Science.gov

Sample records for durum wheat cultivars

  1. Susceptibility of European bread and durum wheat cultivars to Tilletia indica

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Representative European wheat cultivars were tested under quarantine containment for their susceptibility to Tilletia indica, the cause of Karnal bunt (or partial bunt) of wheat. Fifteen winter, 15 spring wheat (Triticum aestivum) and 11 durum wheat cultivars (Triticum durum) were inoculated by ‘boo...

  2. Climate, Soil Management, and Cultivar Affect Fusarium Head Blight Incidence and Deoxynivalenol Accumulation in Durum Wheat of Southern Italy.

    PubMed

    Scala, Valeria; Aureli, Gabriella; Cesarano, Gaspare; Incerti, Guido; Fanelli, Corrado; Scala, Felice; Reverberi, Massimo; Bonanomi, Giuliano

    2016-01-01

    Fusarium head blight (FHB) is a multifaceted disease caused by some species of Fusarium spp. A huge production of mycotoxins, mostly trichothecenes, often accompanied this disease. Amongst these toxic compounds, deoxynivalenol (DON) and its derivatives represent a major issue for human as well as for animal health and farming. Common and durum wheat are amongst the hosts of trichothecene-producing Fusaria. Differences in susceptibility to fungal infection and toxin accumulation occur in wheat cultivars. Recently, increasing incidence and severity of Fusarium infection and a higher DON accumulation in durum wheat were observed in Italy, especially in Northern regions. In this study, we analyzed wheat yield, technological parameters, the incidence of Fusarium infection and DON content in kernel samples of durum wheat coming from three locations of Southern Italy with different climatic conditions and grown during two seasons, with two methods of cultivation. Four different durum wheat cultivars prevalently cultivated in Southern Italian areas were chosen for this study. Our analysis showed the effects of environment and cultivar types on wheat productivity and key technological parameters for the quality level of the end-product, namely pasta. Notably, although a low rate of mycotoxin contamination in all study sites was assessed, an inverse relation emerged between fungal infection/DON production and durum wheat yield. Further, our study pinpoints the importance of environment conditions on several quality traits of durum wheat grown under Mediterranean climate. The environmental conditions at local level (microscale) and soil management practices may drive FHB outbreak and mycotoxin contamination even in growing area suitable for cropping this wheat species.

  3. Climate, Soil Management, and Cultivar Affect Fusarium Head Blight Incidence and Deoxynivalenol Accumulation in Durum Wheat of Southern Italy

    PubMed Central

    Scala, Valeria; Aureli, Gabriella; Cesarano, Gaspare; Incerti, Guido; Fanelli, Corrado; Scala, Felice; Reverberi, Massimo; Bonanomi, Giuliano

    2016-01-01

    Fusarium head blight (FHB) is a multifaceted disease caused by some species of Fusarium spp. A huge production of mycotoxins, mostly trichothecenes, often accompanied this disease. Amongst these toxic compounds, deoxynivalenol (DON) and its derivatives represent a major issue for human as well as for animal health and farming. Common and durum wheat are amongst the hosts of trichothecene-producing Fusaria. Differences in susceptibility to fungal infection and toxin accumulation occur in wheat cultivars. Recently, increasing incidence and severity of Fusarium infection and a higher DON accumulation in durum wheat were observed in Italy, especially in Northern regions. In this study, we analyzed wheat yield, technological parameters, the incidence of Fusarium infection and DON content in kernel samples of durum wheat coming from three locations of Southern Italy with different climatic conditions and grown during two seasons, with two methods of cultivation. Four different durum wheat cultivars prevalently cultivated in Southern Italian areas were chosen for this study. Our analysis showed the effects of environment and cultivar types on wheat productivity and key technological parameters for the quality level of the end-product, namely pasta. Notably, although a low rate of mycotoxin contamination in all study sites was assessed, an inverse relation emerged between fungal infection/DON production and durum wheat yield. Further, our study pinpoints the importance of environment conditions on several quality traits of durum wheat grown under Mediterranean climate. The environmental conditions at local level (microscale) and soil management practices may drive FHB outbreak and mycotoxin contamination even in growing area suitable for cropping this wheat species. PMID:27446052

  4. Phytochemical Composition and Anti-Inflammatory Activity of Extracts from the Whole-Meal Flour of Italian Durum Wheat Cultivars

    PubMed Central

    Laddomada, Barbara; Durante, Miriana; Minervini, Fiorenza; Garbetta, Antonella; Cardinali, Angela; D’Antuono, Isabella; Caretto, Sofia; Blanco, Antonio; Mita, Giovanni

    2015-01-01

    In this study, the quali-quantitative composition of hydrophilic (phenolic acids) and lipophilic (isoprenoids) extracts from whole-meal flour of five elite Italian durum wheat cultivars was determined. Significant differences in the content of bioactive compounds were observed among the wheat extracts, in particular concerning the content of bound phenolic acids, lutein and β-tocotrienols. The cultivars Duilio and Svevo showed the highest amount of phenolic acids and isoprenoids, respectively. Extracts were evaluated for their anti-inflammatory activity on HT-29 human colon cells by measuring the levels of interleukin 8 (IL-8) and transforming growth factor β1 (TGF-β1). Durum wheat extracts significantly inhibited the secretion of the pro-inflammatory IL-8 mediator at 66 µg/mL of phenolic acids and at 0.2 µg/mL of isoprenoids. Conversely, the secretion of the anti-inflammatory mediator TGF-β1 was not modified by neither hydrophilic nor lipophilic extracts. These results provide further insight into the potential of durum wheat on human health suggesting the significance of varieties with elevated contents of bioactive components. PMID:25658801

  5. Relationship between lutein and mycotoxin content in durum wheat.

    PubMed

    Delgado, Rosa M; Sulyok, Michael; Jirsa, Ondřej; Spitzer, Tomáš; Krska, Rudolf; Polišenská, Ivana

    2014-01-01

    Levels of lutein and a number of mycotoxins were determined in seven varieties of durum wheat (Triticum durum) and two varieties of common wheat (Triticum aestivum) in order to explore possible relationships amongst these components. Durum wheat cultivars always showed both higher lutein and mycotoxin contents than common wheat cultivars. The mycotoxins detected in both common and durum wheat cultivars were produced by the genera Fusarium, Claviceps, Alternaria and Aspergillus. Fusarium was the major producer of mycotoxins (26 mycotoxins) followed by Claviceps (14 mycotoxins), which was present only in some cultivars such as Chevalier (common wheat), Lupidur and Selyemdur (both durum wheat), Alternaria (six mycotoxins) and Aspergillus (three mycotoxins). Positive correlations between the levels of lutein and mycotoxins in durum wheat cultivars were found for the following mycotoxins: deoxynivalenol (DON), its derivative DON-3-glucoside, moniliformin, culmorin and its derivatives (5-hydroxyculmorin and 15-hydroxyculmorin).

  6. Genetic Structure of Modern Durum Wheat Cultivars and Mediterranean Landraces Matches with Their Agronomic Performance

    PubMed Central

    Villegas, Dolors; Aranzana, Maria Jose; García del Moral, Luis F.; Royo, Conxita

    2016-01-01

    A collection of 172 durum wheat landraces from 21 Mediterranean countries and 20 modern cultivars were phenotyped in 6 environments for 14 traits including phenology, biomass, yield and yield components. The genetic structure of the collection was ascertained with 44 simple sequence repeat markers that identified 448 alleles, 226 of them with a frequency lower than 5%, and 10 alleles per locus on average. In the modern cultivars all the alleles were fixed in 59% of the markers. Total genetic diversity was HT = 0.7080 and the genetic differentiation value was GST = 0.1730. STRUCTURE software allocated 90.1% of the accessions in five subpopulations, one including all modern cultivars, and the four containing landrace related to their geographic origin: eastern Mediterranean, eastern Balkans and Turkey, western Balkans and Egypt, and western Mediterranean. Mean yield of subpopulations ranged from 2.6 t ha-1 for the western Balkan and Egyptian landraces to 4.0 t ha-1 for modern cultivars, with the remaining three subpopulations showing similar values of 3.1 t ha-1. Modern cultivars had the highest number of grains m-2 and harvest index, and the shortest cycle length. The diversity was lowest in modern cultivars (HT = 0.4835) and highest in landraces from the western Balkans and Egypt (HT = 0.6979). Genetic diversity and AMOVA indicated that variability between subpopulations was much lower (17%) than variability within them (83%), though all subpopulations had similar biomass values in all growth stages. A dendrogram based on simple sequence repeat data matched with the clusters obtained by STRUCTURE, improving this classification for some accessions that have a large admixture. landraces included in the subpopulation from the eastern Balkans and Turkey were separated into two branches in the dendrogram drawn with phenotypic data, suggesting a different origin for the landraces collected in Serbia and Macedonia. The current study shows a reliable relationship between

  7. Water deficit effects on solute contribution to osmotic adjustment as a function of leaf ageing in three durum wheat (Triticum durum Desf.) cultivars performing differently in arid conditions.

    PubMed

    Bajji, M; Lutts, S; Kinet, J -M.

    2001-03-01

    A greenhouse study was carried out using three durum wheat (Triticum durum Desf.) cultivars differing in their field performances under arid conditions (Kabir 1, poor yield stability; Omrabi 5, high yield stability and Haurani, landrace well adapted to drought). Water stress was imposed by withholding water at the seedling stage. Water potential (Psi(w)), relative water content (RWC), stomatal resistance (SR), and changes in solute concentrations were quantified: (1) as a function of leaf development during the stress period; and (2) in young expanded and growing leaves harvested at the end of the stress treatment. Psi(w), RWC and SR were almost unaffected by leaf age in controls. In contrast, solute concentrations appeared to vary in the course of leaf development. During the stress treatment, Psi(w) and RWC decreased and SR increased in all cultivars; the changes were most often largest in Omrabi 5, lowest in Haurani and intermediate in Kabir 1. Water stress also increased sugar and proline concentrations and decreased nitrate levels. Young expanded and growing leaves differed in terms of Psi(w), RWC and osmotic adjustment (OA). The capacity of OA was greater in growing than in expanded leaves, especially in the two cultivars best adapted to aridity, and allowed turgor maintenance in these genotypes. Sugars were the main solutes that contributed to OA particularly in growing leaves followed by proline and then quaternary ammonium compounds. The contributions of these organic solutes to OA tended to be higher in Omrabi 5 and in Haurani than in Kabir 1. Inorganic solutes, however, did not seem to play an important role in OA despite their high proportion in total solutes.

  8. High molecular weight glutenin subunits in some durum wheat cultivars investigated by means of mass spectrometric techniques.

    PubMed

    Muccilli, Vera; Lo Bianco, Marisol; Cunsolo, Vincenzo; Saletti, Rosaria; Gallo, Giulia; Foti, Salvatore

    2011-11-23

    The primary structures of high molecular weight glutenin subunits (HMW-GS) of 5 Triticum durum Desf. cultivars (Simeto, Svevo, Duilio, Bronte, and Sant'Agata), largely cultivated in the south of Italy, and of 13 populations of the old spring Sicilian durum wheat landrace Timilia (Triticum durum Desf.) (accession nos. 1, 2, 3, 4, 7, 8, 9, 13, 14, 15, SG1, SG2, and SG3) were investigated using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and reversed-phase high performance liquid chromatography/nanoelectrospray ionization mass spectrometry (RP-HPLC/nESI-MS/MS). M(r) of the intact proteins determined by MALDI mass spectrometry showed that all the 13 populations of Timilia contained the same two HMW-GS with 75.2 kDa and 86.4 kDa, whereas the other durum wheat cultivars showed the presence of the expected HMW-GS 1By8 and 1Bx7 at 75.1 kDa and 83.1 kDa, respectively. By MALDI mass spectrometry of the tryptic digestion peptides of the isolated HMW-GS of Timilia, the 1Bx and 1By subunits were identified as the NCBInr Acc. No AAQ93629, and AAQ93633, respectively. Sequence verification for HMW-GS 1Bx and 1By both in Simeto and Timilia was obtained by MALDI mass mapping and HPLC/nESI-MSMS of the tryptic peptides. The Bx subunit of Timila presents a sequence similarity of 96% with respect to Simeto, with differences in the insertion of 3 peptides of 5, 9, and 15 amino acids, for a total insertion of 29 amino acids and 25 amino acid substitutions. These differences in the amino acidic sequence account for the determined Δm of 3294 Da between the M(r) of the 1Bx subunits in Timilia and Simeto. Sequence alignment between the two By subunits shows 10 amino acid substitutions and is consistent with the Δm of 148 Da found in the MALDI mass spectra of the intact subunits.

  9. Durum wheat (Triticum turgidum spp. durum, cultivar Senatore Cappelli) production systems effects on grain and flours functional properties under Mediterranean conditions

    NASA Astrophysics Data System (ADS)

    Cavoski, Ivana; Turk, Jelena; Chami, Ziad Al

    2015-04-01

    The main goal of organic farming is the "production of high quality products". Integrity and vital quality of products should be preserved along the entire production chain. In order to evaluate the effect of organic vs. conventional production systems on durum wheat phenolic acids and antioxidant activity open field experiment has been carried out. During the whole process chain from field to fork, there are various factors influencing the quality of the end product. Organic production should rely on genotypes with high nitrogen use efficiency, disease and pest resistance, weed competitiveness and tolerance especially under Mediterranean conditions. In this study, production systems differed according to the practices and inputs applied to manage the soil fertility and plant protection. In conventional system, synthetic fertilizers and pesticides were used. Whereas, in the two organic systems, cow manure with fertilizers and temporary intercropping with fava bean (Vicia faba) and fertilizers were used to manage soil fertility. Biopesticides were used for plant protection for organic systems. One treatment without inputs was used as a control in order to evaluate environmental site and cultivar effect. Quantity of free, free and conjugated and bounded phenolic acids were evaluated in relation to overall quality and production systems. In addition, antioxidant capacities of each fraction by different assays were assessed. The organic production method assured higher overall quality in paricular functional properties compared to the conventional one. Therefore, understanding the functional links between production systems variables and physiological responses is essential to improve and standardize the quality of organic durum wheat products. Keywords: organic farming, soil fertility management, phenolic acids, antioxidant activity.

  10. Identification and validation of a major cadmium accumulation locus and closely associated SNP markers in North Dakota durum wheat cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat has the tendency of accumulating more cadmium (Cd), a biotoxic heavy metal, in seeds than other commonly grown cereals, thus posing a serious food safety/public health concern. This could have serious negative impact on the national pasta industry and the international export market of d...

  11. Development of Durum Wwheat Germplasm with Enhanced Resistance to Fusarium Head Blight Derived from Emmer Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat (Triticum turgidum L. subsp. durum) is a unique class of commercial wheat specifically for making pasta products. Durum production has been seriously challenged by the Fusarium head blight (FHB) disease in the United States in the past decade. Although utilization of resistant cultivar...

  12. Genome-wide association mapping of leaf rust response in a durum wheat worldwide germplasm collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf rust (caused by Puccinia triticina Eriks.) is increasingly impacting durum wheat production with the recent appearance of races with virulence to widely grown cultivars in many durum producing areas worldwide. A highly virulent P. triticina race on durum wheat was recently collected in Kansas....

  13. Drought and Heat Differentially Affect XTH Expression and XET Activity and Action in 3-Day-Old Seedlings of Durum Wheat Cultivars with Different Stress Susceptibility

    PubMed Central

    Iurlaro, Andrea; De Caroli, Monica; Sabella, Erika; De Pascali, Mariarosaria; Rampino, Patrizia; De Bellis, Luigi; Perrotta, Carla; Dalessandro, Giuseppe; Piro, Gabriella; Fry, Stephen C.; Lenucci, Marcello S.

    2016-01-01

    Heat and drought stress have emerged as major constraints for durum wheat production. In the Mediterranean area, their negative effect on crop productivity is expected to be exacerbated by the occurring climate change. Xyloglucan endotransglucosylase/hydrolases (XTHs) are chief enzymes in cell wall remodeling, whose relevance in cell expansion and morphogenesis suggests a central role in stress responses. In this work the potential role of XTHs in abiotic stress tolerance was investigated in durum wheat. The separate effects of dehydration and heat exposure on XTH expression and its endotransglucosylase (XET) in vitro activity and in vivo action have been monitored, up to 24 h, in the apical and sub-apical root regions and shoots excised from 3-day-old seedlings of durum wheat cultivars differing in stress susceptibility/tolerance. Dehydration and heat stress differentially influence the XTH expression profiles and the activity and action of XET in the wheat seedlings, depending on the degree of susceptibility/tolerance of the cultivars, the organ, the topological region of the root and, within the root, on the gradient of cell differentiation. The root apical region was the zone mainly affected by both treatments in all assayed cultivars, while no change in XET activity was observed at shoot level, irrespective of susceptibility/tolerance, confirming the pivotal role of the root in stress perception, signaling, and response. Conflicting effects were observed depending on stress type: dehydration evoked an overall increase, at least in the apical region of the root, of XET activity and action, while a significant inhibition was caused by heat treatment in most cultivars. The data suggest that differential changes in XET action in defined portions of the root of young durum wheat seedlings may have a role as a response to drought and heat stress, thus contributing to seedling survival and crop establishment. A thorough understanding of the mechanisms underlying

  14. New durum wheat with soft kernel texture: milling performance and end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which preclude conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft white...

  15. New durum wheat with soft kernel texture: end-use quality analysis of the Hardness locus in Triticum turgidum ssp. durum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat kernel texture dictates U.S. wheat market class. Durum wheat has limited demand and culinary end-uses compared to bread wheat because of its extremely hard kernel texture which precludes conventional milling. ‘Soft Svevo’, a new durum cultivar with soft kernel texture comparable to a soft whit...

  16. Targeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some durum wheat (Triticum turgidum L. var durum) cultivars have the genetic propensity to accumulate cadmium (Cd) in the grain. A major gene controlling grain Cd concentration designated as Cdu1 has been reported on 5B, but the genetic factor(s) conferring the low Cd phenotype are currently unknow...

  17. Induced Mutations for Improving Production on Bread and Durum Wheat

    SciTech Connect

    Stamo, Ilirjana; Ylli, Ariana; Dodbiba, Andon

    2007-04-23

    Wheat is a very important crop and has been bred for food and its improvement is continuous from cross-breeding. Radiation and chemically induced mutations have provided variability in selection for novel varieties. Four bread and one durum wheat cultivars were exposed to gamma rays, Cs 137 with doses 10, 15 and 20 krad (2000 seeds of each dose and cultivars). We have isolated mutant plants with height reduced and on cv Progress spike without chaff.

  18. Differential response of NADP-dehydrogenases and carbon metabolism in leaves and roots of two durum wheat (Triticum durum Desf.) cultivars (Karim and Azizi) with different sensitivities to salt stress.

    PubMed

    Bouthour, Donia; Kalai, Tawba; Chaffei, Haouari C; Gouia, Houda; Corpas, Francisco J

    2015-05-01

    Wheat (Triticum durum Desf.) is a common Mediterranean species of considerable agronomic importance. Salinity is one of the major threats to sustainable agricultural production mainly because it limits plant productivity. After exposing the Karim and Azizi durum wheat cultivars, which are of agronomic significance in Tunisia, to 100mM NaCl salinity, growth parameters (dry weight and length), proline content and chlorophylls were evaluated in their leaves and roots. In addition, we analyzed glutathione content and key enzymatic activities, including phosphoenolpyruvate carboxylase (PEPC), NADP-isocitrate dehydrogenase (NADP-ICDH), NADP-malic enzyme (NADP-ME), glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), involved in the carbon metabolism and NADPH-generating system. The sensitivity index indicates that cv Karim was more tolerant to salinity than cv Azizi. This higher tolerance was corroborated at the biochemical level, as cv Karim showed a greater capacity to accumulate proline, especially in leaves, while the enzyme activities studied were differentially regulated in both organs, with NADP-ICDH being the only activity to be unaffected in all organs. In summary, the data indicate that higher levels of proline accumulation and the differential responses of some key enzymes involved in the carbon metabolism and NADPH regeneration contribute to the salinity tolerance mechanism and lead to increased biomass accumulation in cv Karim.

  19. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strenth and pan bread quality.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat (Triticum turgidum ssp. durum) is considered unsuitable for the majority of commercial bread production because its weak gluten strength combined with flour particle size and flour starch damage after milling are not commensurate with hexaploid wheat flours. Recently a new durum cultivar...

  20. Marker-assisted Characterization of Durum Wheat Langdon-Golden Ball Disomic Substitution Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The durum wheat cultivar ‘Golden Ball’ (GB) has superior solid stem, which is a source of resistance to wheat sawfly and also a potential source of biofeed for producing biofuel. Dr. Leonard Joppa previously used GB as the chromosome donor and Langdon (LDN) durum as the recipient to develop a compl...

  1. Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat.

    PubMed

    Carvalho, Pedro; Azam-Ali, Sayed; Foulkes, M John

    2014-05-01

    In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought. One spring barley (Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars (Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil-column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley (47%) than durum wheat (30%, Hourani). Root-to-shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response to drought but decreased for barley. The critical root length density (RLD) and root volume density (RVD) for 90% available water capture for wheat were similar to (cv. Hourani) or lower than (cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.

  2. A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Consensus linkage maps are important tools in crop genomics. We have assembled a high-density tetraploid wheat consensus map by integrating 13 datasets from independent biparental populations involving durum wheat cultivars (Triticum turgidum ssp. durum), cultivated emmer (T. turgidum ssp. dicoccum...

  3. Insect and mite pests of durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter discusses the postharvest arthropod pests of durum wheat and their control. The main internally feeding pests are Rhyzopertha dominica, Sitophilus granarius, S. oryzae, and S. zeamais. The main externally feeding pests are Cryptolestes ferrugineus, Oryzaephilus surinamensis, O. m...

  4. The influence of soft kernel texture on the flour and baking quality of soft durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum (T. turgidum subsp. durum) wheat production worldwide is substantially less than that of common wheat (Triticum aestivum). Durum kernels are extremely hard; leading to most durum wheat being milled into semolina. Durum wheat production is limited in part due to the relatively limited end-user ...

  5. End-use quality of soft kernel durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Kernel texture is a major determinant of end-use quality of wheat. Durum wheat is known for its very hard texture, which influences how it is milled and for what products it is well suited. We developed soft kernel durum wheat lines via Ph1b-mediated homoeologous recombination with Dr. Leonard Joppa...

  6. Durum Wheat in Conventional and Organic Farming: Yield Amount and Pasta Quality in Southern Italy

    PubMed Central

    Fagnano, Massimo; Fiorentino, Nunzio; D'Egidio, Maria Grazia; Quaranta, Fabrizio; Ritieni, Alberto; Ferracane, Rosalia; Raimondi, Giampaolo

    2012-01-01

    Five durum wheat cultivars were grown in a Mediterranean area (Southern Italy) under conventional and organic farming with the aim to evaluate agronomic, technological, sensory, and sanitary quality of grains and pasta. The cultivar Matt produced the best pasta quality under conventional cropping system, while the quality parameters evaluated were unsatisfactory under organic farming. The cultivar Saragolla showed the best yield amount and pasta quality in all the experimental conditions, thus proving to be the cultivar more adapt to organic farming. In all the tested experimental conditions, nivalenol (NIV) and deoxynivalenol (DON) occurrence was very low and the other mycotoxins evaluated were completely absent. These data confirm the low risk of mycotoxin contamination in the Mediterranean climate conditions. Finally, it has been possible to produce high-quality pasta in Southern Italy from durum wheat grown both in conventional and organic farming. PMID:22701377

  7. Durum wheat in conventional and organic farming: yield amount and pasta quality in Southern Italy.

    PubMed

    Fagnano, Massimo; Fiorentino, Nunzio; D'Egidio, Maria Grazia; Quaranta, Fabrizio; Ritieni, Alberto; Ferracane, Rosalia; Raimondi, Giampaolo

    2012-01-01

    Five durum wheat cultivars were grown in a Mediterranean area (Southern Italy) under conventional and organic farming with the aim to evaluate agronomic, technological, sensory, and sanitary quality of grains and pasta. The cultivar Matt produced the best pasta quality under conventional cropping system, while the quality parameters evaluated were unsatisfactory under organic farming. The cultivar Saragolla showed the best yield amount and pasta quality in all the experimental conditions, thus proving to be the cultivar more adapt to organic farming. In all the tested experimental conditions, nivalenol (NIV) and deoxynivalenol (DON) occurrence was very low and the other mycotoxins evaluated were completely absent. These data confirm the low risk of mycotoxin contamination in the Mediterranean climate conditions. Finally, it has been possible to produce high-quality pasta in Southern Italy from durum wheat grown both in conventional and organic farming.

  8. Transfer of soft kernel texture from Triticum aestivum to durum wheat, Triticum turgidum ssp. durum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat (Triticum turgidum ssp. durum) is a leading cereal grain whose primary use is the production of semolina and then pasta. Its rich culinary relationship to humans is related, in part, to its very hard kernel texture. This very hard texture is due to the loss of the Puroindoline genes whi...

  9. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture

    PubMed Central

    Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  10. Proteomics of Durum Wheat Grain during Transition to Conservation Agriculture.

    PubMed

    Visioli, Giovanna; Galieni, Angelica; Stagnari, Fabio; Bonas, Urbana; Speca, Stefano; Faccini, Andrea; Pisante, Michele; Marmiroli, Nelson

    2016-01-01

    Nitrogen management in combination with sustainable agronomic techniques can have a great impact on the wheat grain proteome influencing its technological quality. In this study, proteomic analyses were used to document changes in the proportion of prolamins in mature grains of the newly released Italian durum wheat cv Achille. Such an approach was applied to wheat fertilized with urea (UREA) and calcium nitrate (NITRATE), during the transition to no-till Conservation Agriculture (CA) practice in a Mediterranean environment. Results obtained in a two-years field experiment study suggest low molecular weight glutenins (LMW-GS) as the fraction particularly inducible regardless of the N-form. Quantitative analyses of LMW-GS by 2D-GE followed by protein identification by LC-ESI-MS/MS showed that the stable increase was principally due to C-type LMW-GS. The highest accumulation resulted from a physiologically healthier state of plants treated with UREA and NITRATE. Proteomic analysis on the total protein fraction during the active phase of grain filling was also performed. For both N treatments, but at different extent, an up-regulation of different classes of proteins was observed: i) enzymes involved in glycolysis and citric acid cycles which contribute to an enhanced source of energy and carbohydrates, ii) stress proteins like heat shock proteins (HSPs) and antioxidant enzymes, such as peroxidases and superoxide dismutase which protect the grain from abiotic stress during starch and storage protein synthesis. In conclusion N inputs, which combined rate with N form gave high yield and improved quality traits in the selected durum wheat cultivar. The specific up-regulation of some HSPs, antioxidant enzymes and defense proteins in the early stages of grain development and physiological indicators related to fitness traits, could be useful bio-indicators, for wheat genotype screening under more sustainable agronomic conditions, like transition phase to no-till CA in

  11. Association Mapping of Leaf Rust Response in Durum Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to leaf rust (Puccinia triticina Eriks.) is a main objective for durum wheat (Triticum durum Desf.) breeding.Association mapping on germplasm collections is now being used as an additional approach for the discovery and validation of major genes/QTLs. In this study, a collection of 164 el...

  12. Soft kernel durum wheat -- a new bakery ingredient?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    “Bread wheat”, also known as “common wheat” (Triticum aestivum L.), is a leading cereal that sustains humankind. Current worldwide production stands at over 700 million metric tons produced from around 220 million hectares. In contrast, durum wheat (Triticum turgidum subsp. durum) is grown on about ...

  13. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain

    PubMed Central

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-01-01

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: “Primadur”, an elite cultivar with high yellow index, and “T1303”, an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in “Primadur”, with a general decrease in “T1303”. Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways. PMID:26703576

  14. Durum wheat (Triticum Durum Desf.) lines show different abilities to form masked mycotoxins under greenhouse conditions.

    PubMed

    Cirlini, Martina; Generotti, Silvia; Dall'Erta, Andrea; Lancioni, Pietro; Ferrazzano, Gianluca; Massi, Andrea; Galaverna, Gianni; Dall'Asta, Chiara

    2013-12-24

    Deoxynivalenol (DON) is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB) on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G) is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur) were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B), was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.

  15. Accumulation of cadmium in near-isogenic lines of durum wheat (Triticum turgidum L. var durum): the role of transpiration.

    PubMed

    Quinn, C J; Mohammad, A; Macfie, S M

    2011-10-01

    Concentrations of cadmium in the grain of durum wheat (Triticum turgidum L. var durum) are often above the internationally acceptable limit of 0.2 mg kg(-1). Cultivars that vary in concentrations of cadmium in the grain have been identified but the physiology behind differential accumulation has not been determined. Three pairs of near-isogenic lines (isolines) of durum wheat that vary in aboveground cadmium accumulation (8982-TL 'high' and 'low', W9260-BC 'high' and 'low', and W9261-BG 'high' and 'low') were used to test the hypothesis that the greater amounts of cadmium in shoots of the 'high' isolines are correlated with greater volumes of water transpired. In general, cadmium content was positively correlated with transpiration only in the 'low' isolines. Although shoots of the 'high' isolines of W9260-BC and W9261-BG contained higher concentrations of cadmium than did their corresponding 'low' isolines, they did not transpire larger volumes of water. In addition, isolines of 8982-TL transpired less water than did the other pairs of isolines yet both 'high' and 'low' isolines of 8982-TL contained higher amounts of cadmium than did the other pairs. The difference between 'high' and 'low' isolines appears to be related to the relative contribution of transpiration to cadmium translocation to the shoot. Increased transpiration was associated with increased cadmium content in the 'low' isolines but in the 'high' isolines increased cadmium in the shoot occurred independently of the volume of water transpired.

  16. Effect of soft kernel texture on the milling properties of soft durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Worldwide nearly twenty times more common wheat (Triticum aestivum) is produced than durum wheat (T. turgidum subsp. durum). Durum wheat is predominately milled into coarse semolina due to the extreme hardness of the kernels. Semolina, lacking the versatility of traditional flour, is used primarily ...

  17. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    PubMed

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2016-12-22

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat.

  18. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    PubMed

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2016-09-29

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in seedlings under standard growth conditions. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or upregulation of senescence gene markers was apparent in these seedlings suggesting senescence is not required for Lr34 resistance. Several abiotic stress response genes were upregulated in these seedling in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Photoperiod and light intensity had significant effects on Lr34 phenotypes. These data demonstrate that expression of a highly durable, broad spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. This article is protected by copyright. All rights reserved.

  19. Increasing the amylose content of durum wheat through silencing of the SBEIIa genes

    PubMed Central

    2010-01-01

    Background High amylose starch has attracted particular interest because of its correlation with the amount of Resistant Starch (RS) in food. RS plays a role similar to fibre with beneficial effects for human health, providing protection from several diseases such as colon cancer, diabetes, obesity, osteoporosis and cardiovascular diseases. Amylose content can be modified by a targeted manipulation of the starch biosynthetic pathway. In particular, the inactivation of the enzymes involved in amylopectin synthesis can lead to the increase of amylose content. In this work, genes encoding starch branching enzymes of class II (SBEIIa) were silenced using the RNA interference (RNAi) technique in two cultivars of durum wheat, using two different methods of transformation (biolistic and Agrobacterium). Expression of RNAi transcripts was targeted to the seed endosperm using a tissue-specific promoter. Results Amylose content was markedly increased in the durum wheat transgenic lines exhibiting SBEIIa gene silencing. Moreover the starch granules in these lines were deformed, possessing an irregular and deflated shape and being smaller than those present in the untransformed controls. Two novel granule bound proteins, identified by SDS-PAGE in SBEIIa RNAi lines, were investigated by mass spectrometry and shown to have strong homologies to the waxy proteins. RVA analysis showed new pasting properties associated with high amylose lines in comparison with untransformed controls. Finally, pleiotropic effects on other starch genes were found by semi-quantitative and Real-Time reverse transcription-polymerase chain reaction (RT-PCR). Conclusion We have found that the silencing of SBEIIa genes in durum wheat causes obvious alterations in granule morphology and starch composition, leading to high amylose wheat. Results obtained with two different methods of transformation and in two durum wheat cultivars were comparable. PMID:20626919

  20. Genomic dissection of drought resistance in durum wheat x wild emmer wheat recombinant inbreed line population.

    PubMed

    Peleg, Zvi; Fahima, Tzion; Krugman, Tamar; Abbo, Shahal; Yakir, Dan; Korol, Abraham B; Saranga, Yehoshua

    2009-07-01

    Drought is the major factor limiting wheat productivity worldwide. The gene pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbours a rich allelic repertoire for morpho-physiological traits conferring drought resistance. The genetic and physiological bases of drought responses were studied here in a tetraploid wheat population of 152 recombinant inbreed lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (acc# G18-16), under contrasting water availabilities. Wide genetic variation was found among RILs for all studied traits. A total of 110 quantitative trait loci (QTLs) were mapped for 11 traits, with LOD score range of 3.0-35.4. Several QTLs showed environmental specificity, accounting for productivity and related traits under water-limited (20 QTLs) or well-watered conditions (15 QTLs), and in terms of drought susceptibility index (22 QTLs). Major genomic regions controlling productivity and related traits were identified on chromosomes 2B, 4A, 5A and 7B. QTLs for productivity were associated with QTLs for drought-adaptive traits, suggesting the involvement of several strategies in wheat adaptation to drought stress. Fifteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. The identified QTLs may facilitate the use of wild alleles for improvement of drought resistance in elite wheat cultivars.

  1. Technological properties of bakers' yeasts in durum wheat semolina dough.

    PubMed

    Giannone, Virgilio; Longo, Chiara; Damigella, Arcangelo; Raspagliesi, Domenico; Spina, Alfio; Palumbo, Massimo

    2010-04-01

    Properties of 13 Saccharomyces cerevisiae strains isolated from different sources (traditional sourdoughs, industrial baking yeasts etc.) were studied in dough produced with durum wheat (Sicilian semolina, variety Mongibello). Durum wheat semolina and durum wheat flour are products prepared from grain of durum wheat (Triticum durum Desf.) by grinding or milling processes in which the bran and germ are essentially removed and the remainder is comminuted to a suitable degree of fineness. Acidification and leavening properties of the dough were evaluated. Strains isolated from traditional sourdoughs (DSM PST18864, DSM PST18865 and DSM PST18866) showed higher leavening power, valuable after the first and second hours of fermentation, than commercial baking yeasts. In particular the strain DSM PST 18865 has also been successfully tested in bakery companies for the improvement of production processes. Baking and staling tests were carried out on five yeast strains to evaluate their fermentation ability directly and their resistance to the staling process. Amplified fragment length polymorphism (fAFLP) was used to investigate genetic variations in the yeast strains. This study showed an appreciable biodiversity in the microbial populations of both wild and commercial yeast strains.

  2. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch.

    PubMed

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2014-08-25

    Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II (SBEII) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A (SBEIIa/b-A; Reg. No. GP-968, PI 670159), 2B (SBEIIa/b-B; Reg. No. GP-970, PI 670161), and on both chromosomes (SBEIIa/b-AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII-mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b-AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b-AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California-Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch.

  3. Registration of Durum Wheat Germplasm Lines with Combined Mutations in SBEIIa and SBEIIb Genes Conferring Increased Amylose and Resistant Starch

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Dubcovsky, Jorge

    2016-01-01

    Durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.], used in pasta, couscous, and flatbread production, is an important source of starch food products worldwide. The amylose portion of the starch forms resistant starch complexes that resist digestion and contribute to dietary fiber. Increasing the amount of amylose and resistant starch in wheat by mutating the STARCH BRANCHING ENZYME II (SBEII) genes has potential to provide human health benefits. Ethyl methane sulfonate mutations in the linked SBEIIa and SBEIIb paralogs were combined on chromosomes 2A (SBEIIa/b-A; Reg. No. GP-968, PI 670159), 2B (SBEIIa/b-B; Reg. No. GP-970, PI 670161), and on both chromosomes (SBEIIa/b-AB; Reg. No. GP-969, PI 670160) in the tetraploid wheat cultivar Kronos, a semidwarf durum wheat cultivar that has high yield potential and excellent pasta quality. These three double and quadruple SBEII-mutant lines were compared with a control sib line with no SBEII mutations in two field locations in California. The SBEIIa/b-AB line with four mutations showed dramatic increases in amylose (average 66%) and resistant starch (average 753%) relative to the control. However, the SBEIIa/b-AB line also showed an average 7% decrease in total starch and an 8% decrease in kernel weight. The release by the University of California–Davis of the durum wheat germplasm combining four SBEIIa and SBEIIb mutations will accelerate the deployment of these mutations in durum wheat breeding programs and the development of durum wheat varieties with increased resistant starch. PMID:27110322

  4. Development of COS-SNP and HRM markers for cost efficient and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a leaf rust resistant gene present in the durum wheat cv. Creso and its derivative Colosseo is one of the best characterized leaf rust resistance sources presently deployed in durum wheat breed...

  5. Antagonist effects of Bacillus spp. strains against Fusarium graminearum for protection of durum wheat (Triticum turgidum L. subsp. durum).

    PubMed

    Zalila-Kolsi, Imen; Ben Mahmoud, Afif; Ali, Hacina; Sellami, Sameh; Nasfi, Zina; Tounsi, Slim; Jamoussi, Kaïs

    2016-11-01

    Bacillus species are attractive due to their potential use in the biological control of fungal diseases. Bacillus amyloliquefaciens strain BLB369, Bacillus subtilis strain BLB277, and Paenibacillus polymyxa strain BLB267 were isolated and identified using biochemical and molecular (16S rDNA, gyrA, and rpoB) approaches. They could produce, respectively, (iturin and surfactin), (surfactin and fengycin), and (fusaricidin and polymyxin) exhibiting broad spectrum against several phytopathogenic fungi. In vivo examination of wheat seed germination, plant height, phenolic compounds, chlorophyll, and carotenoid contents proved the efficiency of the bacterial cells and the secreted antagonist activities to protect Tunisian durum wheat (Triticum turgidum L. subsp. durum) cultivar Om Rabiia against F. graminearum fungus. Application of single bacterial culture medium, particularly that of B. amyloliquefaciens, showed better protection than combinations of various culture media. The tertiary combination of B. amyloliquefaciens, B. subtilis, and P. polymyxa bacterial cells led to the highest protection rate which could be due to strains synergistic or complementary effects. Hence, combination of compatible biocontrol agents could be a strategic approach to control plant diseases.

  6. Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.).

    PubMed

    Aranjuelo, Iker; Erice, Gorka; Sanz-Sáez, Alvaro; Abadie, Cyril; Gilard, Françoise; Gil-Quintana, Erena; Avice, Jean-Christophe; Staudinger, Christiana; Wienkoop, Stefanie; Araus, Jose L; Bourguignon, Jacques; Irigoyen, Juan J; Tcherkez, Guillaume

    2015-12-01

    C sink/source balance and N assimilation have been identified as target processes conditioning crop responsiveness to elevated CO2 . However, little is known about phenology-driven modifications of C and N primary metabolism at elevated CO2 in cereals such as wheat. Here, we examined the differential effect of elevated CO2 at two development stages (onset of flowering, onset of grain filling) in durum wheat (Triticum durum, var. Sula) using physiological measurements (photosynthesis, isotopes), metabolomics, proteomics and (15) N labelling. Our results show that growth at elevated CO2 was accompanied by photosynthetic acclimation through a lower internal (mesophyll) conductance but no significant effect on Rubisco content, maximal carboxylation or electron transfer. Growth at elevated CO2 altered photosynthate export and tended to accelerate leaf N remobilization, which was visible for several proteins and amino acids, as well as lysine degradation metabolism. However, grain biomass produced at elevated CO2 was larger and less N rich, suggesting that nitrogen use efficiency rather than photosynthesis is an important target for improvement, even in good CO2 -responsive cultivars.

  7. Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat.

    PubMed

    Somers, Daryl J; Banks, Travis; Depauw, Ron; Fox, Stephen; Clarke, John; Pozniak, Curtis; McCartney, Curt

    2007-06-01

    Bread wheat and durum wheat were examined for linkage disequilibrium (LD) using microsatellite markers distributed across the genome. The allele database consisted of 189 bread wheat accessions genotyped at 370 loci and 93 durum wheat accessions genotyped at 245 loci. A significance level of p < 0.001 was set for all comparisons. The bread and durum wheat collections showed that 47.9% and 14.0% of all locus pairs were in LD, respectively. LD was more prevalent between loci on the same chromosome compared with loci on independent chromosomes and was highest between adjacent loci. Only a small fraction (bread wheat, 0.9%; durum wheat, 3.2%) of the locus pairs in LD showed R2 values > 0.2. The LD between adjacent locus pairs extended (R2 > 0.2) approximately 2-3 cM, on average, but some regions of the bread and durum wheat genomes showed high levels of LD (R2 = 0.7 and 1.0, respectively) extending 41.2 and 25.5 cM, respectively. The wheat collections were clustered by similarity into subpopulations using unlinked microsatellite data and the software Structure. Analysis within subpopulations showed 14- to 16-fold fewer locus pairs in LD, higher R2 values for those pairs in LD, and LD extending further along the chromosome. The data suggest that LD mapping of wheat can be performed with simple sequence repeats to a resolution of <5 cM.

  8. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. I. Grain, milling and soft wheat quality.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat kernel texture is used in part to define U.S. wheat market class due to its importance in end-use quality and utilization. Durum wheat (Triticum turgidum subsp. durum) has lower demand and fewer culinary end-uses compared to bread wheat because of its extremely hard kernel texture, which precl...

  9. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum).

    PubMed

    Milner, Sara Giulia; Maccaferri, Marco; Huang, Bevan Emma; Mantovani, Paola; Massi, Andrea; Frascaroli, Elisabetta; Tuberosa, Roberto; Salvi, Silvio

    2016-02-01

    Multiparental cross designs for mapping quantitative trait loci (QTL) provide an efficient alternative to biparental populations because of their broader genetic basis and potentially higher mapping resolution. We describe the development and deployment of a recombinant inbred line (RIL) population in durum wheat (Triticum turgidum ssp. durum) obtained by crossing four elite cultivars. A linkage map spanning 2664 cM and including 7594 single nucleotide polymorphisms (SNPs) was produced by genotyping 338 RILs. QTL analysis was carried out by both interval mapping on founder haplotype probabilities and SNP bi-allelic tests for heading date and maturity date, plant height and grain yield from four field experiments. Sixteen QTL were identified across environments and detection methods, including two yield QTL on chromosomes 2BL and 7AS, with the former mapped independently from the photoperiod response gene Ppd-B1, while the latter overlapped with the vernalization locus VRN-A3. Additionally, 21 QTL with environment-specific effects were found. Our results indicated a prevalence of environment-specific QTL with relatively small effect on the control of grain yield. For all traits, functionally different QTL alleles in terms of direction and size of genetic effect were distributed among parents. We showed that QTL results based on founder haplotypes closely matched functional alleles at known heading date loci. Despite the four founders, only 2.1 different functional haplotypes were estimated per QTL, on average. This durum wheat population provides a mapping resource for detailed genetic dissection of agronomic traits in an elite background typical of breeding programmes.

  10. Durum wheat and allelopathy: toward wheat breeding for natural weed management.

    PubMed

    Fragasso, Mariagiovanna; Iannucci, Anna; Papa, Roberto

    2013-09-24

    Wheat-derived foodstuffs represent about one-fifth of the calories consumed by humans worldwide. Bread wheat (Triticum aestivum L.) is one of the most important crops throughout the world, and it has been extensively studied for its allelopathic potential. In contrast, for allelopathy in durum wheat (Triticum turgidum ssp. durum), our knowledge is partial and fragmentary. Through highlighting recent advances in using allelopathy as a crop-breeding tool, we provide an overview of allelopathy in Triticum spp., to stimulate further coordinated breeding-oriented studies, to favor allelopathy exploitation for the sustainable cultivation of wheat, and in particular, to achieve improved biological weed control.

  11. Durum wheat and allelopathy: toward wheat breeding for natural weed management

    PubMed Central

    Fragasso, Mariagiovanna; Iannucci, Anna; Papa, Roberto

    2013-01-01

    Wheat-derived foodstuffs represent about one-fifth of the calories consumed by humans worldwide. Bread wheat (Triticum aestivum L.) is one of the most important crops throughout the world, and it has been extensively studied for its allelopathic potential. In contrast, for allelopathy in durum wheat (Triticum turgidum ssp. durum), our knowledge is partial and fragmentary. Through highlighting recent advances in using allelopathy as a crop-breeding tool, we provide an overview of allelopathy in Triticum spp., to stimulate further coordinated breeding-oriented studies, to favor allelopathy exploitation for the sustainable cultivation of wheat, and in particular, to achieve improved biological weed control. PMID:24065979

  12. Influence of soft kernel texture on the flour and baking quality of durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat is predominantly grown in semi-arid to arid environments where common wheat does not flourish, especially in the Middle East, North Africa, Mediterranean Basin, and portions of North America. Durum kernels are extraordinarily hard when compared to their common wheat counterparts. Due to ...

  13. Effects of durum wheat background on the expression of hexaploid wheat-derived Fusarium head blight resistance genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multiple Fusarium head blight (FHB) resistance sources have been identified in common wheat, but an effective source of resistance to FHB has not found in durum wheat. Here we report preliminary results on the effects of durum background on the expression of hexaploid wheat-derived FHB resistance g...

  14. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars

    PubMed Central

    Merchuk-Ovnat, Lianne; Barak, Vered; Fahima, Tzion; Ordon, Frank; Lidzbarsky, Gabriel A.; Krugman, Tamar; Saranga, Yehoshua

    2016-01-01

    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm) and water-limited (290–320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass—specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance. PMID:27148287

  15. Ancestral QTL Alleles from Wild Emmer Wheat Improve Drought Resistance and Productivity in Modern Wheat Cultivars.

    PubMed

    Merchuk-Ovnat, Lianne; Barak, Vered; Fahima, Tzion; Ordon, Frank; Lidzbarsky, Gabriel A; Krugman, Tamar; Saranga, Yehoshua

    2016-01-01

    Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs) from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum) and bread (T. aestivum) wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4) were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690-710 mm) and water-limited (290-320 mm) conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS), and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS). In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass-specifically under drought (7AS QTL in cv. Bar Nir background), under both treatments (2BS QTL), and a greater stability across treatments (1BL QTL). The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.

  16. Proteome Profiling of Wheat Shoots from Different Cultivars

    PubMed Central

    Vu, Lam Dai; Verstraeten, Inge; Stes, Elisabeth; Van Bel, Michiel; Coppens, Frederik; Gevaert, Kris; De Smet, Ive

    2017-01-01

    Wheat is a cereal grain and one of the world’s major food crops. Recent advances in wheat genome sequencing are by now facilitating its genomic and proteomic analyses. However, little is known about possible differences in total protein levels of hexaploid versus tetraploid wheat cultivars, and also knowledge of phosphorylated wheat proteins is still limited. Here, we performed a detailed analysis of the proteome of seedling leaves from two hexaploid wheat cultivars (Triticum aestivum L. Pavon 76 and USU-Apogee) and one tetraploid wheat (T. turgidum ssp. durum cv. Senatore Cappelli). Our shotgun proteomics data revealed that, whereas we observed some significant differences, overall a high similarity between hexaploid and tetraploid varieties with respect to protein abundance was observed. In addition, already at the seedling stage, a small set of proteins was differential between the small (USU-Apogee) and larger hexaploid wheat cultivars (Pavon 76), which could potentially act as growth predictors. Finally, the phosphosites identified in this study can be retrieved from the in-house developed plant PTM-Viewer (bioinformatics.psb.ugent.be/webtools/ptm_viewer/), making this the first searchable repository for phosphorylated wheat proteins. This paves the way for further in depth, quantitative (phospho)proteome-wide differential analyses upon a specific trigger or environmental change. PMID:28348574

  17. Fusarium head blight resistance in durum wheat – progress and challenge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several sources of FHB resistance have been identified in tetraploid wheat, including durum (Triticum turgidum ssp. durum, genome AABB), emmer (T. turgidum ssp. dicoccum, genome AABB), wild emmer (T. turgidum ssp. dicoccoides, genome AABB), Persian wheat (T. turgidum ssp. carthlicum, genome AABB...

