Graveland, Pieternella E; Wierdsma, André I; van den Broek, Walter W; Birkenhäger, Tom K
2013-08-01
To compare the effects of propofol and etomidate on the stimulus variables and efficacy of electroconvulsive therapy (ECT) in depressed inpatients. This retrospective study included 54 inpatients (aged 18-75 years) who met the DSM-IV criteria for major depression and were treated with bilateral ECT. For the first part of the study, the primary outcome was the mean stimulus charge per ECT session. For the second part, the main outcome measure was the proportion of patients achieving full remission. Propofol-treated patients showed a higher mean stimulus charge (etomidate = 227.58 ± 130.44, propofol = 544.91 ± 237.56, p<0.001) despite the lack of a significant difference in starting threshold doses. The propofol group had shorter mean electroencephalogram (etomidate = 69.41 ± 22.50, propofol = 42.95 ± 22.26, p<0.001) seizure duration and motor (etomidate = 46.11 ± 14.38, propofol = 22.89 ± 7.13, p<0.001) seizure duration and a higher mean number of inadequate seizures (etomidate = 0.12 ± 0.15, propofol = 0.47 ± 0.26, p<0.001). No significant differences were found between the groups for the effects of the anesthetics on the efficacy of ECT. Our study is limited by a retrospective design and the small number of patients treated with propofol restricted the sample size. Anesthesia with propofol has a significant reducing effect on seizure duration during the course of ECT which results in more inadequate seizures, despite the use of a higher mean stimulus charge. Regarding the possible effect of the anesthetics on ECT, randomized clinical trials with sufficient power to detect differences are warranted. Copyright © 2013 Elsevier Inc. All rights reserved.
Tooth pulp stimulation as an unconditioned stimulus in defensive instrumental conditioning.
Jastreboff, P J; Keller, O; Zieliński, K
1977-01-01
In an experiment performed on five cats, stable escape and avoidance reflexes in a bar-pressing situation were established using tooth pulp electric stimulation as the unconditioned stimulus. The influence of changes in parameters of the unconditioned stimulus (current intensity, single pulse and train durations, frequency of pulses and rate of train presentations) on unconditioned and instrumental responses was analysed in three additional subjects. Among other relationships the dependence of the threshold of bar press responses on the amount of charge in a single pulse was determined.
Electric stimulus duration alters network-mediated responses depending on retinal ganglion cell type
NASA Astrophysics Data System (ADS)
Im, Maesoon; Werginz, Paul; Fried, Shelley I.
2018-06-01
Objective. To improve the quality of artificial vision that arises from retinal prostheses, it is important to bring electrically-elicited neural activity more in line with the physiological signaling patterns that arise normally in the healthy retina. Our previous study reported that indirect activation produces a closer match to physiological responses in ON retinal ganglion cells (RGCs) than in OFF cells (Im and Fried 2015 J. Physiol. 593 3677-96). This suggests that a preferential activation of ON RGCs would shape the overall retinal response closer to natural signaling. Recently, we found that changes to the rate at which stimulation was delivered could bias responses towards a stronger ON component (Im and Fried 2016a J. Neural Eng. 13 025002), raising the possibility that changes to other stimulus parameters can similarly bias towards stronger ON responses. Here, we explore the effects of changing stimulus duration on the responses in ON and OFF types of brisk transient (BT) and brisk sustained (BS) RGCs. Approach. We used cell-attached patch clamp to record RGC spiking in the isolated rabbit retina. Targeted RGCs were first classified as ON or OFF type by their light responses, and further sub-classified as BT or BS types by their responses to both light and electric stimuli. Spiking in targeted RGCs was recorded in response to electric pulses with durations varying from 5 to100 ms. Stimulus amplitude was adjusted at each duration to hold total charge constant for all experiments. Main results. We found that varying stimulus durations modulated responses differentially for ON versus OFF cells: in ON cells, spike counts decreased significantly with increasing stimulus duration while in OFF cells the changes were more modest. The maximum ratio of ON versus OFF responses occurred at a duration of ~10 ms. The difference in response strength for BT versus BS cells was much larger in ON cells than in OFF cells. Significance. The stimulation rates preferred by subjects during clinical trials are similar to the rates that maximize the ON/OFF response ratio in in vitro testing (Im and Fried 2016a J. Neural Eng. 13 025002). Here, we determine the stimulus duration that produces the strongest bias towards ON responses and speculate that it will further enhance clinical effectiveness.
Exploring the tolerability of spatiotemporally complex electrical stimulation paradigms.
Nelson, Timothy S; Suhr, Courtney L; Lai, Alan; Halliday, Amy J; Freestone, Dean R; McLean, Karen J; Burkitt, Anthony N; Cook, Mark J
2011-10-01
A modified cortical stimulation model was used to investigate the effects of varying the synchronicity and periodicity of electrical stimuli delivered to multiple pairs of electrodes on seizure initiation. In this model, electrical stimulation of the motor cortex of rats, along four pairs of a microwire electrode array, results in an observable seizure with quantifiable electrographic duration and behavioural severity. Periodic stimuli had a constant inter-stimulus intervals across the two-second stimulus duration, whilst synchronous stimuli consisted of singular biphasic, bipolar pulses delivered to the four pairs of electrodes at precisely the same time for the entire two second stimulation period. In this way four combinations of stimulation were possible; periodic/synchronous (P/S), periodic/asynchronous (P/As), aperiodic/synchronous (Ap/S) and aperiodic/asynchronous (Ap/As). All stimulation types were designed with equal pulse width, current intensity and mean frequency of stimulation (60 Hz), standardizing net charge transfer. It was expected that the periodicity of the stimulus would be the primary determinant of seizure initiation and therefore severity and electrographic duration. However, the results showed that significant differences in both severity and duration only occurred when the synchronicity was altered. For periodic stimuli, synchronous delivery increased median seizure duration from 5 s to 13 s and increased median Racine severity from 1 to 3. In the aperiodic case, synchronous stimulus delivery increased median duration from 5.5 s to 11s and resulted in seizures of median severity 3 vs. 0 in the asynchronous case. These findings may have implications for the design of future neurostimulation waveform designs as higher numbers of electrodes and stimulator output channels become available in next generation implants. Copyright © 2011 Elsevier B.V. All rights reserved.
Heart rate changes during electroconvulsive therapy
2013-01-01
Background This observational study documented heart rate over the entire course of electrically induced seizures and aimed to evaluate the effects of stimulus electrode placement, patients' age, stimulus dose, and additional predictors. Method In 119 consecutive patients with 64 right unilateral (RUL) and 55 bifrontal (BF) electroconvulsive treatments, heart rate graphs based on beat-to-beat measurements were plotted up to durations of 130 s. Results In RUL stimulation, the initial drop in heart rate lasted for 12.5 ± 2.6 s (mean ± standard deviation). This depended on stimulus train duration, age, and baseline heart rate. In seizures induced with BF electrode placement, a sympathetic response was observed within the first few seconds of the stimulation phase (median 3.5 s). This was also the case with subconvulsive stimulations. The mean peak heart rate in all 119 treatments amounted to 135 ± 20 bpm and depended on baseline heart rate and seizure duration; electrode placement, charge dose, and age were insignificant in regression analysis. A marked decline in heart rate in connection with seizure cessation occurred in 71% of treatments. Conclusions A significant independent effect of stimulus electrode positioning on cardiac action was evident only in the initial phase of the seizures. Electrical stimulation rather than the seizure causes the initial heart rate increase in BF treatments. The data reveal no rationale for setting the stimulus doses as a function of intraictal peak heart rates (‘benchmark method’). The marked decline in heart rate at the end of most seizures is probably mediated by a baroreceptor reflex. PMID:23764036
Short-term memory for event duration: modality specificity and goal dependency.
Takahashi, Kohske; Watanabe, Katsumi
2012-11-01
Time perception is involved in various cognitive functions. This study investigated the characteristics of short-term memory for event duration by examining how the length of the retention period affects inter- and intramodal duration judgment. On each trial, a sample stimulus was followed by a comparison stimulus, after a variable delay period (0.5-5 s). The sample and comparison stimuli were presented in the visual or auditory modality. The participants determined whether the comparison stimulus was longer or shorter than the sample stimulus. The distortion pattern of subjective duration during the delay period depended on the sensory modality of the comparison stimulus but was not affected by that of the sample stimulus. When the comparison stimulus was visually presented, the retained duration of the sample stimulus was shortened as the delay period increased. Contrarily, when the comparison stimulus was presented in the auditory modality, the delay period had little to no effect on the retained duration. Furthermore, whenever the participants did not know the sensory modality of the comparison stimulus beforehand, the effect of the delay period disappeared. These results suggest that the memory process for event duration is specific to sensory modality and that its performance is determined depending on the sensory modality in which the retained duration will be used subsequently.
Effects of Temporal Features and Order on the Apparent duration of a Visual Stimulus
Bruno, Aurelio; Ayhan, Inci; Johnston, Alan
2012-01-01
The apparent duration of a visual stimulus has been shown to be influenced by its speed. For low speeds, apparent duration increases linearly with stimulus speed. This effect has been ascribed to the number of changes that occur within a visual interval. Accordingly, a higher number of changes should produce an increase in apparent duration. In order to test this prediction, we asked subjects to compare the relative duration of a 10-Hz drifting comparison stimulus with a standard stimulus that contained a different number of changes in different conditions. The standard could be static, drifting at 10 Hz, or mixed (a combination of variable duration static and drifting intervals). In this last condition the number of changes was intermediate between the static and the continuously drifting stimulus. For all standard durations, the mixed stimulus looked significantly compressed (∼20% reduction) relative to the drifting stimulus. However, no difference emerged between the static (that contained no changes) and the mixed stimuli (which contained an intermediate number of changes). We also observed that when the standard was displayed first, it appeared compressed relative to when it was displayed second with a magnitude that depended on standard duration. These results are at odds with a model of time perception that simply reflects the number of temporal features within an interval in determining the perceived passing of time. PMID:22461778
Sissons, Heather T.; Urcelay, Gonzalo P.; Miller, Ralph R.
2009-01-01
The present experiments examined the role of within-compound associations in the interaction of the overshadowing procedure with conditioned stimulus (CS) duration, using a conditioned suppression procedure with rats. Experiment 1 found that, with elemental reinforced training, conditioned suppression to the target stimulus decreased as CS duration increased (i.e., the CS-duration effect), whereas with compound reinforced training (i.e., the overshadowing procedure) conditioned suppression to the target stimulus increased as CS duration increased. Subsequent experiments replicated these findings in sensory preconditioning and demonstrated that extinction of the overshadowing stimulus results in retrospective revaluation with short CSs and mediated extinction with long CSs. These results highlight the role of the duration of the stimulus in behavioral control. Moreover, these results illuminate one cause (the CS duration) of whether retrospective revaluation or mediated extinction will be observed. PMID:19542092
D'Cunha, Craig; Plakiotis, Christos; O'Connor, Daniel W
2016-06-01
Electroconvulsive therapy (ECT) prescription rates rise with age, making it important that treatments be made as effective and safe as possible (Plakiotis et al., 2012). Older people are vulnerable to post-treatment confusion and to subsequent deficits in attention, new learning, and autobiographical memory (Gardner and O'Connor, 2008). Strategies to minimize cognitive side-effects include unilateral electrode placement and stimulus dose titration whereby electrical charge is individually calibrated to seizure threshold (Sackeim et al., 2000). It remains the case, however, that threshold levels typically rise over the treatment course, leading to an increase both in delivered charge and the risk of adverse sequelae.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue
NASA Astrophysics Data System (ADS)
Jezernik, Sašo; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Charge and energy minimization in electrical/magnetic stimulation of nervous tissue.
Jezernik, Saso; Sinkjaer, Thomas; Morari, Manfred
2010-08-01
In this work we address the problem of stimulating nervous tissue with the minimal necessary energy at reduced/minimal charge. Charge minimization is related to a valid safety concern (avoidance and reduction of stimulation-induced tissue and electrode damage). Energy minimization plays a role in battery-driven electrical or magnetic stimulation systems (increased lifetime, repetition rates, reduction of power requirements, thermal management). Extensive new theoretical results are derived by employing an optimal control theory framework. These results include derivation of the optimal electrical stimulation waveform for a mixed energy/charge minimization problem, derivation of the charge-balanced energy-minimal electrical stimulation waveform, solutions of a pure charge minimization problem with and without a constraint on the stimulation amplitude, and derivation of the energy-minimal magnetic stimulation waveform. Depending on the set stimulus pulse duration, energy and charge reductions of up to 80% are deemed possible. Results are verified in simulations with an active, mammalian-like nerve fiber model.
Stimulus Intensity and the Perception of Duration
ERIC Educational Resources Information Center
Matthews, William J.; Stewart, Neil; Wearden, John H.
2011-01-01
This article explores the widely reported finding that the subjective duration of a stimulus is positively related to its magnitude. In Experiments 1 and 2 we show that, for both auditory and visual stimuli, the effect of stimulus magnitude on the perception of duration depends upon the background: Against a high intensity background, weak stimuli…
ERIC Educational Resources Information Center
Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion; Eisenhardt, Dorothea
2014-01-01
This study examines the role of stimulus duration in learning and memory formation of honeybees ("Apis mellifera"). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS…
Brielmann, Aenne A; Vale, Lauren; Pelli, Denis G
2017-12-01
Over time, how does beauty develop and decay? Common sense suggests that beauty is intensely felt only after prolonged experience of the object. Here, we present one of various stimuli for a variable duration (1-30 s), measure the observers' pleasure over time, and, finally, ask whether they felt beauty. On each trial, participants (N = 21) either see an image that they had chosen as "movingly beautiful," see an image with prerated valence, or suck a candy. During the stimulus and a further 60 s, participants rate pleasure continuously using a custom touchscreen web app, EmotionTracker.com. After each trial, participants judge whether they felt beauty. Across all stimulus kinds, durations, and beauty responses, the dynamic pleasure rating has a stereotypical time course that is well fit by a one-parameter model with a brief exponential onset (roughly 2.5 s), a sustained plateau during stimulus presentation, and a long exponential decay (roughly 70 s). Across conditions, only the plateau amplitude varies. Beauty and pleasure amplitude are nearly independent of stimulus duration. The final beauty rating is positively correlated with pleasure amplitude (r = 0.60), and nearly independent of duration (r = 0.10). Beauty's independence from duration is unlike Bentham's 18th-century notion of value (utility), which he supposed to depend on the product of pleasure amplitude and duration. Participants report having felt pleasure as strongly after a mere 1 s stimulus as after longer durations, up to 30 s. Thus, we find that amplitude of pleasure is independent of stimulus duration.
ERIC Educational Resources Information Center
Campbell, Kenneth; Herzig, Alyssa; Jashmidi, Parastoo
2009-01-01
A long-duration stimulus will elicit a negative sustained potential (SP) that is maximum in amplitude over fronto-central areas of the scalp. This study examines how the duration of active attentional processing of the stimulus might also elicit a nonsensory contingent negative variation (CNV) that overlaps and summates to the SP. Subjects were…
Rammsayer, Thomas H; Verner, Martin
2016-05-01
Perceived duration has been shown to be positively related to task-irrelevant, nontemporal stimulus magnitude. To account for this finding, Walsh's (2003) A Theory of Magnitude (ATOM) model suggests that magnitude of time is not differentiated from magnitude of other nontemporal stimulus characteristics and collectively processed by a generalized magnitude system. In Experiment 1, we investigated the combined effects of stimulus size and numerical quantity, as two nontemporal stimulus dimensions covered by the ATOM model, on duration judgments. Participants were required to reproduce the duration of target intervals marked by Arabic digits varying in physical size and numerical value. While the effect of stimulus size was effectively moderated by target duration, the effect of numerical value appeared to require attentional resources directed to the numerical value in order to become effective. Experiment 2 was designed to further elucidate the mediating influence of attention on the effect of numerical value on duration judgments. An effect of numerical value was only observed when participants' attention was directed to digit value, but not when participants were required to pay special attention to digit parity. While the ATOM model implies a common metrics and generalized magnitude processing for time, size, and quantity, the present findings provided converging evidence for the notion of two qualitatively different mechanisms underlying the effects of nontemporal stimulus size and numerical value on duration judgments. Furthermore, our data challenge the implicit common assumption that the effect of numerical value on duration judgments represents a continuously increasing function of digit magnitude.
Temporal Dependency and the Structure of Early Looking.
Messinger, Daniel S; Mattson, Whitney I; Todd, James Torrence; Gangi, Devon N; Myers, Nicholas D; Bahrick, Lorraine E
2017-01-01
Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking.
Temporal Dependency and the Structure of Early Looking
Messinger, Daniel S.; Mattson, Whitney I.; Todd, James Torrence; Gangi, Devon N.; Myers, Nicholas D.; Bahrick, Lorraine E.
2017-01-01
Although looking time is used to assess infant perceptual and cognitive processing, little is known about the temporal structure of infant looking. To shed light on this temporal structure, 127 three-month-olds were assessed in an infant-controlled habituation procedure and presented with a pre-recorded display of a woman addressing the infant using infant-directed speech. Previous individual look durations positively predicted subsequent look durations over a six look window, suggesting a temporal dependency between successive infant looks. The previous look duration continued to predict the subsequent look duration after accounting for habituation-linked declines in look duration, and when looks were separated by an inter-trial interval in which no stimulus was displayed. Individual differences in temporal dependency, the strength of associations between consecutive look durations, are distinct from individual differences in mean infant look duration. Nevertheless, infants with stronger temporal dependency had briefer mean look durations, a potential index of stimulus processing. Temporal dependency was evident not only between individual infant looks but between the durations of successive habituation trials (total looking within a trial). Finally, temporal dependency was evident in associations between the last look at the habituation stimulus and the first look at a novel test stimulus. Thus temporal dependency was evident across multiple timescales (individual looks and trials comprised of multiple individual looks) and persisted across conditions including brief periods of no stimulus presentation and changes from a familiar to novel stimulus. Associations between consecutive look durations over multiple timescales and stimuli suggest a temporal structure of infant attention that has been largely ignored in previous work on infant looking. PMID:28076362
Macías, Silvio; Hernández-Abad, Annette; Hechavarría, Julio C; Kössl, Manfred; Mora, Emanuel C
2015-05-01
It has been reported previously that in the inferior colliculus of the bat Molossus molossus, neuronal duration tuning is ambiguous because the tuning type of the neurons dramatically changes with the sound level. In the present study, duration tuning was examined in the auditory cortex of M. molossus to describe if it is as ambiguous as the collicular tuning. From a population of 174 cortical 104 (60 %) neurons did not show duration selectivity (all-pass). Around 5 % (9 units) responded preferentially to stimuli having longer durations showing long-pass duration response functions, 35 (20 %) responded to a narrow range of stimulus durations showing band-pass duration response functions, 24 (14 %) responded most strongly to short stimulus durations showing short-pass duration response functions and two neurons (1 %) responded best to two different stimulus durations showing a two-peaked duration-response function. The majority of neurons showing short- (16 out of 24) and band-pass (24 out 35) selectivity displayed "O-shaped" duration response areas. In contrast to the inferior colliculus, duration tuning in the auditory cortex of M. molossus appears level tolerant. That is, the type of duration selectivity and the stimulus duration eliciting the maximum response were unaffected by changing sound level.
Two-flash thresholds as a function of comparison stimulus duration.
DOT National Transportation Integrated Search
1970-09-01
The proposal that two-flash thresholds may be used as direct measures of the critical duration (tc) of Bloch's law was tested. Two-flash threshold was found to be an increasing function of comparison stimulus duration for durations of 3 to 22 msec. i...
The Impact of Attention on Judgments of Frequency and Duration
Winkler, Isabell; Glauer, Madlen; Betsch, Tilmann; Sedlmeier, Peter
2015-01-01
Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested. PMID:26000712
The impact of attention on judgments of frequency and duration.
Winkler, Isabell; Glauer, Madlen; Betsch, Tilmann; Sedlmeier, Peter
2015-01-01
Previous studies that examined human judgments of frequency and duration found an asymmetrical relationship: While frequency judgments were quite accurate and independent of stimulus duration, duration judgments were highly dependent upon stimulus frequency. A potential explanation for these findings is that the asymmetry is moderated by the amount of attention directed to the stimuli. In the current experiment, participants' attention was manipulated in two ways: (a) intrinsically, by varying the type and arousal potential of the stimuli (names, low-arousal and high-arousal pictures), and (b) extrinsically, by varying the physical effort participants expended during the stimulus presentation (by lifting a dumbbell vs. relaxing the arm). Participants processed stimuli with varying presentation frequencies and durations and were subsequently asked to estimate the frequency and duration of each stimulus. Sensitivity to duration increased for pictures in general, especially when processed under physical effort. A large effect of stimulus frequency on duration judgments was obtained for all experimental conditions, but a similar large effect of presentation duration on frequency judgments emerged only in the conditions that could be expected to draw high amounts of attention to the stimuli: when pictures were judged under high physical effort. Almost no difference in the mutual impact of frequency and duration was obtained for low-arousal or high-arousal pictures. The mechanisms underlying the simultaneous processing of frequency and duration are discussed with respect to existing models derived from animal research. Options for the extension of such models to human processing of frequency and duration are suggested.
An investigation of the spatial selectivity of the duration after-effect.
Maarseveen, Jim; Hogendoorn, Hinze; Verstraten, Frans A J; Paffen, Chris L E
2017-01-01
Adaptation to the duration of a visual stimulus causes the perceived duration of a subsequently presented stimulus with a slightly different duration to be skewed away from the adapted duration. This pattern of repulsion following adaptation is similar to that observed for other visual properties, such as orientation, and is considered evidence for the involvement of duration-selective mechanisms in duration encoding. Here, we investigated whether the encoding of duration - by duration-selective mechanisms - occurs early on in the visual processing hierarchy. To this end, we investigated the spatial specificity of the duration after-effect in two experiments. We measured the duration after-effect at adapter-test distances ranging between 0 and 15° of visual angle and for within- and between-hemifield presentations. We replicated the duration after-effect: the test stimulus was perceived to have a longer duration following adaptation to a shorter duration, and a shorter duration following adaptation to a longer duration. Importantly, this duration after-effect occurred at all measured distances, with no evidence for a decrease in the magnitude of the after-effect at larger distances or across hemifields. This shows that adaptation to duration does not result from adaptation occurring early on in the visual processing hierarchy. Instead, it seems likely that duration information is a high-level stimulus property that is encoded later on in the visual processing hierarchy. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Narendran, Mini M.; Humes, Larry E.
2003-04-01
Increasing the rate of presentation can have a deleterious effect on auditory processing, especially among the elderly. Rate can be manipulated by changing the duration of individual components of a sequence of sounds, by changing the inter-stimulus interval (ISI) between components, or both. Consequently, when age-related deficits in performance appear to be attributable to rate of stimulus presentation, it is often the case that alternative explanations in terms of the effects of stimulus duration or ISI are also possible. In this study, the independent effects of duration and ISI on the discrimination of temporal order for four-tone sequences were investigated in a group of young normal-hearing and elderly hearing-impaired listeners. It was found that discrimination performance was driven by the rate of presentation, rather than stimulus duration or ISI alone, for both groups of listeners. The performance of the two groups of listeners differed significantly for the fastest presentation rates, but was similar for the slower rates. Slowing the rate of presentation seemed to improve performance, regardless of whether this was done by increasing stimulus duration or increasing ISI, and this was observed for both groups of listeners. [Work supported, in part, by NIA.
Marter, Kathrin; Grauel, M. Katharina; Lewa, Carmen; Morgenstern, Laura; Buckemüller, Christina; Heufelder, Karin; Ganz, Marion
2014-01-01
This study examines the role of stimulus duration in learning and memory formation of honeybees (Apis mellifera). In classical appetitive conditioning honeybees learn the association between an initially neutral, conditioned stimulus (CS) and the occurrence of a meaningful stimulus, the unconditioned stimulus (US). Thereby the CS becomes a predictor for the US eliciting a conditioned response (CR). Here we study the role of US duration in classical conditioning by examining honeybees conditioned with different US durations. We quantify the CR during acquisition, memory retention, and extinction of the early long-term memory (eLTM), and examine the molecular mechanisms of eLTM by interfering with protein synthesis. We find that the US duration affects neither the probability nor the strength of the CR during acquisition, eLTM retention, and extinction 24 h after conditioning. However, we find that the resistance to extinction 24 h after conditioning is susceptible to protein synthesis inhibition depending on the US duration. We conclude that the US duration does not affect the predictability of the US but modulates the protein synthesis underlying the eLTM's strength. Thus, the US duration differentially impacts learning, eLTM strength, and its underlying protein synthesis. PMID:25403456
Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes.
Parkins, C W; Colombo, J
1987-12-31
Single auditory-nerve neuron thresholds were studied in sensory-deafened squirrel monkeys to determine the effects of electrical stimulus shape and frequency on single-neuron thresholds. Frequency was separated into its components, pulse width and pulse rate, which were analyzed separately. Square and sinusoidal pulse shapes were compared. There were no or questionably significant threshold differences in charge per phase between sinusoidal and square pulses of the same pulse width. There was a small (less than 0.5 dB) but significant threshold advantage for 200 microseconds/phase pulses delivered at low pulse rates (156 pps) compared to higher pulse rates (625 pps and 2500 pps). Pulse width was demonstrated to be the prime determinant of single-neuron threshold, resulting in strength-duration curves similar to other mammalian myelinated neurons, but with longer chronaxies. The most efficient electrical stimulus pulse width to use for cochlear implant stimulation was determined to be 100 microseconds/phase. This pulse width delivers the lowest charge/phase at threshold. The single-neuron strength-duration curves were compared to strength-duration curves of a computer model based on the specific anatomy of auditory-nerve neurons. The membrane capacitance and resulting chronaxie of the model can be varied by altering the length of the unmyelinated termination of the neuron, representing the unmyelinated portion of the neuron between the habenula perforata and the hair cell. This unmyelinated segment of the auditory-nerve neuron may be subject to aminoglycoside damage. Simulating a 10 micron unmyelinated termination for this model neuron produces a strength-duration curve that closely fits the single-neuron data obtained from aminoglycoside deafened animals. Both the model and the single-neuron strength-duration curves differ significantly from behavioral threshold data obtained from monkeys and humans with cochlear implants. This discrepancy can best be explained by the involvement of higher level neurologic processes in the behavioral responses. These findings suggest that the basic principles of neural membrane function must be considered in developing or analyzing electrical stimulation strategies for cochlear prostheses if the appropriate stimulation of frequency specific populations of auditory-nerve neurons is the objective.
Decoupling Stimulus Duration from Brightness in Metacontrast Masking: Data and Models
ERIC Educational Resources Information Center
Di Lollo, Vincent; Muhlenen, Adrian von; Enns, James T.; Bridgeman, Bruce
2004-01-01
A brief target that is visible when displayed alone can be rendered invisible by a trailing stimulus (metacontrast masking). It has been difficult to determine the temporal dynamics of masking to date because increments in stimulus duration have been invariably confounded with apparent brightness (Bloch's law). In the research reported here,…
Alerting Attention and Time Perception in Children.
ERIC Educational Resources Information Center
Droit-Volet, Sylvie
2003-01-01
Examined effects of a click signaling arrival of a visual stimulus to be timed on temporal discrimination in 3-, 5-, and 8-year-olds. Found that in all groups, the proportion of long responses increased with the stimulus duration, although the steepness of functions increased with age. Stimulus duration was judged longer with than without the…
Subliminal perception of complex visual stimuli.
Ionescu, Mihai Radu
2016-01-01
Rationale: Unconscious perception of various sensory modalities is an active subject of research though its function and effect on behavior is uncertain. Objective: The present study tried to assess if unconscious visual perception could occur with more complex visual stimuli than previously utilized. Methods and Results: Videos containing slideshows of indifferent complex images with interspersed frames of interest of various durations were presented to 24 healthy volunteers. The perception of the stimulus was evaluated with a forced-choice questionnaire while awareness was quantified by self-assessment with a modified awareness scale annexed to each question with 4 categories of awareness. At values of 16.66 ms of stimulus duration, conscious awareness was not possible and answers regarding the stimulus were random. At 50 ms, nonrandom answers were coupled with no self-reported awareness suggesting unconscious perception of the stimulus. At larger durations of stimulus presentation, significantly correct answers were coupled with a certain conscious awareness. Discussion: At values of 50 ms, unconscious perception is possible even with complex visual stimuli. Further studies are recommended with a focus on a range of interest of stimulus duration between 50 to 16.66 ms.
Trigeminal induced arousals during human sleep.
Heiser, Clemens; Baja, Jan; Lenz, Franziska; Sommer, J Ulrich; Hörmann, Karl; Herr, Raphael M; Stuck, Boris A
2015-05-01
Arousals caused by external stimuli during human sleep have been studied for most of the sensorial systems. It could be shown that a pure nasal trigeminal stimulus leads to arousals during sleep. The frequency of arousals increases dependent on the stimulus concentration. The aim of the study was to evaluate the influence of different stimulus durations on arousal frequency during different sleep stages. Ten young healthy volunteers with 20 nights of polysomnography were included in the study. Pure trigeminal stimulation with both different concentrations of CO2 (0, 10, 20, 40% v/v) and different stimulus durations (1, 3, 5, and 10 s) were applied during different sleep stages to the volunteers using an olfactometer. The application was performed during different sleep stages (light sleep, deep sleep, REM sleep). The number of arousals increased with rising stimulus duration and stimulus concentration during each sleep stage. Trigeminal stimuli during sleep led to arousals in dose- and time-dependent manner.
Smith, A; Pedler, A
2018-01-01
Various conditioned pain modulation (CPM) methodologies have been used to investigate diffuse noxious inhibitory control pain mechanisms in healthy and clinical populations. Occlusion cuff parameters have been poorly studied. We aimed to investigate whether occlusion cuff intensity and/or duration influenced CPM magnitudes. We also investigated the role of physical activity levels on CPM magnitude. Two studies were performed to investigate the role of intensity and duration of occlusion cuff conditioning stimulus on test stimulus (tibialis anterior pressure pain thresholds). In Study 1, conditioning stimulus intensity of 2/10 or 5/10 (duration <20 s) was evaluated using a paired-samples t-test. In Study 2, duration of 2/10 conditioning stimulus was 3 min. One-way repeated-measures ANOVA was used to investigate the effect of time (0, 1, 2 and 3 min) on CPM magnitude. In Study 1, 27 healthy volunteers (mean ± SD: 24.9 years (±4.5); eight female) demonstrated that an occlusion cuff applied to the upper arm eliciting 5/10 local pain resulted in a significant (mean ± SD: 17% ± 46%) increase in CPM magnitude, when compared to 2/10 intensity (-3% ± 38%, p = 0.026), whereas in Study 2, 25 healthy volunteers (22.5 years (±2.7); 13 female) demonstrated that 3 min of 2/10 CS intensity did not result in a significant change in CPM (p = 0.21). There was no significant relationship between physical activity levels and CPM in either study (p > 0.22). This study demonstrated that an occlusion cuff of 5/10 conditioning stimulus intensity, when compared to 2/10, significantly increased CPM magnitude. Maintaining 2/10 conditioning stimulus for 3 min did not increase CPM magnitude. Dysfunctional conditioned pain modulation (CPM) has been associated with poor health outcomes. Various factors can influence CPM outcomes. The role of occlusion cuff conditioning stimulus intensity and duration has not been previously investigated. Intensity (5/10), but not duration of lower intensity (2/10) conditioning stimulus, affects CPM magnitude. © 2017 European Pain Federation - EFIC®.
Ocular vestibular evoked myogenic potentials elicited with vibration applied to the teeth.
Parker-George, Jennifer C; Bell, Steven L; Griffin, Michael J
2016-01-01
This study investigated whether the method for eliciting vibration-induced oVEMPs could be improved by applying vibration directly to the teeth, and how vibration-induced oVEMP responses depend on the duration of the applied vibration. In 10 participants, a hand-held shaker was used to present 100-Hz vibration tone pips to the teeth via a customised bite-bar or to other parts of the head. oVEMP potentials were recorded in response to vibration in three orthogonal directions and five stimulus durations (10-180 ms). The oVEMP responses were analysed in terms of the peak latency onset, peak-to-peak amplitude, and the quality of the trace. Vibration applied to the teeth via the bite-bar produced oVEMPs that were more consistent, of higher quality and of greater amplitude than those evoked by vibration applied to the head. Longer duration stimuli produced longer duration oVEMP responses. One cycle duration stimuli produced responses that were smaller in amplitude and lower quality than the longer stimulus durations. Application of vibration via the teeth using a bite-bar is an effective means of producing oVEMPs. A 1-cycle stimulus is not optimal to evoke an oVEMP because it produces less robust responses than those of longer stimulus duration. A positive relationship between the duration of the stimulus and the response is consistent with the notion that the vibration-induced oVEMP is an oscillatory response to the motion of the head, rather than being a simple reflex response that occurs when the stimulus exceeds a threshold level of stimulation. Applying acceleration to the teeth through a bite-bar elicits clearer oVEMP responses than direct application to other parts of the head and has potential to improve clinical measurements. A 100-Hz 1-cycle stimulus produces less robust oVEMP responses than longer 100-Hz stimuli. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Luo, Feng; Metzner, Walter; Wu, Feijian; Wu, Feijian J; Zhang, Shuyi; Zhang, Shuyi Y; Chen, Qicai; Chen, Qicai C
2008-01-01
The present study examines duration-sensitive neurons in the inferior colliculus (IC) of the least horseshoe bat, Rhinolophus pusillus, from China. In contrast to other bat species tested for duration selectivity so far, echolocation pulses emitted by horseshoe bats are generally longer and composed of a long constant-frequency (CF) component followed by a short downward frequency-modulated (FM) sweep (CF-FM pulse). We used combined CF-FM pulses to analyze the differential effects that these two pulse components had on the duration tuning in neurons of the horseshoe bat's IC. Consistent with results from other mammals, duration-sensitive neurons found in the least horseshoe bat fall into three main classes: short-pass, band-pass, and long-pass. Using a CF stimulus alone, 54% (51/95) of all IC neurons showed at least one form of duration selectivity at one or more stimulus intensities. In 65 of the 95 IC neurons tested with CF pulses, we were also able to test their duration selectivity for a combined CF-FM pulse, which increased the ratio of duration-sensitive neurons to 66% (43/65). Seven to 15 neurons that failed to show duration tuning for CF bursts became duration sensitive for CF-FM pulses, with most of them exhibiting short-pass (depending on stimulus intensity, between 4 and 8 neurons) or band-pass tuning (1-3 neurons). Increasing stimulus intensities did not affect the duration tuning in 53% (23/43) of duration-sensitive neurons for CF bursts and in about 26% (7/27) for CF-FM stimuli. In the remaining neurons, increasing sound levels generally reduced the ratio of duration-sensitive neurons to 33% for CF and 37% for CF-FM stimulation. In those that remained duration sensitive, louder CF bursts shortened best durations in band-pass neurons and cutoff durations in short- and long-pass neurons, whereas louder CF-FM stimuli reduced the cutoff durations only in short-pass neurons. Bandwidths of band-pass neurons were not significantly affected by any stimulus configuration, with only a slight trend for increasing bandwidths for louder CF bursts (but not CF-FM stimuli). Best durations and cutoff durations reached higher values than those in the other bat species examined so far and roughly match the longer durations of echolocation pulses emitted by horseshoe bats. Therefore presentation of a CF-FM stimulus improved the duration sensitivity in IC neurons by increasing the ratio of duration-tuned neurons and making them less susceptible to changes in signal intensity.
Change detection and difference detection of tone duration discrimination.
Okazaki, Shuntaro; Kanoh, Shin'ichiro; Takaura, Kana; Tsukada, Minoru; Oka, Kotaro
2006-03-20
An event-related potential called mismatch negativity is known to exhibit physiological evidence of sensory memory. Mismatch negativity is believed to represent complicated neuronal mechanisms in a variety of animals and in humans. We employed the auditory oddball paradigm varying sound durations and observed two types of duration mismatch negativity in anesthetized guinea pigs. One was a duration mismatch negativity whose increase in peak amplitude occurred immediately after onset of the stimulus difference in a decrement oddball paradigm. The other exhibited a peak amplitude increase closer to the offset of the longer stimulus in an increment oddball paradigm. These results demonstrated a mechanism to percept the difference of duration change and revealed the importance of the end of a stimulus for this perception.
Duration comparison: relative stimulus differences stimulus age, and stimulus predictiveness.
Stubbs, D A; Dreyfus, L R; Fetterman, J G; Boynton, D M; Locklin, N; Smith, L D
1994-01-01
Under a psychophysical trials procedure, pigeons were presented with a red light of one duration followed by a green light of a second duration. Eight geometrically spaced base durations were paired with one of four shorter and four longer durations as the alternate member of a duration pair, with different pairs randomly intermixed. One choice was reinforced if red had lasted longer than green, and a second choice was reinforced if green had lasted longer. Performance was compared when all the base durations and their pair members were included (entire-range condition) or when only the four longest base durations and their comparison durations (restricted-range condition) were used. Discrimination sensitivity decreased for longer duration pairs under both conditions, supporting a memory-based account. Sensitivity was lower under the restricted-range condition. Under both conditions, a bias to report "green as longer" increased as the second green duration increased. Bias changed as a matching function of the green-duration predictiveness of the correct choice. The results are related to a quantitative model of timing and remembering proposed by Staddon. PMID:8064211
Perceived duration decreases with increasing eccentricity.
Kliegl, Katrin M; Huckauf, Anke
2014-07-01
Previous studies examining the influence of stimulus location on temporal perception yield inhomogeneous and contradicting results. Therefore, the aim of the present study is to soundly examine the effect of stimulus eccentricity. In a series of five experiments, subjects compared the duration of foveal disks to disks presented at different retinal eccentricities on the horizontal meridian. The results show that the perceived duration of a visual stimulus declines with increasing eccentricity. The effect was replicated with various stimulus orders (Experiments 1-3), as well as with cortically magnified stimuli (Experiments 4-5), ruling out that the effect was merely caused by different cortical representation sizes. The apparent decreasing duration of stimuli with increasing eccentricity is discussed with respect to current models of time perception, the possible influence of visual attention and respective underlying physiological characteristics of the visual system. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Petersen, Anders; Andersen, Tobias S.
2012-01-01
The psychometric function of single-letter identification is typically described as a function of stimulus intensity. However, the effect of stimulus exposure duration on letter identification remains poorly described. This is surprising because the effect of exposure duration has played a central role in modeling performance in whole and partial…
Does air gas aesthesiometry generate a true mechanical stimulus for corneal sensitivity measurement?
Nosch, Daniela S; Pult, Heiko; Albon, Julie; Purslow, Christine; Murphy, Paul J
2018-03-01
Belmonte Ocular Pain Meter (OPM) air jet aesthesiometry overcomes some of the limitations of the Cochet-Bonnet aesthesiometer. However, for true mechanical corneal sensitivity measurement, the airflow stimulus temperature of the aesthesiometer must equal ocular surface temperature (OST), to avoid additional response from temperature-sensitive nerves. The aim of this study was to determine: (A) the stimulus temperature inducing no or least change in OST; and (B) to evaluate if OST remains unchanged with different stimulus durations and airflow rates. A total of 14 subjects (mean age 25.14 ± 2.18 years; seven women) participated in this clinical cohort study: (A) OST was recorded using an infrared camera (FLIR A310) during the presentation of airflow stimuli, at five temperatures, ambient temperature (AT) +5°C, +10°C, +15°C, +20°C and +30°C, using the OPM aesthesiometer (duration three seconds; over a four millimetre distance; airflow rate 60 ml/min); and (B) OST measurements were repeated with two stimulus temperatures (AT +10°C and +15°C) while varying stimulus durations (three seconds and five seconds) and airflow rates (30, 60, 80 and 100 ml/min). Inclusion criteria were age <40 years, no contact lens wear, absence of ocular disease including dry eye, and no use of artificial tears. Repeated measures (analysis of variance) and appropriate post-hoc t-tests were applied. (A) Stimulus temperatures of AT +10°C and +15°C induced the least changes in OST (-0.20 ± 0.13°C and 0.08 ± 0.05°C). (B) OST changes were statistically significant with both stimulus temperatures and increased with increasing airflow rates (p < 0.001), and were more marked with stimulus temperature AT +10°C. A true mechanical threshold for corneal sensitivity cannot be established with the air stimulus of the Belmonte OPM because its air jet stimulus with mechanical setting is likely to have a thermal component. Appropriate stimulus selection for an air jet aesthesiometer must incorporate stimulus temperature control that can vary with stimulus duration and airflow rate. © 2017 Optometry Australia.
Human fear conditioning and extinction: Timing is everything . . . or is it?
Prenoveau, Jason M.; Craske, Michelle G.; Liao, Betty; Ornitz, Edward M.
2012-01-01
A differential fear conditioning paradigm was used with 107 healthy undergraduate participants to evaluate the effect of conditioned stimulus (CS) temporal properties on fear acquisition and extinction. Two minute duration CSs were used for Day 1 fear acquisition. Participants were randomized to receive either 1, 2, or 4 minute CS durations during Day 2 extinction. Extinction re-test was examined on Day 3 using the original acquisition CS duration (2 minutes). Findings indicated that participants who were aware of the CS+/unconditioned stimulus (US) contingency (n=52) develop a temporal expectation about when the unconditioned stimulus will be delivered. Although the shorter duration CS resulted in greater fear reduction during extinction, cessation of fear responding at re-test was the same for CS extinction durations ranging from half the CS acquisition duration to twice the CS acquisition duration. Thus, extinction performance did not predict extinction at re-test, which could have important implications for optimizing exposure therapy for anxiety disorders. PMID:22349998
Extinction and anti-extinction: the "attentional waiting" hypothesis.
Watling, Rosamond; Danckert, James; Linnell, Karina J; Cocchini, Gianna
2013-03-01
Patients with visual extinction have difficulty detecting a single contralesional stimulus when a second stimulus is simultaneously presented on the ipsilesional side. The rarely reported phenomenon of visual anti-extinction describes the opposite behavior, in which patients show greater difficulty in reporting a stimulus presented in isolation than they do in reporting 2 simultaneously presented stimuli. S. J. Goodrich and R. Ward (1997, Anti-extinction following unilateral parietal damage, Cognitive Neuropsychology, Vol. 14, pp. 595-612) suggested that visual anti-extinction is the result of a task-specific mechanism in which processing of the ipsilesional stimulus facilitates responses to the contralesional stimulus; in contrast, G. W. Humphreys, M. J. Riddoch, G. Nys, and D. Heinke (2002, Transient binding by time: Neuropsychological evidence from anti-extinction, Cognitive Neuropsychology, Vol. 19, pp. 361-380) suggested that temporal binding groups contralesional and ipsilesional stimuli together at brief exposure durations. We investigated extinction and anti-extinction phenomena in 3 brain-damaged patients using an extinction paradigm in which the stimulus exposure duration was systematically manipulated. Two patients showed both extinction and anti-extinction depending on the exposure duration of stimuli. Data confirmed the crucial role of duration in modulating the effect of extinction and anti-extinction. However, contrary to Humphreys and colleagues' (2002) single case, our patients showed extinction for short and anti-extinction for long exposure durations, suggesting that different mechanisms might underlie our patients' pattern of data. We discuss a novel "attentional waiting" hypothesis, which proposes that anti-extinction may be observed in patients showing extinction if the exposure duration of stimuli is increased. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Liang, Chi-Wen; Hsu, Wen-Yau
2016-06-30
This study investigated the differential effects of two attention bias modification (ABM) with different stimulus durations. Seventy-two undergraduates with subclinical social anxiety were randomly assigned to one of four conditions: an ABM condition with either a 100-ms or a 500-ms stimulus duration (ABM-100/ ABM-500) or an attention placebo (AP) condition with either a 100-ms or a 500-ms stimulus duration (AP-100/ AP-500). Participants completed the pre-assessments, eight attentional training sessions, and post-assessments. A modified Posner paradigm was used to assess changes in attentional processing. After completion of attentional training, the ABM-100 group significantly speeded up their responses to 100-ms invalid trials, regardless of the word type. The ABM-100 group also exhibited significant reduced latencies to 500-ms invalid social threat trials and a marginally significant reduced latencies to 500-ms invalid neutral trials. The ABM-500 group showed significant reduced latencies to 500-ms invalid social threat trials. Both ABMs significantly reduced participants' fear of negative evaluations and interactional anxiousness relative to their comparative AP. The effects on social anxiety did not differ between the two ABMs. This study suggests that although both ABMs using short and long stimulus durations reduce some aspects of social anxiety, they influence participants' attentional disengagement in different ways. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DOT National Transportation Integrated Search
1968-05-01
The study examined some effects of stimulus size and distance on the persistence of one type of illusory motion, viz., the spiral aftereffect (SAE). Duration of SAE was investigated with stimuli of 2, 4, 8, 12, and 16 inches in diameter. The distance...
Accumulation of Inertial Sensory Information in the Perception of Whole Body Yaw Rotation.
Nesti, Alessandro; de Winkel, Ksander; Bülthoff, Heinrich H
2017-01-01
While moving through the environment, our central nervous system accumulates sensory information over time to provide an estimate of our self-motion, allowing for completing crucial tasks such as maintaining balance. However, little is known on how the duration of the motion stimuli influences our performances in a self-motion discrimination task. Here we study the human ability to discriminate intensities of sinusoidal (0.5 Hz) self-rotations around the vertical axis (yaw) for four different stimulus durations (1, 2, 3 and 5 s) in darkness. In a typical trial, participants experienced two consecutive rotations of equal duration and different peak amplitude, and reported the one perceived as stronger. For each stimulus duration, we determined the smallest detectable change in stimulus intensity (differential threshold) for a reference velocity of 15 deg/s. Results indicate that differential thresholds decrease with stimulus duration and asymptotically converge to a constant, positive value. This suggests that the central nervous system accumulates sensory information on self-motion over time, resulting in improved discrimination performances. Observed trends in differential thresholds are consistent with predictions based on a drift diffusion model with leaky integration of sensory evidence.
Nelson, D E; Takahashi, J S
1991-01-01
1. Light-induced phase shifts of the circadian rhythm of wheel-running activity were used to measure the photic sensitivity of a circadian pacemaker and the visual pathway that conveys light information to it in the golden hamster (Mesocricetus auratus). The sensitivity to stimulus irradiance and duration was assessed by measuring the magnitude of phase-shift responses to photic stimuli of different irradiance and duration. The visual sensitivity was also measured at three different phases of the circadian rhythm. 2. The stimulus-response curves measured at different circadian phases suggest that the maximum phase-shift is the only aspect of visual responsivity to change as a function of the circadian day. The half-saturation constants (sigma) for the stimulus-response curves are not significantly different over the three circadian phases tested. The photic sensitivity to irradiance (1/sigma) appears to remain constant over the circadian day. 3. The hamster circadian pacemaker and the photoreceptive system that subserves it are more sensitive to the irradiance of longer-duration stimuli than to irradiance of briefer stimuli. The system is maximally sensitive to the irradiance of stimuli of 300 s and longer in duration. A quantitative model is presented to explain the changes that occur in the stimulus-response curves as a function of photic stimulus duration. 4. The threshold for photic stimulation of the hamster circadian pacemaker is also quite high. The threshold irradiance (the minimum irradiance necessary to induce statistically significant responses) is approximately 10(11) photons cm-2 s-1 for optimal stimulus durations. This threshold is equivalent to a luminance at the cornea of 0.1 cd m-2. 5. We also measured the sensitivity of this visual pathway to the total number of photons in a stimulus. This system is maximally sensitive to photons in stimuli between 30 and 3600 s in duration. The maximum quantum efficiency of photic integration occurs in 300 s stimuli. 6. These results suggest that the visual pathways that convey light information to the mammalian circadian pacemaker possess several unique characteristics. These pathways are relatively insensitive to light irradiance and also integrate light inputs over relatively long durations. This visual system, therefore, possesses an optimal sensitivity of 'tuning' to total photons delivered in stimuli of several minutes in duration. Together these characteristics may make this visual system unresponsive to environmental 'noise' that would interfere with the entrainment of circadian rhythms to light-dark cycles. PMID:1895235
Belke, Terry W
2007-05-01
Rats were exposed to a fixed interval 30 s schedule that produced opportunities to run of equal or unequal durations to assess the effect of differences in duration on responding. Each duration was signaled by a different stimulus. Wheel-running reinforcer duration pairs were 30 s 30 s, 50 s 10 s, and 55 s 5 s. An analysis of median postreinforcement pause duration and mean local lever-pressing rates broken down by previous reinforcer duration and duration of signaled upcoming reinforcer showed that postreinforcement pause duration was affected by the duration of the previous reinforcer but not by the stimulus signaling the duration of the upcoming reinforcer. Local lever-pressing rates were not affected by either previous or upcoming reinforcer duration. In general, the results are consistent with indifference between these durations obtained using a concurrent choice procedure.
Rational-emotive behavior therapy and the formation of stimulus equivalence classes.
Plaud, J J; Gaither, G A; Weller, L A; Bigwood, S J; Barth, J; von Duvillard, S P
1998-08-01
Stimulus equivalence is a behavioral approach to analyzing the "meaning" of stimulus sets and has an implication for clinical psychology. The formation of three-member (A --> B --> C) stimulus equivalence classes was used to investigate the effects of three different sets of sample and comparison stimuli on emergent behavior. The three stimulus sets were composed of Rational-Emotive Behavior Therapy (REBT)-related words, non-REBT emotionally charged words, and a third category of neutral words composed of flower labels. Sixty-two women and men participated in a modified matching-to-sample experiment. Using a mixed cross-over design, and controlling for serial order effects, participants received conditional training and emergent relationship training in the three stimulus set conditions. Results revealed a significant interaction between the formation of stimulus equivalence classes and stimulus meaning, indicating consistently biased responding in favor of reaching criterion responding more slowly for REBT-related and non-REBT emotionally charged words. Results were examined in the context of an analysis of the importance of stimulus meaning on behavior and the relation of stimulus meaning to behavioral and cognitive theories, with special appraisal given to the influence of fear-related discriminative stimuli on behavior.
NASA Astrophysics Data System (ADS)
Ito, Keita; Uno, Shoma; Goto, Tatsuya; Takezawa, Yoshiki; Harashima, Takuya; Morikawa, Takumi; Nishino, Satoru; Kino, Hisashi; Kiyoyama, Koji; Tanaka, Tetsu
2017-04-01
For safe electrical stimulation with body-implanted devices, the degradation of stimulus electrodes must be considered because it causes the unexpected electrolysis of water and the destruction of tissues. To monitor the charge injection property (CIP) of stimulus electrodes while these devices are implanted, we have proposed a charge injection monitoring system (CIMS). CIMS can safely read out voltages produced by a biphasic current pulse to a stimulus electrode and CIP is calculated from waveforms of the acquired voltages. In this paper, we describe a wide-range and low-power analog front-end (AFE) for CIMS that has variable gain-frequency characteristics and low-power analog-to-digital (A/D) conversion to adjust to the degradation of stimulus electrodes. The designed AFE was fabricated with 0.18 µm CMOS technology and achieved a valuable gain of 20-60 dB, an upper cutoff frequency of 0.2-10 kHz, and low-power interleaving A/D conversion. In addition, we successfully measured the CIP of stimulus electrodes for body-implanted devices using CIMS.
Relativistic compression and expansion of experiential time in the left and right space.
Vicario, Carmelo Mario; Pecoraro, Patrizia; Turriziani, Patrizia; Koch, Giacomo; Caltagirone, Carlo; Oliveri, Massimiliano
2008-03-05
Time, space and numbers are closely linked in the physical world. However, the relativistic-like effects on time perception of spatial and magnitude factors remain poorly investigated. Here we wanted to investigate whether duration judgments of digit visual stimuli are biased depending on the side of space where the stimuli are presented and on the magnitude of the stimulus itself. Different groups of healthy subjects performed duration judgment tasks on various types of visual stimuli. In the first two experiments visual stimuli were constituted by digit pairs (1 and 9), presented in the centre of the screen or in the right and left space. In a third experiment visual stimuli were constituted by black circles. The duration of the reference stimulus was fixed at 300 ms. Subjects had to indicate the relative duration of the test stimulus compared with the reference one. The main results showed that, regardless of digit magnitude, duration of stimuli presented in the left hemispace is underestimated and that of stimuli presented in the right hemispace is overestimated. On the other hand, in midline position, duration judgments are affected by the numerical magnitude of the presented stimulus, with time underestimation of stimuli of low magnitude and time overestimation of stimuli of high magnitude. These results argue for the presence of strict interactions between space, time and magnitude representation on the human brain.
Retter, Talia L; Jiang, Fang; Webster, Michael A; Rossion, Bruno
2018-04-01
Fast periodic visual stimulation combined with electroencephalography (FPVS-EEG) has unique sensitivity and objectivity in measuring rapid visual categorization processes. It constrains image processing time by presenting stimuli rapidly through brief stimulus presentation durations and short inter-stimulus intervals. However, the selective impact of these temporal parameters on visual categorization is largely unknown. Here, we presented natural images of objects at a rate of 10 or 20 per second (10 or 20 Hz), with faces appearing once per second (1 Hz), leading to two distinct frequency-tagged EEG responses. Twelve observers were tested with three squarewave image presentation conditions: 1) with an ISI, a traditional 50% duty cycle at 10 Hz (50-ms stimulus duration separated by a 50-ms ISI); 2) removing the ISI and matching the rate, a 100% duty cycle at 10 Hz (100-ms duration with 0-ms ISI); 3) removing the ISI and matching the stimulus presentation duration, a 100% duty cycle at 20 Hz (50-ms duration with 0-ms ISI). The face categorization response was significantly decreased in the 20 Hz 100% condition. The conditions at 10 Hz showed similar face-categorization responses, peaking maximally over the right occipito-temporal (ROT) cortex. However, the onset of the 10 Hz 100% response was delayed by about 20 ms over the ROT region relative to the 10 Hz 50% condition, likely due to immediate forward-masking by preceding images. Taken together, these results help to interpret how the FPVS-EEG paradigm sets temporal constraints on visual image categorization. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gap Detection in School-Age Children and Adults: Center Frequency and Ramp Duration
ERIC Educational Resources Information Center
Buss, Emily; Porter, Heather L.; Hall, Joseph W., III; Grose, John H.
2017-01-01
Purpose: The age at which gap detection becomes adultlike differs, depending on the stimulus characteristics. The present study evaluated whether the developmental trajectory differs as a function of stimulus frequency region or duration of the onset and offset ramps bounding the gap. Method: Thresholds were obtained for wideband noise (500-4500…
Why Additional Presentations Help Identify a Stimulus
ERIC Educational Resources Information Center
Guest, Duncan; Kent, Christopher; Adelman, James S.
2010-01-01
Nosofsky (1983) reported that additional stimulus presentations within a trial increase discriminability in absolute identification, suggesting that each presentation creates an independent stimulus representation, but it remains unclear whether exposure duration or the formation of independent representations improves discrimination in such…
Additive Effects of Stimulus Quality and Word Frequency on Eye Movements during Chinese Reading
ERIC Educational Resources Information Center
Liu, Pingping; Li, Xingshan; Han, Buxin
2015-01-01
Eye movements of Chinese readers were recorded for sentences in which high- and low-frequency target words were presented normally or with reduced stimulus quality in two experiments. We found stimulus quality and word frequency produced strong additive effects on fixation durations for target words. The results demonstrate that stimulus quality…
Andrade, Chittaranjan; Thyagarajan, S; Vinod, P S; Srikanth, S N; Rao, N S K; Chandra, J Suresh
2002-12-01
Animal models are frequently used to generate and test hypotheses about amnesia resulting from electroconvulsive therapy (ECT). Although many predictors of ECT-induced amnesia are known, their relative effects have been inadequately researched in the context of the animal models. We sought to determine the relative retrograde amnestic effects of electroconvulsive shock (ECS) stimulus intensity (dose) and number on strong memories in rats. We also sought to identify dose-dependent ceiling amnestic effects, if any. Adult rats (n = 144) were overtrained in a passive avoidance task using a step down apparatus. The rats were then randomized in a factorial design to receive one, two, or three once-daily bilateral ECS at 0-mC (sham ECS), 30-mC, 60-mC, 120-mC, or 180-mC doses. Recall of the pre-ECS training was assessed 1 day after the last ECS. Retrograde amnesia was observed only in rats that received 3 ECS; dose-dependent amnestic effects did not emerge. Higher stimulus intensity was associated with a small (13%) but significant increase in motor seizure duration, but only at the first ECS; stimulus intensity did not influence the attenuation of seizure duration across repeated occasions of ECS. With bilateral ECS, the number of ECSs administered is a more important variable than the ECS dose in weakening a strong, recently acquired, noxious memory; this finding may have important clinical implications. Higher stimulus intensity marginally increases motor seizure duration at the first ECS but does not influence the decrease in seizure duration across repeated ECSs.
Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration
NASA Technical Reports Server (NTRS)
Hecox, K.; Squires, N.; Galambos, R.
1975-01-01
Short latency (under 10 msec) responses elicited by bursts of white noise were recorded from the scalps of human subjects. Response alterations produced by changes in the noise burst duration (on-time), inter-burst interval (off-time), and onset and offset shapes were analyzed. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise time but was unaffected by changes in fall time. Increases in stimulus duration, and therefore in loudness, resulted in a systematic increase in latency. This was probably due to response recovery processes, since the effect was eliminated with increases in stimulus off-time. The amplitude of wave V was insensitive to changes in signal rise and fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It was concluded that wave V of the human auditory brainstem evoked response is solely an onset response.
Kiani, Roozbeh; Hanks, Timothy D; Shadlen, Michael N
2008-03-19
Decisions about sensory stimuli are often based on an accumulation of evidence in time. When subjects control stimulus duration, the decision terminates when the accumulated evidence reaches a criterion level. Under many natural circumstances and in many laboratory settings, the environment, rather than the subject, controls the stimulus duration. In these settings, it is generally assumed that subjects commit to a choice at the end of the stimulus stream. Indeed, failure to benefit from the full stream of information is interpreted as a sign of imperfect accumulation or memory leak. Contrary to these assumptions, we show that monkeys performing a direction discrimination task commit to a choice when the accumulated evidence reaches a threshold level (or bound), sometimes long before the end of stimulus. This bounded accumulation of evidence is reflected in the activity of neurons in the lateral intraparietal cortex. Thus, the readout of visual cortex embraces a termination rule to limit processing even when potentially useful information is available.
Injectable microstimulator for functional electrical stimulation.
Loeb, G E; Zamin, C J; Schulman, J H; Troyk, P R
1991-11-01
A family of digitally controlled devices is constructed for functional electrical stimulation in which each module is an hermetically sealed glass capsule that is small enough to be injected through the lumen of a hypodermic needle. The overall design and component characteristics of microstimulators that receive power and command signals by inductive coupling from a single, externally worn coil are described. Each device stores power between stimulus pulses by charging an electrolytic capacitor formed by its two electrodes, made of sintered, anodised tantalum and electrochemically activated iridium, respectively. Externally, a highly efficient class E amplifier provides power and digitally encoded command signals to control the amplitude, duration and timing of pulses from up to 256 such microstimulators.
Schindler, Charles W.; Cogan, Elizabeth S.; Thorndike, Eric B.; Panlilio, Leigh V.
2011-01-01
In general, faster infusions of cocaine are more likely to support behavior related to abuse than are slower infusions. However, some studies of cocaine self-administration in rats have failed to support this finding, possibly because the effect was masked by other factors. One such factor may be the pairing of a stimulus with the infusion, a procedure that is known to facilitate acquisition of drug self-administration. We compared fast and slow infusions by allowing groups of rats to acquire cocaine self-administration at a dose of 1 mg/kg/infusion, delivered over different durations (1.8 or 100 sec). Two groups were trained with either short or long infusions paired with a visual stimulus change (lights off), and two other groups were trained with short or long durations but with no stimulus change. Both groups trained with a paired stimulus acquired cocaine self-administration. With no stimulus change, the rats trained with the 1.8-sec infusion acquired cocaine self-administration at a rate comparable to the two groups that were trained with a paired stimulus. However, most rats in the group trained with the 100-sec infusion that was not accompanied by a stimulus change failed to acquire cocaine self-administration. The stimulus itself did not support responding. These results indicate that infusing a given dose of cocaine over a longer duration reduces its ability to support self-administration, but drug-paired stimuli can partially mask this effect by enhancing the effectiveness of slow infusions. PMID:21600912
Schindler, Charles W; Cogan, Elizabeth S; Thorndike, Eric B; Panlilio, Leigh V
2011-09-01
In general, faster infusions of cocaine are more likely to support behavior related to abuse than are slower infusions. However, some studies of cocaine self-administration in rats have failed to support this finding, possibly because the effect was masked by other factors. One such factor may be the pairing of a stimulus with the infusion, a procedure that is known to facilitate acquisition of drug self-administration. We compared fast and slow infusions by allowing groups of rats to acquire cocaine self-administration at a dose of 1mg/kg/infusion, delivered over different durations (1.8 or 100 s). Two groups were trained with either short or long infusions paired with a visual stimulus change (lights off), and two other groups were trained with short or long durations but with no stimulus change. Both groups trained with a paired stimulus acquired cocaine self-administration. With no stimulus change, the rats trained with the 1.8-s infusion acquired cocaine self-administration at a rate comparable to the two groups that were trained with a paired stimulus. However, most rats in the group trained with the 100-s infusion that was not accompanied by a stimulus change failed to acquire cocaine self-administration. The stimulus itself did not support responding. These results indicate that infusing a given dose of cocaine over a longer duration reduces its ability to support self-administration, but drug-paired stimuli can partially mask this effect by enhancing the effectiveness of slow infusions. Published by Elsevier Inc.
Context-Dependent Duration Signals in the Primate Prefrontal Cortex
Genovesio, Aldo; Seitz, Lucia K.; Tsujimoto, Satoshi; Wise, Steven P.
2016-01-01
The activity of some prefrontal (PF) cortex neurons distinguishes short from long time intervals. Here, we examined whether this property reflected a general timing mechanism or one dependent on behavioral context. In one task, monkeys discriminated the relative duration of 2 stimuli; in the other, they discriminated the relative distance of 2 stimuli from a fixed reference point. Both tasks had a pre-cue period (interval 1) and a delay period (interval 2) with no discriminant stimulus. Interval 1 elapsed before the presentation of the first discriminant stimulus, and interval 2 began after that stimulus. Both intervals had durations of either 400 or 800 ms. Most PF neurons distinguished short from long durations in one task or interval, but not in the others. When neurons did signal something about duration for both intervals, they did so in an uncorrelated or weakly correlated manner. These results demonstrate a high degree of context dependency in PF time processing. The PF, therefore, does not appear to signal durations abstractedly, as would be expected of a general temporal encoder, but instead does so in a highly context-dependent manner, both within and between tasks. PMID:26209845
Object size determines the spatial spread of visual time
McGraw, Paul V.; Roach, Neil W.; Whitaker, David
2016-01-01
A key question for temporal processing research is how the nervous system extracts event duration, despite a notable lack of neural structures dedicated to duration encoding. This is in stark contrast with the orderly arrangement of neurons tasked with spatial processing. In this study, we examine the linkage between the spatial and temporal domains. We use sensory adaptation techniques to generate after-effects where perceived duration is either compressed or expanded in the opposite direction to the adapting stimulus' duration. Our results indicate that these after-effects are broadly tuned, extending over an area approximately five times the size of the stimulus. This region is directly related to the size of the adapting stimulus—the larger the adapting stimulus the greater the spatial spread of the after-effect. We construct a simple model to test predictions based on overlapping adapted versus non-adapted neuronal populations and show that our effects cannot be explained by any single, fixed-scale neural filtering. Rather, our effects are best explained by a self-scaled mechanism underpinned by duration selective neurons that also pool spatial information across earlier stages of visual processing. PMID:27466452
Fortes, Inês; Machado, Armando; Vasconcelos, Marco
2017-11-01
In the natural environment, when an animal encounters a stimulus that signals the absence of food-a 'bad-news' stimulus-it will most likely redirect its search to another patch or prey. Because the animal does not pay the opportunity cost of waiting in the presence of a bad-news stimulus, the properties of the stimulus (e.g., its duration and probability) may have little impact in the evolution of the decision processes deployed in these circumstances. Hence, in the laboratory, when animals are forced to experience a bad-news stimulus they seem to ignore its duration, even though they pay the cost of waiting. Under certain circumstances, this insensitivity to the opportunity cost can lead to suboptimal preferences, such as a preference for an option yielding a low rather than a high rate of reinforcement. In 2 experiments, we tested Vasconcelos, Monteiro, and Kacelnik's (2015) assumption that, if given the opportunity, animals will escape the bad-news stimulus. To predict when an escape response should occur, we incorporated ideas from the prey choice model into Vasconcelos et al. (2015) model and made 2 novel predictions. Namely, both longer intertrial intervals and longer durations of signals predicting food or no food should lead to higher proportions of escape responses. The results of 2 experiments with pigeons supported these predictions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Hamm, Jordan P.; Bobilev, Anastasia M.; Hayrynen, Lauren K.; Hudgens-Haney, Matthew E.; Oliver, William T.; Parker, David A.; McDowell, Jennifer E.; Buckley, Peter A.; Clementz, Brett A.
2017-01-01
Electroencephalographic (EEG) studies of auditory steady-state responses (aSSRs) non-invasively probe gamma-band (40-Hz) oscillatory capacity in sensory cortex with high signal-to-noise ratio. Consistent reports of reduced 40-Hz aSSRs in persons with schizophrenia (SZ) indicate its potential as an efficient biomarker for the disease, but studies have been limited to passive or indirect listening contexts with stereotypically short (500ms) stimulus trains. An inability to modulate sensorineural processing in accord with behavioral goals or within the sensory environmental context may represent a fundamental deficit in SZ, but whether and how this deficit relates to reduced aSSRs is unknown. We systematically varied stimulus duration and attentional contexts to further mature the 40-Hz aSSR as biomarker for future translational or mechanistic studies. Eighteen SZ and 18 healthy subjects (H) were presented binaural pure-tones with or without sinusoidal amplitude modulation at 40-Hz. Stimulus duration (500-ms or 1500-ms) and attention (via a button press task) were varied across 4 separate blocks. Evoked potentials recorded with dense-array EEGs were analyzed in the time-frequency domain. SZ displayed reduced 40-Hz aSSRs to typical stimulation parameters, replicating previous findings. In H, aSSRs were reduced when stimuli were presented in longer trains and were slightly enhanced by attention. Only the former modulation was impaired in SZ and correlated with sensory discrimination performance. Thus, gamma-band aSSRs are modulated by both attentional and stimulus duration contexts, but only modulations related to physical stimulus properties are abnormal in SZ, supporting its status as a biomarker of psychotic perceptual disturbance involving non-attentional sensori-cortical circuits. PMID:25868936
Ward, Ryan D; Gallistel, C R; Jensen, Greg; Richards, Vanessa L; Fairhurst, Stephen; Balsam, Peter D
2012-07-01
In a conditioning protocol, the onset of the conditioned stimulus ([CS]) provides information about when to expect reinforcement (unconditioned stimulus [US]). There are two sources of information from the CS in a delay conditioning paradigm in which the CS-US interval is fixed. The first depends on the informativeness, the degree to which CS onset reduces the average expected time to onset of the next US. The second depends only on how precisely a subject can represent a fixed-duration interval (the temporal Weber fraction). In three experiments with mice, we tested the differential impact of these two sources of information on rate of acquisition of conditioned responding (CS-US associability). In Experiment 1, we showed that associability (the inverse of trials to acquisition) increased in proportion to informativeness. In Experiment 2, we showed that fixing the duration of the US-US interval or the CS-US interval or both had no effect on associability. In Experiment 3, we equated the increase in information produced by varying the C/T ratio with the increase produced by fixing the duration of the CS-US interval. Associability increased with increased informativeness, but, as in Experiment 2, fixing the CS-US duration had no effect on associability. These results are consistent with the view that CS-US associability depends on the increased rate of reward signaled by CS onset. The results also provide further evidence that conditioned responding is temporally controlled when it emerges.
The Whorfian time warp: Representing duration through the language hourglass.
