle performance seen with long duration spaceflight. The observation of a relatively linear relationship between strength/power and task time suggests that across the full spectrum of initial crew strengths and typical decrements in strength previously observed, that task performance would be expected to be slowed following long duration spaceflight. These data will be confirmed in actual spaceflight with subsequent studies.
NASA Astrophysics Data System (ADS)
Kiss, J. Z.; Kumar, P.; Molas, M. L.; Correll, M. J.; Bowman, R. N.; Eodice, M. T.; Edelmann, R. E.
The interaction among tropisms is important in determining the final growth form of a plant We have defined and developed a project to study the interaction between gravitropism and phototropism in plants to be performed in microgravity on the International Space Station Specifically we are interested in the role of phytochromes in modulating tropisms in seedlings of Arabidopsis thaliana This project termed TROPI for tropisms is to be performed on the European Modular Cultivation System EMCS which provides an incubator lighting system and high resolution video that are on a centrifuge platform and the experiments will be performed at mu g 1g control and fractional g-levels In order to optimize these spaceflight experiments we have continued ground-based technical tests as well as basic science experiments Long term storage studies of seeds in the TROPI experimental unique equipment EUE were performed and addition of carbon filters to the EUE improved seed germination and seedling growth Since micoarray analyses will be conducted with frozen plant material once samples are returned to earth we performed gene profiling studies using microarrays and quantitative real-time PCR to characterize gene expression changes in roots of seedlings exposed to red light Several genes in signaling pathways acting downstream of phytochromes in red light signaling were identified in roots In addition our results suggest that red and blue light pathways interact in roots and that many elements involved in regulating the responses to
Spacecraft Habitable Volume: Results of an Interdisciplinary Workshop
NASA Technical Reports Server (NTRS)
Fitts, David J.; Connolly, Janis; Howard, Robert
2011-01-01
NASA's Human Exploration Framework Team posed the question: "Is 80 cubic meters per person of habitable volume acceptable for a proposed Deep Space Habitat?" The goal of the workshop was to address the "net habitable volume" necessary for long-duration human spaceflight missions and identify design and psychological issues and mitigations. The objectives were: (1) Identify psychological factors -- i.e., "stressors" -- that impact volume and layout specifications for long duration missions (2) Identify mitigation strategies for stressors, especially those that can be written as volume design specifications (3) Identify a forward research roadmap -- i.e., what future work is needed to define and validate objective design metrics? (4) Provide advisories on the human factors consequences of poor net habitable volume allocation and layout design.
Novel Musculoskeletal Loading System for Small Exercise Devices
NASA Technical Reports Server (NTRS)
Downs, Meghan; Newby, Nate; Trinh, Tinh; Hanson, Andrea
2016-01-01
Long duration spaceflight places astronauts at increased risk for muscle strain and bone fracture upon return to a 1-g or partial gravity environment. Functionally limiting decrements in musculoskeletal health are likely during Mars proving-ground and Earth-independent missions given extended transit times and the vehicle limitations for exercise devices (low-mass, small volume, little to no power). This is particularly alarming for exploration missions because astronauts will be required to perform novel and physically demanding tasks (i.e. vehicle egress, exploration, and habitat building activities) on unfamiliar terrain. Accordingly, NASA's exploration roadmap identifies the need for development of small exercise equipment that can prevent musculoskeletal atrophy and has the ability to assess musculoskeletal health at multiple time points during long-duration missions.
Surveillance of Ocular Parameters and Visual Function in Bed Rest Subjects
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.
2011-01-01
Recent visual changes in astronauts have raised concern about ocular health during long duration spaceflight. Seven cases have been documented in astronauts who spent 6 months aboard the International Space Station. These astronauts were male ranging in age from 45 to 55 years old. All astronauts exhibited pre- to post flight refractive changes. Decreased intraocular pressure (IOP) post flight was observed in 3 cases. Fundoscopic exams revealed post flight findings of choroidal folds in 4 cases, optic disc edema in 5 cases and the presence of cotton wool spots in 3 cases. Optical coherence tomography (OCT) confirmed findings of choroidal folds and disc edema, and also documented retinal nerve fiber layer thickening (5 cases). Findings from MRI examinations showed posterior globe flattening (5 cases), optic nerve sheath distention (6 cases) and torturous optic nerves (2 cases). Of the 7 cases, intracranial pressure was measured on 4 astronauts. These 4 showed elevated ICP post-flight that remained elevated for as long as 19 months in one case. While the etiology remains unknown, hypotheses speculate that venous insufficiency or hypertension in the brain caused by cephalad fluid shifts during spaceflight are possible mechanisms for ocular changes seen in astronauts. Head-down tilt bed rest is a spaceflight analog that induces cephalad fluid shifts. This study is designed to provide ocular monitoring of bed rest subjects and determine whether clinically relevant changes are found. Ocular Changes
Comprehensive visual field test & diagnosis system in support of astronaut health and performance
NASA Astrophysics Data System (ADS)
Fink, Wolfgang; Clark, Jonathan B.; Reisman, Garrett E.; Tarbell, Mark A.
Long duration spaceflight, permanent human presence on the Moon, and future human missions to Mars will require autonomous medical care to address both expected and unexpected risks. An integrated non-invasive visual field test & diagnosis system is presented for the identification, characterization, and automated classification of visual field defects caused by the spaceflight environment. This system will support the onboard medical provider and astronauts on space missions with an innovative, non-invasive, accurate, sensitive, and fast visual field test. It includes a database for examination data, and a software package for automated visual field analysis and diagnosis. The system will be used to detect and diagnose conditions affecting the visual field, while in space and on Earth, permitting the timely application of therapeutic countermeasures before astronaut health or performance are impaired. State-of-the-art perimetry devices are bulky, thereby precluding application in a spaceflight setting. In contrast, the visual field test & diagnosis system requires only a touchscreen-equipped computer or touchpad device, which may already be in use for other purposes (i.e., no additional payload), and custom software. The system has application in routine astronaut assessment (Clinical Status Exam), pre-, in-, and post-flight monitoring, and astronaut selection. It is deployable in operational space environments, such as aboard the International Space Station or during future missions to or permanent presence on the Moon and Mars.
NASA Technical Reports Server (NTRS)
Reaves, Will F.; Hoberecht, Mark A.
2003-01-01
The Fuel Cell has been used for manned space flight since the Gemini program. Its power output and water production capability over long durations for the mass and volume are critical for manned space-flight requirements. The alkaline fuel cell used on the Shuttle, while very reliable and capable for it s application, has operational sensitivities, limited life, and an expensive recycle cost. The PEM fuel cell offers many potential improvements in those areas. NASA Glenn Research Center is currently leading a PEM fuel cell development and test program intended to move the technology closer to the point required for manned space-flight consideration. This paper will address the advantages of PEM fuel cell technology and its potential for future space flight as compared to existing alkaline fuel cells. It will also cover the technical hurdles that must be overcome. In addition, a description of the NASA PEM fuel cell development program will be presented, and the current status of this effort discussed. The effort is a combination of stack and ancillary component hardware development, culminating in breadboard and engineering model unit assembly and test. Finally, a detailed roadmap for proceeding fiom engineering model hardware to qualification and flight hardware will be proposed. Innovative test engineering and potential payload manifesting may be required to actually validate/certify a PEM fuel cell for manned space flight.