  18. Synthesis and characterization of advanced durum wheat hybrids and addition lines with thinopyrum chromosomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) is a natural hybrid – an allotetraploid between two wild species, Triticum urartu Tumanian (AA genome) and Aegilops speltoides Tausch (BB genome). As shown earlier, even at the allotetraploid level, durum wheat can tolerate chromosomal ...

  19. The impact of the SSIIa null mutations on grain traits and composition in durum wheat

    PubMed Central

    Botticella, Ermelinda; Sestili, Francesco; Ferrazzano, Gianluca; Mantovani, Paola; Cammerata, Alessandro; D’Egidio, Maria Grazia; Lafiandra, Domenico

    2016-01-01

    Starch represents a major nutrient in the human diet providing essentially a source of energy. More recently the modification of its composition has been associated with new functionalities both at the nutritional and technological level. Targeting the major starch biosynthetic enzymes has been shown to be a valuable strategy to manipulate the amylose-amylopectin ratio in reserve starch. In the present work a breeding strategy aiming to produce a set of SSIIa (starch synthases IIa) null durum wheat is described. We have characterized major traits such as seed weight, total starch, amylose, protein and β-glucan content in a set of mutant families derived from the introgression of the SSIIa null trait into Svevo, an elite Italian durum wheat cultivar. A large degree of variability was detected and used to select wheat lines with either improved quality traits or agronomic performances. Semolina of a set of two SSIIa null lines showed new rheological behavior and an increased content of all major dietary fiber components, namely arabinoxylans, β-glucans and resistant starch. Furthermore the investigation of gene expression highlighted important differences in some genes involved in starch and β-glucans biosynthesis. PMID:27795682

  20. Empirical rheology and pasting properties of soft-textured durum wheat (Triticum turgidum ssp. durum) and hard-textured common wheat (T. aestivum)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Puroindoline (PIN) proteins are the molecular basis for wheat kernel texture classification and affect flour milling performance. This study aimed at investigating the effect of PINs on kernel physical characteristics and dough rheological properties of common wheat (Alpowa cv, soft wheat) and durum...

  1. Association of Agronomic Traits with SNP Markers in Durum Wheat (Triticum turgidum L. durum (Desf.))

    PubMed Central

    Hu, Xin; Ren, Jing; Ren, Xifeng; Huang, Sisi; Sabiel, Salih A. I.; Luo, Mingcheng; Nevo, Eviatar; Fu, Chunjie; Peng, Junhua; Sun, Dongfa

    2015-01-01

    Association mapping is a powerful approach to detect associations between traits of interest and genetic markers based on linkage disequilibrium (LD) in molecular plant breeding. In this study, 150 accessions of worldwide originated durum wheat germplasm (Triticum turgidum spp. durum) were genotyped using 1,366 SNP markers. The extent of LD on each chromosome was evaluated. Association of single nucleotide polymorphisms (SNP) markers with ten agronomic traits measured in four consecutive years was analyzed under a mix linear model (MLM). Two hundred and one significant association pairs were detected in the four years. Several markers were associated with one trait, and also some markers were associated with multiple traits. Some of the associated markers were in agreement with previous quantitative trait loci (QTL) analyses. The function and homology analyses of the corresponding ESTs of some SNP markers could explain many of the associations for plant height, length of main spike, number of spikelets on main spike, grain number per plant, and 1000-grain weight, etc. The SNP associations for the observed traits are generally clustered in specific chromosome regions of the wheat genome, mainly in 2A, 5A, 6A, 7A, 1B, and 6B chromosomes. This study demonstrates that association mapping can complement and enhance previous QTL analyses and provide additional information for marker-assisted selection. PMID:26110423

  2. Durum wheat seedlings in saline conditions: Salt spray versus root-zone salinity

    NASA Astrophysics Data System (ADS)

    Spanò, Carmelina; Bottega, Stefania

    2016-02-01

    Salinity is an increasingly serious problem with a strong negative impact on plant productivity. Though many studies have been made on salt stress induced by high NaCl concentrations in the root-zone, few data concern the response of plants to saline aerosol, one of the main constraints in coastal areas. In order to study more in depth wheat salinity tolerance and to evaluate damage and antioxidant response induced by various modes of salt application, seedlings of Triticum turgidum ssp. durum, cv. Cappelli were treated for 2 and 7 days with salt in the root-zone (0, 50 and 200 mM NaCl) or with salt spray (400 mM NaCl + 0 or 200 mM NaCl in the root-zone). Seedlings accumulated Na+ in their leaves and therefore part of their ability to tolerate high salinity seems to be due to Na+ leaf tissue tolerance. Durum wheat, confirmed as a partially tolerant plant, shows a higher damage under airborne salinity, when both an increase in TBA-reactive material (indicative of lipid peroxidation) and a decrease in root growth were recorded. A different antioxidant response was activated, depending on the type of salt supply. Salt treatment induced a depletion of the reducing power of both ascorbate and glutathione while the highest contents of proline were detected under salt spray conditions. In the short term catalase and ascorbate peroxidase co-operated with glutathione peroxidase in the scavenging of hydrogen peroxide, in particular in salt spray-treated plants. From our data, the durum wheat cultivar Cappelli seems to be sensitive to airborne salinity.

  3. Attempted compensation for linkage drag affecting agronomic characteristics of durum wheat 1AS/1DL translocation lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Yield reduction due to linkage drag caused by introgression of alien chromatin is a major problem for incorporating new genes into durum wheat (Triticum turgidum L. subsp. durum). Here we report attempts to improve yield of 1AS•1AL-1DL translocation lines of durum wheat that had previously been rep...

  4. Systems Responses to Progressive Water Stress in Durum Wheat

    PubMed Central

    Habash, Dimah Z.; Baudo, Marcela; Hindle, Matthew; Powers, Stephen J.; Defoin-Platel, Michael; Mitchell, Rowan; Saqi, Mansoor; Rawlings, Chris; Latiri, Kawther; Araus, Jose L.; Abdulkader, Ahmad; Tuberosa, Roberto; Lawlor, David W.; Nachit, Miloudi M.

    2014-01-01

    Durum wheat is susceptible to terminal drought which can greatly decrease grain yield. Breeding to improve crop yield is hampered by inadequate knowledge of how the physiological and metabolic changes caused by drought are related to gene expression. To gain better insight into mechanisms defining resistance to water stress we studied the physiological and transcriptome responses of three durum breeding lines varying for yield stability under drought. Parents of a mapping population (Lahn x Cham1) and a recombinant inbred line (RIL2219) showed lowered flag leaf relative water content, water potential and photosynthesis when subjected to controlled water stress time transient experiments over a six-day period. RIL2219 lost less water and showed constitutively higher stomatal conductance, photosynthesis, transpiration, abscisic acid content and enhanced osmotic adjustment at equivalent leaf water compared to parents, thus defining a physiological strategy for high yield stability under water stress. Parallel analysis of the flag leaf transcriptome under stress uncovered global trends of early changes in regulatory pathways, reconfiguration of primary and secondary metabolism and lowered expression of transcripts in photosynthesis in all three lines. Differences in the number of genes, magnitude and profile of their expression response were also established amongst the lines with a high number belonging to regulatory pathways. In addition, we documented a large number of genes showing constitutive differences in leaf transcript expression between the genotypes at control non-stress conditions. Principal Coordinates Analysis uncovered a high level of structure in the transcriptome response to water stress in each wheat line suggesting genome-wide co-ordination of transcription. Utilising a systems-based approach of analysing the integrated wheat’s response to water stress, in terms of biological robustness theory, the findings suggest that each durum line

  5. TdERF1, an ethylene response factor associated with dehydration responses in durum wheat (Triticum turgidum L. subsp. durum).

    PubMed

    Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Pirrello, Julien; Bernadac, Anne; Ghorbel, Abdelwahed; Bouzayen, Mondher

    2015-01-01

    Water deficit and increasing salinization reduce productivity of wheat, the leading crop for human diet. While the complete genome sequence of this crop has not been deciphered, a BAC library screening allowed the isolation of TdERF1, the first ethylene response factor gene from durum wheat. This gene is putatively involved in mediating salt stress tolerance and its characterization provides clues toward understanding the mechanisms underlying the adaptation/tolerance of durum wheat to suboptimal growth conditions. TdERF1 expression is differentially induced by high salt treatment in 2 durum wheat varieties, the salt-tolerant Grecale (GR) and the salt-sensitive Om Rabiaa (OR). To further extend these findings, we show here that the expression of this ERF is correlated with physiological parameters, such as the accumulation of osmo-regulators and membrane integrity, that discriminate between the 2 contrasted wheat genotypes. The data confirm that GR and OR are 2 contrasted wheat genotypes with regard to salt-stress and show that TdERF1 is also induced by water stress with an expression pattern clearly discriminating between the 2 genotypes. These findings suggest that TdERF1 might be involved in responses to salt and water stress providing a potential genetic marker discriminating between tolerant and sensitive wheat varieties.

  6. TdERF1, an ethylene response factor associated with dehydration responses in durum wheat (Triticum turgidum L. subsp. durum)

    PubMed Central

    Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Pirrello, Julien; Bernadac, Anne; Ghorbel, Abdelwahed; Bouzayen, Mondher

    2015-01-01

    Water deficit and increasing salinization reduce productivity of wheat, the leading crop for human diet. While the complete genome sequence of this crop has not been deciphered, a BAC library screening allowed the isolation of TdERF1, the first ethylene response factor gene from durum wheat. This gene is putatively involved in mediating salt stress tolerance and its characterization provides clues toward understanding the mechanisms underlying the adaptation/tolerance of durum wheat to suboptimal growth conditions. TdERF1 expression is differentially induced by high salt treatment in 2 durum wheat varieties, the salt-tolerant Grecale (GR) and the salt-sensitive Om Rabiaa (OR). To further extend these findings, we show here that the expression of this ERF is correlated with physiological parameters, such as the accumulation of osmo-regulators and membrane integrity, that discriminate between the 2 contrasted wheat genotypes. The data confirm that GR and OR are 2 contrasted wheat genotypes with regard to salt-stress and show that TdERF1 is also induced by water stress with an expression pattern clearly discriminating between the 2 genotypes. These findings suggest that TdERF1 might be involved in responses to salt and water stress providing a potential genetic marker discriminating between tolerant and sensitive wheat varieties. PMID:26338450

  7. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    PubMed Central

    Ren, Jing; Sun, Daokun; Chen, Liang; You, Frank M.; Wang, Jirui; Peng, Yunliang; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2013-01-01

    Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP) markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity. PMID:23538839

  8. Physical mapping of DNA markers linked to stem rust resistance gene Sr47 in durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In durum wheat (Triticum turgidum subsp. durum), the gene Sr47 derived from Aegilops speltoides conditions resistance to race TTKSK (Ug99) of stem rust pathogen (Puccinia graminis f. sp. tritici). Sr47 is carried on small interstitial translocation chromosomes (Ti2BL-2SL-2BL·2BS) in which the Ae. s...

  9. Marker-assisted characterization of durum wheat Langdon-Golden Ball disomic substitution lines.

    PubMed

    Xu, Steven S; Chu, C G; Chao, S; Klindworth, D L; Faris, J D; Elias, E M

    2010-05-01

    The durum wheat cultivar 'Golden Ball' (GB) is a source of resistance to wheat sawfly due to its superior solid stem. In the late 1980s, Dr. Leonard Joppa developed a complete set of 14 'Langdon' (LDN)-GB disomic substitution (DS) lines by using GB as the chromosome donor and LDN as the recipient. However, these substitution lines have not been previously characterized and reported in the literature. The objectives of this study were to confirm the authenticity of the substituted chromosomes and to analyze the genetic background of the 14 LDN-GB DS lines with the aid of molecular markers, and to further use the substitution lines for chromosomal localization of DNA markers and genes conferring the superior stem solidness in GB. Results from simple sequence repeat marker analysis validated the authenticity of the substituted chromosomes in 14 LDN-GB DS lines. Genome-wide scans using the target region amplification polymorphism (TRAP) marker system produced a total of 359 polymorphic fragments that were used to compare the genetic background of substitution lines with that of LDN. Among the polymorphic TRAP markers, 134 (37.3%) and 185 (51.5%) were present in LDN and GB, respectively, with only 10 (2.8%) derived from Chinese Spring. Therefore, marker analysis demonstrated that each LDN-GB DS line had a pair of chromosomes from GB with a genetic background similar to that of LDN. Of the TRAP markers generated in this study, 200 were successfully assigned to specific chromosomes based on their presence or absence in the corresponding LDN-GB DS lines. Also, evaluation of stem solidness in the substitution lines verified the presence of a major gene for stem solidness in chromosome 3B. Results from this research provides useful information for the utilization of GB and LDN-GB DS lines for genetic and genomic studies in tetraploid wheat and for the improvement of stem solidness in both durum and bread wheat.

  10. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum.

    PubMed

    Zhang, Wenjun; Lukaszewski, Adam J; Kolmer, Jim; Soria, Marcelo A; Goyal, Sham; Dubcovsky, Jorge

    2005-08-01

    Chromosome 7E from Lophopyrum ponticum carries a valuable leaf rust resistant gene designated Lr19. This gene has not been widely used in common wheat breeding because of linkage with the yellow pigment gene Y. This gene tints flour yellow, reducing its appeal in bread making. However, a high level of yellow pigment is desirable in durum wheat breeding. We produced 97 recombinant chromosomes between L. ponticum transfer 7D.7E#1 and its wheat homoeologues, using the ph1b mutation that promotes homoeologous pairing. We characterized a subset of 37 of these lines with 11 molecular markers and evaluated their resistance to leaf rust and the abundance of yellow pigment. The Lr19 gene was mapped between loci Xwg420 and Xmwg2062, whereas Y was mapped distal to Xpsr687, the most distal marker on the long arm of chromosome 7. A short terminal 7EL segment translocated to 7A, including Lr19 and Y (line 1-23), has been transferred to durum wheat by backcrossing. The presence of this alien segment significantly increased the abundance of yellow pigment. The Lr19 also conferred resistance to a new durum leaf rust race from California and Mexico that is virulent on most durum wheat cultivars. The new durum lines with the recombinant 7E segment will be useful parents to increase yellow pigment and leaf rust resistance in durum wheat breeding programs. For the common wheat breeding programs, we selected the recombinant line 1-96, which has an interstitial 7E segment carrying Lr19 but not Y. This recombinant line can be used to improve leaf rust resistance without affecting flour color. The 7EL/7DL 1-96 recombinant chromosome did not show the meiotic self-elimination previously reported for a 7EL/7BL translocation.

  11. Effect of raw material on cooking quality and nutritional composition of durum wheat spaghetti.

    PubMed

    Padalino, L; Mastromatteo, M; Lecce, L; Spinelli, S; Conte, A; Del Nobile, M A

    2015-05-01

    In this study the effect of semolina and wholemeal flour from six durum wheat cultivars on the pasta cooking and nutritional quality was evaluated. The wholemeal spaghetti samples showed an improvement in the chemical composition (high protein and insoluble dietary fibre content) but they have a decline in the cooking quality (high cooking loss) with respect to the semolina spaghetti. In particular, the wholemeal spaghetti Cappelli and Core samples recorded the highest protein and insoluble dietary fibre content, respectively. As compared to the other samples, the wholemeal spaghetti Iride recorded a higher cooking loss. Moreover, the wholemeal spaghetti showed the lowest overall quality due to the low score of elasticity, firmness and colour. Specifically, the wholemeal Cappelli recorded a slight rise of the overall quality with respect to other wholemeal samples. In conclusion, the wholemeal spaghetti Cappelli was found to be an optimum compromise between the sensory and nutritional quality.

  12. Population Density and Distribution of Wheat Bugs Infesting Durum Wheat in Sardinia, Italy

    PubMed Central

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m2), but in certain areas it was above the damage threshold (4 individuals/m2). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread. PMID:23906035

  13. Population density and distribution of wheat bugs infesting durum wheat in Sardinia, Italy.

    PubMed

    Salis, Luigi; Goula, Marta; Izquierdo, Jordi; Gordún, Elena

    2013-01-01

    Wheat is a very important crop in Italy, and is infested by wheat bugs belonging to the genera Eurygaster (Hemiptera: Scutellaridae) and Aelia (Hemiptera: Pentatomidae). Many wheat bug infestations have been reported in the north, south, and center of Italy, both in the past as well as recently. The present study was carried out in Sardinia, Italy, during two years (2007 and 2008). The objective of this study was to determine the species and distribution of wheat bugs in durum wheat fields in Sardinia, and to estimate their population density in order to know the incidence of the pest on the island. Sampling took place twice a year (May and June) in three zones, representative of durum wheat cropping in the island. Four species of wheat bugs were found; the predominant species was Eurygaster austriaca (Schrank), followed by Aelia germari (Kuster), Eurygaster maura L., and Aelia acuminata L. The average density of wheat bugs was low (1.1 individuals/m²), but in certain areas it was above the damage threshold (4 individuals/m²). For this reason, the conclusion of the study is that this pest should be monitored in order to control outbreaks and prevent their further spread.

  14. [Characteristics of alpha-amylase isozymes in cytologenetically different wheat cultivars].

    PubMed

    Netsvetaev, V P; Badaeva, E D

    2014-07-01

    The isoenzyme composition of alpha-amylase is studied by polyacrylamide gel electrophoresis in Tris-glycine (pH 8.3) system in wheat cultivars with different genome composition. We show that durum wheat (Triticum durum, 2n=4x=28, BBAA) lacks the isoenzymes encoded by 6D and 7D chromosomes that are present in common wheat zymograms (Triticum aestivum, 2n=6x=42, BBAADD). A similar pattern is observed in a synthetic allohexaploid carrying the BBAA genomes of wheat and the HchHch genome of barley (Hordeum chilense). Our method of electrophoresis fails to reveal additional variants of alpha-amylase encoded by the barley genome, although C-banding analysis confirms the genomic structure BBAAHChHCh of this allopolyploid. The electrophoretic spectrum of the spring common wheat cultivar Dobrynya with the wheat-Agropyron translocation 7DL-7AiL contains all of the alpha-amylase isoenzymes typical for common wheat (2n=6x=42, BBAADD) except for the zymotype encoded by the long arm of chromosome 7D. This observation confirms the results of cytogenetic analysis that identified a 7DL-7AiL translocation in this cultivar. No additional alpha-amylase isoenzymes encoded by Agropyron chromosome have been observed. Our data indicate that analysis of wheat-alien hybrids or introgressive forms should be carried out using a complex of different methods.

  15. Durum and soft wheat flours in sourdough and straight-dough bread-making.

    PubMed

    Rinaldi, Massimiliano; Paciulli, Maria; Caligiani, Augusta; Sgarbi, Elisa; Cirlini, Martina; Dall'Asta, Chiara; Chiavaro, Emma

    2015-10-01

    In the present work, the bread-making performance of durum wheat flour under straight-dough and sourdough procedures were compared to those offered by soft wheat flour by means of selected physical properties (colour, texture, water dynamics, crumb grain characteristic, bulk volume) immediately after baking and during a 5-day shelf-life. The use of sourdough process better preserved both crumb grain characteristic and moisture content of the breads during shelf-life, independently of the wheat flour used. The flour seemed to significantly affect the water dynamics in sourdough breads, being the dehydration process of crust and under-crust faster in durum wheat breads. On the other hand, increasing trend of crumb firmness during the shelf-life was slower in durum wheat breads than in those obtained with soft wheat flour. Initial colour parameters of crust and crumb appeared to less change during shelf-life if durum wheat flour was used. Thus, the final quality of breads after baking and along the shelf-life was significantly affected by both the type of flours and the bread-making process. The results reported herein showed that technological performances of durum wheat flour, especially when combined with sourdough processes, could be successfully exploited for the production of innovative products in the bread-making industry.

  16. Agronomic and Quality Characteristics of Two New Sets of Langdon Durum – wWld Emmer Wheat Chromosome Substitution Lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild emmer (Triticum turgidum L. var. dicoccoides) has been a useful source of genes for high grain protein content (GPC) in durum wheat (T. turgidum L. var. durum). Prior studies have found other useful genes for agronomic and quality traits in Langdon durum - T. dicoccoides (LDN-DIC) disomic sub...

  17. A consensus framework map of durum wheat (Triticum durum Desf.) suitable for linkage disequilibrium analysis and genome-wide association mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Genomics applications in durum (Triticum durum Desf.) wheat have the potential to boost exploitation of genetic resources and to advance understanding of the genetics of important complex traits (e.g. resilience to environmental and biotic stresses). A dense and accurate consensus map specific for ...

  18. Genomic approaches for designing durum wheat ready for climate change with a focus on drought.

    PubMed

    Habash, D Z; Kehel, Z; Nachit, M

    2009-01-01

    Climate change is projected to have a significant impact on temperature and precipitation profiles in the Mediterranean basin. The incidence and severity of drought will become commonplace and this will reduce the productivity of rain-fed crops such as durum wheat. Genetic diversity is the material basis for crop improvement and plant breeding has exploited naturally occurring variation to deliver cultivars with improved resistance to abiotic stresses. The coupling of new genomic tools, technologies, and resources with genetic approaches is essential to underpin wheat breeding through marker-assisted selection and hence mitigate climate change. Improvements in crop performance under abiotic stresses have primarily targeted yield-related traits and it is anticipated that the application of genomic technologies will introduce new target traits for consideration in wheat breeding for resistance to drought. Many traits relating to the plant's response and adaptation to drought are complex and multigenic, and quantitative genetics coupled with genomic technologies have the potential to dissect complex genetic traits and to identify regulatory loci, genes and networks. Full realization of our abilities to manipulate metabolism, transduction pathways, and transcription factors for crop improvement ultimately relies on our basic understanding of the regulation of plant networks at all levels of function.

  19. Aromatic and proteomic analyses corroborate the distinction between Mediterranean landraces and modern varieties of durum wheat

    PubMed Central

    Vita, Federico; Taiti, Cosimo; Pompeiano, Antonio; Gu, Zuguang; Lo Presti, Emilio; Whitney, Larisa; Monti, Michele; Di Miceli, Giuseppe; Giambalvo, Dario; Ruisi, Paolo; Guglielminetti, Lorenzo; Mancuso, Stefano

    2016-01-01

    In this paper volatile organic compounds (VOCs) from durum wheat cultivars and landraces were analyzed using PTR-TOF-MS. The aim was to characterize the VOC’s profile of the wholemeal flour and of the kernel to find out if any VOCs were specific to varieties and sample matrices. The VOC data is accompanied by SDS-PAGE analyses of the storage proteins (gliadins and glutenins). Statistical analyses was carried out both on the signals obtained by MS and on the protein profiles. The difference between the VOC profile of two cultivars or two preparations of the same sample - matrices, in this case kernel vs wholemeal flour - can be very subtle; the high resolution of PTR-TOF-MS - down to levels as low as pptv - made it possible to recognize these differences. The effects of grinding on the VOC profiles were analyzed using SIMPER and Tanglegram statistical methods. Our results show that it is possible describe samples using VOC profiles and protein data. PMID:27708424

  20. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats.

    PubMed

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M Kristina; Rust, Bret; Raybould, Helen E; Newman, John W; Martin, Roy; Dubcovsky, Jorge

    2015-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch.

  1. Mutations in Durum Wheat SBEII Genes affect Grain Yield Components, Quality, and Fermentation Responses in Rats

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Naemeh, Mahmoudreza; Hamilton, M. Kristina; Rust, Bret; Raybould, Helen E.; Newman, John W.; Martin, Roy; Dubcovsky, Jorge

    2016-01-01

    Increased amylose in wheat (Triticum ssp.) starch is associated with increased resistant starch, a fermentable dietary fiber. Fermentation of resistant starch in the large intestine produces short-chain fatty acids that are associated with human health benefits. Since wheat foods are an important component of the human diet, increases in amylose and resistant starch in wheat grains have the potential to deliver health benefits to a large number of people. In three replicated field trials we found that mutations in starch branching enzyme II genes (SBEIIa and SBEIIb) in both A and B genomes (SBEIIa/b-AB) of durum wheat [T. turgidum L. subsp. durum (Desf.) Husn.] resulted in large increases of amylose and resistant starch content. The presence of these four mutations was also associated with an average 5% reduction in kernel weight (P = 0.0007) and 15% reduction in grain yield (P = 0.06) compared to the wild type. Complete milling and pasta quality analysis showed that the mutant lines have an acceptable quality with positive effects on pasta firmness and negative effects on semolina extraction and pasta color. Positive fermentation responses were detected in rats (Rattus spp.) fed with diets incorporating mutant wheat flour. This study quantifies benefits and limitations associated with the deployment of the SBEIIa/b-AB mutations in durum wheat and provides the information required to develop realistic strategies to deploy durum wheat varieties with increased levels of amylose and resistant starch. PMID:27134286

  2. Improvements in the production of doubled haploids in durum wheat (Triticum turgidum L.) through isolated microspore culture.

    PubMed

    Cistué, Luis; Romagosa, I; Batlle, F; Echávarri, B

    2009-05-01

    The objective of this study was to produce durum wheat doubled haploid (DH) plants through the induction of microspore embryogenesis. The microspore culture technique was improved to maximize production of green plants per spike using three commercial cultivars. Studies on factors such as induction media composition, induction media support and the stage and growth of donor plants were carried out in order to develop an efficient protocol to regenerate green and fertile DH plants. Microspores were plated on a C(17) induction culture medium with ovary co-culture and a supplement of glutathione plus glutamine; 300 g/l Ficoll Type-400 was incorporated to the induction medium support. Donor plants were fertilized with a combination of macro and microelements. With the cultivars 'Ciccio' and 'Claudio' an average of 36.5 and 148.5 fertile plants were produced, respectively, from 1,000 anthers inoculated. This technique was then used to produce fertile DH plants of potential agronomic interest from a collection of ten F(1) crosses involving cultivars of high breeding value. From these crosses 849 green plants were obtained and seed was harvested from 702 plants indicating that 83% of green plants were fertile and therefore were spontaneously DHs. No aneuploid plant was obtained. The 702 plants yielded enough seeds to be field tested. One of the DH lines obtained by microspore embryogenesis, named 'Lanuza', has been sent to the Spanish Plant Variety Office for Registration by the Batlle Seed Company. This protocol can be used instead of the labor-intensive inter-generic crossing with maize as an economically feasible method to obtain DHs for most crosses involving the durum wheat cultivars grown in Spain.

  3. Graphical evaluation and partitioning of turgor responses to drought in leaves of durum wheat.

    PubMed

    Kikuta, S B; Richter, H

    1986-05-01

    The relationship between relative water content (R) and turgor potential (Ψp) may be derived from pressure-volume (PV) curves and analyzed in various ways. Fifty PV curves were measured with the pressure chamber on leaves of durum wheat (Triticum durum L.). The plots of Ψp versus R were highly variable and could not be adequately described by a single mathematical function. The area below the curve was therefore determined by means of an area meter. This procedure gave the integral of turgor from full saturation to the turgor-loss point. Responses to drought treatment could thus be quantified and partitioned into effects of osmotic adjustment and elastic adjustment. These two adjustment responses, which are probably of different metabolic origin, together improve turgor maintenance in durum wheat considerably.

  4. Identification and mapping of leaf, stem and stripe rust resistance quantitative trait loci and their interactions in durum wheat.

    PubMed

    Singh, A; Pandey, M P; Singh, A K; Knox, R E; Ammar, K; Clarke, J M; Clarke, F R; Singh, R P; Pozniak, C J; Depauw, R M; McCallum, B D; Cuthbert, R D; Randhawa, H S; Fetch, T G

    2013-02-01

    Leaf rust (Puccinia triticina Eriks.), stripe rust (Puccinia striiformis f. tritici Eriks.) and stem rust (Puccinia graminis f. sp. tritici) cause major production losses in durum wheat (Triticum turgidum L. var. durum). The objective of this research was to identify and map leaf, stripe and stem rust resistance loci from the French cultivar Sachem and Canadian cultivar Strongfield. A doubled haploid population from Sachem/Strongfield and parents were phenotyped for seedling reaction to leaf rust races BBG/BN and BBG/BP and adult plant response was determined in three field rust nurseries near El Batan, Obregon and Toluca, Mexico. Stripe rust response was recorded in 2009 and 2011 nurseries near Toluca and near Njoro, Kenya in 2010. Response to stem rust was recorded in field nurseries near Njoro, Kenya, in 2010 and 2011. Sachem was resistant to leaf, stripe and stem rust. A major leaf rust quantitative trait locus (QTL) was identified on chromosome 7B at Xgwm146 in Sachem. In the same region on 7B, a stripe rust QTL was identified in Strongfield. Leaf and stripe rust QTL around DArT marker wPt3451 were identified on chromosome 1B. On chromosome 2B, a significant leaf rust QTL was detected conferred by Strongfield, and at the same QTL, a Yr gene derived from Sachem conferred resistance. Significant stem rust resistance QTL were detected on chromosome 4B. Consistent interactions among loci for resistance to each rust type across nurseries were detected, especially for leaf rust QTL on 7B. Sachem and Strongfield offer useful sources of rust resistance genes for durum rust breeding.

  5. Coexpression of the high molecular weight glutenin subunit 1Ax1 and puroindoline improves dough mixing properties in durum wheat (Triticum turgidum L. ssp. durum).

    PubMed

    Li, Yin; Wang, Qiong; Li, Xiaoyan; Xiao, Xin; Sun, Fusheng; Wang, Cheng; Hu, Wei; Feng, Zhijuan; Chang, Junli; Chen, Mingjie; Wang, Yuesheng; Li, Kexiu; Yang, Guangxiao; He, Guangyuan

    2012-01-01

    Wheat end-use quality mainly derives from two interrelated characteristics: the compositions of gluten proteins and grain hardness. The composition of gluten proteins determines dough rheological properties and thus confers the unique viscoelastic property on dough. One group of gluten proteins, high molecular weight glutenin subunits (HMW-GS), plays an important role in dough functional properties. On the other hand, grain hardness, which influences the milling process of flour, is controlled by Puroindoline a (Pina) and Puroindoline b (Pinb) genes. However, little is known about the combined effects of HMW-GS and PINs on dough functional properties. In this study, we crossed a Pina-expressing transgenic line with a 1Ax1-expressing line of durum wheat and screened out lines coexpressing 1Ax1 and Pina or lines expressing either 1Ax1 or Pina. Dough mixing analysis of these lines demonstrated that expression of 1Ax1 improved both dough strength and over-mixing tolerance, while expression of PINA detrimentally affected the dough resistance to extension. In lines coexpressing 1Ax1 and Pina, faster hydration of flour during mixing was observed possibly due to the lower water absorption and damaged starch caused by PINA expression. In addition, expression of 1Ax1 appeared to compensate the detrimental effect of PINA on dough resistance to extension. Consequently, coexpression of 1Ax1 and PINA in durum wheat had combined effects on dough mixing behaviors with a better dough strength and resistance to extension than those from lines expressing either 1Ax1 or Pina. The results in our study suggest that simultaneous modulation of dough strength and grain hardness in durum wheat could significantly improve its breadmaking quality and may not even impair its pastamaking potential. Therefore, coexpression of 1Ax1 and PINA in durum wheat has useful implications for breeding durum wheat with dual functionality (for pasta and bread) and may improve the economic values of durum

  6. A Transgenic Durum Wheat Line that is Free of Marker Genes and Expresses 1dy10

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We used a combination of “clean gene” technology and positive selection to generate transgenic durum wheat lines free of herbicide and antibiotic resistance marker genes. Biolistic transformation experiments were carried out using three “minimal gene cassettes” consisting of linear DNA fragments exc...

  7. Polymorphism of omega-gliadins in durum wheat as revealed by the two-step APAGE/SDS-PAGE technique.

    PubMed

    Nieto-Taladriz, M T; Branlard, G; Dardevet, M

    1994-03-01

    Polymorphism of omega-gliadins was studied in 243 durum wheats from 27 countries using the two-step one-dimensional APAGE/SDS-PAGE technique. A total of 12 bands of different mobility were observed, and four of them were found to be different from those previously detected by Khelifi et al. (1992) in bread wheat. Fifteen alleles, six coded by the Gli-A1 locus and nine coded by the Gli-B1 locus, were identified, accounting for 19 different electrophoretic patterns. Seven new alleles were detected: two at the Gli-A1 locus and five at the Gli-B1 locus. The polymorphism found at the Gli-A1 and Gli-B1 loci was slightly greater than that found in bread wheat. Allelic differences between both species were higher at the Gli-B1 locus. A comparison of the frequencies of alleles in both species was carried out. The null allele, Gli-A1e, was more common in durum wheat than in bread wheat. The Gli-B1b allele, present in 60% of the bread wheats, was found in only 2% of the durum wheats and Gli-B1e, very common in durum wheat (45%), was rare in bread wheat (4%). The Gli-B1IV allele, common in durum wheat (28%), was not detected in bread wheat.

  8. Evolutionary history of the mitochondrial genome in Mycosphaerella populations infecting bread wheat, durum wheat and wild grasses.

    PubMed

    Torriani, Stefano F F; Brunner, Patrick C; McDonald, Bruce A

    2011-02-01

    Plant pathogens emerge in agro-ecosystems following different evolutionary mechanisms over different time scales. Previous analyses based on sequence variation at six nuclear loci indicated that Mycosphaerella graminicola diverged from an ancestral population adapted to wild grasses during the process of wheat domestication approximately 10,500 years ago. We tested this hypothesis by conducting coalescence analyses based on four mitochondrial loci using 143 isolates that included four closely related pathogen species originating from four continents. Pathogen isolates from bread and durum wheat were included to evaluate the emergence of specificity towards these hosts in M. graminicola. Although mitochondrial and nuclear genomes differed greatly in degree of genetic variability, their coalescence was remarkably congruent, supporting the proposed origin of M. graminicola through host tracking. The coalescence analysis was unable to trace M. graminicola host specificity through recent evolutionary time, indicating that the specificity towards durum or bread wheat emerged following the domestication of the pathogen on wheat.

  9. Puroindoline genes introduced into durum wheat reduce milling energy and change milling behavior similar to soft common wheats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain physical characteristics and milling behavior of a durum wheat line in which both wild-type puroindoline alleles were translocated and stabilized after backcrossing (Svevo-Pin) were compared with the parent line (Svevo). The only observed differences between grain characteristics were the mech...

  10. Genetic variability and fumonisin production by Fusarium proliferatum isolated from durum wheat grains in Argentina.

    PubMed

    Palacios, S A; Susca, A; Haidukowski, M; Stea, G; Cendoya, E; Ramírez, M L; Chulze, S N; Farnochi, M C; Moretti, A; Torres, A M

    2015-05-18

    Fusarium proliferatum is a member of the Fusarium fujikuroi species complex (FFSC) involved in the maize ear rot together with Fusarium verticillioides, which is a very closely related species. Recently, different studies have detected natural fumonisin contamination in wheat kernels and most of them have shown that the main species isolated was F. proliferatum. Fusarium strains obtained from freshly harvested durum wheat samples (2008 to 2011 harvest seasons) from Argentina were characterized through a phylogenetic analysis based on translation elongation factor-1 alpha (EF-1α) and calmodulin (CaM) genes, determination of mating type alleles, and evaluation of fumonisin production capability. The strains were identified as F. proliferatum (72%), F. verticillioides (24%) and other Fusarium species. The ratio of mating type alleles (MAT-1 and MAT-2) obtained for both main populations suggests possible occurrence of sexual reproduction in the wheat fields, although this seems more frequent in F. proliferatum. Phylogenetic analysis revealed greater nucleotide variability in F. proliferatum strains than in F. verticillioides, however this was not related to origin, host or harvest year. The fumonisin-producing ability was detected in 92% of the strains isolated from durum wheat grains. These results indicate that F. proliferatum and F. verticillioides, among the fumonisin producing species, frequently contaminate durum wheat grains in Argentina, presenting a high risk for human and animal health.

  11. Isolation and molecular characterization of ERF1, an ethylene response factor gene from durum wheat (Triticum turgidum L. subsp. durum), potentially involved in salt-stress responses.

    PubMed

    Makhloufi, Emna; Yousfi, Fatma-Ezzahra; Marande, William; Mila, Isabelle; Hanana, Mohsen; Bergès, Hélène; Mzid, Rim; Bouzayen, Mondher

    2014-12-01

    As food crop, wheat is of prime importance for human society. Nevertheless, our understanding of the genetic and molecular mechanisms controlling wheat productivity conditions has been, so far, hampered by the lack of sufficient genomic resources. The present work describes the isolation and characterization of TdERF1, an ERF gene from durum wheat (Triticum turgidum L. subsp. durum). The structural features of TdERF1 supported the hypothesis that it is a novel member of the ERF family in durum wheat and, considering its close similarity to TaERF1 of Triticum aestivum, it probably plays a similar role in mediating responses to environmental stresses. TdERF1 displayed an expression pattern that discriminated between two durum wheat genotypes contrasted with regard to salt-stress tolerance. The high number of cis-regulatory elements related to stress responses present in the TdERF1 promoter and the ability of TdERF1 to regulate the transcription of ethylene and drought-responsive promoters clearly indicated its potential role in mediating plant responses to a wide variety of environmental constrains. TdERF1 was also regulated by abscisic acid, ethylene, auxin, and salicylic acid, suggesting that it may be at the crossroads of multiple hormone signalling pathways. Four TdERF1 allelic variants have been identified in durum wheat genome, all shown to be transcriptionally active. Interestingly, the expression of one allelic form is specific to the tolerant genotype, further supporting the hypothesis that this gene is probably associated with the susceptibility/tolerance mechanism to salt stress. In this regard, the TdERF1 gene may provide a discriminating marker between tolerant and sensitive wheat varieties.

  12. Classification of the waxy condition of durum wheat by near infrared reflectance spectroscopy using wavelets and a genetic algorithm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Near infrared (NIR) reflectance spectroscopy has been applied to the problem of differentiating four genotypes of durum wheat: ‘waxy’, wx-A1 null, wx-B1 null and wild type. The test data consisted of 95 NIR reflectance spectra of wheat samples obtained from a USDA-ARS wheat breeding program. A two...

  13. Identification of Water Use Strategies at Early Growth Stages in Durum Wheat from Shoot Phenotyping and Physiological Measurements

    PubMed Central

    Nakhforoosh, Alireza; Bodewein, Thomas; Fiorani, Fabio; Bodner, Gernot

    2016-01-01

    Modern imaging technology provides new approaches to plant phenotyping for traits relevant to crop yield and resource efficiency. Our objective was to investigate water use strategies at early growth stages in durum wheat genetic resources using shoot imaging at the ScreenHouse phenotyping facility combined with physiological measurements. Twelve durum landraces from different pedoclimatic backgrounds were compared to three modern check cultivars in a greenhouse pot experiment under well-watered (75% plant available water, PAW) and drought (25% PAW) conditions. Transpiration rate was analyzed for the underlying main morphological (leaf area duration) and physiological (stomata conductance) factors. Combining both morphological and physiological regulation of transpiration, four distinct water use types were identified. Most landraces had high transpiration rates either due to extensive leaf area (area types) or both large leaf areas together with high stomata conductance (spender types). All modern cultivars were distinguished by high stomata conductance with comparatively compact canopies (conductance types). Only few landraces were water saver types with both small canopy and low stomata conductance. During early growth, genotypes with large leaf area had high dry-matter accumulation under both well-watered and drought conditions compared to genotypes with compact stature. However, high stomata conductance was the basis to achieve high dry matter per unit leaf area, indicating high assimilation capacity as a key for productivity in modern cultivars. We conclude that the identified water use strategies based on early growth shoot phenotyping combined with stomata conductance provide an appropriate framework for targeted selection of distinct pre-breeding material adapted to different types of water limited environments. PMID:27547208

  14. Quality Characteristics of Wholemeal Flour and Bread from Durum Wheat (Triticum turgidum L subsp. durum Desf.) after Field Treatment with Plant Water Extracts.

    PubMed

    Carrubba, Alessandra; Comparato, Andrea; Labruzzo, Andrea; Muccilli, Serena; Giannone, Virgilio; Spina, Alfio

    2016-09-01

    The use of selected plant water extracts to control pests and weeds is gaining growing attention in organic and sustainable agriculture, but the effects that such extracts may exert on the quality aspects of durum wheat are still unexplored. In 2014, 5 plant water extracts (Artemisia arborescens, Euphorbia characias, Rhus coriaria, Thymus vulgaris, Lantana camara) were prepared and distributed on durum wheat cv Valbelice to evaluate their potential herbicidal effects. After crop harvesting, the major physicochemical and technological parameters of wholemeal flours obtained from each treatment were measured and compared with those from chemical weeding and untreated controls. A baking test was also performed to evaluate the breadmaking quality. In wholemeal flours obtained after the treatment with plant extracts protein and dry gluten content were higher than in control and chemical weeding. Wholemeal flours obtained after chemical weeding reached the highest Mixograph parameters, and that from durum wheat treated with R. coriaria extract demonstrated a very high α-amylase activity. We concluded that the treatments with plant water extracts may influence many quality traits of durum wheat. This occurrence must be taken into account in overall decisions concerning the use of plant extracts in pest and weed management practice.

  15. Development of a diagnostic co-dominant marker for stem rust resistance gene Sr47 introgressed from Aegilops speltoides into durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust (caused by Puccinia graminis f. sp. tritici, abbreviated as Pgt) resistance gene Sr47, originally transferred from Aegilops speltoides to durum wheat (Triticum turgidum subsp. durum) line DAS15, confers a high level of resistance to Pgt race TTKSK (known as Ug99). Recently, the durum Rust...

  16. Physico-chemical and metabolomic characterization of KAMUT® Khorasan and durum wheat fermented dough.

    PubMed

    Balestra, Federica; Laghi, Luca; Taneyo Saa, Danielle; Gianotti, Andrea; Rocculi, Pietro; Pinnavaia, GianGaetano

    2015-11-15

    Investigations were made in order to evaluate the influence of the flour type, chemical acidification and fermentation on characteristics of doughs obtained with durum wheat and KAMUT® Khorasan flour. Doughs were observed immediately after mixing, 90 and 360 min of leavening at 30 °C. Fundamental rheology, yeasts heat production by isothermal microcalorimetry and the interaction between water and biopolymers by means of time domain nuclear magnetic resonance were evaluated. In addition aromatic metabolite development was followed by means of the combined application of gas-chromatography and electronic nose. KAMUT® Khorasan flour was found to be more suitable than durum wheat for the fermentation processes tested, especially at acidic conditions, as shown by the increase of the volume and the metabolic heat production by yeast. In acidified dough the pattern of volatile metabolites allowed a clear distinction between the types of dough. Moreover the water/starch proton pool was characterized by higher T2 values in the KAMUT® Khorasan samples.

  17. Evaluation of the technological and sensory properties of durum wheat spaghetti enriched with different dietary fibres.

    PubMed

    Rakhesh, Nisha; Fellows, Christopher M; Sissons, Mike

    2015-01-01

    The incorporation of fibres, whether insoluble or soluble, in durum wheat pasta negatively impacts desirable end-use properties, especially if incorporated in significant amounts. Fibres can disrupt the starch-protein matrix of the dough during pasta preparation and can also often swell more readily with water than starch, competing with the starch for water during dough development. Similar degrees of substitution with different fibres gave markedly different impacts on firmness, stickiness, cooking loss and sensory attributes, suggesting that results obtained for one fibre cannot readily be generalized to other fibres. The in vitro starch digestibility of the pastas was significantly reduced when resistant starch, β-glucan-enriched flour, carboxymethyl cellulose or guar gum was incorporated but increased when pollard or inulin was added. In many instances, different sources of the same fibre gave dramatically different impacts on the properties of cooked durum wheat pasta.

  18. In vitro bioaccessibility of phenolics and vitamins from durum wheat aleurone fractions.

    PubMed

    Zaupa, Maria; Scazzina, Francesca; Dall'Asta, Margherita; Calani, Luca; Del Rio, Daniele; Bianchi, Marta A; Melegari, Camilla; De Albertis, Pietro; Tribuzio, Giovanni; Pellegrini, Nicoletta; Brighenti, Furio

    2014-02-19

    Durum wheat aleurone, thanks to its nutrient-rich composition, might be of potential use as a functional ingredient in cereal-based foods provided nutrients can be made available for absorption. We evaluated the in vitro bioaccessibility of thiamine, niacin, and phenolic acids in different aleurone fractions obtained with an industrial processing aimed to obtain material of different composition and particle size. Results indicate that the main phenolic compounds and vitamins investigated have a higher bioaccessibility when present in the inner part of the aleurone layer compared to the outer part of aleurone or the unfractionated bran. Moreover, an ultramicronization treatment employed to reduce particle size does not further improve the bioaccessibility of these compounds. We conclude that aleurone fractions from durum wheat bran could represent a nutritionally relevant ingredient, bringing together a high fiber content and an excellent bioaccessibility of vitamins and phytochemicals generally associated with nutritional benefits.

  19. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; Gobbetti, Marco; De Angelis, Maria

    2015-10-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors.

  20. Lactic Acid Bacteria in Durum Wheat Flour Are Endophytic Components of the Plant during Its Entire Life Cycle

    PubMed Central

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; Tedone, Luigi; De Mastro, Giuseppe; De Angelis, Maria

    2015-01-01

    This study aimed at assessing the dynamics of lactic acid bacteria and other Firmicutes associated with durum wheat organs and processed products. 16S rRNA gene-based high-throughput sequencing showed that Lactobacillus, Streptococcus, Enterococcus, and Lactococcus were the main epiphytic and endophytic genera among lactic acid bacteria. Bacillus, Exiguobacterium, Paenibacillus, and Staphylococcus completed the picture of the core genus microbiome. The relative abundance of each lactic acid bacterium genus was affected by cultivars, phenological stages, other Firmicutes genera, environmental temperature, and water activity (aw) of plant organs. Lactobacilli, showing the highest sensitivity to aw, markedly decreased during milk development (Odisseo) and physiological maturity (Saragolla). At these stages, Lactobacillus was mainly replaced by Streptococcus, Lactococcus, and Enterococcus. However, a key sourdough species, Lactobacillus plantarum, was associated with plant organs during the life cycle of Odisseo and Saragolla wheat. The composition of the sourdough microbiota and the overall quality of leavened baked goods are also determined throughout the phenological stages of wheat cultivation, with variations depending on environmental and agronomic factors. PMID:26187970

  1. How can crop intra-specific biodiversity mitigate the vulnerability of agricultural systems to climate change? A case study on durum wheat in Southern Italy

    NASA Astrophysics Data System (ADS)

    Monaco, Eugenia; Alfieri, Silvia Maria; Basile, Angelo; Menenti, Massimo; Bonfante, Antonello; De Lorenzi, Fracesca

    2014-05-01

    Climate evolution may lead to changes in the amount and distribution of precipitations and to reduced water availability, with constraints on the cultivation of some crops. Recently, foreseen crop responses to climate change raise a crucial question for the agricultural stakeholders: are the current production systems resilient to this change? An active debate is in progress about the definition of adaptation of agricultural systems, particularly about the integrated assessment of climate stressors, vulnerability and resilece towards the evaluation of climate impact on agricultural systems. Climate change represents a risk for rain-fed agricultural systems, where irrigations cannot compensate reductions in precipitations. The intra-specific biodiversity of crops can be a resource towards adaptation. The knowledge of the responses to environmental conditions (temperature and water availability) of different cultivars can allow to identify options for adaptation to future climate. Simulation models of water flow in the soil-plant-atmosphere system, driven by different climate scenarios, can describe present and foreseen soil water regime. The present work deals with a case-study on the adaptive capacity of durum wheat to climate change. The selected study area is a hilly region in Southern Italy (Fortore Beneventano, Campania Region). Two climate cases were studied: "reference" (1961-1990) and "future" (2021-2050). A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was run to determine the water regime in some soil units, representative of the soil variability in the study area. From model output, the Relative Evapotranspiration Deficit (RETD) was determined as an indicator of hydrological conditions during the crop growing period for each year and climate case; and periods with higher frequencies of soil water deficits were identified. The timing of main crop development stages was calculated. The occurrence of water deficit at different

  2. Lipid Composition and Protein Dynamics in Thylakoids of Two Wheat Cultivars Differently Sensitive to Drought.

    PubMed Central

    Quartacci, M. F.; Pinzino, C.; Sgherri, CLM.; Navari-Izzo, F.