Bylund, Emanuel; Athanasopoulos, Panos
2017-07-01
How do humans construct their mental representations of the passage of time? The universalist account claims that abstract concepts like time are universal across humans. In contrast, the linguistic relativity hypothesis holds that speakers of different languages represent duration differently. The precise impact of language on duration representation is, however, unknown. Here, we show that language can have a powerful role in transforming humans' psychophysical experience of time. Contrary to the universalist account, we found language-specific interference in a duration reproduction task, where stimulus duration conflicted with its physical growth. When reproducing duration, Swedish speakers were misled by stimulus length, and Spanish speakers were misled by stimulus size/quantity. These patterns conform to preferred expressions of duration magnitude in these languages (Swedish: long/short time; Spanish: much/small time). Critically, Spanish-Swedish bilinguals performing the task in both languages showed different interference depending on language context. Such shifting behavior within the same individual reveals hitherto undocumented levels of flexibility in time representation. Finally, contrary to the linguistic relativity hypothesis, language interference was confined to difficult discriminations (i.e., when stimuli varied only subtly in duration and growth), and was eliminated when linguistic cues were removed from the task. These results reveal the malleable nature of human time representation as part of a highly adaptive information processing system. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Belke, Terry W; Hancock, Stephanie D
2003-03-01
Six male albino rats were placed in running wheels and exposed to a fixed-interval 30-s schedule of lever pressing that produced either a drop of sucrose solution or the opportunity to run for a fixed duration as reinforcers. Each reinforcer type was signaled by a different stimulus. In Experiment 1, the duration of running was held constant at 15 s while the concentration of sucrose solution was varied across values of 0, 2.5. 5, 10, and 15%. As concentration decreased, postreinforcement pause duration increased and local rates decreased in the presence of the stimulus signaling sucrose. Consequently, the difference between responding in the presence of stimuli signaling wheel-running and sucrose reinforcers diminished, and at 2.5%, response functions for the two reinforcers were similar. In Experiment 2, the concentration of sucrose solution was held constant at 15% while the duration of the opportunity to run was first varied across values of 15, 45, and 90 s then subsequently across values of 5, 10, and 15 s. As run duration increased, postreinforcement pause duration in the presence of the wheel-running stimulus increased and local rates increased then decreased. In summary, inhibitory aftereffects of previous reinforcers occurred when both sucrose concentration and run duration varied; changes in responding were attributable to changes in the excitatory value of the stimuli signaling the two reinforcers.
Stollhoff, Nicola; Eisenhardt, Dorothea
2009-07-29
Here, we examine the role of the magnitude of the unconditioned stimulus (US) during classical conditioning in consolidation processes after memory retrieval. We varied the US durations during training and we test the impact of these variations on consolidation after memory retrieval with one or two conditioned stimulus-only trials. We found that the consolidation of an extinction memory depends on US duration during training and ruled out the possibility that this effect is attributable to differences in satiation after conditioning. We conclude that consolidation of an extinction memory is triggered only when the duration of the US reaches a critical threshold. This demonstrates that memory consolidation cannot be regarded as an isolated process depending solely on training conditions. Instead, it depends on the animal's previous experience as well.
Hashimoto, Yuki; Yotsumoto, Yuko
2018-01-01
The neural basis of time perception has long attracted the interests of researchers. Recently, a conceptual model consisting of neural oscillators was proposed and validated by behavioral experiments that measured the dilated duration in perception of a flickering stimulus (Hashimoto and Yotsumoto, 2015). The model proposed that flickering stimuli cause neural entrainment of oscillators, resulting in dilated time perception. In this study, we examined the oscillator-based model of time perception, by collecting electroencephalography (EEG) data during an interval-timing task. Initially, subjects observed a stimulus, either flickering at 10-Hz or constantly illuminated. The subjects then reproduced the duration of the stimulus by pressing a button. As reported in previous studies, the subjects reproduced 1.22 times longer durations for flickering stimuli than for continuously illuminated stimuli. The event-related potential (ERP) during the observation of a flicker oscillated at 10 Hz, reflecting the 10-Hz neural activity phase-locked to the flicker. Importantly, the longer reproduced duration was associated with a larger amplitude of the 10-Hz ERP component during the inter-stimulus interval, as well as during the presentation of the flicker. The correlation between the reproduced duration and the 10-Hz oscillation during the inter-stimulus interval suggested that the flicker-induced neural entrainment affected time dilation. While the 10-Hz flickering stimuli induced phase-locked entrainments at 10 Hz, we also observed event-related desynchronizations of spontaneous neural oscillations in the alpha-frequency range. These could be attributed to the activation of excitatory neurons while observing the flicker stimuli. In addition, neural activity at approximately the alpha frequency increased during the reproduction phase, indicating that flicker-induced neural entrainment persisted even after the offset of the flicker. In summary, our results suggest that the duration perception is mediated by neural oscillations, and that time dilation induced by flickering visual stimuli can be attributed to neural entrainment.
Borucki, Ewa; Berg, Bruce G
2017-05-01
This study investigated the psychophysical effects of distortion products in a listening task traditionally used to estimate the bandwidth of phase sensitivity. For a 2000 Hz carrier, estimates of modulation depth necessary to discriminate amplitude modulated (AM) tones and quasi-frequency modulated (QFM) were measured in a two interval forced choice task as a function modulation frequency. Temporal modulation transfer functions were often non-monotonic at modulation frequencies above 300 Hz. This was likely to be due to a spectral cue arising from the interaction of auditory distortion products and the lower sideband of the stimulus complex. When the stimulus duration was decreased from 200 ms to 20 ms, thresholds for low-frequency modulators rose to near-chance levels, whereas thresholds in the region of non-monotonicities were less affected. The decrease in stimulus duration appears to hinder the listener's ability to use temporal cues in order to discriminate between AM and QFM, whereas spectral information derived from distortion product cues appears more resilient. Copyright © 2017. Published by Elsevier B.V.
Podlesnik, Christopher A; Fleet, James D
2014-09-01
Behavioral momentum theory asserts Pavlovian stimulus-reinforcer relations govern the persistence of operant behavior. Specifically, resistance to conditions of disruption (e.g., extinction, satiation) reflects the relation between discriminative stimuli and the prevailing reinforcement conditions. The present study assessed whether Pavlovian stimulus-reinforcer relations govern resistance to disruption in pigeons by arranging both response-dependent and -independent food reinforcers in two components of a multiple schedule. In one component, discrete-stimulus changes preceded response-independent reinforcers, paralleling methods that reduce Pavlovian conditioned responding to contextual stimuli. Compared to the control component with no added stimuli preceding response-independent reinforcement, response rates increased as discrete-stimulus duration increased (0, 5, 10, and 15 s) across conditions. Although resistance to extinction decreased as stimulus duration increased in the component with the added discrete stimulus, further tests revealed no effect of discrete stimuli, including other disrupters (presession food, intercomponent food, modified extinction) and reinstatement designed to control for generalization decrement. These findings call into question a straightforward conception that the stimulus-reinforcer relations governing resistance to disruption reflect the same processes as Pavlovian conditioning, as asserted by behavioral momentum theory. © Society for the Experimental Analysis of Behavior.
Left neglect dyslexia and the effect of stimulus duration.
Arduino, Lisa S; Vallar, Giuseppe; Burani, Cristina
2006-01-01
The present study investigated the effects of the duration of the stimulus on the reading performance of right-brain-damaged patients with left neglect dyslexia. Three Italian patients read aloud words and nonwords, under conditions of unlimited time of stimulus exposure and of timed presentation. In the untimed condition, the majority of the patients' errors involved the left side of the letter string (i.e., neglect dyslexia errors). Conversely, in the timed condition, although the overall level of performance decreased, errors were more evenly distributed across the whole letter string (i.e., visual - nonlateralized - errors). This reduction of neglect errors with a reduced time of presentation of the stimulus may reflect the read out of elements of the letter string from a preserved visual storage component, such as iconic memory. Conversely, a time-unlimited presentation of the stimulus may bring about the rightward bias that characterizes the performance of neglect patients, possibly by a capture of the patients' attention by the final (rightward) letters of the string.
Temporal integration in nasal lateralization of ethanol.
Wise, Paul M; Canty, Thomas M; Wysocki, Charles J
2006-03-01
Two experiments examined the trade-off between concentration and stimulus duration in nasal lateralization of n-ethyl alcohol. In nasal lateralization, a common measure of irritation threshold, subjects receive chemical vapor in one nostril and clean air in the other. Subjects try to determine which nostril received the chemical. Within experimental runs, subjects received fixed concentrations (1650-5000 ppm) of ethanol, and duration was varied to find the shortest, lateralizable stimulus. In Experiment 1, a small group of subjects was tested intensively to obtain stable individual data. In Experiment 2, a larger group was studied using more rapid methods. In both cases, subjects could lateralize increasingly weaker concentrations with longer stimulus presentations. Hence integration occurred. However, more than a twofold increase in duration was required to compensate for a twofold decrease in concentration to maintain threshold lateralization. These results suggest that an imperfect, mass-integrator model can describe short-term integration of nasal lateralization of ethanol.
Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V
2018-01-01
This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P < 0.001) 64-bar-size steady-state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P < 0.001 and P = 0.010, respectively). Short-duration transient visual evoked potential amplitude and latency were not significantly different between the two groups. Steady-state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
Recognizing famous voices: influence of stimulus duration and different types of retrieval cues.
Schweinberger, S R; Herholz, A; Sommer, W
1997-04-01
The current investigation measured the effects of increasing stimulus duration on listeners' ability to recognize famous voices. In addition, the investigation studied the influence of different types of cues on the naming of voices that could not be named before. Participants were presented with samples of famous and unfamiliar voices and were asked to decide whether or not the samples were spoken by a famous person. The duration of each sample increased in seven steps from 0.25 s up to a maximum of 2 s. Voice recognition improvements with stimulus duration were with a growth function. Gains were most rapid within the first second and less pronounced thereafter. When participants were unable to name a famous voice, they were cued with either a second voice sample, the occupation, or the initials of the celebrity. Initials were most effective in eliciting the name only when semantic information about the speaker had been accessed prior to cue presentation. Paralleling previous research on face naming, this may indicate that voice naming is contingent on previous activation of person-specific semantic information.
Emotion self-regulation and empathy depend upon longer stimulus exposure.
Ikezawa, Satoru; Corbera, Silvia; Wexler, Bruce E
2014-10-01
Observation of others in pain induces positive elevation (pain effect) in late event-related potentials (ERP). This effect is associated with top-down attention regulating processes. It has previously been shown that stimulus exposure duration can affect top-down attentional modulation of response to threat-related stimuli. We investigated the effect of exposure duration on ERP response to others in pain. Two late ERP components, P3 and late positive potentials (LPP), from 18 healthy people were measured while they viewed pictures of hands in painful or neutral situations for either 200 or 500 ms, during two task conditions (pain judgment and counting hands). P3 and LPP pain effects during the pain judgment condition were significantly greater with 500 ms than 200 ms stimulus presentation. Ours is the first study to suggest that engagement of empathy-related self-regulatory processes reflected in late potentials requires longer exposure to the pain-related stimulus. Although this is important information about the relationship between early sensory and subsequent brain processing, and about engagement of self-regulatory processes, the neural basis of this time-dependence remains unclear. It might be important to investigate the relationship between stimulus duration and empathic response in clinical populations where issues of self-regulation, empathic response and speed of information processing exist. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Duration estimates within a modality are integrated sub-optimally
Cai, Ming Bo; Eagleman, David M.
2015-01-01
Perceived duration can be influenced by various properties of sensory stimuli. For example, visual stimuli of higher temporal frequency are perceived to last longer than those of lower temporal frequency. How does the brain form a representation of duration when each of two simultaneously presented stimuli influences perceived duration in different way? To answer this question, we investigated the perceived duration of a pair of dynamic visual stimuli of different temporal frequencies in comparison to that of a single visual stimulus of either low or high temporal frequency. We found that the duration representation of simultaneously occurring visual stimuli is best described by weighting the estimates of duration based on each individual stimulus. However, the weighting performance deviates from the prediction of statistically optimal integration. In addition, we provided a Bayesian account to explain a difference in the apparent sensitivity of the psychometric curves introduced by the order in which the two stimuli are displayed in a two-alternative forced-choice task. PMID:26321965
Schmidt, Elisabeth; Bullinger, Angelika C
2017-12-12
Driving on monotonous roads has been shown to cause passive fatigue as even non-sleep-deprived drivers suffer from the lack of stimuli. Consequently, alertness is reduced and the risk of accidents increases. To counteract this risk, measures need to be taken to mitigate driver fatigue. While in the past, some studies have been focused on the potential of thermal stimuli to reduce fatigue, their results seem inconclusive. Examining the study conditions in which the thermal stimuli were studied, it becomes obvious that the duration of the thermal stimulus strongly affects perceived fatigue. To better understand this relation, a driving simulator study (n=33) was conducted investigating both a 2min and a 4min thermal stimulus (15öC), where air was circulated on non-sleep-deprived drivers. For the 4min stimulus, patterns of increased sympathetic activity (i.e. significant pupil dilatation and bradycardia) were recorded. Furthermore, participants subjectively rated fatigue significantly lower when the stimuli were applied, and preferred driving with the stimulus. The superior performance of the 4min stimulus can be derived from a longer effect on the physiological data as well as even lower subjective fatigue ratings. Results also point to the limits of thermal stimulation: 6min after the stimuli, the participants no longer feel an effect (based on subjective ratings). Future research on passive fatigue countermeasures should hence build on the identified effect of a 4min cooling stimulus to increase physiological arousal and focus on the opportunities to increase effect duration. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Brain Mechanisms for Measuring Time: Population Coding of Durations].
Hayashi, Masamichi J
2016-11-01
Temporal processing is crucial in many aspects of our perception and action. While there is mounting evidence for the encoding mechanisms of spatial ("where") and identity ("what") information, those of temporal information ("when") remain largely unknown. Recent studies suggested that, similarly to the basic visual stimulus features such as orientation, motion direction, and numerical quantity, event durations are also represented by a population of neurons that are tuned for specific, preferred durations. This paper first reviews recent psychophysical studies on duration aftereffect. Changes in the three parameters (response gain, shift, and width of tuning curves) are then discussed that may need to be taken into account in the putative duration-channel model. Next, the potential neural basis of the duration channels is examined by overviewing recent neuroimaging and electrophysiological studies on time perception. Finally, this paper proposes a general neural basis of timing that commonly represents time-differences independent of stimulus types (e.g., a single duration v.s. multiple brief events). This extends the idea of the "when pathway" from the perception of temporal order to the general timing mechanisms for the perception of duration, temporal frequency, and synchrony.
Vibratory tactile display for textures
NASA Technical Reports Server (NTRS)
Ikei, Yasushi; Ikeno, Akihisa; Fukuda, Shuichi
1994-01-01
We have developed a tactile display that produces vibratory stimulus to a fingertip in contact with a vibrating tactor matrix. The display depicts tactile surface textures while the user is exploring a virtual object surface. A piezoelectric actuator drives the individual tactor in accordance with both the finger movement and the surface texture being traced. Spatiotemporal display control schemes were examined for presenting the fundamental surface texture elements. The temporal duration of vibratory stimulus was experimentally optimized to simulate the adaptation process of cutaneous sensation. The selected duration time for presenting a single line edge agreed with the time threshold of tactile sensation. Then spatial stimulus disposition schemes were discussed for representation of other edge shapes. As an alternative means not relying on amplitude control, a method of augmented duration at the edge was investigated. Spatial resolution of the display was measured for the lines presented both in perpendicular and parallel to a finger axis. Discrimination of texture density was also measured on random dot textures.
Dynamical Characteristics Common to Neuronal Competition Models
Shpiro, Asya; Curtu, Rodica; Rinzel, John; Rubin, Nava
2009-01-01
Models implementing neuronal competition by reciprocally inhibitory populations are widely used to characterize bistable phenomena such as binocular rivalry. We find common dynamical behavior in several models of this general type, which differ in their architecture in the form of their gain functions, and in how they implement the slow process that underlies alternating dominance. We focus on examining the effect of the input strength on the rate (and existence) of oscillations. In spite of their differences, all considered models possess similar qualitative features, some of which we report here for the first time. Experimentally, dominance durations have been reported to decrease monotonically with increasing stimulus strength (such as Levelt's “Proposition IV”). The models predict this behavior; however, they also predict that at a lower range of input strength dominance durations increase with increasing stimulus strength. The nonmonotonic dependency of duration on stimulus strength is common to both deterministic and stochastic models. We conclude that additional experimental tests of Levelt's Proposition IV are needed to reconcile models and perception. PMID:17065254
Wang, Ningqian; Wang, Xiao; Yang, Xiaoli; Tang, Jie; Xiao, Zhongju
2014-01-16
In this study, we adopted iso-frequency pure tone bursts to investigate the interdependent effects of sound amplitude/intensity and duration on mice inferior colliculus (IC) neuronal onset responses. On the majority of the sampled neurons (n=57, 89.1%), sound amplitude and duration had effects on the neuronal response to each other by showing complex changes of the rat-intensity function/duration selectivity types and/or best amplitudes (BAs)/durations (BDs), evaluated by spike counts. These results suggested that the balance between the excitatory and inhibitory inputs set by one acoustic parameter, amplitude or duration, affected the neuronal spike counts responses to the other. Neuronal duration selectivity types were altered easily by the low-amplitude sounds while the changes of rate-intensity function types had no obvious preferred stimulus durations. However, the first spike latencies (FSLs) of the onset response neurons were relative stable to iso-amplitude sound durations and changing systematically along with the sound levels. The superimposition of FSL and duration threshold (DT) as a function of stimulus amplitude after normalization indicated that the effects of the sound levels on FSLs are considered on DT actually. © 2013 Published by Elsevier B.V.
The ventricular intracardiac unipolar paced-evoked potential in an isolated animal heart.
Economides, A P; Walton, C; Gergely, S
1988-02-01
The endocardial unipolar paced evoked response has excited a great deal of interest due to its possible use in the measurement of the metabolic state of the body and other pacer-related areas. Although rate-responsive pacing utilizing this signal has been clinically evaluated, little is known regarding the behavior of the components of this waveform under normal physiological conditions. We have developed an electronic circuit which allows the recording of the evoked response within a few milliseconds of a pacing stimulus of 5 V and 0.5 ms duration being applied using a single unipolar, smooth platinum electrode of 14 mm2 surface area. The paced evoked response was measured using a total of 20 isolated rabbit heart preparations. Five were run for 8 hours and the remaining fifteen were run for 5 hours. Our results indicate that the waveform components of the evoked response remain stable while the preparation is viable, but that two of the time-related measurements change with loss of viability. A significant lengthening of the stimulus-R interval was seen together with a dramatic shortening of the R-T period. The net result of these changes was an overall reduction of 17% in the complex duration. In addition, we found the R-T shortening to be a sensitive measure of myocardial integrity. We conclude that the combination of our interface charge elimination circuit and the isolated heart preparation has proved a useful system for the investigation of the paced evoked potential. Furthermore, the loss of myocardial viability has a complex action on this response.
Temporal specificity of extinction in autoshaping.
Drew, Michael R; Yang, Cynthia; Ohyama, Tatsuya; Balsam, Peter D
2004-07-01
Three experiments investigated the effects of varying the conditioned stimulus (CS) duration between training and extinction. Ring doves (Streptopelia risoria) were autoshaped on a fixed CS-unconditioned stimulus (US) interval and extinguished with CS presentations that were longer, shorter, or the same as the training duration. During a subsequent test session, the training CS duration was reintroduced. Results suggest that the cessation of responding during an extinction session is controlled by generalization of excitation between the training and extinction CSs and by the number of nonreinforced CS presentations. Transfer of extinction to the training CS is controlled by the similarity between the extinction and training CSs. Extinction learning is temporally specific. (c) 2004 APA, all rights reserved
Icon Duration and Development.
ERIC Educational Resources Information Center
Gummerman, Kent; And Others
In this study, developmental changes in duration of the icon (visual sensory store) were investigated with three converging tachistoscopic tasks. (1) Stimulus interuption detection (SID), a variation of the two-flash threshold method, was performed by 29 first- and 32 fifth-graders, and 32 undergraduates. Icon duration was estimated by stimulus…
Differential effect of visual masking in perceptual categorization.
Hélie, Sébastien; Cousineau, Denis
2015-06-01
This article explores the visual information used to categorize stimuli drawn from a common stimulus space into verbal and nonverbal categories using 2 experiments. Experiment 1 explores the effect of target duration on verbal and nonverbal categorization using backward masking to interrupt visual processing. With categories equated for difficulty for long and short target durations, intermediate target duration shows an advantage for verbal categorization over nonverbal categorization. Experiment 2 tests whether the results of Experiment 1 can be explained by shorter target duration resulting in a smaller signal-to-noise ratio of the categorization stimulus. To test for this possibility, Experiment 2 used integration masking with the same stimuli, categories, and masks as Experiment 1 with a varying level of mask opacity. As predicted, low mask opacity yielded similar results to long target duration while high mask opacity yielded similar results to short target duration. Importantly, intermediate mask opacity produced an advantage for verbal categorization over nonverbal categorization, similar to intermediate target duration. These results suggest that verbal and nonverbal categorization are affected differently by manipulations affecting the signal-to-noise ratio of the stimulus, consistent with multiple-system theories of categorizations. The results further suggest that verbal categorization may be more digital (and more robust to low signal-to-noise ratio) while the information used in nonverbal categorization may be more analog (and less robust to lower signal-to-noise ratio). This article concludes with a discussion of how these new results affect the use of masking in perceptual categorization and multiple-system theories of perceptual category learning. (c) 2015 APA, all rights reserved).
Lie, Marie Udnesseter; Matre, Dagfinn; Hansson, Per; Stubhaug, Audun; Zwart, John-Anker; Nilsen, Kristian Bernhard
2017-01-01
Abstract Introduction: The interest in conditioned pain modulation (CPM) as a clinical tool for measuring endogenously induced analgesia is increasing. There is, however, large variation in the CPM methodology, hindering comparison of results across studies. Research comparing different CPM protocols is needed in order to obtain a standardized test paradigm. Objectives: The aim of the study was to assess whether a protocol with phasic heat stimuli as test-stimulus is preferable to a protocol with tonic heat stimulus as test-stimulus. Methods: In this experimental crossover study, we compared 2 CPM protocols with different test-stimulus; one with tonic test-stimulus (constant heat stimulus of 120-second duration) and one with phasic test-stimuli (3 heat stimulations of 5 seconds duration separated by 10 seconds). Conditioning stimulus was a 7°C water bath in parallel with the test-stimulus. Twenty-four healthy volunteers were assessed on 2 occasions with minimum 1 week apart. Differences in the magnitude and test–retest reliability of the CPM effect in the 2 protocols were investigated with repeated-measures analysis of variance and by relative and absolute reliability indices. Results: The protocol with tonic test-stimulus induced a significantly larger CPM effect compared to the protocol with phasic test-stimuli (P < 0.001). Fair and good relative reliability was found with the phasic and tonic test-stimuli, respectively. Absolute reliability indices showed large intraindividual variability from session to session in both protocols. Conclusion: The present study shows that a CPM protocol with a tonic test-stimulus is preferable to a protocol with phasic test-stimuli. However, we emphasize that one should be cautious to use the CPM effect as biomarker or in clinical decision making on an individual level due to large intraindividual variability. PMID:29392240
Digital signaling decouples activation probability and population heterogeneity.
Kellogg, Ryan A; Tian, Chengzhe; Lipniacki, Tomasz; Quake, Stephen R; Tay, Savaş
2015-10-21
Digital signaling enhances robustness of cellular decisions in noisy environments, but it is unclear how digital systems transmit temporal information about a stimulus. To understand how temporal input information is encoded and decoded by the NF-κB system, we studied transcription factor dynamics and gene regulation under dose- and duration-modulated inflammatory inputs. Mathematical modeling predicted and microfluidic single-cell experiments confirmed that integral of the stimulus (or area, concentration × duration) controls the fraction of cells that activate NF-κB in the population. However, stimulus temporal profile determined NF-κB dynamics, cell-to-cell variability, and gene expression phenotype. A sustained, weak stimulation lead to heterogeneous activation and delayed timing that is transmitted to gene expression. In contrast, a transient, strong stimulus with the same area caused rapid and uniform dynamics. These results show that digital NF-κB signaling enables multidimensional control of cellular phenotype via input profile, allowing parallel and independent control of single-cell activation probability and population heterogeneity.
Spatiotemporal discrimination in neural networks with short-term synaptic plasticity
NASA Astrophysics Data System (ADS)
Shlaer, Benjamin; Miller, Paul
2015-03-01
Cells in recurrently connected neural networks exhibit bistability, which allows for stimulus information to persist in a circuit even after stimulus offset, i.e. short-term memory. However, such a system does not have enough hysteresis to encode temporal information about the stimuli. The biophysically described phenomenon of synaptic depression decreases synaptic transmission strengths due to increased presynaptic activity. This short-term reduction in synaptic strengths can destabilize attractor states in excitatory recurrent neural networks, causing the network to move along stimulus dependent dynamical trajectories. Such a network can successfully separate amplitudes and durations of stimuli from the number of successive stimuli. Stimulus number, duration and intensity encoding in randomly connected attractor networks with synaptic depression. Front. Comput. Neurosci. 7:59., and so provides a strong candidate network for the encoding of spatiotemporal information. Here we explicitly demonstrate the capability of a recurrent neural network with short-term synaptic depression to discriminate between the temporal sequences in which spatial stimuli are presented.
Leote, Joao; Pereira, Pedro; Cabib, Christopher; Cipullo, Federica; Valls-Sole, Josep
2016-06-01
Low-intensity electrical stimuli of digital nerves may generate a double peak potential (DPp), composed of a cathodal (caAP) and an anodal (anAP) potential in orthodromic recordings. We studied the effects on caAP and anAP of stimuli of variable intensity, duration, and frequency. We also applied a conditioning stimulus to study potential differences in recovery time. The anAP was obtained in 33 of 40 healthy subjects (82.5%) and 4 of 20 patients with various types of sensory neuropathies (20%). Changes in stimulus duration and intensity had reciprocal effects on the amplitude of the anAP and the caAP. There were significant differences in recovery time between caAP and anAP after a conditioning stimulus. The caAP and anAP are 2 interdependent waveforms generated by different effects of the same stimulus over axons at the verge of depolarization. Muscle Nerve 53: 897-905, 2016. © 2015 Wiley Periodicals, Inc.
Human single-neuron responses at the threshold of conscious recognition
Quiroga, R. Quian; Mukamel, R.; Isham, E. A.; Malach, R.; Fried, I.
2008-01-01
We studied the responses of single neurons in the human medial temporal lobe while subjects viewed familiar faces, animals, and landmarks. By progressively shortening the duration of stimulus presentation, coupled with backward masking, we show two striking properties of these neurons. (i) Their responses are not statistically different for the 33-ms, 66-ms, and 132-ms stimulus durations, and only for the 264-ms presentations there is a significantly higher firing. (ii) These responses follow conscious perception, as indicated by the subjects' recognition report. Remarkably, when recognized, a single snapshot as brief as 33 ms was sufficient to trigger strong single-unit responses far outlasting stimulus presentation. These results suggest that neurons in the medial temporal lobe can reflect conscious recognition by “all-or-none” responses. PMID:18299568
Burst Firing is a Neural Code in an Insect Auditory System
Eyherabide, Hugo G.; Rokem, Ariel; Herz, Andreas V. M.; Samengo, Inés
2008-01-01
Various classes of neurons alternate between high-frequency discharges and silent intervals. This phenomenon is called burst firing. To analyze burst activity in an insect system, grasshopper auditory receptor neurons were recorded in vivo for several distinct stimulus types. The experimental data show that both burst probability and burst characteristics are strongly influenced by temporal modulations of the acoustic stimulus. The tendency to burst, hence, is not only determined by cell-intrinsic processes, but also by their interaction with the stimulus time course. We study this interaction quantitatively and observe that bursts containing a certain number of spikes occur shortly after stimulus deflections of specific intensity and duration. Our findings suggest a sparse neural code where information about the stimulus is represented by the number of spikes per burst, irrespective of the detailed interspike-interval structure within a burst. This compact representation cannot be interpreted as a firing-rate code. An information-theoretical analysis reveals that the number of spikes per burst reliably conveys information about the amplitude and duration of sound transients, whereas their time of occurrence is reflected by the burst onset time. The investigated neurons encode almost half of the total transmitted information in burst activity. PMID:18946533
Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions
Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.
2014-01-01
Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967
Ransom, Christopher B; Ransom, Bruce R; Sontheimer, Harald
2000-01-01
We measured activity-dependent changes in [K+]o with K+-selective microelectrodes in adult rat optic nerve, a CNS white matter tract, to investigate the factors responsible for post-stimulus recovery of [K+]o.Post-stimulus recovery of [K+]o followed a double-exponential time course with an initial, fast time constant, τfast, of 0.9 ± 0.2 s (mean ±s.d.) and a later, slow time constant, τslow, of 4.2 ± 1 s following a 1 s, 100 Hz stimulus. τfast, but not τslow, decreased with increasing activity-dependent rises in [K+]o. τslow, but not τfast, increased with increasing stimulus duration.Post-stimulus recovery of [K+]o was temperature sensitive. The apparent temperature coefficients (Q10, 27–37°C) for the fast and slow components following a 1 s, 100 Hz stimulus were 1.7 and 2.6, respectively.Post-stimulus recovery of [K+]o was sensitive to Na+ pump inhibition with 50 μM strophanthidin. Following a 1 s, 100 Hz stimulus, 50 μM strophanthidin increased τfast and τslow by 81 and 464%, respectively. Strophanthidin reduced the temperature sensitivity of post-stimulus recovery of [K+]o.Post-stimulus recovery of [K+]o was minimally affected by the K+ channel blocker Ba2+ (0.2 mm). Following a 10 s, 100 Hz stimulus, 0.2 mm Ba2+ increased τfast and τslow by 24 and 18%, respectively.Stimulated increases in [K+]o were followed by undershoots of [K+]o. Post-stimulus undershoot amplitude increased with stimulus duration but was independent of the peak preceding [K+]o increase.These observations imply that two distinct processes contribute to post-stimulus recovery of [K+]o in central white matter. The results are compatible with a model of K+ removal that attributes the fast, initial phase of K+ removal to K+ uptake by glial Na+ pumps and the slower, sustained decline to K+ uptake via axonal Na+ pumps. PMID:10713967
Presentation-order effects for aesthetic stimulus preference.
Englund, Mats P; Hellström, Åke
2012-10-01
For preference comparisons of paired successive musical excerpts, Koh (American Journal of Psychology, 80, 171-185, 1967) found time-order effects (TOEs) that correlated negatively with stimulus valence-the first (vs. the second) of two unpleasant (vs. two pleasant) excerpts tended to be preferred. We present three experiments designed to investigate whether valence-level-dependent order effects for aesthetic preference (a) can be accounted for using Hellström's (e.g., Journal of Experimental Psychology: Human Perception and Performance, 5, 460-477, 1979) sensation-weighting (SW) model, (b) can be generalized to successive and to simultaneous visual stimuli, and (c) vary, in accordance with the stimulus weighting, with interstimulus interval (ISI; for successive stimuli) or stimulus duration (for simultaneous stimuli). Participants compared paired successive jingles (Exp. 1), successive color patterns (Exp. 2), and simultaneous color patterns (Exp. 3), selecting the preferred stimulus. The results were well described by the SW model, which provided a better fit than did two extended versions of the Bradley-Terry-Luce model. Experiments 1 and 2 revealed higher weights for the second stimulus than for the first, and negatively valence-level-dependent TOEs. In Experiment 3, there was no laterality effect on the stimulus weighting and no valence-level-dependent space-order effects (SOEs). In terms of the SW model, the valence-level-dependent TOEs can be explained as a consequence of differential stimulus weighting in combination with stimulus valence varying from low to high, and the absence of valence-level-dependent SOEs as a consequence of the absence of differential weighting. For successive stimuli, there were no important effects of ISI on weightings and TOEs, and, for simultaneous stimuli, duration had only a small effect on the weighting.
2013-01-01
Background The cortical silent period (CSP) elicited by transcranial magnetic stimulation (TMS) is affected by changes in TMS intensity. Some studies have shown that CSP is shortened or prolonged by short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF), Those studies, however, used different TMS intensities to adjust the amplitude of the motor evoked potential (MEP). Therefore, it is unclear whether changes in CSP duration are induced by changes in TMS intensities or by SICI and ICF. The purpose of this study was to confirm the effects of muscle contractions and stimulus intensities on MEP amplitude and the duration of CSP induced by single-pulse TMS and to clarify the effects of SICI and ICF on CSP duration. MEP evoked by TMS was detected from the right first dorsal interosseous muscle in 15 healthy subjects. First, MEP and CSP were induced by single-pulse TMS with an intensity of 100% active motor threshold (AMT) at four muscle contraction levels [10%, 30%, 50%, and 70% electromyogram (EMG)]. Next, MEP and CSP were induced by seven TMS intensities (100%, 110%, 120%, 130%, 140%, 150%, and 160% AMT) during muscle contraction of 10% EMG. Finally, SICI and ICF were recorded at the four muscle contraction levels (0%, 10%, 30%, and 50% EMG). Results MEP amplitudes increased with increases in muscle contraction and stimulus intensity. However, CSP duration did not differ at different muscle contraction levels and was prolonged with increases in stimulus intensity. CSP was shortened with SICI compared with CSP induced by single-pulse TMS and with ICF at all muscle contraction levels, whereas CSP duration was not significantly changed with ICF. Conclusions We confirmed that CSP duration is affected by TMS intensity but not by the muscle contraction level. This study demonstrated that CSP is shortened with SICI, but it is not altered with ICF. These results indicate that after SICI, CSP duration is affected by the activity of inhibitory intermediate neurons that are activated by the conditioning SICI stimulus. PMID:23547559
Nagai, Takehiro; Matsushima, Toshiki; Koida, Kowa; Tani, Yusuke; Kitazaki, Michiteru; Nakauchi, Shigeki
2015-10-01
Humans can visually recognize material categories of objects, such as glass, stone, and plastic, easily. However, little is known about the kinds of surface quality features that contribute to such material class recognition. In this paper, we examine the relationship between perceptual surface features and material category discrimination performance for pictures of materials, focusing on temporal aspects, including reaction time and effects of stimulus duration. The stimuli were pictures of objects with an identical shape but made of different materials that could be categorized into seven classes (glass, plastic, metal, stone, wood, leather, and fabric). In a pre-experiment, observers rated the pictures on nine surface features, including visual (e.g., glossiness and transparency) and non-visual features (e.g., heaviness and warmness), on a 7-point scale. In the main experiments, observers judged whether two simultaneously presented pictures were classified as the same or different material category. Reaction times and effects of stimulus duration were measured. The results showed that visual feature ratings were correlated with material discrimination performance for short reaction times or short stimulus durations, while non-visual feature ratings were correlated only with performance for long reaction times or long stimulus durations. These results suggest that the mechanisms underlying visual and non-visual feature processing may differ in terms of processing time, although the cause is unclear. Visual surface features may mainly contribute to material recognition in daily life, while non-visual features may contribute only weakly, if at all. Copyright © 2014 Elsevier Ltd. All rights reserved.
Eddy, Marianna D.; Holcomb, Phillip J.
2010-01-01
The current study used event-related potentials (ERPs) and masked repetition priming to examine the time-course of picture processing. We manipulated the stimulus-onset asynchrony (110 ms, 230 ms, 350 ms, 470 ms) between repeated and unrepeated prime-target pairs while holding the prime duration constant (50 ms) (Experiment 1) as well as the prime duration (30 ms, 50 ms, 70 ms, 90 ms) (Experiment 2) with a constant SOA of 110 ms in a masked repetition priming paradigm with pictures. The aim of this study was to further elucidate the mechanisms underlying previously observed ERP components in masked priming with pictures. We found both the N/P190 and N400 are modulated by changes in prime duration and SOA, however, it appears that longer prime exposure rather than a longer SOA leads to more in-depth processing as indexed by larger N400 effects. PMID:20403342
Speed tuning of motion segmentation and discrimination
NASA Technical Reports Server (NTRS)
Masson, G. S.; Mestre, D. R.; Stone, L. S.
1999-01-01
Motion transparency requires that the visual system distinguish different motion vectors and selectively integrate similar motion vectors over space into the perception of multiple surfaces moving through or over each other. Using large-field (7 degrees x 7 degrees) displays containing two populations of random-dots moving in the same (horizontal) direction but at different speeds, we examined speed-based segmentation by measuring the speed difference above which observers can perceive two moving surfaces. We systematically investigated this 'speed-segmentation' threshold as a function of speed and stimulus duration, and found that it increases sharply for speeds above approximately 8 degrees/s. In addition, speed-segmentation thresholds decrease with stimulus duration out to approximately 200 ms. In contrast, under matched conditions, speed-discrimination thresholds stay low at least out to 16 degrees/s and decrease with increasing stimulus duration at a faster rate than for speed segmentation. Thus, motion segmentation and motion discrimination exhibit different speed selectivity and different temporal integration characteristics. Results are discussed in terms of the speed preferences of different neuronal populations within the primate visual cortex.
Zhu, Yiqing; Wayland, Ratree
2017-01-01
We investigated categorical perception of rising and falling pitch contours by tonal and non-tonal listeners. Specifically, we determined minimum durations needed to perceive both contours and compared to those of production, how stimuli duration affects their perception, whether there is an intrinsic F0 effect, and how first language background, duration, directions of pitch and vowel quality interact with each other. Continua of fundamental frequency on different vowels with 9 duration values were created for identification and discrimination tasks. Less time is generally needed to effectively perceive a pitch direction than to produce it. Overall, tonal listeners’ perception is more categorical than non-tonal listeners. Stimuli duration plays a critical role for both groups, but tonal listeners showed a stronger duration effect, and may benefit more from the extra time in longer stimuli for context-coding, consistent with the multistore model of categorical perception. Within a certain range of semitones, tonal listeners also required shorter stimulus duration to perceive pitch direction changes than non-tonal listeners. Finally, vowel quality plays a limited role and only interacts with duration in perceiving falling pitch directions. These findings further our understanding on models of categorical perception, the relationship between speech perception and production, and the interaction between the perception of tones and vowel quality. PMID:28671991
The Anaesthetic-ECT Time Interval in Electroconvulsive Therapy Practice--Is It Time to Time?
Gálvez, Verònica; Hadzi-Pavlovic, Dusan; Wark, Harry; Harper, Simon; Leyden, John; Loo, Colleen K
2016-01-01
Because most common intravenous anaesthetics used in ECT have anticonvulsant properties, their plasma-brain concentration at the time of seizure induction might affect seizure expression. The quality of ECT seizure expression has been repeatedly associated with efficacy outcomes. The time interval between the anaesthetic bolus injection and the ECT stimulus (anaesthetic-ECT time interval) will determine the anaesthetic plasma-brain concentration when the ECT stimulus is administered. The aim of this study was to examine the effect of the anaesthetic-ECT time interval on ECT seizure quality and duration. The anaesthetic-ECT time interval was recorded in 771 ECT sessions (84 patients). Right unilateral brief pulse ECT was applied. Anaesthesia given was propofol (1-2 mg/kg) and succinylcholine (0.5-1.0 mg/kg). Seizure quality indices (slow wave onset, amplitude, regularity, stereotypy and post-ictal suppression) and duration were rated through a structured rating scale by a single blinded trained rater. Linear Mixed Effects Models analysed the effect of the anaesthetic-ECT time interval on seizure quality indices, controlling for propofol dose (mg), ECT charge (mC), ECT session number, days between ECT, age (years), initial seizure threshold (mC) and concurrent medication. Longer anaesthetic-ECT time intervals lead to significantly higher quality seizures (p < 0.001 for amplitude, regularity, stereotypy and post-ictal suppression). These results suggest that the anaesthetic-ECT time interval is an important factor to consider in ECT practice. This time interval should be extended to as long as practically possible to facilitate the production of better quality seizures. Close collaboration between the anaesthetist and the psychiatrist is essential. Copyright © 2015 Elsevier Inc. All rights reserved.
Opposite Influence of Perceptual Memory on Initial and Prolonged Perception of Sensory Ambiguity
de Jong, Maartje Cathelijne; Knapen, Tomas; van Ee, Raymond
2012-01-01
Observers continually make unconscious inferences about the state of the world based on ambiguous sensory information. This process of perceptual decision-making may be optimized by learning from experience. We investigated the influence of previous perceptual experience on the interpretation of ambiguous visual information. Observers were pre-exposed to a perceptually stabilized sequence of an ambiguous structure-from-motion stimulus by means of intermittent presentation. At the subsequent re-appearance of the same ambiguous stimulus perception was initially biased toward the previously stabilized perceptual interpretation. However, prolonged viewing revealed a bias toward the alternative perceptual interpretation. The prevalence of the alternative percept during ongoing viewing was largely due to increased durations of this percept, as there was no reliable decrease in the durations of the pre-exposed percept. Moreover, the duration of the alternative percept was modulated by the specific characteristics of the pre-exposure, whereas the durations of the pre-exposed percept were not. The increase in duration of the alternative percept was larger when the pre-exposure had lasted longer and was larger after ambiguous pre-exposure than after unambiguous pre-exposure. Using a binocular rivalry stimulus we found analogous perceptual biases, while pre-exposure did not affect eye-bias. We conclude that previously perceived interpretations dominate at the onset of ambiguous sensory information, whereas alternative interpretations dominate prolonged viewing. Thus, at first instance ambiguous information seems to be judged using familiar percepts, while re-evaluation later on allows for alternative interpretations. PMID:22295095
The emotional body and time perception.
Droit-Volet, Sylvie; Gil, Sandrine
2016-01-01
We examined the effects of emotional bodily expressions on the perception of time. Participants were shown bodily expressions of fear, happiness and sadness in a temporal bisection task featuring different stimulus duration ranges. Stimulus durations were judged to be longer for bodily expressions of fear than for those of sadness, whereas no significant difference was observed between sad and happy postures. In addition, the magnitude of the lengthening effect of fearful versus sad postures increased with duration range. These results suggest that the perception of fearful bodily expressions increases the level of arousal which, in turn, speeds up the internal clock system underlying the representation of time. The effect of bodily expressions on time perception is thus consistent with findings for other highly arousing emotional stimuli, such as emotional facial expressions.
Flicker Adaptation of Low-Level Cortical Visual Neurons Contributes to Temporal Dilation
ERIC Educational Resources Information Center
Ortega, Laura; Guzman-Martinez, Emmanuel; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
Several seconds of adaptation to a flickered stimulus causes a subsequent brief static stimulus to appear longer in duration. Nonsensory factors, such as increased arousal and attention, have been thought to mediate this flicker-based temporal-dilation aftereffect. In this study, we provide evidence that adaptation of low-level cortical visual…
ERIC Educational Resources Information Center
Doom, Jenalee R.; Gunnar, Megan R.; Georgieff, Michael K.; Kroupina, Maria G.; Frenn, Kristin; Fuglestad, Anita J.; Carlson, Stephanie M.
2014-01-01
Children adopted from institutions have been studied as models of the impact of stimulus deprivation on cognitive development (Nelson, Bos, Gunnar, & Sonuga-Barke, 2011), but these children may also suffer from micronutrient deficiencies (Fuglestad et al., 2008). The contributions of iron deficiency (ID) and duration of deprivation on…
Changes in compensatory eye movements associated with simulated stimulus conditions of spaceflight
NASA Technical Reports Server (NTRS)
Harm, Deborah L.; Zografos, Linda M.; Skinner, Noel C.; Parker, Donald E.
1993-01-01
Compensatory vertical eye movement gain (CVEMG) was recorded during pitch oscillation in darkness before, during, and immediately after exposures to the stimulus rearrangement produced by the Preflight Adaptation Trainer (PAT) Tilt-Translation Device (TTD). The TTD is designed to elicit adaptive responses that are similar to those observed in microgravity-adapted astronauts. The data from Experiment 1 yielded a statistically significant CVEMG decrease following 15 min of exposure to a stimulus rearrangement condition where the phase angle between subject pitch tilt and visual scene translation was 270 deg; statistically significant gain decreases were not observed following exposures either to a condition where the phase angle between subject pitch and scene translation was 90 deg or to a no-stimulus-rearrangement condition. Experiment 2 replicated the 270-deg-phase condition from Experiment 1 and extended the exposure duration from 30 to 45 min. Statistically significant additional changes in CVEMG associated with the increased exposure duration were not observed. The adaptation time constant estimated fram the combined data from Experiments 1 and 2 was 29 min.
Changes in Compensatory Eye Movements Associated with Simulated Stimulus Conditions of Spaceflight
NASA Technical Reports Server (NTRS)
Harm, Deborah L.; Zografos, Linda M.; Skinner, Noel C.; Parker, Donald E.
1993-01-01
Compensatory vertical eye movement gain (CVEMG) was recorded during pitch oscillation in darkness before, during and immediately after exposures to the stimulus rearrangement produced by the Preflight Adaptation Trainer (PAT) Tilt-Translation Device (TTD). The TTD is designed to elicit adaptive responses that are similar to those observed in microgravity-adapted astronauts. The data from Experiment 1 yielded a statistically significant CVEMG decrease following 15 minutes of exposure to a stimulus rearrangement condition where the phase angle between subject pitch tilt and visual scene translation was 270 degrees; statistically significant gain decreases were not observed following exposures either to a condition where the phase angle between subject pitch and scene translation was 90 degrees or to a no-stimulus-rearrangement condition. Experiment 2 replicated the 270 degree phase condition from Experiment 1 and extended the exposure duration from 30 to 45 minutes. Statistically significant additional changes in CVEMG associated with the increased exposure duration were not observed. The adaptation time constant estimated from the combined data from Experiments 1 and 2 was 29 minutes.
2013-01-01
Background Prior studies demonstrated that hesitation-prone persons with Parkinson’s disease (PDs) acutely improve step initiation using a novel self-triggered stimulus that enhances lateral weight shift prior to step onset. PDs showed reduced anticipatory postural adjustment (APA) durations, earlier step onsets, and faster 1st step speed immediately following stimulus exposure. Objective This study investigated the effects of long-term stimulus exposure. Methods Two groups of hesitation-prone subjects with Parkinson’s disease (PD) participated in a 6-week step-initiation training program involving one of two stimulus conditions: 1) Drop. The stance-side support surface was lowered quickly (1.5 cm); 2) Vibration. A short vibration (100 ms) was applied beneath the stance-side support surface. Stimuli were self-triggered by a 5% reduction in vertical force under the stance foot during the APA. Testing was at baseline, immediately post-training, and 6 weeks post-training. Measurements included timing and magnitude of ground reaction forces, and step speed and length. Results Both groups improved their APA force modulation after training. Contrary to previous results, neither group showed reduced APA durations or earlier step onset times. The vibration group showed 55% increase in step speed and a 39% increase in step length which were retained 6 weeks post-training. The drop group showed no stepping-performance improvements. Conclusions The acute sensitivity to the quickness-enhancing effects of stimulus exposure demonstrated in previous studies was supplanted by improved force modulation following prolonged stimulus exposure. The results suggest a potential approach to reduce the severity of start hesitation in PDs, but further study is needed to understand the relationship between short- and long-term effects of stimulus exposure. PMID:23363975
Duration of stimulus presentation and screening for perceptual disabilities.
Rohr, M E; Ayers, J B
1975-02-01
This study examined the effects of increasing the stimulus-presentation time of a motion picture test for identifying perceptual disabilities in the performance of Ss in regular first and fourth grade classrooms and on a sample of Ss in special education classes who had been identified as having varying degrees of perceptual deficiencies. The length of stimulus presentation increased the total performance of Ss on the motion picture test but did not add to the value of the instrument as a screening device.
Raymond, J L; Lisberger, S G
1996-12-01
We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.
NASA Technical Reports Server (NTRS)
Raymond, J. L.; Lisberger, S. G.
1996-01-01
We characterized the dependence of motor learning in the monkey vestibulo-ocular reflex (VOR) on the duration, frequency, and relative timing of the visual and vestibular stimuli used to induce learning. The amplitude of the VOR was decreased or increased through training with paired head and visual stimulus motion in the same or opposite directions, respectively. For training stimuli that consisted of simultaneous pulses of head and target velocity 80-1000 msec in duration, brief stimuli caused small changes in the amplitude of the VOR, whereas long stimuli caused larger changes in amplitude as well as changes in the dynamics of the reflex. When the relative timing of the visual and vestibular stimuli was varied, brief image motion paired with the beginning of a longer vestibular stimulus caused changes in the amplitude of the reflex alone, but the same image motion paired with a later time in the vestibular stimulus caused changes in the dynamics as well as the amplitude of the VOR. For training stimuli that consisted of sinusoidal head and visual stimulus motion, low-frequency training stimuli induced frequency-selective changes in the VOR, as reported previously, whereas high-frequency training stimuli induced changes in the amplitude of the VOR that were more similar across test frequency. The results suggest that there are at least two distinguishable components of motor learning in the VOR. One component is induced by short-duration or high-frequency stimuli and involves changes in only the amplitude of the reflex. A second component is induced by long-duration or low-frequency stimuli and involves changes in the amplitude and dynamics of the VOR.
Sekar, Krithiga; Findley, William M.; Poeppel, David; Llinás, Rodolfo R.
2013-01-01
At perceptual threshold, some stimuli are available for conscious access whereas others are not. Such threshold inputs are useful tools for investigating the events that separate conscious awareness from unconscious stimulus processing. Here, viewing unmasked, threshold-duration images was combined with recording magnetoencephalography to quantify differences among perceptual states, ranging from no awareness to ambiguity to robust perception. A four-choice scale was used to assess awareness: “didn’t see” (no awareness), “couldn’t identify” (awareness without identification), “unsure” (awareness with low certainty identification), and “sure” (awareness with high certainty identification). Stimulus-evoked neuromagnetic signals were grouped according to behavioral response choices. Three main cortical responses were elicited. The earliest response, peaking at ∼100 ms after stimulus presentation, showed no significant correlation with stimulus perception. A late response (∼290 ms) showed moderate correlation with stimulus awareness but could not adequately differentiate conscious access from its absence. By contrast, an intermediate response peaking at ∼240 ms was observed only for trials in which stimuli were consciously detected. That this signal was similar for all conditions in which awareness was reported is consistent with the hypothesis that conscious visual access is relatively sharply demarcated. PMID:23509248
The Stimulus Movement Effect: Allocation of Attention or Artifact?
NASA Technical Reports Server (NTRS)
Washburn, David A.
1993-01-01
In previous reports, including one by the author, learning has been shown to benefit by having discriminanda move rather than remain stationary. This stimulus movement effect might be attributed to several theoretical mechanisms, including attention, topological memory, and exposure duration. The series of experiments reported in this article was designed to Contrast these potential explanatory factors. Ten rhesus monkeys (Macaca mulatta) were tested on a variety of computerized tasks in which the stimuli remained stationary, flashed, or moved at systematically varied speeds. Performance was significantly best when the sample stimulus moved quickly and was poorest when the stimulus remained stationary. Further analysis of these data and other previously published data revealed that the distribution of the stimulus movement effect across trials supported an attention allocation interpretation.
Effects of preparation time and trial type probability on performance of anti- and pro-saccades.
Pierce, Jordan E; McDowell, Jennifer E
2016-02-01
Cognitive control optimizes responses to relevant task conditions by balancing bottom-up stimulus processing with top-down goal pursuit. It can be investigated using the ocular motor system by contrasting basic prosaccades (look toward a stimulus) with complex antisaccades (look away from a stimulus). Furthermore, the amount of time allotted between trials, the need to switch task sets, and the time allowed to prepare for an upcoming saccade all impact performance. In this study the relative probabilities of anti- and pro-saccades were manipulated across five blocks of interleaved trials, while the inter-trial interval and trial type cue duration were varied across subjects. Results indicated that inter-trial interval had no significant effect on error rates or reaction times (RTs), while a shorter trial type cue led to more antisaccade errors and faster overall RTs. Responses following a shorter cue duration also showed a stronger effect of trial type probability, with more antisaccade errors in blocks with a low antisaccade probability and slower RTs for each saccade task when its trial type was unlikely. A longer cue duration yielded fewer errors and slower RTs, with a larger switch cost for errors compared to a short cue duration. Findings demonstrated that when the trial type cue duration was shorter, visual motor responsiveness was faster and subjects relied upon the implicit trial probability context to improve performance. When the cue duration was longer, increased fixation-related activity may have delayed saccade motor preparation and slowed responses, guiding subjects to respond in a controlled manner regardless of trial type probability. Copyright © 2016 Elsevier B.V. All rights reserved.
Jorge, João; Figueiredo, Patrícia; Gruetter, Rolf; van der Zwaag, Wietske
2018-06-01
External stimuli and tasks often elicit negative BOLD responses in various brain regions, and growing experimental evidence supports that these phenomena are functionally meaningful. In this work, the high sensitivity available at 7T was explored to map and characterize both positive (PBRs) and negative BOLD responses (NBRs) to visual checkerboard stimulation, occurring in various brain regions within and beyond the visual cortex. Recently-proposed accelerated fMRI techniques were employed for data acquisition, and procedures for exclusion of large draining vein contributions, together with ICA-assisted denoising, were included in the analysis to improve response estimation. Besides the visual cortex, significant PBRs were found in the lateral geniculate nucleus and superior colliculus, as well as the pre-central sulcus; in these regions, response durations increased monotonically with stimulus duration, in tight covariation with the visual PBR duration. Significant NBRs were found in the visual cortex, auditory cortex, default-mode network (DMN) and superior parietal lobule; NBR durations also tended to increase with stimulus duration, but were significantly less sustained than the visual PBR, especially for the DMN and superior parietal lobule. Responses in visual and auditory cortex were further studied for checkerboard contrast dependence, and their amplitudes were found to increase monotonically with contrast, linearly correlated with the visual PBR amplitude. Overall, these findings suggest the presence of dynamic neuronal interactions across multiple brain regions, sensitive to stimulus intensity and duration, and demonstrate the richness of information obtainable when jointly mapping positive and negative BOLD responses at a whole-brain scale, with ultra-high field fMRI. © 2018 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Bähring, Robert; Bauer, Christiane K.
2014-01-01
The generation and conduction of neuronal action potentials (APs) were the subjects of a cell physiology exercise for first-year medical students. In this activity, students demonstrated the all-or-none nature of AP generation, measured conduction velocity, and examined the dependence of the threshold stimulus amplitude on stimulus duration. For…
Human Factors Engineering Bibliographic Series. Volume 2: 1960-1964 Literature
1966-10-01
flutter discrimination, melodic and temporal) binaural vs. monaural equipment and methods (e.g., anechoic chambers, audiometric devices, communication...brightness, duration, timbre, vocality) stimulus mixtures (e.g., harmonics, beats , combination tones, modulations) thresholds training, nonverbal--see Training...scales and aids) Beats --see Audition (stimulus mixtures) Bells--see Auditory (displays, nonverbal) Belts, Harnesses, and other Restraining Devices--see
CS-duration and partial-reinforcement effects counteract overshadowing in select situations
Urushihara, Kouji; Miller, Ralph R.
2008-01-01
Two experiments used rats in a conditioned lick suppression preparation to investigate how the conditioned stimulus (CS)-duration and partial-reinforcement effects (i.e., weakened responding due to conditioning with a CS of longer duration and presenting nonreinforced CSs intermingled with CS-unconditioned stimulus [US] pairings, respectively) interact with overshadowing. Experiment 1 found that when overshadowing treatment was combined with either extended CS duration or partial reinforcement, the response deficit was weaker than when either of these three treatments was administered alone. In Experiment 2, the generality of the findings in Experiment 1 was investigated by replicating it with various US-US intervals. This time counteraction was observed only when both the absolute duration of total CS exposure and the US-US interval were short. The results support neither the view that the ratio between the total CS exposure and total time in the context determines the CS-duration and the partial-reinforcement effects nor the view that these two effects arise from a loss of effectiveness of the excitatory CS-US association during CS-alone exposures in partial reinforcement or early periods of CS exposure with long CSs. PMID:18047218
Wearden, J H; Williams, Emily A; Jones, Luke A
2017-03-01
Four experiments investigated the effect of pre-stimulus events on judgements of the subjective duration of tones that they preceded. Experiments 1 to 4 used click trains, flickering squares, expanding circles, and white noise as pre-stimulus events and showed that (a) periodic clicks appeared to "speed up" the pacemaker of an internal clock but that the effect wore off over a click-free delay, (b) aperiodic click trains, and visual stimuli in the form of flickering squares and expanding circles, also produced similar increases in estimated tone duration, as did white noise, although its effect was weaker. A fifth experiment examined the effects of periodic flicker on reaction time and showed that, as with periodic clicks in a previous experiment, reaction times were shorter when preceded by flicker than without.
Eddy, Marianna D; Holcomb, Phillip J
2010-06-22
The current study used event-related potentials (ERPs) and masked repetition priming to examine the time-course of picture processing. We manipulated the stimulus-onset asynchrony (110 ms, 230 ms, 350 ms, and 470 ms) between repeated and unrepeated prime-target pairs while holding the prime duration constant (50 ms) (Experiment 1) as well as the prime durations (30 ms, 50 ms, 70 ms, and 90 ms) (Experiment 2) with a constant SOA of 110 ms in a masked repetition priming paradigm with pictures. The aim of this study was to further elucidate the mechanisms underlying previously observed ERP components in masked priming with pictures. We found that both the N/P190 and N400 are modulated by changes in prime duration and SOA, however, it appears that longer prime exposure rather than a longer SOA leads to more in-depth processing as indexed by larger N400 effects. (c) 2010 Elsevier B.V. All rights reserved.
Intraocular retinal prosthesis.
Humayun, M S
2001-01-01
PURPOSE: An electronic implant that can bypass the damaged photoreceptors and electrically stimulate the remaining retinal neurons to restore useful vision has been proposed. A number of key questions remain to make this approach feasible. The goal of this thesis is to address the following 2 specific null hypotheses: (1) Stimulus parameters make no difference in the electrically elicited retinal responses. (2) Just as we have millions of photoreceptors, so it will take a device that can generate millions of pixels/light points to create useful vision. METHODS: For electrophysiologic experiments, 2 different setups were used. In the first setup, charge-balanced pulses were delivered to the retinal surface via electrodes inserted through an open sky approach in normal or blind retinal degenerate (rd) mice. In the second setup, the rabbit retina was removed under red light conditions from an enucleated eye and then maintained in a chamber while being superfused with oxygenated, heated Ames media. In both setups, stimulating electrodes and recording electrodes were positioned on the retinal surface to evaluate the effect of varying stimulation parameters on the orthodromic retinal responses (i.e., recording electrode placed between stimulating electrodes and optic nerve head). For psychophysical experiments, visual images were divided into pixels of light that could be projected in a pattern on the retina in up to 8 sighted volunteers. Subjects were asked to perform various tasks ranging from reading and face recognition to various activities of daily living. RESULTS: Electrophysiologic experiments: In a normal mouse, a single cycle of a 1-kHz sine wave was significantly more efficient than a 1-kHz square wave (P < .05), but no such difference was noted in either of the 8- or 16-week-old rd mouse groups (8-week-old, P = .426; 16-week-old, P = .078). Charge threshold was significantly higher in 16-week-old rd mouse versus both 8-week-old rd and normal mouse for every stimulus duration (P < .05). In all groups, short duration pulses (40, 80, and 120 microseconds) were more efficient in terms of total charge (the product of pulse amplitude and pulse duration) than longer (500 and 1,000 microseconds) pulses (P < .05). In all groups, applying a pulse train did not lead to more efficient charge usage (P < .05). Psychophysical experiments: In high-contrast tests, facial recognition rates of over 75% were achieved for all subjects with dot sizes of up to 31.5 minutes of arc when using a 25 x 25 grid with 4.5 arc minute gaps, a 30% dropout rate, and 6 gray levels. Even with a 4 x 4 array of pixels, some subjects were able to accurately describe 2 of the objects. Subjects who were able to read the 4-pixel letter height sentences (on the 6 x 10 and 16 x 16 array) seemed to have a good scanning technique. Scanning at the proper velocity tends to bring out more contrast in the lettering. The reading speed for the 72-point font is a bit slower than for the next smaller font. This may be due to the limited number of letters (3) visible in the window with this large font. CONCLUSIONS: Specific parameters needed to stimulate the retina were identified. Delineating the optimum parameters will decrease the current requirements. Psychophysical tests show that with limited pixels and image processing, useful vision is possible. Both these findings should greatly simplify the engineering of an electronic retinal prosthesis. PMID:11797315
NASA Astrophysics Data System (ADS)
de Leon, Nathalie Pulmones
2011-12-01
With the increasing interest in green technologies in transportation, plug-in hybrid electric vehicles (PHEV) have proven to be the best short-term solution to minimize greenhouse gas emissions. Despite such interest, conventional vehicle drivers are still reluctant in using such a new technology, mainly because of the long duration (4-8 hours) required to charge PHEV batteries with the currently existing Level I and II chargers. For this reason, Level III fast-charging stations capable of reducing the charging duration to 10-15 minutes are being considered. The present thesis focuses on the design of a fast-charging station that uses, in addition to the electrical grid, two stationary energy storage devices: a flywheel energy storage and a supercapacitor. The power electronic converters used for the interface of the energy sources with the charging station are designed. The design also focuses on the energy management that will minimize the PHEV battery charging duration as well as the duration required to recharge the energy storage devices. For this reason, an algorithm that minimizes durations along with its mathematical formulation is proposed, and its application in fast charging environment will be illustrated by means of two scenarios.
NASA Technical Reports Server (NTRS)
Bandurski, Robert S.; Schulze, Aga; Domagalski, W.
1986-01-01
A system of perception and transduction involving the gravity-induced asymmetric distribution of a plant growth hormone is studied. A theory is constructed which assumes that the perception of the gravitational stimulus involved a perturbation of the plant's bioelectric field and that the transduction of the stimulus involved voltage-gating of hormone movement from the plant's vascular tissue into the hormone responsive growing tissue. Particular attention is focused on the barriers to indole-3-acetic acid (IAA) transport from the seed to the mesocotyl cortex, the protoinhibition of IAA movement from the endosperm to the shoot, the effects of the gravitational stimulus on the movement of IAA from the kernel to the shoot, electrochemical gating as a target for the gravity stimulus, and the gravity sensing mechanism.
The tactile movement aftereffect.
Hollins, M; Favorov, O
1994-01-01
The existence of a tactile movement aftereffect was established in a series of experiments on the palmar surface of the hand and fingers of psychophysical observers. During adaptation, observers cupped their hand around a moving drum for up to 3 min; following this period of stimulation, they typically reported an aftereffect consisting of movement sensations located on and deep to the skin, and lasting for up to 1 min. Preliminary experiments comparing a number of stimulus materials mounted on the drum demonstrated that a surface approximating a low-spatial-frequency square wave, with a smooth microtexture, was especially effective at inducing the aftereffect; this adapting stimulus was therefore used throughout the two main experiments. In Experiment 1, the vividness of the aftereffect produced by 2 min of adaptation was determined under three test conditions: with the hand (1) remaining on the now stationary drum; (2) in contact with a soft, textured surface; or (3) suspended in air. Subjects' free magnitude estimates of the peak vividness of the aftereffect were not significantly different across conditions; each subject experienced the aftereffect at least once under each condition. Thus the tactile movement aftereffect does not seem to depend critically on the ponditions of stimulation that obtain while it is being experienced. In Experiment 2, the vividness and duration of the aftereffect were measured as a function of the duration of the adapting stimulus. Both measures increased steadily over the range of durations explored (30-180 sec). In its dependence on adapting duration, the aftereffect resembles the waterfall illusion in vision. An explanation for the tactile movement aftereffect is proposed, based on the model of cortical dynamics of Whitsel et al. (1989, 1991). With assumed modest variation of one parameter across individuals, this application of the model is able to account both for the data of the majority of subjects, who experienced the aftereffect as opposite in direction to the adapting stimulus, and for those of an anomalous subject, who consistently experienced the aftereffect as being in the same direction as the adapting stimulus.
Fukatsu, Y; Miyake, Y; Sugita, S; Saito, A; Watanabe, S
1990-11-01
To analyze the Electrically evoked response (EER) in relation to the central visual pathway, the authors studied the properties of wave patterns and peak latencies of EER in 35 anesthetized adult cats. The cat EER showed two early positive waves on outward current (cornea cathode) stimulus and three or four early positive waves on inward current (cornea anode) stimulus. These waves were recorded within 50 ms after stimulus onset, and were the most consistent components in cat EER. The stimulus threshold for EER showed a less individual variation than amplitude. The difference of stimulus threshold between outward and inward current stimulus was also essentially negligible. The stimulus threshold was higher in early components than in late components. The peak latency of EER became shorter and the amplitude became higher, as the stimulus intensity was increased. However, this tendency was reversed and some wavelets started to appear when the stimulus was extremely strong. The recording using short stimulus duration and bipolar electrodes enabled us to reduce the electrical artifact of EER. These results obtained from cats were compared with those of humans and rabbits.
Infants' Attention to Patterned Stimuli: Developmental Change from 3 to 12 Months of Age
ERIC Educational Resources Information Center
Courage, Mary L.; Reynolds, Greg D.; Richards, John E.
2006-01-01
To examine the development of look duration as a function of age and stimulus type, 14- to 52-week-old infants were shown static and dynamic versions of faces, Sesame Street material, and achromatic patterns for 20 s of accumulated looking. Heart rate was recorded during looking and parsed into stimulus orienting, sustained attention, and…
A Novel Stimulus Artifact Removal Technique for High-Rate Electrical Stimulation
Heffer, Leon F; Fallon, James B
2008-01-01
Electrical stimulus artifact corrupting electrophysiological recordings often make the subsequent analysis of the underlying neural response difficult. This is particularly evident when investigating short-latency neural activity in response to high-rate electrical stimulation. We developed and evaluated an off-line technique for the removal of stimulus artifact from electrophysiological recordings. Pulsatile electrical stimulation was presented at rates of up to 5000 pulses/s during extracellular recordings of guinea pig auditory nerve fibers. Stimulus artifact was removed by replacing the sample points at each stimulus artifact event with values interpolated along a straight line, computed from neighbouring sample points. This technique required only that artifact events be identifiable and that the artifact duration remained less than both the inter-stimulus interval and the time course of the action potential. We have demonstrated that this computationally efficient sample-and-interpolate technique removes the stimulus artifact with minimal distortion of the action potential waveform. We suggest that this technique may have potential applications in a range of electrophysiological recording systems. PMID:18339428
Valdizón-Rodríguez, Roberto
2017-01-01
Inhibition plays an important role in creating the temporal response properties of duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC). Neurophysiological and computational studies indicate that duration selectivity in the IC is created through the convergence of excitatory and inhibitory synaptic inputs offset in time. We used paired-tone stimulation and extracellular recording to measure the frequency tuning of the inhibition acting on DTNs in the IC of the big brown bat (Eptesicus fuscus). We stimulated DTNs with pairs of tones differing in duration, onset time, and frequency. The onset time of a short, best-duration (BD), probe tone set to the best excitatory frequency (BEF) was varied relative to the onset of a longer-duration, nonexcitatory (NE) tone whose frequency was varied. When the NE tone frequency was near or within the cell’s excitatory bandwidth (eBW), BD tone-evoked spikes were suppressed by an onset-evoked inhibition. The onset of the spike suppression was independent of stimulus frequency, but both the offset and duration of the suppression decreased as the NE tone frequency departed from the BEF. We measured the inhibitory frequency response area, best inhibitory frequency (BIF), and inhibitory bandwidth (iBW) of each cell. We found that the BIF closely matched the BEF, but the iBW was broader and usually overlapped the eBW measured from the same cell. These data suggest that temporal selectivity of midbrain DTNs is created and preserved by having cells receive an onset-evoked, constant-latency, broadband inhibition that largely overlaps the cell’s excitatory receptive field. We conclude by discussing possible neural sources of the inhibition. NEW & NOTEWORTHY Duration-tuned neurons (DTNs) arise from temporally offset excitatory and inhibitory synaptic inputs. We used single-unit recording and paired-tone stimulation to measure the spectral tuning of the inhibitory inputs to DTNs. The onset of inhibition was independent of stimulus frequency; the offset and duration of inhibition systematically decreased as the stimulus departed from the cell’s best excitatory frequency. Best inhibitory frequencies matched best excitatory frequencies; however, inhibitory bandwidths were more broadly tuned than excitatory bandwidths. PMID:28100657
How Do Changes in Speed Affect the Perception of Duration?
ERIC Educational Resources Information Center
Matthews, William J.
2011-01-01
Six experiments investigated how changes in stimulus speed influence subjective duration. Participants saw rotating or translating shapes in three conditions: constant speed, accelerating motion, and decelerating motion. The distance moved and average speed were the same in all three conditions. In temporal judgment tasks, the constant-speed…
Timing During Interruptions in Timing
ERIC Educational Resources Information Center
Fortin, Claudette; Bedard, Marie-Claude; Champagne, Julie
2005-01-01
Duration and location of breaks in time interval production were manipulated in various conditions of stimulus presentation (Experiments 1-4). Produced intervals shortened and then stabilized as break duration lengthened, suggesting that participants used the break as a preparatory period to restart timing as quickly as possible at the end of the…
Predicting the 'where' and resolving the 'what' of a moving target: a dichotomy of abilities.