Morrison, Michael D; Fajardo-Cavazos, Patricia; Nicholson, Wayne L
2017-08-18
Past results have suggested that bacterial antibiotic susceptibility is altered during space flight. To test this notion, Bacillus subtilis cells were cultivated in matched hardware, medium, and environmental conditions either in spaceflight microgravity on the International Space Station, termed Flight (FL) samples, or at Earth-normal gravity, termed Ground Control (GC) samples. Susceptibility of FL and GC samples was compared to 72 antibiotics and growth-inhibitory compounds using the Omnilog Phenotype Microarray (PM) system. Only 9 compounds were identified by PM screening as exhibiting significant differences ( P < 0.05, Student's t-test) in FL vs. GC samples: 6-mercaptopurine, cesium chloride, enoxacin, lomefloxacin, manganese (II) chloride, nalidixic acid, penimepicycline, rolitetracycline, and trifluoperazine. Testing of the same compounds by standard broth dilution assay did not reveal statistically significant differences in the IC 50 values between FL and GC samples. The results indicate that the susceptibility of B. subtilis cells to a wide range of antibiotics and growth inhibitors is not dramatically altered by space flight. Importance: This study addresses a major concern of mission planners for human spaceflight, that bacteria accompanying astronauts on long-duration missions might develop a higher level of resistance to antibiotics due to exposure to the spaceflight environment. The results of this study do not support that notion. Copyright © 2017 American Society for Microbiology.
Historical Review of Lower Body Negative Pressure Research in Space Medicine.
Campbell, Mark R; Charles, John B
2015-07-01
Cephalad redistribution of intravascular and extravascular fluid occurs as a result of weightlessness during spaceflight. This provokes cardiovascular, cardiopulmonary, and autonomic nervous system responses. The resulting altered functional state can result in orthostatic hypotension and intolerance upon landing and return to a gravity environment. In-flight lower body negative pressure (LBNP) transiently restores normal body fluid distribution. Early in the U.S. space program, LBNP was devised as a way to test for orthostatic intolerance. With the development of the Skylab Program and longer duration spaceflight, it was realized that it could provide a method of monitoring orthostatic intolerance in flight and predicting the post-landing orthostatic response. LBNP was also investigated not only as an in-flight cardiovascular orthostatic stress test, but also as a countermeasure to cardiovascular deconditioning on Soviet space stations, Skylab, and the Shuttle. It is still being used by the Russian program on the International Space Station as an end-of-flight countermeasure.
Bioastronautics: The Influence of Microgravity on Astronaut Health
NASA Astrophysics Data System (ADS)
Blaber, Elizabeth; Marçal, Helder; Burns, Brendan P.
2010-06-01
For thousands of years different cultures around the world have assigned their own meaning to the Universe. Through research and technology, we have begun to understand the nature and mysteries of the Cosmos. Last year marked the 40th anniversary of our first steps on the Moon, and within two decades it is hoped that humankind will have established a settlement on Mars. Space is a harsh environment, and technological advancements in material science, robotics, power generation, and medical equipment will be required to ensure that astronauts survive interplanetary journeys and settlements. The innovative field of bioastronautics aims to address some of the medical issues astronauts encounter during space travel. Astronauts are faced with several health risks during both short- and long-duration spaceflight due to the hostile environment presented in space. Some of these health problems include bone loss, muscle atrophy, cardiac dysrhythmias, and altered orientation. This review discusses the effects of spaceflight on living organisms, in particular, the specific effects of microgravity on the human body and possible countermeasures to these effects.
Bioastronautics: the influence of microgravity on astronaut health.
Blaber, Elizabeth; Marçal, Helder; Burns, Brendan P
2010-06-01
For thousands of years different cultures around the world have assigned their own meaning to the Universe. Through research and technology, we have begun to understand the nature and mysteries of the Cosmos. Last year marked the 40(th) anniversary of our first steps on the Moon, and within two decades it is hoped that humankind will have established a settlement on Mars. Space is a harsh environment, and technological advancements in material science, robotics, power generation, and medical equipment will be required to ensure that astronauts survive interplanetary journeys and settlements. The innovative field of bioastronautics aims to address some of the medical issues astronauts encounter during space travel. Astronauts are faced with several health risks during both short- and long-duration spaceflight due to the hostile environment presented in space. Some of these health problems include bone loss, muscle atrophy, cardiac dysrhythmias, and altered orientation. This review discusses the effects of spaceflight on living organisms, in particular, the specific effects of microgravity on the human body and possible countermeasures to these effects.
NASA Human Spaceflight Architecture Team Cis-Lunar Analysis
NASA Technical Reports Server (NTRS)
Lupisella, M.; Bobskill, M. R.
2012-01-01
The Cis-Lunar Destination Team of NASA's Human Spaceflight Architecture Teait1 (HAT) has been perfom1ing analyses of a number of cis-lunar locations to infom1 architecture development, transportation and destination elements definition, and operations. The cis-lunar domain is defined as that area of deep space under the gravitation influence of the earth-moon system, including a set of orbital locations (low earth orbit (LEO]. geosynchronous earth orbit [GEO]. highly elliptical orbits [HEO]); earth-moon libration or "Lagrange·· points (EMLl through EMLS, and in particular, EMLI and EML2), and low lunar orbit (LLO). We developed a set of cis-lunar mission concepts defined by mission duration, pre-deployment, type of mission, and location, to develop mission concepts and the associated activities, capabilities, and architecture implications. To date, we have produced two destination operations J concepts based on present human space exploration architectural considerations. We have recently begun defining mission activities that could be conducted within an EM LI or EM L2 facility.
NASA Technical Reports Server (NTRS)
Globus, R. K.; Choi, S.; Gong, C.; Leveson-Gower, D.; Ronca, A.; Taylor, E.; Beegle, J.