    1995-01-01

    Two wheat (Triticum durum Desf.) cultivars with different sensitivities to drought were either grown under regular irrigation or subjected to water deficit by withholding water for 14 d. Water-stressed plants of both cultivars underwent similar decreases in leaf water potential, but the drought-tolerant cultivar showed higher relative water content and turgor. Neither osmotic nor elastic adjustment mechanisms appeared to be active under the conditions described here. Thylakoids isolated from the stressed, drought-tolerant wheat showed an increase in lipid-to-protein ratio, in comparison with the control, whereas this ratio remained unchanged in the sensitive wheat. In both cultivars, water deficit determined different rearrangements in the composition of the thylakoid individual polar lipids, but their unsaturation level remained unaffected with the exception of monogalactosyldiacylglycerol. In the drought-sensitive cultivar, an accumulation of free fatty acids together with a reduction in polar lipid amount was observed. Electron paramagnetic resonance measurements of spin-labeled proteins of stressed plants from the sensitive cv Adamello showed a higher spin label rotational correlation time together with lower sulphydryl group and mobile proteic portion levels, in comparison with the control. In the tolerant cv Ofanto, the first two parameters changed to a lesser extent following water depletion, and the mobile proteic portion was not altered. PMID:12228463

  3. Growth, physiology and yield of durum wheat (Triticum durum) treated with sewage sludge under water stress conditions

    PubMed Central

    Boudjabi, Sonia; Kribaa, Mohammed; Chenchouni, Haroun

    2015-01-01

    In arid and semi-arid areas, low soil fertility and water deficit considerably limit crop production. The use of sewage sludge as an organic amendment could contribute to the improvement of soil fertility and hence the agronomic production. The study aims to highlight the behaviour of durum wheat to the application of sewage sludge associated with water stress. The assessment focused on morphophysiological parameters of the wheat plant and yield. Under greenhouse conditions, the variety Mohamed Ben Bachir was treated by four water stress levels (100 %, 80 %, 50 % and 30 %). Each stress level comprised five fertilizer treatments: 20, 50 and 100 t/ha of dry sludge, 35 kg/ha of urea, and a control with no fertilization. Results revealed a significant loss in water content and chlorophyll a in leaves. Water stress negatively affected the development of wheat plants by reducing significantly seed yield, leaf area and biomass produced. Plant’s responses to water stress manifested by an accumulation of proline and a decrease in total phosphorus. However, the increasing doses of sewage sludge limited the effect of water stress. Our findings showed an increase in the amount of chlorophyll pigments, leaf area, total phosphorus, biomass and yield. In addition, excessive accumulation of proline (1.11 ± 1.03 µg/g DM) was recorded as a result of the high concentration of sludge (100 t/ha DM). The application of sewage sludge is beneficial for the wheat crop, but the high accumulation of proline in plants treated with high dose of sludge suggests to properly consider this fact. The application of sludge should be used with caution in soils where water is limited. Because the combined effect of these two factors could result in a fatal osmotic stress to crop development. PMID:26417365

  4. Reduced light and moderate water deficiency sustain nitrogen assimilation and sucrose degradation at low temperature in durum wheat.

    PubMed

    Majláth, Imre; Darko, Eva; Palla, Balázs; Nagy, Zoltán; Janda, Tibor; Szalai, Gabriella

    2016-02-01

    The rate of carbon and nitrogen assimilation is highly sensitive to stress factors, such as low temperature and drought. Little is known about the role of light in the simultaneous effect of cold and drought. The present study thus focused on the combined effect of mild water deficiency and different light intensities during the early cold hardening in durum wheat (Triticum turgidum ssp. durum L.) cultivars with different levels of cold sensitivity. The results showed that reduced illumination decreased the undesirable effects of photoinhibition in the case of net photosynthesis and nitrate reduction, which may help to sustain these processes at low temperature. Mild water deficiency also had a slight positive effect on the effective quantum efficiency of PSII and the nitrate reductase activity in the cold. Glutamine synthesis was affected by light rather than by water deprivation during cold stress. The invertase activity increased to a greater extent by water deprivation, but an increase in illumination also had a facilitating effect on this enzyme. This suggests that both moderate water deficiency and light have an influence on nitrogen metabolism and sucrose degradation during cold hardening. A possible rise in the soluble sugar content caused by the invertase may compensate for the decline in photosynthetic carbon assimilation indicated by the decrease in net photosynthesis. The changes in the osmotic potential can be also correlated to the enhanced level of invertase activity. Both of them were regulated by light at normal water supply, but not at water deprivation in the cold. However, changes in the metabolic enzyme activities and osmotic adjustment could not be directly contributed to the different levels of cold tolerance of the cultivars in the early acclimation period.

  5. A Whole Genome DArTseq and SNP Analysis for Genetic Diversity Assessment in Durum Wheat from Central Fertile Crescent

    PubMed Central

    Shahid, Muhammad Qasim; Çiftçi, Vahdettin; E. Sáenz de Miera, Luis; Aasim, Muhammad; Nadeem, Muhammad Azhar; Aktaş, Husnu; Özkan, Hakan; Hatipoğlu, Rüştü

    2017-01-01

    Until now, little attention has been paid to the geographic distribution and evaluation of genetic diversity of durum wheat from the Central Fertile Crescent (modern-day Turkey and Syria). Turkey and Syria are considered as primary centers of wheat diversity, and thousands of locally adapted wheat landraces are still present in the farmers’ small fields. We planned this study to evaluate the genetic diversity of durum wheat landraces from the Central Fertile Crescent by genotyping based on DArTseq and SNP analysis. A total of 39,568 DArTseq and 20,661 SNP markers were used to characterize the genetic characteristic of 91 durum wheat land races. Clustering based on Neighbor joining analysis, principal coordinate as well as Bayesian model implemented in structure, clearly showed that the grouping pattern is not associated with the geographical distribution of the durum wheat due to the mixing of the Turkish and Syrian landraces. Significant correlation between DArTseq and SNP markers was observed in the Mantel test. However, we detected a non-significant relationship between geographical coordinates and DArTseq (r = -0.085) and SNP (r = -0.039) loci. These results showed that unconscious farmer selection and lack of the commercial varieties might have resulted in the exchange of genetic material and this was apparent in the genetic structure of durum wheat in Turkey and Syria. The genomic characterization presented here is an essential step towards a future exploitation of the available durum wheat genetic resources in genomic and breeding programs. The results of this study have also depicted a clear insight about the genetic diversity of wheat accessions from the Central Fertile Crescent. PMID:28099442

  6. Genetic variability in anthocyanin composition and nutritional properties of blue, purple, and red bread (Triticum aestivum L.) and durum (Triticum turgidum L. ssp. turgidum convar. durum) wheats.

    PubMed

    Ficco, Donatella B M; De Simone, Vanessa; Colecchia, Salvatore A; Pecorella, Ivano; Platani, Cristiano; Nigro, Franca; Finocchiaro, Franca; Papa, Roberto; De Vita, Pasquale

    2014-08-27

    Renewed interest in breeding for high anthocyanins in wheat (Triticum ssp.) is due to their antioxidant potential. A collection of different pigmented wheats was used to investigate the stability of anthocyanins over three crop years. The data show higher anthocyanins in blue-aleurone bread wheat (Triticum aestivum L.), followed by purple- and red-pericarp durum wheat (Triticum turgidum L. ssp. turgidum convar. durum), using cyanidin 3-O-glucoside as standard. HPLC of the anthocyanin components shows five to eight major anthocyanins for blue wheat extracts, compared to three anthocyanins for purple and red wheats. Delphinidin 3-O-rutinoside, delphinidin 3-O-glucoside, and malvidin 3-O-glucoside are predominant in blue wheat, with cyanidin 3-O-glucoside, peonidin 3-O-galactoside, and malvidin 3-O-glucoside in purple wheat. Of the total anthocyanins, 40-70% remain to be structurally identified. The findings confirm the high heritability for anthocyanins, with small genotype × year effects, which will be useful for breeding purposes, to improve the antioxidant potential of cereal-based foods.

  7. Functional characterization in Xenopus oocytes of Na+ transport systems from durum wheat reveals diversity among two HKT1;4 transporters.

    PubMed

    Ben Amar, Siwar; Brini, Faiçal; Sentenac, Hervé; Masmoudi, Khaled; Véry, Anne-Aliénor

    2014-01-01

    Plant tolerance to salinity constraint involves complex and integrated functions including control of Na(+) uptake, translocation, and compartmentalization. Several members of the high-affinity K(+) transporter (HKT) family, which comprises plasma-membrane transporters permeable to K(+) and Na(+) or to Na(+) only, have been shown to play major roles in plant Na(+) and K(+) homeostasis. Among them, HKT1;4 has been identified as corresponding to a quantitative trait locus (QTL) of salt tolerance in wheat but was not functionally characterized. Here, we isolated two HKT1;4-type cDNAs from a salt-tolerant durum wheat (Triticum turgidum L. subsp. durum) cultivar, Om Rabia3, and investigated the functional properties of the encoded transporters using a two-electrode voltage-clamp technique, after expression in Xenopus oocytes. Both transporters displayed high selectivity for Na(+), their permeability to other monovalent cations (K(+), Li(+), Cs(+), and Rb(+)) being ten times lower than that to Na(+). Both TdHKT1;4-1 and TdHKT1;4-2 transported Na(+) with low affinity, although the half-saturation of the conductance was observed at a Na(+) concentration four times lower in TdHKT1;4-1 than in TdHKT1;4-2. External K(+) did not inhibit Na(+) transport through these transporters. Quinine slightly inhibited TdHKT1;4-2 but not TdHKT1;4-1. Overall, these data identified TdHKT1;4 transporters as new Na(+)-selective transporters within the HKT family, displaying their own functional features. Furthermore, they showed that important differences in affinity exist among durum wheat HKT1;4 transporters. This suggests that the salt tolerance QTL involving HKT1;4 may be at least in part explained by functional variability among wheat HKT1;4-type transporters.

  8. Impact of the D genome and quantitative trait loci on quantitative traits in a spring durum by spring bread wheat cross

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Desirable agronomic traits are similar for common hexaploid (6X) bread wheat (Triticum aestivum, 2n = 6x = 42, genome, AABBDD) and tetraploid (4X) durum wheat (Triticum turgidum durum, 2n = 4x = 28, genome, AABB). However, they are genetically isolated from each other due to an unequal number of ge...

  9. Heavy Metal Contents of Soils, Durum and Bread Wheats in Harran Plain, Southeast Turkey

    NASA Astrophysics Data System (ADS)

    Büyükkılıç Yanardaǧ, Asuman

    2013-04-01

    Soils are vital for regulating the biological effects and mobility of metals in nature. Iron and zinc are some of the essential nutrients for plants and animals, while other metals are potentially toxic such as lead and cadmium. Toxic heavy metals (HMs) can be taken up easily by organisms. HMs inputs to soil via the application of metal-contained fertilizers often exceed outputs in crops and drainage waters, thus toxic HMs content in many agricultural soils tends to be gradually increasing. Thus adverse human health effects due to soil-plant and plant-human transfer of HMs have been enhanced. HMs may cause harmful effects on human health due to the ingestion of food grain grown in soils. The objectives of this study were (1) to understand the chemistry of metals in soils for managing their agricultural and ecological impacts, (2) to identify metal uptakes of different genotypes of wheat. Concentrations of HMs (Cd, Zn, Ni, Mn, Cu, Mo, Pb) in wheat were investigated in different agricultural areas in Southeast, Turkey. The results showed that concentrations of HMs were in following order: Mn>Ni>Zn>Cu>Pb>Mo>Cd in surface and next to surface soil and Mn>Zn>Cu>Pb> Ni>Mo>Cd in wheat, respectively. HMs concentrations of several soil samples exceeded the permissible limits of Europe standard except for Ni and Mn. In addition, concentration of Cd, Zn, Cu, and Pb were higher in bread wheat than in durum wheat; however, concentration of Mn, Ni and Mo were higher in durum wheat than in bread wheat. Unusual amount of heavy metals found in some fertilizers used in the Southeast region of Turkey, it becomes an important subject to determine the amount of metals added to the soil every year. Heavy metals uptake by plants still remains to be an interest for researchers. As the heavy metals contents of plants were below the threshold levels, we conclude that the quality of wheat is high and it should receive attention in national and international markets. Keywords: Heavy Metals

  10. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.).

    PubMed

    Wilhelm, Edward P; Turner, Adrian S; Laurie, David A

    2009-01-01

    Variation in photoperiod response plays an important role in adapting crops to agricultural environments. In hexaploid wheat, mutations conferring photoperiod insensitivity (flowering after a similar time in short or long days) have been mapped on the 2B (Ppd-B1) and 2D (Ppd-D1) chromosomes in colinear positions to the 2H Ppd-H1 gene of barley. No A genome mutation is known. On the D genome, photoperiod insensitivity is likely to be caused by deletion of a regulatory region that causes misexpression of a member of the pseudo-response regulator (PRR) gene family and activation of the photoperiod pathway irrespective of day length. Photoperiod insensitivity in tetraploid (durum) wheat is less characterized. We compared pairs of near-isogenic lines that differ in photoperiod response and showed that photoperiod insensitivity is associated with two independent deletions of the A genome PRR gene that cause altered expression. This is associated with induction of the floral regulator FT. The A genome deletions and the previously described D genome deletion of hexaploid wheat remove a common region, suggesting a shared mechanism for photoperiod insensitivity. The identification of the A genome mutations will allow characterization of durum wheat germplasm and the construction of genotypes with novel combinations of photoperiod insensitive alleles.

  11. Carotenoid evolution during short-storage period of durum wheat (Triticum turgidum conv. durum) and tritordeum (×Tritordeum Ascherson et Graebner) whole-grain flours.

    PubMed

    Mellado-Ortega, Elena; Hornero-Méndez, Dámaso

    2016-02-01

    This study investigates the effect of storage temperature on carotenoid composition in durum wheat and tritordeum whole-grain flours. For both cereal genotypes, total carotenoid content significantly decreased during storage, following a temperature dependent first-order kinetic model. Individual and total carotenoid content decay were similar for durum wheat, with a maximum at 50 °C at the end of the storage period (94%). In contrast, the evolution of lutein ester fractions in tritordeum showed lower losses than for free lutein (∼ 50%), and consequently the total carotenoid content was less affected (83%). A decrease in the lutein monoesters fraction was observed, coinciding with an increase in the diesterified forms, especially for lutein dilinoleate. These data suggest an esterifying activity in flours different from the enzyme systems operating in vivo (xanthophyll acyl transferase). The formation of lutein diesters, with greater stability, explains the slower carotenoid degradation in tritordeum whole-grain flours.

  12. Molecular mapping of Yr53, a new gene for stripe rust resistance in durum wheat accession PI 480148 and its transfer to common wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat worldwide. It is essential to identify new genes for effective resistance against the disease. Durum wheat PI 480148, originally from Ethiopia, was resistant in all seedling tests with s...

  13. Development of COS-SNP and HRM markers for high-throughput and reliable haplotype-based detection of Lr14a in durum wheat (Triticum durum Desf.).

    PubMed

    Terracciano, Irma; Maccaferri, Marco; Bassi, Filippo; Mantovani, Paola; Sanguineti, Maria C; Salvi, Silvio; Simková, Hana; Doležel, Jaroslav; Massi, Andrea; Ammar, Karim; Kolmer, James; Tuberosa, Roberto

    2013-04-01

    Leaf rust (Puccinia triticina Eriks. & Henn.) is a major disease affecting durum wheat production. The Lr14a-resistant gene present in the durum wheat cv. Creso and its derivative cv. Colosseo is one of the best characterized leaf-rust resistance sources deployed in durum wheat breeding. Lr14a has been mapped close to the simple sequence repeat markers gwm146, gwm344 and wmc10 in the distal portion of the chromosome arm 7BL, a gene-dense region. The objectives of this study were: (1) to enrich the Lr14a region with single nucleotide polymorphisms (SNPs) and high-resolution melting (HRM)-based markers developed from conserved ortholog set (COS) genes and from sequenced Diversity Array Technology (DArT(®)) markers; (2) to further investigate the gene content and colinearity of this region with the Brachypodium and rice genomes. Ten new COS-SNP and five HRM markers were mapped within an 8.0 cM interval spanning Lr14a. Two HRM markers pinpointed the locus in an interval of <1.0 cM and eight COS-SNPs were mapped 2.1-4.1 cM distal to Lr14a. Each marker was tested for its capacity to predict the state of Lr14a alleles (in particular, Lr14-Creso associated to resistance) in a panel of durum wheat elite germplasm including 164 accessions. Two of the most informative markers were converted into KASPar(®) markers. Single assay markers ubw14 and wPt-4038-HRM designed for agarose gel electrophoresis/KASPar(®) assays and high-resolution melting analysis, respectively, as well as the double-marker combinations ubw14/ubw18, ubw14/ubw35 and wPt-4038-HRM-ubw35 will be useful for germplasm haplotyping and for molecular-assisted breeding.

  14. Mycotoxins in durum wheat grain: hygienic-health quality of sicilian production.

    PubMed

    Gallo, G; Lo Bianco, M; Bognanni, R; Saimbene, G

    2008-05-01

    Deoxynivalenol, zearalenone, and aflatoxin concentrations in Sicilian durum wheat were determined through ELISA tests. The results highlighted the safety of the grain samples at harvest because deoxynivalenol, zearalenone, and aflatoxin levels did not exceed European legal limits. With regard to aflatoxins, reliability of the ELISA test was evaluated, comparing it with HPLC analyses. The comparison of HPLC and ELISA data showed a tendency to overestimate aflatoxin concentrations with respect to chromatographic determinations. The usefulness of ELISA was confirmed as a rapid screening method; however, when contamination levels are close to legal limits, chromatographic analyses are necessary to quantify aflatoxins with greater accuracy and specificity.

  15. Degradation of pyrethrin residues on stored durum wheat after postharvest treatment.

    PubMed

    Caboni, Pierluigi; Minello, Elizabeth V; Cabras, Marco; Angioni, Alberto; Sarais, Giorgia; Dedola, Fabrizio; Cabras, Paolo

    2007-02-07

    In this paper, pyrethrin levels during a postharvest treatment on stored durum wheat were studied. Two experiments were carried out at single and double the dose recommended by the manufacturer. In all trials, the initial deposition of pyrethrins levels was below the fixed maximum residue level of 3 mg/kg. The fate of pyrethrins in the two experiments was similar, and the total content of pyrethrins remained unchanged for 22 days with a complete dissipation in 8 months. In the single dose experiment, half-life times of pyrethrins I and II were 46 and 72 days, while for the double dose, pyrethrins I and II were 41 and 53 days, respectively.

  16. Disentangling homeologous contigs in allo-tetraploid assembly: application to durum wheat

    PubMed Central

    2013-01-01

    Background Using Next Generation Sequencing, SNP discovery is relatively easy on diploid species and still hampered in polyploid species by the confusion due to homeology. We develop HomeoSplitter; a fast and effective solution to split original contigs obtained by RNAseq into two homeologous sequences. It uses the differential expression of the two homeologous genes in the RNA. We verify that the new sequences are closer to the diploid progenitors of the allopolyploid species than the original contig. By remapping original reads on these new sequences, we also verify that the number of valuable detected SNPs has significantly increased. Thirty accessions of the tetraploid durum wheat (Triticum turgidum, A and B genomes) were sequenced in pooled cDNA libraries. Reads were assembled in a de novo durum assembly. Transcriptomes of the diploid species, Aegilops speltoides (close B genome) and Triticum urartu (A genome) were used as reference to benchmark the method. Results HomeoSplitter is a fast and effective solution to disentangle homeologous sequences based on a maximum likelihood optimization. On a benchmark set of 2,505 clusters containing homologous sequences of urartu, speltoides and durum, HomeoSplitter was efficient to build sequences closer to the diploid references and increased the number of valuable SNPs from 188 out of 1,360 SNPs detected when mapping the reads on the de novo durum assembly to 762 out of 1,620 SNPs when mapping on HomeoSplitter contigs. Conclusions The HomeoSplitter program is freely available at http://bioweb.supagro.inra.fr/homeoSplitter/. This work provides a practical solution to the complex problem of disentangling homeologous transcripts in allo-tetraploids, which further allows an improved SNP detection. PMID:24564644

  17. Use of purple durum wheat to produce naturally functional fresh and dry pasta.

    PubMed

    Ficco, Donatella Bianca Maria; De Simone, Vanessa; De Leonardis, Anna Maria; Giovanniello, Valentina; Del Nobile, Matteo Alessandro; Padalino, Lucia; Lecce, Lucia; Borrelli, Grazia Maria; De Vita, Pasquale

    2016-08-15

    In this study, the effects of different milling procedures (roller-milling vs. stone-milling) and pasta processing (fresh vs. dried spaghetti), and cooking on the antioxidant components and sensory properties of purple durum wheat were investigated. Milling and pasta processing were performed using one purple and one conventional non-pigmented durum wheat genotypes, and the end-products were compared with commercial pasta. The results show that the stone milling process preserved more compounds with high health value (total fibre and carotenoids, and in the purple genotype, also anthocyanins) compared to roller-milling. The drying process significantly (p<0.05) reduced the content of anthocyanins (21.42 μg/g vs. 46.32 μg/g) and carotenoids (3.77 μg/g vs. 4.04 μg/g) with respect to the pasteurisation process involved in fresh pasta production. The sensory properties of pasta from the purple genotype did not significantly differ from commercial wholemeal pasta, and its in vitro glycemic index was even lower. Thus, it is possible to consider this genetic material as a good ingredient for the production of functional foods from cereals naturally rich in bioactive compounds.

  18. Characterization of stem rust resistance in wheat cultivar 'Gage'

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat (Triticum spp.) stem rust, caused by Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), re-emerged as a devastating disease of wheat because of virulent race Ug99 (TTKSK). Many bread wheat (T. aestivum L.) cultivars grown in North America are susceptible to Ug99 or its derivative races ...

  19. Registration of DGE-3, a durum wheat disomic substitution line 1E(1B) involving a wheatgrass chromosome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat (Triticum turgidum L., 2n = 4x = 28; AABB genomes) alien disomic substitution 1E(1B) line DGE-3 (PI 665473) was developed by the U.S. Department of Agriculture – Agricultural Research Service, Northern Crop Science Lab, Cereal Crops Research Unit, Fargo, ND and released in 2012. It was ...

  20. Cultivar variations in cadmium and lead accumulation and distribution among 30 wheat (Triticum aestivum L.) cultivars.

    PubMed

    Liu, Weitao; Liang, Lichen; Zhang, Xue; Zhou, Qixing

    2015-06-01

    In recent years, heavy metal pollution in agricultural soil in China has received public concern. The concept of low-accumulation cultivars (LACs) was proposed to minimize the influx of pollutants to the human food chain. Variations in Cd and Pb accumulation, distribution, and tolerance among 30 wheat (Triticum aestivum L.) cultivars were studied in a hydroponic experiment to preliminary identify LACs of Cd or Pb for further field experiments. Of the 30 wheat cultivars tested, 27 and 26 wheat cultivars showed no effect of the Cd/Pb treatments on the shoot and root biomass, respectively. The results showed that the tested wheat cultivars had considerable tolerance to Cd and Pb toxicity. Significant (p < 0.05) differences in shoot Cd concentration were observed among the tested wheat cultivars under treatments Cd1.0 and Cd1.0Pb15, ranging from 0.91 to 6.74 and from 0.87 to 5.96, with the mean of 3.83 and 2.94 mg kg(-1) DW, respectively. Significant (p < 0.05) differences in shoot Pb concentration were also observed among the tested wheat cultivars under treatments Pb15 and Cd1.0Pb15, ranging from 22.18 to 94.03 and from 18.30 to 76.88, with the mean of 50.38 and 41.20 mg kg(-1) DW, respectively. Low accumulation and internal distribution may both affect the cultivar differences in Cd and Pb accumulation in wheat shoots. Overall, wheat cultivars LF-13, LF-16, and LF-21 had lower Cd-accumulating abilities in their shoots. Wheat cultivars LF-13, LF-23, LF-26, and LF-27 showed low Pb accumulation characteristics in their shoots. An antagonistic interaction occurred between Cd and Pb in accumulation in wheat roots and shoots, which will be further studied in field experiments.

  1. Evaluation of genetic diversity and host resistance to stem rust in durum wheat accessions from the USDA National Small Grains Collection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The USDA-ARS National Small Grains Collection (NSGC) located in Aberdeen, ID, maintains collections representing the global diversity of small grains and their wild relatives. To evaluate the utility of the NSGC durum wheat accessions, we assessed genetic diversity and LD patterns in a durum core s...

  2. Interactive effects of nitrogen fertilization and irrigation on grain yield, canopy temperature, and nitrogen use efficiency in overhead sprinkler-irrigated Durum Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen and irrigation management are crucial in the production of high protein irrigated durum wheat (Triticum durum Desf.) in arid regions. However, as the availability of irrigation water decreases and potential costs and regulation of nitrogen (N) increase, there is a need to understand how ir...

  3. Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars.

    PubMed

    Pallotta, Margaret; Schnurbusch, Thorsten; Hayes, Julie; Hay, Alison; Baumann, Ute; Paull, Jeff; Langridge, Peter; Sutton, Tim

    2014-10-02

    Environmental constraints severely restrict crop yields in most production environments, and expanding the use of variation will underpin future progress in breeding. In semi-arid environments boron toxicity constrains productivity, and genetic improvement is the only effective strategy for addressing the problem. Wheat breeders have sought and used available genetic diversity from landraces to maintain yield in these environments; however, the identity of the genes at the major tolerance loci was unknown. Here we describe the identification of near-identical, root-specific boron transporter genes underlying the two major-effect quantitative trait loci for boron tolerance in wheat, Bo1 and Bo4 (ref. 2). We show that tolerance to a high concentration of boron is associated with multiple genomic changes including tetraploid introgression, dispersed gene duplication, and variation in gene structure and transcript level. An allelic series was identified from a panel of bread and durum wheat cultivars and landraces originating from diverse agronomic zones. Our results demonstrate that, during selection, breeders have matched functionally different boron tolerance alleles to specific environments. The characterization of boron tolerance in wheat illustrates the power of the new wheat genomic resources to define key adaptive processes that have underpinned crop improvement.

  4. Development and discrimination of 12 double ditelosomics in tetraploid wheat cultivar DR147.

    PubMed

    Li, Hao; Wang, Changyou; Fu, Shulan; Guo, Xiang; Yang, Baoju; Chen, Chunhuan; Zhang, Hong; Wang, Yajuan; Liu, Xinlun; Han, Fangpu; Ji, Wanquan

    2014-02-01

    As an important group in Triticum, tetraploid wheat plays a significant role in the research of wheat evolution. Several complete aneuploid sets of common wheat have provided valuable tools for genetic and breeding studies, while similar aneuploids of tetraploid wheat are still not well developed. Here, 12 double ditelosomics developed in Triticum turgidum L. var. durum cultivar DR147 (excluding dDT2B and dDT3A) were reported. Hybrids between DR147 and the original double-ditelosomic dDT2B of Langdon lost vigor and died prematurely after the three-leaf stage; therefore, the dDT2B line was not obtained. The cytogenetic behaviors and phenotypic characteristics of each line were detailedly described. To distinguish the entire chromosome complement of tetraploid wheat, the DR147 karyotype was established by fluorescence in situ hybridization (FISH), using the Aegilops tauschii clone pAsl and the barley clone pHvG38 as probes. FISH using a cereal-specific centromere repeat (6C6) probe suggested that all the lines possessed four telosomes, except for 4AS of double-ditelosomic dDT4A, which carried a small segment of the long arm. On the basis of the idiogram of DR147, these lines were successfully discriminated by FISH using the probes pAsl and pHvG38 and were then accurately designated.

  5. Real-time PCR for the detection of precise transgene copy number in durum wheat.

    PubMed

    Gadaleta, Agata; Giancaspro, Angelica; Cardone, Maria Francesca; Blanco, Antonio

    2011-12-01

    Recent results obtained in various crops indicate that real-time PCR could be a powerful tool for the detection and characterization of transgene locus structures. The determination of transgenic locus number through real-time PCR overcomes the problems linked to phenotypic segregation analysis (i.e. lack of detectable expression even when the transgenes are present) and can analyse hundreds of samples in a day, making it an efficient method for estimating gene copy number. Despite these advantages, many authors speak of "estimating" copy number by real-time PCR, and this is because the detection of a precise number of transgene depends on how well real-time PCR performs.This study was conducted to determine transgene copy number in transgenic wheat lines and to investigate potential variability in sensitivity and resolution of real-time chemistry by TaqMan probes. We have applied real-time PCR to a set of four transgenic durum wheat lines previously obtained. A total of 24 experiments (three experiments for two genes in each transgenic line) were conducted and standard curves were obtained from serial dilutions of the plasmids containing the genes of interest. The correlation coefficients ranged from 0.95 to 0.97. By using TaqMan quantitative real-time PCR we were able to detect 1 to 41 copies of transgenes per haploid genome in the DNA of homozygous T4 transformants. Although a slight variability was observed among PCR experiments, in our study we found real-time PCR to be a fast, sensitive and reliable method for the detection of transgene copy number in durum wheat, and a useful adjunct to Southern blot and FISH analyses to detect the presence of transgenic DNA in plant material.

  6. Glutamine synthetase in Durum Wheat: Genotypic Variation and Relationship with Grain Protein Content

    PubMed Central

    Nigro, Domenica; Fortunato, Stefania; Giove, Stefania L.; Paradiso, Annalisa; Gu, Yong Q.; Blanco, Antonio; de Pinto, Maria C.; Gadaleta, Agata

    2016-01-01

    Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes. PMID:27468287

  7. Glutamine synthetase in Durum Wheat: Genotypic Variation and Relationship with Grain Protein Content.

    PubMed

    Nigro, Domenica; Fortunato, Stefania; Giove, Stefania L; Paradiso, Annalisa; Gu, Yong Q; Blanco, Antonio; de Pinto, Maria C; Gadaleta, Agata

    2016-01-01

    Grain protein content (GPC), is one of the most important trait in wheat and its characterized by a very complex genetic control. The identification of wheat varieties with high GPC (HGPC), as well as the characterization of central enzymes involved in these processes, are important for more sustainable agricultural practices. In this study, we focused on Glutamine synthetase (GS) as a candidate to study GPC in wheat. We analyzed GS expression and its enzymatic activity in different tissues and phenological stages in 10 durum wheat genotypes with different GPC. Although each genotype performed quite differently from the others, both because their genetic variability and their adaptability to specific environmental conditions, the highest GS activity and expression were found in genotypes with HGPC and vice versa the lowest ones in genotypes with low GPC (LGPC). Moreover, in genotypes contrasting in GPC bred at different nitrogen regimes (0, 60, 140 N Unit/ha) GS behaved differently in diverse organs. Nitrogen supplement increased GS expression and activity in roots of all genotypes, highlighting the key role of this enzyme in nitrogen assimilation and ammonium detoxification in roots. Otherwise, nitrogen treatments decreased GS expression and activity in the leaves of HGPC genotypes and did not affect GS in the leaves of LGPC genotypes. Finally, no changes in GS and soluble protein content occurred at the filling stage in the caryopses of all analyzed genotypes.

  8. Molecular speciation and tissue compartmentation of zinc in durum wheat grains with contrasting nutritional status.

    PubMed

    Persson, Daniel Pergament; de Bang, Thomas C; Pedas, Pai R; Kutman, Umit Baris; Cakmak, Ismail; Andersen, Birgit; Finnie, Christine; Schjoerring, Jan K; Husted, Søren

    2016-09-01

    Low concentration of zinc (Zn) in the endosperm of cereals is a major factor contributing to Zn deficiency in human populations. We have investigated how combined Zn and nitrogen (N) fertilization affects the speciation and localization of Zn in durum wheat (Triticum durum). Zn-binding proteins were analysed with liquid chromatography ICP-MS and Orbitrap MS(2) , respectively. Laser ablation ICP-MS with simultaneous Zn, sulphur (S) and phosphorus (P) detection was used for bioimaging of Zn and its potential ligands. Increasing the Zn and N supply had a major impact on the Zn concentration in the endosperm, reaching concentrations higher than current breeding targets. The S concentration also increased, but S was only partly co-localized with Zn. The mutual Zn and S enrichment was reflected in substantially more Zn bound to small cysteine-rich proteins (apparent size 10-30 kDa), whereas the response of larger proteins (apparent size > 50 kDa) was only modest. Most of the Zn-responsive proteins were associated with redox- and stress-related processes. This study offers a methodological platform to deepen the understanding of processes behind endosperm Zn enrichment. Novel information is provided on how the localization and speciation of Zn is modified during Zn biofortification of grains.

  9. Shelf life assessment of industrial durum wheat bread as a function of packaging system.

    PubMed

    Licciardello, Fabio; Giannone, Virgilio; Del Nobile, Matteo Alessandro; Muratore, Giuseppe; Summo, Carmine; Giarnetti, Mariagrazia; Caponio, Francesco; Paradiso, Vito Michele; Pasqualone, Antonella

    2017-06-01

    This study compared the effect of different packaging systems on industrial durum wheat bread shelf-life, with regard to thermoformed packaging (TF) and flow-packaging (FP). Two TFs having different thickness and one FP were compared by assessing physico-chemical and sensorial properties and volatile compounds of sliced bread during 90days of storage. Texture, aw and bread moisture varied according to a first-order kinetic model, with FP samples ageing faster than TFs. Sensorial features such as consistency, stale odor, and sour odor, increased their intensity during storage. Furans decreased, whereas hexanal increased. The Principal Component Analysis of the whole dataset pointed out that the TF system at reduced thickness could be adopted up to 60days, without compromising the standard commercial life of industrial bread and allowing to save packaging material. The FP system would allow further saving, but it should be preferred when the expected product turnover is within 30days.

  10. Screening Cereals Quality by Electronic Nose: the Example of Mycotoxins Naturally Contaminated Maize and Durum Wheat

    NASA Astrophysics Data System (ADS)

    Campagnoli, Anna; Dell'Orto, Vittorio; Savoini, Giovanni; Cheli, Federica

    2009-05-01

    Mycotoxins represent an heterogeneous group of toxic compounds from fungi metabolism. Due to the frequent occurrence of mycotoxins in cereals commodities the develop of cost/effective screening methods represent an important topic to ensure food and feed safety. In the presented study a commercial electronic nose constituted by ten MOS (Metal Oxide Sensors) was applied to verify the possibility of discriminating between mycotoxins contaminated and non-contaminated cereals. The described analytical approach was able to discriminate contaminated and non-contaminated samples both in the case of aflatoxins infected maize and deoxynivalenol infected durum wheat samples. In the case of maize data two sensors from the array revealed a partial relation with the level of aflatoxins. These results could be promising for a further improvement of electronic nose application in order to develop a semi-quantitative screening approach to mycotoxins contamination.

  11. Geostatistics as a validation tool for setting ozone standards for durum wheat.

    PubMed

    De Marco, Alessandra; Screpanti, Augusto; Paoletti, Elena

    2010-02-01

    Which is the best standard for protecting plants from ozone? To answer this question, we must validate the standards by testing biological responses vs. ambient data in the field. A validation is missing for European and USA standards, because the networks for ozone, meteorology and plant responses are spatially independent. We proposed geostatistics as validation tool, and used durum wheat in central Italy as a test. The standards summarized ozone impact on yield better than hourly averages. Although USA criteria explained ozone-induced yield losses better than European criteria, USA legal level (75 ppb) protected only 39% of sites. European exposure-based standards protected > or =90%. Reducing the USA level to the Canadian 65 ppb or using W126 protected 91% and 97%, respectively. For a no-threshold accumulated stomatal flux, 22 mmol m(-2) was suggested to protect 97% of sites. In a multiple regression, precipitation explained 22% and ozone explained <0.9% of yield variability.

  12. Relationship of various flour properties with noodle making characteristics among durum wheat varieties.

    PubMed

    Kaur, Amritpal; Singh, Narpinder; Kaur, Seeratpreet; Katyal, Mehak; Virdi, Amardeep Singh; Kaur, Davinder; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2015-12-01

    The grain, flour, dough and noodle making properties of Indian durum wheat varieties were evaluated. Varieties having higher grain weight had lower hardness and higher yellow pigment content. Gluten performance index showed positive correlation with α-helix and negative with intermolecular+antiparallel-β-sheets in gluten. The proportion of extracted polymeric proteins was related to dough strength. Elastic (G') and loss (G″) modulus of dough were positively correlated to intermolecular+antiparallel-β-sheets and negatively with β-turn+ β-sheets proportion of dough and gluten. PDW291 with exceptionally higher G' and G″ and best noodle making properties showed the presence 90 kDa and 88 kDa polypeptides corresponding to 14+15 and type 2 banding pattern.

  13. Drought-induced changes in photosynthetic apparatus and antioxidant components of wheat (Triticum durum Desf.) varieties.

    PubMed

    Huseynova, Irada M; Rustamova, Samira M; Suleymanov, Saftar Y; Aliyeva, Durna R; Mammadov, Alamdar Ch; Aliyev, Jalal A

    2016-12-01

    Water deficit is a key factor influencing the yield and quality of crops. In the present study, the photosynthetic responses by means of chlorophyll fluorescence of chloroplasts, thylakoid membrane proteins, and antioxidant components were analyzed in wheat (Triticum durum Desf.) plants differing in their tolerance to drought. Two durum winter wheat varieties, Barakatli 95 (drought tolerant) and Garagylchyg 2 (drought sensitive) were grown under field well-watered and drought conditions. It was found that contents of the PS I core (CPI) with Mr of 123 kD and apoprotein P700 with Mr of 63 kD were relatively higher in Barakatli 95 variety under drought stress compared with the control plants. Synthesis of α- and β-subunits of CF1 ATP-synthase complex with Mr of 55 and 53.5 kD also slightly increased in the tolerant Barakatli 95 and decreased in the drought sensitive variety Garagylchyg 2. A decrease in the intensity of 30 kD band and a significant increase were found in the content of the 25-16 kD region in Garagylchyg 2 variety. The synthesis of 60 kD and content of low molecular mass polypeptides (21.5 and 12 kD) were increased in the tolerant genotype Barakatli 95. The intensity of peaks at 687, 695, and 742 nm considerably increases in the fluorescence spectra (77 K) of chloroplasts isolated from the sensitive variety Garagylchyg 2, and there is a stimulation of the ratio of fluorescence band intensity F687/F740. At the same time, higher level of glycine betaine was found in the drought tolerant variety compared with the control one throughout the different periods of growth.

  14. Proteomic study of a tolerant genotype of durum wheat under salt-stress conditions.

    PubMed

    Capriotti, Anna Laura; Borrelli, Grazia Maria; Colapicchioni, Valentina; Papa, Roberto; Piovesana, Susy; Samperi, Roberto; Stampachiacchiere, Serena; Laganà, Aldo

    2014-02-01

    Salinity is one of the major abiotic stress conditions limiting crop growth and productivity. Duilio is a wheat genotype that shows tolerant behavior in both salt-stress and drought-stress conditions. Toward better understanding of the biochemical response to salinity in this genotype of durum wheat, a comparative label-free shotgun proteomic analysis based on normalized spectral abundance factors was conducted on wheat leaf samples subjected to increasing salt-stress levels (100 and 200 mmol L(-1) NaCl) with respect to untreated samples. We found significant changes in 71 proteins for the first stress level, in 83 proteins at the higher salinity level, and in 88 proteins when comparing salt-stress levels with each other. The major changes concerned the proteins involved in primary metabolism and production of energy, followed by those involved in protein metabolism and cellular defense mechanisms. Some indications of different specific physiological and defense mechanisms implicated in increasing tolerance were obtained. The enhanced salinity tolerance in Duilio appeared to be governed by a higher capacity for osmotic homeostasis, a more efficient defense, and an improvement of protection from mechanical stress by increased cell wall lignifications, allowing a better potential for growth recovery.

  15. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    PubMed

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants.

  16. Induced mutations in the starch branching enzyme II (SBEII) genes increase amylose and resistant starch content in durum wheat

    PubMed Central

    Hazard, Brittany; Zhang, Xiaoqin; Colasuonno, Pasqualina; Uauy, Cristobal; Beckles, Diane M.; Dubcovsky, Jorge

    2016-01-01

    Starch is the largest component of the wheat (Triticum aestivum L.) grain and consists of approximately 70-80% amylopectin and 20-30% amylose. Amylopectin is a highly-branched, readily digested polysaccharide, whereas amylose has few branches and forms complexes that resist digestion and mimic dietary fiber (resistant starch). Down-regulation of the starch branching enzyme II (SBEII) gene by RNA interference (RNAi) was previously shown to increase amylose content in both hexaploid and tetraploid wheat. We generated ethyl methane sulphonate (EMS) mutants for the SBEIIa-A and SBEIIa-B homoeologs in the tetraploid durum wheat variety Kronos (T. turgidum ssp. durum L.). Single-gene mutants showed non-significant increases in amylose and resistant starch content, but a double mutant combining a SBEIIa-A knock-out mutation with a SBEIIa-B splice-site mutation showed a 22% increase in amylose content (P<0.0001) and a 115% increase in resistant starch content (P<0.0001). In addition, we obtained mutants for the A and B genome copies of the paralogous SBEIIb gene, mapped them 1-2 cM from SBEIIa, and generated double SBEIIa-SBEIIb mutants to study the effect of the SBEIIb gene in the absence of SBEIIa. These mutants are available to those interested in increasing amylose content and resistant starch in durum wheat. PMID:26924849

  17. Stem rust resistance in South African wheat cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The appearance and anticipated spread of race TTKS (syn. Ug99) of Puccinia graminis f. sp. tritici have renewed interest in breeding for durable resistance to stem rust of wheat. In an attempt to determine the current status of stem rust resistance, 67 South African (SA) bread wheat cultivars and l...

  18. Chemical and functional properties of cassava starch, durum wheat semolina flour, and their blends.

    PubMed

    Oladunmoye, Olufunmilola O; Aworh, Ogugua C; Maziya-Dixon, Bussie; Erukainure, Ochuko L; Elemo, Gloria N

    2014-03-01

    High-quality cassava starch (HQCS) produced from high-yielding low-cyanide improved cassava variety, TMS 30572, was mixed with durum wheat semolina (DWS) on a replacement basis to produce flour samples containing 0, 20, 30, 50, 70, and 100% cassava starch. They were analyzed for chemical composition (proximate, amylose, free sugars, starch, wet gluten, and cyanide) and functional properties (pasting, swelling power, solubility, water absorption, water binding, starch damage, diastatic and α-amylase activity, dough mixing, and stability). Protein, carbohydrate, fat, and ash of flour samples ranged from 0.75-12.31%, 70.87-87.80%, 0.95-4.41%, and 0.12-0.83%, respectively. Cyanide levels in all the flour samples were less than 0.1 ppm. Amylose content varied between 19.49% for cassava and 28.19% for wheat, correlating significantly with protein (r = 0.95, P = 0.004) and ash contents (r = 0.92, P = 0.01) at 5%. DWS and HQCS had similar pasting temperatures (50.2-53°C), while other pasting properties increased with increasing levels of HQCS. Dough mixing stability of samples decreased with increasing levels of HQCS. All the flour samples had α-amylase activity greater than 200. Both HQCS and DWS compare favorably well in swelling power (7.80-9.01%); but the solubility of wheat starch doubled that of cassava. Starch damage varied between 3.3 and 7.2 AACC for semolina and starch, with the latter having higher absorption rate (97%), and the former, higher absorption speed (67 sec). Results obtained showed positive insight into cassava-wheat blend characteristics. Data thus generated provide additional opportunities of exploiting cassava utilization and hence boost its value-addition potentials for product development.

  19. Isolation and molecular characterization of a novel WIN1/SHN1 ethylene-responsive transcription factor TdSHN1 from durum wheat (Triticum turgidum. L. subsp. durum).

    PubMed

    Djemal, Rania; Khoudi, Habib

    2015-11-01

    Over the last decade, APETALA2/Ethylene Responsive Factor (AP2/ERF) proteins have become the subject of intensive research activity due to their involvement in a variety of biological processes. This research led to the identification of AP2/ERF genes in many species; however, little is known about these genes in durum wheat, one of the most important cereal crops in the world. In this study, a new member of the AP2/ERF transcription factor family, designated TdSHN1, was isolated from durum wheat using thermal asymetric interlaced PCR (TAIL-PCR) method. Protein sequence analysis showed that TdSHN1 contained an AP2/ERF domain of 63 amino acids and a putative nuclear localization signal (NLS). Phylogenetic analysis showed that TdSHN1 belongs to a group Va protein in the ERF subfamily which contains the Arabidopsis ERF proteins (SHN1, SHN2, and SHN3). Expression of TdSHN1 was strongly induced by salt, drought, abscisic acid (ABA), and cold. In planta, TdSHN1 protein was able to activate the transcription of GUS reporter gene driven by the GCC box and DRE element sequences. In addition, TdSHN1 was targeted to the nucleus when transiently expressed in tobacco epidermal cells. In transgenic yeast, overexpression of TdSHN1 increased tolerance to multiple abiotic stresses. Taken together, the results showed that TdSHN1 encodes an abiotic stress-inducible, transcription factor which confers abiotic stress tolerance in yeast. TdSHN1 is therefore a promising candidate for improvement of biotic and abiotic stress tolerance in wheat as well as other crops.

  20. 75 FR 41963 - Wheat and Oilseed Programs; Durum Wheat Quality Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-20

    ... control Fusarium head blight, commonly known as wheat scab. DATES: Effective Date: July 20, 2010. FOR... Fusarium head blight, a wheat disease caused by the Fusarium genus of fungi. The 2008 Farm Bill authorizes... producer must have used an eligible fungicide to control Fusarium head blight on acres certified as...

  1. Exploitation of Albanian wheat cultivars: characterization of the flours and lactic acid bacteria microbiota, and selection of starters for sourdough fermentation.

    PubMed

    Nionelli, Luana; Curri, Nertila; Curiel, José Antonio; Di Cagno, Raffaella; Pontonio, Erica; Cavoski, Ivana; Gobbetti, Marco; Rizzello, Carlo Giuseppe

    2014-12-01

    Six Albanian soft and durum wheat cultivars were characterized based on chemical and technological features, showing different attitudes for bread making. Gliadin and glutenin fractions were selectively extracted from flours, and subjected to two-dimensional electrophoresis. Linja 7 and LVS flours showed the best characteristics, and abundance of high molecular weight (HMW)-glutenins. Type I sourdoughs were prepared through back slopping procedure, and the lactic acid bacteria were typed and identified. Lactobacillus plantarum and Leuconostoc mesenteroides were the predominant species. Thirty-eight representative isolates were singly used for sourdough fermentation of soft and durum wheat Albanian flours and their selection was carried out based on growth and acidification, quotient of fermentation, and proteolytic activity. Two different pools of lactic acid bacteria were designed to ferment soft or durum wheat flours. Sourdough fermentation with mixed and selected starters positively affected the quotient of fermentation, concentration of free amino acids, profile of phenolic acids, and antioxidant and phytase activities. This study provided the basis to exploit the potential of wheat Albanian flours based on an integrated approach, which considered the characterization of the flours and the processing conditions.