Long, G M; Vogel, C A
1998-01-01
Anticipation timing (AT) and dynamic visual acuity (DVA) were assessed in a group of college students (n = 60) under a range of velocity and duration conditions. Subjects participated in two identical sessions 1 week apart. Consistently with previous work, DVA performance worsened as velocity increased and as target duration decreased; and there was a significant improvement from the first to the second session. In contrast, AT performance improved as velocity increased, whereas no improvement from the first to the second session was indicated; but increasing duration again benefited performance. Correlational analyses comparing DVA and AT did not reveal any systematic relationship between the two visual tasks. A follow-up study with different instructions on the AT task revealed the same pattern of AT performance, suggesting the generalizability of the obtained stimulus relationships for the AT task. The importance of the often-overlooked role of stimulus variables on the AT task is discussed.
Boumans, L J; Rodenburg, M; Maas, A J
1983-01-01
The response of the human vestibulo-ocular reflex system to a constant angular acceleration is calculated using a second order model with an adaptation term. After first reaching a maximum the peracceleratory response declines. When the stimulus duration is long the decay is mainly governed by the adaptation time constant Ta, which enables to reliably estimate this time constant. In the postacceleratory period of constant velocity there is a reversal in response. The magnitude and the time course of the per- and postacceleratory response are calculated for various values of the cupular time constant T1, the adaptation time constant Ta, and the stimulus duration, thus enabling their influence to be assessed.
Effects of set-size and selective spatial attention on motion processing.
Dobkins, K R; Bosworth, R G
2001-05-01
In order to investigate the effects of divided attention and selective spatial attention on motion processing, we obtained direction-of-motion thresholds using a stochastic motion display under various attentional manipulations and stimulus durations (100-600 ms). To investigate divided attention, we compared motion thresholds obtained when a single motion stimulus was presented in the visual field (set-size=1) to those obtained when the motion stimulus was presented amongst three confusable noise distractors (set-size=4). The magnitude of the observed detriment in performance with an increase in set-size from 1 to 4 could be accounted for by a simple decision model based on signal detection theory, which assumes that attentional resources are not limited in capacity. To investigate selective attention, we compared motion thresholds obtained when a valid pre-cue alerted the subject to the location of the to-be-presented motion stimulus to those obtained when no pre-cue was provided. As expected, the effect of pre-cueing was large when the visual field contained noise distractors, an effect we attribute to "noise reduction" (i.e. the pre-cue allows subjects to exclude irrelevant distractors that would otherwise impair performance). In the single motion stimulus display, we found a significant benefit of pre-cueing only at short durations (< or =150 ms), a result that can potentially be explained by a "time-to-orient" hypothesis (i.e. the pre-cue improves performance by eliminating the time it takes to orient attention to a peripheral stimulus at its onset, thereby increasing the time spent processing the stimulus). Thus, our results suggest that the visual motion system can analyze several stimuli simultaneously without limitations on sensory processing per se, and that spatial pre-cueing serves to reduce the effects of distractors and perhaps increase the effective processing time of the stimulus.
Psychophysical estimation of speed discrimination. II. Aging effects
NASA Astrophysics Data System (ADS)
Raghuram, Aparna; Lakshminarayanan, Vasudevan; Khanna, Ritu
2005-10-01
We studied the effects of aging on a speed discrimination task using a pair of first-order drifting luminance gratings. Two reference speeds of 2 and 8 deg/s were presented at stimulus durations of 500 ms and 1000 ms. The choice of stimulus parameters, etc., was determined in preliminary experiments and described in Part I. Thresholds were estimated using a two-alternative-forced-choice staircase methodology. Data were collected from 16 younger subjects (mean age 24 years) and 17 older subjects (mean age 71 years). Results showed that thresholds for speed discrimination were higher for the older age group. This was especially true at stimulus duration of 500 ms for both slower and faster speeds. This could be attributed to differences in temporal integration of speed with age. Visual acuity and contrast sensitivity were not statistically observed to mediate age differences in the speed discrimination thresholds. Gender differences were observed in the older age group, with older women having higher thresholds.
Decoding stimulus features in primate somatosensory cortex during perceptual categorization
Alvarez, Manuel; Zainos, Antonio; Romo, Ranulfo
2015-01-01
Neurons of the primary somatosensory cortex (S1) respond as functions of frequency or amplitude of a vibrotactile stimulus. However, whether S1 neurons encode both frequency and amplitude of the vibrotactile stimulus or whether each sensory feature is encoded by separate populations of S1 neurons is not known, To further address these questions, we recorded S1 neurons while trained monkeys categorized only one sensory feature of the vibrotactile stimulus: frequency, amplitude, or duration. The results suggest a hierarchical encoding scheme in S1: from neurons that encode all sensory features of the vibrotactile stimulus to neurons that encode only one sensory feature. We hypothesize that the dynamic representation of each sensory feature in S1 might serve for further downstream processing that leads to the monkey’s psychophysical behavior observed in these tasks. PMID:25825711
Jarriault, David; Gadenne, Christophe; Rospars, Jean-Pierre; Anton, Sylvia
2009-04-01
To find a mating partner, moths rely on pheromone communication. Released in very low amounts, female sex pheromones are used by males to identify and localize females. Depending on the physiological state (i.e. age, reproductive state), the olfactory system of the males of the noctuid moth Agrotis ipsilon is 'switched on or off'. To understand the neural basis of this behavioural plasticity, we performed a detailed characterization of the qualitative, quantitative and temporal aspects of pheromone coding in the primary centre of integration of pheromonal information, the macroglomerular complex (MGC) of the antennal lobe. MGC neurons were intracellularly recorded and stained in sexually mature virgin males. When stimulating antennae of males with the three main components of the female pheromone blend, most of the neurons showed a biphasic excitatory-inhibitory response. Although they showed different preferences, 80% of the neurons responded at least to the main pheromone component (Z-7-dodecenyl acetate). Six stained neurons responding to this component had their dendrites in the largest MGC glomerulus. Changes in the stimulus intensity and duration affected the excitatory phase but not the inhibitory phase properties. The stimulus intensity was shown to be encoded in the firing frequency, the number of spikes and the latency of the excitatory phase, whereas the stimulus duration only changed its duration. We conclude that the inhibitory input provided by local interneurons following the excitatory phase might not contribute directly to the encoding of stimulus characteristics. The data presented will serve as a basis for comparison with those of immature and mated males.
Rabbit electroretinograms evoked by 632.8nm laser flash stimuli
NASA Astrophysics Data System (ADS)
Yang, Zai-Fu; Chen, Hong-Xia; Wang, Jia-Rui; Guan, Bo-Lin; Yu, Guang-Yuan; Zhang, Xiao-Na; Zhang, Wen-Yuan; Yang, Jing-Geng
2012-12-01
The flash electroretinography is a standard electrophysiological method and widely employed in basic research and ophthalmology clinics, of which the stimulus is usually white flash from dome stimulator. However, little is known about the electroretinograms (ERGs) evoked by monochromatic laser flash stimuli. The goal of this research effort is to quantify the ERGs of dark-adapted New Zealand rabbits elicited by He-Ne laser flash with wavelength 632.8 nm. The flash field was a Maxwellian viewing disc with angular subtense of 8.5°, 13.3° or 20.2°. The stimulus duration was 12 ms, 22 ms, 70 ms or 220 ms. The laser flash power incident on the cornea varied from 2.2 nW through 22 mW. Under the condition of 20 ms stimulus duration and 20.2° flash field, the ERG of New Zealand rabbit was compared with that of Chinchilla gray rabbit. Results showed that for the ERG b-wave, with the increase of laser energy, the amplitude first increased, then met a trough and finally increased again, the implicit time decreased first and then met a platform. While for the ERG a-wave, the amplitude increased and the implicit time decreased monotonically. Longer stimulus duration led to lower b-wave amplitude under equal flash power level. The flash field size showed limited effect on the ERG, especially on the low energy end. As compared with the pigmented rabbit, the albino rabbit was more sensitive and the threshold energy for b-wave excitation was about 10 times lower.
Tracking the location of visuospatial attention in a contingent capture paradigm.
Leblanc, Emilie; Prime, David J; Jolicoeur, Pierre
2008-04-01
Currently, there is considerable controversy regarding the degree to which top-down control can affect attentional capture by salient events. According to the contingent capture hypothesis, attentional capture by a salient stimulus is contingent on a match between the properties of the stimulus and top-down attentional control settings. In contrast, bottom-up saliency accounts argue that the initial capture of attention is determined solely by the relative salience of the stimulus, and the effect of top-down attentional control is limited to effects on the duration of attentional engagement on the capturing stimulus. In the present study, we tested these competing accounts by utilizing the N2pc event-related potential component to track the locus of attention during an attentional capture task. The results were completely consistent with the contingent capture hypothesis: An N2pc wave was elicited only by distractors that possessed the target-defining attribute. In a second experiment, we expanded upon this finding by exploring the effect of target-distractor similarity on the duration that attention dwells at the distractor location. In this experiment, only distractors possessing the target-defining attribute (color) captured visuospatial attention to their location and the N2pc increased in duration and in magnitude when the capture distractor also shared a second target attribute (category membership). Finally, in three additional control experiments, we replicated the finding of an N2pc generated by distractors, only if they shared the target-defining attribute. Thus, our results demonstrate that attentional control settings influence both which stimuli attract attention and to what extent they are processed.
Visual perception of writing and pointing movements.
Méary, David; Chary, Catherine; Palluel-Germain, Richard; Orliaguet, Jean-Pierre
2005-01-01
Studies of movement production have shown that the relationship between the amplitude of a movement and its duration varies according to the type of gesture. In the case of pointing movements the duration increases as a function of distance and width of the target (Fitts' law), whereas for writing movements the duration tends to remain constant across changes in trajectory length (isochrony principle). We compared the visual perception of these two categories of movement. The participants judged the speed of a light spot that portrayed the motion of the end-point of a hand-held pen (pointing or writing). For the two types of gesture we used 8 stimulus sizes (from 2.5 cm to 20 cm) and 32 durations (from 0.2 s to 1.75 s). Viewing each combination of size and duration, participants had to indicate whether the movement speed seemed "fast", "slow", or "correct". Results showed that the participants' perceptual preferences were in agreement with the rules of movement production. The stimulus size was more influential in the pointing condition than in the writing condition. We consider that this finding reflects the influence of common representational resources for perceptual judgment and movement production.
Morimoto, Takeshi; Kanda, Hiroyuki; Miyoshi, Tomomitsu; Hirohara, Yoko; Mihashi, Toshifumi; Kitaguchi, Yoshiyuki; Nishida, Kohji; Fujikado, Takashi
2014-01-01
Transcorneal electrical stimulation (TES) activates retinal neurons leading to visual sensations. How the retinal cells are activated by TES has not been definitively determined. Investigating the reflectance changes of the retina is an established technique and has been used to determine the mechanism of retinal activation. The purpose of this study was to evaluate the reflectance changes elicited by TES in cat eyes. Eight eyes of Eight cats were studied under general anesthesia. Biphasic electrical pulses were delivered transcornealy. The fundus images observed with near-infrared light (800-880 nm) were recorded every 25 ms for 26 s. To improve the signal-to-noise ratio, the images of 10 consecutive recordings were averaged. Two-dimensional topographic maps of the reflective changes were constructed by subtracting images before from those after the TES. The effects of different stimulus parameters, e.g., current intensity, pulse duration, frequency, and stimulus duration, on the reflective changes were studied. Our results showed that after TES, the reflective changes appeared on the retinal vessels and optic disc. The intensity of reflectance changes increased as the current intensity, pulse duration, and stimulation duration increased (P<0.05 for all). The maximum intensity of the reflective change was obtained when the stimulus frequency was 20 Hz. The time course of the reflectance changes was also altered by the stimulation parameters. The response started earlier and returned to the baseline later with higher current intensities, longer pulse durations, but the time of the peak of the response was not changed. These results showed that the reflective changes were due to the activation of retinal neurons by TES and might involve the vascular changes induced by an activation of the retinal neurons.
Individual and Developmental Differences in Disengagement of Fixation in Early Infancy.
ERIC Educational Resources Information Center
Frick, Janet E.; Colombo, John; Saxon, Terrill F.
1999-01-01
Investigated whether individual and developmental differences in look duration were correlated with latency to disengage fixation from a visual stimulus for 3- and 4-month olds. Found that look duration was correlated with disengagement latency. Three-month olds showed slower latencies than 4-month olds. Long-looking infants showed greater…
Second-order motions contribute to vection.
Gurnsey, R; Fleet, D; Potechin, C
1998-09-01
First- and second-order motions differ in their ability to induce motion aftereffects (MAEs) and the kinetic depth effect (KDE). To test whether second-order stimuli support computations relating to motion-in-depth we examined the vection illusion (illusory self motion induced by image flow) using a vection stimulus (V, expanding concentric rings) that depicted a linear path through a circular tunnel. The set of vection stimuli contained differing amounts of first- and second-order motion energy (ME). Subjects reported the duration of the perceived MAEs and the duration of their vection percept. In Experiment 1 both MAEs and vection durations were longest when the first-order (Fourier) components of V were present in the stimulus. In Experiment 2, V was multiplicatively combined with static noise carriers having different check sizes. The amount of first-order ME associated with V increases with check size. MAEs were found to increase with check size but vection durations were unaffected. In general MAEs depend on the amount of first-order ME present in the signal. Vection, on the other hand, appears to depend on a representation of image flow that combines first- and second-order ME.
Distortions of Subjective Time Perception Within and Across Senses
van Wassenhove, Virginie; Buonomano, Dean V.; Shimojo, Shinsuke; Shams, Ladan
2008-01-01
Background The ability to estimate the passage of time is of fundamental importance for perceptual and cognitive processes. One experience of time is the perception of duration, which is not isomorphic to physical duration and can be distorted by a number of factors. Yet, the critical features generating these perceptual shifts in subjective duration are not understood. Methodology/Findings We used prospective duration judgments within and across sensory modalities to examine the effect of stimulus predictability and feature change on the perception of duration. First, we found robust distortions of perceived duration in auditory, visual and auditory-visual presentations despite the predictability of the feature changes in the stimuli. For example, a looming disc embedded in a series of steady discs led to time dilation, whereas a steady disc embedded in a series of looming discs led to time compression. Second, we addressed whether visual (auditory) inputs could alter the perception of duration of auditory (visual) inputs. When participants were presented with incongruent audio-visual stimuli, the perceived duration of auditory events could be shortened or lengthened by the presence of conflicting visual information; however, the perceived duration of visual events was seldom distorted by the presence of auditory information and was never perceived shorter than their actual durations. Conclusions/Significance These results support the existence of multisensory interactions in the perception of duration and, importantly, suggest that vision can modify auditory temporal perception in a pure timing task. Insofar as distortions in subjective duration can neither be accounted for by the unpredictability of an auditory, visual or auditory-visual event, we propose that it is the intrinsic features of the stimulus that critically affect subjective time distortions. PMID:18197248
Autoshaping with common and distinctive stimulus elements, compact and dispersed arrays.
Sperling, S E; Perkins, M E
1979-05-01
Four groups of pigeons were trained with a standard autoshaping procedure in which a brief fixed-duration interval always followed by a grain delivery alternated with a longer variable-duration interval never associated with grain delivery. One of two stimuli was always presented during each interval. One of them contained three black dots and a black star on a green background; the other contained four black dots on a green background. The four elements of each stimulus were arranged in a more compact array for two groups and in a more dispersed array for the other two groups. Which of the two stimuli preceded grain delivery was counterbalanced within each pair of groups. The speed of occurrence of the first autoshaped peck was not affected by whether the stimulus containing the distinctive star element preceded grain delivery, but autoshaping was faster when the stimulus arrays were compact than when they were dispersed. During 560 response-independent training trials that followed the first autoshaped peck, this pattern reversed; both discriminative control over responding and the relative frequency of pecking the stimulus that preceded grain delivery were greater for the two groups where this stimulus contained the discriminative element than for the two groups where it contained only common elements. During subsequent testing with stimuli containing only a single element each, the distinctive feature was responded to proportionately more often by the two groups for which it had been an element of the stimulus preceding grain delivery than by the two groups for which it had been an element of the stimulus complex that never was associated with grain delivery. These data add further support to the hypothesis that the initial occurrence of autoshaped responding and its subsequent maintenance are not affected by the same variables. They also suggest that automaintenance is as sensitive as response-dependent training to the presence or absence of a distinctive stimulus element among several common elements and that this sensitivity appears to be independent of the specific method used for presenting the stimuli during automaintenance.
Autoshaping with common and distinctive stimulus elements, compact and dispersed arrays1
Sperling, Sally E.; Perkins, Mark E.
1979-01-01
Four groups of pigeons were trained with a standard autoshaping procedure in which a brief fixed-duration interval always followed by a grain delivery alternated with a longer variable-duration interval never associated with grain delivery. One of two stimuli was always presented during each interval. One of them contained three black dots and a black star on a green background; the other contained four black dots on a green background. The four elements of each stimulus were arranged in a more compact array for two groups and in a more dispersed array for the other two groups. Which of the two stimuli preceded grain delivery was counterbalanced within each pair of groups. The speed of occurrence of the first autoshaped peck was not affected by whether the stimulus containing the distinctive star element preceded grain delivery, but autoshaping was faster when the stimulus arrays were compact than when they were dispersed. During 560 response-independent training trials that followed the first autoshaped peck, this pattern reversed; both discriminative control over responding and the relative frequency of pecking the stimulus that preceded grain delivery were greater for the two groups where this stimulus contained the discriminative element than for the two groups where it contained only common elements. During subsequent testing with stimuli containing only a single element each, the distinctive feature was responded to proportionately more often by the two groups for which it had been an element of the stimulus preceding grain delivery than by the two groups for which it had been an element of the stimulus complex that never was associated with grain delivery. These data add further support to the hypothesis that the initial occurrence of autoshaped responding and its subsequent maintenance are not affected by the same variables. They also suggest that automaintenance is as sensitive as response-dependent training to the presence or absence of a distinctive stimulus element among several common elements and that this sensitivity appears to be independent of the specific method used for presenting the stimuli during automaintenance. PMID:16812139
Sekar, Krithiga; Findley, William M.; Llinás, Rodolfo R.
2014-01-01
Whether consciousness is an all-or-none or graded phenomenon is an area of inquiry that has received considerable interest in neuroscience and is as of yet, still debated. In this magnetoencephalography (MEG) study we used a single stimulus paradigm with sub-threshold, threshold and supra-threshold duration inputs to assess whether stimulus perception is continuous with or abruptly differentiated from unconscious stimulus processing in the brain. By grouping epochs according to stimulus identification accuracy and exposure duration, we were able to investigate whether a high-amplitude perception-related cortical event was (1) only evoked for conditions where perception was most probable (2) had invariant amplitude once evoked and (3) was largely absent for conditions where perception was least probable (criteria satisfying an all-on-none hypothesis). We found that averaged evoked responses showed a gradual increase in amplitude with increasing perceptual strength. However, single trial analyses demonstrated that stimulus perception was correlated with an all-or-none response, the temporal precision of which increased systematically as perception transitioned from ambiguous to robust states. Due to poor signal-to-noise resolution of single trial data, whether perception-related responses, whenever present, were invariant in amplitude could not be unambiguously demonstrated. However, our findings strongly suggest that visual perception of simple stimuli is associated with an all-or-none cortical evoked response the temporal precision of which varies as a function of perceptual strength. PMID:22020091
Akyürek, Elkan G; van Asselt, E Manon
2015-12-01
When two different color stimuli are presented in rapid succession, the resulting percept is sometimes that of a mixture of both colors, due to a perceptual process called color fusion. Although color fusion might seem to occur very early in the visual pathway, and only happens across the briefest of stimulus presentation intervals (< 50 ms), the present study showed that spatial attention can alter the fusion process. In a series of experiments, spatial cues were presented that either validly indicated the location of a pair of (different) color stimuli in successive stimulus arrays, or did not, pointing toward isoluminant gray distractors in the other visual hemifield. Increased color fusion was observed for valid cues across a range of stimulus durations, at the expense of individual color reports. By contrast, perception of repeated, same-color stimulus pairs did not change, suggesting that the enhancement was specific to fusion, not color discrimination per se. Electrophysiological measures furthermore showed that the amplitude of the N1, N2pc, and P3 components of the ERP were differentially modulated during the perception of individual and fused colors, as a function of cueing and stimulus duration. Fusion itself, collapsed across cueing conditions, was reflected uniquely in N1 amplitude. Overall, the results suggest that spatial attention enhances color fusion and decreases competition between stimuli, constituting an adaptive slowdown in service of temporal integration. © 2015 Society for Psychophysiological Research.
Human haptic perception is interrupted by explorative stops of milliseconds
Grunwald, Martin; Muniyandi, Manivannan; Kim, Hyun; Kim, Jung; Krause, Frank; Mueller, Stephanie; Srinivasan, Mandayam A.
2014-01-01
Introduction: The explorative scanning movements of the hands have been compared to those of the eyes. The visual process is known to be composed of alternating phases of saccadic eye movements and fixation pauses. Descriptive results suggest that during the haptic exploration of objects short movement pauses occur as well. The goal of the present study was to detect these “explorative stops” (ES) during one-handed and two-handed haptic explorations of various objects and patterns, and to measure their duration. Additionally, the associations between the following variables were analyzed: (a) between mean exploration time and duration of ES, (b) between certain stimulus features and ES frequency, and (c) the duration of ES during the course of exploration. Methods: Five different Experiments were used. The first two Experiments were classical recognition tasks of unknown haptic stimuli (A) and of common objects (B). In Experiment C space-position information of angle legs had to be perceived and reproduced. For Experiments D and E the PHANToM haptic device was used for the exploration of virtual (D) and real (E) sunken reliefs. Results: In each Experiment we observed explorative stops of different average durations. For Experiment A: 329.50 ms, Experiment B: 67.47 ms, Experiment C: 189.92 ms, Experiment D: 186.17 ms and Experiment E: 140.02 ms. Significant correlations were observed between exploration time and the duration of the ES. Also, ES occurred more frequently, but not exclusively, at defined stimulus features like corners, curves and the endpoints of lines. However, explorative stops do not occur every time a stimulus feature is explored. Conclusions: We assume that ES are a general aspect of human haptic exploration processes. We have tried to interpret the occurrence and duration of ES with respect to the Hypotheses-Rebuild-Model and the Limited Capacity Control System theory. PMID:24782797
Auditory Discrimination Learning: Role of Working Memory.
Zhang, Yu-Xuan; Moore, David R; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal
2016-01-01
Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience.
Auditory Discrimination Learning: Role of Working Memory
Zhang, Yu-Xuan; Moore, David R.; Guiraud, Jeanne; Molloy, Katharine; Yan, Ting-Ting; Amitay, Sygal
2016-01-01
Perceptual training is generally assumed to improve perception by modifying the encoding or decoding of sensory information. However, this assumption is incompatible with recent demonstrations that transfer of learning can be enhanced by across-trial variation of training stimuli or task. Here we present three lines of evidence from healthy adults in support of the idea that the enhanced transfer of auditory discrimination learning is mediated by working memory (WM). First, the ability to discriminate small differences in tone frequency or duration was correlated with WM measured with a tone n-back task. Second, training frequency discrimination around a variable frequency transferred to and from WM learning, but training around a fixed frequency did not. The transfer of learning in both directions was correlated with a reduction of the influence of stimulus variation in the discrimination task, linking WM and its improvement to across-trial stimulus interaction in auditory discrimination. Third, while WM training transferred broadly to other WM and auditory discrimination tasks, variable-frequency training on duration discrimination did not improve WM, indicating that stimulus variation challenges and trains WM only if the task demands stimulus updating in the varied dimension. The results provide empirical evidence as well as a theoretic framework for interactions between cognitive and sensory plasticity during perceptual experience. PMID:26799068
Are stimulus-response rules represented phonologically for task-set preparation and maintenance?
van 't Wout, Félice; Lavric, Aureliu; Monsell, Stephen
2013-09-01
Accounts of task-set control generally assume that the current task's stimulus-response (S-R) rules must be elevated to a privileged state of activation. How are they represented in this state? In 3 task-cuing experiments, we tested the hypothesis that phonological working memory is used to represent S-R rules for task-set control by getting participants to switch between 2 sets of arbitrary S-R rules and manipulating the articulatory duration (Experiment 1) or phonological similarity (Experiments 2 and 3) of the names of the stimulus terms. The task cue specified which of 2 objects (Experiment 1) or consonants (Experiment 2) in a display to identify with a key press. In Experiment 3, participants switched between identifying an object/consonant and its color/visual texture. After practice, neither the duration nor the similarity of the stimulus terms had detectable effects on overall performance, task-switch cost, or its reduction with preparation. Only in the initial single-task training blocks was phonological similarity a significant handicap. Hence, beyond a very transient role, there is no evidence that (declarative) phonological working memory makes a functional contribution to representing S-R rules for task-set control, arguably because once learned, they are represented in nonlinguistic procedural working memory. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Why do temporal generalization gradients change when people make decisions as quickly as possible?
Klapproth, Florian; Wearden, John H
2011-08-01
Three experiments investigated temporal generalization performance under conditions in which participants were instructed to make their decisions as quickly as possible (speed), or were allowed to take their time (accuracy). A previous study (Klapproth & Müller, 2008) had shown that under speeded conditions people were more likely to confuse durations shorter than the standard with the standard than in the accuracy conditions, and a possible explanation of this result is that longer stimulus durations are "truncated" (i.e., people make a judgement about them before they have terminated, thereby shortening their effective duration) and that these truncated durations affect the standard used for the task. Experiment 1 investigated performance under speed and accuracy conditions when comparison durations were close to the standard or further away. No performance difference was found as a function of stimulus spacing, even though responses occurred on average before the longest durations had terminated, but this lack of effect was attributed to "task difficulty" effects changing decision thresholds. In Experiment 2, the standard duration was either the longest or the shortest duration in the comparison set, and differences between speed and accuracy groups occurred only when the comparisons were longer than the standard, supporting the "truncation" hypothesis. A third experiment showed that differences between speed and accuracy groups only occurred if some memory of the standard that was valid for more than one trial was used. In general, the results suggest that the generalization gradient shifts in speeded conditions occur because of truncation of longer comparison durations, which influences the effective standard used for the task.
Temporal integration in nasal lateralization of homologous propionates.
Wise, Paul M; Toczydlowski, Sean E; Zhao, Kai; Wysocki, Charles J
2009-08-01
For nasal irritation from volatile chemicals, a version of Haber's rule (k = C(n)T) can model the trade-off between concentration (C) and duration of exposure (T) to achieve a fixed sensory impact, e.g. threshold-level irritation or a fixed suprathreshold intensity. The term k is a constant. The exponent, n, represents how well the system integrates over time. An exponent of 1 indicates complete temporal integration: an x-fold increase in stimulus duration exactly compensates for cutting the concentration 1/x. An exponent greater than 1 indicates incomplete temporal integration: more than an x-fold increase in duration is needed. In a previous study of homologous alcohols, n varied systematically with number of methylene units: integration became more complete as the length of the carbon chain increased. To explore the generality of this finding, we tested homologous esters that differ in the number of methylene units: n-ethyl propionate, n-propyl propionate, and n-butyl propionate. Nasal lateralization was used to measure irritation thresholds. Human subjects received a fixed concentration of a single compound within each experimental session. Stimulus duration was varied to find the briefest stimulus that caused lateralizable irritation. Concentration and compound varied across sessions. Consistent with results with n-alcohols, integration became more complete as the number of methylene units increased. Lipid solubility varies with chain length; hence, solubility in the nasal mucosa may play a role in the dynamics of irritation. Further, preliminary analyses suggest that, for data pooled across both chemical series, n varies systematically with molecular parameters related to solubility and diffusion.
Expansion and Compression of Time Correlate with Information Processing in an Enumeration Task.
Wutz, Andreas; Shukla, Anuj; Bapi, Raju S; Melcher, David
2015-01-01
Perception of temporal duration is subjective and is influenced by factors such as attention and context. For example, unexpected or emotional events are often experienced as if time subjectively expands, suggesting that the amount of information processed in a unit of time can be increased. Time dilation effects have been measured with an oddball paradigm in which an infrequent stimulus is perceived to last longer than standard stimuli in the rest of the sequence. Likewise, time compression for the oddball occurs when the duration of the standard items is relatively brief. Here, we investigated whether the amount of information processing changes when time is perceived as distorted. On each trial, an oddball stimulus of varying numerosity (1-14 items) and duration was presented along with standard items that were either short (70 ms) or long (1050 ms). Observers were instructed to count the number of dots within the oddball stimulus and to judge its relative duration with respect to the standards on that trial. Consistent with previous results, oddballs were reliably perceived as temporally distorted: expanded for longer standard stimuli blocks and compressed for shorter standards. The occurrence of these distortions of time perception correlated with perceptual processing; i.e. enumeration accuracy increased when time was perceived as expanded and decreased with temporal compression. These results suggest that subjective time distortions are not epiphenomenal, but reflect real changes in sensory processing. Such short-term plasticity in information processing rate could be evolutionarily advantageous in optimizing perception and action during critical moments.
Infant Attention to Dynamic Audiovisual Stimuli: Look Duration from 3 to 9 Months of Age
ERIC Educational Resources Information Center
Reynolds, Greg D.; Zhang, Dantong; Guy, Maggie W.
2013-01-01
The goal of this study was to examine developmental change in visual attention to dynamic visual and audiovisual stimuli in 3-, 6-, and 9-month-old infants. Infant look duration was measured during exposure to dynamic geometric patterns and Sesame Street video clips under three different stimulus modality conditions: unimodal visual, synchronous…
Wang, Tao; Huang, Jiang-hua; Lin, Lin; Zhan, Chang'an A
2013-01-01
To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration of stimulus sequence. This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability of resulting AEPs. In this paper, we explicate the use of continuous-time stimulus sequence for HSR paradigm, which is independent of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences for HSR paradigm and by revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time stimulus sequences are used in traditional manner for the HSR paradigm.
Wilbertz, Gregor; Sterzer, Philipp
2018-05-01
Alternating conscious visual perception of bistable stimuli is influenced by several factors. In order to understand the effect of negative valence, we tested the effect of two types of aversive conditioning on dominance durations in binocular rivalry. Participants received either aversive classical conditioning of the stimuli shown alone between rivalry blocks, or aversive percept conditioning of one of the two possible perceptual choices during rivalry. Both groups showed successful aversive conditioning according to skin conductance responses and affective valence ratings. However, while classical conditioning led to an immediate but short-lived increase in dominance durations of the conditioned stimulus, percept conditioning yielded no significant immediate effect but tended to decrease durations of the conditioned percept during extinction. These results show dissociable effects of value learning on perceptual inference in situations of perceptual conflict, depending on whether learning relates to the decision between conflicting perceptual choices or the sensory stimuli per se. Copyright © 2018 Elsevier Inc. All rights reserved.
Hemispheric resource limitations in comprehending ambiguous pictures.
White, H; Minor, S W
1990-03-01
Ambiguous pictures (Roschach inkblots) were lateralized for 100 msec vs. 200 msec to the right and left hemispheres (RH and LH) of 32 normal right-handed males who determined which of two previously presented words (an accurate or inaccurate one) better described the inkblot. Over the first 32 trials, subjects receiving each stimulus exposure duration were less accurate when the hemisphere receiving the stimulus also controlled the hand used to register a keypress response (RH-left hand and LH-right hand trials) than when hemispheric resources were shared, i.e., when one hemisphere controlled stimulus processing and the other controlled response programming. These differences were eliminated when the 32 trials were repeated.
Modeling and simulation of deformation of hydrogels responding to electric stimulus.
Li, Hua; Luo, Rongmo; Lam, K Y
2007-01-01
A model for simulation of pH-sensitive hydrogels is refined in this paper to extend its application to electric-sensitive hydrogels, termed the refined multi-effect-coupling electric-stimulus (rMECe) model. By reformulation of the fixed-charge density and consideration of finite deformation, the rMECe model is able to predict the responsive deformations of the hydrogels when they are immersed in a bath solution subject to externally applied electric field. The rMECe model consists of nonlinear partial differential governing equations with chemo-electro-mechanical coupling effects and the fixed-charge density with electric-field effect. By comparison between simulation and experiment extracted from literature, the model is verified to be accurate and stable. The rMECe model performs quantitatively for deformation analysis of the electric-sensitive hydrogels. The influences of several physical parameters, including the externally applied electric voltage, initial fixed-charge density, hydrogel strip thickness, ionic strength and valence of surrounding solution, are discussed in detail on the displacement and average curvature of the hydrogels.
NASA Astrophysics Data System (ADS)
Tan, Bingyao; Mason, Erik; MacLellan, Ben; Bizheva, Kostadinka
2017-02-01
Visually evoked changes of retinal blood flow can serve as an important research tool to investigate eye disease such as glaucoma and diabetic retinopathy. In this study we used a combined, research-grade, high-resolution Doppler OCT+ERG system to study changes in the retinal blood flow (RBF) and retinal neuronal activity in response to visual stimuli of different intensities, durations and type (flicker vs single flash). Specifically, we used white light stimuli of 10 ms and 200 ms single flash, 1s and 2s for flickers stimuli of 20% duty cycle. The study was conducted in-vivo in pigmented rats. Both single flash (SF) and flicker stimuli caused increase in the RBF. The 10 ms SF stimulus did not generate any consistent measurable response, while the 200 ms SF of the same intensity generated 4% change in the RBF peaking at 1.5 s after the stimulus onset. Single flash stimuli introduced 2x smaller change in RBF and 30% earlier RBF peak response compared to flicker stimuli of the same intensity and duration. Doubling the intensity of SF or flicker stimuli increased the RBF peak magnitude by 1.5x. Shortening the flicker stimulus duration by 2x increased the RBF recovery rate by 2x, however, had no effect on the rate of RBF change from baseline to peak.
Laterality of basic auditory perception.
Sininger, Yvonne S; Bhatara, Anjali
2012-01-01
Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: (1) gap detection, (2) frequency discrimination, and (3) intensity discrimination. Stimuli included tones (500, 1000, and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was that processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by (1) spectral width, a narrow-band noise (NBN) of 450-Hz bandwidth was evaluated using intensity discrimination, and (2) stimulus duration, 200, 500, and 1000 ms duration tones were evaluated using frequency discrimination. A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments, but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterised as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex, which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli.
Laterality of Basic Auditory Perception
Sininger, Yvonne S.; Bhatara, Anjali
2010-01-01
Laterality (left-right ear differences) of auditory processing was assessed using basic auditory skills: 1) gap detection 2) frequency discrimination and 3) intensity discrimination. Stimuli included tones (500, 1000 and 4000 Hz) and wide-band noise presented monaurally to each ear of typical adult listeners. The hypothesis tested was: processing of tonal stimuli would be enhanced by left ear (LE) stimulation and noise by right ear (RE) presentations. To investigate the limits of laterality by 1) spectral width, a narrow band noise (NBN) of 450 Hz bandwidth was evaluated using intensity discrimination and 2) stimulus duration, 200, 500 and 1000 ms duration tones were evaluated using frequency discrimination. Results A left ear advantage (LEA) was demonstrated with tonal stimuli in all experiments but an expected REA for noise stimuli was not found. The NBN stimulus demonstrated no LEA and was characterized as a noise. No change in laterality was found with changes in stimulus durations. The LEA for tonal stimuli is felt to be due to more direct connections between the left ear and the right auditory cortex which has been shown to be primary for spectral analysis and tonal processing. The lack of a REA for noise stimuli is unexplained. Sex differences in laterality for noise stimuli were noted but were not statistically significant. This study did establish a subtle but clear pattern of LEA for processing of tonal stimuli. PMID:22385138
Meck, W H
1984-01-01
Both the presentation of unbalanced stimulus probabilities and the insertion of a predictive cue prior to the signal on each trial apparently induces a strong bias to use a particular stimulus modality in order to select a temporal criterion and response rule. This attentional bias toward one modality is apparently independent of the modality of the stimulus being timed and is strongly influenced by stimulus probabilities or prior warning cues. These techniques may be useful to control trial-by-trial sequential effects that influence a subject's perceptual and response biases when signals from more than one modality are used in duration discrimination tasks. Cross-procedural generality of the effects of attentional bias was observed. An asymmetrical modality effect on the latency to begin timing was observed with both the temporal bisection and the peak procedure. The latency to begin timing light signals, but not the latency to begin timing sound signals, was increased when the signal modality was unexpected. This asymmetrical effect was explained with the assumption that sound signals close the mode switch automatically, but that light signals close the mode switch only if attention is directed to the light. The time required to switch attention is reflected in a reduction of the number of pulses from the pacemaker that enter the accumulator. One positive aspect of this work is the demonstration that procedures similar to those used to study human cognition can be used with animal subjects with similar results. Perhaps these similarities will stimulate animal research on the physiological basis of various cognitive capacities. Animal subjects would be preferred for such physiological experimentation if it were established that they possessed some of the cognitive processes described by investigators of human information processing. One of the negative aspects of this work is that only one combination of modalities was used and variables such as stimulus intensity, stimulus probability, and range of signal durations have not been adequately investigated at present. Future work might test additional combinations of modalities and vary stimulus intensity and stimulus probability within a signal detection theory (SDT) framework to determine the effects of these variables on attentional bias.
Ruhland, Janet L.; Yin, Tom C. T.; Tollin, Daniel J.
2013-01-01
Sound localization accuracy in elevation can be affected by sound spectrum alteration. Correspondingly, any stimulus manipulation that causes a change in the peripheral representation of the spectrum may degrade localization ability in elevation. The present study examined the influence of sound duration and level on localization performance in cats with the head unrestrained. Two cats were trained using operant conditioning to indicate the apparent location of a sound via gaze shift, which was measured with a search-coil technique. Overall, neither sound level nor duration had a notable effect on localization accuracy in azimuth, except at near-threshold levels. In contrast, localization accuracy in elevation improved as sound duration increased, and sound level also had a large effect on localization in elevation. For short-duration noise, the performance peaked at intermediate levels and deteriorated at low and high levels; for long-duration noise, this “negative level effect” at high levels was not observed. Simulations based on an auditory nerve model were used to explain the above observations and to test several hypotheses. Our results indicated that neither the flatness of sound spectrum (before the sound reaches the inner ear) nor the peripheral adaptation influences spectral coding at the periphery for localization in elevation, whereas neural computation that relies on “multiple looks” of the spectral analysis is critical in explaining the effect of sound duration, but not level. The release of negative level effect observed for long-duration sound could not be explained at the periphery and, therefore, is likely a result of processing at higher centers. PMID:23657278
Brainstem auditory evoked responses in man. 1: Effect of stimulus rise-fall time and duration
NASA Technical Reports Server (NTRS)
Hecox, K.; Squires, N.; Galambos, R.
1975-01-01
Short latency (under 10 msec) evoked responses elicited by bursts of white noise were recorded from the scalp of human subjects. Response alterations produced by changes in the noise burst duration (on-time) inter-burst interval (off-time), and onset and offset shapes are reported and evaluated. The latency of the most prominent response component, wave V, was markedly delayed with increases in stimulus rise-time but was unaffected by changes in fall-time. The amplitude of wave V was insensitive to changes in signal rise-and-fall times, while increasing signal on-time produced smaller amplitude responses only for sufficiently short off-times. It is concluded that wave V of the human auditory brainstem evoked response is solely an onset response.
Effects of Spontaneous Locomotion on the Cricket's Walking Response to a Wind Stimulus
NASA Astrophysics Data System (ADS)
Gras, Heribert; Bartels, Anke
Tethered walking crickets often respond to single wind puffs (50ms duration) directed from 45° left or right to the abdominal cerci with a short running bout of about 300ms, followed by normal locomotion. To test for an effect of the current behavioral state on the running response, we applied wind stimuli when the insect attained a predefined translatorial and/or rotatorial velocity during spontaneous walking. The latency, duration, and velocity profile of the running bout always proved to be constant, representing a reflexlike all-or-nothing reaction, while the probability of this response was low after even brief standing and increased with the forward speed of spontaneous walking at the moment of stimulation. In contrast, the current rotatorial speed did not affect the stimulus response.
Matsuda, F; Lan, W C; Tanimura, R
1999-02-01
In Matsuda's 1996 study, 4- to 11-yr.-old children (N = 133) watched two cars running on two parallel tracks on a CRT display and judged whether their durations and distances were equal and, if not, which was larger. In the present paper, the relative contributions of the four critical stimulus attributes (whether temporal starting points, temporal stopping points, spatial starting points, and spatial stopping points were the same or different between two cars) to the production of errors were quantitatively estimated based on the data for rates of errors obtained by Matsuda. The present analyses made it possible not only to understand numerically the findings about qualitative characteristics of the critical attributes described by Matsuda, but also to add more detailed findings about them.
Relative versus Absolute Stimulus Control in the Temporal Bisection Task
ERIC Educational Resources Information Center
de Carvalho, Marilia Pinhiero; Machado, Armando
2012-01-01
When subjects learn to associate two sample durations with two comparison keys, do they learn to associate the keys with the short and long samples (relational hypothesis), or with the specific sample durations (absolute hypothesis)? We exposed 16 pigeons to an ABA design in which phases A and B corresponded to tasks using samples of 1 s and 4 s,…
El Haj, Mohamad; Omigie, Diana; Moroni, Christine
2014-07-01
A wealth of empirical evidence suggests that directing attention to temporal processing increases perceived duration, whereas drawing attention away from it has the opposite effect. Our work investigates this phenomenon by comparing perceived duration during a high attentional and a low attentional task in Alzheimer's Disease (AD) patients since these participants tend to show attentional deficits. In the high attentional task, AD patients and older adults were asked to perform the interference condition of the Stroop test for 15s while in the low attentional task, they had to fixate on a cross for the same length of time. In both conditions, participants were not aware they would be questioned about timing until the end of the task when they had to reproduce the duration of the previously-viewed stimulus. AD patients under-reproduced the duration of previously-exposed stimulus in the high attentional relative to the low attentional task, and the same pattern was observed in older adults. Due to their attentional deficits, AD patients might be overwhelmed by the demand of the high attentional task, leaving very few, if any, attentional resources for temporal processing. Copyright © 2014 Elsevier Inc. All rights reserved.
Segmentation precedes face categorization under suboptimal conditions.
Van Den Boomen, Carlijn; Fahrenfort, Johannes J; Snijders, Tineke M; Kemner, Chantal
2015-01-01
Both categorization and segmentation processes play a crucial role in face perception. However, the functional relation between these subprocesses is currently unclear. The present study investigates the temporal relation between segmentation-related and category-selective responses in the brain, using electroencephalography (EEG). Surface segmentation and category content were both manipulated using texture-defined objects, including faces. This allowed us to study brain activity related to segmentation and to categorization. In the main experiment, participants viewed texture-defined objects for a duration of 800 ms. EEG results revealed that segmentation-related responses precede category-selective responses. Three additional experiments revealed that the presence and timing of categorization depends on stimulus properties and presentation duration. Photographic objects were presented for a long and short (92 ms) duration and evoked fast category-selective responses in both cases. On the other hand, presentation of texture-defined objects for a short duration only evoked segmentation-related but no category-selective responses. Category-selective responses were much slower when evoked by texture-defined than by photographic objects. We suggest that in case of categorization of objects under suboptimal conditions, such as when low-level stimulus properties are not sufficient for fast object categorization, segmentation facilitates the slower categorization process.
Segmentation precedes face categorization under suboptimal conditions
Van Den Boomen, Carlijn; Fahrenfort, Johannes J.; Snijders, Tineke M.; Kemner, Chantal
2015-01-01
Both categorization and segmentation processes play a crucial role in face perception. However, the functional relation between these subprocesses is currently unclear. The present study investigates the temporal relation between segmentation-related and category-selective responses in the brain, using electroencephalography (EEG). Surface segmentation and category content were both manipulated using texture-defined objects, including faces. This allowed us to study brain activity related to segmentation and to categorization. In the main experiment, participants viewed texture-defined objects for a duration of 800 ms. EEG results revealed that segmentation-related responses precede category-selective responses. Three additional experiments revealed that the presence and timing of categorization depends on stimulus properties and presentation duration. Photographic objects were presented for a long and short (92 ms) duration and evoked fast category-selective responses in both cases. On the other hand, presentation of texture-defined objects for a short duration only evoked segmentation-related but no category-selective responses. Category-selective responses were much slower when evoked by texture-defined than by photographic objects. We suggest that in case of categorization of objects under suboptimal conditions, such as when low-level stimulus properties are not sufficient for fast object categorization, segmentation facilitates the slower categorization process. PMID:26074838
A New Type of ECT Stimuli: Burst Stimulus ECT.
Aksay, S S; Bumb, J M; Janke, C; Kranaster, L; Sartorius, A
2015-11-01
Pulse width in electroconvulsive therapy has significant influence on effectiveness and side effects. While shorter pulses are beneficial for cognitive performance, there is still a debate about a negative impact on ECT efficacy at least for ultra-brief pulse durations. We report a first patient treated with burst stimulus ECT, i. e., with 4 consecutive 250-µs pulses, separated by another 250 µs. Within the same patient we compared 6 classical vs. 6 burst stimulus ECT sessions. In all cases a typical tonic-clonic seizure was observed. Seizure parameters like concordance, coherence and mid-ictal amplitude increased numerically, but not significantly with burst ECT. The time needed to show a reorientation was significantly shortened with burst stimuli (30 min vs. 14 min, p=0.007). In conclusion we present the first case of ECT in a single patient comparing "classical" single stimulus pulses vs. burst stimulus ECT. The new burst stimulus was better tolerated regarding reorientation time after the treatment, while parameters of seizure quality remained basically unchanged. Whether burst stimulus ECT has the potential to improve ECT quality by reducing side effects without losing efficacy has to be investigated in clinical trials. © Georg Thieme Verlag KG Stuttgart · New York.
Neural Correlates of Individual Differences in Infant Visual Attention and Recognition Memory
Reynolds, Greg D.; Guy, Maggie W.; Zhang, Dantong
2010-01-01
Past studies have identified individual differences in infant visual attention based upon peak look duration during initial exposure to a stimulus. Colombo and colleagues (e.g., Colombo & Mitchell, 1990) found that infants that demonstrate brief visual fixations (i.e., short lookers) during familiarization are more likely to demonstrate evidence of recognition memory during subsequent stimulus exposure than infants that demonstrate long visual fixations (i.e., long lookers). The current study utilized event-related potentials to examine possible neural mechanisms associated with individual differences in visual attention and recognition memory for 6- and 7.5-month-old infants. Short- and long-looking infants viewed images of familiar and novel objects during ERP testing. There was a stimulus type by looker type interaction at temporal and frontal electrodes on the late slow wave (LSW). Short lookers demonstrated a LSW that was significantly greater in amplitude in response to novel stimulus presentations. No significant differences in LSW amplitude were found based on stimulus type for long lookers. These results indicate deeper processing and recognition memory of the familiar stimulus for short lookers. PMID:21666833
Attention during adaptation weakens negative afterimages of perceptually colour-spread surfaces.
Lak, Armin
2008-06-01
The visual system can complete coloured surfaces from stimulus fragments, inducing the subjective perception of a colour-spread figure. Negative afterimages of these induced colours were first reported by S. Shimojo, Y. Kamitani, and S. Nishida (2001). Two experiments were conducted to examine the effect of attention on the duration of these afterimages. The results showed that shifting attention to the colour-spread figure during the adaptation phase weakened the subsequent afterimage. On the basis of previous findings that the duration of these afterimages is correlated with the strength of perceptual filling-in (grouping) among local inducers during the adaptation phase, it is proposed that attention weakens perceptual filling-in during the adaptation phase and thereby prevents the stimulus from being segmented into an illusory figure. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
Stress reactivity speeds basic encoding processes in infants.
de Barbaro, Kaya; Clackson, Kaili; Wass, Sam
2016-07-01
Acute stress attenuates frontal lobe functioning and increases distractibility while enhancing subcortical processes in both human and nonhuman animals (reviewed by Arnsten [2009] Nature Reviews Neuroscience, 10(6):410-422). To date however these relations have not been examined for their potential effects in developing populations. Here, we examined the relationship between stress reactivity (infants' heart rate response to watching videos of another child crying) and infant performance on measures of looking duration and visual recognition memory. Our findings indicate that infants with increased stress reactivity showed shorter look durations and more novelty preference. Thus, stress appears to lead to a faster, more stimulus-ready attentional profile in infants. Additional work is required to assess potential negative consequences of stimulus-responsivity, such as decreased focus or distractibility. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58: 546-555, 2016. © 2016 Wiley Periodicals, Inc.
Deciding what to see: the role of intention and attention in the perception of apparent motion.
Kohler, Axel; Haddad, Leila; Singer, Wolf; Muckli, Lars
2008-03-01
Apparent motion is an illusory perception of movement that can be induced by alternating presentations of static objects. Already in Wertheimer's early investigation of the phenomenon [Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift fur Psychologie, 61, 161-265], he mentions that voluntary attention can influence the way in which an ambiguous apparent motion display is perceived. But until now, few studies have investigated how strong the modulation of apparent motion through attention can be under different stimulus and task conditions. We used bistable motion quartets of two different sizes, where the perception of vertical and horizontal motion is equally likely. Eleven observers participated in two experiments. In Experiment 1, participants were instructed to either (a) hold the current movement direction as long as possible, (b) passively view the stimulus, or (c) switch the movement directions as quickly as possible. With the respective instructions, observers could almost double phase durations in (a) and more than halve durations in (c) relative to the passive condition. This modulation effect was stronger for the large quartets. In Experiment 2, observers' attention was diverted from the stimulus by a detection task at fixation while they still had to report their conscious perception. This manipulation prolonged dominance durations for up to 100%. The experiments reveal a high susceptibility of ambiguous apparent motion to attentional modulation. We discuss how feature- and space-based attention mechanisms might contribute to those effects.
Raufer, Stefan; Verhulst, Sarah
2016-12-01
This study describes a method based on temporal suppression of click-evoked otoacoustic emissions (CEOAEs) to estimate the time course and duration of human basilar membrane impulse responses (BM IRs). This was achieved by tracing the suppression of dominant peaks in the CEOAE spectrum as a function of the temporal separation between two equal-level stimulus clicks. The relationship between the suppression pattern and underlying BM IR duration near the generation site of the CEOAE frequency was established using model simulations. To relate BM IR duration estimates to cochlear filter tuning (Q ERB ), a tuning ratio was derived from available BM IR measurements in animals. Results for 11 normal-hearing subjects yielded BM IR duration estimates of 37.4/F ms at 65 dB peSPL and 36.4/F ms at 71 dB peSPL, with F in kHz. Corresponding Q ERB estimates were 14.2F[in kHz] 0.22 at 65 dB peSPL and 13.8F[in kHz] 0.22 at 71 dB peSPL. Because the proposed temporal suppression method relies on cochlear nonlinearity, the method is applicable for stimulus levels above 30-40 dB SPL and complements existing OAE methods to assess human cochlear filter tuning. Copyright © 2016 Elsevier B.V. All rights reserved.
Electric Stimulus Opens Intercellular Spaces in Skin*
Hama, Susumu; Kimura, Yuki; Mikami, Aya; Shiota, Kanako; Toyoda, Mao; Tamura, Atsushi; Nagasaki, Yukio; Kanamura, Kiyoshi; Kajimoto, Kazuaki; Kogure, Kentaro
2014-01-01
Iontophoresis is a technology for transdermal delivery of ionic small medicines by faint electricity. Since iontophoresis can noninvasively deliver charged molecules into the skin, this technology could be a useful administration method that may enhance patient comfort. Previously, we succeeded in the transdermal penetration of positively charged liposomes (diameters: 200–400 nm) encapsulating insulin by iontophoresis (Kajimoto, K., Yamamoto, M., Watanabe, M., Kigasawa, K., Kanamura, K., Harashima, H., and Kogure, K. (2011) Int. J. Pharm. 403, 57–65). However, the mechanism by which these liposomes penetrated the skin was difficult to define based on general knowledge of principles such as electro-repulsion and electro-osmosis. In the present study, we confirmed that rigid nanoparticles could penetrate into the epidermis by iontophoresis. We further found that levels of the gap junction protein connexin 43 protein significantly decreased after faint electric stimulus (ES) treatment, although occludin, CLD-4, and ZO-1 levels were unchanged. Moreover, connexin 43 phosphorylation and filamentous actin depolymerization in vivo and in vitro were observed when permeation of charged liposomes through intercellular spaces was induced by ES. Ca2+ inflow into cells was promoted by ES with charged liposomes, while a protein kinase C inhibitor prevented ES-induced permeation of macromolecules. Consequently, we demonstrate that ES treatment with charged liposomes induced dissociation of intercellular junctions via cell signaling pathways. These findings suggest that ES could be used to regulate skin physiology. PMID:24318878
Bult, Johannes H F; van Putten, Bram; Schifferstein, Hendrik N J; Roozen, Jacques P; Voragen, Alphons G J; Kroeze, Jan H A
2004-10-01
In continuous vigilance tasks, the number of coincident panel responses to stimuli provides an index of stimulus detectability. To determine whether this number is due to chance, panel noise levels have been approximated by the maximum coincidence level obtained in stimulus-free conditions. This study proposes an alternative method by which to assess noise levels, derived from queuing system theory (QST). Instead of critical coincidence levels, QST modeling estimates the duration of coinciding responses in the absence of stimuli. The proposed method has the advantage over previous approaches that it yields more reliable noise estimates and allows for statistical testing. The method was applied in an olfactory detection experiment using 16 panelists in stimulus-present and stimulus-free conditions. We propose that QST may be used as an alternative to signal detection theory for analyzing data from continuous vigilance tasks.
Transcranial electric and magnetic stimulation: technique and paradigms.
Paulus, Walter; Peterchev, Angel V; Ridding, Michael
2013-01-01
Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account. © 2013 Elsevier B.V. All rights reserved.
Vestibulo-ocular and vestibulospinal function before and after cochlear implant surgery
NASA Technical Reports Server (NTRS)
Black, F. O.; Lilly, D. J.; Peterka, R. J.; Fowler, L. P.; Simmons, F. B.
1987-01-01
Vestibular function in cochlear implant candidates varies from normal to total absence of function. In patients with intact vestibular function preoperatively, invasion of the otic capsule places residual vestibular function at risk. Speech-processing strategies that result in large amplitude electrical transients or strategies that employ high amplitude broad frequency carrier signals have the potential for disrupting vestibular function. Five patients were tested with and without electrical stimulation via cochlear electrodes. Two patients experienced subjective vestibular effects that were quickly resolved. No long-term vestibular effects were noted for the two types of second generation cochlear implants evaluated. Histopathological findings from another patient, who had electrically generated vestibular reflex responses to intramodiolar electrodes, indicated that responses elicited were a function of several variables including electrode location, stimulus intensity, stimulus amplitude, and stimulus frequency. Differential auditory, vestibulocolic, and vestibulospinal reflexes were demonstrated from the same electrode as a function of stimulus amplitude, frequency, and duration.
Ponnath, Abhilash; Farris, Hamilton E.
2014-01-01
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437
Ponnath, Abhilash; Farris, Hamilton E
2014-01-01
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.
Spoken verb processing in Spanish: An analysis using a new online resource
Rivera, Semilla M.; Bates, Elizabeth A.; Orozco-Figueroa, Araceli; Wicha, Nicole Y. Y.
2012-01-01
Verbs are one of the basic building blocks of grammar, yet few studies have examined the grammatical, morphological, and phonological factors contributing to lexical access and production of Spanish verb inflection. This report describes an online data set that incorporates psycholinguistic dimensions for 50 of the most common early-acquired Spanish verbs. Using this data set, predictors of response time (RT) from stimulus onset and mean differences at offset are examined. Native Spanish speakers, randomly assigned to one of two tasks, listened to prerecorded verbs and either repeated the verb (single word shadowing) or produced its corresponding pronoun. Factors such as stimulus duration, number of syllables, syllable stress position, and specific levels of initial phoneme facilitated both shadowing of a verb and production of its pronoun. Higher frequency verbs facilitated faster verb repetition, whereas verbs with alternative pronouns increased RT to pronoun production. Mean differences at offset (stimulus duration is removed) indicated that listeners begin speaking earlier when the verb is longer and multisyllabic compared to shorter, monosyllabic words. These results highlight the association between psycholinguistic factors and RT measures of verb processing, in particular, features unique to languages like Spanish, such as alternative pronoun and tense. PMID:23002318
Tarantino, V; Stura, M; Raspino, M; Conrad, E; Porcu, A
1989-01-01
In order to study the changes which occur in phase of the click stimulus and its relation to the stimulus repetition rate on the auditory brainstem response (ABR) as a function of age, the Authors recorded the ABR from the scalp's surface of 10 newborns and 40 infants, 3 months, 6 months, 1 year and 3 years old as well as from 10 normal adults. The stimulus was a square wave of 0.1 msec duration and 90 dBHL level. The stimulus equipment was calibrated twice under visual inspection to ensure that the C and R clicks resulted in an initial membrane deflection toward and from the ear drum respectively. No significant differences could be found for the latencies and amplitude in the C-R comparison. However, the mean values of the complete group of test subjects showed most intraindividual stability for the conventional click stimulation. The latency of the ABR with excitation of the cochlea seemed to be mainly determined by the internal oscillation sequence in the cochlea and not by the stimulus polarity. The amplitudes and latencies of the ABR components tend to decrease when the stimulus rate increases and the age decreases. The importance of the stimulus characteristics is discussed and some suggestions for clinical use of ABR are made.
Dissociation of binding and learning processes.
Moeller, Birte; Frings, Christian
2017-11-01
A single encounter of a stimulus together with a response can result in a short-lived association between the stimulus and the response [sometimes called an event file, see Hommel, Müsseler, Aschersleben, & Prinz, (2001) Behavioral and Brain Sciences, 24, 910-926]. The repetition of stimulus-response pairings typically results in longer lasting learning effects indicating stimulus-response associations (e.g., Logan & Etherton, (1994) Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1022-1050]. An important question is whether or not what has been described as stimulus-response binding in action control research is actually identical with an early stage of incidental learning (e.g., binding might be seen as single-trial learning). Here, we present evidence that short-lived binding effects can be distinguished from learning of longer lasting stimulus-response associations. In two experiments, participants always responded to centrally presented target letters that were flanked by response irrelevant distractor letters. Experiment 1 varied whether distractors flanked targets on the horizontal or vertical axis. Binding effects were larger for a horizontal than for a vertical distractor-target configuration, while stimulus configuration did not influence incidental learning of longer lasting stimulus-response associations. In Experiment 2, the duration of the interval between response n - 1 and presentation of display n (500 ms vs. 2000 ms) had opposing influences on binding and learning effects. Both experiments indicate that modulating factors influence stimulus-response binding and incidental learning effects in different ways. We conclude that distinct underlying processes should be assumed for binding and incidental learning effects.
Tomie, Arthur; Festa, Eugene D; Sparta, Dennis R; Pohorecky, Larissa A
2003-05-01
Two experiments were designed to evaluate whether brief access to a saccharin-ethanol solution would function as an effective unconditioned stimulus (US) in Pavlovian-autoshaping procedures. In these experiments, the insertion of a lever conditioned stimulus (CS) was followed by the brief presentation of a sipper tube containing saccharin-ethanol US solution. Experience with this Pavlovian-autoshaping procedure engendered lever CS-directed autoshaping conditioned responses (CRs) in all rats. In Experiment 1, the concentration of ethanol [0%, 2%, 4%, 6%, or 8% (vol./vol.)] in 0.1% saccharin was systematically increased within subjects across autoshaping sessions to evaluate the relation between a rat's drinking and lever pressing. In Experiment 2, the mean intertrial interval (ITI) duration (60, 90, 120 s) was systematically increased within subjects across autoshaping sessions to evaluate the effect of ITI duration on drinking and lever pressing. A pseudoconditioning control group received lever CS randomly with respect to the saccharin-ethanol US solution. In Experiment 1, lever-press autoshaping CRs developed in all rats, and the tendency of a rat to drink an ethanol concentration was predictive of the performance of lever-press autoshaping CRs. In Experiment 2, longer ITIs induced more lever CS-directed responding, and CS-US paired procedures yielded more lever CS-directed responding than that observed in CS-US random procedures. Saccharin-ethanol is an effective US in Pavlovian-autoshaping procedures, inducing more CS-directed responding than in pseudoconditioning controls receiving CS-US random procedures. More lever CS-directed responding was observed when there was more drinking of the saccharin-ethanol US solution (Experiment 1); when the CS and US were paired, rather than random (Experiment 2); and with longer mean ITI durations (Experiment 2). This pattern of results is consistent with the hypothesis that lever CS-directed responding reflects performance of Pavlovian-autoshaping CRs.
Comparative assessment of prognosis of the stop stimulus and trapezoidal rotation programs
NASA Technical Reports Server (NTRS)
Grigorova, V. K.; Popov, V. K.; Todorova, V. S.
1980-01-01
For prognosis of the diagnostic possibilities of the stop stimulus and trapezoidal rotation programs with respect to the nystagmus response, 24 healthy young persons with normal auditory and vestibular analysers were studied experimentally. The trapezoidal program more accurately reflects the function and tone balance of the vestibular system than the stop stimulus program and causes the subject no unpleasant sensations during the study. Some optimum couples, acceleration and armchair rotation rate, necessary for effective deviation of the cupuloendolymphatic system were determined. The maximum angular velocity of the slow nystagmus component was more informative than nystagmus duration. The trapezoidal program is recommended for otoneurological practice and the maximum angular velocity of the slow nystagmus component as the basic index.
Salient stimuli in advertising: the effect of contrast interval length and type on recall.
Olsen, G Douglas
2002-09-01
Salient auditory stimuli (e.g., music or sound effects) are commonly used in advertising to elicit attention. However, issues related to the effectiveness of such stimuli are not well understood. This research examines the ability of a salient auditory stimulus, in the form of a contrast interval (CI), to enhance recall of message-related information. Researchers have argued that the effectiveness of the CI is a function of the temporal duration between the onset and offset of the change in the background stimulus and the nature of this stimulus. Three experiments investigate these propositions and indicate that recall is enhanced, providing the CI is 3 s or less. Information highlighted with silence is recalled better than information highlighted with music.
Comparing preference assessments: selection- versus duration-based preference assessment procedures.
Kodak, Tiffany; Fisher, Wayne W; Kelley, Michael E; Kisamore, April
2009-01-01
In the current investigation, the results of a selection- and a duration-based preference assessment procedure were compared. A Multiple Stimulus With Replacement (MSW) preference assessment [Windsor, J., Piché, L. M., & Locke, P. A. (1994). Preference testing: A comparison of two presentation methods. Research in Developmental Disabilities, 15, 439-455] and a variation of a Free-Operant (FO) preference assessment procedure [Roane, H. S., Vollmer, T. R., Ringdahl, J. E., & Marcus, B. A. (1998). Evaluation of a brief stimulus preference assessment. Journal of Applied Behavior Analysis, 31, 605-620] were conducted with four participants. A reinforcer assessment was conducted to determine which preference assessment procedure identified the item that produced the highest rates of responding. The items identified as most highly preferred were different across preference assessment procedures for all participants. Results of the reinforcer assessment showed that the MSW identified the item that functioned as the most effective reinforcer for two participants.
Types of attention matter for awareness: a study with color afterimages.
Baijal, Shruti; Srinivasan, Narayanan
2009-12-01
It has been argued that attention and awareness might oppose each other given that attending to an adapting stimulus weakens its afterimage. We argue instead that the type of attention guided by spatial extent and perceptual levels is critical and might result in differences in awareness using afterimages. Participants performed a central task with small, large, local, or global letters and a blue square as an adapting stimulus in three experiments and indicated the onset and offset of the afterimage. We found that increases in the spatial spread of attention resulted in the decrease of afterimage duration. In terms of levels of processing, global processing produced larger afterimage durations with stimuli controlled for spatial extent. The results suggest that focused or distributed attention produce different effects on awareness, possibly through their differential interactions with polarity dependent and independent processes involved in the formation of color afterimages.
Emotion colors time perception unconsciously.
Yamada, Yuki; Kawabe, Takahiro
2011-12-01
Emotion modulates our time perception. So far, the relationship between emotion and time perception has been examined with visible emotional stimuli. The present study investigated whether invisible emotional stimuli affected time perception. Using continuous flash suppression, which is a kind of dynamic interocular masking, supra-threshold emotional pictures were masked or unmasked depending on whether the retinal position of continuous flashes on one eye was consistent with that of the pictures on the other eye. Observers were asked to reproduce the perceived duration of a frame stimulus that was concurrently presented with a masked or unmasked emotional picture. As a result, negative emotional stimuli elongated the perceived duration of the frame stimulus in comparison with positive and neutral emotional stimuli, regardless of the visibility of emotional pictures. These results suggest that negative emotion unconsciously accelerates an internal clock, altering time perception. Copyright © 2011 Elsevier Inc. All rights reserved.
Salisbury, Dean F
2011-01-01
Deviations from repetitive auditory stimuli evoke a mismatch negativity (MMN). Counter-intuitively, omissions of repetitive stimuli do not. Violations of patterns reflecting complex rules also evoke MMN. To detect a MMN to missing stimuli, we developed an auditory gestalt task using one stimulus. Groups of 6 pips (50 msec duration, 330 msec stimulus onset asynchrony (SOA), 400 trials), were presented with an inter-trial interval (ITI) of 750 msec while subjects (n=16) watched a silent video. Occasional deviant groups had missing 4th or 6th tones (50 trials each). Missing stimuli evoked a MMN (p<.05). The missing 4th (−0.8 uV, p <.01) and the missing 6th stimuli (−1.1 uV, p <.05) were more negative than standard 6th stimuli (0.3 uV). MMN can be elicited by a missing stimulus at long SOAs by violation of a gestalt grouping rule. Homogenous stimulus streams appear to differ in the relative weighting of omissions than strongly patterned streams. PMID:22221004
Psychological and Neural Mechanisms of Subjective Time Dilation
van Wassenhove, Virginie; Wittmann, Marc; Craig, A. D. (Bud); Paulus, Martin P.
2011-01-01
For a given physical duration, certain events can be experienced as subjectively longer in duration than others. Try this for yourself: take a quick glance at the second hand of a clock. Immediately, the tick will pause momentarily and appear to be longer than the subsequent ticks. Yet, they all last exactly 1 s. By and large, a deviant or an unexpected stimulus in a series of similar events (same duration, same features) can elicit a relative overestimation of subjective time (or “time dilation”) but, as is shown here, this is not always the case. We conducted an event-related functional magnetic neuroimaging study on the time dilation effect. Participants were presented with a series of five visual discs, all static and of equal duration (standards) except for the fourth one, a looming or a receding target. The duration of the target was systematically varied and participants judged whether it was shorter or longer than all other standards in the sequence. Subjective time dilation was observed for the looming stimulus but not for the receding one, which was estimated to be of equal duration to the standards. The neural activation for targets (looming and receding) contrasted with the standards revealed an increased activation of the anterior insula and of the anterior cingulate cortex. Contrasting the looming with the receding targets (i.e., capturing the time dilation effect proper) revealed a specific activation of cortical midline structures. The implication of midline structures in the time dilation illusion is here interpreted in the context of self-referential processes. PMID:21559346
NASA Astrophysics Data System (ADS)
Samba, R.; Herrmann, T.; Zeck, G.
2015-02-01
Objective. The aim of this study was to compare two different microelectrode materials—the conductive polymer composite poly-3,4-ethylenedioxythiophene (PEDOT)-carbon nanotube(CNT) and titanium nitride (TiN)—at activating spikes in retinal ganglion cells in whole mount rat retina through stimulation of the local retinal network. Stimulation efficacy of the microelectrodes was analyzed by comparing voltage, current and transferred charge at stimulation threshold. Approach. Retinal ganglion cell spikes were recorded by a central electrode (30 μm diameter) in the planar grid of an electrode array. Extracellular stimulation (monophasic, cathodic, 0.1-1.0 ms) of the retinal network was performed using constant voltage pulses applied to the eight surrounding electrodes. The stimulation electrodes were equally spaced on the four sides of a square (400 × 400 μm). Threshold voltage was determined as the pulse amplitude required to evoke network-mediated ganglion cell spiking in a defined post stimulus time window in 50% of identical stimulus repetitions. For the two electrode materials threshold voltage, transferred charge at threshold, maximum current and the residual current at the end of the pulse were compared. Main results. Stimulation of retinal interneurons using PEDOT-CNT electrodes is achieved with lower stimulation voltage and requires lower charge transfer as compared to TiN. The key parameter for effective stimulation is a constant current over at least 0.5 ms, which is obtained by PEDOT-CNT electrodes at lower stimulation voltage due to its faradaic charge transfer mechanism. Significance. In neuroprosthetic implants, PEDOT-CNT may allow for smaller electrodes, effective stimulation in a safe voltage regime and lower energy-consumption. Our study also indicates, that the charge transferred at threshold or the charge injection capacity per se does not determine stimulation efficacy.
Crowding during restricted and free viewing
Wallace, Julian M.; Chiu, Michael K.; Nandy, Anirvan S.; Tjan, Bosco S.