2016-01-01
Rodent research is a valuable essential tool for advancing biomedical discoveries in life sciences on Earth and in space. The National Research Counsel's Decadal survey (1) emphasized the importance of expanding NASAs life sciences research to perform long duration, rodent experiments on the International Space Station (ISS). To accomplish this objective, new flight hardware, operations, and science capabilities were developed at NASA ARC to support commercial and government-sponsored research. The flight phases of two separate spaceflight missions (Rodent Research-1 and Rodent Research-2) have been completed and new capabilities are in development. The first flight experiments carrying 20 mice were launched on Sept 21, 2014 in an unmanned Dragon Capsule, SpaceX4; Rodent Research-1 was dedicated to achieving both NASA validation and CASIS science objectives, while Rodent Reesearch-2 extended the period on orbit to 60 days. Groundbased control groups (housed in flight hardware or standard cages) were maintained in environmental chambers at Kennedy Space Center. Crewmembers previously trained in animal handling transferred mice from the Transporter into Habitats under simultaneous veterinary supervision by video streaming and were deemed healthy. Health and behavior of all mice on the ISS was monitored by video feed on a daily basis, and post-flight quantitative analyses of behavior were performed. The 10 mice from RR-1 Validation (16wk old, female C57Bl6/J) ambulated freely and actively throughout the Habitat, relying heavily on their forelimbs for locomotion. The first on-orbit dissections of mice were performed successfully, and high quality RNA (RIN values>9) and liver enzyme activities were obtained, validating the quality of sample recovery. Post-flight sample analysis revealed that body weights of FLT animals did not differ from ground controls (GC) housed in the same hardware, or vivarium controls (VIV) housed in standard cages. Organ weights analyzed post-flight showed that there were no differences between FLT and GC groups in adrenal gland and spleen weights, whereas FLT thymus and liver weights exceeded those of GC. Minimal differences between the control groups (GC and VIV) were observed. In addition, Over 3,000 aliquots collected post-flight from the four groups of mice were deposited into the Ames Life Science Data Archives for the Biospecimen Sharing Program and Genelab project. New capabilities recently developed include DEXA scanning, grip strength tests and male mice. In conclusion, new capability for long duration rodent habitation of group-housed rodents was developed and includes in-flight sample collection, thus avoiding the complication of reentry. Results obtained to date reveal the possibility of striking differences between the effects of short duration vs. long duration spaceflight. This Rodent Research system enables achievement of both basic science and translational research objectives to advance human exploration of space.
NASA Technical Reports Server (NTRS)
Stenger, M.; Hargens, A.; Dulchavsky, S.; Ebert, D.; Lee, S.; Lauriie, S.; Garcia, K.; Sargsyan, A.; Martin, D.; Ribeiro, L.;
2016-01-01
NASA is focusing on long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low-Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but more than 50% of ISS astronauts experienced more profound, chronic changes with objective structural and functional findings such as papilledema and choroidal folds. Globe flattening, optic nerve sheath dilation, and optic nerve tortuosity also are apparent. This pattern is referred to as the visual impairment and intracranial pressure (VIIP) syndrome. VIIP signs and symptoms, as well as postflight lumbar puncture data, suggest that elevated intracranial pressure (ICP) may be associated with the spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight, and to correlate these findings with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as the VIIP-related effects of those shifts, is predicted by the crewmember's preflight conditions and responses to acute hemodynamic manipulations (such as head-down tilt). Lastly, we will evaluate the patterns of fluid distribution in ISS astronauts during acute reversal of fluid shifts through application of lower body negative pressure (LBNP) interventions to characterize and explain general and individual responses. METHODS: We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the Figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography, intraocular pressure, 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness, Doppler ultrasound of ophthalmic and retinal arteries, and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, distortion-product otoacoustic emissions, and ICP calculated by MRI). On the ground, acute head-down tilt will induce cephalad fluid shifts, whereas LBNP will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome.
NASA Technical Reports Server (NTRS)
Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.;
2017-01-01
Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid pulsatility); (5) ocular measures (optical coherence tomography; intraocular pressure; 2-dimensional ultrasound including optic nerve sheath diameter, globe flattening, and retina-choroid thickness; Doppler ultrasound of ophthalmic and retinal arteries and veins); (6) cardiac variables by ultrasound (inferior vena cava, tricuspid flow and tissue Doppler, pulmonic valve, stroke volume, right heart dimensions and function, four-chamber views); and (7) ICP measures (tympanic membrane displacement, otoacoustic emissions). Pre- and post-flight, acute head-down tilt will induce cephalad fluid shifts, whereas lower body negative pressure will oppose these shifts. Controlled Mueller maneuvers will manipulate cardiovascular variables. Through interventions applied before, during, and after flight, we intend to fully evaluate the relationship between fluid shifts and the VIIP syndrome. Discussion. Ten subjects have consented to participate in this experiment, including the recent One-Year Mission crewmembers, who have recently completed R plus180 testing; all other subjects have completed pre-flight testing. Preliminary results from the One-Year Mission crewmembers will be presented, including measures of ocular structure and function, vascular dimensions, fluid distribution, and non-invasive estimates of intracranial pressure.
Wakata and Thirsk with MELFI in KIBO
2009-06-15
ISS020-E-010028 (15 June 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 20 flight engineer, returns a dewar tray to the Minus Eighty Laboratory Freezer for ISS (MELFI) after inserting biological samples into the trays in the Kibo laboratory of the International Space Station. Samples were taken as part of the Nutritional Status Assessment (Nutrition) with Repository experiment, a study done by NASA to date of human physiologic changes during long-duration spaceflight. Canadian Space Agency astronaut Robert Thirsk, flight engineer, assisted Wakata.
2000-05-01
Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
2000-05-01
Researchers work with wheat samples that are part of ground testing for the first International Space Station plant experiment, scheduled to fly in October 2001. From left are research scientist Oscar Monje and research technicians Lisa Ruffa and Ignacio Eraso. The payload process testing they are performing is one of many studies at the Biological Sciences Branch in the Spaceport Engineering and Technology Directorate at Kennedy Space Center. The branch's operations and research areas include life sciences Space Shuttle payloads, bioregenerative life-support for long-duration spaceflight and environmental/ecological stewardship
Current status and future direction of NASA's Space Life Sciences Program
NASA Technical Reports Server (NTRS)
White, Ronald J.; Lujan, Barbara F.
1989-01-01
The elements of the NASA Life Sciences Program that are related to manned space flight and biological scientific studies in space are reviewed. Projects included in the current program are outlined and the future direction of the program is discussed. Consideration is given to issues such as long-duration spaceflight, medical support in space, readaptation to the gravity field of earth, considerations for the Space Station, radiation hazards, environmental standards for space habitation, and human operator interaction with computers, robots, and telepresence systems.
Materials for Shielding Astronauts from the Hazards of Space Radiations
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Cucinotta, F. A.; Miller, J.; Shinn, J. L.; Thibeault, S. A.; Singleterry, R. C.; Simonsen, L. C.; Kim, M. H.