  2. Expression, purification and refolding of active durum wheat (Triticum durum Desf.) secretory phospholipase A2 from inclusion bodies of Escherichia coli.

    PubMed

    Verlotta, Angelo; Trono, Daniela

    2014-09-01

    Recently, a durum wheat (Triticum durum Desf.) secretory phospholipase A2 (TdsPLA2III) was identified in leaves as potentially involved in plant responses to conditions of limiting water supply. Therefore, to allow future functional studies on TdsPLA2III and shed further light on the involvement of sPLA2 isoforms in specific plant functions, here we report a protocol for the overexpression of TdsPLA2III in Escherichia coli in the form of inclusion bodies, and for its purification and refolding. The use of the Gateway system (Invitrogen) allows the expression of a large quantity of the mature form (without the signal peptide) of TdsPLA2III with an N-terminal 6×His-tag, for purification using Ni-affinity chromatography. The purified recombinant 6×His-TdsPLA2III fusion protein is then refolded using a step-wise dialysis approach. About 40mg purified and active protein was obtained from 1L of cell culture. This recombinant 6×His-TdsPLA2III protein shows PLA2 activity, as it can hydrolyze linoleate from the sn-2 position of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine. Moreover, it has some features that are typical of other known plant sPLA2s: Ca(2+)-dependence, inhibition by the disulfide bond reducing agent dithiothreitol, and resistance to high temperature.

  3. Ultra-high performance liquid chromatography tandem mass spectrometry for the detection of durum wheat contamination or adulteration.

    PubMed

    Russo, Rosita; Cusano, Erica; Perissi, Andrea; Ferron, Francisco; Severino, Valeria; Parente, Augusto; Chambery, Angela

    2014-12-01

    In this work, an ultra-performance liquid chromatography electrospray ionization (UPLC-ESI)-MS/MS methodology based on multiple reaction monitoring (MRM) for the selective and sensitive detection and quantification of durum wheat adulteration has been developed and fully validated. The targeted analysis was performed by monitoring specific transitions at m/z 543.7 > 657.4 and m/z 543.7 > 299.2 of a species-specific marker derived from a tryptic peptide of puroindoline a (Pin-a), a cysteine-rich protein selectively present only in common wheat. In addition, two transitions at m/z 500.4 > 725.4 and m/z 500.4 > 561.9 of a reference peptide belonging to purothionin A-1, present in both species, were also monitored. The calibration curves obtained on binary mixtures with known percentages of common/durum wheat flours showed linearity (coefficient of regression, r ≥ 0.99) over concentrations that ranged between 80 and 1%. The limit of detection (LOD) and limit of quantification (LOQ) for the Pin-a marker in wheat flours were 0.01 and 0.03%, respectively. The identified Pin-a marker was also found to be highly diagnostic for the quantification of common wheat in raw materials (kernels) and processed products (pasta), thus offering new opportunities to assess food authenticity.

  4. Interplay between wheat cultivars, biocontrol pseudomonads, and soil.

    PubMed

    Meyer, Joana Beatrice; Lutz, Matthias Peter; Frapolli, Michele; Péchy-Tarr, Maria; Rochat, Laurène; Keel, Christoph; Défago, Geneviève; Maurhofer, Monika

    2010-09-01

    There is a significant potential to improve the plant-beneficial effects of root-colonizing pseudomonads by breeding wheat genotypes with a greater capacity to sustain interactions with these bacteria. However, the interaction between pseudomonads and crop plants at the cultivar level, as well as the conditions which favor the accumulation of beneficial microorganisms in the wheat rhizosphere, is largely unknown. Therefore, we characterized the three Swiss winter wheat (Triticum aestivum) cultivars Arina, Zinal, and Cimetta for their ability to accumulate naturally occurring plant-beneficial pseudomonads in the rhizosphere. Cultivar performance was measured also by the ability to select for specific genotypes of 2,4-diacetylphloroglucinol (DAPG) producers in two different soils. Cultivar-specific differences were found; however, these were strongly influenced by the soil type. Denaturing gradient gel electrophoresis (DGGE) analysis of fragments of the DAPG biosynthetic gene phlD amplified from natural Pseudomonas rhizosphere populations revealed that phlD diversity substantially varied between the two soils and that there was a cultivar-specific accumulation of certain phlD genotypes in one soil but not in the other. Furthermore, the three cultivars were tested for their ability to benefit from Pseudomonas inoculants. Interestingly, Arina, which was best protected against Pythium ultimum infection by inoculation with Pseudomonas fluorescens biocontrol strain CHA0, was the cultivar which profited the least from the bacterial inoculant in terms of plant growth promotion in the absence of the pathogen. Knowledge gained of the interactions between wheat cultivars, beneficial pseudomonads, and soil types allows us to optimize cultivar-soil combinations for the promotion of growth through beneficial pseudomonads. Additionally, this information can be implemented by breeders into a new and unique breeding strategy for low-input and organic conditions.

  5. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide and resistance is the best control strategy. Durum wheat accessions PI 331260 and PI 480016 were resistant to all tested Pst races. To transfer the resistance genes to common ...

  6. Effect of Wheat Cultivars and Blends on the Oviposition and Larval Mortality of Cephus cinctus (Hymenoptera: Cephidae) and Parasitism by Bracon cephi (Hymenoptera: Braconidae).

    PubMed

    Cárcamo, H A; Beres, B L; Larson, T R; Klima, C L; Wu, X-H

    2016-04-01

    The wheat stem sawfly (Cephus cinctus Norton) is a major historical pest of wheat in the northern Great Plains of North America. The insect spends most of its life as a larva protected inside grass stems so that its management has relied on strategies other than insecticides. We conducted a study in southern Alberta from 2006-2009 to assess the effects of wheat species, cultivar, seeding rate, and blending a resistant and a vulnerable cultivar, on oviposition, larval infestation, and cutting damage. The mortality caused by its primary parasitoid, Bracon cephi (Gahan), was also assessed to investigate the potential benefit of cultivar blends to enhance sawfly biological control. Sawfly laid fewer eggs on plants of the durum cultivar 'AC Avonlea' and on those of the solid-stemmed cultivar 'Lillian' compared to plants of the hollow-stemmed cultivar 'CDC Go.' Larval establishments (infestation) followed a similar pattern to that of oviposition. At these locations there was low cutting damage in most years and to a large extent this was due to mortality inflicted by the parasitoid Bracon cephi (40-60%). However, the remaining mortality was attributed to other factors and host, particularly the inclusion of the solid-stemmed cultivar. Direct and indirect factors likely affected the success of the parasitoid in the crop monocultures and blends, and these mechanisms require further research.

  7. The existence of phospholipase A(2) activity in plant mitochondria and its activation by hyperosmotic stress in durum wheat (Triticum durum Desf.).

    PubMed

    Trono, Daniela; Soccio, Mario; Laus, Maura N; Pastore, Donato

    2013-02-01

    The activity of mitochondrial phospholipase A(2) (PLA(2)) was shown for the first time in plants. It was observed in etiolated seedlings from durum wheat, barley, tomato, spelt and green seedlings of maize, but not in potato and topinambur tubers and lentil etiolated seedlings. This result was achieved by a novel spectrophotometric assay based on the coupled PLA(2)/lipoxygenase reactions using 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine as substrate; the mitochondrial localisation was assessed by checking recovery of marker enzymes. Durum wheat mitochondrial PLA(2) (DWM-PLA(2)) showed maximal activity at pH 9.0 and 1mM Ca(2+), hyperbolic kinetics (K(m)=90±6μM, V(max)=29±1nmolmin(-1)mg(-1) of protein) and inhibition by methyl arachidonyl fluorophosphonate, 5-(4-benzyloxyphenyl)-4S-(7-phenylheptanoylamino)pentanoic acid and palmityl trifluoromethyl ketone. Reactive oxygen species had no effect on DWM-PLA(2), that instead was activated by about 50% and 95%, respectively, under salt (0.21M NaCl) and osmotic (0.42M mannitol) stress imposed during germination. Contrarily, a secondary Ca(2+)-independent activity, having optimum at pH 7.0, was stress-insensitive. We propose that the activation of DWM-PLA(2) is responsible for the strong increase of free fatty acids recently measured in mitochondria under the same stress conditions [Laus, et al., J. Exp. Bot. 62 (2011) 141-154] that, in turn, activate potassium channel and uncoupling protein, able to counteract hyperosmotic stress.

  8. Characterization of α/β- and γ-gliadins in commercial varieties and breeding lines of durum wheat using MALDI-TOF and A-PAGE gels.

    PubMed

    Marín, Santiago; Gil-Humanes, Javier; Hernando, Alberto; Barro, Francisco

    2011-12-01

    In this work, gliadin composition has been analyzed in 33 accessions of durum wheat using MALDI-TOF MS and compared with A-PAGE results. The MALDI-TOF MS spectra were 29,900-42,500 Da, which corresponds to the α/β- and γ-gliadin regions in A-PAGE. The average of gliadin peaks per line was 23 for MALDI-TOF MS and only 14.8 bands for A-PAGE. MALDI-TOF MS identified 33 gliadin peaks in the durum wheat collection, 20 of which were unique peaks present in 7 lines. A-PAGE analysis identified 30 bands, of which only 4 were unique. Thus, the MALDI-TOF MS method was more sensitive than A-PAGE for identifying α/β- and γ-gliadins in the 33 durum wheat lines studied. Phylogenetic analyses performed using MALDI-TOF MS data assigned the durum wheat lines to two groups. The utility of MALDI-TOF MS to determine relationships among genotypes and for identification of durum wheat accessions is discussed.

  9. Validation and application of a quantitative real-time PCR assay to detect common wheat adulteration of durum wheat for pasta production.

    PubMed

    Carloni, Elisa; Amagliani, Giulia; Omiccioli, Enrica; Ceppetelli, Veronica; Del Mastro, Michele; Rotundo, Luca; Brandi, Giorgio; Magnani, Mauro

    2017-06-01

    Pasta is the Italian product par excellence and it is now popular worldwide. Pasta of a superior quality is made with pure durum wheat. In Italy, addition of Triticum aestivum (common wheat) during manufacturing is not allowed and, without adequate labeling, its presence is considered an adulteration. PCR-related techniques can be employed for the detection of common wheat contaminations. In this work, we demonstrated that a previously published method for the detection of T. aestivum, based on the gliadin gene, is inadequate. Moreover, a new molecular method, based on DNA extraction from semolina and real-time PCR determination of T. aestivum in Triticum spp., was validated. This multiplex real-time PCR, based on the dual-labeled probe strategy, guarantees target detection specificity and sensitivity in a short period of time. Moreover, the molecular analysis of common wheat contamination in commercial wheat and flours is described for the first time.

  10. Added ingredients affect the microbiota and biochemical characteristics of durum wheat type-I sourdough.

    PubMed

    Minervini, Fabio; Celano, Giuseppe; Lattanzi, Anna; De Angelis, Maria; Gobbetti, Marco

    2016-12-01

    This study aimed at understanding the effect of additional ingredients (baker's yeast, macerated pears, grape must, honey, or water from macerated pears) on the microbiota and biochemical characteristics of durum wheat-based sourdough. One dough prepared using only flour was used as the control (control-dough). Compared to the control-dough, doughs containing additional ingredients showed higher (P < 0.05) cell numbers of lactic acid bacteria after the first fermentation. Constant pH of ca. 4.0 was found after two (macerated pears or water pears-doughs) to seven (control-dough) back-slopping steps. The use of additional ingredients caused lower microbial diversity, after the first fermentation and in mature sourdoughs. Regardless of the type of ingredient used, OTU belonging to the genus Lactobacillus represented more than 95% of the total Firmicutes in mature sourdoughs. Some metabolic capacities of microbial community of the mature sourdoughs were linked to the additional ingredient. Based on culture-dependent method, Lactobacillus plantarum and Saccharomyces cerevisiae dominated in all the sourdoughs. However, the sourdoughs showed different strains of these two species. Other lactic acid bacterium species were associated to baker's yeast, grape must and macerated pears. The different microbial composition was correlated (r > 0.7, P < 0.05) with several biochemical characteristics of the sourdoughs (e.g., free amino acids and their derivatives).

  11. Transport Pathways—Proton Motive Force Interrelationship in Durum Wheat Mitochondria

    PubMed Central

    Trono, Daniela; Laus, Maura N.; Soccio, Mario; Pastore, Donato

    2014-01-01

    In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoKATP) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoKATP neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoKATP to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoKATP and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa. PMID:24821541

  12. Quality classification of Italian wheat durum spaghetti by means of different spectrophometric techniques

    NASA Astrophysics Data System (ADS)

    Menesatti, P.; Bucarelli, A.

    2007-09-01

    Wheat durum pasta (spaghetti in particular) can be considered as the most typical Italy's food product. Many small or craft pasta factories realize different quality product regarding the use of biological wheat and the application of mild (lower drying temperature) or traditional (bronze draw-plate) technologies, in competition with large industrial enterprises. The application of higher quality standards increases the producing cost and determines higher pasta prices. In order to setup a reliable easy-to-use methodology to distinguish different production technology approaches, spectrophotometric visible and near-infrared (VIS-Nir) techniques were applied on the intact pasta. Eighteen samples of commercial brand spaghetti classified in five different quality production factors (Full industrial - Teflon-drawn, high temperature-short time drying -; semolina from organic cultivations; bronze-drawn treatment; low temperature - long time drying; traditional high quality pasta - bronze-drawn and low temperature drying treatments-) were analyzed by three different spectrometric techniques: a VIS (400 - 700 nm) spectral imaging, a Nir (1000-1700 nm) spectral imaging - both of them acquiring reflected spectral images of spaghetti bundle - and a portable VIS-Nir system (400-800 nm), working with an interactance probe on single spaghetti string. Principal component analysis (PCA) and partial least square regressions (PLS) were performed on about 1500 spectral arrays, to test the ability of the systems to distinguish the different pasta products (commercial brands). Reflectance visible data presented highest percentage of correct classification: 98.6% total value, 100% for high quality spaghetti (bronze-drawn and/or low temperature drying). NIR reflectance and VIS-NIR interactance systems presented 85% and 70% of entire correct classification while for high quality pasta the percentages rise up to 75% and 83%

  13. Description of durum wheat linkage map and comparative sequence analysis of wheat mapped DArT markers with rice and Brachypodium genomes

    PubMed Central

    2013-01-01

    Background The importance of wheat to the world economy, together with progresses in high-throughput next-generation DNA sequencing, have accelerated initiatives of genetic research for wheat improvement. The availability of high density linkage maps is crucial to identify genotype-phenotype associations, but also for anchoring BAC contigs to genetic maps, a strategy followed for sequencing the wheat genome. Results Here we report a genetic linkage map in a durum wheat segregating population and the study of mapped DArT markers. The linkage map consists of 126 gSSR, 31 EST-SSR and 351 DArT markers distributed in 24 linkage groups for a total length of 1,272 cM. Through bioinformatic approaches we have analysed 327 DArT clones to reveal their redundancy, syntenic and functional aspects. The DNA sequences of 174 DArT markers were assembled into a non-redundant set of 60 marker clusters. This explained the generation of clusters in very small chromosome regions across genomes. Of these DArT markers, 61 showed highly significant (Expectation < E-10) BLAST similarity to gene sequences in public databases of model species such as Brachypodium and rice. Based on sequence alignments, the analysis revealed a mosaic gene conservation, with 54 and 72 genes present in rice and Brachypodium species, respectively. Conclusions In the present manuscript we provide a detailed DArT markers characterization and the basis for future efforts in durum wheat map comparing. PMID:24304553

  14. Complete characterization of wheat-alien metaphase I pairing in interspecific hybrids between durum wheat (Triticum turgidum L.) and jointed goatgrass (Aegilops cylindrica Host).

    PubMed

    Cifuentes, Marta; Benavente, Elena

    2009-05-01

    The pattern of homoeologous metaphase I (MI) pairing has been fully characterized in durum wheat x Aegilops cylindrica hybrids (2n = 4x = 28, ABC(c)D(c)) by an in situ hybridization procedure that has permitted individual discrimination of every wheat and wild constituent genome. One of the three hybrid genotypes examined carried the ph1c mutation. In all cases, MI associations between chromosomes of both species represented around two-third of total. Main results from the analysis are as follows (a) the A genome chromosomes are involved in wheat-wild MI pairing more frequently than the B genome partners, irrespective of the alien genome considered; (b) both durum wheat genomes pair preferentially with the D(c) genome of jointed goatgrass. These findings are discussed in relation to the potential of genetic transference between wheat crops and this weedy relative. It can also be highlighted that inactivation of Ph1 provoked a relatively higher promotion of MI associations involving B genome.

  15. Size exclusion HPLC of proteins for evaluation of durum wheat quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present research aimed to assess size exclusion HPLC (SE-HPLC) in protein molecular weight distribution determination for quality evaluation of durum semolina. Semolina samples were milled from 13 durum genotypes grown at 7 locations in 2009 and 2010 in ND. Sodium dodecyl sulfate (SDS) buffer ...

  16. Creation of a high-amylose durum wheat through mutagenesis of starch synthase II (SSIIa)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In cereal seeds mutations in one or more starch synthases lead to decreased amylopectin and increased amylose content. Here, the impact of starch synthase IIa (SSIIa or SGP-1) mutations upon durum starch was investigated. A screen of durum accessions identified two lines lacking SGP-A1, the A geno...

  17. Pasta made from durum wheat semolina fermented with selected lactobacilli as a tool for a potential decrease of the gluten intolerance.

    PubMed

    di Cagno, Raffaella; de Angelis, Maria; Alfonsi, Giuditta; de Vincenzi, Massimo; Silano, Marco; Vincentini, Olimpia; Gobbetti, Marco

    2005-06-01

    A pool of selected lactic acid bacteria was used to ferment durum wheat semolina under liquid conditions. After fermentation, the dough was freeze-dried, mixed with buckwheat flour at a ratio of 3:7, and used to produce the "fusilli" type Italian pasta. Pasta without prefermentation was used as the control. Ingredients and pastas were characterized for compositional analysis. As shown by two-dimensional electrophoresis, 92 of the 130 durum wheat gliadin spots were hydrolyzed almost totally during fermentation by lactic acid bacteria. Mass spectrometry matrix-assisted laser desorption/ionization time-of-flight and reversed phase high-performance liquid chromatography analyses confirmed the hydrolysis of gliadins. As shown by immunological analysis by R5-Western blot, the concentration of gluten decreased from 6280 ppm in the control pasta to 1045 ppm in the pasta fermented with lactic acid bacteria. Gliadins were extracted from fermented and nonfermented durum wheat dough semolina and used to produce a peptic-tryptic (PT) digest for in vitro agglutination tests on cells of human origin. The whole PT digests did not cause agglutination. Affinity chromatography on Sepharose-6-B mannan column separated the PT digests in three fractions. Fraction C showed agglutination activity. The minimal agglutinating activity of fraction C from the PT digest of fermented durum wheat semolina was ca. 80 times higher than that of durum wheat semolina. Pasta was subjected to sensory analysis: The scores for stickiness and firmness were slightly lower than those found for the pasta control. Odor and flavor did not differ between the two types of pasta. These results showed that a pasta biotechnology that uses a prefermentation of durum wheat semolina by selected lactic acid bacteria and tolerated buckwheat flour could be considered as a novel tool to potentially decrease gluten intolerance and the risk of gluten contamination in gluten-free products.

  18. New Insights into the Roles of Host Gene-Necrotrophic Effector Interactions in Governing Susceptibility of Durum Wheat to Tan Spot and Septoria nodorum Blotch

    PubMed Central

    Virdi, Simerjot K.; Liu, Zhaohui; Overlander, Megan E.; Zhang, Zengcui; Xu, Steven S.; Friesen, Timothy L.; Faris, Justin D.

    2016-01-01

    Tan spot and Septoria nodorum blotch (SNB) are important diseases of wheat caused by the necrotrophic fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively. The P. tritici-repentis necrotrophic effector (NE) Ptr ToxB causes tan spot when recognized by the Tsc2 gene. The NE ToxA is produced by both pathogens and has been associated with the development of both tan spot and SNB when recognized by the wheat Tsn1 gene. Most work to study these interactions has been conducted in common wheat, but little has been done in durum wheat. Here, quantitative trait loci (QTL) analysis of a segregating biparental population indicated that the Tsc2-Ptr ToxB interaction plays a prominent role in the development of tan spot in durum. However, analysis of two biparental populations indicated that the Tsn1-ToxA interaction was not associated with the development of tan spot, but was strongly associated with the development of SNB. Pa. nodorum expressed ToxA at high levels in infected Tsn1 plants, whereas ToxA expression in P. tritici-repentis was barely detectable, suggesting that the differences in disease levels associated with the Tsn1-ToxA interaction were due to differences in pathogen expression of ToxA. These and previous results together indicate that: (1) the effects of Tsn1-ToxA on tan spot in common wheat can range from nonsignificant to highly significant depending on the host genetic background; (2) Tsn1-ToxA is not a significant factor for tan spot development in durum wheat; and (3) Tsn1-ToxA plays a major role in SNB development in both common and durum wheat. Durum and common wheat breeders alike should strive to remove both Tsc2 and Tsn1 from their materials to achieve disease resistance. PMID:27777262

  19. New Insights into the Roles of Host Gene-Necrotrophic Effector Interactions in Governing Susceptibility of Durum Wheat to Tan Spot and Septoria nodorum Blotch.

    PubMed

    Virdi, Simerjot K; Liu, Zhaohui; Overlander, Megan E; Zhang, Zengcui; Xu, Steven S; Friesen, Timothy L; Faris, Justin D

    2016-12-07

    Tan spot and Septoria nodorum blotch (SNB) are important diseases of wheat caused by the necrotrophic fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively. The P. tritici-repentis necrotrophic effector (NE) Ptr ToxB causes tan spot when recognized by the Tsc2 gene. The NE ToxA is produced by both pathogens and has been associated with the development of both tan spot and SNB when recognized by the wheat Tsn1 gene. Most work to study these interactions has been conducted in common wheat, but little has been done in durum wheat. Here, quantitative trait loci (QTL) analysis of a segregating biparental population indicated that the Tsc2-Ptr ToxB interaction plays a prominent role in the development of tan spot in durum. However, analysis of two biparental populations indicated that the Tsn1-ToxA interaction was not associated with the development of tan spot, but was strongly associated with the development of SNB. Pa. nodorum expressed ToxA at high levels in infected Tsn1 plants, whereas ToxA expression in P. tritici-repentis was barely detectable, suggesting that the differences in disease levels associated with the Tsn1-ToxA interaction were due to differences in pathogen expression of ToxA These and previous results together indicate that: (1) the effects of Tsn1-ToxA on tan spot in common wheat can range from nonsignificant to highly significant depending on the host genetic background; (2) Tsn1-ToxA is not a significant factor for tan spot development in durum wheat; and (3) Tsn1-ToxA plays a major role in SNB development in both common and durum wheat. Durum and common wheat breeders alike should strive to remove both Tsc2 and Tsn1 from their materials to achieve disease resistance.

  20. Genetic Diversity and Association Mapping for Agromorphological and Grain Quality Traits of a Structured Collection of Durum Wheat Landraces Including subsp. durum, turgidum and diccocon

    PubMed Central

    Giraldo, Patricia; Royo, Conxita; González, Mirvana; Carrillo, Jose M.

    2016-01-01

    Association mapping was performed for 18 agromorphological and grain quality traits in a set of 183 Spanish landraces, including subspecies durum, turgidum and dicoccon, genotyped with 749 DArT (Diversity Array Technology) markers. Large genetic and phenotypic variability was detected, being the level of diversity among the chromosomes and genomes heterogeneous, and sometimes complementary, among subspecies. Overall, 356 were monomorphic in at least one subspecies, mainly in dicoccon, and some of them coincidental between subspecies, especially between turgidum and dicoccon. Several of those fixed markers were associated to plant responses to environmental stresses or linked to genes subjected to selection during tetraploid wheat domestication process. A total of 85 stable MTAs (marker–trait associations) have been identified for the agromorphological and quality parameters, some of them common among subspecies and others subspecies-specific. For all the traits, we have found MTAs explaining more than 10% of the phenotypic variation in any of the three subspecies. The number of MTAs on the B genome exceeded that on the A genome in subsp. durum, equalled in turgidum and was below in dicoccon. The validation of several adaptive and quality trait MTAs by combining the association mapping with an analysis of the signature of selection, identifying the putative gene function of the marker, or by coincidences with previous reports, showed that our approach was successful for the detection of MTAs and the high potential of the collection to identify marker–trait associations. Novel MTAs not previously reported, some of them subspecies specific, have been described and provide new information about the genetic control of complex traits. PMID:27846306

  1. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism.

    PubMed

    Woodrow, Pasqualina; Ciarmiello, Loredana F; Annunziata, Maria Grazia; Pacifico, Severina; Iannuzzi, Federica; Mirto, Antonio; D'Amelia, Luisa; Dell'Aversana, Emilia; Piccolella, Simona; Fuggi, Amodio; Carillo, Petronia

    2017-03-01

    Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m(-2) s(-1) photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m(-2) s(-1) ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.

  2. Compared use of HPLC and FZCE for cluster analysis of Triticum spp and for the identification of T. durum adulteration.

    PubMed

    Bonetti, Alessandra; Marotti, Ilaria; Catizone, Pietro; Dinelli, Giovanni; Maietti, Annalisa; Tedeschi, Paola; Brandolini, Vincenzo

    2004-06-30

    Wheat quality criteria continually evolve in response to market pressure and consumer preference. Characterization of cereal cultivars for quality and agronomic properties, have widely shown the importance of the protein content to ensure good quality products. The aim of this work is a comparison of reversed-phase high performance liquid chromatography (RP-HPLC) and free zone capillary electrophoresis (FZCE) in the identification of Italian wheat cultivars and detection of durum wheat flour adulteration. Mainly alcohol soluble (gliadins) and water soluble (albumins) proteins were extracted from 14 common wheat cultivars and from 9 durum wheat cultivars. In RP-HPLC chromatograms, wheat albumins and gliadins eluted between 3 and 9 min and between 10 and 42 min, respectively. Even if the chosen chromatographic conditions (reversed phase) did not permit a complete resolution of hydrophilic proteins such as albumins, a good reproducibility was observed for both albumins and gliadins. In FZCE electropherograms, wheat albumins and gliadins migrated between 8 and 14 min and 16-25 min, respectively. A good reproducibility was found for wheat albumins, while the relatively poor reproducibility of gliadin fractions was a consequence of the selected separation conditions aimed to separate in the same run either hydrophilic (albumins) and alcohol-soluble (gliadins) proteins. The principal component analysis (PCA) of HPLC and FZCE data evidenced that both techniques allowed the univocal identification of the great proportion of investigated wheat cultivars. Three peaks were exclusively detected in RP-HPLC chromatograms of common wheat cultivars, while three unique peaks were found in FZCE electropherograms of common wheat cultivars. These peaks were investigated as a basis for detecting and estimating the adulteration of durum wheat flour with flour from common wheat. The direct relationship between the area of the peaks and adulteration level enabled standard curves to be

  3. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat

    PubMed Central

    Saia, Sergio; Rappa, Vito; Ruisi, Paolo; Abenavoli, Maria Rosa; Sunseri, Francesco; Giambalvo, Dario; Frenda, Alfonso S.; Martinelli, Federico

    2015-01-01

    In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake. These biotic associations were studied under either low N availability (unfertilized plots) and supplying the soil with an easily mineralizable organic fertilizer. Regardless of N fertilization, at the tillering stage, inoculation with AMF alone or in combination with PGPR increased the aboveground biomass yield compared to the uninoculated control. Inoculation with PGPR enhanced the aboveground biomass yield compared to the control, but only when N fertilizer was added. At the heading stage, inoculation with all microorganisms increased the aboveground biomass and N. Inoculation with PGPR and AMF+PGPR resulted in significantly higher aboveground P compared to the control and inoculation with AMF only when organic N was applied. The role of microbe inoculation in N uptake was elucidated by the expression of nitrate transporter genes. NRT1.1, NRT2, and NAR2.2 were significantly upregulated by inoculation with AMF and AMF+PGPR in the absence of organic N. A significant down-regulation of the same genes was observed when organic N was added. The ammonium (NH4+) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3- transporters. Finally, in the absence of organic N, the transcript abundance of P transporters Pht1 and PT2-1 was increased by inoculation with AMF+PGPR, and inoculation with AMF upregulated Pht2 compared to the uninoculated control. These results indicate the soil inoculation with AMF and PGPR (alone or in combination) as a valuable option for farmers to improve yield, nutrient uptake, and the sustainability of the agro-ecosystem. PMID:26483827

  4. Wheat cultivar discrimination by capillary electrophoresis of gliadins in isoelectric buffers.

    PubMed

    Capelli, L; Forlani, F; Perini, F; Guerrieri, N; Cerletti, P; Righetti, P G

    1998-02-01

    A modified method is reported for screening of wheat cultivars: capillary zone electrophoresis of gliadins in isoelectric buffers. Previously published procedures recommended a 100 mM phosphate buffer, supplemented with 0.05% hydroxypropylmethylcellulose and 20% acetonitrile, in uncoated capillaries. Due to the very high conductivity of such a buffer (4.7 mmhos at 25 degrees C) high speed separations (10-12 min analysis time at 800 V/cm) could only be elicited in 20 microm internal diameter (ID) capillaries, at the expense of sensitivity. In the present report, we optimized the background electrolyte as follows: 40 mM aspartic acid (pH=pI=2.77) in the presence of 7 M urea and 0.5% short-chain hydroxyethylcellulose (Mn 27000 Da; apparent pH 3.9 in 7 M urea). As an alternative recipe, the same isoelectric buffer can be supplemented with a mixed organic solvent composed of 4 M urea and 20% acetonitrile (apparent pH 3.66). Due to the much lower conductivity (0.7 mmhos), separations can be carried out at 1000 V/cm in only 10 min, but in larger bore capillaries (50 microm ID), ensuring a five-times higher sensitivity. The gliadin patterns thus obtained are species-specific and allow easy identification of all cultivars tested of both durum and bread wheat. No adsorption of proteins to the silica wall seems to occur and high reproducibility in peak areas and transit times is obtained.

  5. Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat

    PubMed Central

    Holtz, Yan; Ardisson, Morgane; Ranwez, Vincent; Besnard, Alban; Leroy, Philippe; Poux, Gérard; Roumet, Pierre; Viader, Véronique; Santoni, Sylvain; David, Jacques

    2016-01-01

    Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays. PMID:27171472

  6. Genotyping by Sequencing Using Specific Allelic Capture to Build a High-Density Genetic Map of Durum Wheat.

    PubMed

    Holtz, Yan; Ardisson, Morgane; Ranwez, Vincent; Besnard, Alban; Leroy, Philippe; Poux, Gérard; Roumet, Pierre; Viader, Véronique; Santoni, Sylvain; David, Jacques

    2016-01-01

    Targeted sequence capture is a promising technology which helps reduce costs for sequencing and genotyping numerous genomic regions in large sets of individuals. Bait sequences are designed to capture specific alleles previously discovered in parents or reference populations. We studied a set of 135 RILs originating from a cross between an emmer cultivar (Dic2) and a recent durum elite cultivar (Silur). Six thousand sequence baits were designed to target Dic2 vs. Silur polymorphisms discovered in a previous RNAseq study. These baits were exposed to genomic DNA of the RIL population. Eighty percent of the targeted SNPs were recovered, 65% of which were of high quality and coverage. The final high density genetic map consisted of more than 3,000 markers, whose genetic and physical mapping were consistent with those obtained with large arrays.

  7. Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion.

    PubMed

    Läuchli, André; James, Richard A; Huang, Cheng X; McCully, Margaret; Munns, Rana

    2008-11-01

    Sodium exclusion from leaves is an important mechanism for salt tolerance in durum wheat. To characterize possible control points for Na(+) exclusion, quantitative cryo-analytical scanning electron microscopy was used to determine cell-specific ion profiles across roots of two durum wheat genotypes with contrasting rates of Na(+) transport from root to shoot grown in 50 mm NaCl. The Na(+) concentration in Line 149 (low transport genotype) declined across the cortex, being highest in the epidermal and sub-epidermal cells (48 mm) and lowest in the inner cortical cells (22 mm). Na(+) was high in the pericycle (85 mm) and low in the xylem parenchyma (34 mm). The Na(+) profile in Tamaroi (high transport genotype) had a similar trend but with a high concentration (130 mm) in the xylem parenchyma. The K(+) profiles were generally inverse to those of Na(+). Chloride was only detected in the epidermis. These data suggest that the epidermal and cortical cells removed most of the Na(+) and Cl(-) from the transpiration stream before it reached the endodermis, and that the endodermis is not the control point for salt uptake by the plant. The pericycle as well as the xylem parenchyma may be important in the control of net Na(+) loading of the xylem.

  8. Multi-Mycotoxin Analysis in Durum Wheat Pasta by Liquid Chromatography Coupled to Quadrupole Orbitrap Mass Spectrometry

    PubMed Central

    Tolosa, Josefa; Graziani, Giulia; Gaspari, Anna; Chianese, Donato; Ferrer, Emilia; Mañes, Jordi; Ritieni, Alberto

    2017-01-01

    A simple and rapid multi-mycotoxin method for the determination of 17 mycotoxins simultaneously is described in the present survey on durum and soft wheat pasta samples. Mycotoxins included in the study were those mainly reported in cereal samples: ochratoxin-A (OTA), aflatoxin B1 (AFB1), zearalenone (ZON), deoxynivalenol (DON), 3-and 15-acetyl-deoxynivalenol (3-AcDON and 15-AcDON), nivalenol (NIV), neosolaniol (NEO), fusarenon-X, (FUS-X), T-2 toxin (T-2) and HT-2 toxin (HT-2), fumonisin B1 and B2 (FB1 and FB2), and four emerging mycotoxins: three enniatins (ENA, ENA1, and ENB), and beauvericin (BEA). Twenty-nine samples were analyzed to provide an overview on mycotoxin presence: 27 samples of durum wheat pasta, and two samples of baby food. Analytical results concluded that trichothecenes showed the highest incidence, mainly DON, NIV, and HT-2 toxin, followed by ZON and ENB, while NEO, FUS-X, OTA, AFB1, and FUM were not detected in any sample. The highest contents corresponded to ENB and ranged from 91.15 µg/kg to 710.90 µg/kg. PMID:28208797

  9. Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping.

    PubMed

    Letta, Tesfaye; Maccaferri, Marco; Badebo, Ayele; Ammar, Karim; Ricci, Andrea; Crossa, Jose; Tuberosa, Roberto

    2013-05-01

    Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is a devastating disease of durum wheat. While more than 50 stem rust resistance (Sr) loci have been identified in wheat, only a few of them have remained effective against Ug99 (TTKSK race) and other durum-specific Ethiopian races. An association mapping (AM) approach based on 183 diverse durum wheat accessions was utilized to identify resistance loci for stem rust response in Ethiopia over four field-evaluation seasons and artificial inoculation with Ug99 and a mixture of durum-specific races. The panel was profiled with simple sequence repeat, Diversity Arrays Technology and sequence-tagged site markers (1,253 in total). The resistance turned out to be oligogenic, with twelve QTL-tagging markers that were significant (P < 0.05) across three or four seasons. R (2) values ranged from 1.1 to 11.3 %.Twenty-four additional single-marker/QTL regions were found to be significant over two seasons. The AM results confirmed the role of Sr13, previously described in bi-parental mapping studies, and the role of chromosome regions putatively harbouring Sr9, Sr14, Sr17 and Sr28. Three minor QTLs were coincident with those reported in hexaploid wheat and five overlapped with those recently reported in the Sebatel × Kristal durum mapping population. Thirteen single-marker/QTL regions were located in chromosome regions where no Sr genes/QTLs have been previously reported. The allelic variation identified in this study is readily available and can be exploited for marker-assisted selection, thus providing additional opportunities for a more durable stem rust resistance under field conditions.

  10. Molecular and cytogenetic characterization of a durum wheat Aegilops speltoides chromosome translocation conferring resistance to stem rust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust is a serious disease of wheat that has caused historical epidemics, but it has not been a threat in recent decades in North America due to the eradication of the alternate host and deployment of resistant cultivars. However, the recent emergence of Ug99 (or race TTKS) poses a threat to glo...

  11. 'Prosper': A high-yielding hard red spring wheat cultivar adapted to the North Central Plains of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Providing wheat (Triticum aestivum L.) growers and industry with adapted wheat cultivars with high-quality attributes is essential for maintaining wheat as a competitive crop in the spring-wheat growing region of the USA. Therefore, our breeding program aims to develop modern wheat cultivars using b...

  12. Biofortification of Wheat Cultivars to Combat Zinc Deficiency.

    PubMed

    Chattha, Muhammad U; Hassan, Muhammad U; Khan, Imran; Chattha, Muhammad B; Mahmood, Athar; Chattha, Muhammad U; Nawaz, Muhammad; Subhani, Muhammad N; Kharal, Mina; Khan, Sadia

    2017-01-01

    Zinc (Zn) deficiency caused by inadequate dietary intake is a global nutritional problem, particularly in developing countries. Therefore, zinc biofortification of wheat and other cereal crops is being urgently addressed and highly prioritized as a research topic. A field study was planned to evaluate the influence of zinc application on grain yield, grain zinc content, and grain phytic acid concentrations of wheat cultivars, and the relationships between these parameters. Three wheat cultivars, C1 = Faisalabad-2008, C2 = Punjab-2011, and C3 = Millet-2011 were tested with five different methods of zinc application: T1 = control, T2 = seed priming, T3 = soil application, T4 = foliar application, and T5 = soil + foliar application. It was found that grain yield and grain zinc were positively correlated, whereas, grain phytic acid and grain zinc were significantly negatively correlated. Results also revealed that T5, T3, and T4 considerably increased grain yield; however, T2 only slightly enhanced grain yield. Grain zinc concentration increased from 33.1 and 33.7 mg kg(-1) in T1 to 62.3 and 63.1 mg kg(-1) in T5 in 2013-2014 and 2014-2015, respectively. In particular, T5 markedly decreased grain phytic acid content; however, maximum concentration was recorded in T1. Moreover, all the tested cultivars exhibited considerable variation in grain yield, grain zinc, and grain phytic acid content. In conclusion, T5 was found to be most suitable for both optimum grain yield and grain biofortification of wheat.

  13. Biofortification of Wheat Cultivars to Combat Zinc Deficiency

    PubMed Central

    Chattha, Muhammad U.; Hassan, Muhammad U.; Khan, Imran; Chattha, Muhammad B.; Mahmood, Athar; Chattha, Muhammad U.; Nawaz, Muhammad; Subhani, Muhammad N.; Kharal, Mina; Khan, Sadia

    2017-01-01

    Zinc (Zn) deficiency caused by inadequate dietary intake is a global nutritional problem, particularly in developing countries. Therefore, zinc biofortification of wheat and other cereal crops is being urgently addressed and highly prioritized as a research topic. A field study was planned to evaluate the influence of zinc application on grain yield, grain zinc content, and grain phytic acid concentrations of wheat cultivars, and the relationships between these parameters. Three wheat cultivars, C1 = Faisalabad-2008, C2 = Punjab-2011, and C3 = Millet-2011 were tested with five different methods of zinc application: T1 = control, T2 = seed priming, T3 = soil application, T4 = foliar application, and T5 = soil + foliar application. It was found that grain yield and grain zinc were positively correlated, whereas, grain phytic acid and grain zinc were significantly negatively correlated. Results also revealed that T5, T3, and T4 considerably increased grain yield; however, T2 only slightly enhanced grain yield. Grain zinc concentration increased from 33.1 and 33.7 mg kg−1 in T1 to 62.3 and 63.1 mg kg−1 in T5 in 2013–2014 and 2014–2015, respectively. In particular, T5 markedly decreased grain phytic acid content; however, maximum concentration was recorded in T1. Moreover, all the tested cultivars exhibited considerable variation in grain yield, grain zinc, and grain phytic acid content. In conclusion, T5 was found to be most suitable for both optimum grain yield and grain biofortification of wheat. PMID:28352273

  14. Comparison of Volatiles Profile and Contents of Trichothecenes Group B, Ergosterol, and ATP of Bread Wheat, Durum Wheat, and Triticale Grain Naturally Contaminated by Mycobiota

    PubMed Central

    Buśko, Maciej; Stuper, Kinga; Jeleń, Henryk; Góral, Tomasz; Chmielewski, Jarosław; Tyrakowska, Bożena; Perkowski, Juliusz

    2016-01-01

    In natural conditions cereals can be infested by pathogenic fungi. These can reduce the grain yield and quality by contamination with mycotoxins which are harmful for plants, animals, and humans. To date, performed studies of the compounds profile have allowed for the distinction of individual species of fungi. The aim of this study was to determine the profile of volatile compounds and trichothecenes of group B, ergosterol, adenosine triphosphate content carried out on a representative sample of 16 genotypes of related cereals: triticale, bread wheat, and durum wheat. Based on an analysis of volatile compounds by means of gas chromatography mass spectrometry and with the use of an electronic nose, volatile profiles for cereals were determined. Differentiation is presented at four levels through discriminant analysis, heatmaps, principal component analysis (PCA), and electronic nose maps. The statistical model was built by subsequent incorporation of chemical groups such as trichothecenes (GC/MS), fungal biomass indicators ergosterol (HPLC) and ATP (luminometric) and volatiles. The results of the discriminatory analyses showed that the volatile metabolites most markedly differentiated grain samples, among which were mainly: lilial, trichodiene, p-xylene. Electronic nose analysis made it possible to completely separate all the analyzed cereals based only on 100 ions from the 50–150 m/z range. The research carried out using chemometric analysis indicated significant differences in the volatile metabolites present in the grain of bread wheat, durum wheat and triticale. The end result of the performed analyses was a complete discrimination of the examined cereals based on the metabolites present in their grain. PMID:27597856

  15. Variations of the sensory profile of durum wheat Altamura PDO (protected designation of origin) bread during staling.

    PubMed

    Pasqualone, Antonella; Summo, Carmine; Bilancia, Maria Teresa; Caponio, Francesco

    2007-04-01

    The typical sensory characteristics of Altamura PDO (protected designation of origin) bread are due to both the use of durum wheat remilled semolina and the prolonged sponge-dough method based on sourdough. In this paper the sensory properties of Altamura bread were evaluated during a period of 6 days from baking. A total number of 24 descriptors was considered. The obtained results indicated that during the whole storage period many of the desirable characters such as crust consistence, crumb elasticity, crumb cohesiveness, overall aroma, and sour aroma decreased, while the undesirable stale aroma and crumb consistence increased their intensity. In any case, after 4 days from the production crumb color, crumb grain, crumb elasticity, and crumb humidity did not vary significantly.

  16. Molecular mapping of resistance gene to English grain aphid (Sitobion avenae F.) in Triticum durum wheat line C273.

    PubMed

    Liu, X L; Yang, X F; Wang, C Y; Wang, Y J; Zhang, H; Ji, W Q

    2012-02-01

    The English grain aphid, Sitobion avenae (Fabricius), is one of the most important insect pests causing substantial yield losses in wheat production in China and other grain-growing areas in the world. The efficient utilization of wheat genes for resistance to English grain aphid (EGA) provides an efficient, economic and environmentally sound approach to reduce the yield losses. In the present study, the wheat line C273 (Triticum durum AABB, 2n = 4x = 28), is resistant to EGA in greenhouse and field tests. To identify the resistance gene, designated RA-1 temporarily, C273 was crossed with susceptible genotype Poland 305 (T. polonicum, AABB, 2n = 4x = 28). The F(1), F(2) and F(2:3) lines were tested with EGA in the field and greenhouse. The results indicated that RA-1 is a single dominant gene, closely linked to the microsatellite markers (SSR) Xwmc179, Xwmc553 and Xwmc201 on chromosome 6AL at genetic distances of 3.47, 4.73 and 7.57 cM, respectively. The three SSR markers will be valuable in marker-assisted selection for resistance to EGA as well as for cloning this gene in the future.

  17. Accelerated hydrolysis method to estimate the amino acid content of wheat (Triticum durum Desf.) flour using microwave irradiation.

    PubMed

    Kabaha, Khaled; Taralp, Alpay; Cakmak, Ismail; Ozturk, Levent

    2011-04-13

    The technique of microwave-assisted acid hydrolysis was applied to wholegrain wheat (Triticum durum Desf. cv. Balcali 2000) flour in order to speed the preparation of samples for analysis. The resultant hydrolysates were chromatographed and quantified in an automated amino acid analyzer. The effect of different hydrolysis temperatures, times and sample weights was examined using flour dispersed in 6 N HCl. Within the range of values tested, the highest amino acid recoveries were generally obtained by setting the hydrolysis parameters to 150 °C, 3 h and 200 mg sample weight. These conditions struck an optimal balance between liberating amino acid residues from the wheat matrix and limiting their subsequent degradation or transformation. Compared to the traditional 24 h reflux method, the hydrolysates were prepared in dramatically less time, yet afforded comparable ninhydrin color yields. Under optimal hydrolysis conditions, the total amino acid recovery corresponded to at least 85.1% of the total protein content, indicating the efficient extraction of amino acids from the flour matrix. The findings suggest that this microwave-assisted method can be used to rapidly profile the amino acids of numerous wheat grain samples, and can be extended to the grain analysis of other cereal crops.

  18. Comparative germination responses to water potential across different populations of Aegilops geniculata and cultivar varieties of Triticum durum and Triticum aestivum.

    PubMed

    Orsenigo, S; Guzzon, F; Abeli, T; Rossi, G; Vagge, I; Balestrazzi, A; Mondoni, A; Müller, J V

    2017-03-01

    Crop Wild Relatives are often used to improve crop quality and yields because they contain genetically important traits that can contribute to stress resistance and adaptation. Seed germination of different populations of Aegilops geniculata Roth collected along a latitudinal gradient was studied under different drought stress in order to find populations suitable for improving drought tolerance in wheat. Different accessions of Aegilops neglecta Req. ex Bertol., Triticum aestivum L. and T. durum Desf. were used as comparison. Under full hydration, germination was high in all populations, but increasing drought stress led to reduced and delayed germination. Significant differences in final germination and mean time to germinate were detected among populations. Wheat, durum wheat and the southern population of Ae. geniculata were not significantly affected by drought stress, germinating similarly under all treatments. However, seed germination of the northern populations of Ae. geniculata was significantly reduced under high water stress treatment. Differences between populations of the same species could not be explained by annual rainfall across populations' distributions, but by rainfall during seed development and maturation. Differences in the germination responses to drought found here highlight the importance of source populations as criteria for genotype selection for pre-breeders.

  19. Postulation and mapping of seedling stripe rust resistance genes in Ethiopian bread wheat cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. In Ethiopia, grain yield loss in wheat cultivars ranges from 30 to 69%. The use of resistant cultivars is the most economical and environmentally friendly method of controlling ...

  20. Selection and breeding of plant cultivars to minimize cadmium accumulation.

    PubMed

    Grant, C A; Clarke, J M; Duguid, S; Chaney, R L

    2008-02-15

    Natural variation occurs in the uptake and distribution of essential and nonessential trace elements among crop species and among cultivars within species. Such variation can be responsible for trace element deficiencies and toxicities, which in turn can affect the quality of food. Plant breeding can be an important tool to both increase the concentration of desirable trace elements and reduce that of potentially harmful trace elements such as cadmium (Cd). Selection programs for a low-Cd content of various crops, including durum wheat, sunflower, rice and soybean have been established and low-Cd durum wheat cultivars and sunflower hybrids have been developed. In durum wheat (Triticum turgidum L. var durum), low-Cd concentration is controlled by a single dominant gene. The trait is highly heritable, and incorporation of the low-Cd allele can help to reduce the average grain Cd to levels below proposed international limits. The allele for low-Cd concentration does not appear to affect major economic traits and should not cause problems when incorporated into durum cultivars. The cost of Cd selection in a breeding program is initially large both in terms of Cd determination and reduced progress towards development of other economic traits, but declines as more breeding lines in the program carry the low-Cd trait and are utilized in new crosses. Production of low-Cd crop cultivars can be used as a tool to reduce the risk of movement of Cd into the human diet.