2013-01-01
Crowding impairs the perception of form in peripheral vision. It is likely to be a key limiting factor of form vision in patients without central vision. Crowding has been extensively studied in normally sighted individuals, typically with a stimulus duration of a few hundred milliseconds to avoid eye movements. These restricted testing conditions do not reflect the natural behavior of a patient with central field loss. Could unlimited stimulus duration and unrestricted eye movements change the properties of crowding in any fundamental way? We studied letter identification in the peripheral vision of normally sighted observers in three conditions: (i) a fixation condition with a brief stimulus presentation of 250 ms, (ii) another fixation condition but with an unlimited viewing time, and (iii) an unrestricted eye movement condition with an artificial central scotoma and an unlimited viewing time. In all conditions, contrast thresholds were measured as a function of target-to-flanker spacing, from which we estimated the spatial extent of crowding in terms of critical spacing. We found that presentation duration beyond 250 ms had little effect on critical spacing with stable gaze. With unrestricted eye movements and a simulated central scotoma, we found a large variability in critical spacing across observers, but more importantly, the variability in critical spacing was well correlated with the variability in target eccentricity. Our results assure that the large body of findings on crowding made with briefly presented stimuli remains relevant to conditions where viewing time is unconstrained. Our results further suggest that impaired oculomotor control associated with central vision loss can confound peripheral form vision beyond the limits imposed by crowding. PMID:23563172
Fischmeister, Florian Ph.S.; Leodolter, Ulrich; Windischberger, Christian; Kasess, Christian H.; Schöpf, Veronika; Moser, Ewald; Bauer, Herbert
2010-01-01
Throughout recent years there has been an increasing interest in studying unconscious visual processes. Such conditions of unawareness are typically achieved by either a sufficient reduction of the stimulus presentation time or visual masking. However, there are growing concerns about the reliability of the presentation devices used. As all these devices show great variability in presentation parameters, the processing of visual stimuli becomes dependent on the display-device, e.g. minimal changes in the physical stimulus properties may have an enormous impact on stimulus processing by the sensory system and on the actual experience of the stimulus. Here we present a custom-built three-way LC-shutter-tachistoscope which allows experimental setups with both, precise and reliable stimulus delivery, and millisecond resolution. This tachistoscope consists of three LCD-projectors equipped with zoom lenses to enable stimulus presentation via a built-in mirror-system onto a back projection screen from an adjacent room. Two high-speed liquid crystal shutters are mounted serially in front of each projector to control the stimulus duration. To verify the intended properties empirically, different sequences of presentation times were performed while changes in optical power were measured using a photoreceiver. The obtained results demonstrate that interfering variabilities in stimulus parameters and stimulus rendering are markedly reduced. Together with the possibility to collect external signals and to send trigger-signals to other devices, this tachistoscope represents a highly flexible and easy to set up research tool not only for the study of unconscious processing in the brain but for vision research in general. PMID:20122963
Heil, Peter; Matysiak, Artur; Neubauer, Heinrich
2017-09-01
Thresholds for detecting sounds in quiet decrease with increasing sound duration in every species studied. The neural mechanisms underlying this trade-off, often referred to as temporal integration, are not fully understood. Here, we probe the human auditory system with a large set of tone stimuli differing in duration, shape of the temporal amplitude envelope, duration of silent gaps between bursts, and frequency. Duration was varied by varying the plateau duration of plateau-burst (PB) stimuli, the duration of the onsets and offsets of onset-offset (OO) stimuli, and the number of identical bursts of multiple-burst (MB) stimuli. Absolute thresholds for a large number of ears (>230) were measured using a 3-interval-3-alternative forced choice (3I-3AFC) procedure. Thresholds decreased with increasing sound duration in a manner that depended on the temporal envelope. Most commonly, thresholds for MB stimuli were highest followed by thresholds for OO and PB stimuli of corresponding durations. Differences in the thresholds for MB and OO stimuli and in the thresholds for MB and PB stimuli, however, varied widely across ears, were negative in some ears, and were tightly correlated. We show that the variation and correlation of MB-OO and MB-PB threshold differences are linked to threshold microstructure, which affects the relative detectability of the sidebands of the MB stimuli and affects estimates of the bandwidth of auditory filters. We also found that thresholds for MB stimuli increased with increasing duration of the silent gaps between bursts. We propose a new model and show that it accurately accounts for our results and does so considerably better than a leaky-integrator-of-intensity model and a probabilistic model proposed by others. Our model is based on the assumption that sensory events are generated by a Poisson point process with a low rate in the absence of stimulation and higher, time-varying rates in the presence of stimulation. A subject in a 3I-3AFC task is assumed to choose the interval in which the greatest number of events occurred or randomly chooses among intervals which are tied for the greatest number of events. The subject is further assumed to count events over the duration of an evaluation interval that has the same timing and duration as the expected stimulus. The increase in the rate of the events caused by stimulation is proportional to the time-varying amplitude envelope of the bandpass-filtered signal raised to an exponent. We find the exponent to be about 3, consistent with our previous studies. This challenges models that are based on the assumption of the integration of a neural response that is directly proportional to the stimulus amplitude or proportional to its square (i.e., proportional to the stimulus intensity or power). Copyright © 2017 Elsevier B.V. All rights reserved.
Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task.
Bavassi, Luz; Kamienkowski, Juan E; Sigman, Mariano; Laje, Rodrigo
2017-01-01
Sensorimotor synchronization (SMS) is a form of referential behavior in which an action is coordinated with a predictable external stimulus. The neural bases of the synchronization ability remain unknown, even in the simpler, paradigmatic task of finger tapping to a metronome. In this task the subject is instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference between each response and the corresponding stimulus tone (asynchrony) is recorded. We make a step towards the identification of the neurophysiological markers of SMS by recording high-density EEG event-related potentials and the concurrent behavioral response-stimulus asynchronies during an isochronous paced finger-tapping task. Using principal component analysis, we found an asymmetry between the traces for advanced and delayed responses to the stimulus, in accordance with previous behavioral observations from perturbation studies. We also found that the amplitude of the second component encodes the higher-level percept of asynchrony 100 ms after the current stimulus. Furthermore, its amplitude predicts the asynchrony of the next step, past 300 ms from the previous stimulus, independently of the period length. Moreover, the neurophysiological processing of synchronization errors is performed within a fixed-duration interval after the stimulus. Our results suggest that the correction of a large asynchrony in a periodic task and the recovery of synchrony after a perturbation could be driven by similar neural processes.
Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu
2015-01-01
Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828
α -Ethyltryptamine (α-ET) As A Discriminative Stimulus in Rats†
Glennon, Richard A.; Bondareva, Tatiana; Young, Richard
2007-01-01
α-Ethyltryptamine (etryptamine, α-ET) is a drug of abuse that first appeared on the clandestine market in the mid 1980s. Its pharmacological actions are poorly understood. In this investigation, it is reported for the first time that α-ET serves as a training drug in drug discrimination studies. Male Sprague-Dawley rats were trained to discriminate (30-min pretreatment time) 2.5 mg/kg of α-ET (ED50 = 1.3 mg/kg) from saline vehicle using a standard two-lever operant paradigm and a VI-15s schedule of reinforcement for appetitive reward. Once established, the α-ET stimulus was shown to have an onset to action of 30 min and a duration of effect of at least 4 hours. In tests of stimulus generalization (substitution), the α-ET stimulus generalized to S(−)α-ET (ED50 = 1.6 mg/kg) and R(+)α-ET (ED50 = 1.3 mg/kg). Tests of stimulus generalization were also conducted with prototypical phenylisopropylamines: (+)amphetamine, 1-(2,5-dimethoxy-4-methylphenyl)-2-aminopropane (DOM), and N-methyl-1-(4-methoxyphenyl)-2-aminopropane (PMMA). The α-ET stimulus generalized to DOM (ED50 = 0.4 mg/kg) and PMMA (ED50 = 0.7 mg/kg), but only partially generalized (ca. 40% maximal drug-appropriate responding) to (+)amphetamine. The results suggest that α-ET produces a complex stimulus. PMID:17112572
Qu, Yatian; Campbell, Patrick G.; Gu, Lei; ...
2016-09-21
Here we report our studies to compare energy consumption of a CDI cell in constant voltage (CV) and constant current (CC) operations, with a focus on understanding the underlying physics of consumption patterns. The comparison is conducted under conditions that the CV and CC operations result in the same amounts of input charge and within identical charging phase durations. We present two electrical circuit models to simulate energy consumption in charging phase: one is a simple RC circuit model, and the other a transmission line circuit model. We built and tested a CDI cell to validate the transmission line model,more » and performed a series of experiments to compare CV versus CC operation under the condition of equal applied charge and charging duration. The experiments show that CC mode consumes energy at 33.8 kJ per mole of ions removed, which is only 28% of CV mode energy consumption (120.6 kJ/mol), but achieves similar level of salt removals. Lastly, together, the models and experiment support our major conclusion that CC is more energy efficient than CV for equal charge and charging duration. The models also suggest that the lower energy consumption of CC in charging is due to its lower resistive dissipation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Yatian; Campbell, Patrick G.; Gu, Lei
Here we report our studies to compare energy consumption of a CDI cell in constant voltage (CV) and constant current (CC) operations, with a focus on understanding the underlying physics of consumption patterns. The comparison is conducted under conditions that the CV and CC operations result in the same amounts of input charge and within identical charging phase durations. We present two electrical circuit models to simulate energy consumption in charging phase: one is a simple RC circuit model, and the other a transmission line circuit model. We built and tested a CDI cell to validate the transmission line model,more » and performed a series of experiments to compare CV versus CC operation under the condition of equal applied charge and charging duration. The experiments show that CC mode consumes energy at 33.8 kJ per mole of ions removed, which is only 28% of CV mode energy consumption (120.6 kJ/mol), but achieves similar level of salt removals. Lastly, together, the models and experiment support our major conclusion that CC is more energy efficient than CV for equal charge and charging duration. The models also suggest that the lower energy consumption of CC in charging is due to its lower resistive dissipation.« less
Effects of Electrical and Mechanical Overstimulus on Spontaneous Oscillations in Hair Bundles
NASA Astrophysics Data System (ADS)
Kao, Albert; Strimbu, C. Elliott; Bozovic, Dolores
2011-11-01
Spontaneous oscillations constitute one of the manifestations of the active process operant in hair cells and provides a sensitive probe for their internal dynamics. The influx of ions into the stereocilia can be modulated by applying an electrical current across the epithelium and has been previously shown to strongly affect the oscillatory profiles. We applied strong transient stimuli and demonstrated that they can induce a transition from the oscillatory to the quiescent state, an effect that can last over several seconds post stimulus cessation. The dynamics of recovery to the oscillatory state was found to be dependent on the amplitude and the duration of the stimulus. Similar dynamics were observed after high-amplitude mechanical stimulus, which mimics the effects of loud sound on an individual bundle.
Mechanical Overstimulation of Hair Bundles: Suppression and Recovery of Active Motility
Kao, Albert; Meenderink, Sebastiaan W. F.; Bozovic, Dolores
2013-01-01
We explore the effects of high-amplitude mechanical stimuli on hair bundles of the bullfrog sacculus. Under in vitro conditions, these bundles exhibit spontaneous limit cycle oscillations. Prolonged deflection exerted two effects. First, it induced an offset in the position of the bundle. Recovery to the original position displayed two distinct time scales, suggesting the existence of two adaptive mechanisms. Second, the stimulus suppressed spontaneous oscillations, indicating a change in the hair bundle’s dynamic state. After cessation of the stimulus, active bundle motility recovered with time. Both effects were dependent on the duration of the imposed stimulus. External calcium concentration also affected the recovery to the oscillatory state. Our results indicate that both offset in the bundle position and calcium concentration control the dynamic state of the bundle. PMID:23505461
Nishikawa, Kohki; Yamakage, Michiaki
2017-02-01
The clinical adequacy of electroconvulsive therapy (ECT) depends on not only seizure duration but also seizure amplitude and postictal suppression. The objective of this study was to evaluate the effects of combination of a reduced dose of propofol and moderate hyperventilation on seizure duration and electrical stimulus requirement for adequate ictal amplitude and postictal suppression. Prospective, randomized, controlled trial. Operating room at a municipal hospital. Sixty ASA physical status I or II patients scheduled to receive a total of >300 ECT treatments. Patients were randomly assigned to have the three interventions: the use of a standard dose (1mg/kg) of propofol and normoventilation (ETCO 2 of 40-45mmHg) (group P/N), the use of a reduced dose (0.5mg/kg) of propofol with divided remifentanil injections and normoventilation (group RP/N), and the use of a reduced dose of propofol with divided remifentanil injections and moderate hyperventilation (ETCO 2 of 30-35mmHg) (group RP/H). Patients in groups RP/N and RP/H received remifentanil 1μg/kg followed by propofol 0.5mg/kg for unconsciousness and thereafter remifentanil 1μg/kg immediately before the electrical stimulus. Patients in group RP/H had significantly longer durations of electroencephalographic (EEG) seizures in the early phase of the ECT course (P<0.05) and lower intensities of electrical stimulus in the late phase of the ECT course (P<0.05) than those in groups P/N and RP/N. A reduced dose of propofol combined with divided supplemental remifentanil under moderate hyperventilation during ECT may contribute to reduced electrical dosage due to the ability of its augmentation of seizure amplitude and postictal suppression in the late phase of the ECT course. Copyright © 2016 Elsevier Inc. All rights reserved.
Tambeli, Claudia H.; Levine, Jon D.; Gear, Robert W.
2009-01-01
The duration of noxious stimulus-induced antinociception (NSIA) has been shown to outlast the pain stimulus that elicited it, however, the mechanism that determines the duration of analgesia is unknown. We evaluated the role of spinal excitatory and inhibitory receptors (NMDA, mGluR-5, mu-opioid, GABA-A, and GABA-B), previously implicated in NSIA initiation, in its maintenance. As in our previous studies, the supraspinal trigeminal jaw-opening reflex (JOR) in the rat was used for nociceptive testing because of its remoteness from the region of drug application, the lumbar spinal cord. NSIA was reversed by antagonists for two inhibitory receptors (GABA-B and mu-opioid) but not by antagonists for either of the two excitatory receptors (NMDA and mGluR-5), indicating that NSIA is maintained by ongoing activity at inhibitory synapses in the spinal cord. Furthermore, spinal administration of the GABA-B agonist baclofen mimicked NSIA in that it could be blocked by prior injection of the mu-opioid receptor antagonist H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP) in nucleus accumbens. CTAP also blocked baclofen antinociception when administered in the spinal cord. We conclude that analgesia induced by noxious stimulation is maintained by activity in spinal inhibitory receptors. PMID:19375225
Poisson process stimulation of an excitable membrane cable model.
Goldfinger, M D
1986-01-01
The convergence of multiple inputs within a single-neuronal substrate is a common design feature of both peripheral and central nervous systems. Typically, the result of such convergence impinges upon an intracellularly contiguous axon, where it is encoded into a train of action potentials. The simplest representation of the result of convergence of multiple inputs is a Poisson process; a general representation of axonal excitability is the Hodgkin-Huxley/cable theory formalism. The present work addressed multiple input convergence upon an axon by applying Poisson process stimulation to the Hodgkin-Huxley axonal cable. The results showed that both absolute and relative refractory periods yielded in the axonal output a random but non-Poisson process. While smaller amplitude stimuli elicited a type of short-interval conditioning, larger amplitude stimuli elicited impulse trains approaching Poisson criteria except for the effects of refractoriness. These results were obtained for stimulus trains consisting of pulses of constant amplitude and constant or variable durations. By contrast, with or without stimulus pulse shape variability, the post-impulse conditional probability for impulse initiation in the steady-state was a Poisson-like process. For stimulus variability consisting of randomly smaller amplitudes or randomly longer durations, mean impulse frequency was attenuated or potentiated, respectively. Limitations and implications of these computations are discussed. PMID:3730505
Moors, Pieter; Huygelier, Hanne; Wagemans, Johan; de-Wit, Lee; van Ee, Raymond
2015-01-01
Previous studies using binocular rivalry have shown that signals in a modality other than the visual can bias dominance durations depending on their congruency with the rivaling stimuli. More recently, studies using continuous flash suppression (CFS) have reported that multisensory integration influences how long visual stimuli remain suppressed. In this study, using CFS, we examined whether the contrast thresholds for detecting visual looming stimuli are influenced by a congruent auditory stimulus. In Experiment 1, we show that a looming visual stimulus can result in lower detection thresholds compared to a static concentric grating, but that auditory tone pips congruent with the looming stimulus did not lower suppression thresholds any further. In Experiments 2, 3, and 4, we again observed no advantage for congruent multisensory stimuli. These results add to our understanding of the conditions under which multisensory integration is possible, and suggest that certain forms of multisensory integration are not evident when the visual stimulus is suppressed from awareness using CFS.
Akin, Faith Wurm; Murnane, Owen D; Proffitt, Tina M
2003-11-01
Vestibular evoked myogenic potentials (VEMP) are short latency electromyograms (EMG) evoked by high-level acoustic stimuli and recorded from surface electrodes over the tonically contracted sternocleidomastoid (SCM) muscle and are presumed to originate in the saccule. The present experiments examined the effects of click and tone-burst level and stimulus frequency on the latency, amplitude, and threshold of the VEMP in subjects with normal hearing sensitivity and no history of vestibular disease. VEMPs were recorded in all subjects using 100 dB nHL click stimuli. Most subjects had VEMPs present at 500, 750, and 1000 Hz, and few subjects had VEMPs present at 2000 Hz. The response amplitude of the VEMP increased with click and tone-burst level, whereas VEMP latency was not influenced by the stimulus level. The largest tone-burst-evoked VEMPs and lowest thresholds were obtained at 500 and 750 Hz. VEMP latency was independent of stimulus frequency when tone-burst duration was held constant.
BIBLIOGRAPHY ON VERBAL LEARNING.
ERIC Educational Resources Information Center
Harvard Univ., Cambridge, MA. Graduate School of Education.
THIS BIBLIOGRAPHY LISTS MATERIAL ON VARIOUS ASPECTS OF VERBAL LEARNING. APPROXIMATELY 50 UNANNOTATED REFERENCES ARE PROVIDED TO DOCUMENTS DATING FROM 1960 TO 1965. JOURNALS, BOOKS, AND REPORT MATERIALS ARE LISTED. SUBJECT AREAS INCLUDED ARE CONDITIONING, VERBAL BEHAVIOR, PROBLEM SOLVING, SEMANTIC SATIATION, STIMULUS DURATION, AND VERBAL…
Do pigeons prefer alternatives that include near-hit outcomes?
Stagner, Jessica P; Case, Jacob P; Sticklen, Mary F; Duncan, Amanda K; Zentall, Thomas R
2015-07-01
Pigeons show suboptimal choice on a gambling-like task similar to that shown by humans. Humans also show a preference for gambles in which there are near hits (losses that come close to winning). In the present research, we asked if pigeons would show a preference for alternatives with near-hit-like trials. In Experiment 1, we included an alternative that presented a near hit, in which a stimulus associated with reinforcement (a presumed conditioned reinforcer) changed to a stimulus associated with the absence of reinforcement (a presumed conditioned inhibitor). The pigeons tended to avoid this alternative. In Experiment 2, we varied the duration of the presumed conditioned reinforcer (2 vs. 8 s) that changed to a presumed conditioned inhibitor (8 vs. 2 s) and found that the longer the conditioned reinforcer was presented, the more the pigeons avoided it. In Experiment 3, the near-hit alternative involved an ambiguous stimulus for 8 s that changed to a presumed conditioned reinforcer (or a presumed conditioned inhibitor) for 2 s, but the pigeons still avoided it. In Experiment 4, we controlled for the duration of the conditioned reinforcer by presenting it first for 2 s followed by the ambiguous stimulus for 8 s. Once again, the pigeons avoided the alternative with the near-hit trials. In all 4 experiments, the pigeons tended to avoid alternatives that provided near-hit-like trials. We concluded that humans may be attracted to near-hit trials because near-hit trials give them the illusion of control, whereas this does not appear to be a factor for pigeons. (c) 2015 APA, all rights reserved).
Exogenous attention to fear: Differential behavioral and neural responses to snakes and spiders.
Soares, Sandra C; Kessel, Dominique; Hernández-Lorca, María; García-Rubio, María J; Rodrigues, Paulo; Gomes, Nuno; Carretié, Luis
2017-05-01
Research has consistently shown that threat stimuli automatically attract attention in order to activate the defensive response systems. Recent findings have provided evidence that snakes tuned the visual system of evolving primates for their astute detection, particularly under challenging perceptual conditions. The goal of the present study was to measure behavioral and electrophysiological indices of exogenous attention to snakes, compared with spiders - matched for rated fear levels but for which sources of natural selection are less well grounded, and to innocuous animals (birds), which were presented as distracters, while participants were engaged in a letter discrimination task. Duration of stimuli, consisting in a letter string and a concurrent distracter, was either presented for 180 or 360ms to explore if the stimulus duration was a modulating effect of snakes in capturing attention. Results showed a specific early (P1) exogenous attention-related brain potential with maximal amplitude to snakes in both durations, which was followed by an enhanced late attention-related potential (LPP) showing enhanced amplitudes to spiders, particularly under the longer exposure durations. These results suggest that exogenous attention to different classes of threat stimuli follows a gradual process, with the most evolutionary-driven stimulus, i.e., snakes, being more efficient at attracting early exogenous attention, thus more dependent on bottom-up processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wong, Del P.; Chaouachi, Anis; Lau, Patrick W.C.; Behm, David G.
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key points The duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). No significant differences in RSA and COD between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. PMID:24149890
Wong, Del P; Chaouachi, Anis; Lau, Patrick W C; Behm, David G
2011-01-01
This study aimed to compare the effect of different static stretching durations followed by dynamic stretching on repeated sprint ability (RSA) and change of direction (COD). Twenty-five participants performed the RSA and COD tests in a randomized order. After a 5 min aerobic warm up, participants performed one of the three static stretching protocols of 30 s, 60 s or 90 s total duration (3 stretches x 10 s, 20 s or 30 s). Three dynamic stretching exercises of 30 s duration were then performed (90 s total). Sit-and-reach flexibility tests were conducted before the aerobic warm up, after the combined static and dynamic stretching, and post- RSA/COD test. The duration of static stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit-and-reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001). However there were no significant differences in RSA and COD performance between the 3 stretching conditions. The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects. Furthermore, the short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments. Key pointsThe duration of combined static and dynamic stretching had a positive effect on flexibility with 36.3% and 85.6% greater sit and reach scores with the 60 s and 90 s static stretching conditions respectively than with the 30 s condition (p ≤ 0.001).No significant differences in RSA and COD between the 3 stretching conditions.The lack of change in RSA and COD might be attributed to a counterbalancing of static and dynamic stretching effects.The short duration (≤ 90 s) static stretching may not have provided sufficient stimulus to elicit performance impairments.
Hellström, Åke; Rammsayer, Thomas H
2015-10-01
Studies have shown that the discriminability of successive time intervals depends on the presentation order of the standard (St) and the comparison (Co) stimuli. Also, this order affects the point of subjective equality. The first effect is here called the standard-position effect (SPE); the latter is known as the time-order error. In the present study, we investigated how these two effects vary across interval types and standard durations, using Hellström's sensation-weighting model to describe the results and relate them to stimulus comparison mechanisms. In Experiment 1, four modes of interval presentation were used, factorially combining interval type (filled, empty) and sensory modality (auditory, visual). For each mode, two presentation orders (St-Co, Co-St) and two standard durations (100 ms, 1,000 ms) were used; half of the participants received correctness feedback, and half of them did not. The interstimulus interval was 900 ms. The SPEs were negative (i.e., a smaller difference limen for St-Co than for Co-St), except for the filled-auditory and empty-visual 100-ms standards, for which a positive effect was obtained. In Experiment 2, duration discrimination was investigated for filled auditory intervals with four standards between 100 and 1,000 ms, an interstimulus interval of 900 ms, and no feedback. Standard duration interacted with presentation order, here yielding SPEs that were negative for standards of 100 and 1,000 ms, but positive for 215 and 464 ms. Our findings indicate that the SPE can be positive as well as negative, depending on the interval type and standard duration, reflecting the relative weighting of the stimulus information, as is described by the sensation-weighting model.
Grantham, D Wesley; Ashmead, Daniel H; Haynes, David S; Hornsby, Benjamin W Y; Labadie, Robert F; Ricketts, Todd A
2012-01-01
: One purpose of this investigation was to evaluate the effect of a unilateral bone-anchored hearing aid (Baha) on horizontal plane localization performance in single-sided deaf adults who had either a conductive or sensorineural hearing loss in their impaired ear. The use of a 33-loudspeaker array allowed for a finer response measure than has previously been used to investigate localization in this population. In addition, a detailed analysis of error patterns allowed an evaluation of the contribution of random error and bias error to the total rms error computed in the various conditions studied. A second purpose was to investigate the effect of stimulus duration and head-turning on localization performance. : Two groups of single-sided deaf adults were tested in a localization task in which they had to identify the direction of a spoken phrase on each trial. One group had a sensorineural hearing loss (SNHL group; N = 7), and the other group had a conductive hearing loss (CHL group; N = 5). In addition, a control group of four normal-hearing adults was tested. The spoken phrase was either 1250 msec in duration (a male saying "Where am I coming from now?") or 341 msec in duration (the same male saying "Where?"). For the longer-duration phrase, subjects were tested in conditions in which they either were or were not allowed to move their heads before the termination of the phrase. The source came from one of nine positions in the front horizontal plane (from -79° to +79°). The response range included 33 choices (from -90° to +90°, separated by 5.6°). Subjects were tested in all stimulus conditions, both with and without the Baha device. Overall rms error was computed for each condition. Contributions of random error and bias error to the overall error were also computed. : There was considerable intersubject variability in all conditions. However, for the CHL group, the average overall error was significantly smaller when the Baha was on than when it was off. Further analysis of error patterns indicated that this improvement was primarily based on reduced response bias when the device was on; that is, the average response azimuth was nearer to the source azimuth when the device was on than when it was off. The SNHL group, on the other hand, had significantly greater overall error when the Baha was on than when it was off. Collapsed across listening conditions and groups, localization performance was significantly better with the 1250 msec stimulus than with the 341 msec stimulus. However, for the longer-duration stimulus, there was no significant beneficial effect of head-turning. Error scores in all conditions for both groups were considerably larger than those in the normal-hearing control group. : On average, single-sided deaf adults with CHL showed improved localization ability when using the Baha, whereas single-sided deaf adults with SNHL showed a decrement in performance when using the device. These results may have implications for clinical counseling for patients with unilateral hearing impairment.
Gallistel, C R
2003-04-24
The ramp-like rise and fall of activity in neurons of the LIP area of the posterior parietal cortex of alert behaving monkeys performing a duration discrimination task tracks the changing relative likelihoods that the stimulus in their response field will become the target of a saccade.
Lemaire, Patrick; Brun, Fleur
2014-10-01
Ageing results in the tendency of older adults to repeat the same strategy across consecutive problems more often than young adults, even when such strategy perseveration is not appropriate. Here, we examined how these age-related differences in strategy perseveration are modulated by response-stimulus intervals and problem characteristics. We asked participants to select the best strategy while accomplishing a computational estimation task (i.e., provide approximate sums to two-digit addition problems like 38 + 74). We found that participants repeated the same strategy across consecutive problems more often when the duration between their response and next problem display was short (300 ms) than when it was long (1300 ms). We also found more strategy perseverations in older than in young adults under short Response-Stimulus Intervals, but not under long Response-Stimulus Intervals. Finally, age-related differences in strategy perseveration decreased when problem features helped participants to select the best strategy. These modulations of age-related differences in strategy perseveration by response-stimulus intervals and characteristics of target problems are important for furthering our understanding of mechanisms underlying strategy perseveration and, more generally, ageing effects on strategy selection.
Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses.
Junius, Dirk; Dau, Torsten
2005-07-01
The present study investigates the relationship between evoked responses to transient broadband chirps and responses to the same chirps when embedded in longer-duration stimuli. It examines to what extent the responses to the composite stimuli can be explained by a linear superposition of the responses to the single components, as a function of stimulus level. In the first experiment, a single rising chirp was temporally and spectrally embedded in two steady-state tones. In the second experiment, the stimulus consisted of a continuous alternating train of chirps: each rising chirp was followed by the temporally reversed (falling) chirp. In both experiments, the transitions between stimulus components were continuous. For stimulation levels up to approximately 70 dB SPL, the responses to the embedded chirp corresponded to the responses to the single chirp. At high stimulus levels (80-100 dB SPL), disparities occurred between the responses, reflecting a nonlinearity in the processing when neural activity is integrated across frequency. In the third experiment, the effect of within-train rate on wave-V response was investigated. The response to the chirp presented at a within-train rate of 95 Hz exhibited the same amplitude as that to the chirp presented in the traditional single-stimulus paradigm at a rate of 13 Hz. For a corresponding experiment with bandlimited chirps of 4 ms duration, where the within-train rate was 250 Hz, a clear reduction of the response amplitude was observed. This nonlinearity in terms of temporal processing most likely reflects effects of short-term adaptation. Overall, the results of the present study further demonstrate the importance of cochlear processing for the formation of brainstem potentials. The data may provide constraints on future models of peripheral processing in the human auditory system. The findings might also be useful for the development of effective stimulation paradigms in clinical applications.
Temporal Characteristics of Electron Flux Events at Geosynchronous Orbit
NASA Astrophysics Data System (ADS)
Olson, D. K.; Larsen, B.; Henderson, M. G.
2017-12-01
Geosynchronous satellites such as the LANL-GEO fleet are exposed to hazardous conditions when they encounter regions of hot, intense plasma such as that from the plasma sheet. These conditions can lead to the build-up of charge on the surface of a spacecraft, with undesired, and often dangerous, side effects. Observation of electron flux levels at geosynchronous orbit (GEO) with multiple satellites provides a unique view of plasma sheet access to that region. Flux "events", or periods when fluxes are elevated continuously above the LANL-GEO spacecraft charging threshold, can be characterized by duration in two dimensions: a spatial dimension of local time, describing the duration of an event from the perspective of a single spacecraft, and a temporal dimension describing the duration in time in which high energy plasma sheet particles have access to geosynchronous orbit. We examine the statistical properties of the temporal duration of 8 keV electron flux events at geosynchronous orbit over a twelve-year period. These results, coupled with the spatial duration characteristics, provide the key information needed to formulate a statistical model for forecasting the electron flux conditions at GEO that are correlated with LANL-GEO surface charging. Forecasting models are an essential component to understanding space weather and mitigating the dangers of surface charging on our satellites. We also examine the correlation of flux event durations with solar wind parameters and geomagnetic indices, identifying the data needed to improve upon a statistical forecasting model
Hecht, Marcus; Thiemann, Ulf; Freitag, Christine M; Bender, Stephan
2016-01-15
Post-perceptual cues can enhance visual short term memory encoding even after the offset of the visual stimulus. However, both the mechanisms by which the sensory stimulus characteristics are buffered as well as the mechanisms by which post-perceptual selective attention enhances short term memory encoding remain unclear. We analyzed late post-perceptual event-related potentials (ERPs) in visual change detection tasks (100ms stimulus duration) by high-resolution ERP analysis to elucidate these mechanisms. The effects of early and late auditory post-cues (300ms or 850ms after visual stimulus onset) as well as the effects of a visual interference stimulus were examined in 27 healthy right-handed adults. Focusing attention with post-perceptual cues at both latencies significantly improved memory performance, i.e. sensory stimulus characteristics were available for up to 850ms after stimulus presentation. Passive watching of the visual stimuli without auditory cue presentation evoked a slow negative wave (N700) over occipito-temporal visual areas. N700 was strongly reduced by a visual interference stimulus which impeded memory maintenance. In contrast, contralateral delay activity (CDA) still developed in this condition after the application of auditory post-cues and was thereby dissociated from N700. CDA and N700 seem to represent two different processes involved in short term memory encoding. While N700 could reflect visual post processing by automatic attention attraction, CDA may reflect the top-down process of searching selectively for the required information through post-perceptual attention. Copyright © 2015 Elsevier Inc. All rights reserved.
Chu, J; McNally, S; Bruyninckx, F; Neuhauser, D
2017-04-01
Autonomous twitch elicitation at myofascial trigger points from spondylotic radiculopathies-induced denervation supersensitivity can provide favourable pain relief using electrical twitch-obtaining intramuscular stimulation (ETOIMS). To provide objective evidence that ETOIMS is safe and efficacious in migraine and persistent pain management due to decades-old injuries to head and spine from paediatric American football. An 83-year-old mildly hypertensive patient with 25-year history of refractory migraine and persistent pain self-selected to regularly receive fee-for-service ETOIMS 2/week over 20 months. He had 180 sessions of ETOIMS. Pain levels, blood pressure (BP) and heart rate/pulse were recorded before and immediately after each treatment alongside highest level of clinically elicitable twitch forces/session, session duration and intervals between treatments. Twitch force grades recorded were from 1 to 5, grade 5 twitch force being strongest. Initially, there was hypersensitivity to electrical stimulation with low stimulus parameters (500 µs pulse-width, 30 mA stimulus intensity, frequency 1.3 Hz). This resolved with gradual stimulus increments as tolerated during successive treatments. By treatment 27, autonomous twitches were noted. Spearman's correlation coefficients showed that pain levels are negatively related to twitch force, number of treatments, treatment session duration and directly related to BP and heart rate/pulse. Treatment numbers and session durations directly influence twitch force. At end of study, headaches and quality of life improved, hypertension resolved and antihypertensive medication had been discontinued. Using statistical process control methodology in an individual patient, we showed long-term safety and effectiveness of ETOIMS in simultaneous diagnosis, treatment, prognosis and prevention of migraine and persistent pain in real time obviating necessity for randomised controlled studies.
Kobylka, Florian; Persike, Malte; Meinhardt, Günter
2017-01-01
In continuous flash suppression (CFS), a dynamic noise masker, presented to one eye, suppresses conscious perception of a test stimulus, presented to the other eye, until the suppressed stimulus comes to awareness after few seconds. But what do we see breaking the dominance of the masker in the transition period? We addressed this question with a dual-task in which observers indicated (i) whether the test object was left or right of the fixation mark (localization) and (ii) whether it was a face or a house (categorization). As done recently Stein et al. (2011a), we used two experimental varieties to rule out confounds with decisional strategy. In the terminated mode, stimulus and masker were presented for distinct durations, and the observers were asked to give both judgments at the end of the trial. In the self-paced mode, presentation lasted until the observers responded. In the self-paced mode, b-CFS durations for object categorization were about half a second longer than for object localization. In the terminated mode, correct categorization rates were consistently lower than correct detection rates, measured at five duration intervals ranging up to 2 s. In both experiments we observed an upright face advantage compared to inverted faces and houses, as concurrently reported in b-CFS studies. Our findings reveal that more time is necessary to enable observers judging the nature of the object, compared to judging that there is “something other” than the noise which can be localized, but not recognized. This suggests gradual transitions in the first break of CFS. Further, the results imply that suppression is such that no cues to object identity are conveyed in potential “leaks” of CFS (Gelbard-Sagiv et al., 2016). PMID:28663728
Xue, Gui; Jiang, Ting; Chen, Chuansheng; Dong, Qi
2008-02-15
How language experience affects visual word recognition has been a topic of intense interest. Using event-related potentials (ERPs), the present study compared the early electrophysiological responses (i.e., N1) to familiar and unfamiliar writings under different conditions. Thirteen native Chinese speakers (with English as their second language) were recruited to passively view four types of scripts: Chinese (familiar logographic writings), English (familiar alphabetic writings), Korean Hangul (unfamiliar logographic writings), and Tibetan (unfamiliar alphabetic writings). Stimuli also differed in lexicality (words vs. non-words, for familiar writings only), length (characters/letters vs. words), and presentation duration (100 ms vs. 750 ms). We found no significant differences between words and non-words, and the effect of language experience (familiar vs. unfamiliar) was significantly modulated by stimulus length and writing system, and to a less degree, by presentation duration. That is, the language experience effect (i.e., a stronger N1 response to familiar writings than to unfamiliar writings) was significant only for alphabetic letters, but not for alphabetic and logographic words. The difference between Chinese characters and unfamiliar logographic characters was significant under the condition of short presentation duration, but not under the condition of long presentation duration. Long stimuli elicited a stronger N1 response than did short stimuli, but this effect was significantly attenuated for familiar writings. These results suggest that N1 response might not reliably differentiate familiar and unfamiliar writings. More importantly, our results suggest that N1 is modulated by visual, linguistic, and task factors, which has important implications for the visual expertise hypothesis.
Minimum energy control for in vitro neurons.
Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden
2013-06-01
To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron's biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron's phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.
Minimum energy control for in vitro neurons
NASA Astrophysics Data System (ADS)
Nabi, Ali; Stigen, Tyler; Moehlis, Jeff; Netoff, Theoden
2013-06-01
Objective. To demonstrate the applicability of optimal control theory for designing minimum energy charge-balanced input waveforms for single periodically-firing in vitro neurons from brain slices of Long-Evans rats. Approach. The method of control uses the phase model of a neuron and does not require prior knowledge of the neuron’s biological details. The phase model of a neuron is a one-dimensional model that is characterized by the neuron’s phase response curve (PRC), a sensitivity measure of the neuron to a stimulus applied at different points in its firing cycle. The PRC for each neuron is experimentally obtained by measuring the shift in phase due to a short-duration pulse injected into the periodically-firing neuron at various phase values. Based on the measured PRC, continuous-time, charge-balanced, minimum energy control waveforms have been designed to regulate the next firing time of the neuron upon application at the onset of an action potential. Main result. The designed waveforms can achieve the inter-spike-interval regulation for in vitro neurons with energy levels that are lower than those of conventional monophasic pulsatile inputs of past studies by at least an order of magnitude. They also provide the advantage of being charge-balanced. The energy efficiency of these waveforms is also shown by performing several supporting simulations that compare the performance of the designed waveforms against that of phase shuffled surrogate inputs, variants of the minimum energy waveforms obtained from suboptimal PRCs, as well as pulsatile stimuli that are applied at the point of maximum PRC. It was found that the minimum energy waveforms perform better than all other stimuli both in terms of control and in the amount of energy used. Specifically, it was seen that these charge-balanced waveforms use at least an order of magnitude less energy than conventional monophasic pulsatile stimuli. Significance. The significance of this work is that it uses concepts from the theory of optimal control and introduces a novel approach in designing minimum energy charge-balanced input waveforms for neurons that are robust to noise and implementable in electrophysiological experiments.
1993-04-01
suggesting it occurs in later visual motion processing (long-range or second-order system). STIMULUS PERCEPT L" FLASH DURATION FLASH DURATION (a) TIME ( b ...TIME Figure 2. Gamma motion. (a) A light of fixed spatial extent is illuminated then extim- guished. ( b ) The percept is of a light expanding and then...while smaller, type- B cells provide input to its parvocellular subdivision. From here the magnocellular pathway progresses up through visual cortex area V
Human auditory event-related potentials predict duration judgments.
Bendixen, Alexandra; Grimm, Sabine; Schröger, Erich
2005-08-05
Internal clock models postulate a pulse accumulation process underlying timing activities, with more accumulated pulses resulting in longer perceived durations. We investigated whether this accumulation is reflected in the amplitude of event-related brain potentials (ERPs) elicited by auditory stimuli with durations of 400-600 ms. In a duration discrimination paradigm, we found more negative amplitudes to physically identical stimuli when they were judged as longer than the memorized standard duration (500 ms) as compared to being classified as shorter. This sustained negativity was already developing during the first 100 ms after stimulus onset. It could not be explained as a bias to respond with a particular hand (lateralized readiness potential), but rather reflects a processing difference between the tones to be judged as shorter or longer. Our results are in line with models of time processing which assume that higher numbers of accumulated pulses of a temporal processor result in an increase in perceived duration.
Departure from the onset-onset rule.
Chow, S L
1994-09-01
Using a signal-detection task, the generality of Turvey's (1973) onset-onset rule was tested in our experiments. After seeing, in succession, (1) one or two letters (target display), (2) a multiletter detection display, and (3) a mask display, subjects decided whether or not the letter or letters in the target display reappeared in the succeeding detection display at different levels of detection-display duration in various situations. The subjects' sensitivity was inconsistent with the onset-onset rule. More specifically, sensitivity increased with increases in display duration within a fixed stimulus onset asynchrony of 150 msec. Display duration, however, had no effect on response bias. Nor was there any interaction between display duration and display size in terms of either sensitivity or response bias. The more complicated relationship between display duration and display size does not invalidate the departure from the onset-onset rule.
Donohue, Sarah E.; Appelbaum, Lawrence G.; McKay, Cameron C.; Woldorff, Marty G.
2016-01-01
Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity ‘Ninc’ was observed for all conditions, which was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related Ninc, indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. PMID:26827917
The precedence effect for lateralization at low sensation levels.
Goverts, S T; Houtgast, T; van Beek, H H
2000-10-01
Using dichotic signals presented by headphone, stimulus onset dominance (the precedence effect) for lateralization at low sensation levels was investigated for five normal hearing subjects. Stimuli were based on 2400-Hz low pass filtered 5-ms noise bursts. We used the paradigm, as described by Aoki and Houtgast (Hear. Res., 59 (1992) 25-30) and Houtgast and Aoki (Hear. Res., 72 (1994) 29-36), in which the stimulus is divided into a leading and a lagging part with opposite lateralization cues (i.e. an interaural time delay of 0.2 ms). The occurrence of onset dominance was investigated by measuring lateral perception of the stimulus, with fixed equal duration of leading and lagging part, while decreasing absolute signal level or adding a filtered white noise with the signal level set at 65 dBA. The dominance of the leading part was quantified by measuring the perceived lateral position of the stimulus as a function of the relative duration of the leading (and thus the lagging) part. This was done at about 45 dB SL without masking noise and also at a signal-to-noise ratio resulting in a sensation level of 10 dB. The occurrence and strength of the precedence effect was found to depend on sensation level, which was decreased either by lowering the signal level or by adding noise. With the present paradigm, besides a decreased lateralization accuracy, a decrease in the precedence effect was found for sensation levels below about 30-40 dB. In daily-life conditions, with a sensation level in noise of typically 10 dB, the onset dominance was still manifest, albeit degraded to some extent.
Donohue, Sarah E; Appelbaum, Lawrence G; McKay, Cameron C; Woldorff, Marty G
2016-04-01
Both stimulus and response conflict can disrupt behavior by slowing response times and decreasing accuracy. Although several neural activations have been associated with conflict processing, it is unclear how specific any of these are to the type of stimulus conflict or the amount of response conflict. Here, we recorded electrical brain activity, while manipulating the type of stimulus conflict in the task (spatial [Flanker] versus semantic [Stroop]) and the amount of response conflict (two versus four response choices). Behaviorally, responses were slower to incongruent versus congruent stimuli across all task and response types, along with overall slowing for higher response-mapping complexity. The earliest incongruency-related neural effect was a short-duration frontally-distributed negativity at ~200 ms that was only present in the Flanker spatial-conflict task. At longer latencies, the classic fronto-central incongruency-related negativity 'N(inc)' was observed for all conditions, but was larger and ~100 ms longer in duration with more response options. Further, the onset of the motor-related lateralized readiness potential (LRP) was earlier for the two vs. four response sets, indicating that smaller response sets enabled faster motor-response preparation. The late positive complex (LPC) was present in all conditions except the two-response Stroop task, suggesting this late conflict-related activity is not specifically related to task type or response-mapping complexity. Importantly, across tasks and conditions, the LRP onset at or before the conflict-related N(inc), indicating that motor preparation is a rapid, automatic process that interacts with the conflict-detection processes after it has begun. Together, these data highlight how different conflict-related processes operate in parallel and depend on both the cognitive demands of the task and the number of response options. Copyright © 2016 Elsevier Ltd. All rights reserved.
A characterization of persistence at short times in the WFC3/IR detector
NASA Astrophysics Data System (ADS)
Gennaro, M.; Bajaj, V.; Long, K.
2018-05-01
Persistence in the WFC3/IR detector appears to decay as a power law as a function of time elapsed since the end of a stimulus. In this report we study departures from the power law at times shorter than a few hundreds seconds after the stimulus. In order to have better short-time cadence, we use the Multiaccum (.ima) files, which trace the accumulated charge in the pixels as function of time, rather than the final pipeline products (.flt files), which instead report the electron rate estimated via a linear fit to the accumulated charge vs. time relation. We note that at short times after the stimulus, the absolute change in persistence is the strongest, thus a linear fit to the accumulated signal (the .flt values) can be a poor representation of the strongly varying persistence signal. The already observed power-law decay of the persistence signal, still holds at shorter times, with typical values of the power law index, gamma in [-0.8,-1] for stimuli that saturate the WFC3 pixels. To a good degree of approximation, a single power law is a good fit to the persistence signal decay from 100 to 5000 seconds. We also detect a tapering-off in the power-law decay at increasingly shorter times. This change in behavior is of the order of Delta Gamma 0.02 - 0.05 when comparing power-law fits performed to the persistence signal from 0 up to 250 seconds and from 0 up to 4000 seconds after the stimulus, indicating that persistence decays slightly more rapidly as time progresses. Our results may suggest that for even shorter times, not probed by our study, the WFC3 persistence signal might deviate from a single power-law model.
Law, Phillip C F; Miller, Steven M; Ngo, Trung T
2017-11-01
Binocular rivalry (BR) occurs when conflicting images concurrently presented to corresponding retinal locations of each eye stochastically alternate in perception. Anomalies of BR rate have been examined in a range of clinical psychiatric conditions. In particular, slow BR rate has been proposed as an endophenotype for bipolar disorder (BD) to improve power in large-scale genome-wide association studies. Examining the validity of BR rate as a BD endophenotype however requires large-scale datasets (n=1000s to 10,000s), a standardized testing protocol, and optimization of stimulus parameters to maximize separation between BD and healthy groups. Such requirements are indeed relevant to all clinical psychiatric BR studies. Here we address the issue of stimulus optimization by examining the effect of stimulus parameter variation on BR rate and mixed-percept duration (MPD) in healthy individuals. We aimed to identify the stimulus parameters that induced the fastest BR rates with the least MPD. Employing a repeated-measures within-subjects design, 40 healthy adults completed four BR tasks using orthogonally drifting grating stimuli that varied in drift speed and aperture size. Pairwise comparisons were performed to determine modulation of BR rate and MPD by these stimulus parameters, and individual variation of such modulation was also assessed. From amongst the stimulus parameters examined, we found that 8cycles/s drift speed in a 1.5° aperture induced the fastest BR rate without increasing MPD, but that BR rate with this stimulus configuration was not substantially different to BR rate with stimulus parameters we have used in previous studies (i.e., 4cycles/s drift speed in a 1.5° aperture). In addition to contributing to stimulus optimization issues, the findings have implications for Levelt's Proposition IV of binocular rivalry dynamics and individual differences in such dynamics. Copyright © 2017 Elsevier Inc. All rights reserved.
Optimizing the temporal dynamics of light to human perception.
Rieiro, Hector; Martinez-Conde, Susana; Danielson, Andrew P; Pardo-Vazquez, Jose L; Srivastava, Nishit; Macknik, Stephen L
2012-11-27
No previous research has tuned the temporal characteristics of light-emitting devices to enhance brightness perception in human vision, despite the potential for significant power savings. The role of stimulus duration on perceived contrast is unclear, due to contradiction between the models proposed by Bloch and by Broca and Sulzer over 100 years ago. We propose that the discrepancy is accounted for by the observer's "inherent expertise bias," a type of experimental bias in which the observer's life-long experience with interpreting the sensory world overcomes perceptual ambiguities and biases experimental outcomes. By controlling for this and all other known biases, we show that perceived contrast peaks at durations of 50-100 ms, and we conclude that the Broca-Sulzer effect best describes human temporal vision. We also show that the plateau in perceived brightness with stimulus duration, described by Bloch's law, is a previously uncharacterized type of temporal brightness constancy that, like classical constancy effects, serves to enhance object recognition across varied lighting conditions in natural vision-although this is a constancy effect that normalizes perception across temporal modulation conditions. A practical outcome of this study is that tuning light-emitting devices to match the temporal dynamics of the human visual system's temporal response function will result in significant power savings.
Picker, M; Poling, A
1982-01-01
Previous investigations have shown that rate, latency, and percentage of trials with at least one response are somewhat insensitive measures of the strength of autoshaped responding. In the present studies, these measures were contrasted with the allocation of responding during simultaneous choice tests, a measure of response strength frequently used in operant paradigms. In two experiments, nine pigeons were exposed to a forward pairing autoshaping procedure. Training sessions consisted of the successive presentation of three stimuli, each followed by food on either 100%, 50%, or 0% of the trials. Choice testing involved the simultaneous presentation of the three stimuli. In Experiment I, all pigeons consistently directed their initial choice responses and the majority of subsequent responses to the stimulus always followed by food, despite the fact that during training sessions the response rates of most birds were highest in the presence of the stimulus followed by food on 50% of the trials. In Experiment II, rate, latency, and percentage of trials with at least one response did not change appreciably as a function of duration of feeder presentations. However, choice responding was lawfully affected by duration of feeder presentations. These data suggest that choice is perhaps a more sensitive measure of the strength of autoshaped responding than other, more commonly employed, indices. PMID:7097152
Banks, Matthew L; Smith, Douglas A; Kisor, David F; Poklis, Justin L
2016-02-01
Methamphetamine is a globally abused drug that is metabolized to amphetamine, which also produces abuse-related behavioral effects. However, the contributing role of methamphetamine metabolism to amphetamine in methamphetamine's abuse-related subjective effects is unknown. This preclinical study was designed to determine 1) the relationship between plasma methamphetamine levels and methamphetamine discriminative stimulus effects and 2) the contribution of the methamphetamine metabolite amphetamine in the discriminative stimulus effects of methamphetamine in rhesus monkeys. Adult male rhesus monkeys (n=3) were trained to discriminate 0.18mg/kg intramuscular (+)-methamphetamine from saline in a two-key food-reinforced discrimination procedure. Time course of saline, (+)-methamphetamine (0.032-0.32mg/kg), and (+)-amphetamine (0.032-0.32mg/kg) discriminative stimulus effects were determined. Parallel pharmacokinetic studies were conducted in the same monkeys to determine plasma methamphetamine and amphetamine levels after methamphetamine administration and amphetamine levels after amphetamine administration for correlation with behavior in the discrimination procedure. Both methamphetamine and amphetamine produced full, ≥90%, methamphetamine-like discriminative stimulus effects. Amphetamine displayed a slightly, but significantly, longer duration of action than methamphetamine in the discrimination procedure. Both methamphetamine and amphetamine behavioral effects were related to methamphetamine and amphetamine plasma levels by a clockwise hysteresis loop indicating acute tolerance had developed to the discriminative stimulus effects. Furthermore, amphetamine levels after methamphetamine administration were absent when methamphetamine stimulus effects were greatest and peaked when methamphetamine discriminative stimulus effects returned to saline-like levels. Overall, these results demonstrate the methamphetamine metabolite amphetamine does not contribute to methamphetamine's abuse-related subjective effects. Copyright © 2015 Elsevier Inc. All rights reserved.
An electroejaculator for the collection of semen from the domestic cat.
Dooley, M P; Murase, K; Pineda, M H
1983-09-01
An electroejaculator for the collection of cat semen and for the evaluation of electroejaculation protocols is described. The electroejaculator contains an adjustable signal generator and allows for the precise control and monitoring of the electrical stimulus to the animal. The electroejaculator incorporates controls for the selection of the frequency, potential and waveform of the electrical stimulus and controls for either manual or automatic delivery of stimuli of specified characteristics to the rectal probe. In the automatic mode, the operator may also preset the rate and duration of stimulus application and the interval between successive stimuli. The electroejaculator output to the probe is controlled with an on-off foot-switch which allows for the collection of semen from an anesthetized cat by one operator. Diagrams of the functional block, the component circuits of the electroejaculator, and the accessories which facilitate the collection of cat semen are provided.
NASA Astrophysics Data System (ADS)
Sengupta, Abhronil; Roy, Kaushik
2016-02-01
Synaptic memory is considered to be the main element responsible for learning and cognition in humans. Although traditionally nonvolatile long-term plasticity changes are implemented in nanoelectronic synapses for neuromorphic applications, recent studies in neuroscience reveal that biological synapses undergo metastable volatile strengthening followed by a long-term strengthening provided that the frequency of the input stimulus is sufficiently high. Such "memory strengthening" and "memory decay" functionalities can potentially lead to adaptive neuromorphic architectures. In this paper, we demonstrate the close resemblance of the magnetization dynamics of a magnetic tunnel junction (MTJ) to short-term plasticity and long-term potentiation observed in biological synapses. We illustrate that, in addition to the magnitude and duration of the input stimulus, the frequency of the stimulus plays a critical role in determining long-term potentiation of the MTJ. Such MTJ synaptic memory arrays can be utilized to create compact, ultrafast, and low-power intelligent neural systems.
Electroencephalographic and behavioral effects of nocturnally occurring jet aircraft sounds.
NASA Technical Reports Server (NTRS)
Levere, T. E.; Bartus, R. T.; Hart, F. D.
1972-01-01
The present research presents data relative to the objective evaluation of the effects of a specific complex auditory stimulus presented during sleep. The auditory stimulus was a jet aircraft flyover of approximately 20-sec duration and a peak intensity level of approximately 80 dB (A). Our specific interests were in terms of how this stimulus would interact with the frequency pattern of the sleeping EEG and whether there would be any carry-over effects of the nocturnally presented stimuli to the waking state. The results indicated that the physiological effects (changes in electroencephalographic activity) produced by the jet aircraft stimuli outlasted the physical presence of the auditory stimuli by a considerable degree. Further, it was possible to note both behavioral and electroencephalographic changes during waking performances subsequent to nights disturbed by the jet aircraft flyovers which were not apparent during performances subsequent to undisturbed nights.
Toddlers' Duration of Attention toward Putative Threat
ERIC Educational Resources Information Center
Kiel, Elizabeth J.; Buss, Kristin A.
2011-01-01
Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk of developing anxious behavior, toddlers' attention toward a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined…
Reinstatement versus Reactivation Effects on Active Memory in Infants.
ERIC Educational Resources Information Center
Adler, Scott A.; Rovee-Collier, Carolyn; Wilk, Amy
2000-01-01
Four experiments examined whether reinstatement and reactivation reminder paradigms affected memory performance of 102 three-month-olds. Results indicated that a single reinstatement protracted retention twice as long after training as a single reactivation. The novelty of the reminder stimulus also affected duration and specificity of memory in…
European Scientific Notes. Volume 35, Number 8,
1981-08-31
the frustrating task than the civilians did (about 75 beats per minute compared to 82); but the decorated group had still lower heartbeat rates...loud stimulus (1000 Hz sine wave, 30 msec duration) via binaural earphones. EEC data were sampled at 0.5 msec intervals; records were edited to
The Exclusive Induction of Extinction Is Gated by BDNF
ERIC Educational Resources Information Center
Kirtley, Anne; Thomas, Kerrie L.
2010-01-01
We have previously reported that the reconsolidation and extinction of hippocampal-dependent contextual fear memory can be initiated by a single context conditioned stimulus (CS) presentation of either short or long duration, and that both processes require protein synthesis in this brain region. Furthermore, reconsolidation depends on Zif268…
Phasic heart rate responses and cardiac cycle time in auditory choice reaction time.
van der Molen, M W; Somsen, R J; Orlebeke, J F
1983-01-01
This study investigated the cardiovascular-behavioral interaction under short and long stimulus interval conditions. In addition, the cardiovascular-behavioral interaction was studied as affected by cardiac cycle duration. Fourteen subjects performed a choice reaction time (RT) task employing a mixed speed-accuracy tradeoff design in which reactions were paced to coincide with a signal that occurs randomly at either 200 or 500 msec after the reaction stimulus. The preparatory interval between a warning stimulus and a lead-reaction stimulus complex was also varied (2 vs. 4.5 sec). Anticipatory deceleration occurred within the 4.5 sec interval but not in the 2 sec interval. The depth of anticipatory deceleration did not discriminate between fast and slow reactions; but an earlier shift from deceleration to acceleration was associated with fast reactions. The effect of stimulus timing relative to the R-wave of the electrocardiogram was also analysed. Meaningful stimuli tended to produce cardiac slowing as previously described in the literature. Early occurring stimuli prolong the cycle of their occurrence more than late occurring stimuli. The later prolong the subsequent cycle. Cardiac cycle time effects were absent for unattended stimuli. The results of anticipatory deceleration suggested that the depth of deceleration was regulated by time-uncertainty and speed-accuracy criterion.
Mulligan, Neil W; Spataro, Pietro
2015-07-01
Divided attention during encoding typically produces marked reductions in later memory. The attentional boost effect (ABE) is a surprising variation on this phenomenon. In this paradigm, each study stimulus (e.g., a word) is presented along with a target or a distractor (e.g., different colored circles) in a detection task. Later memory is better for stimuli co-occurring with targets. The present experiments indicate that the ABE arises during an early phase of memory encoding that involves initial stimulus perception and comprehension rather than at a later phase entailing controlled, elaborative rehearsal. Experiment 1 demonstrated that the ABE was robust at a short study duration (700 ms) and did not increase with increasing study trial durations (1,500 ms and 4,000 ms). Furthermore, the target condition is boosted to the level of memory performance in a full-attention condition for the short duration but not the long duration. Both results followed from the early-phase account. This account also predicts that for very short study times (limiting the influence of late-phase controlled encoding and thus minimizing the usual negative effect of divided attention), the target condition will produce better memory than will the full-attention condition. Experiment 2 used a study time of 400 ms and found that words presented with targets lead to greater recognition accuracy than do either words presented with distractors or words in the full-attention condition. Consistent with the early-phase account, a divided attention condition actually produced superior memory than did the full-attention condition, a very unusual but theoretically predicted result. (c) 2015 APA, all rights reserved.
Speaker-Sex Discrimination for Voiced and Whispered Vowels at Short Durations.
Smith, David R R
2016-01-01
Whispered vowels, produced with no vocal fold vibration, lack the periodic temporal fine structure which in voiced vowels underlies the perceptual attribute of pitch (a salient auditory cue to speaker sex). Voiced vowels possess no temporal fine structure at very short durations (below two glottal cycles). The prediction was that speaker-sex discrimination performance for whispered and voiced vowels would be similar for very short durations but, as stimulus duration increases, voiced vowel performance would improve relative to whispered vowel performance as pitch information becomes available. This pattern of results was shown for women's but not for men's voices. A whispered vowel needs to have a duration three times longer than a voiced vowel before listeners can reliably tell whether it's spoken by a man or woman (∼30 ms vs. ∼10 ms). Listeners were half as sensitive to information about speaker-sex when it is carried by whispered compared with voiced vowels.
Charge Injection Capacity of TiN Electrodes for an Extended Voltage Range
Patan, Mustafa; Shah, Tosha; Sahin, Mesut
2011-01-01
Many applications of neural stimulation demand a high current density from the electrodes used for stimulus delivery. New materials have been searched that can provide such large current and charge densities where the traditional noble metal and capacitor electrodes are inadequate. Titanium nitride, which has been used in cardiac pacemaker leads for many years, is one of these materials recently considered for neural stimulation. In this short report, we investigated the charge injection capacity of TiN electrodes for an extended range of cathodic voltages. The injected charge increased first slowly as a function of the electrode voltage, and then at a faster rate beyond −1.6 V. The maximum charge was 4.45 mC/cm2 (n=6) for a cathodic voltage peak of −3.0 V and a bias voltage of −0.8 V. There was no evidence of bubble generation under microscopic observation. The unrecoverable charges remained under 7% of the total injected charge for the largest cathodic voltage tested. These large values of charge injection capacity and relatively small unrecoverable charges warrant further investigation of the charge injection mechanism in TiN interfaces at this extended range of electrode voltages. PMID:17946870
Neural Correlates of Individual Differences in Infant Visual Attention and Recognition Memory
ERIC Educational Resources Information Center
Reynolds, Greg D.; Guy, Maggie W.; Zhang, Dantong
2011-01-01
Past studies have identified individual differences in infant visual attention based upon peak look duration during initial exposure to a stimulus. Colombo and colleagues found that infants that demonstrate brief visual fixations (i.e., short lookers) during familiarization are more likely to demonstrate evidence of recognition memory during…
Memory Reconsolidation and Extinction in the Crab: Mutual Exclusion or Coexistence?
ERIC Educational Resources Information Center
Perez-Cuesta, Luis Maria; Maldonado, Hector
2009-01-01
A conditioned stimulus (CS) exposure has the ability to induce two qualitatively different mnesic processes: memory reconsolidation and memory extinction. Previous work from our laboratory has shown that upon a single CS presentation the triggering of one or the other process depends on CS duration (short CS exposure triggers reconsolidation,…
The Influence of Stimulus Taste and Chemesthesis on Tongue Movement Timing in Swallowing
ERIC Educational Resources Information Center
Steele, Catriona M.; van Lieshout, Pascal H. H. M.; Pelletier, Cathy A.
2012-01-01
Purpose: To explore the influence of taste and trigeminal irritation (chemesthesis) on durational aspects of tongue movement in liquid swallowing, controlling for the influence of perceived taste intensity. Method: Electromagnetic midsagittal articulography was used to trace tongue movements during discrete liquid swallowing with 5 liquids: water,…
Effects of Stimulus Duration and Choice Delay on Visual Categorization in Pigeons
ERIC Educational Resources Information Center
Lazareva, Olga F.; Wasserman, Edward A.
2009-01-01
We [Lazareva, O. F., Freiburger, K. L., & Wasserman, E. A. (2004). "Pigeons concurrently categorize photographs at both basic and superordinate levels." "Psychonomic Bulletin and Review," 11, 1111-1117] previously trained four pigeons to classify color photographs into their basic-level categories (cars, chairs, flowers, or people) or into their…
Parent-Implemented Bedtime Fading and Positive Routines for Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Delemere, Emma; Dounavi, Katerina
2018-01-01
Sleep disorders affect a large portion of those with autism spectrum disorder. Behavioural interventions have been found to increase appropriate sleep behaviours. This study sought to examine the efficacy of two stimulus control interventions (bedtime fading and positive routines) on total sleep duration, sleep onset latency and frequency and…
White, K G; Wixted, J T
1999-01-01
We present a new model of remembering in the context of conditional discrimination. For procedures such as delayed matching to sample, the effect of the sample stimuli at the time of remembering is represented by a pair of Thurstonian (normal) distributions of effective stimulus values. The critical assumption of the model is that, based on prior experience, each effective stimulus value is associated with a ratio of reinforcers obtained for previous correct choices of the comparison stimuli. That ratio determines the choice that is made on the basis of the matching law. The standard deviations of the distributions are assumed to increase with increasing retention-interval duration, and the distance between their means is assumed to be a function of other factors that influence overall difficulty of the discrimination. It is a behavioral model in that choice is determined by its reinforcement history. The model predicts that the biasing effects of the reinforcer differential increase with decreasing discriminability and with increasing retention-interval duration. Data from several conditions using a delayed matching-to-sample procedure with pigeons support the predictions. PMID:10028693
Wu, Guofeng; Wang, Likun; Hong, Zhen; Ren, Siying; Zhou, Feng
2017-08-01
The purpose of the present study was to observe the effects of hippocampal low-frequency stimulation (Hip-LFS) on amygdala afterdischarge and GABA (A) receptor expression in pharmacoresistant epileptic (PRE) rats. A total of 110 healthy adult male Wistar rats were used to generate a model of epilepsy by chronic stimulation of the amygdala. Sixteen PRE rats were selected from 70 amygdala-kindled rats by testing their response to Phenytoin and Phenobarbital, and they were randomly assigned to a pharmacoresistant stimulation group (PRS group, 8 rats) or a pharmacoresistant control group (PRC group, 8 rats). A stimulation electrode was implanted into the hippocampus of all of the rats. Hip-LFS was administered twice per day in the PRS group for two weeks. Simultaneously, amygdala stimulus-induced seizures and afterdischarge were recorded. After the hippocampal stimulation was terminated, the brain tissues were obtained to determine the GABA (A) receptors by a method of immumohistochemistry and a real-time polymerase chain reaction. The stages and duration of the amygdala stimulus-induced epileptic seizures were decreased in the PRS group. The afterdischarge threshold was increased and the duration as well as the afterdischarge frequency was decreased. Simultaneously, the GABA (A) expression was significantly increased in the PRS group. Hip-LFS may inhibit amygdala stimulus-induced epileptic seizures and up-regulate GABA (A) receptor expression in PRE rats. The antiepileptic effects of hippocampal stimulation may be partly achieved by increasing the GABA (A) receptor.
Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan
2017-01-01
A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state. PMID:28701912
Jirakittayakorn, Nantawachara; Wongsawat, Yodchanan
2017-01-01
A binaural beat is a beat phenomenon that is generated by the dichotic presentation of two almost equivalent pure tones but with slightly different frequencies. The brain responses to binaural beats remain controversial; therefore, the aim of this study was to investigate theta activity responses to a binaural beat by controlling factors affecting localization, including beat frequency, carrier tone frequency, exposure duration, and recording procedure. Exposure to a 6-Hz binaural beat on a 250 Hz carrier tone for 30 min was utilized in this study. Quantitative electroencephalography (QEEG) was utilized as the recording modality. Twenty-eight participants were divided into experimental and control groups. Emotional states were evaluated by Brunel Mood Scale (BRMUS) before and after exposing to the stimulus. The results showed that theta activity was induced in the entire cortex within 10 min of exposure to the stimulus in the experimental group. Compared to the control group, theta activity was also induced at the frontal and parietal-central regions, which included the Fz position, and left hemisphere dominance was presented for other exposure durations. The pattern recorded for 10 min of exposure appeared to be brain functions of a meditative state. Moreover, tension factor of BRUMS was decreased in experimental group compared to control group which resembled the meditation effect. Thus, a 6-Hz binaural beat on a 250 Hz carrier tone was suggested as a stimulus for inducing a meditative state.
Tan, Bingyao; Mason, Erik; MacLellan, Benjamin; Bizheva, Kostadinka K
2017-03-01
To correlate visually evoked functional and blood flow changes in the rat retina measured simultaneously with a combined optical coherence tomography and electroretinography system (OCT+ERG). Male Brown Norway (n = 6) rats were dark adapted and anesthetized with ketamine/xylazine. Visually evoked changes in the retinal blood flow (RBF) and functional response were measured simultaneously with an OCT+ERG system with 3-μm axial resolution in retinal tissue and 47-kHz image acquisition rate. Both single flash (10 and 200 ms) and flicker (10 Hz, 20% duty cycle, 1- and 2-second duration) stimuli were projected onto the retina with a custom visual stimulator, integrated into the OCT imaging probe. Total axial RBF was calculated from circular Doppler OCT scans by integrating over the arterial and venal flow. Temporary increase in the RBF was observed with the 10- and 200-ms continuous stimuli (∼1% and ∼4% maximum RBF change, respectively) and the 10-Hz flicker stimuli (∼8% for 1-second duration and ∼10% for 2-second duration). Doubling the flicker stimulus duration resulted in ∼25% increase in the RBF peak magnitude with no significant change in the peak latency. Single flash (200 ms) and flicker (10 Hz, 1 second) stimuli of the same illumination intensity and photon flux resulted in ∼2× larger peak RBF magnitude and ∼25% larger RBF peak latency for the flicker stimulus. Short, single flash and flicker stimuli evoked measureable RBF changes with larger RBF magnitude and peak latency observed for the flicker stimuli.
1998-06-01
ACSM Position Stand on The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Adults. Med. Sci. Sports Exerc., Vol. 30, No. 6, pp. 975-991, 1998. The combination of frequency, intensity, and duration of chronic exercise has been found to be effective for producing a training effect. The interaction of these factors provide the overload stimulus. In general, the lower the stimulus the lower the training effect, and the greater the stimulus the greater the effect. As a result of specificity of training and the need for maintaining muscular strength and endurance, and flexibility of the major muscle groups, a well-rounded training program including aerobic and resistance training, and flexibility exercises is recommended. Although age in itself is not a limiting factor to exercise training, a more gradual approach in applying the prescription at older ages seems prudent. It has also been shown that aerobic endurance training of fewer than 2 d.wk-1, at less than 40-50% of VO2R, and for less than 10 min-1 is generally not a sufficient stimulus for developing and maintaining fitness in healthy adults. Even so, many health benefits from physical activity can be achieved at lower intensities of exercise if frequency and duration of training are increased appropriately. In this regard, physical activity can be accumulated through the day in shorter bouts of 10-min durations. In the interpretation of this position stand, it must be recognized that the recommendations should be used in the context of participant's needs, goals, and initial abilities. In this regard, a sliding scale as to the amount of time allotted and intensity of effort should be carefully gauged for the cardiorespiratory, muscular strength and endurance, and flexibility components of the program. An appropriate warm-up and cool-down period, which would include flexibility exercises, is also recommended. The important factor is to design a program for the individual to provide the proper amount of physical activity to attain maximal benefit at the lowest risk. Emphasis should be placed on factors that result in permanent lifestyle change and encourage a lifetime of physical activity.