1997-01-01
One major obstacle to human space exploration is the possible limitations imposed by the adverse effects of long-term exposure to the space environment. Even before human spaceflight began, the potentially brief exposure of astronauts to the very intense random solar energetic particle (SEP) events was of great concern. A new challenge appears in deep space exploration from exposure to the low-intensity heavy-ion flux of the galactic cosmic rays (GCR) since the missions are of long duration and the accumulated exposures can be high. Because cancer induction rates increase behind low to rather large thickness of aluminum shielding according to available biological data on mammalian exposures to GCR like ions, the shield requirements for a Mars mission are prohibitively expensive in terms of mission launch costs. Preliminary studies indicate that materials with high hydrogen content and low atomic number constituents are most efficient in protecting the astronauts. This occurs for two reasons: the hydrogen is efficient in breaking up the heavy GCR ions into smaller less damaging fragments and the light constituents produce few secondary radiations (especially few biologically damaging neutrons). An overview of the materials related issues and their impact on human space exploration will be given.
Bone Biomarkers on the Pathway to Effective Spaceflight Countermeasures
NASA Technical Reports Server (NTRS)
Spatz, Jordan
2009-01-01
Osteocyte cells are the most abundant yet least understood bone cell type in the human body. However, recent discovers in osteocyte cell biology have shed light on their importance as key mechanosensing cells regulating the bone remodeling process. Thus, we propose the first ever in vitro gene expression evaluation of osteocytes exposed to simulated microgravity to determine mechanistic pathways of their gravity sensing ability. Improved understanding of the fundamental mechanisms at the osteocyte cellular level may lead to improved treatment options to mitigate the effects of bone loss encountered by astronauts on long duration space missions and provide tailored treatment options for maintaining bone strength of immobilized/partially paralyzed patients here on Earth. Aim 1: Characterize the gene expression patterns and protein levels following exposure of murine osteocytelike cell line (MLO-Y4) to simulated microgravity using the NASA Rotating Wall Vessel (RWV) Bioreactor. Osteocytes are theorized to be the mechanosensors and transducers of mechanical load for bones, yet the biological mechanism of this action remains elusive. We propose to investigate the genetic regulation of the mechanism of the MLO-Y4 cell in the NASA Bioreactor as it is the accepted ground-based analog for simulating vector averaged microgravity.
Influence of gravity on the circadian timing system
NASA Technical Reports Server (NTRS)
Fuller, C. A.; Hoban-Higgins, T. M.; Griffin, D. W.; Murakami, D. M.
1994-01-01
The circadian timing system (CTS) is responsible for daily temporal coordination of physiological and behavioral functions both internally and with the external environment. Experiments in altered gravitational environments have revealed changes in circadian rhythms of species ranging from fungi to primates. The altered gravitational environments examined included both the microgravity environment of spaceflight and hyperdynamic environments produced by centrifugation. Acute exposure to altered gravitational environments changed homeostatic parameters such as body temperature. These changes were time of day dependent. Exposure to gravitational alterations of relatively short duration produced changes in both the homeostatic level and the amplitude of circadian rhythms. Chronic exposure to a non-earth level of gravity resulted in changes in the period of the expressed rhythms as well as in the phase relationships between the rhythms and between the rhythms and the external environment. In addition, alterations in gravity appeared to act as a time cue for the CTS. Altered gravity also affected the sensitivity of the pacemaker to other aspects of the environment (i.e., light) and to shifts of time cues. Taken together, these studies lead to the conclusion that the CTS is indeed sensitive to gravity and its alterations. This finding has implications for both basic biology and space medicine.
NASA Astrophysics Data System (ADS)
Alwood, Joshua Stewart
Astronauts on long-duration space missions experience increased ionizing radiation background levels and occasional acute doses of ionizing radiation from solar particle events, in addition to biological challenges introduced by weightlessness. Previous research indicates that cancer radiotherapy damages bone marrow cell populations and reduces mechanical strength of bone. However, the cumulative doses in radiotherapy are an order of magnitude or greater than dose predictions for long-duration space missions. Further detriments to the skeletal system are the disuse and mechanical unloading experienced during weightlessness, which causes osteopenia in weight-bearing cancellous bone (a sponge-like bony network of rods, plates and voids) and cortical bone (dense, compact bone). Studies of radiation exposure utilizing spaceflight-relevant types and doses, and in combination with mechanical unloading, have received little attention. Motivated by the future human exploration of the solar system, the effects of acute and increased background radiation on astronaut skeletal health are important areas of study in order to prevent osteopenic deterioration and, ultimately, skeletal fracture. This dissertation addresses how spaceflight-relevant radiation affects bone microarchitecture and mechanical properties in the cancellous-rich vertebrae and compares results to that of mechanical unloading. In addition, a period of re-ambulation is used to test whether animals recover skeletal tissue after irradiation. Whether radiation exposure displays synergism with mechanical unloading is further investigated. Finite element structural and statistical analyses are used to investigate how changes in architecture affect mechanical stress within the vertebra and to interpret the mechanical testing results. In this dissertation, ground-based models provide evidence that ionizing radiation, both highly energetic gamma-rays and charged iron ions, resulted in a persistent loss of cancellous bone in male mice. Mechanical unloading, by contrast, is shown to cause bone loss in the vertebrae via cancellous and cortical thinning that resulted in decreased whole-bone mechanical properties. The effects of mechanical unloading were altogether reversible in the vertebra after re-ambulation, though some residual alteration of trabecular morphology persisted. The combination of unloading and radiation exposure appeared to worsen the reductions of strength. Under either environmental condition, cancellous bone loss occurred near the vertebral endplates and at the centrum midplane. Finite element analysis suggested that tissue-level stresses increase in the centrum after either unloading or irradiation in agreement with the cellular-solid model of dense, plate-like trabeculae. Force-sharing between cancellous and cortical bone decreased after radiation, with stress concentrating on the cortex. In conclusion, acute exposure to spaceflight-relevant ionizing radiation altered trabecular microarchitecture and stress distribution, without a loss of whole-bone strength at the endpoints investigated, while unloading presented the greater immediate detriment to whole-bone mechanical properties. From a skeletal-health perspective, strategies to mitigate and counteract astronaut exposure to acute doses of radiation and mechanical unloading should be developed in preparation for long-term human spaceflight.
NASA Technical Reports Server (NTRS)
Kuang, A.; Popova, A.; McClure, G.; Musgrave, M. E.