  1. A comparative analysis of chromosome pairing at metaphase I in interspecific hybrids between durum wheat (Triticum turgidum L.) and the most widespread Aegilops species.

    PubMed

    Cifuentes, M; Garcia-Agüero, V; Benavente, E

    2010-07-01

    Homoeologous metaphase I (MI) associations in hybrids between durum wheat and its wild allotetraploid relatives Aegilops neglecta, Ae. triuncialis and Ae. ventricosa have been characterized by a genomic in situ hybridization procedure that allows simultaneous discrimination of A, B and wild species genomes. Earlier results in equivalent hybrids with the wild species Ae. cylindrica and Ae. geniculata have also been considered to comparatively assay the MI pairing pattern of the durum wheat x Aegilops interspecific combinations more likely to occur in nature. The general picture can be drawn as follows. A and B wheat genomes pair with each other less than the 2 wild constituent genomes do in any of the hybrid combinations examined. Interspecific wheat-wild associations account for 60-70% of total MI pairing in all hybrids, except in that derived from Ae. triuncialis, but the A genome is always the wheat partner most frequently involved in MI pairing with the wild homoeologues. Hybrids with Ae. cylindrica, Ae. geniculata and Ae. ventricosa showed similar reduced levels of MI association and virtually identical MI pairing patterns. However, certain recurrent differences were found when the pattern of homoeologous pairing of hybrids from either Ae. triuncialis or Ae. neglecta was contrasted to that observed in the other durum wheat hybrid combinations. In the former case, a remarkable preferential pairing between the wild species constituent genomes U(t) and C(t) seems to be the reason, whereas a general promotion of homoeologous pairing, qualitatively similar to that observed under the effect of the ph1c mutation, appears to occur in the hybrid with Ae. neglecta. It is further discussed whether the results reported here can be extrapolated to the corresponding bread wheat hybrid combinations.

  2. Effect of 5-n-alkylresorcinol extracts from durum wheat whole grain on the growth of fusarium head blight (FHB) causal agents.

    PubMed

    Ciccoritti, Roberto; Pasquini, Marina; Sgrulletta, Daniela; Nocente, Francesca

    2015-01-14

    In an approach toward the identification of ecofriendly compounds for fusarium head blight biocontrol, the in vitro antifungal activity of 5-n-alkylresorcinol (AR) extracts, obtained from durum wheat intact kernels, was tested. In comparison with ethyl acetate and acetone extracts containing AR, total inhibition of Fusarium graminearum spore germination was observed with cyclohexane extract, which also exhibited a significant fungistatic activity against F. graminearum, Fusarium culmorum, Fusarium avenaceum, and Fusarium poae. Additionally, the study of the influence of such variables as predrying of seeds and durum wheat genotype on AR cyclohexane extract properties allowed the association of its highest antifungal activity with the AR homologue composition and, in particular, with the presence of a higher C21:0/C23:0 ratio. The interesting finding of this study suggests a potential application of the AR homologues in crop protection systems and could be an important step toward the development of commercial formulations suitable to the prevention of fungal diseases.

  3. Effect of sorghum flour addition on in vitro starch digestibility, cooking quality, and consumer acceptability of durum wheat pasta.

    PubMed

    Khan, Imran; Yousif, Adel M; Johnson, Stuart K; Gamlath, Shirani

    2014-08-01

    Whole grain sorghum is a valuable source of resistant starch and polyphenolic antioxidants and its addition into staple food like pasta may reduce the starch digestibility. However, incorporating nondurum wheat materials into pasta provides a challenge in terms of maintaining cooking quality and consumer acceptability. Pasta was prepared from 100% durum wheat semolina (DWS) as control or by replacing DWS with either wholegrain red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30%, and 40% incorporation levels, following a laboratory-scale procedure. Pasta samples were evaluated for proximate composition, in vitro starch digestibility, cooking quality, and consumer acceptability. The addition of both RSF and WSF lowered the extent of in vitro starch digestion at all substitution levels compared to the control pasta. The rapidly digestible starch was lowered in all the sorghum-containing pastas compared to the control pasta. Neither RSF or WSF addition affected the pasta quality attributes (water absorption, swelling index, dry matter, adhesiveness, cohesiveness, and springiness), except color and hardness which were negatively affected. Consumer sensory results indicated that pasta samples containing 20% and 30% RSF or WSF had acceptable palatability based on meeting one or both of the preset acceptability criteria. It is concluded that the addition of wholegrain sorghum flour to pasta at 30% incorporation level is possible to reduce starch digestibility, while maintaining adequate cooking quality and consumer acceptability.

  4. Reflectance based characterization of wheat cultivars for identifying drought tolerance in the Southern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the U.S. Southern Great Plains (SGP), drought stress is the single most important factor for reducing yield in winter wheat. Selection of drought tolerant wheat cultivars has been and will continue to be a critical strategy for wheat management under limited water conditions. Currently, yield is ...

  5. Wheat Allergy

    MedlinePlus

    ... Wheat (bran, durum, germ, gluten, grass, malt, sprouts, starch) Wheat bran hydrolysate Wheat germ oil Wheat grass ... in the following: Glucose syrup Surimi Soy sauce Starch (gelatinized starch, modified starch, modified food starch, vegetable ...

  6. Genome-wide search of stem rust resistance loci at the seedling stage in durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Puccinia graminis f. sp. tritici, the causative agent of stem rust in wheat, is known to rapidly evolve new virulence to resistance genes. While more than 50 stem rust resistance (Sr) loci have been identified in wheat, only a few remain effective, particularly against the highly virulent race Ug99 ...

  7. Single Marker and Haplotype-Based Association Analysis of Semolina and Pasta Colour in Elite Durum Wheat Breeding Lines Using a High-Density Consensus Map

    PubMed Central

    Haile, Jemanesh K.; Cory, Aron T.; Clarke, Fran R.; Clarke, John M.; Knox, Ron E.; Pozniak, Curtis J.

    2017-01-01

    Association mapping is usually performed by testing the correlation between a single marker and phenotypes. However, because patterns of variation within genomes are inherited as blocks, clustering markers into haplotypes for genome-wide scans could be a worthwhile approach to improve statistical power to detect associations. The availability of high-density molecular data allows the possibility to assess the potential of both approaches to identify marker-trait associations in durum wheat. In the present study, we used single marker- and haplotype-based approaches to identify loci associated with semolina and pasta colour in durum wheat, the main objective being to evaluate the potential benefits of haplotype-based analysis for identifying quantitative trait loci. One hundred sixty-nine durum lines were genotyped using the Illumina 90K Infinium iSelect assay, and 12,234 polymorphic single nucleotide polymorphism (SNP) markers were generated and used to assess the population structure and the linkage disequilibrium (LD) patterns. A total of 8,581 SNPs previously localized to a high-density consensus map were clustered into 406 haplotype blocks based on the average LD distance of 5.3 cM. Combining multiple SNPs into haplotype blocks increased the average polymorphism information content (PIC) from 0.27 per SNP to 0.50 per haplotype. The haplotype-based analysis identified 12 loci associated with grain pigment colour traits, including the five loci identified by the single marker-based analysis. Furthermore, the haplotype-based analysis resulted in an increase of the phenotypic variance explained (50.4% on average) and the allelic effect (33.7% on average) when compared to single marker analysis. The presence of multiple allelic combinations within each haplotype locus offers potential for screening the most favorable haplotype series and may facilitate marker-assisted selection of grain pigment colour in durum wheat. These results suggest a benefit of haplotype

  8. Metabolic and Transcriptional Analysis of Durum Wheat Responses to Elevated CO2 at Low and High Nitrate Supply.

    PubMed

    Vicente, Rubén; Pérez, Pilar; Martínez-Carrasco, Rafael; Feil, Regina; Lunn, John E; Watanabe, Mutsumi; Arrivault, Stephanie; Stitt, Mark; Hoefgen, Rainer; Morcuende, Rosa

    2016-10-01

    Elevated [CO2] (eCO2) can lead to photosynthetic acclimation and this is often intensified by low nitrogen (N). Despite intensive studies of plant responses to eCO2, the regulation mechanism of primary metabolism at the whole-plant level in interaction with [Formula: see text] supply remains unclear. We examined the metabolic and transcriptional responses triggered by eCO2 in association with physiological-biochemical traits in flag leaves and roots of durum wheat grown hydroponically in ambient and elevated [CO2] with low (LN) and high (HN) [Formula: see text] supply. Multivariate analysis revealed a strong interaction between eCO2 and [Formula: see text] supply. Photosynthetic acclimation induced by eCO2 in LN plants was accompanied by an increase in biomass and carbohydrates, and decreases of leaf organic N per unit area, organic acids, inorganic ions, Calvin-Benson cycle intermediates, Rubisco, nitrate reductase activity, amino acids and transcripts for N metabolism, particularly in leaves, whereas [Formula: see text] uptake was unaffected. In HN plants, eCO2 did not decrease photosynthetic capacity or leaf organic N per unit area, but induced transcripts for N metabolism, especially in roots. In conclusion, the photosynthetic acclimation in LN plants was associated with an inhibition of leaf [Formula: see text] assimilation, whereas up-regulation of N metabolism in roots could have mitigated the acclimatory effect of eCO2 in HN plants.

  9. Physicochemical and rheological properties of starch and flour from different durum wheat varieties and their relationships with noodle quality.

    PubMed

    Kaur, Amritpal; Shevkani, Khetan; Katyal, Mehak; Singh, Narpinder; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2016-04-01

    Starch and flour properties of different Indian durum wheat varieties were evaluated and related to noodle-making properties. Flours were evaluated for pasting properties, protein characteristics (extractable as well as unextractable monomeric and polymeric proteins) and dough rheology (farinographic properties), while starches were evaluated for granule size, thermal, pasting, and rheological properties. Flour peak and final viscosities related negatively to the proportion of monomeric proteins but positively to that of polymeric proteins whereas opposite relations were observed for dough rheological properties (dough-development time and stability). Starches from varieties with higher proportion of large granules showed the presence of less stable amylose-lipids and had more swelling power, peak viscosity and breakdown viscosity than those with greater proportion of small granules. Noodle-cooking time related positively to the proportion of monomeric proteins and starch gelatinization temperatures but negatively to that of polymeric proteins and amylose content. Varieties with more proteins resulted in firmer noodles. Noodle-cohesiveness related positively to the proportion of polymeric proteins and amylose-lipids complexes whereas springiness correlated negatively to amylose content and retrogradation tendency of starches.

  10. Classification of 31 Korean Wheat (Triticum aestivum L.) Cultivars Based on the Chemical Compositions.

    PubMed

    Choi, Induck; Kang, Chon-Sik; Lee, Choon-Kee; Kim, Sun-Lim

    2016-12-01

    Whole grain wheat flour (WGWF) is the entire grain (bran, endosperm, and germ) milled to make flour. The WGWF of 31 Korean wheat (Triticum aestivum L.) cultivars were analyzed for the chemical compositions, and classified into groups by hierarchical cluster analysis (HCL). The average composition values showed a substantial variation among wheat varieties due to different wheat varieties. Wheat cv. Shinmichal1 (waxy wheat) had the highest ash, lipid, and total dietary fiber contents of 1.76, 3.14, and 15.49 g/100 g, respectively. Using HCL efficiently classified wheat cultivars into 7 clusters. Namhae, Sukang, Gobun, and Joeun contained higher protein values (12.88%) and dietary fiber (13.74 %). Regarding multi-trait crop breeding, the variation in chemical compositions found between the clusters might be attributed to wheat genotypes, which was an important factor in accumulating those chemicals in wheat grains. Thus, once wheat cultivars with agronomic characteristics were identified, those properties might be included in the breeding process to develop a new variety of wheat with the trait.

  11. Classification of 31 Korean Wheat (Triticum aestivum L.) Cultivars Based on the Chemical Compositions

    PubMed Central

    Choi, Induck; Kang, Chon-Sik; Lee, Choon-Kee; Kim, Sun-Lim

    2016-01-01

    Whole grain wheat flour (WGWF) is the entire grain (bran, endosperm, and germ) milled to make flour. The WGWF of 31 Korean wheat (Triticum aestivum L.) cultivars were analyzed for the chemical compositions, and classified into groups by hierarchical cluster analysis (HCL). The average composition values showed a substantial variation among wheat varieties due to different wheat varieties. Wheat cv. Shinmichal1 (waxy wheat) had the highest ash, lipid, and total dietary fiber contents of 1.76, 3.14, and 15.49 g/100 g, respectively. Using HCL efficiently classified wheat cultivars into 7 clusters. Namhae, Sukang, Gobun, and Joeun contained higher protein values (12.88%) and dietary fiber (13.74 %). Regarding multi-trait crop breeding, the variation in chemical compositions found between the clusters might be attributed to wheat genotypes, which was an important factor in accumulating those chemicals in wheat grains. Thus, once wheat cultivars with agronomic characteristics were identified, those properties might be included in the breeding process to develop a new variety of wheat with the trait. PMID:28078265

  12. Variation and correlations between protein MW distribution and semolina quality parameters for durum wheat genotypes grown in North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research assessed the associations between protein molecular weight distribution (MWD) and quality characteristics for durum semolina samples that were obtained from thirteen durum genotypes grown at seven locations for two years in North Dakota. Sodium dodecyl sulfate (SDS) extractable and un...

  13. Solid-stemmed spring wheat cultivars give better androgenic response than hollow-stemmed cultivars in anther culture.

    PubMed

    Weigt, Dorota; Kiel, Angelika; Nawracała, Jerzy; Pluta, Mateusz; Łacka, Agnieszka

    2016-01-01

    Solid-stemmed spring wheat cultivars (Triticum aestivum L.) are resistant to the stem sawfly (Cephus cinctus Nort.) and lodging. Anthers of 24 spring wheat cultivars with varying content of pith in the stem were used in the experiment. All were classified into three groups: solid, medium-solid and hollow stems. There was considerable influence of the cultivar on callus formation and green plant regeneration. The highest efficiency of green plant regeneration (24%) was observed for the solid-stemmed AC Abbey cultivar. There was no regeneration from the explants of four cultivars: CLTR 7027, Alentejano, Marquis and Bombona. Principal component analysis showed no differences between the cases under observation (callus induction and green plant regeneration) in their response to pre-treatment temperatures (4 and 8°C). The examination of the effects of various auxin types in the induction medium on callus formation and green plant regeneration revealed that the strongest stimulation of these processes was observed in the C17 medium with 2,4-D and dicamba. The efficiency of callus formation and green plant regeneration was greater in solid-stemmed cultivars than in hollow-stemmed cultivars.

  14. Interactive Effects of Elevated [CO2] and Water Stress on Physiological Traits and Gene Expression during Vegetative Growth in Four Durum Wheat Genotypes

    PubMed Central

    Medina, Susan; Vicente, Rubén; Amador, Amaya; Araus, José Luis

    2016-01-01

    The interaction of elevated [CO2] and water stress will have an effect on the adaptation of durum wheat to future climate scenarios. For the Mediterranean basin these scenarios include the rising occurrence of water stress during the first part of the crop cycle. In this study, we evaluated the interactive effects of elevated [CO2] and moderate to severe water stress during the first part of the growth cycle on physiological traits and gene expression in four modern durum wheat genotypes. Physiological data showed that elevated [CO2] promoted plant growth but reduced N content. This was related to a down-regulation of Rubisco and N assimilation genes and up-regulation of genes that take part in C-N remobilization, which might suggest a higher N efficiency. Water restriction limited the stimulation of plant biomass under elevated [CO2], especially at severe water stress, while stomatal conductance and carbon isotope signature revealed a water saving strategy. Transcript profiles under water stress suggested an inhibition of primary C fixation and N assimilation. Nevertheless, the interactive effects of elevated [CO2] and water stress depended on the genotype and the severity of the water stress, especially for the expression of drought stress-responsive genes such as dehydrins, catalase, and superoxide dismutase. The network analysis of physiological traits and transcript levels showed coordinated shifts between both categories of parameters and between C and N metabolism at the transcript level, indicating potential genes and traits that could be used as markers for early vigor in durum wheat under future climate change scenarios. Overall the results showed that greater plant growth was linked to an increase in N content and expression of N metabolism-related genes and down-regulation of genes related to the antioxidant system. The combination of elevated [CO2] and severe water stress was highly dependent on the genotypic variability, suggesting specific genotypic

  15. Effect of salinity and water stress during the reproductive stage on growth, ion concentrations, Delta 13C, and delta 15N of durum wheat and related amphiploids.

    PubMed

    Yousfi, Salima; Serret, Maria Dolores; Voltas, Jordi; Araus, José Luis

    2010-08-01

    The physiological performance of durum wheat and two related amphiploids was studied during the reproductive stage under different combinations of salinity and irrigation. One triticale, one tritordeum, and four durum wheat genotypes were grown in pots in the absence of stress until heading, when six different treatments were imposed progressively. Treatments resulted from the combination of two irrigation regimes (100% and 35% of container water capacity) with three levels of water salinity (1.8, 12, and 17 dS m(-1)), and were maintained for nearly 3 weeks. Gas exchange and chlorophyll fluorescence and content were measured prior to harvest; afterwards shoot biomass and height were recorded, and Delta(13)C, delta(15)N, and the concentration of nitrogen (N), phosphorus, and several ions (K(+), Na(+), Ca(2+), Mg(2+)) were analysed in shoot material. Compared with control conditions (full irrigation with Hoagland normal) all other treatments inhibited photosynthesis through stomatal closure, accelerated senescence, and decreased biomass. Full irrigation with 12 dS m(-1) outperformed other stress treatments in terms of biomass production and physiological performance. Biomass correlated positively with N and delta(15)N, and negatively with Na(+) across genotypes and fully irrigated treatments, while relationships across deficit irrigation conditions were weaker or absent. Delta(13)C did not correlate with biomass across treatments, but it was the best trait correlating with phenotypic differences in biomass within treatments. Tritordeum produced more biomass than durum wheat in all treatments. Its low Delta(13)C and high K(+)/Na(+) ratio, together with a high potential growth, may underlie this finding. Mechanisms relating delta(15)N and Delta(13)C to biomass are discussed.

  16. Accelerated evolution of the mitochondrial genome in an alloplasmic line of durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat is not only an important crop but also an excellent plant species for nuclear mitochondrial interaction studies. To investigate the level of sequence changes introduced into the mitochondrial genome under the alloplasmic conditions, three mitochondrial genomes of Triticum-Aegilops species w...

  17. Glutamine synthetase in durum wheat: Genotypic variation and relationship with grain protein content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen Use Efficiency (NUE), one of the most valuable indicators for nitrogen use in crops, both in terms of yield and final grain protein content (GPC), is a very complex trait. The identification of wheat varieties with high NUE, as well as the characterization of central enzymes involved in th...

  18. Vegetation indices from active optical sensors in irrigated Durum Wheat: nitrogen and water effects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in the use of active optical sensors (AOS) for guiding nitrogen (N) management of crops like wheat (Triticum aestivum L.) has been strong since the mid-1990s. Recently, AOS have been used to assess water status of crops in addition to plant N status. Researchers have investigated vegetati...

  19. Anchoring durum wheat diversity in the reality of traditional agricultural systems: varieties, seed management, and farmers’ perception in two Moroccan regions

    PubMed Central

    2014-01-01

    Background Traditional agrosystems are the places were crop species have evolved and continue to evolve under a combination of human and environmental pressures. A better knowledge of the mechanisms underlying the dynamics of crop diversity in these agrosystems is crucial to sustain food security and farmers’ self-reliance. It requires as a first step, anchoring a description of the available diversity in its geographical, environmental, cultural and socio-economic context. Methods We conducted interviews with farmers cultivating durum wheat in two contrasted traditional agrosystems of Morocco in the Pre-Rif (163 farmers) and in the oases of the Atlas Mountains (110 farmers). We documented the varietal diversity of durum wheat, the main characteristics of the farms, the farming and seed management practices applied to durum wheat, and the farmers’ perception of their varieties. Results As expected in traditional agrosystems, farmers largely practiced diversified subsistence agriculture on small plots and relied on on-farm seed production or informal seed exchange networks. Heterogeneity nevertheless prevailed on many variables, especially on the modernization of practices in the Pre-Rif region. Fourteen (resp. 11) traditional and 5 (resp. 3) modern varieties were identified in the Pre-Rif region (resp. in the Atlas Mountains). The majority of farmers grew a single variety, and most traditional varieties were distributed in restricted geographical areas. At the farm level, more than half of the varieties were renewed in the last decade in the Pre-Rif, a more rapid renewal than in the Atlas Mountain. Modern varieties were more prevalent in the Pre-Rif region and were integrated in the traditional practices of seed production, selection and exchange. They were clearly distinguished by the farmers from the landraces, the last ones being appreciated for their quality traits. Conclusions The surveyed traditional agrosystems constitute open, dynamic and heterogeneous

  20. Hydrogen peroxide generation and antioxidant enzyme activities in the leaves and roots of wheat cultivars subjected to long-term soil drought stress.

    PubMed

    Huseynova, Irada M; Aliyeva, Durna R; Mammadov, Alamdar Ch; Aliyev, Jalal A

    2015-08-01

    The dynamics of the activity of catalase, ascorbate peroxidase, guaiacol peroxidase, and benzidine peroxidase, as well as the level of hydrogen peroxide in the vegetative organs of durum wheat (Triticum durum Desf.) cultivars was studied under long-term soil drought conditions. It was established that hydrogen peroxide generation occurred at early stages of stress in the tolerant variety Barakatli-95, whereas in the susceptible variety Garagylchyg-2 its significant amounts were accumulated only at later stages. Garagylchyg-2 shows a larger reduction of photochemical activity of PS II in both genotypes at all stages of ontogenesis under drought stress than Barakatli-95. The highest activity of catalase which plays a leading role in the neutralization of hydrogen peroxide was observed in the leaves and roots of the drought-tolerant variety Barakatli-95. Despite the fact that the protection system also includes peroxidases, the activity of these enzymes even after synthesis of their new portions is substantially lower compared with catalase. Native PAGE electrophoresis revealed the presence of one isoform of CAT, seven isoforms of APX, three isoforms of GPO, and three isoforms of BPO in the leaves, and also three isoforms of CAT, four isoforms of APX, two isoforms of GPO, and six isoforms of BPO in the roots of wheat. One isoform of CAT was found in the roots when water supply was normal and three isoforms were observed under drought conditions. Stress associated with long-term soil drought in the roots of wheat has led to an increase in the heterogeneity due to the formation of two new sedentary forms of catalase: CAT2 and CAT3.

  1. Inheritance of the light intensity response in spring cultivars of common wheat.

    PubMed

    Evtushenko, E V; Chekurov, V M

    2004-01-01

    The effects of low/high light intensities and day length on ear emergence time in climatic chambers were studied in 12 common wheat (Triticum aestivum L.) cultivars of different ecogeographical origin. Low light intensity (LI) affected the time to ear emergence in all the wheat cultivars of both the photoperiod sensitive and insensitive genotypes, increasing the number of days to ear emergence (DEE). Based on the increase in DEE, we chose samples with different light intensity responses among the cultivars and analyzed their F2 hybrids to see if they were segregating. Taken together, the data for the F2 plants and test cross showed that the strong response to light intensity is a recessive trait and that the parental cultivars differ by the two genes controlling the LI response in common wheat. Besides heading time, low LI increased the number of days to tillering in all the cultivars except Pitic 62, but short day affected the period to tillering less than low LI. The symbol Rli (the response to light intensity) is suggested to designate the genetic control of the response to LI in wheat. Thus, the response to LI may influence the adaptability to changing environmental conditions and yield of wheat cultivars.

  2. Identification of Ppd-B1 alleles in common wheat cultivars by CAPS marker.

    PubMed

    Okoń, S; Kowalczyk, K; Miazga, D

    2012-05-01

    Photoperiod response is a major determinant of the duration of growth stages in common wheat. In common wheat, many genes play a role in determining flowering time, but the Ppd genes located on the homoeologous group 2 play a major role. Of these Ppd-B1 is located on the short arm of 2B. In 107 common wheat cultivars grown in Poland and neighboring countries, the identification of Ppd-B1 alleles using in-del analysis by using a CAPS markers was investigated. 87 cultivars were shown to carry dominant Ppd-B1 alleles. This shows that Ppd-B1 alleles is have been widely used in common wheat breeding programme in these countries. Recessive ppd-B1 alleles were found only in 20 cultivars (12 Polish, 5 former Soviet Union, 2 German, 1 Swedish).

  3. Is floret primordia death triggered by floret development in durum wheat?

    PubMed

    Ferrante, Ariel; Savin, Roxana; Slafer, Gustavo A

    2013-07-01

    Survival of floret primordia initiated seems critical for the determination of grain number and yield in wheat, and understanding what determines floret mortality would help in the development of more robust physiological models of yield determination. The growth of the juvenile spikes has been frequently considered the determinant of grain number, implying that floret development would depend on resource availability and that the onset of floret death would be related to spike growth. However, this model has been recently challenged from a study concluding that floret death started when the most advanced floret primordia reached a particular developmental stage. As the few previous studies on this relationship involved photoperiod treatments which affect both floret development and the onset of spike growth, conclusions cannot be considered mechanistic. This comprehensive study analysed in detail floret development in wheat as affected by resource availability (mainly soil nitrogen levels) and found that the onset of floret death may occur when development of the most advanced florets ranged from stages 5 to 9 and that the average and standard deviation of floret developmental stage coinciding with the onset of floret death was not related to the level of availability of resources. These results provide further support to the model relating the onset of floret death with the initiation of active growth of the juvenile spike in which florets are developing.

  4. 21 CFR 137.225 - Whole durum flour.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Whole durum flour. 137.225 Section 137.225 Food... HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.225 Whole durum flour. Whole durum wheat flour conforms to...

  5. 21 CFR 137.225 - Whole durum flour.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Whole durum flour. 137.225 Section 137.225 Food... HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.225 Whole durum flour. Whole durum wheat flour conforms to...

  6. 21 CFR 137.225 - Whole durum flour.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Whole durum flour. 137.225 Section 137.225 Food... HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.225 Whole durum flour. Whole durum wheat flour conforms to...

  7. Mineral composition of small-grain cultivars from a uniform test plot in South Dakota

    USGS Publications Warehouse

    Erdman, J.A.; Moul, R.C.

    1982-01-01

    Seventy-five cultivated varieties (cultivars) of hard red spring wheat (HRS), hard red winter wheat (HRW), durum wheat, oats, and barley were harvested in 1974 from a small-grain trial plot in Harding County, SD, just north of Buffalo. Analysis of the grains reported here includes crude protein for only the wheat cultivars, ash yield, and 17 chemical elements, many of which are not commonly given in the literature (such as B, Cd, Mo, Ni, and Se). Differences in composition between the two classes of hard red wheat indicate that HRS is significantly higher (p < 0.05) than HRW in protein content, ash yield, Ca, K, Mg, Na, P, total S, Sr, and Zn; Cd is significantly higher in the HRW cultivars. For the most part, concentrations were quite uniform within all grain types. Only two cultivars were anomalous: cv. Hi Plains in HRW wheats and cv. Astro in the oat group.

  8. Response of photosynthetic apparatus to moderate high temperature in contrasting wheat cultivars at different oxygen concentrations.

    PubMed

    Stasik, Oleg; Jones, Hamlyn G

    2007-01-01

    The photosynthetic responses to moderately high temperatures (38 degrees C, imposed at 21% or 2% O(2) in air and 1500 mumol m(-2) s(-1)) were compared in wheat (Triticum aestivum L.) cultivars grown in northern regions of Ukraine and expected to be relatively sensitive to high temperatures ('North' cultivars) and in cultivars grown in southern regions and expected to be relatively heat-tolerant ('South' cultivars). Heating intact leaves in 21% O(2) for 1 h decreased CO(2) assimilation by c. 63% in 'North' cultivars and only c. 32% in 'South' cultivars, with a decrease in PSII activity being observed in only one of the 'North' cultivars. Carboxylation efficiency was decreased by about 2.7-fold in 'North' cultivars with no significant effect in 'South' cultivars. The maximum rates of carboxylation by Rubisco in vivo, V(cmax), estimated from Farquhar's model, increased more than 2-fold in 'South' cultivars and remained unchanged in 'North' cultivars while the maximum rate of RuBP regeneration, J(max), decreased by 53% and 21% in 'North' and 'South' cultivars, respectively. Where the heat treatment was imposed in 2% O(2) this increased (as compared with treatment at 21% O(2)) the inhibitory effect on CO(2) assimilation in tolerant cultivars, but decreased it in sensitive ones. The results suggested that differences in tolerance of moderately high temperatures in wheat relate to the stability of the Rubisco function and to RuBP regeneration activity rather than to the effects on PSII activity or stomatal control.

  9. Wheat responses to sodium vary with potassium use efficiency of cultivars

    PubMed Central

    Krishnasamy, Karthika; Bell, Richard; Ma, Qifu

    2014-01-01

    The role of varied sodium (Na) supply in K nutrition of wheat (Triticum aestivum L.) is not well understood especially among cultivars differing in K efficiency. We examined the response of K-efficient and K-inefficient Australian wheat cultivars to Na supply (low to high Na) under K-deficient and K-adequate conditions. In a pot experiment, wheat cvv Wyalkatchem, Cranbrook (K-efficient), and cvv Gutha, Gamenya (K-inefficient) were grown for 8 weeks in a sandy soil containing 40 or 100 mg K/kg in combination with nil, 25, 50, 100, or 200 mg Na/kg. High soil Na levels (100, 200 mg Na/kg) greatly reduced plant growth in all four cultivars especially at low soil K (40 mg K/kg). By contrast, low to moderate soil Na levels (25, 50 mg Na/kg) stimulated root dry weight at low K supply, particularly in K-efficient cultivars compared with K-inefficient cultivars. At low K supply, low to moderate Na failed to increase shoot Na to a concentration where substitution of K would be feasible. However, low to moderate Na supply increased shoot K concentration and content in all four wheat cultivars, and it increased leaf photosynthesis and stomatal conductance to measured values similar to those under adequate K and nil Na conditions. The results showed that low to moderate Na stimulated K uptake by wheat particularly in K-efficient cultivars and through increased shoot K enhanced the photosynthesis. We conclude that increased photosynthesis supplied more assimilates that led to increased root growth and that greater root growth response of K-efficient cultivars is related to their greater K-utilization efficiency. However, the process by which low to moderate Na increased shoot K content warrants further investigation. PMID:25426133

  10. Genetics of Leaf Rust Resistance in the Soft Red Winter Wheat Cultivars Coker 9663 and Pioneer 26R61

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf rust, caused by the fungus Puccinia triticina, is an important disease of soft red winter wheat cultivars that are grown in the southern and eastern United States. The objectives of this study were to identify the leaf rust resistance genes in two soft red winter wheat cultivars, Coker 9663 and...

  11. Cluster analysis of historical and modern hard red spring wheat cultivars based on parentage and HPLC of gluten protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been substantial breeding efforts in North Dakota to produce wheat cultivars that are well adapted to weather conditions and disease resistance. In this study, 30 hard red spring (HRS) wheat cultivars released between 1910 and 2013 were analyzed with regard to how they cluster in terms of...

  12. Selecting optimal hyperspectral bands to discriminate nitrogen status in durum wheat: a comparison of statistical approaches.

    PubMed

    Stellacci, A M; Castrignanò, A; Troccoli, A; Basso, B; Buttafuoco, G

    2016-03-01

    Hyperspectral data can provide prediction of physical and chemical vegetation properties, but data handling, analysis, and interpretation still limit their use. In this study, different methods for selecting variables were compared for the analysis of on-the-ground hyperspectral signatures of wheat grown under a wide range of nitrogen supplies. Spectral signatures were recorded at the end of stem elongation, booting, and heading stages in 100 georeferenced locations, using a 512-channel portable spectroradiometer operating in the 325-1075-nm range. The following procedures were compared: (i) a heuristic combined approach including lambda-lambda R(2) (LL R(2)) model, principal component analysis (PCA), and stepwise discriminant analysis (SDA); (ii) variable importance for projection (VIP) statistics derived from partial least square (PLS) regression (PLS-VIP); and (iii) multiple linear regression (MLR) analysis through maximum R-square improvement (MAXR) and stepwise algorithms. The discriminating capability of selected wavelengths was evaluated by canonical discriminant analysis. Leaf-nitrogen concentration was quantified on samples collected at the same locations and dates and used as response variable in regressive methods. The different methods resulted in differences in the number and position of the selected wavebands. Bands extracted through regressive methods were mostly related to response variable, as shown by the importance of the visible region for PLS and stepwise. Band selection techniques can be extremely useful not only to improve the power of predictive models but also for data interpretation or sensor design.

  13. Differential protection of ethylenediurea (EDU) against ambient ozone for five cultivars of tropical wheat.

    PubMed

    Singh, Shalini; Agrawal, S B; Agrawal, Madhoolika

    2009-01-01

    The antiozonant EDU (ethylenediurea) was used to assess the impact of ambient O(3) under field conditions on five cultivars of tropical wheat (Triticum aestivum L.). EDU solution (0 ppm and 400 ppm) was applied as soil drench (100 ml plant(-1)) 10 days after germination (DAG) at an interval of 12 days. EDU-treated plants showed significant increments in stomatal conductance, photosynthetic rate, variable fluorescence, total chlorophyll, ascorbic acid, proline and protein contents and protective enzymes (POX, SOD and APX) activities in HUW468, HUW510 and HUW234 cultivars, while, a reverse trend was observed for lipid peroxidation. EDU application restored grain yield significantly by maintaining higher levels of antioxidants, metabolites and enzymes in cultivars HUW468 and HUW510. Sonalika and PBW343 showed least response of measured parameters under EDU treatment suggesting their greater resistance to O(3). EDU, thus proved its usefulness in screening suitable wheat cultivars for areas experiencing elevated concentrations of O(3).

  14. [Genetic diversity of reaction of common wheat (Triticum aestivum L.) cultivars to light intensity].

    PubMed

    Evtushenko, E V; Chekurov, V M

    2000-05-01

    The effect of low light intensity (LI) on the period from sprouting to earing was studied in 12 cultivars of the spring common wheat under controlled conditions. Differences between cultivars with respect to their responses to LI (RLIs) were found both for those that were photoperiod-sensitive and those that were almost photoperiod-neutral. Specifically, a prolonged photoperiod and a low LI differently increased the period from sprouting to earling in different cultivars. Genetic analysis of the RLI demonstrated, for the first time, that the weak response was incompletely dominant in F1. The results of genetic analysis agree with the hypothesis that the cultivars Pitic 62 and Novosibirskaya 22 differ in alleles of two loci controlling the RLI in wheat.

  15. Wheat in the Mediterranean revisited – tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers

    PubMed Central

    2014-01-01

    Background Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. Results We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. Conclusions SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat. PMID:24885044

  16. Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.)

    PubMed Central

    2012-01-01

    Background The analyses of protein synthesis, accumulation and regulation during grain development in wheat are more complex because of its larger genome size compared to model plants such as Arabidopsis and rice. In this study, grains from two wheat cultivars Jimai 20 and Zhoumai 16 with different gluten quality properties were harvested at five development stages, and were used to displayed variable expression patterns of grain proteins. Results Proteome characterization during grain development in Chinese bread wheat cultivars Jimai 20 and Zhoumai 16 with different quality properties was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 117 differentially accumulated protein spots representing 82 unique proteins and five main expression patterns enabled a chronological description of wheat grain formation. Significant proteome expression differences between the two cultivars were found; these included 14 protein spots that accumulated in both cultivars but with different patterns and 27 cultivar-different spots. Among the cultivar-different protein spots, 14 accumulated in higher abundance in Jimai 20 than in Zhoumai 16, and included NAD-dependent isocitrate dehydrogenase, triticin precursor, LMW-s glutenin subunit and replication factor C-like protein. These proteins are likely to be associated with superior gluten quality. In addition, some proteins such as class II chitinase and peroxidase 1 with isoforms in developing grains were shown to be phosphorylated by Pro-Q Diamond staining and phosphorprotein site prediction. Phosphorylation could have important roles in wheat grain development. qRT-PCR analysis demonstrated that transcriptional and translational expression patterns of many genes were significantly different. Conclusions Wheat grain proteins displayed variable expression patterns at different developmental stages and a considerable number of protein spots showed differential accumulation between two cultivars. Differences in seed

  17. Transcriptomic and proteomic analyses of a pale-green durum wheat mutant shows variations in photosystem components and metabolic deficiencies under drought stress

    PubMed Central

    2014-01-01

    Background Leaf pigment content is an important trait involved in environmental interactions. In order to determine its impact on drought tolerance in wheat, we characterized a pale-green durum wheat mutant (Triticum turgidum L. var. durum) under contrasting water availability conditions. Results The pale-green mutant was investigated by comparing pigment content and gene/protein expression profiles to wild-type plants at anthesis. Under well-watered (control) conditions the mutant had lower levels of chlorophylls and carotenoids, but higher levels of xanthophyll de-epoxidation compared to wild-type. Transcriptomic analysis under control conditions showed that defense genes (encoding e.g. pathogenesis-related proteins, peroxidases and chitinases) were upregulated in the mutant, suggesting the presence of mild oxidative stress that was compensated without altering the net rate of photosynthesis. Transcriptomic analysis under terminal water stress conditions, revealed the modulation of antioxidant enzymes, photosystem components, and enzymes representing carbohydrate metabolism and the tricarboxylic acid cycle, indicating that the mutant was exposed to greater oxidative stress than the wild-type plants, but had a limited capacity to respond. We also compared the two genotypes under irrigated and rain-fed field conditions over three years, finding that the greater oxidative stress and corresponding molecular changes in the pale-green mutant were associated to a yield reduction. Conclusions This study provides insight on the effect of pigment content in the molecular response to drought. Identified genes differentially expressed under terminal water stress may be valuable for further studies addressing drought resistance in wheat. PMID:24521234

  18. Genetic mapping of QTL for resistance to Fusarium head blight spread (type 2 resistance) in a Triticum dicoccoides × Triticum durum backcross-derived population.

    PubMed

    Buerstmayr, Maria; Alimari, Abdallah; Steiner, Barbara; Buerstmayr, Hermann

    2013-11-01

    Improvement of resistance to Fusarium head blight (FHB) is a continuous challenge for durum wheat breeders, particularly due to the limited genetic variation within this crop species. We accordingly generated a backcross-derived mapping population using the type 2 FHB resistant Triticum dicoccoides line Mt. Gerizim #36 as donor and the modern Austrian T. durum cultivar Helidur as recipient; 103 BC1F6:7 lines were phenotyped for type 2 FHB resistance using single-spikelet inoculations and genotyped with 421 DNA markers (SSR and AFLP). QTL mapping revealed two highly significant QTL, mapping to chromosomes 3A and 6B, respectively. For both QTL the T. dicoccoides allele improved type 2 FHB resistance. Recombinant lines with both favorable alleles fixed conferred high resistance to FHB similar to that observed in the T. dicoccoides parent. The results appear directly applicable for durum wheat resistance breeding.

  19. Physiological changes in Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars, caused by irrigation with water contaminated with microcystins: a laboratory experimental approach.

    PubMed

    Saqrane, Sana; Ouahid, Youness; El Ghazali, Issam; Oudra, Brahim; Bouarab, Lahcen; del Campo, Francisca F

    2009-06-01

    The aim of the present study was to investigate the effect of exposure to a microcystin (MC)-containing extract from a cyanobacteria bloom on growth, development, mineral nutrient accumulation, and photosynthetic activity of Triticum durum, Zea mays, Pisum sativum and Lens esculenta cultivars. The MCs in the extract, identified by HPLC and/or mass spectrometry (MS) were: MC-RR, -LR, -YR, -(H4)YR, -WR, and -FR. Plant growth and development was tested along 30 exposure days. After this period, MC-extract caused a clear reduction in plant growth and productivity, as well as deleterious effects on development and Photosystem II activity, measured by Fv/Fm fluorescence. However, the chlorophyll (a + b) content hardly varied, and the accumulation of Na+, K+, Ca2+, P and N was enhanced. All the effects observed were plant species, MC concentration, and exposure-time dependent. Relative accumulation of each MC variant greatly varied among plant species and plant organ. The data obtained supports the idea that the use of surface water containing MCs for crop irrigation can affect both plant yield and quality, and secondly, that MC accumulation in edible plants might pose a potential risk for human and animal health, if the MC intake exceeded the recommended tolerable limits.

  20. Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing

    PubMed Central

    2010-01-01

    Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield) from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g-1 dm pretreated straw) and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion. Conclusions We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment. PMID:21087497

  1. A Standardized Inoculation Protocol to Test Wheat Cultivars for Reaction to Head Blast caused by Magnaporthe oryzae (Triticum pathotype)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat blast, caused by the Triticum pathotype of M. oryzae (MoT), poses a significant threat to wheat production worldwide. Because this pathotype does not occur in the U.S., it is important to prepare for its possible introduction. As part of this preparation, over 500 U.S. wheat cultivars were tes...

  2. Production of aneuhaploid and euhaploid sporocytes by meiotic restitution in fertile hybrids between durum wheat Langdon chromosome substitution lines and Aegilops tauschii.

    PubMed

    Zhang, Lianquan; Chen, Qijiao; Yuan, Zhongwei; Xiang, Zhiguo; Zheng, Youliang; Liu, Dengcai

    2008-10-01

    Fertile F(1) hybrids were obtained between durum wheat (Triticum durum Desf.) Langdon (LDN) and its 10 disomic substitution (LDN DS) lines with Aegilops tauschii accession AS60 without embryo rescue. Selfed seedset rates for hybrids of LDN with AS60 were 36.87% and 49.45% in 2005 and 2006, respectively. Similar or higher selfed seedset rates were observed in the hybrids of 1D (1A), 1D (1B), 3D (3A), 4D (4B), 7D (7A), and 2D (2B) with AS60, while lower in hybrids of 3D (3B) + 3BL, 5D (5A) + 5AL, 5D (5B) + 5B and 6D (6B) + 6BS with AS60 compared with the hybrids of LDN with AS60. Observation of male gametogenesis showed that meiotic restitution, both first-division restitution (FDR) and single-division meiosis (SDM) resulted in the formation of functional unreduced gametes, which in turn produced seeds. Both euhaploid and aneuhaploid gametes were produced in F(1) hybrids. This suggested a strategy to simultaneously transfer and locate major genes from the ancestral species T. turgidum or Ae. tauschii. Moreover, there was no significant difference in the aneuhaploid rates between the F(1) hybrids of LDN and LDN DS lines with AS60, suggesting that meiotic pairing between the two D chromosomes in the hybrids of LDN DS lines with AS60 did not promote the formation of aneuhaploid gametes.

  3. Wheat cultivars affecting life history and digestive amylolytic activity of Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae).

    PubMed

    Borzoui, E; Naseri, B

    2016-08-01

    The life history and digestive α-amylase activity of the Angoumois grain moth, Sitotroga cerealella Olivier (Lepidoptera: Gelechiidae) were studied on six wheat cultivars (Arg, Bam, Nai 60, Pishtaz, Sepahan and Shanghai) at 25 ± 1°C, relative humidity of 65 ± 5% and a photoperiod of 16:8 (L:D) h. A delay in the developmental time of S. cerealella immature stages was detected when larvae were fed on cultivar Sepahan. The maximum survival rate of immature stages was seen on cultivar Bam (93.33 ± 2.10%), and the minimum rates were on cultivars Nai 60 (54.66 ± 2.49%) and Sepahan (49.33 ± 4.52%). The highest realized fecundity and fertility were recorded for females which came from larvae fed on cultivar Bam (93.30 ± 2.10 eggs/female and 91.90 ± 3.10%, respectively); and the lowest ones were observed for females which came from larvae fed on cultivar Sepahan (49.30 ± 4.50 eggs/female and 67.4 ± 11.1%, respectively). The heaviest male and female weights of S. cerealella were observed on cultivar Bam (2.97 ± 0.02 and 4.80 ± 0.01 mg, respectively). The highest amylolytic activity of the fourth instar was detected on cultivar Bam (0.89 ± 0.04 mg maltose min-1), which had the maximum mean hundred-wheat weight (5.92 ± 0.19 g). One α-amylase isozyme was detected in the midgut extracts from the fourth instar larvae fed on different wheat cultivars, and the highest intensity was found in larvae fed on cultivar Bam. Correlation analyses showed that very high correlations existed between the immature period, fecundity and fertility on one side and inhibition of α-amylase, soluble starch content and hundred-wheat weight on the other. According to the obtained results, cultivar Sepahan is an unfavorable host for the feeding and development of S. cerealella.

  4. Impact of temperatures to Hessian Fly resistance of selected wheat cultivars in the Great Plains Region

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Changes in temperature can result in fundamental changes in plant physiology. This study investigated the impact of different temperatures from 14 to 26 °C on the resistance or susceptibility to the Hessian fly, Mayetiola destructor, of selected wheat cultivars that are either currently popular in ...

  5. Response of two wheat cultivars to supplemental nitrogen under different salinity stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effects of supplemental nitrogen (N), as either farmyard manure (FYM) or urea, on response of two wheat (Triticum aestivum) cultivars (a salt sensitive ‘Sakha 69’ and a salt tolerant ‘Sakha 93’) were investigated in a green house experiment under various salinity levels (control, 6, 9, or 12 dS m-1)...

  6. Evaluation of plant resistance inducers on different winter soft wheat cultivars against Septoria leaf blotch.

    PubMed

    Ors, M; Siah, A; Randoux, B; Selim, S; Boizet, F; Couleaud, G; Maumene, C; Halama, P; Reignault, Ph

    2012-01-01

    Septoria tritici blotch (STB) caused by Mycosphaerella graminicola (anamorph: Zymoseptoria tritici) is one of the most devastating foliar diseases on bread wheat (Triticum aestivum L.). Because of the emergence of fungal strains highly resistant to mainly used fungicides and the deleterious impacts of these fungicides on the environment, development of alternative control strategies to protect wheat crops against STB is needed. The induction of plant resistance by elicitors is likely to be a helpful alternative. Our study aims at characterizing the efficiency of potential resistance inducers towards STB in three bread wheat cultivars differing in their resistance levels to the pathogen: Alixan (susceptible), Premio (moderately resistant) and Altigo (resistant). These cultivars were inoculated under controlled and semi-controlled conditions with the pathogenic M. graminicolo strain T01193 in order to assess the protective effect of three potential resistance inducers against the disease. Moreover, the direct antifungal effect bf these products was evaluated in vitro at different concentrations in order to verify their potential biocide activity. Furthermore, cytological analyses were performed in order to determine the effects of these products on the fungal infection process and to compare these effects among the three wheat cultivars. Finally, reactive oxygen species metabolism was investigated in the three cultivars during their interaction with T01193 by measuring peroxidase activity.

  7. Specificity of a rust resistance suppressor on 7DL in the spring wheat cultivar Canthatch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spring wheat cultivar Canthatch has been shown to suppress stem rust resistance genes in the background due to the presence of a suppressor gene located on the long arm of chromosome 7D. It is however unclear whether the suppressor also suppresses resistance genes against leaf rust and stripe ru...

  8. Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photochemistry and stomatal re...

  9. Responses of winter wheat cultivars to fungicide application for control of stripe rust in 2015

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To determine the responses of winter wheat cultivars with various levels of stripe rust resistance grown in the U.S. Pacific Northwest to fungicide application for control of stripe rust, this study was conducted in a field near Pullman, WA. Urea (46N-0P-0K) was applied at 100 lb/A at the time of pl...