Gap Detection in School-Age Children and Adults: Center Frequency and Ramp Duration
Porter, Heather L.; Hall, Joseph W.; Grose, John H.
2017-01-01
Purpose The age at which gap detection becomes adultlike differs, depending on the stimulus characteristics. The present study evaluated whether the developmental trajectory differs as a function of stimulus frequency region or duration of the onset and offset ramps bounding the gap. Method Thresholds were obtained for wideband noise (500–4500 Hz) with 4- or 40-ms raised-cosine ramps and for a 25-Hz-wide low-fluctuation narrowband noise centered on either 500 or 5000 Hz with 40-ms ramps. Stimuli were played continuously at 70 dB SPL, and the task was to indicate which of 3 intervals contained a gap. Listeners were 5.2- to 15.1-year-old children (n = 40) and adults (n = 10) with normal hearing. Results Regardless of listener age, gap detection thresholds for the wideband noise tended to be lower when gaps were shaped using 4-ms rather than 40-ms ramps. Thresholds also tended to be lower for the low-fluctuation narrowband noise centered on 5000 Hz than 500 Hz. Performance reached adult levels after 11 years of age for all 4 stimuli. Maturation was not uniform across individuals, however; a subset of young children performed like adults, including some 5-year-olds. Conclusion For these stimuli, the developmental trajectory was similar regardless of narrowband noise center frequency or wideband noise onset and offset ramp duration. PMID:28056469
Bhagawati, Maniraj; Rubashkin, Matt G; Lee, Jessica P; Ananthanarayanan, Badriprasad; Weaver, Valerie M; Kumar, Sanjay
2016-06-14
Intrinsically disordered proteins (IDPs) are an important and emerging class of materials for tailoring biointerfaces. While the importance of chain charge and resultant electrostatic interactions in controlling conformational properties of IDPs is beginning to be explored through in silico approaches, there is a dearth of experimental studies motivated toward a systematic study of these effects. In an effort to explore this relationship, we measured the conformations of two peptides derived from the intrinsically disordered neurofilament (NF) side arm domain: one depicting the wild-type sequence with four lysine-serine-proline repeats (KSP peptide) and another in which the serine residues were replaced with aspartates (KDP peptide), a strategy sometimes used to mimic phosphorylation. Using a variety of biophysical measurements including a novel application of scanning angle interference microscopy, we demonstrate that the KDP peptide assumes comparatively more expanded conformations in solution and forms significantly thicker brushes when immobilized on planar surfaces at high densities. In both settings, the peptides respond to changes in ambient ionic strength, with each peptide showing distinct stimulus-responsive characteristics. While the KDP peptide undergoes compaction with increasing ionic strength as would be expected for a polyampholyte, the KSP peptide shows biphasic behavior, with an initial compaction followed by an expanded state at a higher ionic strength. Together these results support the notion that modulation of charge on IDPs can regulate conformational and interfacial properties.
Bravi, Riccardo; Del Tongo, Claudia; Cohen, Erez James; Dalle Mura, Gabriele; Tognetti, Alessandro; Minciacchi, Diego
2014-06-01
The ability to perform isochronous movements while listening to a rhythmic auditory stimulus requires a flexible process that integrates timing information with movement. Here, we explored how non-temporal and temporal characteristics of an auditory stimulus (presence, interval occupancy, and tempo) affect motor performance. These characteristics were chosen on the basis of their ability to modulate the precision and accuracy of synchronized movements. Subjects have participated in sessions in which they performed sets of repeated isochronous wrist's flexion-extensions under various conditions. The conditions were chosen on the basis of the defined characteristics. Kinematic parameters were evaluated during each session, and temporal parameters were analyzed. In order to study the effects of the auditory stimulus, we have minimized all other sensory information that could interfere with its perception or affect the performance of repeated isochronous movements. The present study shows that the distinct characteristics of an auditory stimulus significantly influence isochronous movements by altering their duration. Results provide evidence for an adaptable control of timing in the audio-motor coupling for isochronous movements. This flexibility would make plausible the use of different encoding strategies to adapt audio-motor coupling for specific tasks.
Mruczek, Ryan E. B.
2012-01-01
The cerebral cortex is composed of many distinct classes of neurons. Numerous studies have demonstrated corresponding differences in neuronal properties across cell types, but these comparisons have largely been limited to conditions outside of awake, behaving animals. Thus the functional role of the various cell types is not well understood. Here, we investigate differences in the functional properties of two widespread and broad classes of cells in inferior temporal cortex of macaque monkeys: inhibitory interneurons and excitatory projection cells. Cells were classified as putative inhibitory or putative excitatory neurons on the basis of their extracellular waveform characteristics (e.g., spike duration). Consistent with previous intracellular recordings in cortical slices, putative inhibitory neurons had higher spontaneous firing rates and higher stimulus-evoked firing rates than putative excitatory neurons. Additionally, putative excitatory neurons were more susceptible to spike waveform adaptation following very short interspike intervals. Finally, we compared two functional properties of each neuron's stimulus-evoked response: stimulus selectivity and response latency. First, putative excitatory neurons showed stronger stimulus selectivity compared with putative inhibitory neurons. Second, putative inhibitory neurons had shorter response latencies compared with putative excitatory neurons. Selectivity differences were maintained and latency differences were enhanced during a visual search task emulating more natural viewing conditions. Our results suggest that short-latency inhibitory responses are likely to sculpt visual processing in excitatory neurons, yielding a sparser visual representation. PMID:22933717
New methods for the assessment of accommodative convergence.
Asakawa, Ken; Ishikawa, Hitoshi; Shoji, Nobuyuki
2009-01-01
The authors introduced a new objective method for measuring horizontal eye movements based on the first Purkinje image with the use of infrared charge-coupled device (CCD) cameras and compared stimulus accommodative convergence to accommodation (AC/A) ratios as determined by a standard gradient method. The study included 20 patients, 5 to 9 years old, who had intermittent exotropia (10 eyes) and accommodative esotropia (10 eyes). Measurement of horizontal eye movements in millimeters (mm), based on the first Purkinje image, was obtained with a TriIRIS C9000 instrument (Hamamatsu Photonics K.K., Hamamatsu, Japan). The stimulus AC/A ratio was determined with the far gradient method. The average values of horizontal eye movements (mm) and eye deviation (Delta) (a) before and (b) after an accommodative stimulus of 3.00 diopters (D) were calculated with the following formula: horizontal eye movements (mm/D) and stimulus AC/A ratio (Delta/D) = (b - a)/3. The average values of the horizontal eye movements and the stimulus AC/A ratio were 0.5 mm/D and 3.8 Delta/D, respectively. Correlation analysis showed a strong positive correlation between these two parameters (r = 0.92). Moreover, horizontal eye movements are directly proportional to the AC/A ratio measured with the gradient method. The methods used in this study allow objective recordings of accommodative convergence to be obtained in many clinical situations. Copyright 2009, SLACK Incorporated.
Evaluative Processing of Food Images: A Conditional Role for Viewing in Preference Formation
Wolf, Alexandra; Ounjai, Kajornvut; Takahashi, Muneyoshi; Kobayashi, Shunsuke; Matsuda, Tetsuya; Lauwereyns, Johan
2018-01-01
Previous research suggested a role of gaze in preference formation, not merely as an expression of preference, but also as a causal influence. According to the gaze cascade hypothesis, the longer subjects look at an item, the more likely they are to develop a preference for it. However, to date the connection between viewing and liking has been investigated predominately with self-paced viewing conditions in which the subjects were required to select certain items from simultaneously presented stimuli on the basis of perceived visual attractiveness. Such conditions might promote a default, but non-mandatory connection between viewing and liking. To explore whether the connection is separable, we examined the evaluative processing of single naturalistic food images in a 2 × 2 design, conducted completely within subjects, in which we varied both the type of exposure (self-paced versus time-controlled) and the type of evaluation (non-exclusive versus exclusive). In the self-paced exclusive evaluation, longer viewing was associated with a higher likelihood of a positive evaluation. However, in the self-paced non-exclusive evaluation, the trend reversed such that longer viewing durations were associated with lesser ratings. Furthermore, in the time-controlled tasks, both with non-exclusive and exclusive evaluation, there was no significant relationship between the viewing duration and the evaluation. The overall pattern of results was consistent for viewing times measured in terms of exposure duration (i.e., the duration of stimulus presentation on the screen) and in terms of actual gaze duration (i.e., the amount of time the subject effectively gazed at the stimulus on the screen). The data indicated that viewing does not intrinsically lead to a higher evaluation when evaluating single food images; instead, the relationship between viewing duration and evaluation depends on the type of task. We suggest that self-determination of exposure duration may be a prerequisite for any influence from viewing time on evaluative processing, regardless of whether the influence is facilitative. Moreover, the purported facilitative link between viewing and liking appears to be limited to exclusive evaluation, when only a restricted number of items can be included in a chosen set. PMID:29942273
Evaluative Processing of Food Images: A Conditional Role for Viewing in Preference Formation.
Wolf, Alexandra; Ounjai, Kajornvut; Takahashi, Muneyoshi; Kobayashi, Shunsuke; Matsuda, Tetsuya; Lauwereyns, Johan
2018-01-01
Previous research suggested a role of gaze in preference formation, not merely as an expression of preference, but also as a causal influence. According to the gaze cascade hypothesis, the longer subjects look at an item, the more likely they are to develop a preference for it. However, to date the connection between viewing and liking has been investigated predominately with self-paced viewing conditions in which the subjects were required to select certain items from simultaneously presented stimuli on the basis of perceived visual attractiveness. Such conditions might promote a default, but non-mandatory connection between viewing and liking. To explore whether the connection is separable, we examined the evaluative processing of single naturalistic food images in a 2 × 2 design, conducted completely within subjects, in which we varied both the type of exposure (self-paced versus time-controlled) and the type of evaluation (non-exclusive versus exclusive). In the self-paced exclusive evaluation, longer viewing was associated with a higher likelihood of a positive evaluation. However, in the self-paced non-exclusive evaluation, the trend reversed such that longer viewing durations were associated with lesser ratings. Furthermore, in the time-controlled tasks, both with non-exclusive and exclusive evaluation, there was no significant relationship between the viewing duration and the evaluation. The overall pattern of results was consistent for viewing times measured in terms of exposure duration (i.e., the duration of stimulus presentation on the screen) and in terms of actual gaze duration (i.e., the amount of time the subject effectively gazed at the stimulus on the screen). The data indicated that viewing does not intrinsically lead to a higher evaluation when evaluating single food images; instead, the relationship between viewing duration and evaluation depends on the type of task. We suggest that self-determination of exposure duration may be a prerequisite for any influence from viewing time on evaluative processing, regardless of whether the influence is facilitative. Moreover, the purported facilitative link between viewing and liking appears to be limited to exclusive evaluation, when only a restricted number of items can be included in a chosen set.
Acceleration characteristics of human ocular accommodation.
Bharadwaj, Shrikant R; Schor, Clifton M
2005-01-01
Position and velocity of accommodation are known to increase with stimulus magnitude, however, little is known about acceleration properties. We investigated three acceleration properties: peak acceleration, time-to-peak acceleration and total duration of acceleration to step changes in defocus. Peak velocity and total duration of acceleration increased with response magnitude. Peak acceleration and time-to-peak acceleration remained independent of response magnitude. Independent first-order and second-order dynamic components of accommodation demonstrate that neural control of accommodation has an initial open-loop component that is independent of response magnitude and a closed-loop component that increases with response magnitude.
Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight
NASA Technical Reports Server (NTRS)
Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.
2011-01-01
Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.
Figure-ground organization in different phases of the perceptual alternation phenomenon.
Tuccio, M T
1995-12-01
Two experiments on figure-ground organization were designed to examine whether the regions of an ambiguous stimulus perceived as "figure" vary as a function of regional area and experience with the stimulus. In Exp. 1 the perceived duration of each interpretation was recorded during continuous viewing for 10 subjects who had been trained until both percepts appeared with statistical regularity (stationary phase). In Exp. 2 the first interpretation reported by 172 naive observers after a few seconds of pattern exposure was recorded. The well-known tendency to interpret smaller regions as figure was noted in Exp. 2 whereas the results of Exp. 1 suggested equal probability of the percepts. Over-all results suggest that alternation is learned during the transient or "early" phase of perception, with some stimulus features and cultural factors influencing the figure-ground organization. During the stationary or late phase of perception the subject is well practiced and the alternating of interpretations becomes largely automatic.
CFS MATLAB toolbox: An experiment builder for continuous flash suppression (CFS) task.
Nuutinen, Mikko; Mustonen, Terhi; Häkkinen, Jukka
2017-09-15
CFS toolbox is an open-source collection of MATLAB functions that utilizes PsychToolbox-3 (PTB-3). It is designed to allow a researcher to create and run continuous flash suppression experiments using a variety of experimental parameters (i.e., stimulus types and locations, noise characteristics, and experiment window settings). In a CFS experiment, one of the eyes at a time is presented with a dynamically changing noise pattern, while the other eye is concurrently presented with a static target stimulus, such as a Gabor patch. Due to the strong interocular suppression created by the dominant noise pattern mask, the target stimulus is rendered invisible for an extended duration. Very little knowledge of MATLAB is required for using the toolbox; experiments are generated by modifying csv files with the required parameters, and result data are output to text files for further analysis. The open-source code is available on the project page under a Creative Commons License ( http://www.mikkonuutinen.arkku.net/CFS_toolbox/ and https://bitbucket.org/mikkonuutinen/cfs_toolbox ).
Ramasubbu, Rajamannar; Anderson, Susan; Haffenden, Angela; Chavda, Swati; Kiss, Zelma H T
2013-09-01
Deep brain stimulation (DBS) of the subcallosal cingulate (SCC) is reported to be a safe and effective new treatment for treatment-resistant depression (TRD). However, the optimal electrical stimulation parameters are unknown and generally selected by trial and error. This pilot study investigated the relationship between stimulus parameters and clinical effects in SCC-DBS treatment for TRD. Four patients with TRD underwent SCC-DBS surgery. In a double-blind stimulus optimization phase, frequency and pulse widths were randomly altered weekly, and corresponding changes in mood and depression were evaluated using a visual analogue scale (VAS) and the 17-item Hamilton Rating Scale for Depression (HAM-D-17). In the open-label postoptimization phase, depressive symptoms were evaluated biweekly for 6 months to determine long-term clinical outcomes. Longer pulse widths (270-450 μs) were associated with reductions in HAM-D-17 scores in 3 patients and maximal happy mood VAS responses in all 4 patients. Only 1 patient showed acute clinical or mood effects from changing the stimulation frequency. After 6 months of open-label therapy, 2 patients responded and 1 patient partially responded. Limitations include small sample size, weekly changes in stimulus parameters, and fixed-order and carry-forward effects. Longer pulse width stimulation may have a role in stimulus optimization for SCC-DBS in TRD. Longer pulse durations produce larger apparent current spread, suggesting that we do not yet know the optimal target or stimulus parameters for this therapy. Investigations using different stimulus parameters are required before embarking on large-scale randomized sham-controlled trials.
Jones, Timothy A; Lee, Choongheon; Gaines, G Christopher; Grant, J W Wally
2015-04-01
Vestibular macular sensors are activated by a shearing motion between the otoconial membrane and underlying receptor epithelium. Shearing motion and sensory activation in response to an externally induced head motion do not occur instantaneously. The mechanically reactive elastic and inertial properties of the intervening tissue introduce temporal constraints on the transfer of the stimulus to sensors. Treating the otoconial sensory apparatus as an overdamped second-order mechanical system, we measured the governing long time constant (Τ(L)) for stimulus transfer from the head surface to epithelium. This provided the basis to estimate the corresponding upper cutoff for the frequency response curve for mouse otoconial organs. A velocity step excitation was used as the forcing function. Hypothetically, the onset of the mechanical response to a step excitation follows an exponential rise having the form Vel(shear) = U(1-e(-t/TL)), where U is the applied shearing velocity step amplitude. The response time of the otoconial apparatus was estimated based on the activation threshold of macular neural responses to step stimuli having durations between 0.1 and 2.0 ms. Twenty adult C57BL/6 J mice were evaluated. Animals were anesthetized. The head was secured to a shaker platform using a non-invasive head clip or implanted skull screws. The shaker was driven to produce a theoretical forcing step velocity excitation at the otoconial organ. Vestibular sensory evoked potentials (VsEPs) were recorded to measure the threshold for macular neural activation. The duration of the applied step motion was reduced systematically from 2 to 0.1 ms and response threshold determined for each duration (nine durations). Hypothetically, the threshold of activation will increase according to the decrease in velocity transfer occurring at shorter step durations. The relationship between neural threshold and stimulus step duration was characterized. Activation threshold increased exponentially as velocity step duration decreased below 1.0 ms. The time constants associated with the exponential curve were Τ(L) = 0.50 ms for the head clip coupling and T(L) = 0.79 ms for skull screw preparation. These corresponded to upper -3 dB frequency cutoff points of approximately 318 and 201 Hz, respectively. T(L) ranged from 224 to 379 across individual animals using the head clip coupling. The findings were consistent with a second-order mass-spring mechanical system. Threshold data were also fitted to underdamped models post hoc. The underdamped fits suggested natural resonance frequencies on the order of 278 to 448 Hz as well as the idea that macular systems in mammals are less damped than generally acknowledged. Although estimated indirectly, it is argued that these time constants reflect largely if not entirely the mechanics of transfer to the sensory apparatus. The estimated governing time constant of 0.50 ms for composite data predicts high frequency cutoffs of at least 318 Hz for the intact otoconial apparatus of the mouse.
Batman, Angela M.; Dutta, Aloke K.; Reith, Maarten E. A.; Beardsley, Patrick M.
2010-01-01
A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED50 value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED50 value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine lever responding, while reducing response rates with lower potency than cocaine (ED50=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pre-treatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine abusing patients. PMID:20840845
Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice
Tung, Victoria W. K.; Burton, Thomas J.; Quail, Stephanie L.; Mathews, Miranda A.; Camp, Aaron J.
2016-01-01
Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5–6, 8–9 and 27–28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2–3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27–28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27–28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27–28 months. Conclusion: this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed. PMID:26869921
Motor Performance is Impaired Following Vestibular Stimulation in Ageing Mice.
Tung, Victoria W K; Burton, Thomas J; Quail, Stephanie L; Mathews, Miranda A; Camp, Aaron J
2016-01-01
Balance and maintaining postural equilibrium are important during stationary and dynamic movements to prevent falls, particularly in older adults. While our sense of balance is influenced by vestibular, proprioceptive, and visual information, this study focuses primarily on the vestibular component and its age-related effects on balance. C57Bl/6J mice of ages 1, 5-6, 8-9 and 27-28 months were tested using a combination of standard (such as grip strength and rotarod) and newly-developed behavioral tests (including balance beam and walking trajectory tests with a vestibular stimulus). In the current study, we confirm a decline in fore-limb grip strength and gross motor coordination as age increases. We also show that a vestibular stimulus of low frequency (2-3 Hz) and duration can lead to age-dependent changes in balance beam performance, which was evident by increases in latency to begin walking on the beam as well as the number of times hind-feet slip (FS) from the beam. Furthermore, aged mice (27-28 months) that received continuous access to a running wheel for 4 weeks did not improve when retested. Mice of ages 1, 10, 13 and 27-28 months were also tested for changes in walking trajectory as a result of the vestibular stimulus. While no linear relationship was observed between the changes in trajectory and age, 1-month-old mice were considerably less affected than mice of ages 10, 13 and 27-28 months. this study confirms there are age-related declines in grip strength and gross motor coordination. We also demonstrate age-dependent changes to finer motor abilities as a result of a low frequency and duration vestibular stimulus. These changes showed that while the ability to perform the balance beam task remained intact across all ages tested, behavioral changes in task performance were observed.
Dissociating Temporal Preparation Processes as a Function of the Inter-Trial Interval Duration
ERIC Educational Resources Information Center
Vallesi, Antonino; Lozano, Violeta N.; Correa, Angel
2013-01-01
Preparation over time is a ubiquitous capacity which implies decreasing uncertainty about when critical events will occur. This capacity is usually studied with the variable foreperiod paradigm, which consists in the random variation of the time interval (foreperiod) between a warning stimulus and a target. With this paradigm, response time (RT)…
The Distribution of Fixation Durations during Reading: Effects of Stimulus Quality
ERIC Educational Resources Information Center
White, Sarah J.; Staub, Adrian
2012-01-01
Participants' eye movements were recorded as they read single sentences presented normally, presented entirely in faint text, or presented normally except for a single faint word. Fixations were longer when the entire sentence was faint than when the sentence was presented normally. In addition, fixations were much longer on a single faint word…
ERIC Educational Resources Information Center
Zeamer, Alyson; Meunier, Martine; Bachevalier, Jocelyne
2011-01-01
Recognition memory impairment after selective hippocampal lesions in monkeys is more profound when measured with visual paired-comparison (VPC) than with delayed nonmatching-to-sample (DNMS). To clarify this issue, we assessed the impact of stimuli similarity and encoding duration on the VPC performance in monkeys with hippocampal lesions and…
ERIC Educational Resources Information Center
McMurrer, Jennifer
2012-01-01
School Improvement Grants (SIGs) financed through the economic stimulus package are intended to spur dramatic change in persistently low-performing schools. Many state and local officials charged with implementing SIGs view the creation of a safe, orderly, collegial, and productive school climate as an essential step in raising student…
Inukai, Tomoe; Kumada, Takatsune; Kawahara, Jun-ichiro
2010-05-01
The identification of a central visual target is impaired by the onset of a peripheral distractor. This impairment is said to occur because attentional focus is diverted to the peripheral distractor. We examined whether distractor offset would enhance or reduce attentional capture by manipulating the duration of the distractor. Observers identified a color singleton among a rapid stream of homogeneous nontargets. Peripheral distractors disappeared 43 or 172 msec after onset (the short- and long-duration conditions, respectively). Identification accuracy was greater in the long-duration condition than in the short-duration condition. The same pattern of results was obtained when participants identified a target of a designated color among heterogeneous nontargets when the color of the distractor was the same as that of the target. These findings suggest that attentional capture consists of stimulus onset and offset, both of which are susceptible to top-down attentional set.
Speaker-Sex Discrimination for Voiced and Whispered Vowels at Short Durations
2016-01-01
Whispered vowels, produced with no vocal fold vibration, lack the periodic temporal fine structure which in voiced vowels underlies the perceptual attribute of pitch (a salient auditory cue to speaker sex). Voiced vowels possess no temporal fine structure at very short durations (below two glottal cycles). The prediction was that speaker-sex discrimination performance for whispered and voiced vowels would be similar for very short durations but, as stimulus duration increases, voiced vowel performance would improve relative to whispered vowel performance as pitch information becomes available. This pattern of results was shown for women’s but not for men’s voices. A whispered vowel needs to have a duration three times longer than a voiced vowel before listeners can reliably tell whether it’s spoken by a man or woman (∼30 ms vs. ∼10 ms). Listeners were half as sensitive to information about speaker-sex when it is carried by whispered compared with voiced vowels. PMID:27757218
14 CFR 158.33 - Duration of authority to impose a PFC before project implementation.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Application and Approval § 158.33 Duration of authority to impose a PFC before project implementation. (a) A... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Duration of authority to impose a PFC...
14 CFR 158.33 - Duration of authority to impose a PFC before project implementation.
Code of Federal Regulations, 2010 CFR
2010-01-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Application and Approval § 158.33 Duration of authority to impose a PFC before project implementation. (a) A... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Duration of authority to impose a PFC...
14 CFR 158.33 - Duration of authority to impose a PFC before project implementation.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Application and Approval § 158.33 Duration of authority to impose a PFC before project implementation. (a) A... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Duration of authority to impose a PFC...
14 CFR 158.33 - Duration of authority to impose a PFC before project implementation.
Code of Federal Regulations, 2013 CFR
2013-01-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Application and Approval § 158.33 Duration of authority to impose a PFC before project implementation. (a) A... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Duration of authority to impose a PFC...
14 CFR 158.33 - Duration of authority to impose a PFC before project implementation.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Application and Approval § 158.33 Duration of authority to impose a PFC before project implementation. (a) A... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Duration of authority to impose a PFC...
Byrne, Enda M; Gehrman, Philip R; Trzaskowski, Maciej; Tiemeier, Henning; Pack, Allan I
2016-10-01
We sought to examine how much of the heritability of self-report sleep duration is tagged by common genetic variation in populations of European ancestry and to test if the common variants contributing to sleep duration are also associated with other diseases and traits. We utilized linkage disequilibrium (LD)-score regression to estimate the heritability tagged by common single nucleotide polymorphisms (SNPs) in the CHARGE consortium genome-wide association study (GWAS) of self-report sleep duration. We also used bivariate LD-score regression to investigate the genetic correlation of sleep duration with other publicly available GWAS datasets. We show that 6% (SE = 1%) of the variance in self-report sleep duration in the CHARGE study is tagged by common SNPs in European populations. Furthermore, we find evidence of a positive genetic correlation (rG) between sleep duration and type 2 diabetes (rG = 0.26, P = 0.02), and between sleep duration and schizophrenia (rG = 0.19, P = 0.01). Our results show that increased sample sizes will identify more common variants for self-report sleep duration; however, the heritability tagged is small when compared to other traits and diseases. These results also suggest that those who carry variants that increase risk to type 2 diabetes and schizophrenia are more likely to report longer sleep duration. © 2016 Associated Professional Sleep Societies, LLC.
Integration time for the perception of depth from motion parallax.
Nawrot, Mark; Stroyan, Keith
2012-04-15
The perception of depth from relative motion is believed to be a slow process that "builds-up" over a period of observation. However, in the case of motion parallax, the potential accuracy of the depth estimate suffers as the observer translates during the viewing period. Our recent quantitative model for the perception of depth from motion parallax proposes that relative object depth (d) can be determined from retinal image motion (dθ/dt), pursuit eye movement (dα/dt), and fixation distance (f) by the formula: d/f≈dθ/dα. Given the model's dynamics, it is important to know the integration time required by the visual system to recover dα and dθ, and then estimate d. Knowing the minimum integration time reveals the incumbent error in this process. A depth-phase discrimination task was used to determine the time necessary to perceive depth-sign from motion parallax. Observers remained stationary and viewed a briefly translating random-dot motion parallax stimulus. Stimulus duration varied between trials. Fixation on the translating stimulus was monitored and enforced with an eye-tracker. The study found that relative depth discrimination can be performed with presentations as brief as 16.6 ms, with only two stimulus frames providing both retinal image motion and the stimulus window motion for pursuit (mean range=16.6-33.2 ms). This was found for conditions in which, prior to stimulus presentation, the eye was engaged in ongoing pursuit or the eye was stationary. A large high-contrast masking stimulus disrupted depth-discrimination for stimulus presentations less than 70-75 ms in both pursuit and stationary conditions. This interval might be linked to ocular-following response eye-movement latencies. We conclude that neural mechanisms serving depth from motion parallax generate a depth estimate much more quickly than previously believed. We propose that additional sluggishness might be due to the visual system's attempt to determine the maximum dθ/dα ratio for a selection of points on a complicated stimulus. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fast Coding of Orientation in Primary Visual Cortex
Shriki, Oren; Kohn, Adam; Shamir, Maoz
2012-01-01
Understanding how populations of neurons encode sensory information is a major goal of systems neuroscience. Attempts to answer this question have focused on responses measured over several hundred milliseconds, a duration much longer than that frequently used by animals to make decisions about the environment. How reliably sensory information is encoded on briefer time scales, and how best to extract this information, is unknown. Although it has been proposed that neuronal response latency provides a major cue for fast decisions in the visual system, this hypothesis has not been tested systematically and in a quantitative manner. Here we use a simple ‘race to threshold’ readout mechanism to quantify the information content of spike time latency of primary visual (V1) cortical cells to stimulus orientation. We find that many V1 cells show pronounced tuning of their spike latency to stimulus orientation and that almost as much information can be extracted from spike latencies as from firing rates measured over much longer durations. To extract this information, stimulus onset must be estimated accurately. We show that the responses of cells with weak tuning of spike latency can provide a reliable onset detector. We find that spike latency information can be pooled from a large neuronal population, provided that the decision threshold is scaled linearly with the population size, yielding a processing time of the order of a few tens of milliseconds. Our results provide a novel mechanism for extracting information from neuronal populations over the very brief time scales in which behavioral judgments must sometimes be made. PMID:22719237
Compensation for Blur Requires Increase in Field of View and Viewing Time
Kwon, MiYoung; Liu, Rong; Chien, Lillian
2016-01-01
Spatial resolution is an important factor for human pattern recognition. In particular, low resolution (blur) is a defining characteristic of low vision. Here, we examined spatial (field of view) and temporal (stimulus duration) requirements for blurry object recognition. The spatial resolution of an image such as letter or face, was manipulated with a low-pass filter. In experiment 1, studying spatial requirement, observers viewed a fixed-size object through a window of varying sizes, which was repositioned until object identification (moving window paradigm). Field of view requirement, quantified as the number of “views” (window repositions) for correct recognition, was obtained for three blur levels, including no blur. In experiment 2, studying temporal requirement, we determined threshold viewing time, the stimulus duration yielding criterion recognition accuracy, at six blur levels, including no blur. For letter and face recognition, we found blur significantly increased the number of views, suggesting a larger field of view is required to recognize blurry objects. We also found blur significantly increased threshold viewing time, suggesting longer temporal integration is necessary to recognize blurry objects. The temporal integration reflects the tradeoff between stimulus intensity and time. While humans excel at recognizing blurry objects, our findings suggest compensating for blur requires increased field of view and viewing time. The need for larger spatial and longer temporal integration for recognizing blurry objects may further challenge object recognition in low vision. Thus, interactions between blur and field of view should be considered for developing low vision rehabilitation or assistive aids. PMID:27622710
Simultaneous dual-task performance reveals parallel response selection after practice
NASA Technical Reports Server (NTRS)
Hazeltine, Eliot; Teague, Donald; Ivry, Richard B.
2002-01-01
E. H. Schumacher, T. L. Seymour, J. M. Glass, D. E. Kieras, and D. E. Meyer (2001) reported that dual-task costs are minimal when participants are practiced and give the 2 tasks equal emphasis. The present research examined whether such findings are compatible with the operation of an efficient response selection bottleneck. Participants trained until they were able to perform both tasks simultaneously without interference. Novel stimulus pairs produced no reaction time costs, arguing against the development of compound stimulus-response associations (Experiment 1). Manipulating the relative onsets (Experiments 2 and 4) and durations (Experiments 3 and 4) of response selection processes did not lead to dual-task costs. The results indicate that the 2 tasks did not share a bottleneck after practice.
Self-stimulation in the rat: quantitative characteristics of the reward pathway.
Gallistel, C R
1978-12-01
Quantitative characteristics of the neural pathway that carries the reinforcing signal in electrical self-stimulation of the brain were established by finding which combinations of stimulation parameters give the same performance in a runway. The reward for each run was a train of evenly spaced monophasic cathodal pulses from a monopolar electrode. With train duration and pulse frequency held constant, the required current was a hyperbolic function of pulse duration, with chronaxie c approximately 1.5 msec. With pulse duration held constant, the required strength of the train (the charge delivered per second) was a hyperbolic function of train duration, with chronaxie C approximately 500 msec. To a first approximation, the values of c and C were independent of the choice either of train duration and pulse frequency or of pulse duration, respectively. Hence, the current intensity required by any choice of train duration, pulse frequency, and pulse duration dependent on only two basic parameters, c and C, and one quantity, Qi, the required impulse charge. These may reflect, respectively, current integration by directly excited neurons; temporal integration of neural activity by synaptic processes in a neural network; and the peak of the impulse response of the network, assuming that the network has linear dynamics and that the reward depends on the peak of the output of the network.
High efficiency laser-assisted H - charge exchange for microsecond duration beams
Cousineau, Sarah; Rakhman, Abdurahim; Kay, Martin; ...
2017-12-26
Laser-assisted stripping is a novel approach to H - charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. In conclusion,more » the experiment was performed on the Spallation Neutron Source 1 GeV H - beam using a 1 MW peak power UV laser and resulted in ~95% stripping efficiency.« less
High efficiency laser-assisted H - charge exchange for microsecond duration beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cousineau, Sarah; Rakhman, Abdurahim; Kay, Martin
Laser-assisted stripping is a novel approach to H - charge exchange that overcomes long-standing limitations associated with the traditional, foil-based method of producing high-intensity, time-structured beams of protons. This paper reports on the first successful demonstration of the laser stripping technique for microsecond duration beams. The experiment represents a factor of 1000 increase in the stripped pulse duration compared with the previous proof-of-principle demonstration. The central theme of the experiment is the implementation of methods to reduce the required average laser power such that high efficiency stripping can be accomplished for microsecond duration beams using conventional laser technology. In conclusion,more » the experiment was performed on the Spallation Neutron Source 1 GeV H - beam using a 1 MW peak power UV laser and resulted in ~95% stripping efficiency.« less
Place avoidance learning and memory in a jumping spider.
Peckmezian, Tina; Taylor, Phillip W
2017-03-01
Using a conditioned passive place avoidance paradigm, we investigated the relative importance of three experimental parameters on learning and memory in a salticid, Servaea incana. Spiders encountered an aversive electric shock stimulus paired with one side of a two-sided arena. Our three parameters were the ecological relevance of the visual stimulus, the time interval between trials and the time interval before test. We paired electric shock with either a black or white visual stimulus, as prior studies in our laboratory have demonstrated that S. incana prefer dark 'safe' regions to light ones. We additionally evaluated the influence of two temporal features (time interval between trials and time interval before test) on learning and memory. Spiders exposed to the shock stimulus learned to associate shock with the visual background cue, but the extent to which they did so was dependent on which visual stimulus was present and the time interval between trials. Spiders trained with a long interval between trials (24 h) maintained performance throughout training, whereas spiders trained with a short interval (10 min) maintained performance only when the safe side was black. When the safe side was white, performance worsened steadily over time. There was no difference between spiders tested after a short (10 min) or long (24 h) interval before test. These results suggest that the ecological relevance of the stimuli used and the duration of the interval between trials can influence learning and memory in jumping spiders.
Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure
Pezze, M.A.; Marshall, H.J.; Domonkos, A.; Cassaday, H.J.
2016-01-01
The anterior cingulate cortex (AC) component of the medial prefrontal cortex (mPFC) has been implicated in attention and working memory as measured by trace conditioning. Since dopamine (DA) is a key modulator of mPFC function, the present study evaluated the role of DA receptor agents in rat AC, using trace fear conditioning. A conditioned stimulus (CS, noise) was followed by an unconditioned stimulus (US, shock) with or without a 10 s trace interval interposed between these events in a between-subjects design. Conditioned suppression of drinking was assessed in response to presentation of the CS or an experimental background stimulus (flashing lights, previously presented for the duration of the conditioning session). The selective D1 agonist SKF81297 (0.05 μg/side) or D1 antagonist SCH23390 (0.5 μg/side) was administered by intra-cerebral microinfusion directly into AC. It was predicted that either of these manipulations should be sufficient to impair trace (but not delay) conditioning. Counter to expectation, there was no effect of DA D1 modulation on trace conditioning as measured by suppression to the noise CS. However, rats infused with SKF81297 acquired stronger conditioned suppression to the experimental background stimulus than those infused with SCH23390 or saline. Thus, the DA D1 agonist SKF81297 increased conditioned suppression to the contextual background light stimulus but was otherwise without effect on fear conditioning. PMID:26343307
ERIC Educational Resources Information Center
Mulligan, Neil W.; Spataro, Pietro
2015-01-01
Divided attention during encoding typically produces marked reductions in later memory. The attentional boost effect (ABE) is a surprising variation on this phenomenon. In this paradigm, each study stimulus (e.g., a word) is presented along with a target or a distractor (e.g., different colored circles) in a detection task. Later memory is better…
Multimodal gain control at the hippocampal Schaffer collateral-CA1 synapse.
Lange-Asschenfeldt, Christian; Schipke, Carola G; Riepe, Matthias W
2007-04-06
Information processing at central nervous system synapses is shaped by long-lasting modifications, such as long-term potentiation and short-lived and putatively synapse-specific modifications by various forms of short-term plasticity, such as facilitation, potentiation, and depression. Using an extracellular paired-pulse facilitation (PPF) protocol at the Schaffer collateral-CA1 (SC) connection in acute hippocampal slices in mice, we extend previous reports of optimal signal gain at intermediate interpulse intervals obtained at single SC synapses to the network level. Moreover, maximum signal gain changed when the input intensity was altered. We found further that facilitation decreased with increasing stimulus amplitude and duration in an exact exponential fashion when varied at a fixed interpulse interval. Variation of these intensity parameters accounted for significant changes in PPF adding a spatial dimension to time-based synaptic filter characteristics. Thus, this synapse functions as an amplitude window discriminator with a low-level aperture in combination with a band-pass frequency filter. By providing mathematical functions for the characteristic presynaptic parameters frequency, stimulus amplitude, and pulse duration at the network level our results lay ground for future studies on pharmacologically, genetically, or otherwise altered animal models.
Effect of intermittent standing and walking on physiological changes induced by head-down bed rest
NASA Technical Reports Server (NTRS)
Vernikos, J.; Ludwig, D. A.; Ertl, A. C.; Wade, C. E.; Keil, L.; OHara, D.
1994-01-01
Continuous exposure to gravity may not be necessary to prevent compromised physiological function resulting from exposure to microgravity. However, minimum gravity (G) exposure requirements, effectiveness of passive Gz versus activity in a G field, and optimal G stimulus amplitude, duration, and frequency are unknown. To partially address these questions, a 4-day, 6 degree head-down bed rest (HDBR) study (one ambulatory control day, 4 full HDBR days, one recovery day) was conducted. Nine males, 30-50 yr, were subjected to four different +1 Gz (head-foot) exposure protocols (periodic standing or controlled walking for 2 or 4 h/day in 15 min doses), plus a continuous HDBR (0 Gz) control. Standing 4 h completely prevented and standing 2 h partially prevented post-HDBR orthostatic intolerance. Both walking conditions (2 h and 4 h) attenuated the decrease in peak VO2 and prevented the increased urinary Ca2+ excretion associated with HDBR. Both 4 h conditions (standing and walking) attenuated plasma volume loss during HDBR. It was concluded that various physiological systems benefit differentially from passive +1 Gz or activity in +1 Gz and the duration (2 h vs. 4 h) of the stimulus may be an important moderating factor.
Wass, Sam V; de Barbaro, Kaya; Clackson, Kaili; Leong, Victoria
2018-05-01
Previous research is inconsistent as to whether a more labile (faster-changing) autonomic system confers performance advantages, or disadvantages, in infants and children. To examine this, we presented a stimulus battery consisting of mixed static and dynamic viewing materials to a cohort of 63 typical 12-month-old infants. While viewing the battery, infants' spontaneous visual attention (looks to and away from the screen) was measured. Concurrently, arousal was recorded via heart rate (HR), electrodermal activity, head velocity, and peripheral movement levels. In addition, stress reactivity was assessed using a mild behavioral stressor (watching a video of another infant crying). We found that infants who were generally more attentive showed smaller HR increases to the stressor. However, they also showed greater phasic autonomic changes to attractive, attention-getting stimulus events, a faster rate of change of both look duration and of arousal, and more general oscillatory activity in arousal. Finally, 4 sessions of attention training were applied to a subset of the infants (24 trained, 24 active controls), which had the effect of increasing visual sustained attention. No changes in HR responses to stressor were observed as a result of training, but concomitant increases in arousal lability were observed. Our results point to 2 contrasting autonomic profiles: infants with high autonomic reactivity to stressors show short attention durations, whereas infants with lower autonomic reactivity show longer attention durations and greater arousal lability. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Amphetamine Elicits Opposing Actions on Readily Releasable and Reserve Pools for Dopamine
Covey, Dan P.; Juliano, Steven A.; Garris, Paul A.
2013-01-01
Amphetamine, a highly addictive drug with therapeutic efficacy, exerts paradoxical effects on the fundamental communication modes employed by dopamine neurons in modulating behavior. While amphetamine elevates tonic dopamine signaling by depleting vesicular stores and driving non-exocytotic release through reverse transport, this psychostimulant also activates phasic dopamine signaling by up-regulating vesicular dopamine release. We hypothesized that these seemingly incongruent effects arise from amphetamine depleting the reserve pool and enhancing the readily releasable pool. This novel hypothesis was tested using in vivo voltammetry and stimulus trains of varying duration to access different vesicular stores. We show that amphetamine actions are stimulus dependent in the dorsal striatum. Specifically, amphetamine up-regulated vesicular dopamine release elicited by a short-duration train, which interrogates the readily releasable pool, but depleted release elicited by a long-duration train, which interrogates the reserve pool. These opposing actions of vesicular dopamine release were associated with concurrent increases in tonic and phasic dopamine responses. A link between vesicular depletion and tonic signaling was supported by results obtained for amphetamine in the ventral striatum and cocaine in both striatal sub-regions, which demonstrated augmented vesicular release and phasic signals only. We submit that amphetamine differentially targeting dopamine stores reconciles the paradoxical activation of tonic and phasic dopamine signaling. Overall, these results further highlight the unique and region-distinct cellular mechanisms of amphetamine and may have important implications for its addictive and therapeutic properties. PMID:23671560
Puig-Ventosa, Ignasi; Sastre Sanz, Sergio
2017-11-01
Municipal waste charges have been widely acknowledged as a crucial tool for waste management at the local level. This is because they contribute to financing the costly provision of waste collection and treatment services and they can be designed to provide an economic stimulus to encourage citizens and local businesses to improve separate collection and recycling. This work presents a methodology to evaluate a sample of 125 municipal waste charges in Spain for the year 2015, covering 33.91% of the Spanish population. The qualitative benchmarking of municipal waste charges shows that flat fees are frequent, whereas variable fees are set according to criteria that are weakly related to waste generation. The average fee per household is €82.2 per year, which does not provide full cost recovery. The current configuration of municipal waste charges penalises taxpayers contributing to source separation of waste, while subsidising less environmentally friendly behaviours. In this sense, municipal waste charges in Spain are far from applying the polluter pays principle. Furthermore, it is argued that municipal waste charges are ineffective for promoting the proper application of the so-called 'waste hierarchy'.
Olulade, O; Hu, S; Gonzalez-Castillo, J; Tamer, G G; Luh, W-M; Ulmer, J L; Talavage, T M
2011-07-01
A confounding factor in auditory functional magnetic resonance imaging (fMRI) experiments is the presence of the acoustic noise inherently associated with the echo planar imaging acquisition technique. Previous studies have demonstrated that this noise can induce unwanted neuronal responses that can mask stimulus-induced responses. Similarly, activation accumulated over multiple stimuli has been demonstrated to elevate the baseline, thus reducing the dynamic range available for subsequent responses. To best evaluate responses to auditory stimuli, it is necessary to account for the presence of all recent acoustic stimulation, beginning with an understanding of the attenuating effects brought about by interaction between and among induced unwanted neuronal responses, and responses to desired auditory stimuli. This study focuses on the characterization of the duration of this temporal memory and qualitative assessment of the associated response attenuation. Two experimental parameters--inter-stimulus interval (ISI) and repetition time (TR)--were varied during an fMRI experiment in which participants were asked to passively attend to an auditory stimulus. Results present evidence of a state-dependent interaction between induced responses. As expected, attenuating effects of these interactions become less significant as TR and ISI increase and in contrast to previous work, persist up to 18s after a stimulus presentation. Copyright © 2011 Elsevier B.V. All rights reserved.
Ivanova, Maria V.; Hallowell, Brooke
2017-01-01
Purpose Language comprehension in people with aphasia (PWA) is frequently evaluated using multiple-choice displays: PWA are asked to choose the image that best corresponds to the verbal stimulus in a display. When a nontarget image is selected, comprehension failure is assumed. However, stimulus-driven factors unrelated to linguistic comprehension may influence performance. In this study we explore the influence of physical image characteristics of multiple-choice image displays on visual attention allocation by PWA. Method Eye fixations of 41 PWA were recorded while they viewed 40 multiple-choice image sets presented with and without verbal stimuli. Within each display, 3 images (majority images) were the same and 1 (singleton image) differed in terms of 1 image characteristic. The mean proportion of fixation duration (PFD) allocated across majority images was compared against the PFD allocated to singleton images. Results PWA allocated significantly greater PFD to the singleton than to the majority images in both nonverbal and verbal conditions. Those with greater severity of comprehension deficits allocated greater PFD to nontarget singleton images in the verbal condition. Conclusion When using tasks that rely on multiple-choice displays and verbal stimuli, one cannot assume that verbal stimuli will override the effect of visual-stimulus characteristics. PMID:28520866
NASA Astrophysics Data System (ADS)
Faure, Paul A.; Morrison, James A.; Valdizón-Rodríguez, Roberto
2018-05-01
Here we propose a method for testing how the responses of so-called "FM duration-tuned neurons (DTNs)" encode temporal properties of frequency modulated (FM) sweeps to determine if the responses of so-called "FM duration-tuned neurons (DTNs)" are tuned to FM rate or FM duration. Based on previous studies it was unclear if the responses of "FM DTNs" were tuned to signal duration, like pure-tone DTNs, or FM sweep rate. We tested this using single-unit extracellular recording in the inferior colliculus (IC) of the big brown bat (Eptesicus fuscus). We presented IC cells with linear FM sweeps that were varied in FM center frequency (CEF) and spectral bandwidth (BW) to measure the FM rate tuning responses of a cell. We also varied FM signal duration to measure the best duration (BD) and temporal BW of duration tuning of a cell. We then doubled (and halved) the best FM BW, while keeping the CEF constant, and remeasured the BD and temporal BW of duration tuning with FM bandwidth manipulated signals. We reasoned that the range of excitatory signal durations should not change in a true FM DTN whose responses are tuned to signal duration; however, when stimulated with bandwidth manipulated FM sounds the range of excitatory signal durations should predictably vary in a FM rate-tuned cell. Preliminary data indicate that our stimulus paradigm can disambiguate whether the evoked responses of an IC neuron are FM sweep rate tuned or FM duration tuned.
Lateral geniculate body evoked potentials elicited by visual and electrical stimulation.
Choi, Chang Wook; Kim, Pan Sang; Shin, Sun Ae; Yang, Ji Yeon; Yang, Yun Sik
2014-08-01
Blind individuals who have photoreceptor loss are known to perceive phosphenes with electrical stimulation of their remaining retinal ganglion cells. We proposed that implantable lateral geniculate body (LGB) stimulus electrode arrays could be used to generate phosphene vision. We attempted to refine the basic reference of the electrical evoked potentials (EEPs) elicited by microelectrical stimulations of the optic nerve, optic tract and LGB of a domestic pig, and then compared it to visual evoked potentials (VEPs) elicited by short-flash stimuli. For visual function measurement, VEPs in response to short-flash stimuli on the left eye of the domestic pig were assessed over the visual cortex at position Oz with the reference electrode at Fz. After anesthesia, linearly configured platinum wire electrodes were inserted into the optic nerve, optic track and LGB. To determine the optimal stimulus current, EEPs were recorded repeatedly with controlling the pulse and power. The threshold of current and charge density to elicit EEPs at 0.3 ms pulse duration was about ±10 µA. Our experimental results showed that visual cortex activity can be effectively evoked by stimulation of the optic nerve, optic tract and LGB using penetrating electrodes. The latency of P1 was more shortened as the electrical stimulation was closer to LGB. The EEPs of two-channel in the visual cortex demonstrated a similar pattern with stimulation of different spots of the stimulating electrodes. We found that the LGB-stimulated EEP pattern was very similar to the simultaneously generated VEP on the control side, although implicit time deferred. EEPs and VEPs derived from visual-system stimulation were compared. The LGB-stimulated EEP wave demonstrated a similar pattern to the VEP waveform except implicit time, indicating prosthetic-based electrical stimulation of the LGB could be utilized for the blind to perceive vision of phosphenes.
Coherent modulation of stimulus colour can affect visually induced self-motion perception.
Nakamura, Shinji; Seno, Takeharu; Ito, Hiroyuki; Sunaga, Shoji
2010-01-01
The effects of dynamic colour modulation on vection were investigated to examine whether perceived variation of illumination affects self-motion perception. Participants observed expanding optic flow which simulated their forward self-motion. Onset latency, accumulated duration, and estimated magnitude of the self-motion were measured as indices of vection strength. Colour of the dots in the visual stimulus was modulated between white and red (experiment 1), white and grey (experiment 2), and grey and red (experiment 3). The results indicated that coherent colour oscillation in the visual stimulus significantly suppressed the strength of vection, whereas incoherent or static colour modulation did not affect vection. There was no effect of the types of the colour modulation; both achromatic and chromatic modulations turned out to be effective in inhibiting self-motion perception. Moreover, in a situation where the simulated direction of a spotlight was manipulated dynamically, vection strength was also suppressed (experiment 4). These results suggest that observer's perception of illumination is critical for self-motion perception, and rapid variation of perceived illumination would impair the reliabilities of visual information in determining self-motion.
Andrade, Chittaranjan; Srinivasamurthy, Gurunath M; Vishwasenani, A; Prakash, G Sai; Srihari, B S; Chandra, J Suresh
2002-06-01
Clinical research shows that the antidepressant and cognitive adverse effects of electroconvulsive therapy are both dependent on the administered electrical stimulus intensity (dose); however, dose-dependent neurotransmitter system changes in the brain, which might underlie the therapeutic or adverse effects, remain to be demonstrated. We used a behavioral model to examine dose-related effects of electroconvulsive shock (ECS) on dopamine postsynaptic receptor functioning in the rat brain. In a factorially designed study, rats (n = 100) were treated with five once-daily ECSs at three levels (sham ECS, 30 mC ECS, and 120 mC ECS), and with drug at two levels (saline, and 1 mg/kg s.c. apomorphine). Motility was assessed in the small open field. Apomorphine-elicited, dopamine postsynaptic receptor-mediated hypermotility was significantly increased by 120 mC ECS but not by 30 mC ECS. An additional but unrelated finding was that, while the ECS seizure duration expectedly decreased across time, no dose-dependent effects were observed. ECS-induced dopamine postsynaptic receptor up-regulation may depend on the intensity of the administered electrical stimulus.
Limits to the usability of iconic memory
Rensink, Ronald A.
2014-01-01
Human vision briefly retains a trace of a stimulus after it disappears. This trace—iconic memory—is often believed to be a surrogate for the original stimulus, a representational structure that can be used as if the original stimulus were still present. To investigate its nature, a flicker-search paradigm was developed that relied upon a full scan (rather than partial report) of its contents. Results show that for visual search it can indeed act as a surrogate, with little cost for alternating between visible and iconic representations. However, the duration over which it can be used depends on the type of task: some tasks can use iconic memory for at least 240 ms, others for only about 190 ms, while others for no more than about 120 ms. The existence of these different limits suggests that iconic memory may have multiple layers, each corresponding to a particular level of the visual hierarchy. In this view, the inability to use a layer of iconic memory may reflect an inability to maintain feedback connections to the corresponding representation. PMID:25221539
Limits to the usability of iconic memory.
Rensink, Ronald A
2014-01-01
Human vision briefly retains a trace of a stimulus after it disappears. This trace-iconic memory-is often believed to be a surrogate for the original stimulus, a representational structure that can be used as if the original stimulus were still present. To investigate its nature, a flicker-search paradigm was developed that relied upon a full scan (rather than partial report) of its contents. Results show that for visual search it can indeed act as a surrogate, with little cost for alternating between visible and iconic representations. However, the duration over which it can be used depends on the type of task: some tasks can use iconic memory for at least 240 ms, others for only about 190 ms, while others for no more than about 120 ms. The existence of these different limits suggests that iconic memory may have multiple layers, each corresponding to a particular level of the visual hierarchy. In this view, the inability to use a layer of iconic memory may reflect an inability to maintain feedback connections to the corresponding representation.
Interactions between binocular rivalry and Gestalt formation.
de Weert, Charles M M; Snoeren, Peter R; Koning, Arno
2005-09-01
A question raised a long time ago in binocular rivalry research is whether the phenomenon of binocular rivalry is purely determined by local stimulus properties or that global stimulus properties also play a role. More specifically: do coherent features in a stimulus influence rivalrous behavior? After decades of underexposure of the subject, recently this question seemed to be answered in the affirmative. This paper presents additional evidence for an influence of coherent features. In an experiment in which eye movements cannot bias conclusions it is demonstrated that Gestalt formation influences binocular rivalry positively, i.e., stronger Gestalts have longer total dominance times. Gestalt formation appears to intervene in the states of dominance ("what"), not directly in the dominance durations ("how long"). This generates questions about the nature of interactions between binocular rivalry and Gestalt formation. Gestalt formation seems to be fed by signals that are generated after binocular convergence and only leaves its mark on binocular rivalry by feedback to monocular channels, a conclusion which has been drawn before by Alais and Blake [Alais, D., & Blake, R. (1998). Interaction between global motion and local binocular rivalry. Vision research 38, 637-644].
NASA Technical Reports Server (NTRS)
Kimchi, Ruth; Gopher, Daniel; Rubin, Yifat; Raij, David
1993-01-01
Three experiments investigated subjects' ability to allocate attention and cope with task requirements under dichoptic versus binocular viewing conditions. Experiments 1 and 2 employed a target detection task in compound and noncompound stimuli, and Experiment 3 employed a relative-proximity judgment task. The tasks were performed in a focused attention condition in which subjects had to attend to the stimulus presented to one eye or field (under dichoptic and binocular viewing conditions, respectively) while ignoring the stimulus presented to the other eye or field, and in a divided attention condition in which subjects had to attend to the stimuli presented to both eyes or fields. Subjects' performance was affected by the interaction of attention conditions with task requirements, but it was generally the same under dichoptic and binocular viewing conditions. The more dependent the task was on finer discrimination, the more performance was impaired by divided attention. These results suggest that at least with discrete tasks and relatively short exposure durations, performance when each eye is presented with a separate stimulus is the same as when the entire field of stimulation is viewed by both eyes.
Classic conditioning of the ventilatory responses in rats.
Nsegbe, E; Vardon, G; Perruchet, P; Gallego, J
1997-10-01
Recent authors have stressed the role of conditioning in the control of breathing, but experimental evidence of this role is still sparse and contradictory. To establish that classic conditioning of the ventilatory responses can occur in rats, we performed a controlled experiment in which a 1-min tone [conditioned stimulus (CS)] was paired with a hypercapnic stimulus [8.5% CO2, unconditioned stimulus (US)]. The experimental group (n = 9) received five paired CS-US presentations, followed by one CS alone to test conditioning. This sequence was repeated six times. The control group (n = 7) received the same number of CS and US, but each US was delivered 3 min after the CS. We observed that after the CS alone, breath duration was significantly longer in the experimental than in the control group and mean ventilation was significantly lower, thus showing inhibitory conditioning. This conditioning may have resulted from the association between the CS and the inhibitory and aversive effects of CO2. The present results confirmed the high sensitivity of the respiratory controller to conditioning processes.
Simultaneous perceptual and response biases on sequential face attractiveness judgments
Pegors, Teresa K.; Mattar, Marcelo G.; Bryan, Peter B.; Epstein, Russell A.
2015-01-01
Face attractiveness is a social characteristic that we often use to make first-pass judgments about the people around us. However, these judgments are highly influenced by our surrounding social world, and researchers still understand little about the mechanisms underlying these influences. In a series of three experiments, we used a novel sequential rating paradigm that enabled us to measure biases on attractiveness judgments from the previous face and the previous rating. Our results revealed two simultaneous and opposing influences on face attractiveness judgments that arise from our past experience of faces: a response bias in which attractiveness ratings shift towards a previously given rating, and a stimulus bias in which attractiveness ratings shift away from the mean attractiveness of the previous face. Furthermore, we provide evidence that the contrastive stimulus bias (but not the assimilative response bias) is strengthened by increasing the duration of the previous stimulus, suggesting an underlying perceptual mechanism. These results demonstrate that judgments of face attractiveness are influenced by information from our evaluative and perceptual history and that these influences have measurable behavioral effects over the course of just a few seconds. PMID:25867223
Baillargeon, L.
1997-01-01
OBJECTIVE: To familiarize family physicians with cognitive and behavioural treatments for insomnia. DATA SOURCES: MEDLINE was searched from 1983 to 1995 and Psychlit from 1974 to 1995 using the key words "behaviour therapy," "cognitive therapy," "phototherapy," and "insomnia." STUDY SELECTION: We chose randomized trials and meta-analyses on the treatment of insomnia. Information was extracted on time-lag before sleep, frequency and duration of wakeful periods during the night, consumption of hynotics, and subjects' own assessment of their sleep before and after treatment. SYNTHESIS: The most effective interventions were relaxation training, sleep restriction, and stimulus control. Practising good sleeping habits was only somewhat effective and should always be used in conjunction with other interventions. CONCLUSION: Stimulus control for insomnia has been demonstrated to be effective when used by primary care physicians. Other nonpharmacologic treatments should be evaluated in a similar manner. PMID:9063996
Use of a supercontinuum white light in evaluating the spectral sensitivity of the pupil light reflex
NASA Astrophysics Data System (ADS)
Chin, Catherine; Leick, Lasse; Podoleanu, Adrian; Lall, Gurprit S.
2018-03-01
We assessed the spectral sensitivity of the pupillary light reflex in mice using a high power super continuum white light (SCWL) source in a dual wavelength configuration. This novel approach was compared to data collected from a more traditional setup using a Xenon arc lamp fitted with monochromatic interference filters. Irradiance response curves were constructed using both systems, with the added benefit of a two-wavelength, equivocal power, output using the SCWL. The variables applied to the light source were intensity, wavelength and stimulus duration through which the physiological output measured was the minimum pupil size attained under such conditions. We show that by implementing the SCWL as our novel stimulus we were able to dramatically increase the physiological usefulness of our pupillometry system.
Pastor, M Carmen; Rehbein, Maimu Alissa; Junghöfer, Markus; Poy, Rosario; López, Raul; Moltó, Javier
2015-01-01
Several challenges make it difficult to simultaneously investigate central and autonomous nervous system correlates of conditioned stimulus (CS) processing in classical conditioning paradigms. Such challenges include, for example, the discrepant requirements of electroencephalography (EEG) and electrodermal activity (EDA) recordings with regard to multiple repetitions of conditions and sufficient trial duration. Here, we propose a MultiCS conditioning set-up, in which we increased the number of CSs, decreased the number of learning trials, and used trials of short and long durations for meeting requirements of simultaneous EEG-EDA recording in a differential aversive conditioning task. Forty-eight participants underwent MultiCS conditioning, in which four neutral faces (CS+) were paired four times each with aversive electric stimulation (unconditioned stimulus) during acquisition, while four different neutral faces (CS-) remained unpaired. When comparing after relative to before learning measurements, EEG revealed an enhanced centro-posterior positivity to CS+ vs. CS- during 368-600 ms, and subjective ratings indicated CS+ to be less pleasant and more arousing than CS-. Furthermore, changes in CS valence and arousal were strong enough to bias subjective ratings when faces of CS+/CS- identity were displayed with different emotional expression (happy, angry) in a post-experimental behavioral task. In contrast to a persistent neural and evaluative CS+/CS- differentiation that sustained multiple unreinforced CS presentations, electrodermal differentiation was rapidly extinguished. Current results suggest that MultiCS conditioning provides a promising paradigm for investigating pre-post-learning changes under minimal influences of extinction and overlearning of simple stimulus features. Our data also revealed methodological pitfalls, such as the possibility of occurring artifacts when combining different acquisition systems for central and peripheral psychophysiological measures.
Hasenstab, Kathryn A; Sitaram, Swetha; Lang, Ivan M; Shaker, Reza; Jadcherla, Sudarshan R
2018-02-01
Pharyngeal-provocation induced aerodigestive symptoms in infants remain an enigma. Sources of pharyngeal provocation can be anterograde as with feeding, and retrograde as in gastroesophageal reflux. We determined maturational and dose-response effects of targeted pharyngeal-stimulus on frequency, stability, and magnitude of pharyngeal and respiratory waveforms during multiple pharyngeal swallowing responses in preterm-born infants when they were of full-term postmenstrual age (PMA). Eighteen infants (11 male) were studied longitudinally at 39.8 ± 4.8 weeks PMA (time-1) and 44.1 ± 5.8 weeks PMA (time-2). Infants underwent concurrent pharyngo-esophageal manometry, respiratory inductance plethysmography, and nasal airflow thermistor methods to test sensory-motor interactions between the pharynx, esophagus, and airway. Linear mixed models were used and data presented as mean ± SEM or %. Overall, responses to 250 stimuli were analyzed. Of the multiple pharyngeal swallowing responses (n = 160), with maturation (a) deglutition apnea duration decreases (p < 0.01), (b) number of pharyngeal waveform peaks and duration decreases for initial responses (p < 0.01), and subsequent responses have lesser variation and greater stability (p < 0.01). With increment in stimulus volumes we noted (a) increased prevalence (%) of pharyngeal responses (p < 0.05), (b) increased number of pharyngeal peaks (p < 0.05), yet pharyngeal frequency (Hz), variability, and stability remain unaffected (p > 0.05), and (c) respiratory changes were unaffected (p > 0.05). Initial and subsequent pharyngeal responses and respiratory rhythm interactions become more distinct with maturation. Interval oromotor experiences and volume-dependent increase in adaptive responses may be contributory. These mechanisms may be important in modulating and restoring respiratory rhythm normalcy.
Greco, Barbara; Carli, Mirjana
2006-05-15
Neuropeptide (NPY) Y2 receptors play an important role in some anxiety-related and stress-related behaviours in mice. Changes in the level of anxiety can affect some cognitive functions such as memory, attention and inhibitory response control. We investigated the effects of NPY Y2 receptor deletion (Y2(-/-)) in mice on visual attention and response control using the five-choice serial reaction time (5-CSRT) task in which accuracy of detection of a brief visual stimulus across five spatial locations may serve as a valid behavioural index of attentional functioning. Anticipatory and perseverative responses provide a measure of inhibitory response control. During training, the Y2(-/-) mice had lower accuracy (% correct), and made more anticipatory responses. At stimulus durations of 2 and 4s the Y2(-/-) were as accurate as the Y2(+/+) mice but still more impulsive than Y(+/+). At stimulus durations of 0.25 and 0.5s both groups performed worse but the Y2(-/-) mice made significantly fewer correct responses than the Y2(+/+) controls. The anxiolytic drug diazepam at 2mg/kg IP greatly increased the anticipatory responding of Y2(-/-) mice compared to Y2(+/+). The anxiogenic inverse benzodiazepine agonist, FG 7142, at 10mg/kg IP reduced the anticipatory responding of Y2(-/-) but not Y2(+/+) mice. These data suggest that NPY Y2 receptors make an important contribution to mechanisms controlling attentional functioning and "impulsivity". They also show that "impulsivity" of NPY Y2(-/-) mice may depend on their level of anxiety. These findings may help in understanding the pathophysiology of stress disorders and depression.
Pastor, M. Carmen; Rehbein, Maimu Alissa; Junghöfer, Markus; Poy, Rosario; López, Raul; Moltó, Javier
2015-01-01
Several challenges make it difficult to simultaneously investigate central and autonomous nervous system correlates of conditioned stimulus (CS) processing in classical conditioning paradigms. Such challenges include, for example, the discrepant requirements of electroencephalography (EEG) and electrodermal activity (EDA) recordings with regard to multiple repetitions of conditions and sufficient trial duration. Here, we propose a MultiCS conditioning set-up, in which we increased the number of CSs, decreased the number of learning trials, and used trials of short and long durations for meeting requirements of simultaneous EEG–EDA recording in a differential aversive conditioning task. Forty-eight participants underwent MultiCS conditioning, in which four neutral faces (CS+) were paired four times each with aversive electric stimulation (unconditioned stimulus) during acquisition, while four different neutral faces (CS−) remained unpaired. When comparing after relative to before learning measurements, EEG revealed an enhanced centro-posterior positivity to CS+ vs. CS− during 368–600 ms, and subjective ratings indicated CS+ to be less pleasant and more arousing than CS−. Furthermore, changes in CS valence and arousal were strong enough to bias subjective ratings when faces of CS+/CS− identity were displayed with different emotional expression (happy, angry) in a post-experimental behavioral task. In contrast to a persistent neural and evaluative CS+/CS− differentiation that sustained multiple unreinforced CS presentations, electrodermal differentiation was rapidly extinguished. Current results suggest that MultiCS conditioning provides a promising paradigm for investigating pre–post-learning changes under minimal influences of extinction and overlearning of simple stimulus features. Our data also revealed methodological pitfalls, such as the possibility of occurring artifacts when combining different acquisition systems for central and peripheral psychophysiological measures. PMID:26106318
Verleger, Rolf; Schuknecht, Simon-Vitus; Jaśkowski, Piotr; Wagner, Ullrich
2008-11-01
Sleep has proven to support the memory consolidation in many tasks including learning of perceptual skills. Explicit, conscious types of memory have been demonstrated to benefit particularly from slow-wave sleep (SWS), implicit, non-conscious types particularly from rapid eye movement (REM) sleep. By comparing the effects of early-night sleep, rich in SWS, and late-night sleep, rich in REM sleep, we aimed to separate the contribution of these two sleep stages in a metacontrast masking paradigm in which explicit and implicit aspects in perceptual learning could be assessed separately by stimulus identification and priming, respectively. We assumed that early sleep intervening between two sessions of task performance would specifically support stimulus identification, while late sleep would specifically support priming. Apart from overt behavior, event-related EEG potentials (ERPs) were measured to record the cortical mechanisms associated with behavioral changes across sleep. In contrast to our hypothesis, late-night sleep appeared to be more important for changes of behavior, both for stimulus identification, which tended to improve across late-night sleep, and for priming, with the increase of errors induced by masked stimuli correlating with the duration of REM sleep. ERP components proved sensitive to presence of target shapes in the masked stimuli and to their priming effects. Of these components, the N2 component, indicating processing of conflict, became larger across early-night sleep and was related to the duration of S4 sleep, the deepest substage of SWS containing particularly high portions of EEG slow waves. These findings suggest that sleep promotes perceptual learning primarily by its REM sleep portion, but indirectly also by way of improved action monitoring supported by deep slow-wave sleep.
Lightning Mapping Observations of Volume-Filling Small Discharges in Thunderstorms
NASA Astrophysics Data System (ADS)
Rison, W.; Krehbiel, P. R.; Thomas, R. J.; Rodeheffer, D.
2013-12-01
Lightning is usually considered to be a large-scale electrical discharge in the atmosphere. For example, the American Meteorological Society's Glossary of Meteorology defines lightning as "a transient, high-current electric discharge with pathlengths measured in kilometers" (http://glossary.ametsoc.org/wiki/Lightning). There have been several reported examples of short-duration discharges in thunderstorms, which have a duration of a few microseconds to less than a millisecond, and have a small spatial extent These short-duration discharges were located at high altitudes (> 14 km), altitudes consistent with being located between the upper positive charge and the negative screening layer. At these altitudes, the electric field needed to initiate an electrical discharge is much lower than it is at the altitudes of initiation for IC (~8 km) or CG (~5 km) flashes. We have recently reported on short-duration "precursor" discharges with durations of a few microseconds to a few milliseconds, which occur in the high-fields between the mid-level negative and upper positive charge regions. These "precursor" discharges are discrete in both time and space, being separated in time by hundreds of milliseconds to several seconds, and localized in space, usually very close to the initiation location of a subsequent IC discharge. We have recently observed nearly continuous, volume filling short-duration discharges in several thunderstorms. These discharges have durations of much less than a millisecond, spatial extents of less than a few hundred meters, and occur randomly in the volume between the mid-level negative and upper positive charge regions. During an active period, these discharges occur every few milliseconds. The rates of these discharges decreases dramatically to a few per second following an IC discharge, then increases to several hundred per second until the next discharge. In a storm just off the Florida coast, one cell was producing a large number of these small discharges, while a contemporaneous cell a few kilometers west produced no detectable small discharges. Short-duration discharges occur at altitudes between 10 km and 14 km in the intervals between lightning discharges. The rates of short-duration discharges decreases dramatically after a lightning discharge.