2005-01-01
Pollen and seeds share a developmental sequence characterized by intense metabolic activity during reserve deposition before drying to a cryptobiotic form. Neither pollen nor seed development has been well studied in the absence of gravity, despite the importance of these structures in supporting future long-duration manned habitation away from Earth. Using immature seeds (3-15 d postpollination) of Brassica rapa L. cv. Astroplants produced on the STS-87 flight of the space shuttle Columbia, we compared the progress of storage reserve deposition in cotyledon cells during early stages of seed development. Brassica pollen development was studied in flowers produced on plants grown entirely in microgravity on the Mir space station and fixed while on orbit. Cytochemical localization of storage reserves showed differences in starch accumulation between spaceflight and ground control plants in interior layers of the developing seed coat as early as 9 d after pollination. At this age, the embryo is in the cotyledon elongation stage, and there are numerous starch grains in the cotyledon cells in both flight and ground control seeds. In the spaceflight seeds, starch was retained after this stage, while starch grains decreased in size in the ground control seeds. Large and well-developed protein bodies were observed in cotyledon cells of ground control seeds at 15 d postpollination, but their development was delayed in the seeds produced during spaceflight. Like the developing cotyledonary tissues, cells of the anther wall and filaments from the spaceflight plants contained numerous large starch grains, while these were rarely seen in the ground controls. The tapetum remained swollen and persisted to a later developmental stage in the spaceflight plants than in the ground controls, even though most pollen grains appeared normal. These developmental markers indicate that Brassica seeds and pollen produced in microgravity were physiologically younger than those produced in 1 g. We hypothesize that microgravity limits mixing of the gaseous microenvironments inside the closed tissues and that the resulting gas composition surrounding the seeds and pollen retards their development.
NASA Technical Reports Server (NTRS)
Fu, Qi; Levine, Benjamin D.; Pawelczyk, James A.; Ertl, Andrew C.; Diedrich, Andre; Cox, James F.; Zuckerman, Julie H.; Ray, Chester A.; Smith, Michael L.; Iwase, Satoshi;
2002-01-01
Astronauts returning to Earth have reduced orthostatic tolerance and exercise capacity. Alterations in autonomic nervous system and neuromuscular function after spaceflight might contribute to this problem. In this study, we tested the hypothesis that exposure to microgravity impairs autonomic neural control of sympathetic outflow in response to peripheral afferent stimulation produced by handgrip and a cold pressor test in humans. We studied five astronauts approximately 72 and 23 days before, and on landing day after the 16 day Neurolab (STS-90) space shuttle mission, and four of the astronauts during flight (day 12 or 13). Heart rate, arterial pressure and peroneal muscle sympathetic nerve activity (MSNA) were recorded before and during static handgrip sustained to fatigue at 40 % of maximum voluntary contraction, followed by 2 min of circulatory arrest pre-, in- and post-flight. The cold pressor test was applied only before (five astronauts) and during flight (day 12 or 13, four astronauts). Mean (+/- S.E.M.) baseline heart rates and arterial pressures were similar among pre-, in- and post-flight measurements. At the same relative fatiguing force, the peak systolic pressure and mean arterial pressure during static handgrip were not different before, during and after spaceflight. The peak diastolic pressure tended to be higher post- than pre-flight (112 +/- 6 vs. 99 +/- 5 mmHg, P = 0.088). Contraction-induced rises in heart rate were similar pre-, in- and post-flight. MSNA was higher post-flight in all subjects before static handgrip (26 +/- 4 post- vs. 15 +/- 4 bursts min(-1) pre-flight, P = 0.017). Contraction-evoked peak MSNA responses were not different before, during, and after spaceflight (41 +/- 4, 38 +/- 5 and 46 +/- 6 bursts min(-1), all P > 0.05). MSNA during post-handgrip circulatory arrest was higher post- than pre- or in-flight (41 +/- 1 vs. 33 +/- 3 and 30 +/- 5 bursts min(-1), P = 0.038 and 0.036). Similarly, responses of MSNA and blood pressure to the cold pressor test were well maintained in-flight. We conclude that modulation of muscle sympathetic neural outflow by muscle metaboreceptors and skin nociceptors is preserved during short duration spaceflight.
Urine Pretreatment History and Perspective in NASA Human Spaceflight
NASA Technical Reports Server (NTRS)
Anderson, Molly; Adam, Niklas; Chambers, Antja; Broyan, James
2015-01-01
Urine pretreatment is a technology that may seem to have small mass impacts in future spaceflight missions, but can have significant impacts on reliability, life, and performance of the rest of the wastewater management and recovery systems. NASA has experience with several different urine pretreatment systems, including those flow on the space shuttle, evaluated for NASA waste collection systems or used in Russian commodes on ISS, or developed by NASA or industry as alternatives. Each has had unique requirements for shelf life, operational life, and the life or conditions of the stored, treated urine. Each was evaluated under different test conditions depending on mission, and depending on testing experience developed over NASA's history. Those that were flown led to further lessons learned about hardware compatibility and control. As NASA looks forward to human spaceflight missions beyond low Earth orbit, these techniques need to be evaluated in new light. Based on published design reference missions, candidate requirements can be derived for future systems. Initial comparisons between these requirements and previous performance or test results can be performed. In many cases these comparisons reveal data gaps. Successful previous performance is not enough to address current needs.
NASA Technical Reports Server (NTRS)
DeDios, Y. E.; Dean, S. L.; Rpsemtja (. K/); < acdpig (as/ J/ G/); Moore, S. T.; Wood, S. J.
2011-01-01
Following long-duration space transits, adaptive changes in sensorimotor and cognitive function may impair the crew s ability to safely control pressurized rovers designed to explore the new environment. We describe a rover simulation developed to quantify post-flight decrements in operational proficiency following International Space Station expeditions. The rover simulation consists of a serial presentation of discrete tasks to be completed as quickly and accurately as possible. Each task consists of 1) perspective taking using a map that defines a docking target, 2) navigation toward the target around a Martian outpost, and 3) docking a side hatch of the rover to a visually guided target. The simulator utilizes a Stewart-type motion base (CKAS, Australia), single seat cabin with triple scene projection covering approximately 150 horizontal by 40 vertical, and joystick controller. The software was implemented using Unity3 with next-gen PhysX engine to tightly synchronize simulation and motion platform commands. Separate C# applications allow investigators to customize session sequences with different lighting and gravitational conditions, and then execute tasks to be performed as well as record performance data. Preliminary tests resulted in low incidence of motion sickness (<15% unable to complete first session), with only negligible after effects and symptoms after familiarization sessions. Functionally relevant testing early post-flight will develop evidence regarding the limitations to early surface operations and what countermeasures are needed. This approach can be easily adapted to other vehicle designs to provide a platform to safely assess how sensorimotor and cognitive function impact manual control performance.
Functional Fitness Testing Results Following Long-Duration ISS Missions.
Laughlin, Mitzi S; Guilliams, Mark E; Nieschwitz, Bruce A; Hoellen, David
2015-12-01
Long-duration spaceflight missions lead to the loss of muscle strength and endurance. Significant reduction in muscle function can be hazardous when returning from spaceflight. To document these losses, NASA developed medical requirements that include measures of functional strength and endurance. Results from this Functional Fitness Test (FFT) battery are also used to evaluate the effectiveness of in-flight exercise countermeasures. The purpose of this paper is to document results from the FFT and correlate this information with performance of in-flight exercise on board the International Space Station. The FFT evaluates muscular strength and endurance, flexibility, and agility and includes the following eight measures: sit and reach, cone agility, push-ups, pull-ups, sliding crunches, bench press, leg press, and hand grip dynamometry. Pre- to postflight functional fitness measurements were analyzed using dependent t-tests and correlation analyses were used to evaluate the relationship between functional fitness measurements and in-flight exercise workouts. Significant differences were noted post space flight with the sit and reach, cone agility, leg press, and hand grip measurements while other test scores were not significantly altered. The relationships between functional fitness and in-flight exercise measurements showed minimal to moderate correlations for most in-flight exercise training variables. The change in FFT results can be partially explained by in-flight exercise performance. Although there are losses documented in the FFT results, it is important to realize that the crewmembers are successfully performing activities of daily living and are considered functional for normal activities upon return to Earth.