  10. Molecular mapping of stripe rust resistance gene Yr76 in winter club wheat cultivar Tyee

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tyee, one of the wheat cultivars used to differentiate races of Puccinia striiformis f. sp. tritici (Pst) in the United States, was identified to have a single gene for all-stage resistance, tentatively named YrTye. To map the gene, Tyee was crossed with ‘Avocet Susceptible’ (AvS). Genetic analysi...

  11. Relationships between Genetic Diversity and Fusarium Toxin Profiles of Winter Wheat Cultivars

    PubMed Central

    Góral, Tomasz; Stuper-Szablewska, Kinga; Buśko, Maciej; Boczkowska, Maja; Walentyn-Góral, Dorota; Wiśniewska, Halina; Perkowski, Juliusz

    2015-01-01

    Fusarium head blight is one of the most important and most common diseases of winter wheat. In order to better understanding this disease and to assess the correlations between different factors, 30 cultivars of this cereal were evaluated in a two-year period. Fusarium head blight resistance was evaluated and the concentration of trichothecene mycotoxins was analysed. Grain samples originated from plants inoculated with Fusarium culmorum and naturally infected with Fusarium species. The genetic distance between the tested cultivars was determined and data were analysed using multivariate data analysis methods. Genetic dissimilarity of wheat cultivars ranged between 0.06 and 0.78. They were grouped into three distinct groups after cluster analysis of genetic distance. Wheat cultivars differed in resistance to spike and kernel infection and in resistance to spread of Fusarium within a spike (type II). Only B trichothecenes (deoxynivalenol, 3-acetyldeoxynivalenol and nivalenol) produced by F. culmorum in grain samples from inoculated plots were present. In control samples trichothecenes of groups A (H-2 toxin, T-2 toxin, T-2 tetraol, T-2 triol, scirpentriol, diacetoxyscirpenol) and B were detected. On the basis of Fusarium head blight assessment and analysis of trichothecene concentration in the grain relationships between morphological characters, Fusarium head blight resistance and mycotoxins in grain of wheat cultivars were examined. The results were used to create of matrices of distance between cultivars – for trichothecene concentration in inoculated and naturally infected grain as well as for FHB resistance Correlations between genetic distance versus resistance/mycotoxin profiles were calculated using the Mantel test. A highly significant correlation between genetic distance and mycotoxin distance was found for the samples inoculated with Fusarium culmorum. Significant but weak relationships were found between genetic distance matrix and FHB resistance or

  12. Quantitative RT-PCR Platform to Measure Transcript Levels of C and N Metabolism-Related Genes in Durum Wheat: Transcript Profiles in Elevated [CO2] and High Temperature at Different Levels of N Supply.

    PubMed

    Vicente, Rubén; Pérez, Pilar; Martínez-Carrasco, Rafael; Usadel, Björn; Kostadinova, Svetla; Morcuende, Rosa

    2015-08-01

    Only limited public transcriptomics resources are available for durum wheat and its responses to environmental changes. We developed a quantitative reverse transcription-PCR (qRT-PCR) platform for analysing the expression of primary C and N metabolism genes in durum wheat in leaves (125 genes) and roots (38 genes), based on available bread wheat genes and the identification of orthologs of known genes in other species. We also assessed the expression stability of seven reference genes for qRT-PCR under varying environments. We therefore present a functional qRT-PCR platform for gene expression analysis in durum wheat, and suggest using the ADP-ribosylation factor as a reference gene for qRT-PCR normalization. We investigated the effects of elevated [CO(2)] and temperature at two levels of N supply on C and N metabolism by combining gene expression analysis, using our qRT-PCR platform, with biochemical and physiological parameters in durum wheat grown in field chambers. Elevated CO(2) down-regulated the photosynthetic capacity and led to the loss of N compounds, including Rubisco; this effect was exacerbated at low N. Mechanistically, the reduction in photosynthesis and N levels could be associated with a decreased transcription of the genes involved in photosynthesis and N assimilation. High temperatures increased stomatal conductance, and thus did not inhibit photosynthesis, even though Rubisco protein and activity, soluble protein, leaf N, and gene expression for C fixation and N assimilation were down-regulated. Under a future scenario of climate change, the extent to which C fixation capacity and N assimilation are down-regulated will depend upon the N supply.

  13. Classification of spelt cultivars based on differences in storage protein compositions from wheat.

    PubMed

    Koenig, Annette; Konitzer, Katharina; Wieser, Herbert; Koehler, Peter

    2015-02-01

    Wholemeal flours from 62 spelt and 13 wheat cultivars were studied. The quantitative protein compositions of the Osborne fractions determined by reversed-phase high-performance liquid chromatography, showed that the chromatograms of the reduced gliadin fractions were most suitable for the distinction of spelt from wheat and for the classification of spelt. The patterns of the reduced spelt gliadins showed one to three markers that were not present in wheat. Based on these markers, spelt cultivars were classified into three groups ranging from 'typical spelt' to 'similar to common wheat'. Marker 1 was identified as ω1,2-gliadin and markers 2, 3a and 3b were identified as γ-gliadins by means of N-terminal sequence analysis and determination of the relative molecular mass by mass spectrometry. As glutenin-bound ω-gliadins were present in wheat and absent in spelt, this protein type may be used to detect and quantitate small amounts of wheat in spelt products.

  14. [Effects of ecological factors on the dough extensograph parameters of different winter wheat cultivars].

    PubMed

    Zhang, Xue-lin; Wang, Chen-yang; Guo, Tian-cai; Wang, Yong-hua; Zhu, Yun-ji

    2009-12-01

    In 2000-2001 and 2001-2002, six representative winter wheat cultivars Yumai 34, Gaomai 8901, Yumai 49, Yumai 70, Luoyang 8716, and Yumai 50 were consecutively grown at five locations (Xinyang, Zhumadian, Xuchang, Wuzhi, and Tangyin) with latitudes varying from 32 degrees N to 36 degrees N in Henan Province, aimed to understand the relationships of winter wheat dough extensograph parameters with genetic and ecological factors. The dough extensograph parameters were more affected by genetic factors than by ecological factors. Cultivars Yumai 34 and Gaomai 8901 had significantly higher maximum resistance and extension area than the other four test cultivars, and significant differences in the dough extensograph parameters were observed between the cultivars grown in the south region (Xinyang and Zhumadian) and in the north region (Wuzhi and Tangyin) of the Province. The change patterns of dough extensograph parameters with latitude differed in 2000-2001 and in 2001-2002, and the effects of climatic factors on the dough extensograph parameters varied with year. In 2001-2002, the precipitation at the stage from grain-filling to maturing affected the dough extensograph parameters significantly. Our results suggested that in order to improve the dough extensograph parameters of winter wheat, local meteorological conditions should be taken into full consideration in the soil water management at late-maturing stage.

  15. Quantitative Proteomic Analysis of Wheat Cultivars with Differing Drought Stress Tolerance

    PubMed Central

    Ford, Kristina L.; Cassin, Andrew; Bacic, Antony

    2011-01-01

    Using a series of multiplexed experiments we studied the quantitative changes in protein abundance of three Australian bread wheat cultivars (Triticum aestivum L.) in response to a drought stress. Three cultivars differing in their ability to maintain grain yield during drought, Kukri (intolerant), Excalibur (tolerant), and RAC875 (tolerant), were grown in the glasshouse with cyclic drought treatment that mimicked conditions in the field. Proteins were isolated from leaves of mature plants and isobaric tags were used to follow changes in the relative protein abundance of 159 proteins. This is the first shotgun proteomics study in wheat, providing important insights into protein responses to drought as well as identifying the largest number of wheat proteins (1,299) in a single study. The changes in the three cultivars at the different time points reflected their differing physiological responses to drought, with the two drought tolerant varieties (Excalibur and RAC875) differing in their protein responses. Excalibur lacked significant changes in proteins during the initial onset of the water deficit in contrast to RAC875 that had a large number of significant changes. All three cultivars had changes consistent with an increase in oxidative stress metabolism and reactive O2 species (ROS) scavenging capacity seen through increases in superoxide dismutases and catalases as well as ROS avoidance through the decreases in proteins involved in photosynthesis and the Calvin cycle. PMID:22639595

  16. Yield comparisons and unique characteristics of the dwarf wheat cultivar `USU-Apogee'

    NASA Astrophysics Data System (ADS)

    Bugbee, B.; Koerner, G.

    1997-01-01

    Extremely short, high yielding cultivars of all crop plants are needed to optimize the food production of bioregenerative life support systems in space. In the early 1980's, we examined over a thousand wheat genotypes from the world germplasm collection in search of genotypes with appropriate characteristics for food production in space. Here we report the results of 12 years of hybridization and selection for the perfect wheat cultivar. `USU-Apogee' is a full-dwarf hard red spring wheat (Triticum aestivum L.) cultivar developed for high yields in controlled environments. USU-Apogee was developed by the Utah Agricultural Experiment Station in cooperation with the National Aeronautics and Space Administration and released in April 1996. USU-Apogee is a shorter, higher yielding alternative to `Yecora Rojo' and `Veery-10', the short field genotypes previously selected for use in controlled environments. The yield advantage of USU-Apogee is 10 to 30% over these other cultivars, depending on environmental conditions. USU-Apogee (45-50 cm tall, depending on temperature) is 10 to 15 cm shorter than Yecora Rojo and 1 to 4 cm shorter than Veery-10. USU-Apogee was also selected for resistance to the calcium-induced leaf tip chlorosis that occurs in controlled-environments. Breeder seed of USU-Apogee will be maintained by the Crop Physiology Laboratory and seed is available for testing on request.

  17. Effects of wheat maturation stage and cooking method on dietary fiber and phytic acid contents of firik, a wheat-based local food.

    PubMed

    Ozboy, O; Ozkaya, B; Ozkaya, H; Köksel, H

    2001-10-01

    Samples of two durum wheat cultivars (cvs. Duraking and Ege 88) at different maturation stages (13, 16, 19, 22, 25 days post anthesis) were processed into firik (a wheat-based specialty food) using two different cooking methods: roasting (scorching) on flames and boiling at atmospheric pressure. Both the acid detergent and neutral detergent fiber contents of the firiks produced from two durum wheat samples decreased significantly (p < 0.01) with maturation. Total P contents of the firiks of both cultivars produced by both methods showed a significant downward trend within the period of maturation while their phytic acid contents showed a significant upward trend (p < 0.01). It was possible to obtain a reduced phytic acid, high fiber product from the wheats harvested at early stages of maturation (13 and 16 days after anthesis).

  18. Water and nitrogen conditions affect the relationships of Delta13C and Delta18O to gas exchange and growth in durum wheat.

    PubMed

    Cabrera-Bosquet, Llorenç; Molero, Gemma; Nogués, Salvador; Araus, José Luis

    2009-01-01

    Whereas the effects of water and nitrogen (N) on plant Delta(13)C have been reported previously, these factors have scarcely been studied for Delta(18)O. Here the combined effect of different water and N regimes on Delta(13)C, Delta(18)O, gas exchange, water-use efficiency (WUE), and growth of four genotypes of durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn.] cultured in pots was studied. Water and N supply significantly increased plant growth. However, a reduction in water supply did not lead to a significant decrease in gas exchange parameters, and consequently Delta(13)C was only slightly modified by water input. Conversely, N fertilizer significantly decreased Delta(13)C. On the other hand, water supply decreased Delta(18)O values, whereas N did not affect this parameter. Delta(18)O variation was mainly determined by the amount of transpired water throughout plant growth (T(cum)), whereas Delta(13)C variation was explained in part by a combination of leaf N and stomatal conductance (g(s)). Even though the four genotypes showed significant differences in cumulative transpiration rates and biomass, this was not translated into significant differences in Delta(18)O(s). However, genotypic differences in Delta(13)C were observed. Moreover, approximately 80% of the variation in biomass across growing conditions and genotypes was explained by a combination of both isotopes, with Delta(18)O alone accounting for approximately 50%. This illustrates the usefulness of combining Delta(18)O and Delta(13)C in order to assess differences in plant growth and total transpiration, and also to provide a time-integrated record of the photosynthetic and evaporative performance of the plant during the course of crop growth.

  19. Two years monitoring of soil N_{2}O emissions on durum wheat in a Mediterranean area: the effect of tillage intensity and N-fertilizer rate.

    NASA Astrophysics Data System (ADS)

    Volpi, Iride; Bosco, Simona; Triana, Federico; Di Nasso, Nicoletta Nassi o.; Laville, Patricia; Virgili, Giorgio; Bonari, Enrico

    2016-04-01

    Evaluating the magnitude and the key factors affecting N2O emissions from agriculture has a scientific and practical relevance, in fact emissions from agricultural and natural soils account for 56-70% of all global N2O sources (Syakila and Kroeze, 2011). Moreover, the necessity to increase the food production rate minimizing greenhouse gas emissions require a deeper understanding of the effect of the agricultural practices on direct soil emissions. Therefore, the aim of this work is to assess the effect of tillage intensity and nitrogen rate on soil N2O emissions on durum wheat. A two years monitoring campaign was carried out using a high-sensibility transportable instrument developed within the LIFE+ "Improved flux Prototypes for N2O emission from Agriculture" IPNOA project (Bosco et al., 2015; Laville et al., 2015). The project aims at improving the measurement technique of N2O flux directly in field using the flow-through non-steady state chamber technique. The monitoring campaign on durum wheat lasted for two growing seasons and two fallow periods (2013-14 and 2014-15). Treatment on the main plot was tillage intensity with two levels, ploughing and minimum tillage, and three different nitrogen rates were distributed to the subplots (N0: 0 kg ha-1, N1: 110 kg ha-1, N2: 170 kg ha-1). Ancillary measurements concerned meteorological data, soil temperature and moisture, NO3-, NH4+ soil concentration. Main results of the two years highlighted N rate as the main driver for both N2O daily flux and cumulative emissions during the growing season, while in the fallow period treatments did not affect the emission magnitude. Tillage intensity was not a key factor for N2O emissions. N2O emissions were significantly different in the two years. In particular, cumulative emissions of 2013-14 were about five times higher than in 2014-15, respectively on average 2885±260 g N-N2O ha-1 and 534±53 g N-N2O ha-1 for a similar monitoring period of about 300 days. Differences could be

  20. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance.

    PubMed

    Zheng, Yanhai; Jia, Aijun; Ning, Tangyuan; Xu, Jialin; Li, Zengjia; Jiang, Gaoming

    2008-09-29

    A sand culture experiment was conducted to answer the question whether or not exogenous KNO(3) can alleviate adverse effects of salt stress in winter wheat by monitoring plant growth, K(+)/Na(+) accumulation and the activity of some antioxidant enzymes. Seeds of two wheat cultivars (CVs), DK961 (salt-tolerant) and JN17 (salt-sensitive), were planted in sandboxes and controls germinated and raised with Hoagland nutrient solution (6 mM KNO(3), no NaCl). Experimental seeds were exposed to seven modified Hoagland solutions containing increased levels of KNO(3) (11, 16, 21 mM) or 100 mM NaCl in combination with the four KNO(3) concentrations (6, 11, 16 and 21 mM). Plants were harvested 30 d after imbibition, with controls approximately 22 cm in height. Both CVs showed significant reduction in plant height, root length and dry weight of shoots and roots under KNO(3) or NaCl stress. However, the combination of increased KNO(3) and NaCl alleviated symptoms of the individual salt stresses by improving growth of shoots and roots, reducing electrolyte leakage, malondialdehyde and soluble sugar contents and enhancing the activities of antioxidant enzymes. The salt-tolerant cultivar accumulated more K(+) in both shoots and roots compared with the higher Na(+) accumulation typical for the salt-sensitive cultivar. Soluble sugar content and activities of antioxidant enzymes were found to be more stable in the salt-tolerant cultivar. Our findings suggest that the optimal K(+)/Na(+) ratio of the nutrient solution should be 16:100 for both the salt-tolerant and the salt-sensitive cultivar under the experimental conditions used, and that the alleviation of NaCl stress symptoms through simultaneously applied elevated KNO(3) was more effective in the salt-tolerant than in the salt-sensitive cultivar.

  1. Genetic mapping of major-effect seed dormancy quantitative trait loci on chromosome 2B using recombinant substitution lines in tetraploid wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat cultivars can benefit from having some level of seed dormancy to help reduce seed damage and lower grain quality caused by pre-harvest sprouting (PHS) occurring during wet harvesting conditions. Previously a single chromosome substitution line carrying chromosome 2B of wild emmer in the...

  2. [Genetic control of the spring habit in old local cultivars and landraces of common wheat from Siberia].

    PubMed

    Moiseeva, E A; Goncharov, N O

    2007-04-01

    The inheritance of the spring habit was studied in 63 old local cultivars and landraces of common wheat from Eastern and Western Siberia and the Tyva Republic. Minimal polymorphism was observed for the dominant Vrn genes, controlling the spring habit in landraces of these regions. The control was digenic and involved the Vrnl and Vrn2 dominant genes in the majority (95%) of cultivars and was monogenic in three cultivars. None of the cultivars had the Vrn3 dominant gene, characteristic of the neighboring regions of China and Central Asia. Among 137 old local cultivars and landraces of Siberia, only one (cultivar Sibirskaya (k-23347) from Irkutsk oblast, was comparable in the response to the natural short day (photoperiod) to Chinese cultivars. Comparison of the results and the data reported for commercial cultivars revealed that the genotype frequencies of the dominant Vrn genes in Siberian landraces and commercial cultivars of common wheat remained essentially unchanged at least for the past 100 years. At the same time, Siberian landraces significantly differed in Vrn dominant gene frequencies from cultivars of the adjacent regions. It was assumed that the control of the spring habit by the two Vrn dominant genes is optimal for the climatic conditions of Siberia.

  3. 'Velva' spring wheat: An adapted cultivar to north-central plains of the United States with high agronomic and quality performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spring wheat (Triticum aestivum L.) growers and industry value adapted wheat cultivars with high quality attributes, essential criteria for maintaining wheat as a competitive crop in the spring wheat growing region of the United States. To address this goal, the breeding program at North Dakota Sta...

  4. Cultivar Mixture Cropping Increased Water Use Efficiency in Winter Wheat under Limited Irrigation Conditions

    PubMed Central

    Wang, Yunqi; Zhang, Yinghua; Ji, Wei; Yu, Peng; Wang, Bin; Li, Jinpeng; Han, Meikun; Xu, Xuexin; Wang, Zhimin

    2016-01-01

    The effects of cultivar mixture cropping on yield, biomass, and water use efficiency (WUE) in winter wheat (Triticum aestivum L.) were investigated under non-irrigation (W0, no irrigation during growth stage), one time irrigation (W1, irrigation applied at stem elongation) and two times irrigation (W2, irrigation applied at stem elongation and anthesis) conditions. Nearly 90% of cultivar mixture cropping treatments experienced an increase in grain yield as compared with the mean of the pure stands under W0, those for W1 and W2 were 80% and 85%, respectively. Over 75% of cultivar mixture cropping treatments got greater biomass than the mean of the pure stands under the three irrigation conditions. Cultivar mixture cropping cost more water than pure stands under W0 and W1, whereas the water consumption under W2 decreased by 5.9%–6.8% as compared with pure stands. Approximately 90% of cultivar mixtures showed an increase of 5.4%–34.5% in WUE as compared with the mean of the pure stands, and about 75% of cultivar mixtures had 0.8%–28.5% higher WUE than the better pure stands under W0. Similarly, there were a majority of mixture cropping treatments with higher WUE than the mean and the better one of the pure stands under W1 and W2. On the whole, proper cultivar mixture cropping could increase yield and WUE, and a higher increase in WUE occurred under limited irrigation condition. PMID:27362563

  5. Comparative effect of salinity on growth, grain yield, water use efficiency, δ(13)C and δ(15)N of landraces and improved durum wheat varieties.

    PubMed

    Chamekh, Zoubeir; Ayadi, Sawsen; Karmous, Chahine; Trifa, Youssef; Amara, Hajer; Boudabbous, Khaoula; Yousfi, Salima; Serret, Maria Dolors; Araus, José Luis

    2016-10-01

    Supplemental irrigation with low-quality water will be paramount in Mediterranean agriculture in the future, where durum wheat is a major crop. Breeding for salinity tolerance may contribute towards improving resilience to irrigation with brackish water. However, identification of appropriate phenotyping traits remains a bottleneck in breeding. A set of 25 genotypes, including 19 landraces and 6 improved varieties most cultivated in Tunisia, were grown in the field and irrigated with brackish water (6, 13 and 18dSm(-1)). Improved genotypes exhibited higher grain yield (GY) and water use efficiency at the crop level (WUEyield or 'water productivity'), shorter days to flowering (DTF), lower N concentration (N) and carbon isotope composition (δ(13)C) in mature kernels and lower nitrogen isotope composition (δ(15)N) in the flag leaf compared with landraces. GY was negatively correlated with DTF and the δ(13)C and N of mature kernels and was positively correlated with the δ(15)N of the flag leaf. Moreover, δ(13)C of mature kernels was negatively correlated with WUEyield. The results highlight the importance of shorter phenology together with photosynthetic resilience to salt-induced water stress (lower δ(13)C) and nitrogen metabolism (higher N and δ(15)N) for assessing genotypic performance to salinity.

  6. Rapid changes in leaf elongation, ABA and water status during the recovery phase following application of water stress in two durum wheat varieties differing in drought tolerance.

    PubMed

    Mahdid, Mohamed; Kameli, Abdelkrim; Ehlert, Christina; Simonneau, Thierry

    2011-10-01

    This study aims to investigate the role of Abscisic acid (ABA) in water potential and turgor variations as well as growth recovery during the first phase of a rapid water stress induced by PEG6000. Two wheat varieties (Triticum durum L.), MBB (more tolerant) and OZ (less productive under drought), were grown in aerated nutrient solutions. Leaf elongation kinetics of the growing leaf 3 was estimated using LVDT. Water potential was measured using a pressure chamber; osmotic potential was estimated from expressed sap of elongation zone, turgor pressure of the same zone of leaf three was estimated directly by pressure probe. Growth rapidly ceased for a period of about one hour after the addition of PEG, gradual recovery was then observed for about 2 h. A significant difference was found in the % recovery of Leaf Elongation Rate (LER) and ABA between the two varieties, leading to better water status in MBB compared to OZ. The results of this study showed the possible role of ABA on growth resumption by the increase of relative water content and turgor via osmotic adjustment during the stress period in the leaves, which indicates the importance of OA in the resumption of LER even in the short term under conditions of water deficit. Full recovery of turgor but not of LER at the end stress period suggested the possible effect on cell wall extensibility (hardening) even at short term resulting from the rapid accumulation of ABA.

  7. Optimisation of resistant starch II and III levels in durum wheat pasta to reduce in vitro digestibility while maintaining processing and sensory characteristics.

    PubMed

    Aravind, Nisha; Sissons, Mike; Fellows, Christopher M; Blazek, Jaroslav; Gilbert, Elliot P

    2013-01-15

    Foods with elevated levels of resistant starch (RS) may have beneficial effects on human health. Pasta was enriched with commercial resistant starches (RSII, Hi Maize™ 1043; RSIII, Novelose 330™) at 10%, 20% and 50% substitution of semolina for RSII and 10% and 20% for RSIII and compared with pasta made from 100% durum wheat semolina to investigate technological, sensory, in vitro starch digestibility and structural properties. The resultant RS content of pasta increased from 1.9% to ∼21% and was not reduced on cooking. Significantly, the results indicate that 10% and 20% RSII and RSIII substitution of semolina had no significant effects on pasta cooking loss, texture and sensory properties, with only a minimal reduction in pasta yellowness. Both RS types lowered the extent of in vitro starch hydrolysis compared to that of control pasta. X-ray diffraction and small-angle scattering verified the incorporation of RS and, compared to the control sample, identified enhanced crystallinity and a changed molecular arrangement following digestion. These results can be contrasted with the negative impact on pasta resulting from substitution with equivalent amounts of more traditional dietary fibre such as bran. The study suggests that these RS-containing formulations may be ideal sources for the preparation of pasta with reduced starch digestibility.

  8. Genetic variation for the duration of pre-anthesis development in durum wheat and its interaction with vernalization treatment and photoperiod.

    PubMed

    Sanna, Gavino; Giunta, Francesco; Motzo, Rosella; Mastrangelo, Anna Maria; De Vita, Pasquale

    2014-07-01

    A recombinant inbred durum wheat population was grown under three contrasting regimes: long days following vernalization (LDV), long days without vernalization (LD), and short days following vernalization (SDV). The length of several pre-anthesis stages and the number of leaves and the phyllochron were measured. Different groups of genes were involved in determining the phenology in the three treatments, as demonstrated by a quantitative trait locus (QTL) analysis. The length of the period required to reach the terminal spikelet stage was correlated with the time to anthesis only in the case of LDV- and LD-grown plants where the timing of anthesis depended on the final leaf number. However, for SDV-grown plants, anthesis date was more dependent on the length of the period between the terminal spikelet stage and anthesis and was independent of leaf number. The involvement of the phyllochron in determining the duration of pre-anthesis development was also treatment-dependent. QTL mapping of the various flowering time associated traits uncovered some novel loci (such as those associated with the phyllochron), in addition to confirming the presence of several well-established loci.

  9. Identification of genes induced by Fusarium graminearum inoculation in the resistant durum wheat line Langdon(Dic-3A)10 and the susceptible parental line Langdon.

    PubMed

    Soresi, Daniela; Carrera, Alicia D; Echenique, Viviana; Garbus, Ingrid

    2015-08-01

    The wheat recombinant chromosome inbred line LDN(Dic-3A)10, obtained through introgression of a Triticum dicoccoides disomic chromosome 3A fragment into Triticum turgidum spp. durum var. Langdon, is resistant to fusarium head blight (FHB) caused by Fusarium graminearum. To identify genes involved in FHB resistance, we used a cDNA-AFLP approach to compare gene expression between LDN(Dic-3A)10 and the susceptible parental line LDN at different time points post-inoculation. In total, 85 out of the ∼ 500 transcript-derived fragments (TDFs) were found to be differentially expressed: 36 and 19% were upregulated in LDN(Dic-3A)10 and LDN, respectively, whereas 45% were induced in both genotypes. Several of the cloned TDFs showed similarity to proteins involved in specific recognition of plant pathogens or associated with early responses to infection. Some TDFs specific to the inoculation response did not show similarity to characterized proteins. The availability of T. aestivum genome sequences allowed the in silico mapping of 28 TDFs and the acquirement of the corresponding gene sequences and, in some cases, their regulatory regions. Analysis of promoter regions revealed the potential existence of shared transcription regulation mechanisms. For instance, three TDF-associated genes contained binding sites for WRKY transcription factors, which have been implicated in the regulation of genes associated with pathogen defense, and three for abscisic acid-responsive element (ABRE). Collectively, our results revealed specific pathogen recognition in the interactions of LDN and LDN(Dic-3A)10 with F. graminearum. Such recognition leads to changes in the expression of several transcripts, attributable to the presence of the wheat QTL Qfhs.ndsu-3AS.

  10. Quality Characteristics of Soft Kernel Durum -- A New Cereal Crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Production of crops is in part limited by consumer demand and utilization. In this regard, world production of durum wheat (Triticum turgidum subsp. durum is limited by its culinary uses. The leading constraint is its very hard kernels. Puroindolines, which act to soften the endosperm, are completel...

  11. A morpho-physiological approach differentiates bread wheat cultivars of contrasting tolerance under cyclic water stress.

    PubMed

    Jäger, Katalin; Fábián, Attila; Eitel, Gabriella; Szabó, László; Deák, Csilla; Barnabás, Beáta; Papp, István

    2014-09-01

    Leaf micromorphological traits and some physiological parameters with potential relevance to drought tolerance mechanisms were investigated in four selected winter wheat varieties. Plants were subjected to two cycles of drought treatment at anthesis. Yield components confirmed contrasting drought-sensitive and -tolerant behavior of the genotypes. Drought tolerance was associated with small flag leaf surfaces and less frequent occurrence of stomata. Substantial variation of leaf cuticular thickness was found among the cultivars. Thin cuticle coincided with drought sensitivity and correlated with a high rate of dark-adapted water loss from leaves. Unlike in Arabidopsis, thickening of the cuticular matrix in response to water deprivation did not occur. Water stress induced epicuticular wax crystal depositions preferentially on the abaxial leaf surfaces. According to microscopy and electrolyte leakage measurements from leaf tissues, membrane integrity was lost earlier or to a higher extent in sensitive than in tolerant genotypes. Cellular damage and a decline of relative water content of leaves in sensitive cultivars became distinctive during the second cycle of water deprivation. Our results indicate strong variation of traits with potential contribution to the complex phenotype of drought tolerance in wheat genotypes. The maintained membrane integrity and relative water content values during repeated water limited periods were found to correlate with drought tolerance in the selection of cultivars investigated.

  12. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain

    NASA Astrophysics Data System (ADS)

    Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo

    2016-01-01

    Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3˜3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0˜19.4 %) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha-1 year-1, except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.

  13. Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain.

    PubMed

    Li, Kenan; Yang, Xiaoguang; Tian, Hanqin; Pan, Shufen; Liu, Zhijuan; Lu, Shuo

    2016-01-01

    Understanding how changing climate and cultivars influence crop phenology and potential yield is essential for crop adaptation to future climate change. In this study, crop and daily weather data collected from six sites across the North China Plain were used to drive a crop model to analyze the impacts of climate change and cultivar development on the phenology and production of winter wheat from 1981 to 2005. Results showed that both the growth period (GP) and the vegetative growth period (VGP) decreased during the study period, whereas changes in the reproductive growth period (RGP) either increased slightly or had no significant trend. Although new cultivars could prolong the winter wheat phenology (0.3∼3.8 days per decade for GP), climate warming impacts were more significant and mainly accounted for the changes. The harvest index and kernel number per stem weight have significantly increased. Model simulation indicated that the yield of winter wheat exhibited increases (5.0∼19.4%) if new cultivars were applied. Climate change demonstrated a negative effect on winter wheat yield as suggested by the simulation driven by climate data only (-3.3 to -54.8 kg ha(-1) year(-1), except for Lushi). Results of this study also indicated that winter wheat cultivar development can compensate for the negative effects of future climatic change.

  14. Comparison of Leaf Sheath Transcriptome Profiles with Physiological Traits of Bread Wheat Cultivars under Salinity Stress.

    PubMed

    Takahashi, Fuminori; Tilbrook, Joanne; Trittermann, Christine; Berger, Bettina; Roy, Stuart J; Seki, Motoaki; Shinozaki, Kazuo; Tester, Mark

    2015-01-01

    Salinity stress has significant negative effects on plant biomass production and crop yield. Salinity tolerance is controlled by complex systems of gene expression and ion transport. The relationship between specific features of mild salinity stress adaptation and gene expression was analyzed using four commercial varieties of bread wheat (Triticum aestivum) that have different levels of salinity tolerance. The high-throughput phenotyping system in The Plant Accelerator at the Australian Plant Phenomics Facility revealed variation in shoot relative growth rate and salinity tolerance among the four cultivars. Comparative analysis of gene expression in the leaf sheaths identified genes whose functions are potentially linked to shoot biomass development and salinity tolerance. Early responses to mild salinity stress through changes in gene expression have an influence on the acquisition of stress tolerance and improvement in biomass accumulation during the early "osmotic" phase of salinity stress. In addition, results revealed transcript profiles for the wheat cultivars that were different from those of usual stress-inducible genes, but were related to those of plant growth. These findings suggest that, in the process of breeding, selection of specific traits with various salinity stress-inducible genes in commercial bread wheat has led to adaptation to mild salinity conditions.

  15. Evolution of the BBAA component of bread wheat during its history at the allohexaploid level.

    PubMed

    Zhang, Huakun; Zhu, Bo; Qi, Bao; Gou, Xiaowan; Dong, Yuzhu; Xu, Chunming; Zhang, Bangjiao; Huang, Wei; Liu, Chang; Wang, Xutong; Yang, Chunwu; Zhou, Hao; Kashkush, Khalil; Feldman, Moshe; Wendel, Jonathan F; Liu, Bao

    2014-07-01

    Subgenome integrity in bread wheat (Triticum aestivum; BBAADD) makes possible the extraction of its BBAA component to restitute a novel plant type. The availability of such a ploidy-reversed wheat (extracted tetraploid wheat [ETW]) provides a unique opportunity to address whether and to what extent the BBAA component of bread wheat has been modified in phenotype, karyotype, and gene expression during its evolutionary history at the allohexaploid level. We report here that ETW was anomalous in multiple phenotypic traits but maintained a stable karyotype. Microarray-based transcriptome profiling identified a large number of differentially expressed genes between ETW and natural tetraploid wheat (Triticum turgidum), and the ETW-downregulated genes were enriched for distinct Gene Ontology categories. Quantitative RT-PCR analysis showed that gene expression differences between ETW and a set of diverse durum wheat (T. turgidum subsp durum) cultivars were distinct from those characterizing tetraploid cultivars per se. Pyrosequencing revealed that the expression alterations may occur to either only one or both of the B and A homoeolog transcripts in ETW. A majority of the genes showed additive expression in a resynthesized allohexaploid wheat. Analysis of a synthetic allohexaploid wheat and diverse bread wheat cultivars revealed the rapid occurrence of expression changes to the BBAA subgenomes subsequent to allohexaploidization and their evolutionary persistence.

  16. Differences in Sugar Accumulation and Mobilization between Sequential and Non-Sequential Senescence Wheat Cultivars under Natural and Drought Conditions

    PubMed Central

    Shi, Huarong; Wang, Bin; Yang, Piaojuan; Li, Yibo; Miao, Fang

    2016-01-01

    Wheat leaf non-sequential senescence at the late grain-filling stage involves the early senescence of younger flag leaves compared to that observed in older second leaves. On the other hand, sequential senescence involves leaf senescence that follows an age-related pattern, in which flag leaves are the latest to undergo senescence. The characteristics of sugar metabolism in two sequential senescence cultivars and two non-sequential senescence cultivars under both natural and drought conditions were studied to elucidate the underlying mechanism of drought tolerance in two different senescence modes. The results showed that compared to sequential senescence wheat cultivars, under natural and drought conditions, non-sequential senescence wheat cultivars showed a higher leaf net photosynthetic rate, higher soluble sugar levels in leaves, leaf sheaths, and internodes, higher leaf sucrose synthase (SS) and sucrose phosphate synthase (SPS) activity, and higher grain SS activity, thereby suggesting that non-sequential senescence wheat cultivars had stronger source activity. Spike weight, grain weight per spike, and 100-grain weight of non-sequential senescence cultivars at maturity were significantly higher than those of sequential senescence cultivars under both natural and drought conditions. These findings indicate that the higher rate of accumulation and the higher mobilization of soluble sugar in the leaves, leaf sheaths and internodes of non-sequential senescence cultivars improve grain weight and drought tolerance. At the late grain-filling stage, drought conditions adversely affected leaf chlorophyll content, net photosynthetic rate, soluble sugar and sucrose content, SS and SPS activity, gain SS activity, and weight. This study showed that higher rates of soluble sugar accumulation in the source was one of the reasons of triggering leaf non-sequential senescence, and higher rates of soluble sugar mobilization during leaf non-sequential senescence promoted high and

  17. Community Structure, Species Variation, and Potential Functions of Rhizosphere-Associated Bacteria of Different Winter Wheat (Triticum aestivum) Cultivars

    PubMed Central

    Mahoney, Aaron K.; Yin, Chuntao; Hulbert, Scot H.

    2017-01-01

    Minimal tillage management of extensive crops like wheat can provide significant environmental services but can also lead to adverse interactions between soil borne microbes and the host. Little is known about the ability of the wheat cultivar to alter the microbial community from a long-term recruitment standpoint, and whether this recruitment is consistent across field sites. To address this, nine winter wheat cultivars were grown for two consecutive seasons on the same plots on two different farm sites and assessed for their ability to alter the rhizosphere bacterial communities in a minimal tillage system. Using deep amplicon sequencing of the V1–V3 region of the 16S rDNA, a total of 26,604 operational taxonomic units (OTUs) were found across these two sites. A core bacteriome consisting of 962 OTUs were found to exist in 95% of the wheat rhizosphere samples. Differences in the relative abundances for these wheat cultivars were observed. Of these differences, 24 of the OTUs were found to be significantly different by wheat cultivar and these differences occurred at both locations. Several of the cultivar-associated OTUs were found to correspond with strains that may provide beneficial services to the host plant. Network correlations demonstrated significant co-occurrences for different taxa and their respective OTUs, and in some cases, these interactions were determined by the wheat cultivar. Microbial abundances did not play a role in the number of correlations, and the majority of the co-occurrences were shown to be positively associated. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States was used to determine potential functions associated with OTUs by association with rhizosphere members which have sequenced metagenomics data. Potentially beneficial pathways for nitrogen, sulfur, phosphorus, and malate metabolism, as well as antimicrobial compounds, were inferred from this analysis. Differences in these pathways and their

  18. Screening of Bangladeshi winter wheat (Triticum aestivum L.) cultivars for sensitivity to ozone.

    PubMed

    Saitanis, Costas J; Bari, Shafiqul M; Burkey, Kent O; Stamatelopoulos, Dimitris; Agathokleous, Evgenios

    2014-12-01

    The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes (50, 60, 80, 100, 120, 135, 150, and 200 ppb for 14, 11, 8, 6, 5, 4, 3, and 1 days, respectively, for 8 h/day) in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photosynthesis, and stomatal resistance were measured to evaluate response. Shoot biomass, total chlorophyll, leaf greenness, and carotenoid content were reduced in ozone-exposed plants. Based on the results of principal component analysis (PCA)-biplot analysis, the order of sensitivity to ozone was: Akbar > Sufi ≥ Bijoy ≥ Shatabdi > Bari-26 ≥ Gourab > Bari-25 ≥ Prodip ≥ Sourav > Kanchan. The most important parameters to discriminate cultivars with respect to ozone sensitivity were visible injury and chlorophyll b/a ratio, whereas quantum yield of photosynthesis was less important. Differences in stomatal resistance were not a significant factor in ozone response. Regression of cultivars' PCA scores against year of release revealed no trend, suggesting that ozone tolerance was not incorporated during cultivar breeding.

  19. [Differences in root developmenly of winter wheat cultivars in Huang-Huai Plain, China].

    PubMed

    Qiu, Xin-Qiang; Gao, Yang; Li, Xin-Qiang; Huang, Ling; Duan, Ai-Wang

    2012-07-01

    Selecting one presently popularized winter wheat cultivar (Zhengmai 9023) and two cultivars (Abo and Fengchan 3) introduced in the 1950s and 1960s in Huang-Huai Plain as test materials, and by using minirhizotron technique, this paper studied the live root length, root diameter distribution, and net root growth rate of the cultivars. Fine roots with a diameter from 0.05 mm to 0.25 mm occupied the majority of the whole root system, and the fine roots with a diameter less than 0.5 mm accounted for 98% of the live root length. The average root diameter varied with plant growth, the variation range being 0.15 - 0.22 mm, and no significant difference was observe among the cultivars. The live root length was significantly positively correlated root number, suggesting that root number was the main factor for the increase of live root length. The most vigorous growth period of the roots was from reviving to jointing stage, and Abo and Fengchan 3 had a longer period increased root vitality, as compared with Zhengmai 9023. For Zhengmai 9023, its fine roots with a diameter more than 0.1 mm had an increasing proportion after jointing stage, which was helpful for improving plant resistance, root activity, and grain-filling at late growth stages.

  20. [Prevalence of VRN1 Locus Alleles among Spring Common Wheat Cultivars Cultivated in Western Siberia].

    PubMed

    Efremova, T T; Chumanova, E V; Trubacheeva, N V; Arbuzova, V S; Belan, I A; Pershina, L A

    2016-02-01

    With the use of allele-specific primers developed for the VRN1 loci, the allelic diversity of the VRN-A1, VRN-B1, and VRN-D1 genes was studied in 148 spring common wheat cultivars cultivated under the conditions of Western Siberia. It was demonstrated that modern Western Siberian cultivars have the VRN-A1a allele, which is widely distributed in the world (alone or in combination with the VRN-B1a and VRN-B1c alleles). It was established that the main contribution in acceleration of the.seedling-heading time is determined by a dominant VRN-A1a allele, while the VRN-A1b allele, on the contrary, determines later plant heading. Cultivars that have the VRN-A1b allele in the genotype are found with a frequency of 8%. It was shown that cultivars with different allele combinations of two dominant genes (VRN-A1a + VRN-B1c and VRN-A1a + VRN-B1a) are characterized by earlier heading and maturing.

  1. EFFICACY AND MODES OF ACTION OF RESISTANCE INDUCERS ON TWO WHEAT SPECIES AGAINST MYCOSPHAERELLA GRAMINICOLA.

    PubMed

    Somai-Jemmali, L; Randoux, B; Siah, A; Ors, M; Halama, P; Reignault, Ph; Hamada, W

    2014-01-01

    Plant resistance inducers could be an alternative to conventional fungicides to control in a more durable and environmentally friendly manner fungal pathogens. Here, we tested the protection efficacy and the modes of action of four resistance inducers (R1, R2, R3 and R4) against the causal agent of Septoria tritici blotch, Mycosphaerella graminicola, the most frequently occurring pathogen on wheat crops worldwide. The four inducers were tested on two wheat cultivars, Premio (a French bread wheat cultivar) and Karim (a Tunisian durum wheat cultivar), each inoculated with a bread-wheat or a durum-wheat adapted isolate; respectively. All inducers exhibited in the greenhouse a significant protection level on both cultivars regarding disease symptoms (necrosis and chlorosis) and sporulation (pycnidium density). The most efficient inducer was R3 which showed 84% symptom reduction, while the less efficient one was R2 with only a 39% reduction. None of the studied inducers showed direct biocide effect against the fungus, except R4 which displayed a significant in planta inhibition of spore germination. Further investigations revealed that all inducers elicited the plant defence enzymes peroxidase and lipoxygenase, but the activity levels varied depending on the considered inducer. In addition, the effect of resistance inducers on the infection process and the fungal cell-wall degrading enzymes xylanases and glucanases was also investigated. Our study allowed us to find out four efficient resistance inducers on wheat against M. graminicola and to establish data about the modes of action of these inducers.

  2. Seedling Resistance to Stem Rust and Molecular Marker Analysis of Resistance Genes in Wheat Cultivars of Yunnan, China

    PubMed Central

    Li, Tian Ya; Cao, Yuan Yin; Wu, Xian Xin; Xu, Xiao Feng; Wang, Wan Lin

    2016-01-01

    Stem rust is one of the most potentially harmful wheat diseases, but has been effectively controlled in China since 1970s. However, the interest in breeding wheat with durable resistance to stem rust has been renewed with the emergence of Ug99 (TTKSK) virulent to the widely used resistance gene Sr31, and by which the wheat stem rust was controlled for 40 years in wheat production area worldwide. Yunnan Province, located on the Southwest border of China, is one of the main wheat growing regions, playing a pivotal role in the wheat stem rust epidemic in China. This study investigated the levels of resistance in key wheat cultivars (lines) of Yunnan Province. In addition, the existence of Sr25, Sr26, Sr28, Sr31, Sr32, and Sr38 genes in 119 wheat cultivars was assessed using specific DNA markers. The results indicated that 77 (64.7%) tested wheat varieties showed different levels of resistance to all the tested races of Puccinia graminis f. sp. tritici. Using molecular markers, we identified the resistance gene Sr31 in 43 samples; Sr38 in 10 samples; Sr28 in 12 samples, and one sample which was resistant against Ug99 (avirulent to Sr32). No Sr25 or Sr26 (effective against Ug99) was identified in any cultivars tested. Furthermore, 5 out of 119 cultivars tested carried both Sr31 and Sr38 and eight contained both Sr31 and Sr28. The results enable the development of appropriate strategies to breed varieties resistant to stem rust. PMID:27792757

  3. Differential expression of molybdenum transport and assimilation genes between two winter wheat cultivars (Triticum aestivum).

    PubMed

    Nie, Zhaojun; Hu, Chengxiao; Liu, Hongen; Tan, Qiling; Sun, Xuecheng

    2014-09-01

    Molybdenum (Mo) is an essential trace element for higher plants. Winter wheat cultivar 97003 has a higher Mo efficiency than 97014 under Mo-deficiency stress. Mo efficiency is related to Mo uptake, transfer and assimilation in plants. Several genes are involved in regulating Mo uptake, transfer and assimilation in plants. To obtain a better understanding of the aforementioned difference in Mo uptake, we have conducted a hydroponic trail to investigate the expression of genes related to Mo uptake, transfer and assimilation in the above two cultivars. The results indicate a closed relationship between Mo uptake and TaSultr5.1, TaSultr5.2 and TaCnx1 expression, according to a stepwise regression analysis of the time course of Mo uptake in the two cultivars. Meanwhile, expression of TaSultr5.2 in roots also showed a positive relationship with Mo uptake rates. 97003 had stronger Mo uptake than 97014 at low Mo-application rates (less than 1 μmol Mo L(-1)) due to the higher expression of TaSultr5.2, TaSultr5.1 and TaCnx1 in roots. On the contrary, Mo uptake of 97003 was weaker than 97014 at high Mo application rates (ranging from 5 to 20 μmol Mo L(-1)), which was related to significant down-regulation of TaSultr5.2 and TaCnx1 genes in roots of 97003 compared to 97014. Therefore, we speculated that the differential-expression intensities of TaSultr5.2, TaSultr5.1 and TaCnx1 could be the cause of the difference in Mo uptake between the two winter wheat cultivars at low and high Mo application levels.

  4. Analysis of historical and modern hard red spring wheat cultivars based on parentage and HPLC of gluten proteins using Ward's clustering method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been substantial breeding efforts in North Dakota to produce wheat cultivars that are well adapted to weather conditions and are disease resistant. In this study, 30 hard red spring (HRS) wheat cultivars released between 1910 and 2013 were analyzed with regard to how they cluster in terms...

  5. Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars.

    PubMed

    Seki, Masako; Chono, Makiko; Nishimura, Tsutomu; Sato, Mikako; Yoshimura, Yasuhiro; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2013-09-01

    The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9-9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that 'Purple Straw' and 'Tohoku 118' were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a.

  6. Effects of two wheat cultivars on physico-chemical properties of wheat flours and digesta from two broiler chicken lines (D+ and D-) differing in digestion capacity.