Sjöstrand, F S
2002-01-01
Each rod is connected to one depolarizing and one hyperpolarizing bipolar cell. The synaptic connections of cone processes to each bipolar cell and presynaptically to the two rod-bipolar cell synapses establishes conditions for lateral interaction at this level. Thus, the cones raise the threshold for bipolar cell depolarization which is the basis for spatial brightness contrast enhancement and consequently for high visual acuity (Sjöstrand, 2001a). The cones facilitate ganglion cell depolarization by the bipolar cells and cone input prevents horizontal cell blocking of depolarization of the depolarizing bipolar cell, extending rod vision to low illumination. The combination of reduced cone input and transient hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus facilitates ganglion cell depolarization extensively at onset of the stimulus while no corresponding enhancement applies to the ganglion cell response at cessation of the stimulus, possibly establishing conditions for discrimination between on- vs. off-signals in the visual centre. Reduced cone input and hyperpolarization of the hyperpolarizing bipolar cell at onset of a light stimulus accounts for Granit's (1941) 'preexcitatory inhibition'. Presynaptic inhibition maintains transmitter concentration low in the synaptic gap at rod-bipolar cell and bipolar cell-ganglion cell synapses, securing proportional and amplified postsynaptic responses at these synapses. Perfect timing of variations in facilitatory and inhibitory input to the ganglion cell confines the duration of ganglion cell depolarization at onset and at cessation of a light stimulus to that of a single synaptic transmission.
Murphy, P J; Morgan, P B; Patel, S; Marshall, J
1999-05-01
The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.
Stimulus type does not affect infant arousal response patterns.
Richardson, Heidi L; Walker, Adrian M; Horne, Rosemary S C
2010-03-01
Previous studies have examined infant arousal responses to various arousal stimuli; however it is unclear whether the patterns of responses to different stimuli are comparable within subjects across early development. The aim of the study was to compare the effects of both respiratory and somatosensory stimulation on arousal processes in the same infants throughout the first 6 months of life. Ten healthy term infants were studied with daytime polysomnography at 2-4 weeks, 2-3 and 5-6 months. Infants were challenged with both hypoxia (15% O(2), balanced N(2)) and a pulsatile air-jet to the nostrils. Stimulus-induced sub-cortical activations (SCA) and cortical arousals (CA) were expressed as percentages of total arousals. Heart rate (HR) changes and electroencephalogram (EEG) desynchronization were also contrasted for the two stimuli. During active sleep (AS), there was no significant effect of stimulus type on proportions of CA at any of the ages studied. During quiet sleep (QS), hypoxia elicited higher CA proportions than the air-jet at 2-3 and 5-6 months (P < 0.01). Overall, HR responses associated with SCA and CA and the duration of EEG desynchronization during CA were similar for both stimuli. Mild hypoxia and nasal air-jet stimulation produce qualitatively similar patterns of arousal responses during the first 6 months of life, supporting the concept of a final common neural pathway of cortical activation. Quantitatively, full CA from QS is more likely with hypoxia, in keeping with it being a life-threatening stimulus. This study supports the nasal air-jet as an appropriate stimulus for assessing developmental patterns of infant arousal process.
Time frequency analysis of olfactory induced EEG-power change.
Schriever, Valentin Alexander; Han, Pengfei; Weise, Stefanie; Hösel, Franziska; Pellegrino, Robert; Hummel, Thomas
2017-01-01
The objective of the present study was to investigate the usefulness of time-frequency analysis (TFA) of olfactory-induced EEG change with a low-cost, portable olfactometer in the clinical investigation of smell function. A total of 78 volunteers participated. The study was composed of three parts where olfactory stimuli were presented using a custom-built olfactometer. Part I was designed to optimize the stimulus as well as the recording conditions. In part II EEG-power changes after olfactory/trigeminal stimulation were compared between healthy participants and patients with olfactory impairment. In Part III the test-retest reliability of the method was evaluated in healthy subjects. Part I indicated that the most effective paradigm for stimulus presentation was cued stimulus, with an interstimulus interval of 18-20s at a stimulus duration of 1000ms with each stimulus quality presented 60 times in blocks of 20 stimuli each. In Part II we found that central processing of olfactory stimuli analyzed by TFA differed significantly between healthy controls and patients even when controlling for age. It was possible to reliably distinguish patients with olfactory impairment from healthy individuals at a high degree of accuracy (healthy controls vs anosmic patients: sensitivity 75%; specificity 89%). In addition we could show a good test-retest reliability of TFA of chemosensory induced EEG-power changes in Part III. Central processing of olfactory stimuli analyzed by TFA reliably distinguishes patients with olfactory impairment from healthy individuals at a high degree of accuracy. Importantly this can be achieved with a simple olfactometer.
Szymanski, Francois D; Rabinowitz, Neil C; Magri, Cesare; Panzeri, Stefano; Schnupp, Jan W H
2011-11-02
Recent studies have shown that the phase of low-frequency local field potentials (LFPs) in sensory cortices carries a significant amount of information about complex naturalistic stimuli, yet the laminar circuit mechanisms and the aspects of stimulus dynamics responsible for generating this phase information remain essentially unknown. Here we investigated these issues by means of an information theoretic analysis of LFPs and current source densities (CSDs) recorded with laminar multi-electrode arrays in the primary auditory area of anesthetized rats during complex acoustic stimulation (music and broadband 1/f stimuli). We found that most LFP phase information originated from discrete "CSD events" consisting of granular-superficial layer dipoles of short duration and large amplitude, which we hypothesize to be triggered by transient thalamocortical activation. These CSD events occurred at rates of 2-4 Hz during both stimulation with complex sounds and silence. During stimulation with complex sounds, these events reliably reset the LFP phases at specific times during the stimulation history. These facts suggest that the informativeness of LFP phase in rat auditory cortex is the result of transient, large-amplitude events, of the "evoked" or "driving" type, reflecting strong depolarization in thalamo-recipient layers of cortex. Finally, the CSD events were characterized by a small number of discrete types of infragranular activation. The extent to which infragranular regions were activated was stimulus dependent. These patterns of infragranular activations may reflect a categorical evaluation of stimulus episodes by the local circuit to determine whether to pass on stimulus information through the output layers.
Batman, Angela M; Dutta, Aloke K; Reith, Maarten E A; Beardsley, Patrick M
2010-12-01
A successful replacement pharmacotherapy for treating cocaine dependency would likely reduce cocaine's abuse, support a low abuse liability, overlap cocaine's subjective effects, and have a long duration of action. Inhibitors with varying selectivity at the dopamine transporter (DAT) have approximated these properties. The objective of the present study was to characterize the behavioural effects of an extremely selective DAT inhibitor, (+) trans-4-(2-Benzhydryloxyethyl)-1-(4-fluorobenzyl) piperadin-3-ol (D-84), a 3-hydroxy substituted piperidine derivative of GBR-12935, for its cocaine-like discriminative stimulus effects, its effects on cocaine self-administration, and for its own self-administration. During cocaine discrimination tests, cocaine occasioned the 10 mg/kg cocaine training stimulus with an ED(50) value of 3.13 (1.54-6.34) mg/kg, and reduced response rates with an ED(50) value of 20.39 (7.24-57.44) mg/kg. D-84 incompletely generalized to the cocaine stimulus occasioning a maximal 76% cocaine-lever responding, while reducing response rates with lower potency than cocaine (ED(50)=30.94 (12.34-77.60) mg/kg). Pretreatment with D-84 (9.6-30.4 mg/kg) significantly (P<0.05) reduced cocaine intake at 17.1 mg/kg D-84 when cocaine was self-administered at 0.5 mg/kg/infusion, and at 30.4 mg/kg D-84 when cocaine was self-administered at 0.1, 0.5 .and 1.0 mg/kg/infusion. During self-administration tests with D-84 (0.1-1 mg/kg/infusion), numbers of infusions significantly exceeded vehicle levels at 0.3 mg/kg/infusion. These results show that D-84 pretreatment can decrease cocaine intake especially when high doses of cocaine are being self-administered. This observation, combined with its incomplete generalization to the cocaine discriminative stimulus and its reported long duration of action, provides a profile consistent with a potential replacement therapy for treating cocaine-abusing patients. Copyright © 2010 Elsevier B.V. All rights reserved.
Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando
2015-01-01
Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM) capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes--with no effects on perceptual processes--and a posterior to anterior shift in the recruitment of neural resources.
Griffin, Darcy M; Hudson, Heather M; Belhaj-Saïf, Abderraouf; Cheney, Paul D
2014-01-29
The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length-tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved.
Griffin, Darcy M.; Hudson, Heather M.; Belhaj-Saïf, Abderraouf
2014-01-01
The delivery of high-frequency, long-duration intracortical microstimulation (HFLD-ICMS) to primary motor cortex (M1) in primates produces hand movements to a common final end-point regardless of the starting hand position (Graziano et al., 2002). We have confirmed this general conclusion. We further investigated the extent to which the (1) temporal pattern, (2) magnitude, and (3) latency of electromyographic (EMG) activation associated with HFLD-ICMS-evoked movements are dependent on task conditions, including limb posture. HFLD-ICMS was applied to layer V sites in M1 cortex. EMG activation with HFLD-ICMS was evaluated while two male rhesus macaques performed a number of tasks in which the starting position of the hand could be varied throughout the workspace. HFLD-ICMS-evoked EMG activity was largely stable across all parameters tested independent of starting hand position. The most common temporal pattern of HFLD-ICMS-evoked EMG activity (58% of responses) was a sharp rise to a plateau. The plateau level was maintained essentially constant for the entire duration of the stimulus train. The plateau pattern is qualitatively different from the largely bell-shaped patterns typical of EMG activity associated with natural goal directed movements (Brown and Cooke, 1990; Hoffman and Strick, 1999). HFLD-ICMS produces relatively fixed parameters of muscle activation independent of limb position. We conclude that joint movement associated with HFLD-ICMS occurs as a function of the length–tension properties of stimulus-activated muscles until an equilibrium between agonist and antagonist muscle force is achieved. PMID:24478348
Activity in early visual areas predicts interindividual differences in binocular rivalry dynamics
Yamashiro, Hiroyuki; Mano, Hiroaki; Umeda, Masahiro; Higuchi, Toshihiro; Saiki, Jun
2013-01-01
When dissimilar images are presented to the two eyes, binocular rivalry (BR) occurs, and perception alternates spontaneously between the images. Although neural correlates of the oscillating perception during BR have been found in multiple sites along the visual pathway, the source of BR dynamics is unclear. Psychophysical and modeling studies suggest that both low- and high-level cortical processes underlie BR dynamics. Previous neuroimaging studies have demonstrated the involvement of high-level regions by showing that frontal and parietal cortices responded time locked to spontaneous perceptual alternation in BR. However, a potential contribution of early visual areas to BR dynamics has been overlooked, because these areas also responded to the physical stimulus alternation mimicking BR. In the present study, instead of focusing on activity during perceptual switches, we highlighted brain activity during suppression periods to investigate a potential link between activity in human early visual areas and BR dynamics. We used a strong interocular suppression paradigm called continuous flash suppression to suppress and fluctuate the visibility of a probe stimulus and measured retinotopic responses to the onset of the invisible probe using functional MRI. There were ∼130-fold differences in the median suppression durations across 12 subjects. The individual differences in suppression durations could be predicted by the amplitudes of the retinotopic activity in extrastriate visual areas (V3 and V4v) evoked by the invisible probe. Weaker responses were associated with longer suppression durations. These results demonstrate that retinotopic representations in early visual areas play a role in the dynamics of perceptual alternations during BR. PMID:24353304
Pinal, Diego; Zurrón, Montserrat; Díaz, Fernando
2015-01-01
Age-related decline in cognitive capacities has been attributed to a generalized slowing of processing speed and a reduction in working memory (WM) capacity. Nevertheless, it is unclear how age affects visuospatial WM recognition and its underlying brain electrical activity. Whether age modulates the effects of memory load or information maintenance duration, which determine the limits of WM, remains also elusive. In this exploratory study, performance in a delayed match to sample task declined with age, particularly in conditions with high memory load. Event related potentials analysis revealed longer N2 and P300 latencies in old than in young adults during WM recognition, which may reflect slowing of stimulus evaluation and classification processes, respectively. Although there were no differences between groups in N2 or P300 amplitudes, the latter was more homogeneously distributed in old than in young adults, which may indicate an age-related increased reliance in frontal vs parietal resources during WM recognition. This was further supported by an age-related reduced posterior cingulate activation and increased superior frontal gyrus activation revealed through standardized low resolution electromagnetic tomography. Memory load and maintenance duration effects on brain activity were similar in both age groups. These behavioral and electrophysiological results add evidence in support of age-related decline in WM recognition theories, with a slowing of processing speed that may be limited to stimulus evaluation and categorization processes -with no effects on perceptual processes- and a posterior to anterior shift in the recruitment of neural resources. PMID:26569113
Relationships between the intensity and duration of Peltier heat stimulation and pain magnitude.
Vierck, Charles J; Mauderli, Andre P; Riley, Joseph L
2013-03-01
Ramp-and-hold heat stimulation with a Peltier thermode is a standard procedure for quantitative sensory testing of human pain sensitivity. Because myelinated and unmyelinated nociceptive afferents respond preferentially to changing and steady temperatures, respectively, ramp-and-hold heat stimulation could assess processing of input from A-delta nociceptors early and C nociceptors late during prolonged thermal stimulation. In order to evaluate the progression from dynamic change to a steady temperature during prolonged Peltier stimulation, recordings of temperatures at the probe-skin interface were obtained. First, recordings of temperature during contact-and-hold stimulation (solenoid powered delivery of a preheated thermode to the skin) provided an evaluation of heat dissipation from the beginning of stimulation, uncontaminated by ramping. The heat-sink effect lasted up to 8 s and accounted in part for a slow increase in pain intensity for stimulus durations of 1-16 s and stimulus intensities of 43-59 °C. Recordings during longer periods of stimulation showed that feedback-controlled Peltier stimulation generated oscillations in temperature that were tracked for up to 75 s by subjects' continuous ratings of pain. During 120-s trials, sensitization of pain was observed over 45 s after the oscillations subsided. Thus, long-duration stimulation can be utilized to evaluate sensitization, presumably of C nociception, when not disrupted by oscillations in thermode temperature (e.g., those inherent to feedback control of Peltier stimulation). In contrast, sensitization was not observed during 130.5 s of stimulation with alternately increasing and decreasing temperatures that repeatedly activated A-delta nociceptors.
A two-phase model of resource allocation in visual working memory.
Ye, Chaoxiong; Hu, Zhonghua; Li, Hong; Ristaniemi, Tapani; Liu, Qiang; Liu, Taosheng
2017-10-01
Two broad theories of visual working memory (VWM) storage have emerged from current research, a discrete slot-based theory and a continuous resource theory. However, neither the discrete slot-based theory or continuous resource theory clearly stipulates how the mental commodity for VWM (discrete slot or continuous resource) is allocated. Allocation may be based on the number of items via stimulus-driven factors, or it may be based on task demands via voluntary control. Previous studies have obtained conflicting results regarding the automaticity versus controllability of such allocation. In the current study, we propose a two-phase allocation model, in which the mental commodity could be allocated only by stimulus-driven factors in the early consolidation phase. However, when there is sufficient time to complete the early phase, allocation can enter the late consolidation phase, where it can be flexibly and voluntarily controlled according to task demands. In an orientation recall task, we instructed participants to store either fewer items at high-precision or more items at low-precision. In 3 experiments, we systematically manipulated memory set size and exposure duration. We did not find an effect of task demands when the set size was high and exposure duration was short. However, when we either decreased the set size or increased the exposure duration, we found a trade-off between the number and precision of VWM representations. These results can be explained by a two-phase model, which can also account for previous conflicting findings in the literature. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Auditory temporal-order processing of vowel sequences by young and elderly listeners1
Fogerty, Daniel; Humes, Larry E.; Kewley-Port, Diane
2010-01-01
This project focused on the individual differences underlying observed variability in temporal processing among older listeners. Four measures of vowel temporal-order identification were completed by young (N=35; 18–31 years) and older (N=151; 60–88 years) listeners. Experiments used forced-choice, constant-stimuli methods to determine the smallest stimulus onset asynchrony (SOA) between brief (40 or 70 ms) vowels that enabled identification of a stimulus sequence. Four words (pit, pet, pot, and put) spoken by a male talker were processed to serve as vowel stimuli. All listeners identified the vowels in isolation with better than 90% accuracy. Vowel temporal-order tasks included the following: (1) monaural two-item identification, (2) monaural four-item identification, (3) dichotic two-item vowel identification, and (4) dichotic two-item ear identification. Results indicated that older listeners had more variability and performed poorer than young listeners on vowel-identification tasks, although a large overlap in distributions was observed. Both age groups performed similarly on the dichotic ear-identification task. For both groups, the monaural four-item and dichotic two-item tasks were significantly harder than the monaural two-item task. Older listeners’ SOA thresholds improved with additional stimulus exposure and shorter dichotic stimulus durations. Individual differences of temporal-order performance among the older listeners demonstrated the influence of cognitive measures, but not audibility or age. PMID:20370033
[Mechanisms and applications of transcutaneous electrical nerve stimulation in analgesia].
Tang, Zheng-Yu; Wang, Hui-Quan; Xia, Xiao-Lei; Tang, Yi; Peng, Wei-Wei; Hu, Li
2017-06-25
Transcutaneous electrical nerve stimulation (TENS), as a non-pharmacological and non-invasive analgesic therapy with low-cost, has been widely used to relieve pain in various clinical applications, by delivering current pulses to the skin area to activate the peripheral nerve fibers. Nevertheless, analgesia induced by TENS varied in the clinical practice, which could be caused by the fact that TENS with different stimulus parameters has different biological mechanisms in relieving pain. Therefore, to advance our understanding of TENS in various basic and clinical studies, we discussed (1) neurophysiological and biochemical mechanisms of TENS-induced analgesia; (2) relevant factors that may influence analgesic effects of TENS from the perspectives of stimulus parameters, including stimulated position, pulse parameters (current intensity, frequency, and pulse width), stimulus duration and used times in each day; and (3) applications of TENS in relieving clinical pain, including post-operative pain, chronic low back pain and labor pain. Finally, we propose that TENS may involve multiple and complex psychological neurophysiological mechanisms, and suggest that different analgesic effects of TENS with different stimulus parameters should be taken into consideration in clinical applications. In addition, to optimize analgesic effect, we recommend that individual-based TENS stimulation parameters should be designed by considering individual differences among patients, e.g., adaptively adjusting the stimulation parameters based on the dynamic ratings of patients' pain.
Auditory temporal-order processing of vowel sequences by young and elderly listeners.
Fogerty, Daniel; Humes, Larry E; Kewley-Port, Diane
2010-04-01
This project focused on the individual differences underlying observed variability in temporal processing among older listeners. Four measures of vowel temporal-order identification were completed by young (N=35; 18-31 years) and older (N=151; 60-88 years) listeners. Experiments used forced-choice, constant-stimuli methods to determine the smallest stimulus onset asynchrony (SOA) between brief (40 or 70 ms) vowels that enabled identification of a stimulus sequence. Four words (pit, pet, pot, and put) spoken by a male talker were processed to serve as vowel stimuli. All listeners identified the vowels in isolation with better than 90% accuracy. Vowel temporal-order tasks included the following: (1) monaural two-item identification, (2) monaural four-item identification, (3) dichotic two-item vowel identification, and (4) dichotic two-item ear identification. Results indicated that older listeners had more variability and performed poorer than young listeners on vowel-identification tasks, although a large overlap in distributions was observed. Both age groups performed similarly on the dichotic ear-identification task. For both groups, the monaural four-item and dichotic two-item tasks were significantly harder than the monaural two-item task. Older listeners' SOA thresholds improved with additional stimulus exposure and shorter dichotic stimulus durations. Individual differences of temporal-order performance among the older listeners demonstrated the influence of cognitive measures, but not audibility or age.
Effect of ethanol on the visual-evoked potential in rat: dynamics of ON and OFF responses.
Dulinskas, Redas; Buisas, Rokas; Vengeliene, Valentina; Ruksenas, Osvaldas
2017-01-01
The effect of acute ethanol administration on the flash visual-evoked potential (VEP) was investigated in numerous studies. However, it is still unclear which brain structures are responsible for the differences observed in stimulus onset (ON) and offset (OFF) responses and how these responses are modulated by ethanol. The aim of our study was to investigate the pattern of ON and OFF responses in the visual system, measured as amplitude and latency of each VEP component following acute administration of ethanol. VEPs were recorded at the onset and offset of a 500 ms visual stimulus in anesthetized male Wistar rats. The effect of alcohol on VEP latency and amplitude was measured for one hour after injection of 2 g/kg ethanol dose. Three VEP components - N63, P89 and N143 - were analyzed. Our results showed that, except for component N143, ethanol increased the latency of both ON and OFF responses in a similar manner. The latency of N143 during OFF response was not affected by ethanol but its amplitude was reduced. Our study demonstrated that the activation of the visual system during the ON response to a 500 ms visual stimulus is qualitatively different from that during the OFF response. Ethanol interfered with processing of the stimulus duration at the level of the visual cortex and reduced the activation of cortical regions.
Zhao, H Y; Zhang, J J; Jin, Q Y; Liu, W; Wang, G C; Sun, L T; Zhang, X Z; Zhao, H W
2016-02-01
A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production of highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10(13) W cm(-2) in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, H. Y., E-mail: zhaohy@impcas.ac.cn; Zhang, J. J.; Jin, Q. Y.
2016-02-15
A laser ion source based on Nd:YAG laser has been being studied at the Institute of Modern Physics for the production of high intensity high charge state heavy ion beams in the past ten years, for possible applications both in a future accelerator complex and in heavy ion cancer therapy facilities. Based on the previous results for the production of multiple-charged ions from a wide range of heavy elements with a 3 J/8 ns Nd:YAG laser [Zhao et al., Rev. Sci. Instrum. 85, 02B910 (2014)], higher laser energy and intensity in the focal spot are necessary for the production ofmore » highly charged ions from the elements heavier than aluminum. Therefore, the laser ion source was upgraded with a new Nd:YAG laser, the maximum energy of which is 8 J and the pulse duration can be adjusted from 8 to 18 ns. Since then, the charge state distributions of ions from various elements generated by the 8 J Nd:YAG laser were investigated for different experimental conditions, such as laser energy, pulse duration, power density in the focal spot, and incidence angle. It was shown that the incidence angle is one of the most important parameters for the production of highly charged ions. The capability of producing highly charged ions from the elements lighter than silver was demonstrated with the incidence angle of 10° and laser power density of 8 × 10{sup 13} W cm{sup −2} in the focal spot, which makes a laser ion source complementary to the superconducting electron cyclotron resonance ion source for the future accelerator complex especially in terms of the ion beam production from some refractory elements. Nevertheless, great efforts with regard to the extraction of intense ion beams, modification of the ion beam pulse duration, and reliability of the ion source still need to be made for practical applications.« less
The effect of storage on whole blood chemiluminescence measurement of equine neutrophils.
Krumrych, Wiesław; Skórzewski, Radosław; Malinowski, Edward
2013-01-01
The aim of this study was to determine the effect of duration and temperature of sample storage on whole blood chemiluminescence measurement results. Venous blood from 18 clinically healthy Polish half-bred horses aged 4 to 11 years were used in the study. Luminol dependent chemiluminescence (CL) was used to measure neutrophil oxygen metabolism in whole blood. Blood samples were examined for spontaneous CL and stimulated by a surface receptor stimulus as well as extra-receptor stimulus. The assay was performed in two parallel experimental sets with samples stored at 4 and 22 °C, respectively. Whole blood CL was estimated at 2, 6, 24, 48, 72, 96 and 120 h after collection. The study demonstrated that temperature and duration of sample storage are factors that determine the quality of CL measurements of whole blood in horses. The study concluded that samples should be stored at 4 °C and the assay should be performed as early as possible. It was also shown that the viability period of horse blood for CL assays is relatively long. Material stored at room temperature for 24 h and even up to 48 h at 4 °C did not show any significant decrease in spontaneous or stimulated chemiluminescence. Copyright © 2012 John Wiley & Sons, Ltd.
Lee, Hyun-Ah; Lee, Heon-Jeong; Moon, Joung-Ho; Lee, Taek; Kim, Min-Gwan; In, Hoh; Cho, Chul-Hyun; Kim, Leen
2017-03-01
The purpose of this study was to evaluate the applicability of data obtained from a wearable activity tracker (Fitbit Charge HR) to medical research. This was performed by comparing the wearable activity tracker (Fitbit Charge HR) with actigraphy (Actiwatch 2) for sleep evaluation and circadian rest-activity rhythm measurement. Sixteen healthy young adults (female participants, 62.5%; mean age, 22.8 years) wore the Fitbit Charge HR and the Actiwatch 2 on the same wrist; a sleep log was recorded over a 14-day period. We compared the sleep variables and circadian rest-activity rhythm measures with Wilcoxon signed-rank tests and Spearman's correlations. The periods and acrophases of the circadian rest-activity rhythms and the sleep start times did not differ and correlated significantly between the Fitbit Charge HR and the Actiwatch 2. The Fitbit Charge HR tended to overestimate the sleep durations compared with the Actiwatch 2. However, the sleep durations showed high correlation between the two devices for all days. We found that the Fitbit Charge HR showed high accuracy in sleep evaluation and circadian rest-activity rhythm measurement when compared with actigraphy for healthy young adults. The results suggest that the Fitbit Charge HR could be applicable on medical research as an alternative tool to actigraphy for sleep evaluation and measurement of the circadian rest-activity rhythm.
NASA Astrophysics Data System (ADS)
Zhang, Bing
2016-08-01
The discoveries of GW150914, GW151226, and LVT151012 suggest that double black hole (BH-BH) mergers are common in the universe. If at least one of the two merging black holes (BHs) carries a certain amount of charge, possibly retained by a rotating magnetosphere, the inspiral of a BH-BH system would drive a global magnetic dipole normal to the orbital plane. The rapidly evolving magnetic moment during the merging process would drive a Poynting flux with an increasing wind power. The magnetospheric activities during the final phase of the merger would make a fast radio burst (FRB) if the BH charge can be as large as a factor of \\hat{q}˜ ({10}-9{--}{10}-8) of the critical charge Q c of the BH. At large radii, dissipation of the Poynting flux energy in the outflow would power a short-duration high-energy transient, which would appear as a detectable short-duration gamma-ray burst (GRB) if the charge can be as large as \\hat{q}˜ ({10}-5{--}{10}-4). The putative short GRB coincident with GW150914 recorded by Fermi GBM may be interpreted with this model. Future joint GW/GRB/FRB searches would lead to a measurement or place a constraint on the charges carried by isolate BHs.
Mimosa pudica: Electrical and mechanical stimulation of plant movements.
Volkov, Alexander G; Foster, Justin C; Ashby, Talitha A; Walker, Ronald K; Johnson, Jon A; Markin, Vladislav S
2010-02-01
Thigmonastic movements in the sensitive plant Mimosa pudica L., associated with fast responses to environmental stimuli, appear to be regulated through electrical and chemical signal transductions. The thigmonastic responses of M. pudica can be considered in three stages: stimulus perception, electrical signal transmission and induction of mechanical, hydrodynamical and biochemical responses. We investigated the mechanical movements of the pinnae and petioles in M. pudica induced by the electrical stimulation of a pulvinus, petiole, secondary pulvinus or pinna by a low electrical voltage and charge. The threshold value was 1.3-1.5 V of applied voltage and 2 to 10 microC of charge for the closing of the pinnules. Both voltage and electrical charge are responsible for the electro-stimulated closing of a leaf. The mechanism behind closing the leaf in M. pudica is discussed. The hydroelastic curvature mechanism closely describes the kinetics of M. pudica leaf movements.
Takuwa, Hiroyuki; Mori, Daichi; Ozaki, Naoko; Kanou, Masamichi
2013-05-01
The effects of the delay and duration of wind self-generated during walking on the compensational recovery of escape direction were investigated in unilaterally cercus-ablated crickets, Gryllus bimaculatus. Artificial self-generated winds (self-stimulations; hereafter, SSts) from a nozzle set in front of a cricket placed on a styrofoam ball for stationary walking were used for training after unilateral cercus ablation. The delay and duration of artificial SSts were separately controlled. When the stimulus duration was fixed to 100 msec, the crickets trained with artificial SSts of 1000 msec delay showed a compensational recovery of the escape direction. However, no such compensational recovery was observed in crickets trained with artificial SSts of 1200, 1500, and 2000 msec delays. The relationship between the delay and duration of artificial SSts for compensational recovery was investigated. An artificial SSt with a longer delay required a longer-duration air current to cause a recovery of the escape direction. In contrast, an artificial SSt with a shorter delay was effective even when the duration was short. On the basis of the results obtained in the present study, we propose a hypothesis to explain the initial step for the compensation, that is, how the delay and duration of SSts are traded in terms of the compensational recovery of the escape direction.
Pupil dilation reflects perceptual selection and predicts subsequent stability in perceptual rivalry
Einhäuser, Wolfgang; Stout, James; Koch, Christof; Carter, Olivia
2008-01-01
During sustained viewing of an ambiguous stimulus, an individual's perceptual experience will generally switch between the different possible alternatives rather than stay fixed on one interpretation (perceptual rivalry). Here, we measured pupil diameter while subjects viewed different ambiguous visual and auditory stimuli. For all stimuli tested, pupil diameter increased just before the reported perceptual switch and the relative amount of dilation before this switch was a significant predictor of the subsequent duration of perceptual stability. These results could not be explained by blink or eye-movement effects, the motor response or stimulus driven changes in retinal input. Because pupil dilation reflects levels of norepinephrine (NE) released from the locus coeruleus (LC), we interpret these results as suggestive that the LC–NE complex may play the same role in perceptual selection as in behavioral decision making. PMID:18250340
Cocco, Simona; Leibler, Stanislas; Monasson, Rémi
2009-01-01
Complexity of neural systems often makes impracticable explicit measurements of all interactions between their constituents. Inverse statistical physics approaches, which infer effective couplings between neurons from their spiking activity, have been so far hindered by their computational complexity. Here, we present 2 complementary, computationally efficient inverse algorithms based on the Ising and “leaky integrate-and-fire” models. We apply those algorithms to reanalyze multielectrode recordings in the salamander retina in darkness and under random visual stimulus. We find strong positive couplings between nearby ganglion cells common to both stimuli, whereas long-range couplings appear under random stimulus only. The uncertainty on the inferred couplings due to limitations in the recordings (duration, small area covered on the retina) is discussed. Our methods will allow real-time evaluation of couplings for large assemblies of neurons. PMID:19666487
[Behavior and cognitive treatments for insomnia. An alternative to pharmacotherapy].
Baillargeon, L
1997-02-01
To familiarize family physicians with cognitive and behavioural treatments for insomnia. MEDLINE was searched from 1983 to 1995 and Psychlit from 1974 to 1995 using the key words "behaviour therapy," "cognitive therapy," "phototherapy," and "insomnia." We chose randomized trials and meta-analyses on the treatment of insomnia. Information was extracted on time-lag before sleep, frequency and duration of wakeful periods during the night, consumption of hynotics, and subjects' own assessment of their sleep before and after treatment. The most effective interventions were relaxation training, sleep restriction, and stimulus control. Practising good sleeping habits was only somewhat effective and should always be used in conjunction with other interventions. Stimulus control for insomnia has been demonstrated to be effective when used by primary care physicians. Other nonpharmacologic treatments should be evaluated in a similar manner.
Global motion perception deficits in autism are reflected as early as primary visual cortex
Thomas, Cibu; Kravitz, Dwight J.; Wallace, Gregory L.; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I.
2014-01-01
Individuals with autism are often characterized as ‘seeing the trees, but not the forest’—attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15–27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. PMID:25060095
It's time to fear! Interval timing in odor fear conditioning in rats
Shionoya, Kiseko; Hegoburu, Chloé; Brown, Bruce L.; Sullivan, Regina M.; Doyère, Valérie; Mouly, Anne-Marie
2013-01-01
Time perception is crucial to goal attainment in humans and other animals, and interval timing also guides fundamental animal behaviors. Accumulating evidence has made it clear that in associative learning, temporal relations between events are encoded, and a few studies suggest this temporal learning occurs very rapidly. Most of these studies, however, have used methodologies that do not permit investigating the emergence of this temporal learning. In the present study we monitored respiration, ultrasonic vocalization (USV) and freezing behavior in rats in order to perform fine-grain analysis of fear responses during odor fear conditioning. In this paradigm an initially neutral odor (the conditioned stimulus, CS) predicted the arrival of an aversive unconditioned stimulus (US, footshock) at a fixed 20-s time interval. We first investigated the development of a temporal pattern of responding related to CS-US interval duration. The data showed that during acquisition with odor-shock pairings, a temporal response pattern of respiration rate was observed. Changing the CS-US interval duration from 20-s to 30-s resulted in a shift of the temporal response pattern appropriate to the new duration thus demonstrating that the pattern reflected the learning of the CS-US interval. A temporal pattern was also observed during a retention test 24 h later for both respiration and freezing measures, suggesting that the animals had stored the interval duration in long-term memory. We then investigated the role of intra-amygdalar dopaminergic transmission in interval timing. For this purpose, the D1 dopaminergic receptors antagonist SCH23390 was infused in the basolateral amygdala before conditioning. This resulted in an alteration of timing behavior, as reflected in differential temporal patterns between groups observed in a 24 h retention test off drug. The present data suggest that D1 receptor dopaminergic transmission within the amygdala is involved in temporal processing. PMID:24098277
Threshold setting by the surround of cat retinal ganglion cells.
Barlow, H B; Levick, W R
1976-08-01
1. The slope of curves relating the log increment threshold to log background luminance in cat retinal ganglion cells is affected by the area and duration of the test stimulus, as it is in human pyschophysical experiments. 2. Using large area, long duration stimuli the slopes average 0-82 and approach close to 1 (Weber's Law) in the steepest cases. Small stimuli gave an average of 0-53 for on-centre units using brief stimuli, and 0-56 for off-centre units, using long stimuli. Slopes under 0-5 (square root law) were not found over an extended range of luminances. 3. On individual units the slope was generally greater for larger and longer test stimulus, but no unit showed the full extent of change from slope of 0-5 to slope of 1. 4. The above differences hold for objective measures of quantum/spike ratio, as well as for thresholds either judged by ear or assessed by calculation. 5. The steeper slope of the curves for large area, long duration test stimuli compared with small, long duration stimuli, is associated with the increased effectiveness of antagonism from the surround at high backgrounds. This change may be less pronounced in off-centre units, one of which (probably transient Y-type) showed no difference of slope, and gave parallel area-threshold curves at widely separated background luminances, confirming the importance of differential surround effectiveness in changing the slope of the curves. 6. In on-centre units, the increased relative effectiveness of the surround is associated with the part of the raised background light that falls on the receptive field centre. 7. It is suggested that the variable surround functions as a zero-offset control that sets the threshold excitation required for generating impulses, and that this is separate from gain-setting adaptive mechanisms. This may be how ganglion cells maintain high incremental sensitivity in spite of a strong maintained excitatory drive that would otherwise cause compressive response non-linearities.
The Effect of Variable End of Charge Battery Management on Small-Cell Batteries
NASA Technical Reports Server (NTRS)
Neubauer, Jeremy S.; Bennetti, Andrea; Pearson, Chris; Simmons, Nick; Reid, Concha; Manzo, Michelle
2007-01-01
Batteries are critical components for spacecraft, supplying power to all electrical systems during solar eclipse. These components must be lightweight due to launch vehicle limitations and the desire to fly heavier, more capable payloads, and must show excellent capacity retention with age to support the ever growing durations of space missions. ABSL's heritage Lithium Ion cell, the ABSL 18650HC, is an excellent low mass solution to this problem that has been proven capable of supporting long mission durations. The NASA Glenn Research Center recently proposed and initiated a test to study the effects of reduced end of charge voltage on aging of the ABSL 18650HC and other Lithium Ion cells. This paper presents the testing details, a method to analyze and compare capacity fade between the different cases, and a preliminary analysis of the to-date performance of ABSL s cells. This initial analysis indicates that employing reduced end of charge techniques could double the life capabilities of the ABSL 18650HC cell. Accordingly, continued investigation is recommended, particularly at higher depths of discharge to better assess the method s potential mass savings for short duration missions.
Selective inattention to anxiety-linked stimuli.
Blum, G S; Barbour, J S
1979-06-01
The term selective inattention as used here subsumes those phenomena whose primary function is the active blocking or attenuation of partially processed contents en route to conscious expression. Examples are anxiety-motivated forgetting or perceptual distortion and hypnotically induced negative hallucinations. Studies in the field of selective attention have typically been designed to explain what takes place in a task in which the subject is first instructed to attend to a particular stimulus and then to consciously execute that instruction as well as he can. The rejection of content in process is examined only sceondarily as a consequence of the acceptance of relevant information. In the present experiments and theorizing, the emphasis instead is on inhibitory operations that take place automatically, without conscious intent, in response to a potential anxiety reaction. Experiment 1 explored the interaction of anxiety-linked inattention with strength of a target stimulus. Three female subjects were programmed under hypnosis to respond posthypnotically in the On condition with prescribed degrees of anxiety when certain Blacky pictures popped into mind later ,t the end of experimental trials; in the Off conditionall pictures were to become neutral. With the three female subjects still under hypnosis, each of the loaded pictures was then paired with a four-letter work relevant to the individual's own version of what was happening in the picture. The waking recognition task, carried out with amnesia for the prior hypnotic programming, consisted of tachistoscopic exposure of loaded words and physically similar filler words at four durations within a baseline range of recognition accuracy from 50%--75% correct. The data yielded a curvilinear relationship in which the recognition of only the loaded words was significnatly lower in the On condition at the 60%--70% range of recognition accuracy but not at shorter or longer stimulus durations. Experiment 2, for which the prior hypnotic programming of the same three subjects was similar to Experiment 1, used an anagram approach to comparable four-letter words, except that pleasure-loaded words were introduced as a control along with filler words. Four durations of tachistoscopic exposure of the anagrams were used with each individual, and the major dependent variable was response latency measured in milliseconds. An independent measure of perceptual discriminability of the scrambled stimulus letters was obtained to isolate perceptual from cognitive aspects of the task. The results indicated that both low perceivability and high solvability increase the likelihood of response delays specifically in the presence of anxiety-linked stimuli. Experiment 3 was a nonhypnotic replication of Experiment 2, using 12 male and 13 female subjects. The potential affective loading of key anxiety and pleasure words was accomplished by structured scenarios for the Blacky pictures in which subjects were asked to place themselves as vividly as possible...
Simulation of axonal excitability using a Spreadsheet template created in Microsoft Excel.
Brown, A M
2000-08-01
The objective of this present study was to implement an established simulation protocol (A.M. Brown, A methodology for simulating biological systems using Microsoft Excel, Comp. Methods Prog. Biomed. 58 (1999) 181-90) to model axonal excitability. The simulation protocol involves the use of in-cell formulas directly typed into a spreadsheet and does not require any programming skills or use of the macro language. Once the initial spreadsheet template has been set up the simulations described in this paper can be executed with a few simple keystrokes. The model axon contained voltage-gated ion channels that were modeled using Hodgkin Huxley style kinetics. The basic properties of axonal excitability modeled were: (1) threshold of action potential firing, demonstrating that not only are the stimulus amplitude and duration critical in the generation of an action potential, but also the resting membrane potential; (2) refractoriness, the phenomenon of reduced excitability immediately following an action potential. The difference between the absolute refractory period, when no amount of stimulus will elicit an action potential, and relative refractory period, when an action potential may be generated by applying increased stimulus, was demonstrated with regard to the underlying state of the Na(+) and K(+) channels; (3) temporal summation, a process by which two sub-threshold stimuli can unite to elicit an action potential was shown to be due to conductance changes outlasting the first stimulus and summing with the second stimulus-induced conductance changes to drive the membrane potential past threshold; (4) anode break excitation, where membrane hyperpolarization was shown to produce an action potential by removing Na(+) channel inactivation that is present at resting membrane potential. The simulations described in this paper provide insights into mechanisms of axonal excitation that can be carried out by following an easily understood protocol.
Induced theta oscillations as biomarkers for alcoholism.
Andrew, Colin; Fein, George
2010-03-01
Studies have suggested that non-phase-locked event-related oscillations (ERO) in target stimulus processing might provide biomarkers of alcoholism. This study investigates the discriminatory power of non-phase-locked oscillations in a group of long-term abstinent alcoholics (LTAAs) and non-alcoholic controls (NACs). EEGs were recorded from 48 LTAAs and 48 age and gender comparable NACs during rest with eyes open (EO) and during the performance of a three-condition visual target detection task. The data were analyzed to extract resting power, ERP amplitude and non-phase-locked ERO power measures. Data were analyzed using MANCOVA to determine the discriminatory power of induced theta ERO vs. resting theta power vs. P300 ERP measures in differentiating the LTAA and NAC groups. Both groups showed significantly more theta power in the pre-stimulus reference period of the task vs. the resting EO condition. The resting theta power did not discriminate the groups, while the LTAAs showed significantly less pre-stimulus theta power vs. the NACs. The LTAAs showed a significantly larger theta event-related synchronization (ERS) to the target stimulus vs. the NACs, even after accounting for pre-stimulus theta power levels. ERS to non-target stimuli showed smaller induced oscillations vs. target stimuli with no group differences. Alcohol use variables, a family history of alcohol problems, and the duration of alcohol abstinence were not associated with any theta power measures. While reference theta power in the task and induced theta oscillations to target stimuli both discriminate LTAAs and NACs, induced theta oscillations better discriminate the groups. Induced theta power measures are also more powerful and independent group discriminators than the P3b amplitude. Induced frontal theta oscillations promise to provide biomarkers of alcoholism that complement the well-established P300 ERP discriminators.
Spacecraft Charging in Geostationary Transfer Orbit
NASA Technical Reports Server (NTRS)
Parker, Linda Neergaard; Minow, Joseph I.
2014-01-01
The 700 km x 5.8 Re orbit of the two Van Allen Probes spacecraft provide a unique opportunity to investigate spacecraft charging in geostationary transfer orbits. We use records from the Helium Oxygen Proton Electron (HOPE) plasma spectrometer to identify candidate surface charging events based on the "ion line" charging signature in the ion records. We summarize the energetic particle environment and the conditions necessary for charging to occur in this environment. We discuss the altitude, duration, and magnitude of events observed in the Van Allen Probes from the beginning of the mission to present time. In addition, we explore what information the dual satellites provide on the spatial and temporal variations in the charging environments.
Temporal cognition: Connecting subjective time to perception, attention, and memory.
Matthews, William J; Meck, Warren H
2016-08-01
Time is a universal psychological dimension, but time perception has often been studied and discussed in relative isolation. Increasingly, researchers are searching for unifying principles and integrated models that link time perception to other domains. In this review, we survey the links between temporal cognition and other psychological processes. Specifically, we describe how subjective duration is affected by nontemporal stimulus properties (perception), the allocation of processing resources (attention), and past experience with the stimulus (memory). We show that many of these connections instantiate a "processing principle," according to which perceived time is positively related to perceptual vividity and the ease of extracting information from the stimulus. This empirical generalization generates testable predictions and provides a starting-point for integrated theoretical frameworks. By outlining some of the links between temporal cognition and other domains, and by providing a unifying principle for understanding these effects, we hope to encourage time-perception researchers to situate their work within broader theoretical frameworks, and that researchers from other fields will be inspired to apply their insights, techniques, and theorizing to improve our understanding of the representation and judgment of time. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli
Keefe, Douglas H.; Feeney, M. Patrick; Hunter, Lisa L.; Fitzpatrick, Denis F.
2016-01-01
Transient-evoked otoacoustic emission (TEOAE) responses (0.7–8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data. PMID:27914441
Morawetz, Carmen; Bode, Stefan; Derntl, Birgit; Heekeren, Hauke R
2017-01-01
Emotion regulation comprises all extrinsic and intrinsic control processes whereby people monitor, evaluate and modify the occurrence, intensity and duration of emotional reactions. Here we sought to quantitatively summarize the existing neuroimaging literature to investigate a) whether different emotion regulation strategies are based on different or the same neural networks; b) which brain regions in particular support the up- and down-regulation of emotions, respectively; and c) to which degree the neural networks realising emotion regulation depend on the stimulus material used to elicit emotions. The left ventrolateral prefrontal cortex (VLPFC), the anterior insula and the supplementary motor area were consistently activated independent of the regulation strategy. VLPFC and posterior cingulate cortex were the main regions consistently found to be recruited during the up-regulation as well as the down-regulation of emotion. The down-regulation compared to the up-regulation of emotions was associated with more right-lateralized activity while up-regulating emotions more strongly modulated activity in the ventral striatum. Finally, the process of emotion regulation appeared to be unaffected by stimulus material. Copyright © 2016 Elsevier Ltd. All rights reserved.
Crossmodal attention switching: auditory dominance in temporal discrimination tasks.
Lukas, Sarah; Philipp, Andrea M; Koch, Iring
2014-11-01
Visual stimuli are often processed more efficiently than accompanying stimuli in another modality. In line with this "visual dominance", earlier studies on attentional switching showed a clear benefit for visual stimuli in a bimodal visual-auditory modality-switch paradigm that required spatial stimulus localization in the relevant modality. The present study aimed to examine the generality of this visual dominance effect. The modality appropriateness hypothesis proposes that stimuli in different modalities are differentially effectively processed depending on the task dimension, so that processing of visual stimuli is favored in the dimension of space, whereas processing auditory stimuli is favored in the dimension of time. In the present study, we examined this proposition by using a temporal duration judgment in a bimodal visual-auditory switching paradigm. Two experiments demonstrated that crossmodal interference (i.e., temporal stimulus congruence) was larger for visual stimuli than for auditory stimuli, suggesting auditory dominance when performing temporal judgment tasks. However, attention switch costs were larger for the auditory modality than for visual modality, indicating a dissociation of the mechanisms underlying crossmodal competition in stimulus processing and modality-specific biasing of attentional set. Copyright © 2014 Elsevier B.V. All rights reserved.
Liu, Hanjun; Wang, Emily Q.; Chen, Zhaocong; Liu, Peng; Larson, Charles R.; Huang, Dongfeng
2010-01-01
The purpose of this cross-language study was to examine whether the online control of voice fundamental frequency (F0) during vowel phonation is influenced by language experience. Native speakers of Cantonese and Mandarin, both tonal languages spoken in China, participated in the experiments. Subjects were asked to vocalize a vowel sound ∕u∕ at their comfortable habitual F0, during which their voice pitch was unexpectedly shifted (±50, ±100, ±200, or ±500 cents, 200 ms duration) and fed back instantaneously to them over headphones. The results showed that Cantonese speakers produced significantly smaller responses than Mandarin speakers when the stimulus magnitude varied from 200 to 500 cents. Further, response magnitudes decreased along with the increase in stimulus magnitude in Cantonese speakers, which was not observed in Mandarin speakers. These findings suggest that online control of voice F0 during vocalization is sensitive to language experience. Further, systematic modulations of vocal responses across stimulus magnitude were observed in Cantonese speakers but not in Mandarin speakers, which indicates that this highly automatic feedback mechanism is sensitive to the specific tonal system of each language. PMID:21218905
Comparisons of transient evoked otoacoustic emissions using chirp and click stimuli.
Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F
2016-09-01
Transient-evoked otoacoustic emission (TEOAE) responses (0.7-8 kHz) were measured in normal-hearing adult ears using click stimuli and chirps whose local frequency increased or decreased linearly with time over the stimulus duration. Chirp stimuli were created by allpass filtering a click with relatively constant incident pressure level over frequency. Chirp TEOAEs were analyzed as a nonlinear residual signal by inverse allpass filtering each chirp response into an equivalent click response. Multi-window spectral and temporal averaging reduced noise levels compared to a single-window average. Mean TEOAE levels using click and chirp stimuli were similar with respect to their standard errors in adult ears. TEOAE group delay, group spread, instantaneous frequency, and instantaneous bandwidth were similar overall for chirp and click conditions, except for small differences showing nonlinear interactions differing across stimulus conditions. These results support the theory of a similar generation mechanism on the basilar membrane for both click and chirp conditions based on coherent reflection within the tonotopic region. TEOAE temporal fine structure was invariant across changes in stimulus level, which is analogous to the intensity invariance of click-evoked basilar-membrane displacement data.
Simultaneous perceptual and response biases on sequential face attractiveness judgments.
Pegors, Teresa K; Mattar, Marcelo G; Bryan, Peter B; Epstein, Russell A
2015-06-01
Face attractiveness is a social characteristic that we often use to make first-pass judgments about the people around us. However, these judgments are highly influenced by our surrounding social world, and researchers still understand little about the mechanisms underlying these influences. In a series of 3 experiments, we use a novel sequential rating paradigm that enables us to measure biases in attractiveness judgments from the previous face and the previous rating. Our results reveal 2 simultaneous and opposing influences on face attractiveness judgments that arise from past experience of faces: a response bias in which attractiveness ratings shift toward a previously given rating and a stimulus bias in which attractiveness ratings shift away from the mean attractiveness of the previous face. Further, we provide evidence that the contrastive stimulus bias (but not the assimilative response bias) is strengthened by increasing the duration of the previous stimulus, suggesting an underlying perceptual mechanism. These results demonstrate that judgments of face attractiveness are influenced by information from our evaluative and perceptual history and that these influences have measurable behavioral effects over the course of just a few seconds. (c) 2015 APA, all rights reserved).
Ras regulates assembly of mitogenic signalling complexes through the effector protein IMP.
Matheny, Sharon A; Chen, Chiyuan; Kortum, Robert L; Razidlo, Gina L; Lewis, Robert E; White, Michael A
2004-01-15
The signal transduction cascade comprising Raf, mitogen-activated protein (MAP) kinase kinase (MEK) and MAP kinase is a Ras effector pathway that mediates diverse cellular responses to environmental cues and contributes to Ras-dependent oncogenic transformation. Here we report that the Ras effector protein Impedes Mitogenic signal Propagation (IMP) modulates sensitivity of the MAP kinase cascade to stimulus-dependent activation by limiting functional assembly of the core enzymatic components through the inactivation of KSR, a scaffold/adaptor protein that couples activated Raf to its substrate MEK. IMP is a Ras-responsive E3 ubiquitin ligase that, on activation of Ras, is modified by auto-polyubiquitination, which releases the inhibition of Raf-MEK complex formation. Thus, Ras activates the MAP kinase cascade through simultaneous dual effector interactions: induction of Raf kinase activity and derepression of Raf-MEK complex formation. IMP depletion results in increased stimulus-dependent MEK activation without alterations in the timing or duration of the response. These observations suggest that IMP functions as a threshold modulator, controlling sensitivity of the cascade to stimulus and providing a mechanism to allow adaptive behaviour of the cascade in chronic or complex signalling environments.
Effects of single cycle binaural beat duration on auditory evoked potentials.
Mihajloski, Todor; Bohorquez, Jorge; Özdamar, Özcan
2014-01-01
Binaural beat (BB) illusions are experienced as continuous central pulsations when two sounds with slightly different frequencies are delivered to each ear. It has been shown that steady-state auditory evoked potentials (AEPs) to BBs can be captured and investigated. The authors recently developed a new method of evoking transient AEPs to binaural beats using frequency modulated stimuli. This methodology was able to create single BBs in predetermined intervals with varying carrier frequencies. This study examines the effects of the BB duration and the frequency modulating component of the stimulus on the binaural beats and their evoked potentials. Normal hearing subjects were tested with a set of four durations (25, 50, 100, and 200 ms) with two stimulation configurations, binaural dichotic (binaural beats) and diotic (frequency modulation). The results obtained from the study showed that out of the given durations, the 100 ms beat, was capable of evoking the largest amplitude responses. The frequency modulation effect showed a decrease in peak amplitudes with increasing beat duration until their complete disappearance at 200 ms. Even though, at 200 ms, the frequency modulation effects were not present, the binaural beats were still perceived and captured as evoked potentials.
The Impact of Feedback Frequency on Performance in a Novel Speech Motor Learning Task.
Lowe, Mara Steinberg; Buchwald, Adam
2017-06-22
This study investigated whether whole nonword accuracy, phoneme accuracy, and acoustic duration measures were influenced by the amount of feedback speakers without impairment received during a novel speech motor learning task. Thirty-two native English speakers completed a nonword production task across 3 time points: practice, short-term retention, and long-term retention. During practice, participants received knowledge of results feedback according to a randomly assigned schedule (100%, 50%, 20%, or 0%). Changes in nonword accuracy, phoneme accuracy, nonword duration, and initial-cluster duration were compared among feedback groups, sessions, and stimulus properties. All participants improved phoneme and whole nonword accuracy at short-term and long-term retention time points. Participants also refined productions of nonwords, as indicated by a decrease in nonword duration across sessions. The 50% group exhibited the largest reduction in duration between practice and long-term retention for nonwords with native and nonnative clusters. All speakers, regardless of feedback schedule, learned new speech motor behaviors quickly with a high degree of accuracy and refined their speech motor skills for perceptually accurate productions. Acoustic measurements may capture more subtle, subperceptual changes that may occur during speech motor learning. https://doi.org/10.23641/asha.5116324.
NASA Astrophysics Data System (ADS)
Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi
2005-03-01
In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.
Development of a Female Atlas of Strengths
1982-02-01
the maximum in water at 2%. The post- exercise hyperaemic response was greater for a given duration of contraction in water at 34 and 42% than at lower...references. 226 STUDY: Duncan, G., Lambie, D.G. and Johnson, R.H. Ventilatory responses to sustained static forearm exercise in man. New Zealand Med. Journal...1978, 88(618), 169. KEYWORDS: Static exercise , ventilatory responses . METHODS: Five healthy subjects were used to study the stimulus for
Final Report: Computer-aided Human Centric Cyber Situation Awareness
2016-03-20
logs, OS audit trails, vulnerability reports, and packet dumps ), weeding out the false positives, grouping the related indicators so that different...short time duration of each visual stimulus in an fMRI study, we have designed “network security analysis cards ” that require the subject to...determine whether alerts in the cards indicate malicious events. Two types of visual displays of alerts (i.e., tabular display and node-link display) are
1974-08-31
urinary diversion b. Remove temporary/j ermanent collection appliance c. Perform basic sto-A care d. Cleanse /examine cc’Alection device prior to...of micturition d. Determine the type/degree/duration of urethral, vaginal , wound, other urinary outlet discharges e. Determine location/site and...related o. Determine if problem is vaginal /gynacologic p. Determine if problem is scrotal related PERFORMANCE OBJECTIVE (Stimulus) When assigned to
Vibrotactile timing: Are vibrotactile judgements of duration affected by repetitive stimulation?
Jones, Luke A; Ogden, Ruth S
2016-01-01
Timing in the vibrotactile modality was explored. Previous research has shown that repetitive auditory stimulation (in the form of click-trains) and visual stimulation (in the form of flickers) can alter duration judgements in a manner consistent with a "speeding up" of an internal clock. In Experiments 1 and 2 we investigated whether repetitive vibrotactile stimulation in the form of vibration trains would also alter duration judgements of either vibrotactile stimuli or visual stimuli. Participants gave verbal estimates of the duration of vibrotactile and visual stimuli that were preceded either by five seconds of 5-Hz vibration trains, or, by a five-second period of no vibrotactile stimulation, the end of which was signalled by a single vibration pulse (control condition). The results showed that durations were overestimated in the vibrotactile train conditions relative to the control condition; however, the effects were not multiplicative (did not increase with increasing stimulus duration) and as such were not consistent with a speeding up of the internal clock, but rather with an additive attentional effect. An additional finding was that the slope of the vibrotactile psychometric (control condition) function was not significantly different from that of the visual (control condition) function, which replicates a finding from a previous cross-modal comparison of timing.
14 CFR 158.31 - Duration of authority to impose a PFC after project implementation.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Application and Approval....S.C. 47524 and 47526, and the authority to collect the PFC is terminated under that statute's... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Duration of authority to impose a PFC after...
14 CFR 158.31 - Duration of authority to impose a PFC after project implementation.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Application and Approval....S.C. 47524 and 47526, and the authority to collect the PFC is terminated under that statute's... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Duration of authority to impose a PFC after...
14 CFR 158.31 - Duration of authority to impose a PFC after project implementation.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Application and Approval....S.C. 47524 and 47526, and the authority to collect the PFC is terminated under that statute's... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Duration of authority to impose a PFC after...
14 CFR 158.31 - Duration of authority to impose a PFC after project implementation.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Application and Approval....S.C. 47524 and 47526, and the authority to collect the PFC is terminated under that statute's... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Duration of authority to impose a PFC after...
14 CFR 158.31 - Duration of authority to impose a PFC after project implementation.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS PASSENGER FACILITY CHARGES (PFC'S) Application and Approval....S.C. 47524 and 47526, and the authority to collect the PFC is terminated under that statute's... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Duration of authority to impose a PFC after...
Gallistel, C R
2017-07-01
Recent electrophysiological results imply that the duration of the stimulus onset asynchrony in eyeblink conditioning is encoded by a mechanism intrinsic to the cerebellar Purkinje cell. This raises the general question - how is quantitative information (durations, distances, rates, probabilities, amounts, etc.) transmitted by spike trains and encoded into engrams? The usual assumption is that information is transmitted by firing rates. However, rate codes are energetically inefficient and computationally awkward. A combinatorial code is more plausible. If the engram consists of altered synaptic conductances (the usual assumption), then we must ask how numbers may be written to synapses. It is much easier to formulate a coding hypothesis if the engram is realized by a cell-intrinsic molecular mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gayet, Surya; Stein, Timo
2017-01-01
A recent focus in the field of consciousness research involves investigating the propensity of initially non-conscious visual information to gain access to consciousness. A critical tool for measuring conscious access is the so-called breaking continuous flash suppression paradigm (b-CFS). In this paradigm, a high contrast dynamic pattern is presented to one eye, thereby temporarily suppressing a target stimulus that is presented to the other eye. The time it takes for observers to report (e.g., the location of) the initially suppressed stimulus provides a measure of conscious access. Typical observations in b-CFS studies include the finding that upright faces are released from suppression faster than inverted faces, and the finding that stimuli that match the current content of visual working memory are released from suppression faster than mismatching stimuli. Interestingly, the extent to which observers exhibit these effects varies extensively (in the range of hundreds of milliseconds). By re-analyzing existing datasets and a new dataset we establish that the difference in RTs between conditions in b-CFS tasks (i.e., the effect of interest) is highly correlated with participants' overall suppression durations, and with their trial-to-trial variability in RTs. We advocate the usage of a simple latency- normalization method, which (1) removes the between-subject variability in suppression duration from the effect of interest, while (2) providing distributions of RT differences that are better suited for parametric testing. We next compare this latency-normalization method to two other transformations that are widely applied on within-subject RT data (z-transformations and log-transformations). Finally, we tentatively discuss how trial-to-trial variability and overall suppression duration might relate to prolonged phases of shallow suppression that are more prone to modulations of conscious access. PMID:28396645
Emotion based attentional priority for storage in visual short-term memory.
Simione, Luca; Calabrese, Lucia; Marucci, Francesco S; Belardinelli, Marta Olivetti; Raffone, Antonino; Maratos, Frances A
2014-01-01
A plethora of research demonstrates that the processing of emotional faces is prioritised over non-emotive stimuli when cognitive resources are limited (this is known as 'emotional superiority'). However, there is debate as to whether competition for processing resources results in emotional superiority per se, or more specifically, threat superiority. Therefore, to investigate prioritisation of emotional stimuli for storage in visual short-term memory (VSTM), we devised an original VSTM report procedure using schematic (angry, happy, neutral) faces in which processing competition was manipulated. In Experiment 1, display exposure time was manipulated to create competition between stimuli. Participants (n = 20) had to recall a probed stimulus from a set size of four under high (150 ms array exposure duration) and low (400 ms array exposure duration) perceptual processing competition. For the high competition condition (i.e. 150 ms exposure), results revealed an emotional superiority effect per se. In Experiment 2 (n = 20), we increased competition by manipulating set size (three versus five stimuli), whilst maintaining a constrained array exposure duration of 150 ms. Here, for the five-stimulus set size (i.e. maximal competition) only threat superiority emerged. These findings demonstrate attentional prioritisation for storage in VSTM for emotional faces. We argue that task demands modulated the availability of processing resources and consequently the relative magnitude of the emotional/threat superiority effect, with only threatening stimuli prioritised for storage in VSTM under more demanding processing conditions. Our results are discussed in light of models and theories of visual selection, and not only combine the two strands of research (i.e. visual selection and emotion), but highlight a critical factor in the processing of emotional stimuli is availability of processing resources, which is further constrained by task demands.
Hu, Ning; Miller, Charles A; Abbas, Paul J; Robinson, Barbara K; Woo, Jihwan
2010-12-01
Response rates of auditory nerve fibers (ANFs) to electric pulse trains change over time, reflecting substantial spike-rate adaptation that depends on stimulus parameters. We hypothesize that adaptation affects the representation of amplitude-modulated pulse trains used by cochlear prostheses to transmit speech information to the auditory system. We recorded cat ANF responses to sinusoidally amplitude-modulated (SAM) trains with 5,000 pulse/s carriers. Stimuli delivered by a monopolar intracochlear electrode had fixed modulation frequency (100 Hz) and depth (10%). ANF responses were assessed by spike-rate measures, while representation of modulation was evaluated by vector strength (VS) and the fundamental component of the fast Fourier transform (F(0) amplitude). These measures were assessed across the 400 ms duration of pulse-train stimuli, a duration relevant to speech stimuli. Different stimulus levels were explored and responses were categorized into four spike-rate groups to assess level effects across ANFs. The temporal pattern of rate adaptation to modulated trains was similar to that of unmodulated trains, but with less rate adaptation. VS to the modulator increased over time and tended to saturate at lower spike rates, while F(0) amplitude typically decreased over time for low driven rates and increased for higher driven rates. VS at moderate and high spike rates and degree of F(0) amplitude temporal changes at low and moderate spike rates were positively correlated with the degree of rate adaptation. Thus, high-rate carriers will modify the ANF representation of the modulator over time. As the VS and F(0) measures were sensitive to adaptation-related changes over different spike-rate ranges, there is value in assessing both measures.
Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don
2015-12-01
Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.
NASA Astrophysics Data System (ADS)
Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don
2015-12-01
Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.
Dynamic mapping of the human visual cortex by high-speed magnetic resonance imaging.
Blamire, A M; Ogawa, S; Ugurbil, K; Rothman, D; McCarthy, G; Ellermann, J M; Hyder, F; Rattner, Z; Shulman, R G
1992-01-01
We report the use of high-speed magnetic resonance imaging to follow the changes in image intensity in the human visual cortex during stimulation by a flashing checkerboard stimulus. Measurements were made in a 2.1-T, 1-m-diameter magnet, part of a Bruker Biospec spectrometer that we had programmed to do echo-planar imaging. A 15-cm-diameter surface coil was used to transmit and receive signals. Images were acquired during periods of stimulation from 2 s to 180 s. Images were acquired in 65.5 ms in a 10-mm slice with in-plane voxel size of 6 x 3 mm. Repetition time (TR) was generally 2 s, although for the long flashing periods, TR = 8 s was used. Voxels were located onto an inversion recovery image taken with 2 x 2 mm in-plane resolution. Image intensity increased after onset of the stimulus. The mean change in signal relative to the prestimulation level (delta S/S) was 9.7% (SD = 2.8%, n = 20) with an echo time of 70 ms. Irrespective of the period of stimulation, the increase in magnetic resonance signal intensity was delayed relative to the stimulus. The mean delay measured from the start of stimulation for each protocol was as follows: 2-s stimulation, delay = 3.5 s (SD = 0.5 s, n = 10) (the delay exceeds stimulus duration); 20- to 24-s stimulation, delay = 5 s (SD = 2 s, n = 20). PMID:1438317
Singh, Nagendra Madan; Sathyaprabha, T N; Thirthalli, Jagadisha; Andrade, Chittaranjan
2018-01-01
No electroconvulsive therapy (ECT) study on humans or in animal models has so far examined whether differently composed electrical stimuli exert different cardiac electrophysiological effects at constant electrical dose. The subject is important because cardiac electrophysiological changes may provide indirect information about ECT seizure quality as modulated by stimulus composition. Adult female Wistar rats ( n = 20/group) received fixed, moderately suprathreshold (18 mC) electrical stimuli. This stimulus in each of eight groups was formed by varying pulse amplitude, pulse width, pulse frequency, and stimulus duration. The electrocardiogram was recorded, and time and frequency domain variables were examined in 30 s epochs in preictal (30 s before electroconvulsive shock [ECS]), early postictal (starting 15 s after stimulation), and late postictal (5 h after ECS) periods. Alpha for statistical significance was set at P < 0.01 to adjust for multiple hypothesis testing. Cardiac electrophysiological indices in the eight groups did not differ significantly at baseline. At both early and late postictal time points, almost no analysis yielded statistically significant differences between groups for four time domain variables, including heart rate and standard deviation of R-R intervals, and for six frequency domain variables, including low-frequency power, high-frequency power, and total power. Cardiac electrophysiological measures may not be helpful to identify differences in seizure quality that are driven by differences in the composition of electrical stimuli at constant, moderately suprathreshold electrical dose. The generalization of this conclusion to threshold electrical doses and to human contexts requires a study.
Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.
Karimi, Mahdi; Ghasemi, Amir; Sahandi Zangabad, Parham; Rahighi, Reza; Moosavi Basri, S Masoud; Mirshekari, H; Amiri, M; Shafaei Pishabad, Z; Aslani, A; Bozorgomid, M; Ghosh, D; Beyzavi, A; Vaseghi, A; Aref, A R; Haghani, L; Bahrami, S; Hamblin, Michael R
2016-03-07
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive "smart" MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications.
Reward alters the perception of time.
Failing, Michel; Theeuwes, Jan
2016-03-01
Recent findings indicate that monetary rewards have a powerful effect on cognitive performance. In order to maximize overall gain, the prospect of earning reward biases visual attention to specific locations or stimulus features improving perceptual sensitivity and processing. The question we addressed in this study is whether the prospect of reward also affects the subjective perception of time. Here, participants performed a prospective timing task using temporal oddballs. The results show that temporal oddballs, displayed for varying durations, presented in a sequence of standard stimuli were perceived to last longer when they signaled a relatively high reward compared to when they signaled no or low reward. When instead of the oddball the standards signaled reward, the perception of the temporal oddball remained unaffected. We argue that by signaling reward, a stimulus becomes subjectively more salient thereby modulating its attentional deployment and distorting how it is perceived in time. Copyright © 2015 Elsevier B.V. All rights reserved.
Letters in time and retinotopic space.
Adelman, James S
2011-10-01
Various phenomena in tachistoscopic word identification and priming (WRODS and LTRS are confused with and prime WORDS and LETTERS) suggest that position-specific channels are not used in the processing of letters in words. Previous approaches to this issue have sought alternative matching rules because they have assumed that these phenomena reveal which stimuli are good but imperfect matches to a particular word-such imperfect matches being taken by the word recognition system as partial evidence for that word. The new Letters in Time and Retinotopic Space model (LTRS) makes the alternative assumption that these phenomena reveal the rates at which different features of the stimulus are extracted, because the stimulus is ambiguous when some features are missing from the percept. LTRS is successfully applied to tachistoscopic identification and form priming data with manipulations of duration and target-foil and prime-target relationships. © 2011 American Psychological Association
Time perception of visual motion is tuned by the motor representation of human actions
Gavazzi, Gioele; Bisio, Ambra; Pozzo, Thierry
2013-01-01
Several studies have shown that the observation of a rapidly moving stimulus dilates our perception of time. However, this effect appears to be at odds with the fact that our interactions both with environment and with each other are temporally accurate. This work exploits this paradox to investigate whether the temporal accuracy of visual motion uses motor representations of actions. To this aim, the stimuli were a dot moving with kinematics belonging or not to the human motor repertoire and displayed at different velocities. Participants had to replicate its duration with two tasks differing in the underlying motor plan. Results show that independently of the task's motor plan, the temporal accuracy and precision depend on the correspondence between the stimulus' kinematics and the observer's motor competencies. Our data suggest that the temporal mechanism of visual motion exploits a temporal visuomotor representation tuned by the motor knowledge of human actions. PMID:23378903
Cortical dynamics of feature binding and reset: control of visual persistence.
Francis, G; Grossberg, S; Mingolla, E
1994-04-01
An analysis of the reset of visual cortical circuits responsible for the binding or segmentation of visual features into coherent visual forms yields a model that explains properties of visual persistence. The reset mechanisms prevent massive smearing of visual percepts in response to rapidly moving images. The model simulates relationships among psychophysical data showing inverse relations of persistence to flash luminance and duration, greater persistence of illusory contours than real contours, a U-shaped temporal function for persistence of illusory contours, a reduction of persistence due to adaptation with a stimulus of like orientation, an increase of persistence with spatial separation of a masking stimulus. The model suggests that a combination of habituative, opponent, and endstopping mechanisms prevent smearing and limit persistence. Earlier work with the model has analyzed data about boundary formation, texture segregation, shape-from-shading, and figure-ground separation. Thus, several types of data support each model mechanism and new predictions are made.