Responses of Cardiac Tissue to Simulated Weightlessness
NASA Technical Reports Server (NTRS)
Tahimic, Candice; Steczina, Sonette; Terada, Masahiro; Shirazi-Fard, Yasaman; Schreurs, Ann-Sofie; Goukassian, David; Globus, Ruth
2017-01-01
Our current study aims to determine the molecular mechanisms that underlie these cardiac changes in response to spaceflight. The central hypothesis of our study is that long duration simulated weightlessness and subsequent recovery causes select and persistent changes in gene expression and oxidative defense-related pathways. In this study, we will first conduct general analyses of three-month old male and female animals, focusing on two key long-duration time points, (i.e. after 90 days of simulated weightlessness (HU) and after 90 days recovery from 90 days of HU. Both rat-specific gene arrays and qPCR will be performed focusing on genes already implicated in oxidative stress responses and cardiac disease. Gene expression analyses will be complemented by biochemical tests of frozen tissue lysates for select markers of oxidative damage.
Identification and Evaluation of Integration and Cross Cutting Issues Across HRP Risks
NASA Technical Reports Server (NTRS)
Steinberg, S. L.; Shelhamer, Mark
2015-01-01
The HRP Integrated Research Plan contains the research plans for the 32 risks requiring research to characterize and mitigate. These risks to human health and performance in spaceflight are identified by evidence and each one focuses on a single aspect of human physiology or performance. They are further categorized by aspects of the spaceflight environment, such as altered gravity or space radiation, that that play a major role in their likelihood and consequence. From its inception the "integrate" in the Research Plan has denoted the integrated nature of risks to human health and performance, the connectedness of physiological systems within the human body regardless of the spaceflight environment, and the integrated response of the human body to the spaceflight environment. Common characteristics of the spaceflight environment include altered gravity, atmospheres and light/dark cycles, space radiation, isolation, noise, and periods of high or low workload. Long term exposure to this unique environment produces a suite of physiological effects such as stress; vision, neurocognitive and anthropometric changes; circadian misalignment; fluid shifts, deconditioning; immune dysregulation; and altered nutritional requirements. Matrix diagraming was used to systematically identify, analyze and rate the many-to-many relationships between environmental characteristics and the suite of physiological effects. It was also to identify patterns in the relationships of common physiological effects to each other. Analyses of patterns or relationships in these diagrams help to identify issues that cut across multiple risks. Cross cutting issues benefit from a multidisciplinary approach that synthesizes concepts or data from two or more disciplines to identify and characterize risk factors or develop countermeasures relevant to multiple risks. They also help to illuminate possible problem areas that may arise when a countermeasure impacts risks other than those which it was developed to mitigate, or identify groupings of physiological changes that are likely to occur that may impact the overall risk posture.
Repair of Electronics for Long Duration Spaceflight
NASA Technical Reports Server (NTRS)
Pettegrew, Richard D.; Easton, John; Struk, Peter
2007-01-01
To reduce mission risk, long duration spaceflight and exploration activities will require greater degrees of self-sufficiency with regards to repair capability than have ever been employed before in space exploration. The current repair paradigm of replacing Orbital Replacement Units (ORUs) of malfunctioning avionics and electronic hardware will be impractical, since carrying all of the spares that could possibly be needed for a long duration mission would require upmass and volume at unprecedented and unacceptable levels. A strategy of component-level repair for electronics, however, could significantly reduce the mass and volume necessary for spares and enhance mission safety via a generic contingency capability. This approach is already used to varying degrees by the U.S. Navy, where vessels at sea experience some similar constraints such as the need for self sufficiency for moderately long time periods, and restrictions on volume of repair spares and infrastructure. The concept of conducting component-level repairs of electronics in spacecraft requires the development of design guidelines for future avionics (to enable repair), development of diagnostic techniques to allow an astronaut to pinpoint the faulty component aboard a vastly complex vehicle, and development of tools and methodologies for dealing with the physical processes of replacing the component. This physical process includes tasks such as conformal coating removal and replacement, component removal, replacement, and alignment--all in the difficulty of a reduced gravity environment. Further, the gravitational effects on the soldering process must be characterized and accounted for to ensure reliability of the newly repaired components. The Component-Level Electronics-Assembly Repair (CLEAR) project under the NASA Supportability program was established to develop and demonstrate the practicality of this repair approach. CLEAR involves collaborative efforts between NASA s Glenn Research Center, Langley Research Center, Johnson Space Center, the National Center for Space Exploration Research, and the U.S. Navy. The project goals are 1) develop and demonstrate a manually-operated electronics repair capability to be conducted in a spacecraft environment; and 2) develop guidelines for designs of electronics that facilitates component-level repair for future space exploration efforts. This multi-faceted program utilizes a cross-disciplinary approach to examine pre- and post-repair diagnostics, conformal coating removal and replacement, component soldering, and electronics design for supportability. These areas are investigated by a combination of trade studies, ground based testing, reduced gravity aircraft testing, and actual spaceflight testing on the International Space Station (ISS) in multiple experiments. This paper details the efforts of this program, with emphasis on early trade study results, ground-based efforts, and two upcoming ISS experiments.