    PubMed

    Péron, A; Svihus, B; Gabriel, I; Bérot, S; Tanguy, D; Bouchet, B; Gomez, J; Carré, B

    2007-06-01

    1. The current experiment is the second part of a study about the effects of wheat quality on digestibility of pelleted diets for broiler chickens. In the first part, it was shown that a hard cultivar resulted in a negative effect on starch digestibility in two divergent lines of chickens (D+ and D-) selected for digestion capacity. The aim of this second part was to investigate the reasons for this negative effect of a hard cultivar (Baltimor) compared to a soft one (Scipion) in D+ and D- lines. 2. Proventriculus pepsin activity and pancreas proteolytic and amylolytic activities were estimated in 4 pools of birds: 'D+ line (Baltimor fed)', 'D+ line (Scipion fed)', 'D- line (Baltimor fed)' and 'D- line (Scipion fed)'. Results suggested the greatest amount of pepsin units per g BW for D+ birds and the lowest amount of pancreas proteolytic units per g BW for D+ birds fed Scipion wheat. Pancreas showed very similar alpha-amylase activities among treatments. 3. In vitro hydrolyses of wheat gluten proteins with proventriculus extracts from pools of D+ and D- birds did not show any differences between hard and soft cultivars, whatever the origin of pools. 4. Pepsin hydrolysis of fine (300 to 425 microm) and coarse (1180 to 1600 microm) fractions from wheat flours (Baltimor or Scipion) showed that the 30 min proteolysis rate was highest for the fine fraction in both cultivars. No difference was observed with extended hydrolysis time. 5. In vitro digestion simulation of whole wheat flours confirmed the results previously obtained in vivo, with a negative effect of hard cultivar on starch digestion rate and no effect on protein digestion. 6. Laser particle size analyses showed that ileum digesta from birds fed with hard wheat cultivar showed the highest proportion of coarse particles. 7. Microscopic analyses of D+ ileum digesta revealed that the concentration of undigested starch granules in the subaleurone area of wheat bran particles was the highest with hard cultivar. 8

  7. Combined impact of climate change, cultivar shift, and sowing date on spring wheat phenology in Northern China

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Tao, Fulu; Shen, Yanjun; Qi, Yongqing

    2016-08-01

    Distinct climate changes since the end of the 1980s have led to clear responses in crop phenology in many parts of the world. This study investigated the trends in the dates of spring wheat phenology in relation to mean temperature for different growth stages. It also analyzed the impacts of climate change, cultivar shift, and sowing date adjustments on phenological events/phases of spring wheat in northern China (NC). The results showed that significant changes have occurred in spring wheat phenology in NC due to climate warming in the past 30 years. Specifically, the dates of anthesis and maturity of spring wheat advanced on average by 1.8 and 1.7 day (10 yr)-1. Moreover, while the vegetative growth period (VGP) shortened at most stations, the reproductive growth period (RGP) prolonged slightly at half of the investigated stations. As a result, the whole growth period (WGP) of spring wheat shortened at most stations. The findings from the Agricultural Production Systems Simulator (APSIM)-Wheat model simulated results for six representative stations further suggested that temperature rise generally shortened the spring wheat growth period in NC. Although the warming trend shortened the lengths of VGP, RGP, and WGP, the shift of new cultivars with high accumulated temperature requirements, to some extent, mitigated and adapted to the ongoing climate change. Furthermore, shifts in sowing date exerted significant impacts on the phenology of spring wheat. Generally, an advanced sowing date was able to lower the rise in mean temperature during the different growth stages (i.e., VGP, RGP, and WGP) of spring wheat. As a result, the lengths of the growth stages should be prolonged. Both measures (cultivar shift and sowing date adjustments) could be vital adaptation strategies of spring wheat to a warming climate, with potentially beneficial effects in terms of productivity.

  8. Analysis of deoxynivalenol and deoxynivalenol-3-glucosides content in Canadian spring wheat cultivars inoculated with Fusarium graminearum.

    PubMed

    Amarasinghe, Chami C; Simsek, Senay; Brûlé-Babel, Anita; Fernando, W G Dilantha

    2016-07-01

    Contamination of wheat grains with Fusarium mycotoxins and their modified forms is an important issue in wheat industry. The objective of this study was to analyse the deoxynivalenol (DON) and deoxynivalenol-3-glucosides (D3G) content in Canadian spring wheat cultivars grown in two locations, inoculated with a mixture of 3-acetyldeoxynivalenol (3-ADON)-producing Fusarium graminearum strains and a mixture of 15-acetlyldeoxynivalenol (15-ADON)-producing F. graminearum strains. According to the analysis of variance, significant differences were observed among the cultivars for Fusarium head blight (FHB) disease index, Fusarium-damaged kernel percentage (%FDK), DON content and D3G content. When the effect of chemotype was considered, significant differences were observed for FHB disease index, FDK percentage and DON content. The D3G content and D3G/DON ratio were not significantly different between the chemotypes, except for D3G content at the Winnipeg location. The Pearson correlation coefficient between DON and D3G was 0.84 and 0.77 at Winnipeg and Carman respectively. The highest D3G/DON ratio was observed in cultivars Carberry (44%) in Carman and CDC Kernen (63.8%) in Winnipeg. The susceptible cultivars showed lower D3G/DON ratio compared with the cultivars rated as moderately resistant and intermediate. The current study indicated that Canadian spring cultivars produce D3G upon Fusarium infection.

  9. Ozone pollution effects on gas exchange, growth and biomass yield of salinity-treated winter wheat cultivars.

    PubMed

    Zheng, Yanhai; Cheng, Da; Simmons, Matthew

    2014-11-15

    A sand-culture experiment was conducted in four Open-Top-Chambers to assess the effects of O3 on salinity-treated winter wheat. Two winter wheat cultivars, salt-tolerant Dekang961 and salt-sensitive Lumai15, were grown under saline (100 mM NaCl) and/or O3 (80±5 nmol mol(-1)) conditions for 35 days. Significant (P<0.05) O3-induced decreases were noted for both cultivars in terms of gas exchange, relative water content, growth and biomass yield in the no-salinity treatment. Significant (P<0.01) corresponding decreases were measured in Dekang961 but not in Lumai15 in the salinity treatment. Soluble sugar and proline contents significantly increased in both cultivars in combined salinity and O3 exposure. O3-induced down-regulation in the gradients of A-C(i) and A-PPFD response curves were much larger in Dekang961 than in Lumai15 under saline conditions. Significant (P<0.05) interactions were noted in both salinity×cultivars and salinity×O3 stresses. The results clearly demonstrated that O3 injuries were closely correlated with plant stomatal conductance (g(s)); the salt-tolerant wheat cultivar might be damaged more severely than the salt-sensitive cultivar by O3 due to its higher g(s) in saline conditions.

  10. Selection and hydroponic growth of bread wheat cultivars for bioregenerative life support systems

    NASA Astrophysics Data System (ADS)

    Page, V.; Feller, U.

    2013-08-01

    As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4-46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium

  11. Improvement of the agronomic traits of a wheat-barley centric fusion by introgressing the 3HS.3BL translocation into a modern wheat cultivar.

    PubMed

    Türkösi, Edina; Farkas, András; Aranyi, Nikolett Réka; Hoffmann, Borbála; Tóth, Viola; Molnár-Láng, Márta

    2014-11-01

    The 3HS.3BL spontaneous Robertsonian translocation obtained from the progenies of wheat-barley (Chinese Spring × Betzes) hybrids backcrossed with wheat line Mv9kr1 was transferred into the modern Martonvásár wheat cultivar Mv Bodri. The translocation was identified with molecular cytogenetic methods. The inheritance of the translocation was traced using genomic in situ hybridization. Fluorescence in situ hybridization using barley subtelomeric (HvT01) and centromere-specific [(AGGGAG)4] repetitive DNA probes confirmed that the complete barley chromosome arm was involved in the Robertsonian translocation. The wheat-specific repetitive DNA probes identified the presence of the whole wheat genome, except the short arm of the 3B chromosome. Genotypes homozygous for the centric fusion were selected, after which morphological analysis was performed on the plants and the yield components were measured in the field during two consecutive vegetative seasons. The introgression of the 3HS.3BL translocation into the modern wheat cultivar Mv Bodri significantly reduced the plant height due to the incorporation of the dwarfing allele RhtD1b. The presence of the 3HS.3BL translocation in the Mv9kr1 and Mv Bodri wheat background improved tillering and seeds per plant productivity in field experiments carried out in Martonvásár and Keszthely, Hungary.

  12. Genetic Mapping of Stem Rust Resistance to Puccinia graminis f. sp. tritici Race TRTTF in the Canadian Wheat Cultivar Harvest.

    PubMed

    Hiebert, Colin W; Rouse, Matthew N; Nirmala, Jayaveeramuthu; Fetch, Tom

    2017-02-01

    Stem rust, caused by Puccinia graminis f. sp. tritici, is a destructive disease of wheat that can be controlled by deploying effective stem rust resistance (Sr) genes. Highly virulent races of P. graminis f. sp. tritici in Africa have been detected and characterized. These include race TRTTF and the Ug99 group of races such as TTKSK. Several Canadian and U.S. spring wheat cultivars, including the widely grown Canadian cultivar 'Harvest', are resistant to TRTTF. However, the genetic basis of resistance to TRTTF in Canadian and U.S. spring wheat cultivars is unknown. The objectives of this study were to determine the number of Sr genes involved in TRTTF resistance in Harvest, genetically map the resistance with DNA markers, and use markers to assess the distribution of that resistance in a panel of Canadian cultivars. A doubled haploid (DH) population was produced from the cross LMPG-6S/Harvest. The DH population was tested with race TRTTF at the seedling stage. Of 92 DH progeny evaluated, 46 were resistant and 46 were susceptible which perfectly fit a 1:1 ratio indicating a single Sr gene was responsible for conferring resistance to TRTTF in Harvest. Mapping with single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) markers placed the resistance gene distally on the chromosome 6AS genetic map, which corresponded to the location reported for Sr8. SSR marker gwm459 and 30 cosegregating SNP markers showed the closest linkage, mapping 2.2 cM proximal to the Sr gene. Gene Sr8a confers resistance to TRTTF and may account for the resistance in Harvest. Testing a panel of Canadian wheat cultivars with four SNP markers closely linked to resistance to TRTTF suggested that the resistance present in Harvest is present in many Canadian cultivars. Two of these SNP markers were also predictive of TRTTF resistance in a panel of 241 spring wheat lines from the United States, Canada, and Mexico.

  13. The Role of Potassium in Improving Growth Indices and Increasing Amount of Grain Nutrient Elements of Wheat Cultivars

    NASA Astrophysics Data System (ADS)

    Bahmanyar, M. A.; Ranjbar, G. A.

    In order to consider potassium role in improvement of growth indices and increasing the amount of nutrient elements in wheat grain, a pot experiment has been undertaken in 2005. In this experiment cultivars Tajan and Nye 60 have been used in four levels of potassium (0, 100, 200 and 300 kg K2O ha-1 from source of K2SO4) in form of factorial experiment based on a completely randomized design. Results showed that application of potassium increased dry matter, 1000 grain weight, tiller number, seed and leaf potassium content, seed Zn content, plant height, seed Iron and protein content. Also, grain yield, 1000 grain weight, seed potassium and Zn content in cultivar Nye 60 were higher than in cultivar Tajan and tiller number and seed protein content in cultivar Tajan were higher than in cultivar Nye 60.

  14. Resistance to recombinant stem rust race TPPKC in hard red spring wheat.

    PubMed

    Klindworth, D L; Miller, J D; Williams, N D; Xu, S S

    2011-08-01

    The wheat (Triticum aestivum L.) stem rust (Puccinia graminis Pers.:Pers. f.sp. tritici Eriks. and Henn.) resistance gene SrWld1 conditions resistance to all North American stem rust races and is an important gene in hard red spring (HRS) wheat cultivars. A sexually recombined race having virulence to SrWld1 was isolated in the 1980s. Our objective was to determine the genetics of resistance to the race. The recombinant race was tested with the set of stem rust differentials and with a set of 36 HRS and 6 durum cultivars. Chromosomal location studies in cultivars Len, Coteau, and Stoa were completed using aneuploid analysis, molecular markers, and allelism tests. Stem rust differential tests coded the race as TPPKC, indicating it differed from TPMKC by having added virulence on Sr30 as well as SrWld1. Genes effective against TPPKC were Sr6, Sr9a, Sr9b, Sr13, Sr24, Sr31, and Sr38. Genetic studies of resistance to TPPKC indicated that Len, Coteau, and Stoa likely carried Sr9b, that Coteau and Stoa carried Sr6, and Stoa carried Sr24. Tests of HRS and durum cultivars indicated that five HRS and one durum cultivar were susceptible to TPPKC. Susceptible HRS cultivars were postulated to have SrWld1 as their major stem rust resistance gene. Divide, the susceptible durum cultivar, was postulated to lack Sr13. We concluded that although TPPKC does not constitute a threat similar to TTKSK and its variants, some cultivars would be lost from production if TPPKC became established in the field.

  15. Effect of pentosans addition on pasting properties of flours of eight hard white spring wheat cultivars.

    PubMed

    Arif, Saqib; Ali, Tahira Mohsin; Ul Afzal, Qurat; Ahmed, Mubarik; Siddiqui, Asim Jamal; Hasnain, Abid

    2014-06-01

    The effects of water extractable pentosans (WEP) and water unextractable pentosans (WUP) on pasting properties in flours of eight different hard white spring wheat (HWSW) cultivars was studied. WEP and WUP isolated from a hard wheat flour were added to each of the cultivars at 1% and 2% level. The results indicated that WEP exhibited a pronounced effect on pasting properties as compared to WUP and variety. Univariate analysis of variance (ANOVA) was used to evaluate sources of variation. The variety significantly (P < 0.001) influenced all the pasting parameters. WUP caused significant (P < 0.001) variation in paste viscosities (except breakdown). WEP influenced more pronouncedly the hot paste, cold paste, breakdown and setback viscosities with F values-221.802, 214.286, 98.073 and 120.159, respectively. Variety-by-WEP interaction exhibited significant (P < 0.01) influence on pasting time, peak, hot paste and cold paste viscosities. Whereas, variety-by-WUP interaction only significantly (P < 0.001) influenced the pasting- time and -temperature. Duncan's test was used to analyze the significant difference (P < 0.05) within the variety. The results revealed that WUP did not induce significant (P < 0.05) influence on all the pasting parameters, whereas, WEP influenced significantly (P < 0.05) the paste viscosities of some of the varieties. It was also found that the addition of WEP remarkably reduced the setback, hot paste, cold paste viscosities and increased the breakdown viscosity in all cultivar flours. The effect of WEP was greater at higher level of supplementation on paste viscosities.

  16. 'Elgin-ND' spring wheat: A newly adapted cultivar to the north-central plains of the United States with high agronomic quality performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The spring wheat (Triticum aestivum L.) industry and growers usually value adapted wheat cultivars with high quality attributes, an essential criteria for maintaining wheat as a competitive commodity at the national and international levels. Therefore, the goal of the breeding program is to develop ...

  17. Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars

    PubMed Central

    Izanloo, Ali; Condon, Anthony G.; Langridge, Peter; Tester, Mark; Schnurbusch, Thorsten

    2008-01-01

    In the South Australian wheat belt, cyclic drought is a frequent event represented by intermittent periods of rainfall which can occur around anthesis and post-anthesis in wheat. Three South Australian bread wheat (Triticum aestivum L.) cultivars, Excalibur, Kukri, and RAC875, were evaluated in one greenhouse and two growth-room experiments. In the first growth-room experiment, where plants were subjected to severe cyclic water-limiting conditions, RAC875 and Excalibur (drought-tolerant) showed significantly higher grain yield under cyclic water availability compared to Kukri (drought-susceptible), producing 44% and 18% more grain compared to Kukri, respectively. In the second growth-room experiment, where plants were subjected to a milder drought stress, the differences between cultivars were less pronounced, with only RAC875 showing significantly higher grain yield under the cyclic water treatment. Grain number per spike and the percentage of aborted tillers were the major components that affected yield under cyclic water stress. Excalibur and RAC875 adopted different morpho-physiological traits and mechanisms to reduce water stress. Excalibur was most responsive to cyclic water availability and showed the highest level of osmotic adjustment (OA), high stomatal conductance, lowest ABA content, and rapid recovery from stress under cyclic water stress. RAC875 was more conservative and restrained, with moderate OA, high leaf waxiness, high chlorophyll content, and slower recovery from stress. Within this germplasm, the capacity for osmotic adjustment was the main physiological attribute associated with tolerance under cyclic water stress which enabled plants to recover from water deficit. PMID:18703496

  18. Aspects of adaptive answering formation in virus-host plant pathosystem for different wheat cultivars under simulating microgravity condition.

    PubMed

    Mishchenko, L T

    2007-07-01

    Investigations of prolonged clinorotation effect on some morphological and physiological parameters under Wheat streak mosaic virus WSMW-infection of Apogee and Lada wheat cultivars were carried out. Experiments were held on universal clinostat CYCLE-2. Clinorotation caused changing of WSMV virions shape and reducing of the virus reproduction. Apogee wheat plants grown under two stress factors (infection and clinorotation) produced more kernels than stationary (motionless) plants, but the average weight of kernel was lower. Under clinorotation changes in host plant-virus system take place and adaptive reactions for simulated microgravity conditions form. These lead to reduction of potyvirus replication.

  19. Genetic Diversity in the U.S. Hard Red Winter Wheat Cultivars as Revealed by Microsatellite Markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of the genetic diversity existing in previously released hard red winter wheat (HRWW, Triticum aestivum L.) cultivars in the Great Plains region, United States, is essential for effective utilization of these genetic resources in the various HRWW breeding programs. To ascertain a measure o...

  20. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Cultivars TAM 111 and TAM 112 are widely cultivated in the region, share parentage and showed superior b...

  1. 'Duster' wheat: A durable, dual-purpose cultivar adapted to the southern great plains of the USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat (Triticum aestivum L.) cultivars which gain broad commercial acceptance in Oklahoma and surrounding states of the U.S. southern Great Plains must produce a definitive grain yield advantage, and they must demonstrate season-long dependability in dual purpose management systems, effective...

  2. Drought Tolerance in Modern and Wild Wheat

    PubMed Central

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  3. Transcriptome analysis during seed germination of elite Chinese bread wheat cultivar Jimai 20

    PubMed Central

    2014-01-01

    Background Wheat seed germination directly affects wheat yield and quality. Although transcriptome and proteome analyses during seed germination have been reported in some crop plant species, dynamic transcriptome characterization during wheat seed germination has not been conducted. We performed the first comprehensive dynamic transcriptome analysis during different seed germination stages of elite Chinese bread wheat cultivar Jimai 20 using the Affymetrix Wheat Genome Array. Results A total of 61,703 probe sets representing 51,411 transcripts were identified during the five seed germination stages of Jimai 20, of which 2,825 differential expression probe sets corresponding to 2,646 transcripts with different functions were declared by ANOVA and a randomized variance model. The seed germination process included a rapid initial uptake phase (0–12 hours after imbibition [HAI]), a plateau phase (12–24 HAI), and a further water uptake phase (24–48 HAI), corresponding to switches from the degradation of small-molecule sucrose to the metabolism of three major nutrients and to photosynthesis. Hierarchical cluster and MapMan analyses revealed changes in several significant metabolism pathways during seed germination as well as related functional groups. The signal pathway networks constructed with KEGG showed three important genes encoding the phosphofructokinase family protein, with fructose-1, 6-bisphosphatase, and UTP-glucose-1-phosphate uridylyltransferase located at the center, indicating their pivotal roles in the glycolytic pathway, gluconeogenesis, and glycogenesis, respectively. Several significant pathways were selected to establish a metabolic pathway network according to their degree value, which allowed us to find the pathways vital to seed germination. Furthermore, 51 genes involved in transport, signaling pathway, development, lipid metabolism, defense response, nitrogen metabolism, and transcription regulation were analyzed by gene co

  4. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria—An Amazing Defense Tool Against Hyperosmotic Stress

    PubMed Central

    Trono, Daniela; Laus, Maura N.; Soccio, Mario; Alfarano, Michela; Pastore, Donato

    2015-01-01

    In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about 15 years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP). Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous) and tissues/organs (etiolated and green) have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel) are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs) and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane toward the matrix, so collapsing membrane potential (ΔΨ), the main component of the protonmotive force (Δp) in plant mitochondria; moreover, cooperation between PmitoKATP and the K+/H+ antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS) production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate hyperosmotic stress

  5. Effect of field history on the cereal leafminer Syringopais temperatella Led. (Lepidoptera: Scythrididae) and its preference to different wheat and barley cultivars.

    PubMed

    Al-Zyoud, Firas Ahmad

    2012-02-15

    Due to the importance of wheat and barley production in Jordan, prevention of the cereal leafminer, Syringopais temperatella Led. (Lepidoptera: Scythrididae) is of vital importance. The insect is a severe pest and plays an important role in limiting the production of these crops. The use of insecticides is neither economic nor sustainable, so that there is an urgent need to initiate a viable alternative to chemical control. Therefore, this study aimed at investigating the effect of crop rotation on S. temperatella and its preference to different wheat and barley cultivars. The field history experiment was conducted using five different crop rotations. For the preference experiments in the laboratory, two major experimental groups were conducted. The first was set up to measure the consumed leaf area and the second one to record the number of larval attaches. Each group consisted of four different subgroups; 6 wheat cultivars, 6 barley cultivars, two and one cultivar of each crop. The results indicated that the infestation percentage and number of larvae were significantly the lowest in the crop rotation, wheat/chickpea/wheat while the highest were recorded for barley/barley/barley. The preference results showed that wheat cultivar, Horani Nawawi is significantly the most preferred while Horani 27 is the least cultivar. In case of barley, Mutah was the most preferred cultivar and the least preference was recorded for Athroh. Also, wheat was significantly less preferred than barley. The wheat cultivars, Sham, Em-Qees and Acsad 65 had the highest number of attaches and Deer Alla the least. In contrast, the barley cultivar, Acsad 176 had the highest and Athroh and Rum 1 had the least attaches. Barley cultivars had higher attaches than wheat ones. There was a positive relation between the infestation percent and number of larvae, as well as the consumed area and number of attaches in all of the four subgroups. In conclusion, the crop rotation, wheat/chickpea/wheat

  6. Mapping QTLs for Fusarium Head Blight Resistance in an Interspecific Wheat Population

    PubMed Central

    Giancaspro, Angelica; Giove, Stefania L.; Zito, Daniela; Blanco, A.; Gadaleta, Agata

    2016-01-01

    Fusarium head blight (scab) is one of the most widespread and damaging diseases of wheat, causing grain yield and quality losses and production of harmful mycotoxins. Development of resistant varieties is hampered by lack of effective resistance sources in the tetraploid wheat primary gene pool. Here we dissected the genetic basis of resistance in a new durum wheat (Triticum turgidum ssp. durum) Recombinant inbred lines (RILs) population obtained by crossing an hexaploid resistant line and a durum susceptible cultivar. A total of 135 RILs were used for constituting a genetic linkage map and mapping loci for head blight incidence, severity, and disease-related plant morphological traits (plant height, spike compactness, and awn length). The new genetic map accounted for 4,366 single nucleotide polymorphism markers assembled in 52 linkage groups covering a total length of 4,227.37 cM. Major quantitative trait loci (QTL) for scab incidence and severity were mapped on chromosomes 2AS, 3AL, and 2AS, 2BS, 4BL, respectively. Plant height loci were identified on 3A, 3B, and 4B, while major QTL for ear compactness were found on 4A, 5A, 5B, 6A, and 7A. In this work, resistance to Fusarium was transferred from hexaploid to durum wheat, and correlations between the disease and morphological traits were assessed. PMID:27746787

  7. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.).

    PubMed

    Zhang, Xiangfen; Gao, Manxia; Wang, Shasha; Chen, Feng; Cui, Dangqun

    2015-01-01

    A total of 205 wheat cultivars from the Yellow and Huai valley of China were used to identify allelic variations of vernalization and photoperiod response genes, as well as the copy number variations (CNVs) of Ppd-B1 and Vrn-A1 genes. A novel Vrn-D1 allele with 174-bp insertion in the promoter region of the recessive allele vrn-D1 was discovered in three Chinese wheat cultivars and designated as Vrn-D1c. Quantitative real-time polymerase chain reaction showed that cultivars with the Vrn-D1c allele exhibited significantly higher expression of the Vrn-D1 gene than that in cultivars with the recessive allele vrn-D1, indicating that the 174-bp insertion of Vrn-D1c contributed to the increase in Vrn-D1 gene expression and caused early heading and flowering. The five new cis-elements (Box II-like, 3-AF1 binding site, TC-rich repeats, Box-W1 and CAT-box) in the 174-bp insertion possibly promoted the basal activity level of Vrn-D1 gene. Two new polymorphism combinations of photoperiod genes were identified and designated as Ppd-D1_Hapl-IX and Ppd-D1_Hapl-X. Association of the CNV of Ppd-B1 gene with the heading and flowering days showed that the cultivars with Ppd-B1_Hapl-VI demonstrated the earliest heading and flowering times, and those with Ppd-B1_Hapl-IV presented the latest heading and flowering times in three cropping seasons. Distribution of the vernalization and photoperiod response genes indicated that all recessive alleles at the four vernalization response loci, Ppd-B1_Hapl-I at Ppd-B1 locus, and Ppd-D1_Hapl-I at the Ppd-D1 locus were predominant in Chinese winter wheat cultivars. This study can provide useful information for wheat breeding programs to screen wheat cultivars with relatively superior adaptability and maturity.

  8. Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.)

    PubMed Central

    Zhang, Xiangfen; Gao, Manxia; Wang, Shasha; Chen, Feng; Cui, Dangqun

    2015-01-01

    A total of 205 wheat cultivars from the Yellow and Huai valley of China were used to identify allelic variations of vernalization and photoperiod response genes, as well as the copy number variations (CNVs) of Ppd-B1 and Vrn-A1 genes. A novel Vrn-D1 allele with 174-bp insertion in the promoter region of the recessive allele vrn-D1 was discovered in three Chinese wheat cultivars and designated as Vrn-D1c. Quantitative real-time polymerase chain reaction showed that cultivars with the Vrn-D1c allele exhibited significantly higher expression of the Vrn-D1 gene than that in cultivars with the recessive allele vrn-D1, indicating that the 174-bp insertion of Vrn-D1c contributed to the increase in Vrn-D1 gene expression and caused early heading and flowering. The five new cis-elements (Box II-like, 3-AF1 binding site, TC-rich repeats, Box-W1 and CAT-box) in the 174-bp insertion possibly promoted the basal activity level of Vrn-D1 gene. Two new polymorphism combinations of photoperiod genes were identified and designated as Ppd-D1_Hapl-IX and Ppd-D1_Hapl-X. Association of the CNV of Ppd-B1 gene with the heading and flowering days showed that the cultivars with Ppd-B1_Hapl-VI demonstrated the earliest heading and flowering times, and those with Ppd-B1_Hapl-IV presented the latest heading and flowering times in three cropping seasons. Distribution of the vernalization and photoperiod response genes indicated that all recessive alleles at the four vernalization response loci, Ppd-B1_Hapl-I at Ppd-B1 locus, and Ppd-D1_Hapl-I at the Ppd-D1 locus were predominant in Chinese winter wheat cultivars. This study can provide useful information for wheat breeding programs to screen wheat cultivars with relatively superior adaptability and maturity. PMID:26191066

  9. Winter wheat cultivars with temperature sensitive resistance to wheat streak mosaic virus do not recover from early season infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV), Triticum mosaic virus, and Wheat mosaic virus, all vectored by the wheat curl mite Aceria tosichella Keifer, frequently cause devastating losses to winter wheat production throughout the central and western Great Plains. Resistant 'Mace' and 'RonL' are commercially ...

  10. A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene.

    PubMed

    Zhong, Ziming; Marcel, Thierry C; Hartmann, Fanny E; Ma, Xin; Plissonneau, Clémence; Zala, Marcello; Ducasse, Aurélie; Confais, Johann; Compain, Jérôme; Lapalu, Nicolas; Amselem, Joëlle; McDonald, Bruce A; Croll, Daniel; Palma-Guerrero, Javier

    2017-04-01

    Zymoseptoria tritici is the causal agent of Septoria tritici blotch, a major pathogen of wheat globally and the most damaging pathogen of wheat in Europe. A gene-for-gene (GFG) interaction between Z. tritici and wheat cultivars carrying the Stb6 resistance gene has been postulated for many years, but the genes have not been identified. We identified AvrStb6 by combining quantitative trait locus mapping in a cross between two Swiss strains with a genome-wide association study using a natural population of c. 100 strains from France. We functionally validated AvrStb6 using ectopic transformations. AvrStb6 encodes a small, cysteine-rich, secreted protein that produces an avirulence phenotype on wheat cultivars carrying the Stb6 resistance gene. We found 16 nonsynonymous single nucleotide polymorphisms among the tested strains, indicating that AvrStb6 is evolving very rapidly. AvrStb6 is located in a highly polymorphic subtelomeric region and is surrounded by transposable elements, which may facilitate its rapid evolution to overcome Stb6 resistance. AvrStb6 is the first avirulence gene to be functionally validated in Z. tritici, contributing to our understanding of avirulence in apoplastic pathogens and the mechanisms underlying GFG interactions between Z. tritici and wheat.

  11. Contrasting responses of salinity-stressed salt-tolerant and intolerant winter wheat (Triticum aestivum L.) cultivars to ozone pollution.

    PubMed

    Zheng, Y H; Li, X; Li, Y G; Miao, B H; Xu, H; Simmons, M; Yang, X H

    2012-03-01

    Contrasting winter wheat cultivars, salt-tolerant DK961 and intolerant JN17, which sown in no salinity (-S) and salinity (+S) boxes were exposed to charcoal filtered air (CF) and elevated O(3) (+O(3)) in open top chambers (OTCs) for 30 days. In -S DK961 and JN17 plants, +O(3) DK961 and JN17 plants had significantly lower light-saturated net photosynthetic rates (A(sat), 26% and 24%), stomatal conductance (g(s), 20% and 32%) and chlorophyll contents (10% and 21%), while O(3) considerably increased foliar electrolyte leakage (13% and 39%), malondialdehyde content (9% and 23%), POD activity and ABA content. However, responses of these parameters to O(3) were significant in DK961 but not in JN17 in +S treatment. Correlation coefficient of DK961 reached significance level of 0.01, but it was not significant in JN17 under interaction of O(3) and salinity. O(3)-induced reductions were larger in shoot than in root in both cultivars. Results indicate that the salt-tolerant cultivar sustained less damage from salinity than did the intolerant cultivar but was severely injured by O(3) under +S condition. Therefore, selecting for greater salt tolerance may not lead to the expected gains in yield in areas of moderate (100 mM) salinity when O(3) is present in high concentrations. In contrast, salinity-induced stomatal closure effectively reduced sensitivity to O(3) in the salt-intolerant cultivar. Hence we suggest salt-tolerant winter wheat cultivars might be well adapted to areas of high (>100 mM) salinity and O(3) stress, while intolerant cultivars might be adaptable to areas of mild/moderate salinity but high O(3) pollution.

  12. Metabolomics Suggests That Soil Inoculation with Arbuscular Mycorrhizal Fungi Decreased Free Amino Acid Content in Roots of Durum Wheat Grown under N-Limited, P-Rich Field Conditions

    PubMed Central

    Saia, Sergio; Ruisi, Paolo; Fileccia, Veronica; Di Miceli, Giuseppe; Amato, Gaetano; Martinelli, Federico

    2015-01-01

    Arbuscular mycorrhizal fungi (AMF) have a major impact on plant nutrition, defence against pathogens, a plant’s reaction to stressful environments, soil fertility, and a plant’s relationship with other microorganisms. Such effects imply a broad reprogramming of the plant’s metabolic activity. However, little information is available regarding the role of AMF and their relation to other soil plant growth—promoting microorganisms in the plant metabolome, especially under realistic field conditions. In the present experiment, we evaluated the effects of inoculation with AMF, either alone or in combination with plant growth–promoting rhizobacteria (PGPR), on the metabolome and changes in metabolic pathways in the roots of durum wheat (Triticum durum Desf.) grown under N-limited agronomic conditions in a P-rich environment. These two treatments were compared to infection by the natural AMF population (NAT). Soil inoculation with AMF almost doubled wheat root colonization by AMF and decreased the root concentrations of most compounds in all metabolic pathways, especially amino acids (AA) and saturated fatty acids, whereas inoculation with AMF+PGPR increased the concentrations of such compounds compared to inoculation with AMF alone. Enrichment metabolomics analyses showed that AA metabolic pathways were mostly changed by the treatments, with reduced amination activity in roots most likely due to a shift from the biosynthesis of common AA to γ-amino butyric acid. The root metabolome differed between AMF and NAT but not AMF+PGPR and AMF or NAT. Because the PGPR used were potent mineralisers, and AMF can retain most nitrogen (N) taken as organic compounds for their own growth, it is likely that this result was due to an increased concentration of mineral N in soil inoculated with AMF+PGPR compared to AMF alone. PMID:26067663

  13. Nutritional evaluation of wheat and barley cultivars by growth rate and body composition of larvae of Tenebrio molitor.

    PubMed

    Davis, G R; Sosulski, F W

    1976-04-01

    Larvae of the yellow mealworm, Tenebrio molitor L., Gembloux strain, race F, were reared on diets of 17 cultivars of wheat and 29 cultivars of barley, prepared for determination of digestible energy with mice, for 4 weeks at 27 +/- 0.25 degrees C and 65 +/- 5% relative humidity. Values for percentage crude protein of tissues of larvae fed wheat cultivars were significantly and positively correlated with values for digestible energy as determined with mice. These values were not correlated for larvae fed barley cultivars; however, values for per cent dry matter content of larvae were significantly and positively correlated with values for digestible energy determined with mice. This apparent discrepancy is explained on the basis of the chemical constitution of barley and the availability of amino acids of barley to the larvae. Use of larvae of Tenebrio molitor to indicate the digestible energy of cereal grains is feasible, provided that the proper parameter is chosen. Nevertheless, use of this biological method seems more suitable for evaluation of protein quality and of amino acid availability than for a measure of digestible energy of feeds.

  14. Growth stage-based modulation in physiological and biochemical attributes of two genetically diverse wheat (Triticum aestivum L.) cultivars grown in salinized hydroponic culture.

    PubMed

    Ashraf, Muhammad Arslan; Ashraf, Muhammad

    2016-04-01

    Hydroponic experiment was conducted to appraise variation in the salt tolerance potential of two wheat cultivars (salt tolerant, S-24, and moderately salt sensitive, MH-97) at different growth stages. These two wheat cultivars are not genetically related as evident from randomized polymorphic DNA analysis (random amplified polymorphic DNA (RAPD)) which revealed 28% genetic diversity. Salinity stress caused a marked reduction in grain yield of both wheat cultivars. However, cv. S-24 was superior to cv. MH-97 in maintaining grain yield under saline stress. Furthermore, salinity caused a significant variation in different physiological attributes measured at different growth stages. Salt stress caused considerable reduction in different water relation attributes of wheat plants. A significant reduction in leaf water, osmotic, and turgor potentials was recorded in both wheat cultivars at different growth stages. Maximal reduction in leaf water potential was recorded at the reproductive stage in both wheat cultivars. In contrast, maximal turgor potential was observed at the boot stage. Salt-induced adverse effects of salinity on different water relation attributes were more prominent in cv. MH-97 as compared to those in cv. S-24. Salt stress caused a substantial decrease in glycine betaine and alpha tocopherols. These biochemical attributes exhibited significant salt-induced variation at different growth stages in both wheat cultivars. For example, maximal accumulation of glycine betaine was evident at the early growth stages (vegetative and boot). However, cv. S-24 showed higher accumulation of this organic osmolyte, and this could be the reason for maintenance of higher turgor than that of cv. MH-97 under stress conditions. Salt stress significantly increased the endogenous levels of toxic ions (Na(+) and Cl(-)) and decreased essential cations (K(+) and Ca(2+)) in both wheat cultivars at different growth stages. Furthermore, K(+)/Na(+) and Ca(2+)/Na(+) ratios

  15. Identification of Puccinia striiformis f. sp. tritici, characterization of wheat cultivars for resistance, identification of resistant germplasm, and inheritance of resistance to stripe rust in Kazakhstan wheat cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici, is one of the major factors reducing the productivity of wheat crop. The region of Central Asia (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) is one of the most important wheat areas in the world. As there was p...

  16. Exogenous Cytokinins Increase Grain Yield of Winter Wheat Cultivars by Improving Stay-Green Characteristics under Heat Stress

    PubMed Central

    Shi, Yuhua; Cui, Zhengyong; Luo, Yongli; Zheng, Mengjing; Chen, Jin; Li, Yanxia; Yin, Yanping; Wang, Zhenlin

    2016-01-01

    Stay-green, a key trait of wheat, can not only increase the yield of wheat but also its resistance to heat stress during active photosynthesis. Cytokinins are the most potent general coordinator between the stay-green trait and senescence. The objectives of the present study were to identify and assess the effects of cytokinins on the photosynthetic organ and heat resistance in wheat. Two winter wheat cultivars, Wennong 6 (a stay-green cultivar) and Jimai 20 (a control cultivar), were subjected to heat stress treatment from 1 to 5 days after anthesis (DAA). The two cultivars were sprayed daily with 10 mg L-1 of 6-benzylaminopurine (6-BA) between 1 and 3 DAA under ambient and elevated temperature conditions. We found that the heat stress significantly decreased the number of kernels per spike and the grain yield (P < 0.05). Heat stress also decreased the zeatin riboside (ZR) content, but increased the gibberellin (GA3), indole-3-acetic acid (IAA), and abscisic acid (ABA) contents at 3 to 15 DAA. Application of 6-BA significantly (P < 0.05) increased the grain-filling rate, endosperm cell division rate, endosperm cell number, and 1,000-grain weight under heated condition. 6-BA application increased ZR and IAA contents at 3 to 28 DAA, but decreased GA3 and ABA contents. The contents of ZR, ABA, and IAA in kernels were positively and significantly correlated with the grain-filling rate (P < 0.05), whereas GA3 was counter-productive at 3 to 15 DAA. These results suggest that the decrease in grain yield under heat stress was due to a lower ZR content and a higher GA3 content compared to that at elevated temperature during the early development of the kernels, which resulted in less kernel number and lower grain-filling rate. The results also provide essential information for further utilization of the cytokinin substances in the cultivation of heat-resistant wheat. PMID:27203573

  17. An integrative proteome analysis of different seedling organs in tolerant and sensitive wheat cultivars under drought stress and recovery.

    PubMed

    Hao, Pengchao; Zhu, Jiantang; Gu, Aiqin; Lv, Dongwen; Ge, Pei; Chen, Guanxing; Li, Xiaohui; Yan, Yueming

    2015-05-01

    Roots, leaves, and intermediate sections between roots and leaves (ISRL) of wheat seedlings show different physiological functions at the protein level. We performed the first integrative proteomic analysis of different tissues of the drought-tolerant wheat cultivar Hanxuan 10 (HX-10) and drought-sensitive cultivar Chinese Spring (CS) during a simulated drought and recovery. Differentially expressed proteins (DEPs) in the roots (122), ISRLs (146), and leaves (163) showed significant changes in expression in response to drought stress and recovery. Numerous DEPs associated with cell defense and detoxifications were significantly regulated in roots and ISRLs, while in leaves, DEPs related to photosynthesis showed significant changes in expression. A significantly larger number of DEPs related to stress defense were upregulated in HX-10 than in CS. Expression of six HSPs potentially related to drought tolerance was significantly upregulated under drought conditions, and these proteins were involved in a complex protein-protein interaction network. Further phosphorylation analysis showed that the phosphorylation levels of HSP60, HSP90, and HOP were upregulated in HX-10 under drought stress. We present an overview of metabolic pathways in wheat seedlings based on abscisic acid signaling and important protein expression patterns.

  18. [Hybrids of Aegilops cylindrica Host with Triticum durum Desf. and T. aestivum L].

    PubMed

    Avsenin, V I; Motsnyĭ, A I; Rybalka, A I; Faĭt, V I

    2003-01-01

    The hybrids of durum and bread wheat with Ae. cylindrica have been obtained without using an embryo rescue technique. The hybrid output (of pollinated flower number) in the field conditions scored 1.0, 15.3 and 10.0% in the crosses T. durum x Ae. cylindrica, Ae. cylindrica x T. durum and T. aestivum x Ae. cylindrica, respectively. A high level of meiotic chromosome pairing between homologous D genomes of bread wheat and Aegilops has been revealed (c = 80.0-83.7%). The possibility of homoeological pairing between wheat and Ae. cylindrica chromosomes has been shown. Herewith, the correlation between the levels of homological and homoeological pairing is absent. The possibilities of genetic material interchange, including between the tetraploid species, as well as the using of Ae. cylindrica cytoplasm for durum wheat breeding are discussed.

  19. An analysis of P seudomonas genomic diversity in take‐all infected wheat fields reveals the lasting impact of wheat cultivars on the soil microbiota

    PubMed Central

    Chedom‐Fotso, D.; Chandra, G.; Samuels, T.; Greenaway, N.; Backhaus, A.; McMillan, V.; Canning, G.; Powers, S. J.; Hammond‐Kosack, K. E.; Hirsch, P. R.; Clark, I. M.; Mehrabi, Z.; Roworth, J.; Burnell, J.

    2015-01-01

    Summary Manipulation of the soil microbiota associated with crop plants has huge promise for the control of crop pathogens. However, to fully realize this potential we need a better understanding of the relationship between the soil environment and the genes and phenotypes that enable microbes to colonize plants and contribute to biocontrol. A recent 2 years of investigation into the effect of wheat variety on second year crop yield in the context of take‐all fungal infection presented the opportunity to examine soil microbiomes under closely defined field conditions. Amplicon sequencing of second year soil samples showed that P seudomonas spp. were particularly affected by the wheat cultivar grown in year one. Consequently, 318 rhizosphere‐associated P seudomonas fluorescens strains were isolated and characterized across a variety of genetic and phenotypic traits. Again, the wheat variety grown in the first year of the study was shown to exert considerable selective pressure on both the extent and nature of P seudomonas genomic diversity. Furthermore, multiple significant correlations were identified within the phenotypic/genetic structure of the Pseudomonas population, and between individual genotypes and the external wheat field environment. The approach outlined here has considerable future potential for our understanding of plant–microbe interactions, and for the broader analysis of complex microbial communities. PMID:26337499

  20. Effect of temperature on wheat streak mosaic virus replication and movement in resistant and susceptible wheat cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) is an economically important virus causing annual average yield losses of ~2-3% in winter wheat across the Great Plains. Temperature is one of the most important environmental factors that influences disease development and severity. The objective of this study was t...

  1. Fusarium head blight resistance in U.S. winter wheat cultivars and elite breeding lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium (Fusarium graminearum) head blight (FHB) is a destructive disease of wheat (Triticum aestivum L.) worldwide. To characterize FHB resistance in U.S. wheat germplasm, 363 U.S. winter wheat accessions were repeatedly evaluated for FHB resistance. A high correlation (r = 0.73, P < 0.001) for me...

  2. Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways.

    PubMed

    Mishra, Divya; Shekhar, Shubhendu; Agrawal, Lalit; Chakraborty, Subhra; Chakraborty, Niranjan

    2017-04-15

    The increasing global temperature by 1°C is estimated to reduce the harvest index in a crop by 6%, and this would certainly have negative impact on overall plant metabolism. Wheat is one of the most important crops with global annual production of over 600million tonnes. We investigated an array of physicochemical and molecular indexes to unravel differential response of nine commercial wheat cultivars to high temperature stress (HTS). The reduced rate in relative water content, higher membrane stability, slow chlorophyll degradation and increased accumulation of proline and secondary metabolites ingrained higher thermotolerance in cv. Unnat Halna, among others. The altered expression of several stress-responsive genes, particularly the genes associated with photosynthesis, heat shock proteins and antioxidants impinge on the complexity of HTS-induced responses over different genetic backgrounds and connectivity of adaptive mechanisms. This may facilitate the targeted manipulation of metabolic routes in crops for agricultural and industrial exploitation.

  3. Assessing the impact of ambient ozone on growth and yield of a rice (Oryza sativa L.) and a wheat (Triticum aestivum L.) cultivar grown in the Yangtze Delta, China, using three rates of application of ethylenediurea (EDU).

    PubMed

    Wang, Xiaoke; Zheng, Qiwei; Yao, Fangfang; Chen, Zhan; Feng, Zhaozhong; Manning, W J

    2007-07-01

    Foliar applications of ethylenediurea (abbreviated as EDU) were made at 0, 150, 300 or 450 ppm to field-grown rice and wheat in the Yangtze Delta in China. Rice and wheat responded differently to ambient ozone and EDU applications. For wheat, some growth characteristics, such as yield, seed number per plant, seed set rate and harvest index, increased significantly at 300 ppm EDU treatment, while for rice no parameters measured were statistically different regarding EDU application. The reason may be that the wheat cultivar used may be more sensitive to ozone than the rice cultivar. EDU was effective in demonstrating ozone effects on the wheat cultivar, but not on the rice cultivar. Cultivar sensitivity might be an important consideration when assessing the effects of ambient ozone on plants.

  4. Characterization of chemically modified waxy, partially waxy, and wild type tetraploid wheat starch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheats (Triticum turgidum L. var. durum) contain two Granule Bound Starch Synthase (GBSS) genes (wx-A1and wx-B1) controlling amylose synthesis; the other major starch polymer in durum wheat is amylopectin. Starches with little or no amylose are “waxy.” A GBSS null (non-producing) gene results ...

  5. Genetics of gliadins coded by the group 1 chromosomes in the high-quality bread wheat cultivar Neepawa.

    PubMed

    Dachkevitch, T; Redaelli, R; Biancardi, A M; Metakovsky, E V; Pogna, N E

    1993-04-01

    The inheritance and biochemical properties of gliadins controlled by the group 1 chromosomes of the high-quality bread wheat cultivar Neepawa were studied in the progeny of the cross Neepawa x Costantino by six different electrophoretic procedures. Chromosome 1B of Neepawa contains two gliadin loci, one (Gli-B1) coding for at least six ω- or γ-gliadins, the other (Gli-B3) controlling the synthesis of gliadin N6 only. The map distance between these loci was calculated as 22.1 cM. Amongst the chromosome 1A gliadins, three proteins are encoded at the Gli-A1 locus whereas polypeptides N14-N15-N16 are controlled by a remote locus which recombines with Gli-A1. Six other gliadins are controlled by a gene cluster at Gli-D1 on chromosome 1D. Canadian wheat cultivars sharing the Gli-B1 allele of Neepawa were found to differ in the presence or absence of gliadin N6. The electrophoretic mobilities of proteins N6 and N14-N15-N16 were unaffected by the addition of a reducing agent during two-dimensional sodium dodecyl sulphate polyacrylamid-gel electrophoresis, suggesting the absence of intra-chain disulphide bonds in their structure.

  6. Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars.

    PubMed

    Kaur, Amritpal; Singh, Narpinder; Kaur, Seeratpreet; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2014-09-01

    The relationships of grain, flour solvent retention capacity (SRC) and dough rheological properties with the cookie making properties of wheat cultivars were evaluated. Cultivars with higher proportion of intermolecular-β-sheets+antiparallel β sheets and lower α-helix had greater gluten strength. The grain weight and diameter positively correlated with the proportion of fine particles and the cookie spread factor (SF) and negatively to the grain hardness (GH) and Na2CO3 SRC. The SF was higher in the flour with a higher amount of fine particle and with a lower Na2CO3 SRC and dough stability (DS). The breaking strength (BS) of cookies was positively correlated to lactic acid (LA) SRC, DS, peak time, sedimentation value (SV), G' and G″. Na2CO3 SRC and GH were strongly correlated. The gluten performance index showed a strong positive correlation with SV, DS, G' and G″. The water absorption had a significant positive correlation with sucrose SRC and LASRC. Cultivars with higher GH produced higher amount of coarse particles in flours that had higher Na2CO3 SRC and lower cookie SF.

  7. Proteomic and genetic analysis of wheat endosperm albumins and globulins using deletion lines of cultivar Chinese Spring.

    PubMed

    Merlino, Marielle; Bousbata, Sabrina; Svensson, Birte; Branlard, Gérard

    2012-11-01

    Albumins and globulins from the endosperm of Triticum aestivum L. cv Chinese Spring (CS) were analysed to establish a proteome reference map for this standard wheat cultivar. Approximately, 1,145 Coomassie-stained spots were detected by two-dimensional gel electrophoresis (2DE), 410 of which were identified using mass spectrometry and data mining. Salt-soluble endosperm proteins from 67 CS deletion lines were also separated by 2DE (four gels per line). Image analysis of the 268 2DE gels as compared to the CS reference proteome allowed the detection of qualitative and quantitative variations in endosperm proteins due to chromosomal deletions. This differential analysis of spots allowed structural or regulatory genes, encoding 211 proteins, to be located on segments of the 21 wheat chromosomes. In addition, variance analysis of quantitative variations in spot volume showed that the expression of 391 proteins is controlled by one or more chromosome bins with 262 significant increases and 196 significant decreases in spot volume. The spot volume of several proteins was increased or decreased by numerous chromosomal regions and homoeologous-like regulation was revealed for some proteins. Quantitative or qualitative variation in a total of 386 proteins was influenced by genes assigned to at least one chromosomal region, while 66 % of all stained proteins were not found to be influenced by chromosome bins. Proteomics of deletion lines can, therefore, be used to simultaneously analyse the composition and genetics of a complex tissue, such as the wheat endosperm.