Nakagawa, A; Sukigara, M
2000-09-01
The purpose of this study was to examine the relationship between familiarity and laterality in reading Japanese Kana words. In two divided-visual-field experiments, three- or four-character Hiragana or Katakana words were presented in both familiar and unfamiliar scripts, to which subjects performed lexical decisions. Experiment 1, using three stimulus durations (40, 100, 160 ms), suggested that only in the unfamiliar script condition was increased stimulus presentation time differently affected in each visual field. To examine this lateral difference during the processing of unfamiliar scripts as related to attentional laterality, a concurrent auditory shadowing task was added in Experiment 2. The results suggested that processing words in an unfamiliar script requires attention, which could be left-hemisphere lateralized, while orthographically familiar kana words can be processed automatically on the basis of their word-level orthographic representations or visual word form. Copyright 2000 Academic Press.
A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish.
Candelier, Raphaël; Murmu, Meena Sriti; Romano, Sebastián Alejo; Jouary, Adrien; Debrégeas, Georges; Sumbre, Germán
2015-07-21
Zebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50-500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception.
Bekinschtein, Tristan A.; Peeters, Moos; Shalom, Diego; Sigman, Mariano
2011-01-01
Classical (trace) conditioning is a specific variant of associative learning in which a neutral stimulus leads to the subsequent prediction of an emotionally charged or noxious stimulus after a temporal gap. When conditioning is concurrent with a distraction task, only participants who can report the relationship (the contingency) between stimuli explicitly show associative learning. This suggests that consciousness is a prerequisite for trace conditioning. We review and question three main controversies concerning this view. Firstly, virtually all animals, even invertebrate sea slugs, show this type of learning; secondly, unconsciously perceived stimuli may elicit trace conditioning; and thirdly, some vegetative state patients show trace learning. We discuss and analyze these seemingly contradictory arguments to find the theoretical boundaries of consciousness in classical conditioning. We conclude that trace conditioning remains one of the best measures to test conscious processing in the absence of explicit reports. PMID:22164148
Ponnusamy, Karthikeyan E; Naseer, Zan; El Dafrawy, Mostafa H; Okafor, Louis; Alexander, Clayton; Sterling, Robert S; Khanuja, Harpal S; Skolasky, Richard L
2017-06-07
In April 2016, the U.S. Centers for Medicare & Medicaid Services initiated mandatory 90-day bundled payments for total hip and knee arthroplasty for much of the country. Our goal was to determine duration of care, 90-day charges, and readmission rates by discharge disposition and U.S. region after hip or knee arthroplasty. Using the 2008 Medicare Provider Analysis and Review database 100% sample, we identified patients who had undergone elective primary total hip or knee arthroplasty. We collected data on patient age, sex, comorbidities, U.S. Census region, discharge disposition, duration of care, 90-day charges, and readmission. Multivariate regression was used to assess factors associated with readmission (logistic) and charges (linear). Significance was set at p < 0.01. Patients undergoing 138,842 total hip arthroplasties were discharged to home (18%), home health care (34%), extended-care facilities (35%), and inpatient rehabilitation (13%); patients undergoing 329,233 total knee arthroplasties were discharged to home (21%), home health care (38%), extended-care facilities (31%), and inpatient rehabilitation (10%). Patients in the Northeast were more likely to be discharged to extended-care facilities or inpatient rehabilitation than patients in other regions. Patients in the West had the highest 90-day charges. Approximately 70% of patients were discharged home from extended-care facilities, whereas after inpatient rehabilitation, >50% of patients received home health care. Among those discharged to home, 90-day readmission rates were highest in the South (9.6%) for patients undergoing total hip arthroplasty and in the Midwest (8.7%) and the South (8.5%) for patients undergoing total knee arthroplasty. Having ≥4 comorbidities, followed by discharge to inpatient rehabilitation or an extended-care facility, had the strongest associations with readmission, whereas the region of the West and the discharge disposition to inpatient rehabilitation had the strongest association with higher charges. Among Medicare patients, discharge disposition and number of comorbidities were most strongly associated with readmission. Inpatient rehabilitation and the West region had the strongest associations with higher charges. Prognostic Level IV. See Instructions for Authors for a complete description of levels of evidence.
van Oudheusden, T; Pasmans, P L E M; van der Geer, S B; de Loos, M J; van der Wiel, M J; Luiten, O J
2010-12-31
We demonstrate the compression of 95 keV, space-charge-dominated electron bunches to sub-100 fs durations. These bunches have sufficient charge (200 fC) and are of sufficient quality to capture a diffraction pattern with a single shot, which we demonstrate by a diffraction experiment on a polycrystalline gold foil. Compression is realized by means of velocity bunching by inverting the positive space-charge-induced velocity chirp. This inversion is induced by the oscillatory longitudinal electric field of a 3 GHz radio-frequency cavity. The arrival time jitter is measured to be 80 fs.
Development of an Atlas of Strengths and Establishment of an Appropriate Model Structure
1981-11-01
exercise hyperaemic response was greater for a given duration of contraction in water at 34 and 42*C than at lower temperatures. The rate of blood flow...Lambie, D.G. and Johnson, R.H. Ventilatory responses to sustained static forearm exercise in man. New Zealand Med. Journal; 1978, 88(618), 169...KEYWORDS: Static exercise , ventilatory responses . METHODS: Five healthy subjects were used to study the stimulus for hyperventilation which occurs during
Clinical applications of the human brainstem responses to auditory stimuli
NASA Technical Reports Server (NTRS)
Galambos, R.; Hecox, K.
1975-01-01
A technique utilizing the frequency following response (FFR) (obtained by auditory stimulation, whereby the stimulus frequency and duration are mirror-imaged in the resulting brainwaves) as a clinical tool for hearing disorders in humans of all ages is presented. Various medical studies are discussed to support the clinical value of the technique. The discovery and origin of the FFR and another significant brainstem auditory response involved in studying the eighth nerve is also discussed.
Omega-3 fatty acids and changes in LBM: alone or in synergy for better muscle health?
McDonald, Cameron; Bauer, Judy; Capra, Sandra
2013-06-01
Myopenia or muscle wasting due to ageing, chronic disease, and various medical interventions has been associated with increased mortality, morbidity, and poorer physical function. Attempts through nutrient and exercise interventions have been made to prevent this deterioration. In addition, while a measure of lean body mass (LBM) is associated with health outcomes, LBM function may be a better prognostic tool. Long-chain omega-3 fatty acids (LCn-3s) are nutrients that may mitigate LBM losses in noncancer populations. The purpose of this review is to determine whether LCn-3s have a role in LBM sparing in noncancer populations, to establish a minimum dose and duration of LCn-3s that will result in LBM change, and to summarise the potential effects of LCn-3s on LBM function when combined with an anabolic stimulus. Overall, in noncancer populations, LCn-3s have limited utility in sparing LBM during energy balance, energy restriction, or in conjunction with aerobic exercise. Further investigations are required to determine the appropriate dose and duration of LCn-3s for optimal LBM function. Finally, compelling evidence exists for LCn-3s in conjunction with an anabolic stimulus to improve LBM function and quality. Functionality of LBM tissue is an important outcome for population health, and LCn-3s show some promise, albeit pending further study.
Extinction of Pavlovian conditioning: The influence of trial number and reinforcement history.
Chan, C K J; Harris, Justin A
2017-08-01
Pavlovian conditioning is sensitive to the temporal relationship between the conditioned stimulus (CS) and the unconditioned stimulus (US). This has motivated models that describe learning as a process that continuously updates associative strength during the trial or specifically encodes the CS-US interval. These models predict that extinction of responding is also continuous, such that response loss is proportional to the cumulative duration of exposure to the CS without the US. We review evidence showing that this prediction is incorrect, and that extinction is trial-based rather than time-based. We also present two experiments that test the importance of trials versus time on the Partial Reinforcement Extinction Effect (PREE), in which responding extinguishes more slowly for a CS that was inconsistently reinforced with the US than for a consistently reinforced one. We show that increasing the number of extinction trials of the partially reinforced CS, relative to the consistently reinforced CS, overcomes the PREE. However, increasing the duration of extinction trials by the same amount does not overcome the PREE. We conclude that animals learn about the likelihood of the US per trial during conditioning, and learn trial-by-trial about the absence of the US during extinction. Moreover, what they learn about the likelihood of the US during conditioning affects how sensitive they are to the absence of the US during extinction. Copyright © 2017 Elsevier B.V. All rights reserved.
Sanchez-Migallon Guzman, David; Braun, Jana M; Steagall, Paulo V M; Keuler, Nicholas S; Heath, Timothy D; Krugner-Higby, Lisa A; Brown, Carolyn S; Paul-Murphy, Joanne R
2013-02-01
To evaluate the thermal antinociceptive effects and duration of action of nalbuphine decanoate after IM administration to Hispaniolan Amazon parrots (Amazona ventralis). 10 healthy adult Hispaniolan Amazon parrots of unknown sex. Nalbuphine decanoate (33.7 mg/kg) or saline (0.9% NaCl) solution was administered IM in a randomized complete crossover experimental design (periods 1 and 2). Foot withdrawal threshold to a noxious thermal stimulus was used to evaluate responses. Baseline thermal withdrawal threshold was recorded 1 hour before drug or saline solution administration, and thermal foot withdrawal threshold measurements were repeated 1, 2, 3, 6, 12, 24, 48, and 72 hours after drug administration. Nalbuphine decanoate administered IM at a dose of 33.7 mg/kg significantly increased thermal foot withdrawal threshold, compared with results after administration of saline solution during period 2, and also caused a significant change in withdrawal threshold for up to 12 hours, compared with baseline values. Nalbuphine decanoate increased the foot withdrawal threshold to a noxious thermal stimulus in Hispaniolan Amazon parrots for up to 12 hours and provided a longer duration of action than has been reported for other nalbuphine formulations. Further studies with other types of nociceptive stimulation, dosages, and dosing intervals as well as clinical trials are needed to fully evaluate the analgesic effects of nalbuphine decanoate in psittacine birds.
Pavlovian conditioning and cumulative reinforcement rate.
Harris, Justin A; Patterson, Angela E; Gharaei, Saba
2015-04-01
In 5 experiments using delay conditioning of magazine approach with rats, reinforcement rate was varied either by manipulating the mean interval between onset of the conditioned stimulus (CS) and unconditioned stimulus (US) or by manipulating the proportion of CS presentations that ended with the US (trial-based reinforcement rate). Both manipulations influenced the acquisition of responding. In each experiment, a specific comparison was made between 2 CSs that differed in their mean CS-US interval and in their trial-based reinforcement rate, such that the cumulative reinforcement rate-the cumulative duration of the CS between reinforcements-was the same for the 2 CSs. For example, a CS reinforced on 100% of trials with a mean CS-US interval of 60 s was compared with a CS reinforced on 33% of trials and a mean duration of 20 s. Across the 5 experiments, conditioning was virtually identical for the 2 CSs with matched cumulative reinforcement rate. This was true as long as the timing of the US was unpredictable and, thus, response rates were uniform across the length of the CS. We conclude that the effects of CS-US interval and of trial-based reinforcement rate are reducible entirely to their common effect on cumulative reinforcement rate. We discuss the implications of this for rate-based, trial-based, and real-time associative models of conditioning. (c) 2015 APA, all rights reserved).
Heart rate variability and cognitive processing: The autonomic response to task demands.
Luque-Casado, Antonio; Perales, José C; Cárdenas, David; Sanabria, Daniel
2016-01-01
This study investigated variations in heart rate variability (HRV) as a function of cognitive demands. Participants completed an execution condition including the psychomotor vigilance task, a working memory task and a duration discrimination task. The control condition consisted of oddball versions (participants had to detect the rare event) of the tasks from the execution condition, designed to control for the effect of the task parameters (stimulus duration and stimulus rate) on HRV. The NASA-TLX questionnaire was used as a subjective measure of cognitive workload across tasks and conditions. Three major findings emerged from this study. First, HRV varied as a function of task demands (with the lowest values in the working memory task). Second, and crucially, we found similar HRV values when comparing each of the tasks with its oddball control equivalent, and a significant decrement in HRV as a function of time-on-task. Finally, the NASA-TLX results showed larger cognitive workload in the execution condition than in the oddball control condition, and scores variations as a function of task. Taken together, our results suggest that HRV is highly sensitive to overall demands of sustained attention over and above the influence of other cognitive processes suggested by previous literature. In addition, our study highlights a potential dissociation between objective and subjective measures of mental workload, with important implications in applied settings. Copyright © 2015 Elsevier B.V. All rights reserved.
The heavy ions in space experiment
NASA Technical Reports Server (NTRS)
Adams, J. H., Jr.; Beahm, L. P.; Stiller, B.
1985-01-01
The Heavy Ions in Space (HIIS) experiment was developed and is currently in orbit onboard the long duration facility (LDEF). The HIIS will record relativistic cosmic ray nuclei heavier than magnesium and stopping nuclei down to helium. The experiment uses plastic track detectors that have a charge resolution of 0.15 charge units at krypton and 0.10 charge units, or better, for nuclei lighter than cobalt. The HIIS has a collecting power of 2 square meter steradians and it has already collected more than a year's data.
Parameter Optimization Analysis of Prolonged Analgesia Effect of tDCS on Neuropathic Pain Rats
Wen, Hui-Zhong; Gao, Shi-Hao; Zhao, Yan-Dong; He, Wen-Juan; Tian, Xue-Long; Ruan, Huai-Zhen
2017-01-01
Background: Transcranial direct current stimulation (tDCS) is widely used to treat human nerve disorders and neuropathic pain by modulating the excitability of cortex. The effectiveness of tDCS is influenced by its stimulation parameters, but there have been no systematic studies to help guide the selection of different parameters. Objective: This study aims to assess the effects of tDCS of primary motor cortex (M1) on chronic neuropathic pain in rats and to test for the optimal parameter combinations for analgesia. Methods: Using the chronic neuropathic pain models of chronic constriction injury (CCI), we measured pain thresholds before and after anodal-tDCS (A-tDCS) using different parameter conditions, including stimulation intensity, stimulation time, intervention time and electrode located (ipsilateral or contralateral M1 of the ligated paw on male/female CCI models). Results: Following the application of A-tDCS over M1, we observed that the antinociceptive effects were depended on different parameters. First, we found that repetitive A-tDCS had a longer analgesic effect than single stimulus, and both ipsilateral-tDCS (ip-tDCS) and contralateral-tDCS (con-tDCS) produce a long-lasting analgesic effect on neuropathic pain. Second, the antinociceptive effects were intensity-dependent and time-dependent, high intensities worked better than low intensities and long stimulus durations worked better than short stimulus durations. Third, timing of the intervention after injury affected the stimulation outcome, early use of tDCS was an effective method to prevent the development of pain, and more frequent intervention induced more analgesia in CCI rats, finally, similar antinociceptive effects of con- and ip-tDCS were observed in both sexes of CCI rats. Conclusion: Optimized protocols of tDCS for treating antinociceptive effects were developed. These findings should be taken into consideration when using tDCS to produce analgesic effects in clinical applications. PMID:28659772
Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun
2018-05-18
We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T ) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T ) and low σ (high N T ) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ [Formula: see text] in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ [Formula: see text] which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T , which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.
NASA Astrophysics Data System (ADS)
Shekhar, Shashank; Cho, Duckhyung; Cho, Dong-Guk; Yang, Myungjae; Hong, Seunghun
2018-05-01
We develolped a method to directly image the nanoscale effects of localized noise-source activities on photoconducting charge transports in domain structures of phase-separated polymer-blend films of Poly(9,9-di-n-octylfluorenyl-2,7-diyl) and Poly(9,9-di-n-octylfluorene-alt-benzothiadiazole). For the imaging, current and noise maps of the polymer-blend were recorded using a conducting nanoprobe in contact with the surface, enabling the conductivity (σ) and noise-source density (N T) mappings under an external stimulus. The blend-films exhibited the phase-separation between the constituent polymers at domains level. Within a domain, high σ (low N T) and low σ (high N T) regions were observed, which could be associated with the ordered and disordered regions of a domain. In the N T maps, we observed that noise-sources strongly affected the conduction mechanism, resulting in a scaling behavior of σ ∝ {{N}{{T}}}-0.5 in both ordered and disordered regions. When a blend film was under an influence of an external stimulus such as a high bias or an illumination, an increase in the σ was observed, but that also resulted in increases in the N T as a trade-off. Interestingly, the Δσ versus ΔN T plot exhibited an unusual scaling behavior of Δσ ∝ {{Δ }}{{N}{{T}}}0.5, which is attributed to the de-trapping of carriers from deep traps by the external stimuli. In addition, we found that an external stimulus increased the conductivity at the interfaces without significantly increasing their N T, which can be the origin of the superior performances of polymer-blend based devices. These results provide valuable insight about the effects of noise-sources on nanoscale optoelectronic properties in polymer-blend films, which can be an important guideline for improving devices based on polymer-blend.
Cherry, Elizabeth M.; Fenton, Flavio H.
2011-01-01
Increased dispersion of action potential duration across cardiac tissue has long been considered an important substrate for the development of most electrical arrhythmias. Although this dispersion has been studied previously by characterizing the static intrinsic gradients in cellular electrophysiology and dynamical gradients generated by fast pacing, few studies have concentrated on dispersions generated solely by structural effects. Here we show how boundaries and geometry can produce spatially dependent changes in action potential duration (APD) in homogeneous and isotropic tissue, where all the cells have the same APD in the absence of diffusion. Electrotonic currents due to coupling within the tissue and at the tissue boundaries can generate dispersion, and the profile of this dispersion can change dramatically depending on tissue size and shape, action potential morphology, tissue dimensionality, and stimulus frequency and location. The dispersion generated by pure geometrical effects can be on the order of tens of milliseconds, enough under certain conditions to produce conduction blocks and initiate reentrant waves. PMID:21762703
Electronic enhancement of tear secretion
NASA Astrophysics Data System (ADS)
Brinton, Mark; Lim Chung, Jae; Kossler, Andrea; Kook, Koung Hoon; Loudin, Jim; Franke, Manfred; Palanker, Daniel
2016-02-01
Objective. To study electrical stimulation of the lacrimal gland and afferent nerves for enhanced tear secretion, as a potential treatment for dry eye disease. We investigate the response pathways and electrical parameters to safely maximize tear secretion. Approach. We evaluated the tear response to electrical stimulation of the lacrimal gland and afferent nerves in isofluorane-anesthetized rabbits. In acute studies, electrical stimulation was performed using bipolar platinum foil electrodes, implanted beneath the inferior lacrimal gland, and a monopolar electrode placed near the afferent ethmoid nerve. Wireless microstimulators with bipolar electrodes were implanted beneath the lacrimal gland for chronic studies. To identify the response pathways, we applied various pharmacological inhibitors. To optimize the stimulus, we measured tear secretion rate (Schirmer test) as a function of pulse amplitude (1.5-12 mA), duration (0.1-1 ms) and repetition rate (10-100 Hz). Main results. Stimulation of the lacrimal gland increased tear secretion by engaging efferent parasympathetic nerves. Tearing increased with stimulation amplitude, pulse duration and repetition rate, up to 70 Hz. Stimulation with 3 mA, 500 μs pulses at 70 Hz provided a 4.5 mm (125%) increase in Schirmer score. Modulating duty cycle further increased tearing up to 57%, compared to continuous stimulation in chronically implanted animals (36%). Ethmoid (afferent) nerve stimulation increased tearing similar to gland stimulation (3.6 mm) via a reflex pathway. In animals with chronically implanted stimulators, a nearly 6 mm increase (57%) was achieved with 12-fold less charge density per pulse (0.06-0.3 μC mm-2 with 170-680 μs pulses) than the damage threshold (3.5 μC mm-2 with 1 ms pulses). Significance. Electrical stimulation of the lacrimal gland or afferent nerves may be used as a treatment for dry eye disease. Clinical trials should validate this approach in patients with aqueous tear deficiency, and further optimize electrical parameters for maximum clinical efficacy.
Nayagam, David A. X.; Williams, Richard A.; Allen, Penelope J.; Shivdasani, Mohit N.; Luu, Chi D.; Salinas-LaRosa, Cesar M.; Finch, Sue; Ayton, Lauren N.; Saunders, Alexia L.; McPhedran, Michelle; McGowan, Ceara; Villalobos, Joel; Fallon, James B.; Wise, Andrew K.; Yeoh, Jonathan; Xu, Jin; Feng, Helen; Millard, Rodney; McWade, Melanie; Thien, Patrick C.; Williams, Chris E.; Shepherd, Robert K.
2014-01-01
Purpose To assess the safety and efficacy of chronic electrical stimulation of the retina with a suprachoroidal visual prosthesis. Methods Seven normally-sighted feline subjects were implanted for 96–143 days with a suprachoroidal electrode array and six were chronically stimulated for 70–105 days at levels that activated the visual cortex. Charge balanced, biphasic, current pulses were delivered to platinum electrodes in a monopolar stimulation mode. Retinal integrity/function and the mechanical stability of the implant were assessed monthly using electroretinography (ERG), optical coherence tomography (OCT) and fundus photography. Electrode impedances were measured weekly and electrically-evoked visual cortex potentials (eEVCPs) were measured monthly to verify that chronic stimuli were suprathreshold. At the end of the chronic stimulation period, thresholds were confirmed with multi-unit recordings from the visual cortex. Randomized, blinded histological assessments were performed by two pathologists to compare the stimulated and non-stimulated retina and adjacent tissue. Results All subjects tolerated the surgical and stimulation procedure with no evidence of discomfort or unexpected adverse outcomes. After an initial post-operative settling period, electrode arrays were mechanically stable. Mean electrode impedances were stable between 11–15 kΩ during the implantation period. Visually-evoked ERGs & OCT were normal, and mean eEVCP thresholds did not substantially differ over time. In 81 of 84 electrode-adjacent tissue samples examined, there were no discernible histopathological differences between stimulated and unstimulated tissue. In the remaining three tissue samples there were minor focal fibroblastic and acute inflammatory responses. Conclusions Chronic suprathreshold electrical stimulation of the retina using a suprachoroidal electrode array evoked a minimal tissue response and no adverse clinical or histological findings. Moreover, thresholds and electrode impedance remained stable for stimulation durations of up to 15 weeks. This study has demonstrated the safety and efficacy of suprachoroidal stimulation with charge balanced stimulus currents. PMID:24853376
Electric fence standards comport with human data and AC limits.
Kroll, Mark W; Perkins, Peter E; Panescu, Dorin
2015-08-01
The ubiquitous electric fence is essential to modern agriculture and has saved lives by reducing the number of livestock automobile collisions. Modern safety standards such as IEC 60335-2-76 and UL 69 have played a role in this positive result. However, these standards are essentially based on energy and power (RMS current), which have limited direct relationship to cardiac effects. We compared these standards to bioelectrically more relevant units of charge and average current in view of recent work on VF (ventricular fibrillation) induction and to existing IEC AC current limits. There are 3 limits for normal (low) pulsing rate: IEC energy limit, IEC current limit, and UL current limit. We then calculated the delivered charge allowed for each pulse duration for these limits and then compared them to a charge-based safety model derived from published human ventricular-fibrillation induction data. Both the IEC and UL also allow for rapid pulsing for up to 3 minutes. We calculated maximum outputs for various pulse durations assuming pulsing at 10, 20, and 30 pulses per second. These were then compared to standard utility power safety (AC) limits via the conversion factor of 7.4 to convert average current to RMS current for VF risk. The outputs of TASER electrical weapons (typically < 100 μC and ~100 μs duration) were also compared. The IEC and UL electric fence energizer normal rate standards are conservative in comparison with actual human laboratory experiments. The IEC and UL electric fence energizer rapid-pulsing standards are consistent with accepted IEC AC current limits for commercially used pulse durations.
NASA Astrophysics Data System (ADS)
Chang, Xueting; Hu, Ruirui; Sun, Shibin; Lu, Tong; Liu, Tao; Lei, Yanhua; Dong, Lihua; Yin, Yansheng; Zhu, Yanqiu
2018-05-01
In this work, we realized the large-scale synthesis of WO3 · H2O nanoflakes (NFs), g-C3N4/WO3 · H2O nanocomposite (NC) and graphene (G)/WO3 · H2O NC via a sonochemical process with tungsten salt as the precursor, g-C3N4 or G sheets as the supports, and distilled water as the solvent. Both the g-C3N4/WO3 · H2O NC and G/WO3 · H2O NC exhibited much better electrochromic (EC) performance (higher coloration efficiencies and faster response times) than that of the WO3 · H2O NFs. Using the WO3 · H2O-based materials as electrode materials, EC batteries that integrate the energy storage and EC functions in one device have been assembled. The energy status of the EC batteries could be visually indicated by the reversible color variations. Compared with the plain WO3 · H2O-based EC batteries, the NC-based EC batteries possessed a lower color contrast between the charged and discharged conditions but much longer discharge durations. The EC batteries could be quickly charged in a few seconds by adding H2O2, and the charged batteries exhibited significantly-enhanced discharging durations in comparison with the initial ones. The g-C3N4/WO3 · H2O NC-EC batteries charged by a small amount of H2O2 could produce a long discharging duration up to 760 min.
Environmental Enrichment Duration Differentially Affects Behavior and Neuroplasticity in Adult Mice.
Leger, Marianne; Paizanis, Eleni; Dzahini, Kwamivi; Quiedeville, Anne; Bouet, Valentine; Cassel, Jean-Christophe; Freret, Thomas; Schumann-Bard, Pascale; Boulouard, Michel
2015-11-01
Environmental enrichment is a powerful way to stimulate brain and behavioral plasticity. However the required exposure duration to reach such changes has not been substantially analyzed. We aimed to assess the time-course of appearance of the beneficial effects of enriched environment. Thus, different behavioral tests and neurobiological parameters (such as neurogenesis, brain monoamines levels, and stress-related hormones) were concomitantly realized after different durations of enriched environment (24 h, 1, 3, or 5 weeks). While short enrichment exposure (24 h) was sufficient to improve object recognition memory performances, a 3-week exposure was required to improve aversive stimulus-based memory performances and to reduce anxiety-like behavior; effects that were not observed with longer duration. The onset of behavioral changes after a 3-week exposure might be supported by higher serotonin levels in the frontal cortex, but seems independent of neurogenesis phenomenon. Additionally, the benefit of 3-week exposure on memory was not observed 3 weeks after cessation of enrichment. Thus, the 3-week exposure appears as an optimal duration in order to induce the most significant behavioral effects and to assess the underlying mechanisms. Altogether, these results suggest that the duration of exposure is a keystone of the beneficial behavioral and neurobiological effects of environmental enrichment. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Introductory tail-flick of the Jacky dragon visual display: signal efficacy depends upon duration.
Peters, Richard A; Evans, Christopher S
2003-12-01
Many animal signals have introductory components that alert receivers. Examples from the acoustic and visual domains show that this effect is often achieved with high intensity, a simple structure and a short duration. Quantitative analyses of the Jacky dragon Amphibolurus muricatus visual display reveal a different design: the introductory tail-flick has a lower velocity than subsequent components of the signal, but a longer duration. Here, using a series of video playback experiments with a digitally animated tail, we identify the properties responsible for signal efficacy. We began by validating the use of the computer-generated tail, comparing the responses to digital video footage of a lizard tail-flick with those to a precisely matched 3-D animation (Experiment 1). We then examined the effects of variation in stimulus speed, acceleration, duration and period by expanding and compressing the time scale of the sequence (Experiment 2). The results identified several variables that might mediate recognition. Two follow-up studies assessed the importance of tail-flick amplitude (Experiment 3), movement speed and signal duration (Experiment 4). Lizard responses to this array of stimuli reveal that duration is the most important characteristic of the tail-flick, and that intermittent signalling has the same effect as continuous movement. We suggest that signal design may reflect a trade-off between efficacy and cost.
Effect of shorter pulse duration in cochlear neural activation with an 810-nm near-infrared laser.
Wang, Jingxuan; Tian, Lan; Lu, Jianren; Xia, Ming; Wei, Ying
2017-02-01
Optical neural stimulation in the cochlea has been presented as an alternative technique to the electrical stimulation due to its potential in spatially selectivity enhancement. So far, few studies have selected the near-infrared (NIR) laser in cochlear neural stimulation and limited optical parameter space has been examined. This paper focused on investigating the optical parameter effect on NIR stimulation of auditory neurons, especially under shorter pulse durations. The spiral ganglion neurons in the cochlea of deafened guinea pigs were stimulated with a pulsed 810-nm NIR laser in vivo. The laser radiation was delivered by an optical fiber and irradiated towards the modiolus. Optically evoked auditory brainstem responses (OABRs) with various optical parameters were recorded and investigated. The OABRs could be elicited with the cochlear deafened animals by using the 810-nm laser in a wide pulse duration ranged from 20 to 1000 μs. Results showed that the OABR intensity increased along with the increasing laser radiant exposure of limited range at each specific pulse duration. In addition, for the pulse durations from 20 to 300 μs, the OABR intensity increased monotonically along with the pulse duration broadening. While for pulse durations above 300 μs, the OABR intensity basically kept stable with the increasing pulse duration. The 810-nm NIR laser could be an effective stimulus in evoking the cochlear neuron response. Our experimental data provided evidence to optimize the pulse duration range, and the results suggested that the pulse durations from 20 to 300 μs could be the optimized range in cochlear neural activation with the 810-nm-wavelength laser.
Design of a fast computer-based partial discharge diagnostic system
NASA Technical Reports Server (NTRS)
Oliva, Jose R.; Karady, G. G.; Domitz, Stan
1991-01-01
Partial discharges cause progressive deterioration of insulating materials working in high voltage conditions and may lead ultimately to insulator failure. Experimental findings indicate that deterioration increases with the number of discharges and is consequently proportional to the magnitude and frequency of the applied voltage. In order to obtain a better understanding of the mechanisms of deterioration produced by partial discharges, instrumentation capable of individual pulse resolution is required. A new computer-based partial discharge detection system was designed and constructed to conduct long duration tests on sample capacitors. This system is capable of recording large number of pulses without dead time and producing valuable information related to amplitude, polarity, and charge content of the discharges. The operation of the system is automatic and no human supervision is required during the testing stage. Ceramic capacitors were tested at high voltage in long duration tests. The obtained results indicated that the charge content of partial discharges shift towards high levels of charge as the level of deterioration in the capacitor increases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, E.; Neubauer, J.; Burton, E.
The disparate characteristics between conventional (CVs) and battery electric vehicles (BEVs) in terms of driving range, refill/recharge time, and availability of refuel/recharge infrastructure inherently limit the relative utility of BEVs when benchmarked against traditional driver travel patterns. However, given a high penetration of high-power public charging combined with driver tolerance for rerouting travel to facilitate charging on long-distance trips, the difference in utility between CVs and BEVs could be marginalized. We quantify the relationships between BEV utility, the deployment of fast chargers, and driver tolerance for rerouting travel and extending travel durations by simulating BEVs operated over real-world travel patternsmore » using the National Renewable Energy Laboratory's Battery Lifetime Analysis and Simulation Tool for Vehicles (BLAST-V). With support from the U.S. Department of Energy's Vehicle Technologies Office, BLAST-V has been developed to include algorithms for estimating the available range of BEVs prior to the start of trips, for rerouting baseline travel to utilize public charging infrastructure when necessary, and for making driver travel decisions for those trips in the presence of available public charging infrastructure, all while conducting advanced vehicle simulations that account for battery electrical, thermal, and degradation response. Results from BLAST-V simulations on vehicle utility, frequency of inserted stops, duration of charging events, and additional time and distance necessary for rerouting travel are presented to illustrate how BEV utility and travel patterns can be affected by various fast charge deployments.« less
The complex duration perception of emotional faces: effects of face direction.
Kliegl, Katrin M; Limbrecht-Ecklundt, Kerstin; Dürr, Lea; Traue, Harald C; Huckauf, Anke
2015-01-01
The perceived duration of emotional face stimuli strongly depends on the expressed emotion. But, emotional faces also differ regarding a number of other features like gaze, face direction, or sex. Usually, these features have been controlled by only using pictures of female models with straight gaze and face direction. Doi and Shinohara (2009) reported that an overestimation of angry faces could only be found when the model's gaze was oriented toward the observer. We aimed at replicating this effect for face direction. Moreover, we explored the effect of face direction on the duration perception sad faces. Controlling for the sex of the face model and the participant, female and male participants rated the duration of neutral, angry, and sad face stimuli of both sexes photographed from different perspectives in a bisection task. In line with current findings, we report a significant overestimation of angry compared to neutral face stimuli that was modulated by face direction. Moreover, the perceived duration of sad face stimuli did not differ from that of neutral faces and was not influenced by face direction. Furthermore, we found that faces of the opposite sex appeared to last longer than those of the same sex. This outcome is discussed with regards to stimulus parameters like the induced arousal, social relevance, and an evolutionary context.
The relative importance of different direct benefits in the mate choices of a field cricket.
Wagner, William E; Basolo, Alexandra L
2007-03-01
Discussions about the evolution of female mating preferences have often suggested that females should express multiple strong preferences when different male traits are correlated with different mating benefits, yet few studies have directly tested this hypothesis by comparing the strength of female preferences for male traits known to be correlated with different benefits. In the variable field cricket, Gryllus lineaticeps, females receive fecundity and fertility benefits from mating with males with higher chirp rates and life-span benefits from mating with males with longer chirp durations. Although females prefer higher chirp rates and longer chirp durations when the other trait is held constant, it is possible that they give priority to one of these song traits when both vary. In this study, we examined the relative importance of chirp rate and chirp duration in female mate choice using single-stimulus presentations of songs that varied in both chirp rate and chirp duration. Females expressed both directional and stabilizing preferences based on chirp rate, responding most strongly to a chirp rate approximately one standard deviation above the population mean. Females did not express preferences based on chirp duration, and did not express correlational preferences. These results suggest that females may give priority to the reproductive benefits provided by males that produce higher chirp rates.
Response terminated displays unload selective attention
Roper, Zachary J. J.; Vecera, Shaun P.
2013-01-01
Perceptual load theory successfully replaced the early vs. late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load) is sufficiently low to grant attentional “spill-over” to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional “spill-over” by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented. PMID:24399983
Response terminated displays unload selective attention.
Roper, Zachary J J; Vecera, Shaun P
2013-01-01
Perceptual load theory successfully replaced the early vs. late selection debate by appealing to adaptive control over the efficiency of selective attention. Early selection is observed unless perceptual load (p-Load) is sufficiently low to grant attentional "spill-over" to task-irrelevant stimuli. Many studies exploring load theory have used limited display durations that perhaps impose artificial limits on encoding processes. We extended the exposure duration in a classic p-Load task to alleviate temporal encoding demands that may otherwise tax mnemonic consolidation processes. If the load effect arises from perceptual demands alone, then freeing-up available mnemonic resources by extending the exposure duration should have little effect. The results of Experiment 1 falsify this prediction. We observed a reliable flanker effect under high p-Load, response-terminated displays. Next, we orthogonally manipulated exposure duration and task-relevance. Counter-intuitively, we found that the likelihood of observing the flanker effect under high p-Load resides with the duration of the task-relevant array, not the flanker itself. We propose that stimulus and encoding demands interact to produce the load effect. Our account clarifies how task parameters differentially impinge upon cognitive processes to produce attentional "spill-over" by appealing to visual short-term memory as an additional processing bottleneck when stimuli are briefly presented.
Individual differences in first- and second-order temporal judgment.
Corcoran, Andrew W; Groot, Christopher; Bruno, Aurelio; Johnston, Alan; Cropper, Simon J
2018-01-01
The ability of subjects to identify and reproduce brief temporal intervals is influenced by many factors whether they be stimulus-based, task-based or subject-based. The current study examines the role individual differences play in subsecond and suprasecond timing judgments, using the schizoptypy personality scale as a test-case approach for quantifying a broad range of individual differences. In two experiments, 129 (Experiment 1) and 141 (Experiment 2) subjects completed the O-LIFE personality questionnaire prior to performing a modified temporal-bisection task. In the bisection task, subjects responded to two identical instantiations of a luminance grating presented in a 4deg window, 4deg above fixation for 1.5 s (Experiment 1) or 3 s (Experiment 2). Subjects initiated presentation with a button-press, and released the button when they considered the stimulus to be half-way through (750/1500 ms). Subjects were then asked to indicate their 'most accurate estimate' of the two intervals. In this way we measure both performance on the task (a first-order measure) and the subjects' knowledge of their performance (a second-order measure). In Experiment 1 the effect of grating-drift and feedback on performance was also examined. Experiment 2 focused on the static/no-feedback condition. For the group data, Experiment 1 showed a significant effect of presentation order in the baseline condition (no feedback), which disappeared when feedback was provided. Moving the stimulus had no effect on perceived duration. Experiment 2 showed no effect of stimulus presentation order. This elimination of the subsecond order-effect was at the expense of accuracy, as the mid-point of the suprasecond interval was generally underestimated. Response precision increased as a proportion of total duration, reducing the variance below that predicted by Weber's law. This result is consistent with a breakdown of the scalar properties of time perception in the early suprasecond range. All subjects showed good insight into their own performance, though that insight did not necessarily correlate with the veridical bisection point. In terms of personality, we found evidence of significant differences in performance along the Unusual Experiences subscale, of most theoretical interest here, in the subsecond condition only. There was also significant correlation with Impulsive Nonconformity and Cognitive Disorganisation in the sub- and suprasecond conditions, respectively. Overall, these data support a partial dissociation of timing mechanisms at very short and slightly longer intervals. Further, these results suggest that perception is not the only critical mitigator of confidence in temporal experience, since individuals can effectively compensate for differences in perception at the level of metacognition in early suprasecond time. Though there are individual differences in performance, these are perhaps less than expected from previous reports and indicate an effective timing mechanism dealing with brief durations independent of the influence of significant personality trait differences.
O'Neill, Hugh S; Herron, Caroline C; Hastings, Conn L; Deckers, Roel; Lopez Noriega, Adolfo; Kelly, Helena M; Hennink, Wim E; McDonnell, Ciarán O; O'Brien, Fergal J; Ruiz-Hernández, Eduardo; Duffy, Garry P
2017-01-15
Lysolipid-based thermosensitive liposomes (LTSL) embedded in a chitosan-based thermoresponsive hydrogel matrix (denoted Lipogel) represents a novel approach for the spatiotemporal release of therapeutic agents. The entrapment of drug-loaded liposomes in an injectable hydrogel permits local liposome retention, thus providing a prolonged release in target tissues. Moreover, release can be controlled through the use of a minimally invasive external hyperthermic stimulus. Temporal control of release is particularly important for complex multi-step physiological processes, such as angiogenesis, in which different signals are required at different times in order to produce a robust vasculature. In the present work, we demonstrate the ability of Lipogel to provide a flexible, easily modifiable release platform. It is possible to tune the release kinetics of different drugs providing a passive release of one therapeutic agent loaded within the gel and activating the release of a second LTSL encapsulated agent via a hyperthermic stimulus. In addition, it was possible to modify the drug dosage within Lipogel by varying the duration of hyperthermia. This can allow for adaption of drug dosing in real time. As an in vitro proof of concept with this system, we investigated Lipogels ability to recruit stem cells and then elevate their production of vascular endothelial growth factor (VEGF) by controlling the release of a pro-angiogenic drug, desferroxamine (DFO) with an external hyperthermic stimulus. Initial cell recruitment was accomplished by the passive release of hepatocyte growth factor (HGF) from the hydrogel, inducing a migratory response in cells, followed by the delayed release of DFO from thermosensitive liposomes, resulting in a significant increase in VEGF expression. This delayed release could be controlled up to 14days. Moreover, by changing the duration of the hyperthermic pulse, a fine control over the amount of DFO released was achieved. The ability to trigger the release of therapeutic agents at a specific timepoint and control dosing level through changes in duration of hyperthermia enables sequential multi-dose profiles. This paper details the development of a heat responsive liposome loaded hydrogel for the controlled release of pro-angiogenic therapeutics. Lysolipid-based thermosensitive liposomes (LTSLs) embedded in a chitosan-based thermoresponsive hydrogel matrix represents a novel approach for the spatiotemporal release of therapeutic agents. This hydrogel platform demonstrates remarkable flexibility in terms of drug scheduling and sequencing, enabling the release of multiple agents and the ability to control drug dosing in a minimally invasive fashion. The possibility to tune the release kinetics of different drugs independently represents an innovative platform to utilise for a variety of treatments. This approach allows a significant degree of flexibility in achieving a desired release profile via a minimally invasive stimulus, enabling treatments to be tuned in response to changing symptoms and complications. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, W C; King, M J; Blackman, E G
In their Contributed Article, Nyein et al. (1,2) present numerical simulations of blast waves interacting with a helmeted head and conclude that a face shield may significantly mitigate blast induced traumatic brain injury (TBI). A face shield may indeed be important for future military helmets, but the authors derive their conclusions from a much smaller explosion than typically experienced on the battlefield. The blast from the 3.16 gm TNT charge of (1) has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 10 atm, 0.25 ms, and 3.9 psi-ms at the front of the head (14 cmmore » from charge), and 1.4 atm, 0.32 ms, and 1.7 psi-ms at the back of a typical 20 cm head (34 cm from charge). The peak pressure of the wave decreases by a factor of 7 as it traverses the head. The blast conditions are at the threshold for injury at the front of the head, but well below threshold at the back of the head (4). The blast traverses the head in 0.3 ms, roughly equal to the positive phase duration of the blast. Therefore, when the blast reaches the back of the head, near ambient conditions exist at the front. Because the headform is so close to the charge, it experiences a wave with significant curvature. By contrast, a realistic blast from a 2.2 kg TNT charge ({approx} an uncased 105 mm artillery round) is fatal at an overpressure of 10 atm (4). For an injury level (4) similar to (1), a 2.2 kg charge has the following approximate peak overpressures, positive phase durations, and incident impulses (3): 2.1 atm, 2.3 ms, and 18 psi-ms at the front of the head (250 cm from charge), and 1.8 atm, 2.5 ms, and 16.8 psi-ms at the back of the head (270 cm from charge). The peak pressure decreases by only a factor of 1.2 as it traverses the head. Because the 0.36 ms traversal time is much smaller than the positive phase duration, pressures on the head become relatively uniform when the blast reaches the back of the head. The larger standoff implies that the headform locally experiences a nearly planar blast wave. Also, the positive phase durations and blast impulses are much larger than those of (1). Consequently, the blast model used in (1) is spatially and temporally very different from a military blast. It would be useful to repeat the calculations using military blast parameters. Finally, (1) overlooks a significant part of (5). On page 1 and on page 3, (1) states that (5) did not consider helmet pads. But pages pages 3 and 4 of (5) present simulations of blast wave propagation across an ACH helmeted head form with and without pads. (5) states that when the pads are present, the 'underwash' of air under the helmet is blocked when compared to the case without. (1) reaches this same conclusion, but reports it as a new result rather than a confirmation of that already found in (5).« less
Instrumentation to Record Evoked Potentials for Closed-Loop Control of Deep Brain Stimulation
Kent, Alexander R.; Grill, Warren M.
2012-01-01
Closed-loop deep brain stimulation (DBS) systems offer promise in relieving the clinical burden of stimulus parameter selection and improving treatment outcomes. In such a system, a feedback signal is used to adjust automatically stimulation parameters and optimize the efficacy of stimulation. We explored the feasibility of recording electrically evoked compound action potentials (ECAPs) during DBS for use as a feedback control signal. A novel instrumentation system was developed to suppress the stimulus artifact and amplify the small magnitude, short latency ECAP response during DBS with clinically relevant parameters. In vitro testing demonstrated the capabilities to increase the gain by a factor of 1,000x over a conventional amplifier without saturation, reduce distortion of mock ECAP signals, and make high fidelity recordings of mock ECAPs at latencies of only 0.5 ms following DBS pulses of 50 to 100 μs duration. Subsequently, the instrumentation was used to make in vivo recordings of ECAPs during thalamic DBS in cats, without contamination by the stimulus artifact. The signal characteristics were similar across three experiments, suggesting common neural activation patterns. The ECAP recordings enabled with this novel instrumentation may provide insight into the type and spatial extent of neural elements activated during DBS, and could serve as feedback control signals for closed-loop systems. PMID:22255894
Perceptual Bias and Loudness Change: An Investigation of Memory, Masking, and Psychophysiology
NASA Astrophysics Data System (ADS)
Olsen, Kirk N.
Loudness is a fundamental aspect of human auditory perception that is closely associated with a sound's physical acoustic intensity. The dynamic quality of intensity change is an inherent acoustic feature in real-world listening domains such as speech and music. However, perception of loudness change in response to continuous intensity increases (up-ramps) and decreases (down-ramps) has received relatively little empirical investigation. Overestimation of loudness change in response to up-ramps is said to be linked to an adaptive survival response associated with looming (or approaching) motion in the environment. The hypothesised 'perceptual bias' to looming auditory motion suggests why perceptual overestimation of up-ramps may occur; however it does not offer a causal explanation. It is concluded that post-stimulus judgements of perceived loudness change are significantly affected by a cognitive recency response bias that, until now, has been an artefact of experimental procedure. Perceptual end-level differences caused by duration specific sensory adaptation at peripheral and/or central stages of auditory processing may explain differences in post-stimulus judgements of loudness change. Experiments that investigate human responses to acoustic intensity dynamics, encompassing topics from basic auditory psychophysics (e.g., sensory adaptation) to cognitive-emotional appraisal of increasingly complex stimulus events such as music and auditory warnings, are proposed for future research.
Barban, Francesco; Zannino, Gian Daniele; Macaluso, Emiliano; Caltagirone, Carlo; Carlesimo, Giovanni A
2013-06-01
Iconic memory is a high-capacity low-duration visual memory store that allows the persistence of a visual stimulus after its offset. The categorical nature of this store has been extensively debated. This study provides functional magnetic resonance imaging evidence for brain regions underlying the persistence of postcategorical representations of visual stimuli. In a partial report paradigm, subjects matched a cued row of a 3 × 3 array of letters (postcategorical stimuli) or false fonts (precategorical stimuli) with a subsequent triplet of stimuli. The cued row was indicated by two visual flankers presented at the onset (physical stimulus readout) or after the offset of the array (iconic memory readout). The left planum temporale showed a greater modulation of the source of readout (iconic memory vs. physical stimulus) when letters were presented compared to false fonts. This is a multimodal brain region responsible for matching incoming acoustic and visual patterns with acoustic pattern templates. These findings suggest that letters persist after their physical offset in an abstract postcategorical representation. A targeted region of interest analysis revealed a similar pattern of activation in the Visual Word Form Area. These results suggest that multiple higher-order visual areas mediate iconic memory for postcategorical stimuli. Copyright © 2012 Wiley Periodicals, Inc.
In vitro electromagnetically stimulated SAOS-2 osteoblasts inside porous hydroxyapatite
Fassina, Lorenzo; Saino, Enrica; Sbarra, Maria Sonia; Visai, Livia; De Angelis, Maria Gabriella Cusella; Magenes, Giovanni; Benazzo, Francesco
2009-01-01
One of the key challenges in reconstructive bone surgery is to provide living constructs that possess the ability to integrate in the surrounding tissue. Bone graft substitutes, such as autografts, allografts, xenografts, and biomaterials have been widely used to heal critical-size long bone defects due to trauma, tumor resection, congenital deformity, and tissue degeneration. In particular, porous hydroxyapatite is widely used in reconstructive bone surgery owing to its biocompatibility. In addition, the in vitro modification of hydroxyapatite with osteogenic signals enhances the tissue regeneration in vivo, suggesting that the biomaterial modification could play an important role in tissue engineering. In this study we have followed a biomimetic strategy where electromagnetically stimulated SAOS-2 human osteoblasts proliferated and built their extracellular matrix inside a porous hydroxyapatite scaffold. The electromagnetic stimulus had the following parameters: intensity of the magnetic field equal to 2 mT, amplitude of the induced electric tension equal to 5 mV, frequency of 75 Hz, and pulse duration of 1.3 ms. In comparison with control conditions, the electromagnetic stimulus increased the cell proliferation and the surface coating with bone proteins (decorin, osteocalcin, osteopontin, type-I collagen, and type-III collagen). The physical stimulus aimed at obtaining a better modification of the biomaterial internal surface in terms of cell colonization and coating with bone matrix. PMID:19827111
What a Difference a Parameter Makes: a Psychophysical Comparison of Random Dot Motion Algorithms
Pilly, Praveen K.; Seitz, Aaron R.
2009-01-01
Random dot motion (RDM) displays have emerged as one of the standard stimulus types employed in psychophysical and physiological studies of motion processing. RDMs are convenient because it is straightforward to manipulate the relative motion energy for a given motion direction in addition to stimulus parameters such as the speed, contrast, duration, density, aperture, etc. However, as widely as RDMs are employed so do they vary in their details of implementation. As a result, it is often difficult to make direct comparisons across studies employing different RDM algorithms and parameters. Here, we systematically measure the ability of human subjects to estimate motion direction for four commonly used RDM algorithms under a range of parameters in order to understand how these different algorithms compare in their perceptibility. We find that parametric and algorithmic differences can produce dramatically different performances. These effects, while surprising, can be understood in relationship to pertinent neurophysiological data regarding spatiotemporal displacement tuning properties of cells in area MT and how the tuning function changes with stimulus contrast and retinal eccentricity. These data help give a baseline by which different RDM algorithms can be compared, demonstrate a need for clearly reporting RDM details in the methods of papers, and also pose new constraints and challenges to models of motion direction processing. PMID:19336240
Lateralization of noise-burst trains based on onset and ongoing interaural delays.
Freyman, Richard L; Balakrishnan, Uma; Zurek, Patrick M
2010-07-01
The lateralization of 250-ms trains of brief noise bursts was measured using an acoustic pointing technique. Stimuli were designed to assess the contribution of the interaural time delay (ITD) of the onset binaural burst relative to that of the ITDs in the ongoing part of the train. Lateralization was measured by listeners' adjustments of the ITD of a pointer stimulus, a 50-ms burst of noise, to match the lateral position of the target train. Results confirmed previous reports of lateralization dominance by the onset burst under conditions in which the train is composed of frozen tokens and the ongoing part contains multiple ambiguous interaural delays. In contrast, lateralization of ongoing trains in which fresh noise tokens were used for each set of two alternating (left-leading/right-leading) binaural pairs followed the ITD of the first pair in each set, regardless of the ITD of the onset burst of the entire stimulus and even when the onset burst was removed by gradual gating. This clear lateralization of a long-duration stimulus with ambiguous interaural delay cues suggests precedence mechanisms that involve not only the interaural cues at the beginning of a sound, but also the pattern of cues within an ongoing sound.
Cue quality and criterion setting in recognition memory.
Kent, Christopher; Lamberts, Koen; Patton, Richard
2018-02-02
Previous studies on how people set and modify decision criteria in old-new recognition tasks (in which they have to decide whether or not a stimulus was seen in a study phase) have almost exclusively focused on properties of the study items, such as presentation frequency or study list length. In contrast, in the three studies reported here, we manipulated the quality of the test cues in a scene-recognition task, either by degrading through Gaussian blurring (Experiment 1) or by limiting presentation duration (Experiment 2 and 3). In Experiments 1 and 2, degradation of the test cue led to worse old-new discrimination. Most importantly, however, participants were more liberal in their responses to degraded cues (i.e., more likely to call the cue "old"), demonstrating strong within-list, item-by-item, criterion shifts. This liberal response bias toward degraded stimuli came at the cost of increasing the false alarm rate while maintaining a constant hit rate. Experiment 3 replicated Experiment 2 with additional stimulus types (words and faces) but did not provide accuracy feedback to participants. The criterion shifts in Experiment 3 were smaller in magnitude than Experiments 1 and 2 and varied in consistency across stimulus type, suggesting, in line with previous studies, that feedback is important for participants to shift their criteria.
See, R E; Grimm, J W; Kruzich, P J; Rustay, N
1999-11-01
Previous studies have demonstrated that conditioned stimuli can increase responding on a drug-associated lever after extinction from drug self-administration. The present study investigated singular stimuli (tone or light) or a compound stimulus (tone + light) for their ability to increase extinguished responding following chronic cocaine self-administration. Rats self-administered cocaine for 2 weeks on a fixed ratio (FR1) schedule of reinforcement, in which lever responding resulted in varied presentation of a tone, light, or tone + light combination. The rats were then exposed to 1 week of daily extinction sessions. Presentation of the tone + light on day 8 of extinction in the absence of cocaine reinforcement resulted in a significant increase in responding, while either stimulus component alone was much weaker or failed to produce any changes from extinction rates of responding. In addition, changing the duration of the single elements of the compound did not affect the magnitude of increased responding to the compound. Following three final extinction sessions, robust lever responding for cocaine infusions on day 12 of extinction was seen across all groups. These findings suggest that compound stimuli may be critical to fully activate drug-seeking behavior in conditions of craving and relapse following prolonged extinction.
Sharma, Aman; Torres-Moreno, Ricardo; Zabjek, Karl; Andrysek, Jan
2014-01-01
People with lower-limb amputation have reduced mobility due to loss of sensory information, which may be restored by artificial sensory feedback systems built into prostheses. For an effective system, it is important to understand how humans sense, interpret, and respond to the feedback that would be provided. The goal of this study was to examine sensorimotor responses to mobility-relevant stimuli. Three experiments were performed to examine the effects of location of stimuli, frequency of stimuli, and means for providing the response. Stimuli, given as vibrations, were applied to the thigh region, and responses involved leg movements. Sensorimotor reaction time (RT) was measured as the duration between application of the stimulus and initiation of the response. Accuracy of response was also measured. Overall average RTs for one response option were 0.808 +/- 0.142 s, and response accuracies were >90%. Higher frequencies (220 vs 140 Hz) of vibration stimulus provided in anterior regions of the thigh produced the fastest RTs. When participants were presented with more than one stimulus and response option, RTs increased. Findings suggest that long sensorimotor responses may be a limiting factor in the development of an artificial feedback system for mobility rehabilitation applications; however, feed-forward techniques could potentially help to address these limitations.
Generation of stable subfemtosecond hard x-ray pulses with optimized nonlinear bunch compression
Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...
2014-12-15
In this paper, we propose a simple scheme that leverages existing x-ray free-electron laser hardware to produce stable single-spike, subfemtosecond x-ray pulses. By optimizing a high-harmonic radio-frequency linearizer to achieve nonlinear compression of a low-charge (20 pC) electron beam, we obtain a sharp current profile possessing a few-femtosecond full width at half maximum temporal duration. A reverse undulator taper is applied to enable lasing only within the current spike, where longitudinal space charge forces induce an electron beam time-energy chirp. Simulations based on the Linac Coherent Light Source parameters show that stable single-spike x-ray pulses with a duration less thanmore » 200 attoseconds can be obtained.« less
Effect of Microgravity on Bone Tissue and Calcium Metabolism
NASA Technical Reports Server (NTRS)
1997-01-01
Session TA4 includes short reports concerning: (1) Human Bone Tissue Changes after Long-Term Space Flight: Phenomenology and Possible Mechanics; (2) Prediction of Femoral Neck Bone Mineral Density Change in Space; (3) Dietary Calcium in Space; (4) Calcium Metabolism During Extended-Duration Space Flight; (5) External Impact Loads on the Lower Extremity During Jumping in Simulated Microgravity and the Relationship to Internal Bone Strain; and (6) Bone Loss During Long Term Space Flight is Prevented by the Application of a Short Term Impulsive Mechanical Stimulus.
2012-10-01
in place. Mark Ginsberg, one of our local jewelry story owners has acquired 3D extruding printers for medical instrumentation applications and will...comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE...tested out our software, which was written to control the monitor brightness, duration, and color for each visual stimulus. The software has been
Response of an oscillatory differential delay equation to a single stimulus.
Mackey, Michael C; Tyran-Kamińska, Marta; Walther, Hans-Otto
2017-04-01
Here we analytically examine the response of a limit cycle solution to a simple differential delay equation to a single pulse perturbation of the piecewise linear nonlinearity. We construct the unperturbed limit cycle analytically, and are able to completely characterize the perturbed response to a pulse of positive amplitude and duration with onset at different points in the limit cycle. We determine the perturbed minima and maxima and period of the limit cycle and show how the pulse modifies these from the unperturbed case.
Global motion perception deficits in autism are reflected as early as primary visual cortex.
Robertson, Caroline E; Thomas, Cibu; Kravitz, Dwight J; Wallace, Gregory L; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I
2014-09-01
Individuals with autism are often characterized as 'seeing the trees, but not the forest'-attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15-27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Goodship, A. E.; Cunningham, J. L.; Oganov, V.; Darling, J.; Miles, A. W.; Owen, G. W.
In long term space flight, the mechanical forces applied to the skeleton are substantially reduced and are altered in character. This reduced skeletal loading results in a reduction in bone mass. Exercise techmques currently used in space can maintain muscle mass but the mechanical stimulus provided by this exercise does not prevent bone loss. By applying an external impulsive load for a short period each day, which is intended to mimic the heel strike transient, to the lower limb of an astronaut during a long term space flight (5 months), this study tests the hypothesis that the bone cells can be activated by an appropriate external mechanical stimulus to maintain bone mass throughout prolonged periods of weightlessness. A mechanical loading device was developed to produce a loading of the os-calcis similar to that observed during the heel strike transient. The device is activated by the astronaut to provide a transient load to the heel of one leg whilst providing an equivalent exercising load to the other leg. During the EUROMIR95 mission on the MIR space station, an astronaut used this device for a short period daily throughout the duration of the mission. Pre- and post-flight measurements of bone mineral density (BMD) of the os-calcis and femoral neck of the astronaut were made to determine the efficacy of the device in preventing loss of bone mineral during the mission. On the os-calcis which received the mechanical stimulus, BMD was maintained throughout the period of the flight, while it was reduced by up to 7% on the os-calcis which received no stimulus. Post-flight, BMD in both the stimulated and non-stimulated os-calcis reduces, the extent of this reduction however is less in the stimulated os-calcis. For the femoral neck, the mechanical Stimulation does not produce a positive effect. On the os-calcis which received the mechanical stimulus, BMD was maintained throughout the period of the flight, while it was reduced by up to 7% on the os-calcis which received no stimulus. Post-flight, BMD in both the stimulated and non-stimulated os-calcis reduces, the extent of this reduction however is less in the stimulated os-calcis. For the femoral neck, the mechanical stimulation does not produce a positive effect.
Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues.
Reale, R A; Brugge, J F
1990-10-01
1. The interaural-phase-difference (IPD) sensitivity of single neurons in the primary auditory (AI) cortex of the anesthetized cat was studied at stimulus frequencies ranging from 120 to 2,500 Hz. Best frequencies of the 43 AI cells sensitive to IPD ranged from 190 to 2,400 Hz. 2. A static IPD was produced when a pair of low-frequency tone bursts, differing from one another only in starting phase, were presented dichotically. The resulting IPD-sensitivity curves, which plot the number of discharges evoked by the binaural signal as a function of IPD, were deeply modulated circular functions. IPD functions were analyzed for their mean vector length (r) and mean interaural phase (phi). Phase sensitivity was relatively independent of best frequency (BF) but highly dependent on stimulus frequency. Regardless of BF or stimulus frequency within the excitatory response area the majority of cells fired maximally when the ipsilateral tone lagged the contralateral signal and fired least when this interaural-phase relationship was reversed. 3. Sensitivity to continuously changing IPD was studied by delivering to the two ears 3-s tones that differed slightly in frequency, resulting in a binaural beat. Approximately 26% of the cells that showed a sensitivity to static changes in IPD also showed a sensitivity to dynamically changing IPD created by this binaural tonal combination. The discharges were highly periodic and tightly synchronized to a particular phase of the binaural beat cycle. High synchrony can be attributed to the fact that cortical neurons typically respond to an excitatory stimulus with but a single spike that is often precisely timed to stimulus onset. A period histogram, binned on the binaural beat frequency (fb), produced an equivalent IPD-sensitivity function for dynamically changing interaural phase. For neurons sensitive to both static and continuously changing interaural phase there was good correspondence between their static (phi s) and dynamic (phi d) mean interaural phases. 4. All cells responding to a dynamically changing stimulus exhibited a linear relationship between mean interaural phase and beat frequency. Most cells responded equally well to binaural beats regardless of the initial direction of phase change. For a fixed duration stimulus, and at relatively low fb, the number of spikes evoked increased with increasing fb, reflecting the increasing number of effective stimulus cycles. At higher fb, AI neurons were unable to follow the rate at which the most effective phase repeated itself during the 3 s of stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)
Induction and modulation of persistent activity in a layer V PFC microcircuit model
Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Cutsuridis, Vassilis; Poirazi, Panayiota
2013-01-01
Working memory refers to the temporary storage of information and is strongly associated with the prefrontal cortex (PFC). Persistent activity of cortical neurons, namely the activity that persists beyond the stimulus presentation, is considered the cellular correlate of working memory. Although past studies suggested that this type of activity is characteristic of large scale networks, recent experimental evidence imply that small, tightly interconnected clusters of neurons in the cortex may support similar functionalities. However, very little is known about the biophysical mechanisms giving rise to persistent activity in small-sized microcircuits in the PFC. Here, we present a detailed biophysically—yet morphologically simplified—microcircuit model of layer V PFC neurons that incorporates connectivity constraints and is validated against a multitude of experimental data. We show that (a) a small-sized network can exhibit persistent activity under realistic stimulus conditions. (b) Its emergence depends strongly on the interplay of dADP, NMDA, and GABAB currents. (c) Although increases in stimulus duration increase the probability of persistent activity induction, variability in the stimulus firing frequency does not consistently influence it. (d) Modulation of ionic conductances (Ih, ID, IsAHP, IcaL, IcaN, IcaR) differentially controls persistent activity properties in a location dependent manner. These findings suggest that modulation of the microcircuit's firing characteristics is achieved primarily through changes in its intrinsic mechanism makeup, supporting the hypothesis of multiple bi-stable units in the PFC. Overall, the model generates a number of experimentally testable predictions that may lead to a better understanding of the biophysical mechanisms of persistent activity induction and modulation in the PFC. PMID:24130519
Independence of Movement Preparation and Movement Initiation.
Haith, Adrian M; Pakpoor, Jina; Krakauer, John W
2016-03-09
Initiating a movement in response to a visual stimulus takes significantly longer than might be expected on the basis of neural transmission delays, but it is unclear why. In a visually guided reaching task, we forced human participants to move at lower-than-normal reaction times to test whether normal reaction times are strictly necessary for accurate movement. We found that participants were, in fact, capable of moving accurately ∼80 ms earlier than their reaction times would suggest. Reaction times thus include a seemingly unnecessary delay that accounts for approximately one-third of their duration. Close examination of participants' behavior in conventional reaction-time conditions revealed that they generated occasional, spontaneous errors in trials in which their reaction time was unusually short. The pattern of these errors could be well accounted for by a simple model in which the timing of movement initiation is independent of the timing of movement preparation. This independence provides an explanation for why reaction times are usually so sluggish: delaying the mean time of movement initiation relative to preparation reduces the risk that a movement will be initiated before it has been appropriately prepared. Our results suggest that preparation and initiation of movement are mechanistically independent and may have a distinct neural basis. The results also demonstrate that, even in strongly stimulus-driven tasks, presentation of a stimulus does not directly trigger a movement. Rather, the stimulus appears to trigger an internal decision whether to make a movement, reflecting a volitional rather than reactive mode of control. Copyright © 2016 the authors 0270-6474/16/363007-10$15.00/0.
Fiesta, Matthew P; Eagleman, David M
2008-09-15
As the frequency of a flickering light is increased, the perception of flicker is replaced by the perception of steady light at what is known as the critical flicker fusion threshold (CFFT). This threshold provides a useful measure of the brain's information processing speed, and has been used in medicine for over a century both for diagnostic and drug efficacy studies. However, the hardware for presenting the stimulus has not advanced to take advantage of computers, largely because the refresh rates of typical monitors are too slow to provide fine-grained changes in the alternation rate of a visual stimulus. For example, a cathode ray tube (CRT) computer monitor running at 100Hz will render a new frame every 10 ms, thus restricting the period of a flickering stimulus to multiples of 20 ms. These multiples provide a temporal resolution far too low to make precise threshold measurements, since typical CFFT values are in the neighborhood of 35 ms. We describe here a simple and novel technique to enable alternating images at several closely-spaced periods on a standard monitor. The key to our technique is to programmatically control the video card to dynamically reset the refresh rate of the monitor. Different refresh rates allow slightly different frame durations; this can be leveraged to vastly increase the resolution of stimulus presentation times. This simple technique opens new inroads for experiments on computers that require more finely-spaced temporal resolution than a monitor at a single, fixed refresh rate can allow.
Singh, Nagendra Madan; Sathyaprabha, T. N.; Thirthalli, Jagadisha; Andrade, Chittaranjan
2018-01-01
Background: No electroconvulsive therapy (ECT) study on humans or in animal models has so far examined whether differently composed electrical stimuli exert different cardiac electrophysiological effects at constant electrical dose. The subject is important because cardiac electrophysiological changes may provide indirect information about ECT seizure quality as modulated by stimulus composition. Materials and Methods: Adult female Wistar rats (n = 20/group) received fixed, moderately suprathreshold (18 mC) electrical stimuli. This stimulus in each of eight groups was formed by varying pulse amplitude, pulse width, pulse frequency, and stimulus duration. The electrocardiogram was recorded, and time and frequency domain variables were examined in 30 s epochs in preictal (30 s before electroconvulsive shock [ECS]), early postictal (starting 15 s after stimulation), and late postictal (5 h after ECS) periods. Alpha for statistical significance was set at P < 0.01 to adjust for multiple hypothesis testing. Results: Cardiac electrophysiological indices in the eight groups did not differ significantly at baseline. At both early and late postictal time points, almost no analysis yielded statistically significant differences between groups for four time domain variables, including heart rate and standard deviation of R-R intervals, and for six frequency domain variables, including low-frequency power, high-frequency power, and total power. Conclusions: Cardiac electrophysiological measures may not be helpful to identify differences in seizure quality that are driven by differences in the composition of electrical stimuli at constant, moderately suprathreshold electrical dose. The generalization of this conclusion to threshold electrical doses and to human contexts requires a study. PMID:29736058
A Role for Mouse Primary Visual Cortex in Motion Perception.
Marques, Tiago; Summers, Mathew T; Fioreze, Gabriela; Fridman, Marina; Dias, Rodrigo F; Feller, Marla B; Petreanu, Leopoldo
2018-06-04
Visual motion is an ethologically important stimulus throughout the animal kingdom. In primates, motion perception relies on specific higher-order cortical regions. Although mouse primary visual cortex (V1) and higher-order visual areas show direction-selective (DS) responses, their role in motion perception remains unknown. Here, we tested whether V1 is involved in motion perception in mice. We developed a head-fixed discrimination task in which mice must report their perceived direction of motion from random dot kinematograms (RDKs). After training, mice made around 90% correct choices for stimuli with high coherence and performed significantly above chance for 16% coherent RDKs. Accuracy increased with both stimulus duration and visual field coverage of the stimulus, suggesting that mice in this task integrate motion information in time and space. Retinal recordings showed that thalamically projecting On-Off DS ganglion cells display DS responses when stimulated with RDKs. Two-photon calcium imaging revealed that neurons in layer (L) 2/3 of V1 display strong DS tuning in response to this stimulus. Thus, RDKs engage motion-sensitive retinal circuits as well as downstream visual cortical areas. Contralateral V1 activity played a key role in this motion direction discrimination task because its reversible inactivation with muscimol led to a significant reduction in performance. Neurometric-psychometric comparisons showed that an ideal observer could solve the task with the information encoded in DS L2/3 neurons. Motion discrimination of RDKs presents a powerful behavioral tool for dissecting the role of retino-forebrain circuits in motion processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Brooks, Kevin R.; Stone, Leland S.
2004-01-01
The role of two binocular cues to motion in depth-changing disparity (CD) and interocular velocity difference (IOVD)- was investigated by measuring stereomotion speed discrimination and static disparity discrimination performance (stereoacuity). Speed discrimination thresholds were assessed both for random dot stereograms (RDS), and for their temporally uncorrelated equivalents, dynamic random dot stereograms (DRDS), at relative disparity pedestals of -19, 0, and +19 arcmin. While RDS stimuli contain both CD and IOVD cues, DRDS stimuli carry only CD information. On average, thresholds were a factor of 1.7 higher for DRDS than for RDS stimuli with no clear effect of relative disparity pedestal. Results were similar for approaching and receding targets. Variations in stimulus duration had no significant effect on thresholds, and there was no observed correlation between stimulus displacement and perceived speed, confirming that subjects responded to stimulus speed in each condition. Stereoacuity was equally good for our RDS and DRDS stimuli, showing that the difference in stereomotion speed discrimination performance for these stimuli was not due to any difference in the precision of the disparity cue. In addition, when we altered stereomotion stimulus trajectory by independently manipulating the speeds and directions of its monocular half-images, perceived stereomotion speed remained accurate. This finding is inconsistent with response strategies based on properties of either monocular half-image motion, or any ad hoc combination of the monocular speeds. We conclude that although subjects are able to discriminate stereomotion speed reliably on the basis of CD information alone, IOVD provides a precise additional cue to stereomotion speed perception.