NASA Technical Reports Server (NTRS)
Mulavara, A. P.; Peters, B.; De Dios, Y. E.; Gadd, N. E.; Caldwell, E. E.; Batson, C. D.; Goel, R.; Oddsson, L.; Kreutzberg, G.; Zanello, S.;
2017-01-01
Astronauts experience sensorimotor disturbances during their initial exposure to microgravity and during the re-adaptation phase following a return to an Earth-gravitational environment. These alterations may disrupt crewmembers' ability to perform mission critical functional tasks requiring ambulation, manual control and gaze stability. Interestingly, astronauts who return from spaceflight show substantial differences in their abilities to readapt to a gravitational environment. The ability to predict the manner and degree to which individual astronauts are affected will improve the effectiveness of countermeasure training programs designed to enhance sensorimotor adaptability. For such an approach to succeed, we must develop predictive measures of sensorimotor adaptability that will allow us to foresee, before actual spaceflight, which crewmembers are likely to experience greater challenges to their adaptive capacities. The goals of this project are to identify and characterize this set of predictive measures. Our approach includes: 1) behavioral tests to assess sensory bias and adaptability quantified using both strategic and plastic-adaptive responses; 2) imaging to determine individual brain morphological and functional features, using structural magnetic resonance imaging (MRI), diffusion tensor imaging, resting state functional connectivity MRI, and sensorimotor adaptation task-related functional brain activation; and 3) assessment of genetic polymorphisms in the catechol-O-methyl transferase, dopamine receptor D2, and brain-derived neurotrophic factor genes and genetic polymorphisms of alpha2-adrenergic receptors that play a role in the neural pathways underlying sensorimotor adaptation. We anticipate that these predictive measures will be significantly correlated with individual differences in sensorimotor adaptability after long-duration spaceflight and exposure to an analog bed rest environment. We will be conducting a retrospective study, leveraging data already collected from relevant ongoing or completed bed rest and spaceflight studies. This data will be combined with predictor metrics that will be collected prospectively (as described for behavioral, brain imaging and genomic measures) from these returning subjects to build models for predicting post spaceflight and bed rest adaptive capability. In this presentation we will discuss the optimized set of tests for predictive metrics to be used for evaluating post mission adaptive capability as manifested in their outcome measures. Comparisons of model performance will allow us to better design and implement sensorimotor adaptability training countermeasures against decrements in post-mission adaptive capability that are customized for each crewmember's sensory biases, adaptive ability, brain structure, brain function, and genetic predispositions. The ability to customize adaptability training will allow more efficient use of crew time during training and will optimize training prescriptions for astronauts to mitigate the deleterious effects of spaceflight.
DEVELOPMENT OF AN INFLIGHT COUNTERMEASURE TO MITIGATE POSTFLIGHT GAIT DYSFUNCTION
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Cohen, H. S.; Richards, J. T.; Miller, C. A.
2005-01-01
Following spaceflight crewmembers experience gait and postural instabilities due to inflight adaptive alterations in sensorimotor function. These changes can pose a risk to crew safety if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate postflight locomotor disturbances. Therefore, the goal of this study is to develop an inflight training regimen that facilitates the recovery of locomotor function after long-duration spaceflight. The countermeasure we are developing is based on the concept of variable practice. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. This countermeasure is built around current ISS treadmill exercise activities. Crewmembers will conduct their nominal inflight treadmill exercise while being exposed to variations in visual flow patterns. These variations will challenge the postural and locomotor systems repeatedly, thereby promoting adaptive reorganization in locomotor behavior. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, Le., the subject learns response generalizability or the ability to "learn to learn" under a variety of environmental constraints. We anticipate that this training will accelerate recovery of postural and locomotor function during readaptation to gravitational environments following spaceflight facilitating neural adaptation to unit (Earth) and partial (Mars) gravity after long-duration spaceflight. The study calls for one group of subjects to perform the inflight treadmill training regimen while a control group of subjects performs only the nominal exercise procedures. Locomotor function in both groups is assessed before and after spaceflight using two tests of gait function: The Integrated Treadmill Locomotion Test (ITLT) and the Functional Mobility Test (FMT). The ITLT characterizes alterations in the integrated function of multiple sensorimotor subsystems responsible for the control of locomotion. This test calls for subjects to walk on a motorized treadmill while we assess changes in dynamic postural stability, head-trunk coordination, short-latency head stabilization responses, dynamic visual acuity, lower limb coordination strategies and gait cycle timing. To make these assessments we measure the following parameters while subjects walk on the treadmill: 1) full body 3-dimensional kinematics using a motion capture system (Motion Analysis Corp., Santa Rosa, CA); 2) the shock-wave transmitted from heel-strike to the head using triaxial accelerometers placed on the tibia and head (Entran, Fairfield, NJ); 3) vertical forces using an instrumented treadmill (Kistler Instrument Corp., Amherst, NY); 4) Dynamic visual acuity using Landolt Cs presented on a laptop computer located 4m from the eyes and 5) Gait cycle timing using foot-switches (Motion Lab Systems, Inc., Baton Rouge, LA) attached to the plantar surface of each shoe at the heel and toe. The FMT evaluates a subject's ability to perform challenging locomotor maneuvers similar to those encountered during an egress from a space vehicle. Subjects step over and duck under obstacles along with negotiating a series of pylons set up on a base of 10 cm thick medium density foam. The dependent measures for the FMT are time to complete the course and the number of obstacles touched. To date, we have collected pre and postflight locomotion data from Expeditions 5-9 who will serve as part of the control group for this study. Preliminary results comparing the recovery rates in gait control sub-systems obtained from the ITLT and FMT performance showed two recovery patterns: 1) a concordant recovery trend between gait control parameters and FMT performance indicating a restitution pattern of recovery and 2) gait controecovery that lagged recovery in FMT performance suggesting that improvement in locomotor function was attained through a pattern of substitution. These data suggest that recovery of postflight locomotor function may occur through adaptive mechanisms that lead to either restitution or substitution of function. Understanding the modes of postflight readaptation has implications for countermeasure development and testing and in astronaut postflight rehabilitation.
Development of an Inflight Countermeasure to Mitigate Postflight Gait Dysfunction
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.
2005-01-01
Following spaceflight crewmembers experience gait and postural instabilities due to inflight adaptive alterations in sensorimotor function. These changes can pose a risk to crew safety if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate postflight locomotor disturbances. Therefore, the goal of this study is to develop an inflight training regimen that facilitates the recovery of locomotor function after long-duration spaceflight. The countermeasure we are developing is based on the concept of variable practice. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. This countermeasure is built around current ISS treadmill exercise activities. Crewmembers will conduct their nominal inflight treadmill exercise while being exposed to variations in visual flow patterns. These variations will challenge the postural and locomotor systems repeatedly, thereby promoting adaptive reorganization in locomotor behavior. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, Le., the subject learns response generalizability or the ability to "learn to learn" under a variety of environmental constraints. We anticipate that this training will accelerate recovery of postural and locomotor function during readaptation to gravitational environments following spaceflight facilitating neural adaptation to unit (Earth) and partial (Mars) gravity after long-duration spaceflight. The study calls for one group of subjects to perform the inflight treadmill training regimen while a control group of subjects performs only the nominal exercise procedures. Locomotor function in both groups is assessed before and after spaceflight using two tests of gait function: The Integrated Treadmill Locomotion Test (ITLT) and the Functional Mobility Test (FMT). The ITLT characterizes alterations in the integrated function of multiple sensorimotor subsystems responsible for the control of locomotion. This test calls for subjects to walk on a motorized treadmill while we assess changes in dynamic postural stability, head-trunk coordination, short-latency head stabilization responses, dynamic visual acuity, lower limb coordination strategies and gait cycle timing. To make these assessments we measure the following parameters while subjects walk on the treadmill: 1) full body 3-dimensional kinematics using a motion capture system (Motion Analysis Corp., Santa Rosa, CA); 2) the shock-wave transmitted from heel-strike to the head using triaxial accelerometers placed on the tibia and head (Entran, Fairfield, NJ); 3) vertical forces using an instumented treadmill (Kistler Instrument Corp., Amherst, NY); 4) Dynamic visual acuity using Landolt Cs presented on a laptop computer located 4m from the eyes and 5) Gait cycle timing using foot-switches (Motion Lab Systems, Inc., Baton Rouge, LA) attached to the plantar surface of each shoe at the heel and toe. The FMT evaluates s. subject's ability to perform challenging locomotor maneuvers similar to those encountered during an egress from a space vehicle. Subjects step over and duck under obstacles along with negotiating a series of pylons set up on a base of 10 cm thick medium density foam. The dependent measures for the FMT are time to complete the course and the number of obstacles touched. To date, we have collected pre and postflight locomotion data from Expeditions 5-9 who will serve as part of the control group for this study. Preliminary results comparing the recovery rates in gait control sub-systems obtained from the ITLT and FMT performance showed two recovery patterns: 1) a concordant recovery trend between gait control parameters and FMT performance indicating a restitution pattern of recovery and 2) gait controecovery that lagged recovery in FMT performance suggesting that improvement in locomotor function was attained through a pattern of substitution. These data suggest that recovery of postflight locomotor function may occur through adaptive mechanisms that lead to either restitution or substitution of function. Understanding the modes of postflight readaptation has implications for countermeasure development and testing and in astronaut postflight rehabilitation.
NASA Technical Reports Server (NTRS)
Miu, B.; Martin, T. P.; Roy, R. R.; Oganov, V.; Ilyina-Kakueva, E.; Marini, J. F.; Leger, J. J.; Bodine-Fowler, S. C.; Edgerton, V. R.
1990-01-01
The adaptation of a slow (soleus, Sol) and a fast (medial gastrocnemius, MG) skeletal muscle to spaceflight was studied in five young male rats. The flight period was 12.5 days and the rats were killed approximately 48 h after returning to 1 g. Five other rats that were housed in cages similar to those used by the flight rats were maintained at 1 g for the same period of time to serve as ground-based controls. Fibers were classified as dark or light staining for myosin adenosine triphosphatase (ATPase). On the average, the fibers in the Sol of the flight rats atrophied twice as much as those in the MG. Further, the fibers located in the deep (close to the bone and having the highest percentage of light ATPase and high oxidative fibers in the muscle cross section) region of the MG atrophied more than the fibers located in the superficial (away from the bone and having the lowest percentage of light ATPase and high oxidative fibers in the muscle cross-section) region of the muscle. Based on quantitative histochemical assays of single muscle fibers, succinate dehydrogenase (SDH) activity per unit volume was unchanged in fibers of the Sol and MG. However, in the Sol, but not the MG, the total amount of SDH activity in a 10-microns-thick section of a fiber decreased significantly in response to spaceflight. Based on population distributions, it appears that the alpha-glycerophosphate dehydrogenase (GPD) activities were elevated in the dark ATPase fibers in the Sol, whereas the light fibers in the Sol and both fiber types in the MG did not appear to change. The ratio of GPD to SDH activities increased in the dark (but not light) fibers of the Sol and was unaffected in the MG. Immunohistochemical analyses indicate that approximately 40% of the fibers in the Sol of flight rats expressed a fast myosin heavy chain compared with 22% in control rats. Further, 31% of the fibers in the Sol of flight rats expressed both fast and slow myosin heavy chains compared with 8% in control rats. Immunohistochemical changes in the MG were minimal. These data suggest that the magnitude and direction of enzymatic activity and cell volume changes are dependent on the muscle, the region of the muscle, and the type of myosin expressed in the fibers. Further, the ability of fibers to maintain normal or even elevated activities per unit volume of some metabolic enzymes is remarkable considering the marked and rapid decrease in fiber volume.
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Rana, Brinda K.; Stenger, Michael B.; Sears, Dorothy D.; Smith, Scott M.; Zwart, Sara R.; Macias, Brandon R.; Hargans, Alan R.; Sharma, Kumar; De Vivo, Immaculata
2017-01-01
BACKGROUND: Future human space travel will consist primarily of long-duration missions onboard the International Space Station (ISS) or exploration-class missions to Mars, its moons, or nearby asteroids. Astronauts participating in long-duration missions may be at an increased risk of oxidative stress and inflammatory damage due to radiation, psychological stress, altered physical activity, nutritional insufficiency, and hyperoxia during extravehicular activity. By studying one identical twin during his 1-year ISS mission and his ground-based twin, this work extends a current NASA-funded investigation to determine whether these spaceflight factors contribute to an accelerated progression of atherosclerosis. This study of twins affords a unique opportunity to examine spaceflight-related atherosclerosis risk that is independent of the confounding factors associated with different genotypes. PURPOSE: The purpose of this investigation was to determine whether biomarkers of oxidative and inflammatory stress are elevated during and after long-duration spaceflight and determine if a relation exists between levels of these biomarkers and structural and functional indices of atherosclerotic risk measured in the carotid and brachial arteries. These physiological and biochemical data will be extended by using an exploratory approach to investigate the relationship between intermediate phenotypes and risk factors for atherosclerosis and the metabolomic signature from plasma and urine samples. Since metabolites are often the indirect products of gene expression, we simultaneously assessed gene expression and DNA methylation in leukocytes. HYPOTHESIS: We predict that, compared to the ground-based twin, the space-flown twin will experience elevated biomarkers of oxidative stress and inflammatory damage, altered arterial structure and function, accelerated telomere shortening, dysregulation of genes associated with oxidative stress and inflammation, and a metabolic profile shift that is associated with elevated atherosclerosis risk factors. METHODS: In the space-flown twin, a panel of biomarkers of oxidative and inflammatory stress were measured in venous blood samples and in 24-h (in-flight) and 48-h (pre- and post-flight) urine pools collected twice before flight, six times during the mission (FD15, 75, 180, 240, 300, 335), and early in the post-flight recovery phase (3-5 days after landing). We also measured metabolomic (targeted and untargeted approaches) and genomic markers (DNA methylation, mRNA gene expression, telomere length) in these samples. Arterial structure, assessed from measures of intima-media thickness, also were measured using standard clinical ultrasound at the same time points. Arterial function was assessed using brachial flow-mediated dilation, a well-validated measure used to assess endothelium-dependent vasodilation and a sensitive predictor of atherosclerotic risk, only before and after spaceflight. All of the same measures were obtained in the ground-based twin, but less frequently. DISCUSSION: All data collection has been completed for both the space-flown twin and the ground-based twin. Vascular structure and function measures have been analyzed, blood and urine samples have been batch-processed. Results from these individuals will be compared to each other, to data from other Twin Study investigations, and to the larger complement of subjects participating in the companion study currently ongoing in ISS astronauts.