Four-choice sound localization abilities of two Florida manatees, Trichechus manatus latirostris.
Colbert, Debborah E; Gaspard, Joseph C; Reep, Roger; Mann, David A; Bauer, Gordon B
2009-07-01
The absolute sound localization abilities of two Florida manatees (Trichechus manatus latirostris) were measured using a four-choice discrimination paradigm, with test locations positioned at 45 deg., 90 deg., 270 deg. and 315 deg. angles relative to subjects facing 0 deg. Three broadband signals were tested at four durations (200, 500, 1000, 3000 ms), including a stimulus that spanned a wide range of frequencies (0.2-20 kHz), one stimulus that was restricted to frequencies with wavelengths shorter than their interaural time distances (6-20 kHz) and one that was limited to those with wavelengths longer than their interaural time distances (0.2-2 kHz). Two 3000 ms tonal signals were tested, including a 4 kHz stimulus, which is the midpoint of the 2.5-5.9 kHz fundamental frequency range of manatee vocalizations and a 16 kHz stimulus, which is in the range of manatee best-hearing sensitivity. Percentage correct within the broadband conditions ranged from 79% to 93% for Subject 1 and from 51% to 93% for Subject 2. Both performed above chance with the tonal signals but had much lower accuracy than with broadband signals, with Subject 1 at 44% and 33% and Subject 2 at 49% and 32% at the 4 kHz and 16 kHz conditions, respectively. These results demonstrate that manatees are able to localize frequency bands with wavelengths that are both shorter and longer than their interaural time distances and suggest that they have the ability to localize both manatee vocalizations and recreational boat engine noises.
Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems
Karimi, Mahdi; Ghasemi, Amir; Zangabad, Parham Sahandi; Rahighi, Reza; Moosavi Basri, S. Masoud; Mirshekari, H.; Amiri, M.; Pishabad, Z. Shafaei; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A. R.; Haghani, L.; Bahrami, S.; Hamblin, Michael R.
2016-01-01
New achievements in the realm of nanoscience and innovative techniques of nanomedicine have moved micro/nanoparticles (MNPs) to the point of becoming actually useful for practical applications in the near future. Various differences between the extracellular and intracellular environments of cancerous and normal cells and the particular characteristics of tumors such as physicochemical properties, neovasculature, elasticity, surface electrical charge, and pH have motivated the design and fabrication of inventive “smart” MNPs for stimulus-responsive controlled drug release. These novel MNPs can be tailored to be responsive to pH variations, redox potential, enzymatic activation, thermal gradients, magnetic fields, light, and ultrasound (US), or can even be responsive to dual or multi-combinations of different stimuli. This unparalleled capability has increased their importance as site-specific controlled drug delivery systems (DDSs) and has encouraged their rapid development in recent years. An in-depth understanding of the underlying mechanisms of these DDS approaches is expected to further contribute to this groundbreaking field of nanomedicine. Smart nanocarriers in the form of MNPs that can be triggered by internal or external stimulus are summarized and discussed in the present review, including pH-sensitive peptides and polymers, redox-responsive micelles and nanogels, thermo- or magnetic-responsive nanoparticles (NPs), mechanical- or electrical-responsive MNPs, light or ultrasound-sensitive particles, and multi-responsive MNPs including dual stimuli-sensitive nanosheets of graphene. This review highlights the recent advances of smart MNPs categorized according to their activation stimulus (physical, chemical, or biological) and looks forward to future pharmaceutical applications. PMID:26776487
Integrated Experimental Platforms to Study Blast Injuries: a Bottom-Up Approach
NASA Astrophysics Data System (ADS)
Bo, Chiara
2013-06-01
Developing a cellular and molecular understanding of the nature of traumatic and post-traumatic effects of blast events on live biological samples is critical for improving clinical outcomes.1 To investigate the consequences of pressure waves upon cellular structures and the underlying physiological and biochemical changes, we are using an integrated approach to study the material and biological properties of cells, tissues and organs when subjected to extreme conditions. In particular we have developed a confined Split Hopkinson Pressure Bar (SHPB) system, which allows us to subject cells in suspension or in a monolayer to compression waves of the order of few MPa and duration of hundreds of microseconds.2 The chamber design also enables recovery of the biological samples for cellular and molecular analysis. Specifically, cell survivability, viability, proliferation and morphological changes are investigated post compression for different cell populations. The SHPB platform, coupled with Quasi-Static experiments, is also used to determine stress-strain curves of soft biological tissues under compression at low, medium and high strain rates. Samples are also examined using histological techniques to study macro- and microscopical changes induced by compression waves. Finally, a shock tube has been developed to replicate primary blast damage on organs (i.e. mice lungs) and cell monolayers by generating single or multiple air blast of the order of kPa and few milliseconds duration. This platform allows us to visualize post-traumatic morphological changes at the cellular level as a function of the stimulus pressure and duration as well as biomarker signatures of blast injuries. Adapting and integrating a variety of approaches with different experimental platforms allows us to sample a vast pressure-time space in terms of biological and structural damage that mimic blast injuries and also to determine which physical parameters (peak pressure, stimulus duration, impulse) are contributing to the injury process. Moreover, understanding biological damage following blast events is crucial to developing novel clinical approaches to detect and treat traumatic injury pathologies. This work is supported by he Atomic Weapons Establishment, UK and The Royal British Legion Centre for Blast Injury Studies at Imperial College London, UK
Accounting for rate-dependent category boundary shifts in speech perception.
Bosker, Hans Rutger
2017-01-01
The perception of temporal contrasts in speech is known to be influenced by the speech rate in the surrounding context. This rate-dependent perception is suggested to involve general auditory processes because it is also elicited by nonspeech contexts, such as pure tone sequences. Two general auditory mechanisms have been proposed to underlie rate-dependent perception: durational contrast and neural entrainment. This study compares the predictions of these two accounts of rate-dependent speech perception by means of four experiments, in which participants heard tone sequences followed by Dutch target words ambiguous between /ɑs/ "ash" and /a:s/ "bait". Tone sequences varied in the duration of tones (short vs. long) and in the presentation rate of the tones (fast vs. slow). Results show that the duration of preceding tones did not influence target perception in any of the experiments, thus challenging durational contrast as explanatory mechanism behind rate-dependent perception. Instead, the presentation rate consistently elicited a category boundary shift, with faster presentation rates inducing more /a:s/ responses, but only if the tone sequence was isochronous. Therefore, this study proposes an alternative, neurobiologically plausible account of rate-dependent perception involving neural entrainment of endogenous oscillations to the rate of a rhythmic stimulus.
The gap-startle paradigm to assess auditory temporal processing: Bridging animal and human research.
Fournier, Philippe; Hébert, Sylvie
2016-05-01
The gap-prepulse inhibition of the acoustic startle (GPIAS) paradigm is the primary test used in animal research to identify gap detection thresholds and impairment. When a silent gap is presented shortly before a loud startling stimulus, the startle reflex is inhibited and the extent of inhibition is assumed to reflect detection. Here, we applied the same paradigm in humans. One hundred and fifty-seven normal-hearing participants were tested using one of five gap durations (5, 25, 50, 100, 200 ms) in one of the following two paradigms-gap-embedded in or gap-following-the continuous background noise. The duration-inhibition relationship was observable for both conditions but followed different patterns. In the gap-embedded paradigm, GPIAS increased significantly with gap duration up to 50 ms and then more slowly up to 200 ms (trend only). In contrast, in the gap-following paradigm, significant inhibition-different from 0--was observable only at gap durations from 50 to 200 ms. The finding that different patterns are found depending on gap position within the background noise is compatible with distinct mechanisms underlying each of the two paradigms. © 2016 Society for Psychophysiological Research.
Performance Assessment of Passive Hearing Protection Devices
2014-10-24
ear ................................................ 9 Figure 11. Schematic of the set-up of the explosive charge for the creation of a shock wave...10 Table 1: Type and mass of explosive and distance between ATF and explosive for different peak pressure levels and A-durations...OF TABLES Table 1: Type and mass of explosive and distance between ATF and explosive for different peak pressure levels and A-durations
Dynamic model of target charging by short laser pulse interactions
NASA Astrophysics Data System (ADS)
Poyé, A.; Dubois, J.-L.; Lubrano-Lavaderci, F.; D'Humières, E.; Bardon, M.; Hulin, S.; Bailly-Grandvaux, M.; Ribolzi, J.; Raffestin, D.; Santos, J. J.; Nicolaï, Ph.; Tikhonchuk, V.
2015-10-01
A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.
Dynamic model of target charging by short laser pulse interactions.
Poyé, A; Dubois, J-L; Lubrano-Lavaderci, F; D'Humières, E; Bardon, M; Hulin, S; Bailly-Grandvaux, M; Ribolzi, J; Raffestin, D; Santos, J J; Nicolaï, Ph; Tikhonchuk, V
2015-10-01
A model providing an accurate estimate of the charge accumulation on the surface of a metallic target irradiated by a high-intensity laser pulse of fs-ps duration is proposed. The model is confirmed by detailed comparisons with specially designed experiments. Such a model is useful for understanding the electromagnetic pulse emission and the quasistatic magnetic field generation in laser-plasma interaction experiments.
Strong electromagnetic pulses generated in high-intensity laser-matter interactions
NASA Astrophysics Data System (ADS)
Rączka, P.; Dubois, J.-L.; Hulin, S.; Rosiński, M.; Zaraś-Szydłowska, A.; Badziak, J.
2018-01-01
Results are reported of an experiment performed at the Eclipse laser facility in CELIA, Bordeaux, on the generation of strong electromagnetic pulses. Measurements were performed of the target neutralization current, the total target charge and the tangential component of the magnetic field for the laser energies ranging from 45 mJ to 92 mJ with the pulse duration approximately 40 fs, and for the pulse durations ranging from 39 fs to 1000 fs, with the laser energy approximately 90 mJ. It was found that the values obtained for thick (mm scale) Cu targets are visibly higher than values reported in previous experiments, which is argued to be a manifestation of a strong dependence of the target electric polarization process on the laser contrast and hence on the amount of preplasma. It was also found that values obtained for thin (μm scale) Al foils were visibly higher than values for thick Cu targets, especially for pulse durations longer than 100 fs. The correlations between the total target charge versus the maximum value of the target neutralization current, and the maximum value of the tangential component of the magnetic field versus the total target charge were analysed. They were found to be in very good agreement with correlations seen in data from previous experiments, which provides a good consistency check on our experimental procedures.
Apparatus and method for recharging a string a avalanche transistors within a pulse generator
Fulkerson, E. Stephen
2000-01-01
An apparatus and method for recharging a string of avalanche transistors within a pulse generator is disclosed. A plurality of amplification stages are connected in series. Each stage includes an avalanche transistor and a capacitor. A trigger signal, causes the apparatus to generate a very high voltage pulse of a very brief duration which discharges the capacitors. Charge resistors inject current into the string of avalanche transistors at various points, recharging the capacitors. The method of the present invention includes the steps of supplying current to charge resistors from a power supply; using the charge resistors to charge capacitors connected to a set of serially connected avalanche transistors; triggering the avalanche transistors; generating a high-voltage pulse from the charge stored in the capacitors; and recharging the capacitors through the charge resistors.
Tomie, Arthur; Sparta, Dennis R; Silberman, Yuval; Interlandi, Jeneen; Mynko, Alise; Patterson-Buckendahl, Patricia; Pohorecky, Larissa A
2002-01-01
This study asks if repeated Pavlovian pairings of a sipper tube (conditioned stimulus, CS) with food (unconditioned stimulus, US) will induce Pavlovian autoshaping conditioned responses (CRs), consisting of drinking of either 6% ethanol or water from the sipper CS. This study also tests predictions derived from the autoshaping model by asking if sipper CS-directed drinking will be retained, despite the absence of training for several weeks, and, in addition, if drinking rate is a negative function of sipper CS duration. Autoshaping procedures, conducted in two daily sessions, consisted of the brief insertion of the sipper tube CS followed by the response-independent presentation of food US. For the Ethanol group (n = 8), the sipper CS contained 6% ethanol, whereas for the Water group (n = 8), the sipper CS contained tap water. Saccharin fading procedures were employed, whereas for both groups, during days 1-19, the sipper CS contained 0.1% saccharin, and thereafter across training days the concentration of saccharin was gradually reduced (0.07, 0.035, 0.0%). Following elimination of saccharin, both groups were maintained in their home cages during a 27-day retention interval, and then re-evaluated for autoshaping of drinking of unsweetened ethanol and water. Thereafter, across days, the duration of access to the sipper CS (5.0, 7.5, 10.0, 15.0 s) during each autoshaping trial was increased. Both groups increased drinking across the first 19 days of training with sipper CS-food US pairings, and, at 0.0% saccharin, the Ethanol group consumed 14.76 ml of 6% ethanol per day, resulting in a daily ethanol consumption of 2.77 g/kg. For both groups, daily levels of drinking before and after the 27-day retention interval were comparable, attesting to the durability of the acquired drinking effects. At each CS duration, the Ethanol group consumed more millilitres of fluid per day than did the Water group, and for the Ethanol group, peak drinking of 24.0 ml of 6% ethanol per day was observed at the 10 s CS duration. For both groups, drinking rate (millilitres of fluid consumed per second of CS duration), was a declining monotonic function of CS duration, resulting in a daily ethanol consumption of approximately 4.2 g/kg for the Ethanol group. These data reveal that these sipper CS-food US autoshaping procedures induce drinking in rats that is durable and negatively related to increasing CS duration. The effects of both variables are consistent with the hypothesis that drinking from the sipper CS is a Pavlovian autoshaping CR. Autoshaping of drinking in the Water group is observed despite the absence of water deprivation, and even more fluid is consumed by the Ethanol group than by the Water group. The high volumes of ethanol consumed during brief daily sessions suggest that Pavlovian autoshaping procedures may provide an animal learning model of binge drinking.
Toward an implantable functional electrical stimulation device to correct strabismus
Velez, Federico G.; Isobe, Jun; Zealear, David; Judy, Jack W.; Edgerton, V. Reggie; Patnode, Stephanie; Lee, Hyowon; Hahn, Brian T.
2010-01-01
PURPOSE To investigate the feasibility of electrically stimulating the lateral rectus muscle to recover its physiologic abduction ability in cases of complete sixth cranial (abducens) nerve palsy. METHODS In the feline lateral rectus muscle model, the effects of a charge-balanced, biphasic, current-controlled stimulus on the movement of the eye were investigated while stimulation frequency, amplitude, and pulse duration was varied. Eye deflection was measured with a force transducer. Denervated conditions were simulated by injection of botulinum toxin A. RESULTS Three chemically denervated and 4 control lateral rectus muscles were analyzed. In control lateral rectus muscles, the minimum fusion frequency was approximately 170 Hz, and the maximum evoked abduction was 27°. The minimum fusion frequency was unchanged after 4 weeks of chemical denervation. Stimulation of chemically denervated lateral rectus muscle resulted in 17° of abduction. For both innervated and chemically denervated lateral rectus muscle, frequencies greater than 175 Hz yielded very little increase in abduction. Modulating amplitude produced noticeable movement throughout the tested range (0.2 to 9 mA). CONCLUSIONS Results from the feline lateral rectus muscle showed that electrical stimulation is a feasible approach to evoke a contraction from a denervated lateral rectus muscle. The degree of denervation of the feline lateral rectus muscle was indeterminate. Varying the stimulation amplitude allowed greater eye movement. It is very likely that both frequency and amplitude must be modulated for finer control of static eye position. PMID:19375369
Simple reaction time to the onset of time-varying sounds.
Schlittenlacher, Josef; Ellermeier, Wolfgang
2015-10-01
Although auditory simple reaction time (RT) is usually defined as the time elapsing between the onset of a stimulus and a recorded reaction, a sound cannot be specified by a single point in time. Therefore, the present work investigates how the period of time immediately after onset affects RT. By varying the stimulus duration between 10 and 500 msec, this critical duration was determined to fall between 32 and 40 milliseconds for a 1-kHz pure tone at 70 dB SPL. In a second experiment, the role of the buildup was further investigated by varying the rise time and its shape. The increment in RT for extending the rise time by a factor of ten was about 7 to 8 msec. There was no statistically significant difference in RT between a Gaussian and linear rise shape. A third experiment varied the modulation frequency and point of onset of amplitude-modulated tones, producing onsets at different initial levels with differently rapid increase or decrease immediately afterwards. The results of all three experiments results were explained very well by a straightforward extension of the parallel grains model (Miller and Ulrich Cogn. Psychol. 46, 101-151, 2003), a probabilistic race model employing many parallel channels. The extension of the model to time-varying sounds made the activation of such a grain depend on intensity as a function of time rather than a constant level. A second approach by mechanisms known from loudness produced less accurate predictions.
Penhune, V B; Zatorre, R J; Feindel, W H
1999-03-01
This experiment examined the participation of the auditory cortex of the temporal lobe in the perception and retention of rhythmic patterns. Four patient groups were tested on a paradigm contrasting reproduction of auditory and visual rhythms: those with right or left anterior temporal lobe removals which included Heschl's gyrus (HG), the region of primary auditory cortex (RT-A and LT-A); and patients with right or left anterior temporal lobe removals which did not include HG (RT-a and LT-a). Estimation of lesion extent in HG using an MRI-based probabilistic map indicated that, in the majority of subjects, the lesion was confined to the anterior secondary auditory cortex located on the anterior-lateral extent of HG. On the rhythm reproduction task, RT-A patients were impaired in retention of auditory but not visual rhythms, particularly when accurate reproduction of stimulus durations was required. In contrast, LT-A patients as well as both RT-a and LT-a patients were relatively unimpaired on this task. None of the patient groups was impaired in the ability to make an adequate motor response. Further, they were unimpaired when using a dichotomous response mode, indicating that they were able to adequately differentiate the stimulus durations and, when given an alternative method of encoding, to retain them. Taken together, these results point to a specific role for the right anterior secondary auditory cortex in the retention of a precise analogue representation of auditory tonal patterns.
Felisberti, Fatima; Terry, Philip
2015-09-01
The study compared alcohol's effects on the recognition of briefly displayed facial expressions of emotion (so-called microexpressions) with expressions presented for a longer period. Using a repeated-measures design, we tested 18 participants three times (counterbalanced), after (i) a placebo drink, (ii) a low-to-moderate dose of alcohol (0.17 g/kg women; 0.20 g/kg men) and (iii) a moderate-to-high dose of alcohol (0.52 g/kg women; 0.60 g/kg men). On each session, participants were presented with stimuli representing six emotions (happiness, sadness, anger, fear, disgust and contempt) overlaid on a generic avatar in a six-alternative forced-choice paradigm. A neutral expression (1 s) preceded and followed a target expression presented for 200 ms (microexpressions) or 400 ms. Participants mouse clicked the correct answer. The recognition of disgust was significantly better after the high dose of alcohol than after the low dose or placebo drinks at both durations of stimulus presentation. A similar profile of effects was found for the recognition of contempt. There were no effects on response latencies. Alcohol can increase sensitivity to expressions of disgust and contempt. Such effects are not dependent on stimulus duration up to 400 ms and may reflect contextual modulation of alcohol's effects on emotion recognition. Copyright © 2015 John Wiley & Sons, Ltd.
Predictive cues for auditory stream formation in humans and monkeys.
Aggelopoulos, Nikolaos C; Deike, Susann; Selezneva, Elena; Scheich, Henning; Brechmann, André; Brosch, Michael
2017-12-18
Auditory perception is improved when stimuli are predictable, and this effect is evident in a modulation of the activity of neurons in the auditory cortex as shown previously. Human listeners can better predict the presence of duration deviants embedded in stimulus streams with fixed interonset interval (isochrony) and repeated duration pattern (regularity), and neurons in the auditory cortex of macaque monkeys have stronger sustained responses in the 60-140 ms post-stimulus time window under these conditions. Subsequently, the question has arisen whether isochrony or regularity in the sensory input contributed to the enhancement of the neuronal and behavioural responses. Therefore, we varied the two factors isochrony and regularity independently and measured the ability of human subjects to detect deviants embedded in these sequences as well as measuring the responses of neurons the primary auditory cortex of macaque monkeys during presentations of the sequences. The performance of humans in detecting deviants was significantly increased by regularity. Isochrony enhanced detection only in the presence of the regularity cue. In monkeys, regularity increased the sustained component of neuronal tone responses in auditory cortex while isochrony had no consistent effect. Although both regularity and isochrony can be considered as parameters that would make a sequence of sounds more predictable, our results from the human and monkey experiments converge in that regularity has a greater influence on behavioural performance and neuronal responses. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Performance on perceptual word identification is mediated by discrete states.
Swagman, April R; Province, Jordan M; Rouder, Jeffrey N
2015-02-01
We contrast predictions from discrete-state models of all-or-none information loss with signal-detection models of graded strength for the identification of briefly flashed English words. Previous assessments have focused on whether ROC curves are straight or not, which is a test of a discrete-state model where detection leads to the highest confidence response with certainty. We along with many others argue this certainty assumption is too constraining, and, consequently, the straight-line ROC test is too stringent. Instead, we assess a core property of discrete-state models, conditional independence, where the pattern of responses depends only on which state is entered. The conditional independence property implies that confidence ratings are a mixture of detect and guess state responses, and that stimulus strength factors, the duration of the flashed word in this report, affect only the probability of entering a state and not responses conditional on a state. To assess this mixture property, 50 participants saw words presented briefly on a computer screen at three variable flash durations followed by either a two-alternative confidence ratings task or a yes-no confidence ratings task. Comparable discrete-state and signal-detection models were fit to the data for each participant and task. The discrete-state models outperformed the signal detection models for 90 % of participants in the two-alternative task and for 68 % of participants in the yes-no task. We conclude discrete-state models are viable for predicting performance across stimulus conditions in a perceptual word identification task.
Discrimination of sound source velocity in human listeners
NASA Astrophysics Data System (ADS)
Carlile, Simon; Best, Virginia
2002-02-01
The ability of six human subjects to discriminate the velocity of moving sound sources was examined using broadband stimuli presented in virtual auditory space. Subjects were presented with two successive stimuli moving in the frontal horizontal plane level with the ears, and were required to judge which moved the fastest. Discrimination thresholds were calculated for reference velocities of 15, 30, and 60 degrees/s under three stimulus conditions. In one condition, stimuli were centered on 0° azimuth and their duration varied randomly to prevent subjects from using displacement as an indicator of velocity. Performance varied between subjects giving median thresholds of 5.5, 9.1, and 14.8 degrees/s for the three reference velocities, respectively. In a second condition, pairs of stimuli were presented for a constant duration and subjects would have been able to use displacement to assist their judgment as faster stimuli traveled further. It was found that thresholds decreased significantly for all velocities (3.8, 7.1, and 9.8 degrees/s), suggesting that the subjects were using the additional displacement cue. The third condition differed from the second in that the stimuli were ``anchored'' on the same starting location rather than centered on the midline, thus doubling the spatial offset between stimulus endpoints. Subjects showed the lowest thresholds in this condition (2.9, 4.0, and 7.0 degrees/s). The results suggested that the auditory system is sensitive to velocity per se, but velocity comparisons are greatly aided if displacement cues are present.
Stimulus discriminability in visual search.
Verghese, P; Nakayama, K
1994-09-01
We measured the probability of detecting the target in a visual search task, as a function of the following parameters: the discriminability of the target from the distractors, the duration of the display, and the number of elements in the display. We examined the relation between these parameters at criterion performance (80% correct) to determine if the parameters traded off according to the predictions of a limited capacity model. For the three dimensions that we studied, orientation, color, and spatial frequency, the observed relationship between the parameters deviates significantly from a limited capacity model. The data relating discriminability to display duration are better than predicted over the entire range of orientation and color differences that we examined, and are consistent with the prediction for only a limited range of spatial frequency differences--from 12 to 23%. The relation between discriminability and number varies considerably across the three dimensions and is better than the limited capacity prediction for two of the three dimensions that we studied. Orientation discrimination shows a strong number effect, color discrimination shows almost no effect, and spatial frequency discrimination shows an intermediate effect. The different trading relationships in each dimension are more consistent with early filtering in that dimension, than with a common limited capacity stage. Our results indicate that higher-level processes that group elements together also play a strong role. Our experiments provide little support for limited capacity mechanisms over the range of stimulus differences that we examined in three different dimensions.
Workshop on Exercise Prescription for Long-Duration Space Flight
NASA Technical Reports Server (NTRS)
Harris, Bernard A., Jr. (Editor); Stewart, Donald F. (Editor)
1989-01-01
The National Aeronautics and Space Administration has a dedicated history of ensuring human safety and productivity in flight. Working and living in space long term represents the challenge of the future. Our concern is in determining the effects on the human body of living in space. Space flight provides a powerful stimulus for adaptation, such as cardiovascular and musculoskeletal deconditioning. Extended-duration space flight will influence a great many systems in the human body. We must understand the process by which this adaptation occurs. The NASA is agressively involved in developing programs which will act as a foundation for this new field of space medicine. The hallmark of these programs deals with prevention of deconditioning, currently referred to as countermeasures to zero g. Exercise appears to be most effective in preventing the cardiovascular and musculoskeletal degradation of microgravity.
Out of mind, out of heart: attention affects duration of emotional experience.
Freund, Alexandra M; Keil, Andreas
2013-01-01
It has been suggested that the extent to which a person maintains attention to pleasant versus unpleasant aspects of a given stimulus has an effect on the self-reported affective state. This assumption was empirically tested in two experiments. In Study 1, participants received the instruction either to focus on a positive emotion-eliciting event (winning a tournament chess game) or to focus their attention on an affectively neutral distraction task (describing drawings). Study 2 used negative performance feedback in a cognitive task to induce unpleasant affect and included three experimental groups (waiting condition, continuing with the same cognitive task, distraction by a different cognitive task). Results converged to show that distracting attention away from the emotion-eliciting event leads to a shorter duration of the emotional experience. These findings support the attention-focus hypothesis.
Carbon nanotube yarns for deep brain stimulation electrode.
Jiang, Changqing; Li, Luming; Hao, Hongwei
2011-12-01
A new form of deep brain stimulation (DBS) electrode was proposed that was made of carbon nanotube yarns (CNTYs). Electrode interface properties were examined using cyclic voltammetry (CV) and electrochemical impedance spectrum (EIS). The CNTY electrode interface exhibited large charge storage capacity (CSC) of 12.3 mC/cm(2) which increased to 98.6 mC/cm(2) after acid treatment, compared with 5.0 mC/cm(2) of Pt-Ir. Impedance spectrum of both untreated and treated CNTY electrodes showed that finite diffusion process occurred at the interface due to their porous structure and charge was delivered through capacitive mechanism. To evaluate stability electrical stimulus was exerted for up to 72 h and CV and EIS results of CNTY electrodes revealed little alteration. Therefore CNTY could make a good electrode material for DBS.
Learning and recognition of tactile temporal sequences by mice and humans
Bale, Michael R; Bitzidou, Malamati; Pitas, Anna; Brebner, Leonie S; Khazim, Lina; Anagnou, Stavros T; Stevenson, Caitlin D; Maravall, Miguel
2017-01-01
The world around us is replete with stimuli that unfold over time. When we hear an auditory stream like music or speech or scan a texture with our fingertip, physical features in the stimulus are concatenated in a particular order. This temporal patterning is critical to interpreting the stimulus. To explore the capacity of mice and humans to learn tactile sequences, we developed a task in which subjects had to recognise a continuous modulated noise sequence delivered to whiskers or fingertips, defined by its temporal patterning over hundreds of milliseconds. GO and NO-GO sequences differed only in that the order of their constituent noise modulation segments was temporally scrambled. Both mice and humans efficiently learned tactile sequences. Mouse sequence recognition depended on detecting transitions in noise amplitude; animals could base their decision on the earliest information available. Humans appeared to use additional cues, including the duration of noise modulation segments. DOI: http://dx.doi.org/10.7554/eLife.27333.001 PMID:28812976
Tactile information transfer: A comparison of two stimulation sites
NASA Astrophysics Data System (ADS)
Summers, Ian R.; Whybrow, Jon J.; Gratton, Denise A.; Milnes, Peter; Brown, Brian H.; Stevens, John C.
2005-10-01
Two experiments on the discrimination of time-varying tactile stimuli were performed, with comparison of stimulus delivery to the distal pad of the right index finger and to the right wrist (palmar surface). Subjects were required to perceive differences in short sequences of computer-generated stimulus elements (experiment 1) or differences in short tactile stimuli derived from a speech signal (experiment 2). The pulse-train stimuli were distinguished by differences in frequency (i.e., pulse repetition rate) and amplitude, and by the presence/absence of gaps (~100-ms duration). Stimulation levels were 10 dB higher at the wrist than at the fingertip, to compensate for the lower vibration sensitivity at the wrist. Results indicate similar gap detection at wrist and fingertip and similar perception of frequency differences. However, perception of amplitude differences was found to be better at the wrist than at the fingertip. Maximum information transfer rates for the stimuli in experiment 1 were estimated at 7 bits s-1 at the wrist and 5 bits s-1 at the fingertip.
Autonomic straightening after gravitropic curvature of cress roots
NASA Technical Reports Server (NTRS)
Stankovic, B.; Volkmann, D.; Sack, F. D.
1998-01-01
Few studies have documented the response of gravitropically curved organs to a withdrawal of a constant gravitational stimulus. The effects of stimulus withdrawal on gravitropic curvature were studied by following individual roots of cress (Lepidium sativum L.) through reorientation and clinostat rotation. Roots turned to the horizontal curved down 62 degrees and 88 degrees after 1 and 5 h, respectively. Subsequent rotation on a clinostat for 6 h resulted in root straightening through a loss of gravitropic curvature in older regions and through new growth becoming aligned closer to the prestimulus vertical. However, these roots did not return completely to the prestimulus vertical, indicating the retention of some gravitropic response. Clinostat rotation shifted the mean root angle -36 degrees closer to the prestimulus vertical, regardless of the duration of prior horizontal stimulation. Control roots (no horizontal stimulation) were slanted at various angles after clinostat rotation. These findings indicate that gravitropic curvature is not necessarily permanent, and that the root retains some commitment to its equilibrium orientation prior to gravitropic stimulation.
Single-cell recordings in the human medial temporal lobe
Rey, Hernan G; Ison, Matias J; Pedreira, Carlos; Valentin, Antonio; Alarcon, Gonzalo; Selway, Richard; Richardson, Mark P; Quian Quiroga, Rodrigo
2015-01-01
Recordings from individual neurons in patients who are implanted with depth electrodes for clinical reasons have opened the possibility to narrow down the gap between neurophysiological studies in animals and non-invasive (e.g. functional magnetic resonance imaging, electroencephalogram, magnetoencephalography) investigations in humans. Here we provide a description of the main procedures for electrode implantation and recordings, the experimental paradigms used and the main steps for processing the data. We also present key characteristics of the so-called ‘concept cells’, neurons in the human medial temporal lobe with selective and invariant responses that represent the meaning of the stimulus, and discuss their proposed role in declarative memory. Finally, we present novel results dealing with the stability of the representation given by these neurons, by studying the effect of stimulus repetition in the strength of the responses. In particular, we show that, after an initial decay, the response strength reaches an asymptotic value after approximately 15 presentations that remains above baseline for the whole duration of the experiment. PMID:25163775
Tactile information transfer: a comparison of two stimulation sites.
Summers, lan R; Whybrow, Jon J; Gratton, Denise A; Milnes, Peter; Brown, Brian H; Stevens, John C
2005-10-01
Two experiments on the discrimination of time-varying tactile stimuli were performed, with comparison of stimulus delivery to the distal pad of the right index finger and to the right wrist (palmar surface). Subjects were required to perceive differences in short sequences of computer-generated stimulus elements (experiment 1) or differences in short tactile stimuli derived from a speech signal (experiment 2). The pulse-train stimuli were distinguished by differences in frequency (i.e., pulse repetition rate) and amplitude, and by the presence/absence of gaps (approximately 100-ms duration). Stimulation levels were 10 dB higher at the wrist than at the fingertip, to compensate for the lower vibration sensitivity at the wrist. Results indicate similar gap detection at wrist and fingertip and similar perception of frequency differences. However, perception of amplitude differences was found to be better at the wrist than at the fingertip. Maximum information transfer rates for the stimuli in experiment 1 were estimated at 7 bits s(-1) at the wrist and 5 bits s(-1) at the fingertip.
NASCAP modelling of environmental-charging-induced discharges in satellites
NASA Technical Reports Server (NTRS)
Stevens, N. J.; Roche, J. C.
1979-01-01
The charging and discharging characteristics of a typical geosynchronous satellite experiencing time-varying geomagnetic substorms, in sunlight, were studied utilizing the NASA Charging Analyzer Program (NASCAP). An electric field criteria of 150,000 volts/cm to initiate discharges and transfer of 67 percent of the stored charge was used based on ground test results. The substorm characteristics were arbitrarily chosen to evaluate effects of electron temperature and particle density (which is equivalent to current density). It was found that while there is a minimum electron temperature for discharges to occur, the rate of discharges is dependent on particle density and duration times of the encounter. Hence, it is important to define the temporal variations in the substorm environments.
Battery charge control with temperature compensated voltage limit
NASA Technical Reports Server (NTRS)
Thierfelder, H. E.
1983-01-01
Battery charge control for orbiting spacecraft with mission durations from three to ten years, is a critical design feature that is discussed. Starting in 1974, the General Electric Space Systems Division designed, manufactured and tested battery systems for six different space programs. Three of these are geosynchronous missions, two are medium altitude missions and one is a near-earth mission. All six power subsystems contain nickel cadmium batteries which are charged using a temperature compensated voltage limit. This charging method was found to be successful in extending the life of nickel cadmium batteries in all three types of earth orbits. Test data and flight data are presented for each type of orbit.
Generation and measurement of velocity bunched ultrashort bunch of pC charge
NASA Astrophysics Data System (ADS)
Lu, X. H.; Tang, C. X.; Li, R. K.; To, H.; Andonian, G.; Musumeci, P.
2015-03-01
In this paper, we discuss the velocity compression in a short rf linac of an electron bunch from a rf photoinjector operated in the blowout regime. Particle tracking simulations shows that with a beam charge of 2 pC an ultrashort bunch duration of 16 fs can be obtained at a tight longitudinal focus downstream of the linac. A simplified coherent transition radiation (CTR) spectrum method is developed to enable the measurement of ultrashort (sub-50 fs) bunches at low bunch energy (5 MeV) and low bunch charges (<10 pC ). In this method, the ratio of the radiation energy selected by two narrow bandwidth filters is used to estimate the bunch length. The contribution to the coherent form factor of the large transverse size of the bunch suppresses the radiation signal significantly and is included in the analysis. The experiment was performed at the UCLA Pegasus photoinjector laboratory. The measurement results show bunches of sub-40 fs with 2 pC of charge well consistent with the simulation using actual experimental conditions. These results open the way to the generation of ultrashort bunches with time-duration below 10 fs once some of the limitations of the setup (rf phase jitter, amplitude instability and low field in the gun limited by breakdown) are corrected.
2016-01-01
The objectives of the study were to (1) investigate the potential of using monopolar psychophysical detection thresholds for estimating spatial selectivity of neural excitation with cochlear implants and to (2) examine the effect of site removal on speech recognition based on the threshold measure. Detection thresholds were measured in Cochlear Nucleus® device users using monopolar stimulation for pulse trains that were of (a) low rate and long duration, (b) high rate and short duration, and (c) high rate and long duration. Spatial selectivity of neural excitation was estimated by a forward-masking paradigm, where the probe threshold elevation in the presence of a forward masker was measured as a function of masker-probe separation. The strength of the correlation between the monopolar thresholds and the slopes of the masking patterns systematically reduced as neural response of the threshold stimulus involved interpulse interactions (refractoriness and sub-threshold adaptation), and spike-rate adaptation. Detection threshold for the low-rate stimulus most strongly correlated with the spread of forward masking patterns and the correlation reduced for long and high rate pulse trains. The low-rate thresholds were then measured for all electrodes across the array for each subject. Subsequently, speech recognition was tested with experimental maps that deactivated five stimulation sites with the highest thresholds and five randomly chosen ones. Performance with deactivating the high-threshold sites was better than performance with the subjects’ clinical map used every day with all electrodes active, in both quiet and background noise. Performance with random deactivation was on average poorer than that with the clinical map but the difference was not significant. These results suggested that the monopolar low-rate thresholds are related to the spatial neural excitation patterns in cochlear implant users and can be used to select sites for more optimal speech recognition performance. PMID:27798658
Sayegh, Riziq; Aubie, Brandon; Fazel-Pour, Siavosh; Faure, Paul A.
2012-01-01
Neural responses in the mammalian auditory midbrain (inferior colliculus; IC) arise from complex interactions of synaptic excitation, inhibition, and intrinsic properties of the cell. Temporally selective duration-tuned neurons (DTNs) in the IC are hypothesized to arise through the convergence of excitatory and inhibitory synaptic inputs offset in time. Synaptic inhibition can be inferred from extracellular recordings by presenting pairs of pulses (paired tone stimulation) and comparing the evoked responses of the cell to each pulse. We obtained single unit recordings from the IC of the awake big brown bat (Eptesicus fuscus) and used paired tone stimulation to measure the recovery cycle times of DTNs and non-temporally selective auditory neurons. By systematically varying the interpulse interval (IPI) of the paired tone stimulus, we determined the minimum IPI required for a neuron's spike count or its spike latency (first- or last-spike latency) in response to the second tone to recover to within ≥50% of the cell's baseline count or to within 1 SD of it's baseline latency in response to the first tone. Recovery times of shortpass DTNs were significantly shorter than those of bandpass DTNs, and recovery times of bandpass DTNs were longer than allpass neurons not selective for stimulus duration. Recovery times measured with spike counts were positively correlated with those measured with spike latencies. Recovery times were also correlated with first-spike latency (FSL). These findings, combined with previous studies on duration tuning in the IC, suggest that persistent inhibition is a defining characteristic of DTNs. Herein, we discuss measuring recovery times of neurons with spike counts and latencies. We also highlight how persistent inhibition could determine neural recovery times and serve as a potential mechanism underlying the precedence effect in humans. Finally, we explore implications of recovery times for DTNs in the context of bat hearing and echolocation. PMID:22933992
NASA Astrophysics Data System (ADS)
Jalligampala, Archana; Sekhar, Sudarshan; Zrenner, Eberhart; Rathbun, Daniel L.
2017-04-01
To further improve the quality of visual percepts elicited by microelectronic retinal prosthetics, substantial efforts have been made to understand how retinal neurons respond to electrical stimulation. It is generally assumed that a sufficiently strong stimulus will recruit most retinal neurons. However, recent evidence has shown that the responses of some retinal neurons decrease with excessively strong stimuli (a non-monotonic response function). Therefore, it is necessary to identify stimuli that can be used to activate the majority of retinal neurons even when such non-monotonic cells are part of the neuronal population. Taking these non-monotonic responses into consideration, we establish the optimal voltage stimulation parameters (amplitude, duration, and polarity) for epiretinal stimulation of network-mediated (indirect) ganglion cell responses. We recorded responses from 3958 mouse retinal ganglion cells (RGCs) in both healthy (wild type, WT) and a degenerating (rd10) mouse model of retinitis pigmentosa—using flat-mounted retina on a microelectrode array. Rectangular monophasic voltage-controlled pulses were presented with varying voltage, duration, and polarity. We found that in 4-5 weeks old rd10 mice the RGC thresholds were comparable to those of WT. There was a marked response variability among mouse RGCs. To account for this variability, we interpolated the percentage of RGCs activated at each point in the voltage-polarity-duration stimulus space, thus identifying the optimal voltage-controlled pulse (-2.4 V, 0.88 ms). The identified optimal voltage pulse can activate at least 65% of potentially responsive RGCs in both mouse strains. Furthermore, this pulse is well within the range of stimuli demonstrated to be safe and effective for retinal implant patients. Such optimized stimuli and the underlying method used to identify them support a high yield of responsive RGCs and will serve as an effective guideline for future in vitro investigations of retinal electrostimulation by establishing standard stimuli for each unique experimental condition.
Analysis of LEAM experiment response to charged particles
NASA Technical Reports Server (NTRS)
Perkins, D.
1976-01-01
The objectives of the Lunar Ejecta and Meteorites Experiment (LEAM) were to measure the long-term variations in cosmic dust influx rates and the extent and nature of the lunar ejecta. While analyzing these characteristics in the data, it was discovered that a majority of the events could not be associated with hypervelocity particle impacts of the type usually identified with cosmic dust, but could only be correlated with the lunar surface and local sun angle. The possibility that charged particles could be incident on the sensors led to an analysis of the electronics to determine if such signals could cause the large pulse height analysis (PHA) signals. A qualitative analysis of the PHA circuit showed that an alternative mode of operation existed if the input signal were composed of pulses with pulse durations very long compared to the durations for which it was designed. This alternative mode would give large PHA outputs even though the actual input amplitudes were small. This revelation led to the examination of the sensor and its response to charged particles to determine the type of signals that could be expected.
Induction and modulation of persistent activity in a layer V PFC microcircuit model.
Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Cutsuridis, Vassilis; Poirazi, Panayiota
2013-01-01
Working memory refers to the temporary storage of information and is strongly associated with the prefrontal cortex (PFC). Persistent activity of cortical neurons, namely the activity that persists beyond the stimulus presentation, is considered the cellular correlate of working memory. Although past studies suggested that this type of activity is characteristic of large scale networks, recent experimental evidence imply that small, tightly interconnected clusters of neurons in the cortex may support similar functionalities. However, very little is known about the biophysical mechanisms giving rise to persistent activity in small-sized microcircuits in the PFC. Here, we present a detailed biophysically-yet morphologically simplified-microcircuit model of layer V PFC neurons that incorporates connectivity constraints and is validated against a multitude of experimental data. We show that (a) a small-sized network can exhibit persistent activity under realistic stimulus conditions. (b) Its emergence depends strongly on the interplay of dADP, NMDA, and GABAB currents. (c) Although increases in stimulus duration increase the probability of persistent activity induction, variability in the stimulus firing frequency does not consistently influence it. (d) Modulation of ionic conductances (I h , I D , I sAHP, I caL, I caN, I caR) differentially controls persistent activity properties in a location dependent manner. These findings suggest that modulation of the microcircuit's firing characteristics is achieved primarily through changes in its intrinsic mechanism makeup, supporting the hypothesis of multiple bi-stable units in the PFC. Overall, the model generates a number of experimentally testable predictions that may lead to a better understanding of the biophysical mechanisms of persistent activity induction and modulation in the PFC.
Bui, Samantha; Oppedal, Frode; Korsøen, Øyvind J.; Sonny, Damien; Dempster, Tim
2013-01-01
Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331±364 g) to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low) or no light (control). Sound experiments included exposure to infrasound (12 Hz), a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume) after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices. PMID:23691087
Bui, Samantha; Oppedal, Frode; Korsøen, Øyvind J; Sonny, Damien; Dempster, Tim
2013-01-01
Understanding species-specific flight behaviours is essential in developing methods of guiding fish spatially, and requires knowledge on how groups of fish respond to aversive stimuli. By harnessing their natural behaviours, the use of physical manipulation or other potentially harmful procedures can be minimised. We examined the reactions of sea-caged groups of 50 salmon (1331 ± 364 g) to short-term exposure to visual or acoustic stimuli. In light experiments, fish were exposed to one of three intensities of blue LED light (high, medium and low) or no light (control). Sound experiments included exposure to infrasound (12 Hz), a surface disturbance event, the combination of infrasound and surface disturbance, or no stimuli. Groups that experienced light, infrasound, and the combination of infrasound and surface disturbance treatments, elicited a marked change in vertical distribution, where fish dived to the bottom of the sea-cage for the duration of the stimulus. Light treatments, but not sound, also reduced the total echo-signal strength (indicative of swim bladder volume) after exposure to light, compared to pre-stimulus levels. Groups in infrasound and combination treatments showed increased swimming activity during stimulus application, with swimming speeds tripled compared to that of controls. In all light and sound treatments, fish returned to their pre-stimulus swimming depths and speeds once exposure had ceased. This work establishes consistent, short-term avoidance responses to these stimuli, and provides a basis for methods to guide fish for aquaculture applications, or create avoidance barriers for conservation purposes. In doing so, we can achieve the manipulation of group position with minimal welfare impacts, to create more sustainable practices.
A new method to calculate the beam charge for an integrating current transformer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu Yuchi; Han Dan; Zhu Bin
2012-09-15
The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated bymore » an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.« less
Lions, tigers, and bears, oh sh!t: Semantics versus tabooness in speech production.
White, Katherine K; Abrams, Lise; Koehler, Sarah M; Collins, Richard J
2017-04-01
While both semantic and highly emotional (i.e., taboo) words can interfere with speech production, different theoretical mechanisms have been proposed to explain why interference occurs. Two experiments investigated these theoretical approaches by comparing the magnitude of these two types of interference and the stages at which they occur during picture naming. Participants named target pictures superimposed with semantic, taboo, or unrelated distractor words that were presented at three different stimulus-onset asynchronies (SOA): -150 ms, 0 ms, or +150 ms. In addition, the duration of distractor presentation was manipulated across experiments, with distractors appearing for the duration of the picture (Experiment 1) or for 350 ms (Experiment 2). Taboo distractors interfered more than semantic distractors, i.e., slowed target naming times, at all SOAs. While distractor duration had no effect on type of interference at -150 or 0 SOAs, briefly presented distractors eliminated semantic interference but not taboo interference at +150 SOA. Discussion focuses on how existing speech production theories can explain interference from emotional distractors and the unique role that attention may play in taboo interference.
The Rise and Fall of Priming: How Visual Exposure Shapes Cortical Representations of Objects
Zago, Laure; Fenske, Mark J.; Aminoff, Elissa; Bar, Moshe
2006-01-01
How does the amount of time for which we see an object influence the nature and content of its cortical representation? To address this question, we varied the duration of initial exposure to visual objects and then measured functional magnetic resonance imaging (fMRI) signal and behavioral performance during a subsequent repeated presentation of these objects. We report a novel ‘rise-and-fall’ pattern relating exposure duration and the corresponding magnitude of fMRI cortical signal. Compared with novel objects, repeated objects elicited maximal cortical response reduction when initially presented for 250 ms. Counter-intuitively, initially seeing an object for a longer duration significantly reduced the magnitude of this effect. This ‘rise-and-fall’ pattern was also evident for the corresponding behavioral priming. To account for these findings, we propose that the earlier interval of an exposure to a visual stimulus results in a fine-tuning of the cortical response, while additional exposure promotes selection of a subset of key features for continued representation. These two independent mechanisms complement each other in shaping object representations with experience. PMID:15716471
Dyjas, Oliver; Ulrich, Rolf
2014-01-01
In typical discrimination experiments, participants are presented with a constant standard and a variable comparison stimulus and their task is to judge which of these two stimuli is larger (comparative judgement). In these experiments, discrimination sensitivity depends on the temporal order of these stimuli (Type B effect) and is usually higher when the standard precedes rather than follows the comparison. Here, we outline how two models of stimulus discrimination can account for the Type B effect, namely the weighted difference model (or basic Sensation Weighting model) and the Internal Reference Model. For both models, the predicted psychometric functions for comparative judgements as well as for equality judgements, in which participants indicate whether they perceived the two stimuli to be equal or not equal, are derived and it is shown that the models also predict a Type B effect for equality judgements. In the empirical part, the models' predictions are evaluated. To this end, participants performed a duration discrimination task with comparative judgements and with equality judgements. In line with the models' predictions, a Type B effect was observed for both judgement types. In addition, a time-order error, as indicated by shifts of the psychometric functions, and differences in response times were observed only for the equality judgement. Since both models entail distinct additional predictions, it seems worthwhile for future research to unite the two models into one conceptual framework.
Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.
Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor
2015-04-01
Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. © 2014 Wiley Periodicals, Inc.
Human discrimination of visual direction of motion with and without smooth pursuit eye movements
NASA Technical Reports Server (NTRS)
Krukowski, Anton E.; Pirog, Kathleen A.; Beutter, Brent R.; Brooks, Kevin R.; Stone, Leland S.
2003-01-01
It has long been known that ocular pursuit of a moving target has a major influence on its perceived speed (Aubert, 1886; Fleischl, 1882). However, little is known about the effect of smooth pursuit on the perception of target direction. Here we compare the precision of human visual-direction judgments under two oculomotor conditions (pursuit vs. fixation). We also examine the impact of stimulus duration (200 ms vs. 800 ms) and absolute direction (cardinal vs. oblique). Our main finding is that direction discrimination thresholds in the fixation and pursuit conditions are indistinguishable. Furthermore, the two oculomotor conditions showed oblique effects of similar magnitudes. These data suggest that the neural direction signals supporting perception are the same with or without pursuit, despite remarkably different retinal stimulation. During fixation, the stimulus information is restricted to large, purely peripheral retinal motion, while during steady-state pursuit, the stimulus information consists of small, unreliable foveal retinal motion and a large efference-copy signal. A parsimonious explanation of our findings is that the signal limiting the precision of direction judgments is a neural estimate of target motion in head-centered (or world-centered) coordinates (i.e., a combined retinal and eye motion signal) as found in the medial superior temporal area (MST), and not simply an estimate of retinal motion as found in the middle temporal area (MT).
Xie, Wanze; Richards, John E.
2016-01-01
Maximizing infant attention to stimulus presentation during an EEG or ERP experiment is important for making valid inferences about the neural correlates of infant cognition. The present study examined the effects of stimulus presentation interstimulus interval (ISI) on behavioral and physiological indices of infant attention including infants’ fixation to visual presentation, the amount of heart rate (HR) change during sustained attention, and ERP components. This study compared an ISI that is typically used in infant EEG/ERP studies (e.g., 1,500–2,000 ms) with two shorter durations (400–600 ms and 600–1,000 ms). Thirty-six infants were tested cross-sectionally at 3, 4.5, and 6 months. It was found that using the short (400–600 ms) and medium (600–1,000 ms) ISIs resulted in more visually fixated trials and reduced frequency of fixation disengagement per experimental block. We also found larger HR changes during sustained attention to both of the shorter ISIs compared with the long ISI, and larger ERP responses when using the medium ISI compared to using the short and long ISIs. These data suggest that utilizing an optimal ISI (e.g., 600– 1,000 ms), which increases the presentation complexity and provides sufficient time for information processing, can promote infant engagement and sustained attention during stimulus presentation. PMID:27159263
Effects of stimulus response compatibility on covert imitation of vowels.
Adank, Patti; Nuttall, Helen; Bekkering, Harold; Maegherman, Gwijde
2018-03-13
When we observe someone else speaking, we tend to automatically activate the corresponding speech motor patterns. When listening, we therefore covertly imitate the observed speech. Simulation theories of speech perception propose that covert imitation of speech motor patterns supports speech perception. Covert imitation of speech has been studied with interference paradigms, including the stimulus-response compatibility paradigm (SRC). The SRC paradigm measures covert imitation by comparing articulation of a prompt following exposure to a distracter. Responses tend to be faster for congruent than for incongruent distracters; thus, showing evidence of covert imitation. Simulation accounts propose a key role for covert imitation in speech perception. However, covert imitation has thus far only been demonstrated for a select class of speech sounds, namely consonants, and it is unclear whether covert imitation extends to vowels. We aimed to demonstrate that covert imitation effects as measured with the SRC paradigm extend to vowels, in two experiments. We examined whether covert imitation occurs for vowels in a consonant-vowel-consonant context in visual, audio, and audiovisual modalities. We presented the prompt at four time points to examine how covert imitation varied over the distracter's duration. The results of both experiments clearly demonstrated covert imitation effects for vowels, thus supporting simulation theories of speech perception. Covert imitation was not affected by stimulus modality and was maximal for later time points.
Oristaglio, Jeff; West, Susan Hyman; Ghaffari, Manely; Lech, Melissa S.; Verma, Beeta R.; Harvey, John A.; Welsh, John P.; Malone, Richard P.
2013-01-01
Children with autism spectrum disorder (ASD) and age-matched typically-developing (TD) peers were tested on two forms of eyeblink conditioning (EBC), a Pavlovian associative learning paradigm where subjects learn to execute an appropriately-timed eyeblink in response to a previously neutral conditioning stimulus (CS). One version of the task, trace EBC, interposes a stimulus-free interval between the presentation of the CS and the unconditioned stimulus (US), a puff of air to the eye which causes subjects to blink. In delay EBC, the CS overlaps in time with the delivery of the US, usually with both stimuli terminating simultaneously. ASD children performed normally during trace EBC, exhibiting no differences from typically-developing (TD) subjects with regard to learning rate or the timing of the CR. However, when subsequently tested on delay EBC, subjects with ASD displayed abnormally-timed conditioned eye blinks that began earlier and peaked sooner than those of TD subjects, consistent with previous findings. The results suggest an impaired ability of children with ASD to properly time conditioned eye blinks which appears to be specific to delay EBC. We suggest that this deficit may reflect a dysfunction of cerebellar cortex in which increases in the intensity or duration of sensory input can temporarily disrupt the accuracy of motor timing over short temporal intervals. PMID:23769889
Spectrotemporal Processing in Spectral Tuning Modules of Cat Primary Auditory Cortex
Atencio, Craig A.; Schreiner, Christoph E.
2012-01-01
Spectral integration properties show topographical order in cat primary auditory cortex (AI). Along the iso-frequency domain, regions with predominantly narrowly tuned (NT) neurons are segregated from regions with more broadly tuned (BT) neurons, forming distinct processing modules. Despite their prominent spatial segregation, spectrotemporal processing has not been compared for these regions. We identified these NT and BT regions with broad-band ripple stimuli and characterized processing differences between them using both spectrotemporal receptive fields (STRFs) and nonlinear stimulus/firing rate transformations. The durations of STRF excitatory and inhibitory subfields were shorter and the best temporal modulation frequencies were higher for BT neurons than for NT neurons. For NT neurons, the bandwidth of excitatory and inhibitory subfields was matched, whereas for BT neurons it was not. Phase locking and feature selectivity were higher for NT neurons. Properties of the nonlinearities showed only slight differences across the bandwidth modules. These results indicate fundamental differences in spectrotemporal preferences - and thus distinct physiological functions - for neurons in BT and NT spectral integration modules. However, some global processing aspects, such as spectrotemporal interactions and nonlinear input/output behavior, appear to be similar for both neuronal subgroups. The findings suggest that spectral integration modules in AI differ in what specific stimulus aspects are processed, but they are similar in the manner in which stimulus information is processed. PMID:22384036
Tropic responses of Phycomyces sporangiophores to gravitational and centrifugal stimuli.
DENNISON, D S
1961-09-01
A low-speed centrifuge was used to study the tropic responses of Phycomyces sporangiophores in darkness to the stimulus of combined gravitational and centrifugal forces. If this stimulus is constant the response is a relatively slow tropic reaction, which persists for up to 12 hours. The response is accelerated by increasing the magnitude of the gravitational-centrifugal force. A wholly different tropic response, the transient response, is elicited by an abrupt change in the gravitational-centrifugal stimulus. The transient response has a duration of only about 6 min. but is characterized by a high bending speed (about 5 degrees /min.). An analysis of the distribution of the transient response along the growing zone shows that the active phase of the response has a distribution similar to that of the light sensitivity for the light-growth and phototropic responses. Experiments in which sporangiophores are centrifuged in an inert dense fluid indicate that the sensory mechanism of the transient response is closely related to the physical deformation of the growing zone caused by the action of the gravitational-centrifugal force on the sporangiophore as a whole. However, the response to a steady gravitational-centrifugal force is most likely not connected with this deformation, but is probably triggered by the shifting of regions or particles of differing density relative to one another inside the cell.
Perception of non-verbal auditory stimuli in Italian dyslexic children.
Cantiani, Chiara; Lorusso, Maria Luisa; Valnegri, Camilla; Molteni, Massimo
2010-01-01
Auditory temporal processing deficits have been proposed as the underlying cause of phonological difficulties in Developmental Dyslexia. The hypothesis was tested in a sample of 20 Italian dyslexic children aged 8-14, and 20 matched control children. Three tasks of auditory processing of non-verbal stimuli, involving discrimination and reproduction of sequences of rapidly presented short sounds were expressly created. Dyslexic subjects performed more poorly than control children, suggesting the presence of a deficit only partially influenced by the duration of the stimuli and of inter-stimulus intervals (ISIs).
Renal response to seven days of lower body positive pressure in the squirrel monkey
NASA Technical Reports Server (NTRS)
Churchill, Susanne; Pollock, David M.; Natale, Mary Ellen; Moore-Ede, Martin C.
1987-01-01
As a ground-based model for weightlessness, the response of the chair-trained squirrel monkey to lower body positive pressure (LBPP) was evaluated in a length of study similar to a typical Space Shuttle mission (7 days). Results were compared to time control experiments that included chair-sitting without exposure to LBPP. Chronic exposure to LBPP results in an acute diuretic and natriuretic response independent of changes in plasma aldosterone concentrations and produces a chronic reduction in fluid volume lasting the duration in the stimulus.
A model and simulation of fast space charge pulses in polymers
NASA Astrophysics Data System (ADS)
Lv, Zepeng; Rowland, Simon M.; Wu, Kai
2017-11-01
The transport of space charge packets across polyethylene and epoxy resin in high electric fields has been characterized as fast or slow depending on packet mobility. Several explanations for the formation and transport of slow space charge packets have been proposed, but the origins of fast space charge pulses, with mobilities above 10-11 m2 V-1 s-1, are unclear. In one suggested model, it is assumed that the formation of fast charge pulses is due to discontinuous electromechanical compression and charge injection at the electrode-insulation interface, and their transport is related to corresponding relaxation processes. In that model, charges travel as a pulse because of group polarization. This paper provides an alternative model based on the reduction of charge carrier activation energy due to charge density triggered polymer chain movement and subsequent chain relaxation times. The generation and transport of fast charge pulses are readily simulated by a bipolar charge transport model with three additional parameters: reduced activation energy, charge density threshold, and chain relaxation time. Such a model is shown to reproduce key features of fast space charge pulses including speed, duration, repetition rate and pulse size. This model provides the basis for a deep understanding of the physical origins of fast space charge pulses in polymers.
Uniocular and binocular fields of rotation measures: Octopus versus Goldmann.
Rowe, Fiona J; Hanif, Sahira
2011-06-01
To compare the range of ocular rotations measured by Octopus versus Goldmann perimetry. Forty subjects (20 controls and 20 patients with impaired ocular movements) were prospectively recruited, age range 21-83 years. Range of uniocular rotations was measured in six vectors corresponding to extraocular muscle actions: 0°, 67°, 141°, 180°, 216°, 293°. Fields of binocular single vision were assessed at 30° intervals. Vector measurements were utilised to calculate an area score for the field of uniocular rotations or binocular field of single vision. Two test speeds were used for Octopus testing: 3°/ and 10°/second. Test duration was two thirds quicker for Octopus 10°/second than for 3°/second stimulus speed, and slightly quicker for Goldmann. Mean area for control subjects for uniocular field was 7910.45 degrees(2) for Goldmann, 7032.14 for Octopus 3°/second and 7840.66 for Octopus 10°/second. Mean area for patient subjects of right uniocular field was 8567.21 degrees(2) for Goldmann, 5906.72 for Octopus 3°/second and 8806.44 for Octopus 10°/second. Mean area for left uniocular field was 8137.49 degrees(2) for Goldmann, 8127.9 for Octopus 3°/second and 8950.54 for Octopus 10°/second. Range of measured rotation was significantly larger for Octopus 10°/second speed. Our results suggest that the Octopus perimeter is an acceptable alternative method of assessment for uniocular ductions and binocular field of single vision. Speed of stimulus significantly alters test duration for Octopus perimetry. Comparisons of results from both perimeters show that quantitative measurements differ, although qualitatively the results are similar. Differences per mean vectors were less than 5° (within clinically accepted variances) for both controls and patients when comparing Goldmann to Octopus 10°/second speed. However, differences were almost 10° for the patient group when comparing Goldmann to Octopus 3°/second speed. Thus, speed of stimulus must be considered if wishing to use these perimeters interchangeably.
Thomas, Megan L.A.; Fitzpatrick, Denis; McCreery, Ryan; Janky, Kristen L.
2017-01-01
Background Cervical and ocular Vestibular Evoked Myogenic Potentials (VEMPs) have become common clinical vestibular assessments. However, VEMP testing requires high intensity stimuli, raising concerns regarding safety with children, where sound pressure levels may be higher due to their smaller ear canal volumes. Purpose The purpose of this study was to estimate the range of peak-to-peak equivalent sound pressure levels (peSPLs) in child and adult ears in response to high intensity stimuli (i.e., 100 dB normal hearing level (nHL)) commonly used for VEMP testing and make a determination of whether acoustic stimuli levels with VEMP testing are safe for use in children. Research Design Prospective Experimental. Study Sample Ten children (4–6 years) and ten young adults (24 – 35 years) with normal hearing sensitivity and middle ear function participated in the study. Data Collection and Analysis Probe microphone peSPL measurements of clicks and 500 Hz tonebursts (TBs) were recorded in tubes of small, medium, and large diameter, and in a Brüel & Kjær Ear Simulator Type 4157 to assess for linearity of the stimulus at high levels. The different diameter tubes were used to approximate the range of cross-sectional areas in infant, child, and adult ears, respectively. Equivalent ear canal volume and peSPL measurements were then recorded in child and adult ears. Lower intensity levels were used in the participant’s ears to limit exposure to high intensity sound. The peSPL measurements in participant ears were extrapolated using predictions from linear mixed models to determine if equivalent ear canal volume significantly contributed to overall peSPL and to estimate the mean and 95% confidence intervals of peSPLs in child and adult ears when high intensity stimulus levels (100 dB nHL) are used for VEMP testing without exposing subjects to high-intensity stimuli. Results Measurements from the coupler and tubes suggested: 1) each stimuli was linear, 2) there were no distortions or non-linearities at high levels, and 3) peSPL increased with decreased tube diameter. Measurements in participant ears suggested: 1) peSPL was approximately 3 dB larger in child compared to adult ears, and 2) peSPL was larger in response to clicks compared to 500 Hz TBs. The model predicted the following 95% confidence interval for a 100 dB nHL click: 127–136.5 dB peSPL in adult ears and 128.7–138.2 dB peSPL in child ears. The model predicted the following 95% confidence interval for a 100 dB nHL 500 Hz TB stimulus: 122.2 – 128.2 dB peSPL in adult ears and 124.8–130.8 dB peSPL in child ears. Conclusions Our findings suggest that 1) when completing VEMP testing, the stimulus is approximately 3 dB higher in a child’s ear, 2) a 500 Hz TB is recommended over a click as it has lower peSPL compared to the click, and 3) both duration and intensity should be considered when choosing VEMP stimuli. Calculating the total sound energy exposure for your chosen stimuli is recommended as it accounts for both duration and intensity. When using this calculation for children, consider adding 3 dB to the stimulus level. PMID:28534730
Thomas, Megan L A; Fitzpatrick, Denis; McCreery, Ryan; Janky, Kristen L
2017-05-01
Cervical and ocular vestibular-evoked myogenic potentials (VEMPs) have become common clinical vestibular assessments. However, VEMP testing requires high intensity stimuli, raising concerns regarding safety with children, where sound pressure levels may be higher due to their smaller ear canal volumes. The purpose of this study was to estimate the range of peak-to-peak equivalent sound pressure levels (peSPLs) in child and adult ears in response to high intensity stimuli (i.e., 100 dB normal hearing level [nHL]) commonly used for VEMP testing and make a determination of whether acoustic stimuli levels with VEMP testing are safe for use in children. Prospective experimental. Ten children (4-6 years) and ten young adults (24-35 years) with normal hearing sensitivity and middle ear function participated in the study. Probe microphone peSPL measurements of clicks and 500 Hz tonebursts (TBs) were recorded in tubes of small, medium, and large diameter, and in a Brüel & Kjær Ear Simulator Type 4157 to assess for linearity of the stimulus at high levels. The different diameter tubes were used to approximate the range of cross-sectional areas in infant, child, and adult ears, respectively. Equivalent ear canal volume and peSPL measurements were then recorded in child and adult ears. Lower intensity levels were used in the participant's ears to limit exposure to high intensity sound. The peSPL measurements in participant ears were extrapolated using predictions from linear mixed models to determine if equivalent ear canal volume significantly contributed to overall peSPL and to estimate the mean and 95% confidence intervals of peSPLs in child and adult ears when high intensity stimulus levels (100 dB nHL) are used for VEMP testing without exposing subjects to high-intensity stimuli. Measurements from the coupler and tubes suggested: 1) each stimuli was linear, 2) there were no distortions or nonlinearities at high levels, and 3) peSPL increased with decreased tube diameter. Measurements in participant ears suggested: 1) peSPL was approximately 3 dB larger in child compared to adult ears, and 2) peSPL was larger in response to clicks compared to 500 Hz TBs. The model predicted the following 95% confidence interval for a 100 dB nHL click: 127-136.5 dB peSPL in adult ears and 128.7-138.2 dB peSPL in child ears. The model predicted the following 95% confidence interval for a 100 dB nHL 500 Hz TB stimulus: 122.2-128.2 dB peSPL in adult ears and 124.8-130.8 dB peSPL in child ears. Our findings suggest that 1) when completing VEMP testing, the stimulus is approximately 3 dB higher in a child's ear, 2) a 500 Hz TB is recommended over a click as it has lower peSPL compared to the click, and 3) both duration and intensity should be considered when choosing VEMP stimuli. Calculating the total sound energy exposure for your chosen stimuli is recommended as it accounts for both duration and intensity. When using this calculation for children, consider adding 3 dB to the stimulus level. American Academy of Audiology
The modulation rate transfer function of a harbour porpoise (Phocoena phocoena).
Linnenschmidt, Meike; Wahlberg, Magnus; Damsgaard Hansen, Janni
2013-02-01
During echolocation, toothed whales produce ultrasonic clicks at extremely rapid rates and listen for the returning echoes. The auditory brainstem response (ABR) duration was evaluated in terms of latency between single peaks: 5.5 ms (from peak I to VII), 3.4 ms (I-VI), and 1.4 ms (II-IV). In comparison to the killer whale and the bottlenose dolphin, the ABR of the harbour porpoise has shorter intervals between the peaks and consequently a shorter ABR duration. This indicates that the ABR duration and peak latencies are possibly related to the relative size of the auditory structures of the central nervous system and thus to the animal's size. The ABR to a sinusoidal amplitude modulated stimulus at 125 kHz (sensitivity threshold 63 dB re 1 μPa rms) was evaluated to determine the modulation rate transfer function of a harbour porpoise. The ABR showed distinct envelope following responses up to a modulation rate of 1,900 Hz. The corresponding calculated equivalent rectangular duration of 263 μs indicates a good temporal resolution in the harbour porpoise auditory system similar to the one for the bottlenose dolphin. The results explain how the harbour porpoise can follow clicks and echoes during echolocation with very short inter click intervals.
Pulse shape discrimination based on fast signals from silicon photomultipliers
NASA Astrophysics Data System (ADS)
Yu, Junhao; Wei, Zhiyong; Fang, Meihua; Zhang, Zixia; Cheng, Can; Wang, Yi; Su, Huiwen; Ran, Youquan; Zhu, Qingwei; Zhang, He; Duan, Kai; Chen, Ming; Liu, Meng
2018-06-01
Recent developments in organic plastic scintillators capable of pulse shape discrimination (PSD) enable a breakthrough in discrimination between neutrons and gammas. Plastic scintillator detectors coupled with silicon photomultipliers (SiPMs) offer many advantages, such as lower power consumption, smaller volume, and especially insensitivity to magnetic fields, compared with conventional photomultiplier tubes (PMTs). A SensL SiPM has two outputs: a standard output and a fast output. It is known that the charge injected into the fast output electrode is typically approximately 2% of the total charge generated during the avalanche, whereas the charge injected into the standard output electrode is nearly 98% of the total. Fast signals from SiPMs exhibit better performance in terms of timing and time-correlated measurements compared with standard signals. The pulse duration of a standard signal is on the order of hundreds of nanoseconds, whereas the pulse duration of the main monopole waveform of a fast signal is a few tens of nanoseconds. Fast signals are traditionally thought to be suitable for photon counting at very high speeds but unsuitable for PSD due to the partial charge collection. Meanwhile, the standard outputs of SiPMs coupled with discriminating scintillators have yielded nice PSD performances, but there have been no reports on PSD using fast signals. Our analysis shows that fast signals can also provide discrimination if the rate of charge injection into the fast output electrode is fixed for each event, even though only a portion of the charge is collected. In this work, we achieved successful PSD using fast signals; meanwhile, using a coincidence timing window of less 3 nanoseconds between the readouts from both ends of the detector reduced the influence of the high SiPM dark current. We experimentally achieved good timing performance and PSD capability simultaneously.