  8. Integration of fungicide application and cultivar resistance to manage fusarium head blight in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB), also known as scab, is a destructive disease of wheat and other small grain cereals. Losses are compounded by the associated mycotoxin deoxynivalenol (DON) which contaminates grain. This chapter provides a brief review of FHB of wheat in North America including occurren...

  9. Resistance to Ug99 stem rust in six bread wheat cultivars maps to chromosome 6DS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 80% of wheat area worldwide is currently grown to varieties that are susceptible to the Ug99 race group of the stem rust fungus. Wheat lines Niini, Tinkio, Coni, Pfunye, Blouk and Ripper were resistant to Ug99 at the seedling and adult plant stages. We mapped stem rust resistance in populations...

  10. Leaf rust resistance in selected Uruguayan common wheat cultivars with early maturity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf rust (caused by Puccinia triticina) is one of the most important diseases of wheat in Uruguay, therefore breeding for resistance to this disease has been a long term objective for INIA wheat breeding program. Information of the identity of resistance genes present in the program is required to ...

  11. Leaf rust resistance in selected Uruguayan late maturity common wheat cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaf rust (caused by Puccinia triticina) is one of the most important diseases of wheat in Uruguay, therefore and breeding for resistance to this disease has been a priority for the INIA wheat breeding development program. Knowledge of the resistance genes present in the germplasm is relevant to bre...

  12. Cluster analysis of historical and modern hard red spring wheat cultivars based on parentage and HPLC analysis of gluten forming proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, 30 hard red spring (HRS) wheat cultivars released between 1910 and 2013 were analyzed to determine how they cluster in terms of parentage and protein data, analyzed by reverse-phase HPLC (RP-HPLC) of gliadins, and size-exclusion HPLC (SE-HPLC) of unreduced proteins. Dwarfing genes in...

  13. Dynamics of small RNA profiles of virus and host origin in wheat cultivars synergistically infected by Wheat streak mosaic virus and Triticum mosaic virus: virus infection caused a drastic shift in the endogenous small RNA profile.

    PubMed

    Tatineni, Satyanarayana; Riethoven, Jean-Jack M; Graybosch, Robert A; French, Roy; Mitra, Amitava

    2014-01-01

    Co-infection of wheat (Triticum aestivum L.) by Wheat streak mosaic virus (WSMV, a Tritimovirus) and Triticum mosaic virus (TriMV, a Poacevirus) of the family Potyviridae causes synergistic interaction. In this study, the effects of the synergistic interaction between WSMV and TriMV on endogenous and virus-derived small interfering RNAs (vsiRNAs) were examined in susceptible ('Arapahoe') and temperature-sensitive resistant ('Mace') wheat cultivars at 18°C and 27°C. Single and double infections in wheat caused a shift in the profile of endogenous small RNAs from 24 nt being the most predominant in healthy plants to 21 nt in infected wheat. Massive amounts of 21 and 22 nt vsiRNAs accumulated in singly and doubly infected Arapahoe at both temperatures and in Mace at 27°C but not 18°C. The plus- and minus-sense vsiRNAs were distributed throughout the genomic RNAs in Arapahoe at both temperature regimens and in Mace at 27°C, although some regions served as hot-spots, spawning an excessive number of vsiRNAs. The vsiRNA peaks were conserved among cultivars, suggesting that the Dicer-like enzymes in susceptible and resistant cultivars similarly accessed the genomic RNAs of WSMV or TriMV. Accumulation of large amounts of vsiRNAs in doubly infected plants suggests that the silencing suppressor proteins encoded by TriMV and WSMV do not prevent the formation of vsiRNAs; thus, the synergistic effect observed is independent from RNA-silencing mediated vsiRNA biogenesis. The high-resolution map of endogenous and vsiRNAs from WSMV- and/or TriMV-infected wheat cultivars may form a foundation for understanding the virus-host interactions, the effect of synergistic interactions on host defense, and virus resistance mechanisms in wheat.

  14. New insights into the roles of host gene-necrotrophic effector interactions in governing susceptibility of durum wheat to tan spot and Septoria nodorum blotch

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tan spot and Septoria nodorum blotch (SNB) are important diseases of wheat caused by the necrotrophic fungi Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively. The P. tritici-repentis necrotrophic effector (NE) Ptr ToxB causes tan spot when recognized by the Tsc2 gene. The NE To...

  15. Toward a better understanding of the genomic region harboring Fusarium head blight resistance QTL Qfhs.ndsu-3AS in durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The wild emmer wheat (Triticum dicoccoides)-derived Fusarium head blight (FHB) resistance quantitative trait locus (QTL) Qfhs.ndsu-3AS previously mapped to the short arm of chromosome 3A (3AS) in a population of recombinant inbred chromosome lines (RICLs). This study aimed to attain a better unders...

  16. Phytochemical profile and nutraceutical value of old and modern common wheat cultivars.

    PubMed

    Leoncini, Emanuela; Prata, Cecilia; Malaguti, Marco; Marotti, Ilaria; Segura-Carretero, Antonio; Catizone, Pietro; Dinelli, Giovanni; Hrelia, Silvana

    2012-01-01

    Among health-promoting phytochemicals in whole grains, phenolic compounds have gained attention as they have strong antioxidant properties and can protect against many degenerative diseases. Aim of this study was to profile grain phenolic extracts of one modern and five old common wheat (Triticum aestivum L.) varieties and to evaluate their potential antiproliferative or cytoprotective effect in different cell culture systems.Wheat extracts were characterized in terms of antioxidant activity and phenolic composition (HPLC/ESI-TOF-MS profile, polyphenol and flavonoid contents). Results showed that antioxidant activity (FRAP and DPPH) is mostly influenced by flavonoid (both bound and free) content and by the ratio flavonoids/polyphenols. Using a leukemic cell line, HL60, and primary cultures of neonatal rat cardiomyocytes, the potential antiproliferative or cytoprotective effects of different wheat genotypes were evaluated in terms of intracellular reactive oxygen species levels and cell viability. All tested wheat phenolic extracts exerted dose-dependent cytoprotective and antiproliferative effects on cardiomyocytes and HL60 cells, respectively. Due to the peculiar phenolic pattern of each wheat variety, a significant genotype effect was highlighted. On the whole, the most relevant scavenging effect was found for the old variety Verna. No significant differences in terms of anti-proliferative activities among wheat genotypes was observed.Results reported in this study evidenced a correspondence between the in vitro antioxidant activity and potential healthy properties of different extracts. This suggests that an increased intake of wheat grain derived products could represent an effective strategy to achieve both chemoprevention and protection against oxidative stress related diseases.

  17. Phytochemical Profile and Nutraceutical Value of Old and Modern Common Wheat Cultivars

    PubMed Central

    Leoncini, Emanuela; Prata, Cecilia; Malaguti, Marco; Marotti, Ilaria; Segura-Carretero, Antonio; Catizone, Pietro; Dinelli, Giovanni; Hrelia, Silvana

    2012-01-01

    Among health-promoting phytochemicals in whole grains, phenolic compounds have gained attention as they have strong antioxidant properties and can protect against many degenerative diseases. Aim of this study was to profile grain phenolic extracts of one modern and five old common wheat (Triticum aestivum L.) varieties and to evaluate their potential antiproliferative or cytoprotective effect in different cell culture systems. Wheat extracts were characterized in terms of antioxidant activity and phenolic composition (HPLC/ESI-TOF-MS profile, polyphenol and flavonoid contents). Results showed that antioxidant activity (FRAP and DPPH) is mostly influenced by flavonoid (both bound and free) content and by the ratio flavonoids/polyphenols. Using a leukemic cell line, HL60, and primary cultures of neonatal rat cardiomyocytes, the potential antiproliferative or cytoprotective effects of different wheat genotypes were evaluated in terms of intracellular reactive oxygen species levels and cell viability. All tested wheat phenolic extracts exerted dose-dependent cytoprotective and antiproliferative effects on cardiomyocytes and HL60 cells, respectively. Due to the peculiar phenolic pattern of each wheat variety, a significant genotype effect was highlighted. On the whole, the most relevant scavenging effect was found for the old variety Verna. No significant differences in terms of anti-proliferative activities among wheat genotypes was observed. Results reported in this study evidenced a correspondence between the in vitro antioxidant activity and potential healthy properties of different extracts. This suggests that an increased intake of wheat grain derived products could represent an effective strategy to achieve both chemoprevention and protection against oxidative stress related diseases. PMID:23049918

  18. Ecogeography, genetic diversity, and breeding value of wild emmer wheat (Triticum dicoccoides Korn ex Asch. & Graebn.) Thell.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild emmer wheat (Triticum dicoccoides Körn ex Asch. & Graebn.) Thell. is the allotetraploid (2n=4x=28; genome BBAA) progenitor of cultivated wheat. It is fully compatible with the tetraploid (BBAA) durum wheat (Triticum durum), and can be crossed with the hexaploid (2n=6x=42; BBAADD) wheat (Triticu...

  19. Mass Spectrometric Imaging of Wheat (Triticum spp.) and Barley (Hordeum vulgare L.) Cultivars: Distribution of Major Cell Wall Polysaccharides According to Their Main Structural Features.

    PubMed

    Veličković, Dušan; Saulnier, Luc; Lhomme, Margot; Damond, Aurélie; Guillon, Fabienne; Rogniaux, Hélène

    2016-08-17

    Arabinoxylans (AX) and (1→3),(1→4)-β-glucans (BG) are the main components of cereal cell walls and influence many aspects of their end uses. Important variations in the composition and structure of these polysaccharides have been reported among cereals and cultivars of a given species. In this work, the spatial distribution of AX and BG in the endosperm of mature grains was established for nine wheat varieties and eight barley varieties using enzymatically assisted mass spectrometry imaging (MSI). Important structural features of the AX and BG polymers that were previously shown to influence their physicochemical properties were assessed. Differences in the distribution of AX and BG structures were observed, both within the endosperm of a given cultivar and between wheat and barley cultivars. This study provides a unique picture of the structural heterogeneity of AX and BG polysaccharides at the scale of the whole endosperm in a series of wheat and barley cultivars. Thus, it can participate meaningfully in a strategy aiming at understanding the structure-function relationships of these two polymers.

  20. Spectroscopic analysis of diversity of Arabinoxylan structures in endosperm cell walls of wheat cultivars (Triticum aestivum) in the HEALTHGRAIN diversity collection.

    PubMed

    Toole, Geraldine A; Le Gall, Gwenaelle; Colquhoun, Ian J; Johnson, Phil; Bedo, Zoltan; Saulnier, Luc; Shewry, Peter R; Mills, E N Clare

    2011-07-13

    Fifty bread wheat (Triticum aestivum L.) cultivars were selected from the HEALTHGRAIN germplasm collection based on variation in their contents of total and water-extractable arabinoxylan. FT-IR spectroscopic mapping of thin transverse sections of grain showed variation in cell wall arabinoxylan composition between the cultivars, from consisting almost entirely of low-substituted arabinoxylan (e.g., T.aestivum 'Claire') to almost entirely of highly substituted arabinoxylan (e.g., T.aestivum 'Manital') and a mixture of the two forms (e.g., T.aestivum 'Hereward'). Complementary data were obtained using endoxylanase digestion of flour followed by HP-AEC analysis of the arabinoxylan oligosaccharides. This allowed the selection of six cultivars for more detailed analysis using FT-IR and (1)H NMR spectroscopy to determine the proportions of mono-, di-, and unsubstituted xylose residues. The results of the two analyses were consistent, showing that variation in the composition and structure of the endosperm cell wall arabinoxylan is present between bread wheat cultivars. The heterogeneity and spatial distribution of the arabinoxylan in endosperm cell walls may be exploited in wheat processing as it may allow the production of mill streams enriched in various arabinoxylan fractions which have beneficial effects on health.

  1. Changes in the water status and osmotic solute contents in response to drought and salicylic acid treatments in four different cultivars of wheat (Triticum aestivum).

    PubMed

    Loutfy, Naglaa; El-Tayeb, Mohamed A; Hassanen, Ahmed M; Moustafa, Mahmoud F M; Sakuma, Yoh; Inouhe, Masahiro

    2012-01-01

    Salicylic acid (SA) controls growth and stress responses in plants. It also induces drought tolerance in plants. In this paper, four wheat (Triticum aestivum L.) cultivars with different drought responses were treated with SA in three levels of drain (90, 60, 30% of maximum field capacity) to examine its interactive effects on drought responses and contents of osmotic solutes that may be involved in growth and osmotic adjustment. Under drought condition, the cultivars Geza 164 and Sakha 69 had the plant biomass and leaf relative water content (LRWC) greater than the cultivars Gemaza 1 and Gemaza 3. In all cultivars, drought stress decreased the biomass, LRWC, and the contents of inorganic solutes (Ca, K, Mg) and largely increased the contents of organic solutes (soluble sugars and proline). By contrast, SA increased the biomass, LRWC and the inorganic and organic solute contents, except proline. Correlation analysis revealed that the LRWC correlated positively with the inorganic solute contents but negatively with proline in all cultivars. SA caused maximum accumulations of soluble sugars in roots under drought. These results indicated that SA-enhanced tolerance might involve solute accumulations but independently of proline biosynthesis. Drought-sensitive cultivars had a trait lowering Ca and K levels especially in shoots. Possible functions of the ions and different traits of cultivars were discussed.

  2. Influence of temperature, precipitation, and cultivar characteristics on changes in the spectrum of pathogenic fungi in winter wheat

    NASA Astrophysics Data System (ADS)

    Hýsek, Josef; Vavera, Radek; Růžek, Pavel

    2016-12-01

    In view of the threat posed by climate change, we studied the influence of temperature, precipitation, cultivar characteristics, and technical management measures on the occurrence of phytopathogenic fungi in wheat during 2009-2013. This work involved experiments at two sites differing in average temperatures and precipitation. Temperature and precipitation appear to influence differences in the spectrum of phytopathogenic fungi at the individual sites. In 2009 (the warmest year), Alternaria triticina was dominant. In 2010 (having the smallest deviations from the average for individual years), Septoria tritici dominated. In 2011, Puccinia triticina was most prominent, while in 2012, the genus Drechslera (Pyrenophora) and in 2013, S. tritici and Drechslera tritici-repentis (DTR) dominated. Temperature and precipitation levels in the individual spring months (warmer March to May) played a large role, especially for the leaf rust P. triticina in 2011. A change of only 1 °C with different precipitation during a year played a significant role in changing wheat's fungal spectrum. Cluster analysis showed the differences between single pathogenic fungi on wheat in a single year due to temperature and precipitation. Alternaria abundance was strongly influenced by year (p < 0.001) while locality was significant only in certain years (2012, 2013; p = 0.004 and 0.015, respectively). The same factors were revealed to be significant in the case of Puccinia, but locality played a role (p < 0.001) in different years (2011, 2013). The abundance of S. tritici and Pyrenophora tritici-repentis (Drechslera tritici-repentis) was influenced only by year (p < 0.001).

  3. Influence of temperature, precipitation, and cultivar characteristics on changes in the spectrum of pathogenic fungi in winter wheat.

    PubMed

    Hýsek, Josef; Vavera, Radek; Růžek, Pavel

    2016-12-14

    In view of the threat posed by climate change, we studied the influence of temperature, precipitation, cultivar characteristics, and technical management measures on the occurrence of phytopathogenic fungi in wheat during 2009-2013. This work involved experiments at two sites differing in average temperatures and precipitation. Temperature and precipitation appear to influence differences in the spectrum of phytopathogenic fungi at the individual sites. In 2009 (the warmest year), Alternaria triticina was dominant. In 2010 (having the smallest deviations from the average for individual years), Septoria tritici dominated. In 2011, Puccinia triticina was most prominent, while in 2012, the genus Drechslera (Pyrenophora) and in 2013, S. tritici and Drechslera tritici-repentis (DTR) dominated. Temperature and precipitation levels in the individual spring months (warmer March to May) played a large role, especially for the leaf rust P. triticina in 2011. A change of only 1 °C with different precipitation during a year played a significant role in changing wheat's fungal spectrum. Cluster analysis showed the differences between single pathogenic fungi on wheat in a single year due to temperature and precipitation. Alternaria abundance was strongly influenced by year (p < 0.001) while locality was significant only in certain years (2012, 2013; p = 0.004 and 0.015, respectively). The same factors were revealed to be significant in the case of Puccinia, but locality played a role (p < 0.001) in different years (2011, 2013). The abundance of S. tritici and Pyrenophora tritici-repentis (Drechslera tritici-repentis) was influenced only by year (p < 0.001).

  4. Expression Level of the DREB2-Type Gene, Identified with Amplifluor SNP Markers, Correlates with Performance, and Tolerance to Dehydration in Bread Wheat Cultivars from Northern Kazakhstan

    PubMed Central

    Shavrukov, Yuri; Zhumalin, Aibek; Serikbay, Dauren; Botayeva, Makpal; Otemisova, Ainur; Absattarova, Aiman; Sereda, Grigoriy; Sereda, Sergey; Shvidchenko, Vladimir; Turbekova, Arysgul; Jatayev, Satyvaldy; Lopato, Sergiy; Soole, Kathleen; Langridge, Peter

    2016-01-01

    A panel of 89 local commercial cultivars of bread wheat was tested in field trials in the dry conditions of Northern Kazakhstan. Two distinct groups of cultivars (six cultivars in each group), which had the highest and the lowest grain yield under drought were selected for further experiments. A dehydration test conducted on detached leaves indicated a strong association between rates of water loss in plants from the first group with highest grain yield production in the dry environment relative to the second group. Modern high-throughput Amplifluor Single Nucleotide Polymorphism (SNP) technology was applied to study allelic variations in a series of drought-responsive genes using 19 SNP markers. Genotyping of an SNP in the TaDREB5 (DREB2-type) gene using the Amplifluor SNP marker KATU48 revealed clear allele distribution across the entire panel of wheat accessions, and distinguished between the two groups of cultivars with high and low yield under drought. Significant differences in expression levels of TaDREB5 were revealed by qRT-PCR. Most wheat plants from the first group of cultivars with high grain yield showed slight up-regulation in the TaDREB5 transcript in dehydrated leaves. In contrast, expression of TaDREB5 in plants from the second group of cultivars with low grain yield was significantly down-regulated. It was found that SNPs did not alter the amino acid sequence of TaDREB5 protein. Thus, a possible explanation is that alternative splicing and up-stream regulation of TaDREB5 may be affected by SNP, but these hypotheses require additional analysis (and will be the focus of future studies). PMID:27917186

  5. [Features of crossability, haploidy and polyembryony in hybrid combinations between common barley Hordeum vulgare L. (2n = 14) and wheat-rye substitution lines Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya].

    PubMed

    Pershina, L A; Belova, L I; Deviatkina, E P; Rakovtseva, T S; Kravtsova, L A; Shchapova, A I

    2005-06-01

    The role of individual chromosomes of rye in the manifestation of crossability and seedling development in hybrid combinations between common barley Hordeum vulgare L., cultivar Nepolegayushchii (2n = 14) and five wheat-rye substitution lines Triticum aestivum L., cultivar Saratovskaya 29/Secale cereale L., cultivar Onokhoiskaya (2n = 40 wheat + 2 rye chromosomes). Crossability, which was measured by two parameters--frequency of set grains and frequency of grains with embryos--was shown to be significantly affected by each of the five rye chromosomes examined: 1R, 2R, 3R, 5R, and 6R; the development of barley haploids was affected by rye chromosomes 1 R, 3R, and 5R. We were the first to demonstrate that polyembryony could be induced by mutual effects of barley cytoplasm and rye chromosome 1R. Possible mechanisms controlling the development of haploids and twins in hybrid combinations H. vulgare x T. aestivum/S. cereale are discussed. The conclusion is drawn that hybrid combinations between common barley and wheat-rye substitution lines can serve as new models for studying incompatibility mechanisms in distant crosses and genetic control of parthenogenesis.

  6. Relationship between physicochemical characteristics of flour and sugar-snap cookie quality in Korean wheat cultivar

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship of physicochemical properties of flour, including particle size of flour, damaged starch, SDS-sedimentation volume, gluten content and four solvent retention capacity (SRC) values with cookie baking quality, including cookie diameter and thickness was evaluated using 30 Korean wheat...

  7. Mapping of Fusarium Head Blight resistance QTL in winter wheat cultivar NC-Neuse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Head Blight (FHB), primarily caused by Fusarium graminearum, can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. The objective of this study was to identify quantitative trait loci (QTL) for FHB resistance in the moderately resistant so...

  8. Quantification of peptides causing celiac disease in historical and modern hard red spring wheat cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Celiac disease (CD) is prevalent in 0.5 to 1.26% of adolescents and adults. The disease develops in genetically susceptible individuals as a result of ingestion of gluten forming proteins found in cereals such as, wheat (Triticum aestivum L.), rye (Secale cereale L.) and barley (Hordeum sativum L.)...

  9. Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars.

    PubMed

    Seki, Masako; Chono, Makiko; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2011-12-01

    The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Ppd-D1a frequency was lower and heading date was late regardless of Ppd-D1 genotype, suggesting another genetic mechanism for late heading in Hokkaido cultivars. In this study, only 11 cultivars proved to carry Ppd-B1a, and all of them carried another photoperiod-insensitive allele, Ppd-D1a. The Ppd-B1a/Ppd-D1a genotype headed 6.7 days earlier than the Ppd-B1b/Ppd-D1a genotype, indicating a significant effect of Ppd-B1a in the genetic background with Ppd-D1a. Early-maturity breeding in Japan is believed to be accelerated by the introduction of the Ppd-B1a allele into medium-heading cultivars carrying Ppd-D1a. Pedigree analysis showed that Ppd-B1a in three extra-early commercial cultivars was inherited from 'Shiroboro 21' by early-heading Chugoku lines bred at the Chugoku Agriculture Experimental Station.

  10. First report of Fusarium hostae causing crown rot of wheat (Triticum spp.) in Turkey

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crown rot disease of wheat is caused by a complex of Fusarium species. To identify species associated with crown rot in Turkey, crowns and stems of bread wheat (Triticum aestivum L.) and durum wheat (T. durum Desf.) were collected from the Central and Southeast Anatolia, Black Sea, Aegean, Mediterr...

  11. Complex Regulation by Apetala2 Domain-Containing Transcription Factors Revealed through Analysis of the Stress-Responsive TdCor410b Promoter from Durum Wheat

    PubMed Central

    Eini, Omid; Yang, Nannan; Pyvovarenko, Tatiana; Pillman, Katherine; Bazanova, Natalia; Tikhomirov, Natalia; Eliby, Serik; Shirley, Neil; Sivasankar, Shoba; Tingey, Scott; Langridge, Peter; Hrmova, Maria; Lopato, Sergiy

    2013-01-01

    Expression of the wheat dehydrin gene Cor410b is induced several fold above its non-stressed levels upon exposure to stresses such as cold, drought and wounding. Deletion analysis of the TdCor410b promoter revealed a single functional C-repeat (CRT) element. Seven transcription factors (TFs) were shown to bind to this CRT element using yeast one-hybrid screens of wheat and barley cDNA libraries, of which only one belonged to the DREB class of TFs. The remaining six encoded ethylene response factors (ERFs) belong to three separate subfamilies. Analysis of binding selectivity of these TFs indicated that all seven could bind to the CRT element (GCCGAC), and that three of the six ERFs could bind both to the CRT element and the ethylene-responsive GCC-box (GCCGCC). The TaERF4 subfamily members specifically bound the CRT element, and did not bind either the GCC-box or DRE element (ACCGAC). Molecular modeling and site-directed mutagenesis identified a single residue Pro42 in the Apetala2 (AP2) domain of TaERF4-like proteins that is conserved in monocotyledonous plants and is responsible for the recognition selectivity of this subfamily. We suggest that both DREB and ERF proteins regulate expression of the Cor410b gene through a single, critical CRT element. Members of the TaERF4 subfamily are specific, positive regulators of Cor410b gene expression. PMID:23527011

  12. Assessing the impact of ambient ozone on growth and productivity of two cultivars of wheat in India using three rates of application of ethylenediurea (EDU).

    PubMed

    Tiwari, Supriya; Agrawal, Madhoolika; Manning, William J

    2005-11-01

    Three rates of ethylenediurea were used to assess the impact of ambient ozone on growth and productivity of wheat (Triticum aestivum L) cultivars "Malviya 533" (M 533) and "Malviya 234" (M 234) at a suburban site near Varanasi, India, beginning in December. Wheat plants were treated with EDU at 0, 150, 300 and 450 ppm as soil drenches at 10-day intervals. EDU treatment affected plant growth, with effects varying with cultivar, age, and EDU concentration. Seed yield was improved for M 533 at 150 ppm EDU, while yield improved for M 234 at 300 and 450 ppm EDU. M 533 appears to be more resistant to ozone than M 234. Overall results confirmed that EDU is very useful in assessing the effect of ambient ozone in India.

  13. Dynamics of radioactive cesium (134Cs and 137Cs) during the milling of contaminated Japanese wheat cultivars and during the cooking of udon noodles made from wheat flour.

    PubMed

    Kimura, Keitarou; Kameya, Hiromi; Nei, Daisuke; Kakihara, Yoshiteru; Hagiwara, Shoji; Okadome, Hiroshi; Tanji, Katsuo; Todoriki, Setsuko; Matsukura, Ushio; Kawamoto, Ghinichi

    2012-10-01

    The fate of radioactive cesium ((134)Cs plus (137)Cs) during the milling of contaminated Japanese wheat cultivars harvested in FY2011, and during the cooking of Japanese udon noodles made from the wheat flour, was investigated. Grain samples containing various radioactive cesium concentrations (36.6 to 772 Bq/kg [dry weight]) were milled using a laboratory-scale test mill to produce eight fractions: three break flours (1B, 2B, and 3B), three reduction flours (1M, 2M, and 3M), bran, and shorts. The concentrations of radioactive cesium were found to be highest in the bran fractions of all the samples tested, with 2.3- to 2.5-fold higher values than that of the whole grain. Shorts contained radioactive cesium levels similar to that of the whole grain. In contrast, radioactive cesium concentrations in other fractions were found to be less than half the concentration in whole grain. The average processing factor (PF) value calculated for patent flour (0.401 ± 0.048), made from the mixture of 1B, 2B, 1M, and 2M for human consumption, or for low-grade flour (0.467 ± 0.045), made from the mixture of 3B and 3M, was found to be less than 0.5; whereas the average PF value (2.07 ± 0.232) for feed bran (mixture of bran and shorts), which has been used mainly as livestock feed in Japan, was over 2.0. Boiling udon noodles (made from patent flour) resulted in a substantial reduction (>70 % of initial amount) of radioactive cesium. Moreover, radioactive cesium was reduced further (<10 % of the initial amount) in the subsequent rinsing process, and the PF value of boiled noodles was recorded as 0.194. These results demonstrated that patent flour containing radioactive cesium can be made safe for human consumption by adopting the standard limit for radioactive cesium in wheat grain and that radioactive cesium in udon noodles is substantially reduced by cooking.

  14. Effect of carob (Ceratonia siliqua L.) flour on the antioxidant potential, nutritional quality, and sensory characteristics of fortified durum wheat pasta.

    PubMed

    Sęczyk, Łukasz; Świeca, Michał; Gawlik-Dziki, Urszula

    2016-03-01

    This paper presents a study on the effect of carob flour addition from 1% to 5% (w/w) on phenolics content, antioxidant activity, nutritional quality, and sensory attributes of wheat pasta. An increase of about 2-folds, 18-folds and 3-folds in phenolics content, antiradical activity and reducing power for pasta fortified with 5% of carob flour was observed, respectively, compared to the control. Expected glycemic index (eGI) was increased proportionally to the substitution level and ranged between 72.2 and 83.9 for 1-5% of supplement, respectively. Furthermore, pasta fortification affected the in vitro bioaccessibility of nutrients. In case of 5% supplemented pasta, the digestibility of starch and protein decreased by about 9% compared to the control. The replacement of semolina with carob flour from 1% to 5% had no significant effect on pasta sensory attributes. In conclusion, carob flour seems to be a promising functional ingredient for pasta fortification.

  15. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain

    PubMed Central

    Wang, Bin; Zhang, Yinghua; Hao, Baozhen; Xu, Xuexin; Zhao, Zhigan; Wang, Zhimin; Xue, Qingwu

    2016-01-01

    Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800–850 seeds m−2. Average yields of 7.42 t ha−1 and WUE of 1.84 kg m−3 were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%–8.9% higher yield and 4.2%–9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP. PMID:27100187

  16. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain.

    PubMed

    Wang, Bin; Zhang, Yinghua; Hao, Baozhen; Xu, Xuexin; Zhao, Zhigan; Wang, Zhimin; Xue, Qingwu

    2016-01-01

    Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2). Average yields of 7.42 t ha(-1) and WUE of 1.84 kg m(-3) were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

  17. Uptake and distribution of stable strontium in 26 cultivars of three crop species: oats, wheat, and barley for their potential use in phytoremediation.

    PubMed

    Qi, Lin; Qin, Xiaoliang; Li, Feng-Min; Siddique, Kadambot H M; Brandl, Helmut; Xu, Jinzhang; Li, Xiaogang

    2015-01-01

    The main objective of this study was to investigate the accumulation and distribution of strontium (Sr) in 26 cultivars of wheat (Triticum aestivum L.), husk oat (Avena sativa L) and naked oat (Avena nuda), and barley (Hordeum vulgare L.) for their potential use in phytoremediation.Sr levels had no effect on the accumulation of shoot biomass at tillering or at maturity. Mean shoot Sr concentration of naked oat and barley at tillering was significantly (P<0.05) higher than that of wheat; Neimengkeyimai-1, a naked oat cultivar, had the highest Sr concentrations. At maturity, of four naked oat cultivars, Neimengkeyimai-1 had the highest Sr content at all measured Sr levels. Leaves had the highest Sr concentrations, followed by roots and straw, and then grain with the lowest. Mean enrichment coefficients from soil to shoots ranged from 0.521 to 1.343; the percentage of stable Sr removed from the soil to the shoots at harvest time was more than 1.4% after 120 days. Neimengkeyimai-1 could be used as a model for further research to find more effective cultivars; and naked oat plants could be selected for phytoremediation to clean up contaminated soil.

  18. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  19. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  20. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  1. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  2. 21 CFR 139.138 - Whole wheat macaroni products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Whole wheat macaroni products. 139.138 Section 139... and Noodle Products § 139.138 Whole wheat macaroni products. (a) Whole wheat macaroni products are the...)(3), and (g), except that: (1) Whole wheat flour or whole durum wheat flour or both are used as...

  3. Rapid separation of seed gliadins by reversed-phase ultra performance liquid chromatography (RP-UPLC) and its application in wheat cultivar and germplasm identification.

    PubMed

    Han, Caixia; Lu, Xaiobing; Yu, Zitong; Li, Xiaohui; Ma, Wujun; Yan, Yueming

    2015-01-01

    To separate gliadin from wheat flour, a novel and stability-indicating reversed-phase ultra performance liquid chromatography (RP-UPLC) method is established and optimized. A comparative analysis of routine capillary electrophoresis (CE), reversed-phase high-performance liquid chromatography (RP-HPLC), and RP-UPLC was performed and the results showed that the resolution and efficiency of RP-UPLC were significantly higher than those of CE and RP-HPLC. Characteristic RP-UPLC patterns of different bread wheat variety and related species were readily identified. These results demonstrated that our RP-UPLC procedure resulted in significant improvements in sensitivity, speed, and resolution, and thus is highly useful in wheat cultivar and germplasm identification.

  4. [Comparative Characteristic of Triticum aestivum/Triticum durum and Triticum aestivum/Triticum dicoccum hybrid lines by genomic composition and resistance to fungal diseases under different environmental conditions].

    PubMed

    Leonova, I N; Badaeva, E D; Orlovskaya, O A; Roder, M S; Khotyleva, L V; Salina, E A; Shumny, V K

    2013-11-01

    The genetic diversity of common wheat hybrid lines Triticum aestivum/Triticum durum and Triticum aestivum/Triticum dicoccum (2n = 42, F(6-7)) using chromosome-specific microsatellite (SSR) markers and C-staining of chromosomes was studied. Cluster analysis of data obtained by 42 SSR markers indicated that the hybrid lines can be broken into three groups according to their origin. There were two cases of complete genetic similarity between lines 183(2)-2/184(1)-6 and-208-3/213-1, which were obtained using common wheat as the parental plants. In cross combinations, when the stabilization of the nuclear genome of hexaploid lines occurred against a background of the cytoplasmic genome of tetraploid wheats, there was a high level of divergence between sister lines, in some cases exceeding 50%. The evaluation of the degree of susceptibility of the lines to powdery mildew, leaf and stem rust, and septoria leafblotch was performed under different environmental conditions. It was shown that resistance to powdery mildew and leaf rust significantly depended on the region where assays were conducted. An evaluation of the field data showed that he lines 195-3, 196-1, and 221-1 with T. durum genetic material displayed complex resistance to fungal pathogens in Western Siberia and the Republic of Belarus. For lines 195-3 and 196-1, one shows a possible contribution of chromosomes 4B and 5B in the formation of complex resistance to diseases. Hybrid lines with complex resistance can be used to expand the genetic diversity of modern common wheat cultivars for genes of immunity.

  5. Performance and carcass measurements of ewe lambs reared in a feedlot and fed wheat (Triticum durum Desf.) middlings total mixed rations in the summer season.

    PubMed

    Tufarelli, Vincenzo; Khan, Rifat Ullah; Mazzei, Domenico; Laudadio, Vito

    2012-04-01

    The effect of total mixed ratios containing wheat middlings (WM) as a corn grain substitute on the growth performance and carcass traits of Comisana ewe lambs was evaluated. Forty ewe lambs, with average live body weight of 13 ± 0.3 kg (mean ± SEM), were allocated randomly to two isocaloric and isonitrogenous diets for 50 days. Control diet contained 400 g/kg of dry matter (DM) of corn as the main starchy source, whereas experimental diet contained 600 g/kg DM of WM. In vivo nutrient apparent digestibility of the two diets was determined using Comisana rams (mean body weight, 65 ± 2.3 kg) and indicated significant (P < 0.05) differences for neutral detergent fibre, acid detergent fibre, cellulose and hemicellulose fractions. Results from the trial using Comisana ewe lambs showed that growth traits were unaffected by dietary treatments as well as none of the carcass measurements examined (P > 0.05). These findings indicate that WM results as a suitable feed ingredient for growing ewe lambs that can be a satisfactory substitute to conventional grain source.

  6. Evaluation of some drought resistance criteria at seedling stage in wheat (Triticum aestivum L.) cultivars.

    PubMed

    Tavakol, E; Pakniyat, H

    2007-04-01

    This research was conducted to evaluate some of the drought resistance criteria at seedling stage in wheat. A factorial experiment in a Completely Randomized Design (CRD) was used with two factors consisted of stress levels (0, -5 and -8 bar) using PEG 6000 and genotypes (10 genotypes of bread wheat; Azar 2, Gahar, Koohdasht, Bow, Zagros, Cham, Niknejad, E1 Neilairi, Bohoih and Giza 164) in three replications in a hydroponic condition. Stress Tolerance Index (STI), Water Use Efficiency (WUE), Biological Yield (BY), Shoot Dry Weight (SDW), Root Dry Weight (RDW), Root/Shoot weight ratio (R/S), Root Length (RL), Relative Water Content (RWC), Wilting Percentage (WP) and first and 2nd Leaves Extention Rate (LER1 and LER2) were measured at seedling stage. Increasing stress levels caused reduction in BY, SDW, RDW, RL, RWC, LER1 and LER2, but an increase in WUE, DWR, R/S and WP. Azar2, Gahar, Koohdasht, Zagros and Bow were in favorite condition in regard to STI, WUE and other criteria. Therefore, they are drought tolerant and might be suitable genotypes at water deficit conditions. Niknejad, E1 Neilairi and Cham were moderate and Giza 164 and Bohoih were sensitive genotypes to drought conditions. This research revealed that at -5 bar, WUE, BY, SDW, R/S and LER2 and at -8 bar, WUE, BY and WP were suitable criteria for selection of drought resistant genotypes at seedling stage.

  7. The expression of CBF genes at Fr-2 locus is associated with the level of frost tolerance in Bulgarian winter wheat cultivars.

    PubMed

    Todorovska, Elena Georgieva; Kolev, Stanislav; Christov, Nikolai Kirilov; Balint, Andras; Kocsy, Gabor; Vágújfalvi, Attila; Galiba, Gabor

    2014-05-04

    The regulation of the majority of cold-regulated genes in plants is mediated by CBF (C-repeat binding factors) transcription factor family. Natural differences in frost tolerance (FT) of wheat have been mapped to the Fr-2 (Frost Resistance-2) locus on chromosome group 5 and are associated with variation in threshold induction temperatures and/or transcript levels of CBF genes. This study used real-time reverse-transcription polymerase chain reaction (qRT-PCR) to compare the relative expression levels of four T. aestivum CBF genes (TaCBF15.2, TaCBFA19, TaCBFA2 and TaCBFD21) in crown tissue of two Bulgarian hexaploid winter wheat cultivars (Milena and Russalka) with distinct levels of low-temperature (LT) tolerance but same vernalization requirement, and the spring cultivar Chinese Spring. The transcription profiles of the selected TaCBF genes showed that they are induced by cold treatment at 2 °C. Analysis of transcript abundance revealed that the four TaCBF genes were expressed at higher levels in the frost tolerant Milena than in the susceptible Russalka. Largest differences (fivefold and fourfold) in expression levels between both winter cultivars were observed in two of the analysed genes, TaCBF15.2 and TaCBFA19, respectively. The higher steady-state expression levels of TaCBF genes before the onset of the LT treatment in Milena, combined with stronger induction by cold treatment, suggest that these molecular responses to LT are associated with superior FT development capacity. The results expand our understanding of the molecular mechanisms underlying LT acclimation in Bulgarian wheat and can be used for development of functional markers for improvement of FT wheat-breeding programmes.

  8. Molecular characterization of field resistance to Fusarium head blight in two US soft red winter wheat cultivars.

    PubMed

    Liu, Shuyu; Griffey, Carl A; Hall, Marla D; McKendry, Anne L; Chen, Jianli; Brooks, Wynse S; Brown-Guedira, Gina; Van Sanford, David; Schmale, David G

    2013-10-01

    In the soft red winter wheat (Triticum aestivum L.) regions of the US, Fusarium head blight (FHB, caused by Fusarium spp.) resistance derived from locally adapted germplasm has been used predominantly. Two soft red winter wheat cultivars, Massey and Ernie, have moderate resistance to FHB. Mapping populations derived from Becker/Massey (B/M) and Ernie/MO 94-317 (E/MO) were evaluated for FHB resistance and other traits in multiple environments. Eight QTL in B/M and five QTL in E/MO were associated with FHB variables including incidence, severity (SEV), index (IND), Fusarium damaged kernels (FDK), deoxynivalenol (DON), and morphological traits flowering time and plant height. Four QTL were common to both populations. Three of them were located at or near known genes: Ppd-D1 on chromosome 2DS, Rht-B1 on 4BS, and Rht-D1 on 4DS. Alleles for dwarf plant height (Rht-B1b and Rht-D1b) and photoperiod insensitivity (Ppd-D1a) had pleiotropic effects in reducing height and increasing FHB susceptibility. The other QTL detected for FHB variables were on 3BL in both populations, 1AS, 1DS, 2BL, and 4DL in B/M, and 5AL (B1) and 6AL in E/MO. The additive effects of FHB variables ranged from 0.4 mg kg(-1) of DON to 6.2 % for greenhouse (GH) SEV in B/M and ranged from 0.3 mg kg(-1) of DON to 8.3 % for GH SEV in E/MO. The 4DS QTL had epistasis with Ppd-D1, Qdon.umc-6AL, and Qht.umc-4BS, and additive × additive × environment interactions with the 4BS QTL for SEV, IND, and FDK in E/MO. Marker-assisted selection might be used to enhance FHB resistance through selection of favorable alleles of significant QTL, taking into account genotypes at Rht-B1b, Rht-D1a and Ppd-D1a.

  9. Chromosome engineering of wheat stem rust resistance gene Sr47 in a tetraploid wheat background

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Durum wheat (Triticum turgidum L. ssp. durum) line DAS15 carries Sr47, a gene conferring resistance to races of stem rust (Puccinia graminis f. sp. tritici), including race TTKSK (Ug99). The Ae. speltoides segment harboring Sr47 accounts for most of the T2BL-2SL•2SS chromosome. Our objective was t...

  10. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars.

    PubMed

    Abid, Muhammad; Tian, Zhongwei; Ata-Ul-Karim, Syed Tahir; Liu, Yang; Cui, Yakun; Zahoor, Rizwan; Jiang, Dong; Dai, Tingbo

    2016-09-01

    Wheat crop endures a considerable penalty of yield reduction to escape the drought events during post-anthesis period. Drought priming under a pre-drought stress can enhance the crop potential to tolerate the subsequent drought stress by triggering a faster and stronger defense mechanism. Towards these understandings, a set of controlled moderate drought stress at 55-60% field capacity (FC) was developed to prime the plants of two wheat cultivars namely Luhan-7 (drought tolerant) and Yangmai-16 (drought sensitive) during tillering (Feekes 2 stage) and jointing (Feekes 6 stage), respectively. The comparative response of primed and non-primed plants, cultivars and priming stages was evaluated by applying a subsequent severe drought stress at 7 days after anthesis. The results showed that primed plants of both cultivars showed higher potential to tolerate the post-anthesis drought stress through improved leaf water potential, more chlorophyll, and ribulose-1, 5-bisphosphate carboxylase/oxygenase contents, enhanced photosynthesis, better photoprotection and efficient enzymatic antioxidant system leading to less yield reductions. The primed plants of Luhan-7 showed higher capability to adapt the drought stress events than Yangmai-16. The positive effects of drought priming to sustain higher grain yield were pronounced in plants primed at tillering than those primed at jointing. In consequence, upregulated functioning of photosynthetic apparatus and efficient enzymatic antioxidant activities in primed plants indicated their superior potential to alleviate a subsequently occurring drought stress, which contributed to lower yield reductions than non-primed plants. However, genotypic and priming stages differences in response to drought stress also contributed to affect the capability of primed plants to tolerate the post-anthesis drought stress conditions in wheat.

  11. Registration of 70 Common Spring Wheat Germplasm Lines Resistant to Stripe Rust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seventy common spring wheat (Triticum aestivum subsp. aestivum) germplasm lines resistant to stripe rust, caused by Puccinia striiformis f. sp. tritici, were developed from crosses of 66 common and 4 durum (T. turgidum subsp. durum) wheat lines originating from 28 countries. Among the new lines, 4 ...

  12. 21 CFR 137.220 - Durum flour.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Durum flour. 137.220 Section 137.220 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.220 Durum flour. (a) Durum flour is the food prepared by grinding and...

  13. 21 CFR 137.220 - Durum flour.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Durum flour. 137.220 Section 137.220 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.220 Durum flour. (a) Durum flour is the food prepared by grinding and...

  14. 21 CFR 137.220 - Durum flour.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Durum flour. 137.220 Section 137.220 Food and... CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours and Related Products § 137.220 Durum flour. (a) Durum flour is the food prepared by grinding and...

  15. Gene expression analysis reveals important pathways for drought response in leaves and roots of a wheat cultivar adapted to rainfed cropping in the Cerrado biome

    PubMed Central

    Poersch-Bortolon, Liane Balvedi; Pereira, Jorge Fernando; Nhani, Antonio; Gonzáles, Hebert Hernán Soto; Torres, Gisele Abigail Montan; Consoli, Luciano; Arenhart, Rafael Augusto; Bodanese-Zanettini, Maria Helena; Margis-Pinheiro, Márcia

    2016-01-01

    Abstract Drought limits wheat production in the Brazilian Cerrado biome. In order to search for candidate genes associated to the response to water deficit, we analyzed the gene expression profiles, under severe drought stress, in roots and leaves of the cultivar MGS1 Aliança, a well-adapted cultivar to the Cerrado. A set of 4,422 candidate genes was found in roots and leaves. The number of down-regulated transcripts in roots was higher than the up-regulated transcripts, while the opposite occurred in leaves. The number of common transcripts between the two tissues was 1,249, while 2,124 were specific to roots and 1,049 specific to leaves. Quantitative RT-PCR analysis revealed a 0.78 correlation with the expression data. The candidate genes were distributed across all chromosomes and component genomes, but a greater number was mapped on the B genome, particularly on chromosomes 3B, 5B and 2B. When considering both tissues, 116 different pathways were induced. One common pathway, among the top three activated pathways in both tissues, was starch and sucrose metabolism. These results pave the way for future marker development and selection of important genes and are useful for understanding the metabolic pathways involved in wheat drought response. PMID:27768155

  16. Use of ethylene diurea (EDU) in assessing the impact of ozone on growth and productivity of five cultivars of Indian wheat (Triticum aestivum L.).

    PubMed

    Singh, Shalini; Agrawal, S B

    2009-12-01

    Increase in concentrations of tropospheric ozone (O(3)) is one of the main factors affecting world agriculture production. Tropical countries including India are at greater risk due to their meteorological conditions (high solar radiation and temperature) being conducive to the formation of O(3). The most effective anti-ozonant chemical is N-[2-(2-oxo-1-imidazolidinyl) ethyl]-N-phenylurea or ethylene diurea (EDU). Due to its specific characteristics, EDU has been used in the field as a phytomonitoring agent to assess crop losses due to O(3). Field experiments were conducted on five local cultivars of wheat (Triticum aestivum L. cv HUW234, HUW468, HUW510, PBW343, and Sonalika) grown under natural field conditions in a suburban area of Varanasi, Uttar Pradesh, India during December 2006 to March 2007 to determine the impact of O(3) on their growth and yield characteristics. Mean monthly O(3) concentrations varied between 35.3 ppb and 54.2 ppb at the experimental site. EDU treatment positively affected various growth and yield parameters with difference between cultivars. EDU-treated plants showed increase in shoot and root length, leaf area, absolute growth rate, relative growth rate, and net primary productivity, indicating O(3) induced suppression in growth. EDU treatment was highly significant in different cultivars for total biomass and test weight but not for harvest index. Yield per plant was higher by 25.6%, 24%, 20.4%, 8.6%, and 1.9% in EDU-treated cultivars HUW468, Sonalika, HUW510, HUW234, and PBW343, respectively, than non-EDU-treated ones. These results clearly indicate the sensitivity of all the wheat cultivars to ambient levels of O(3) with cv HUW468 appearing to be most sensitive. The present study also supports the view that EDU has great potential in alleviating the unfavorable effects of O(3) and can be effectively used as a monitoring tool to assess growth and yield losses in areas experiencing elevated concentrations of O(3).

  17. Increased ABA sensitivity results in higher seed dormancy in soft white spring wheat cultivar ‘Zak’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As a strategy to increase the seed dormancy of soft white wheat, mutants with increased sensitivity to the plant hormone abscisic acid (ABA) were identified in mutagenized grain of soft white spring wheat ‘Zak”. Lack of seed dormancy is correlated with increased susceptibility to preharvest sprouti...

  18. Inheritance of resistance to Ug99 stem rust in wheat cultivar Norin 40 and genetic mapping of Sr42

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust, caused by the fungus Puccinia graminis f. sp. tritici, is a devastating disease of wheat. The emergence of a race of Puccinia graminis f. sp. tritici known as Ug99, and new Ug99 variants in Africa threaten wheat production worldwide. The best method of controlling stem rust is to use gene...

  19. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry

    PubMed Central

    Schalk, Kathrin; Lang, Christina; Wieser, Herbert; Koehler, Peter; Scherf, Katharina Anne

    2017-01-01

    Coeliac disease (CD) is triggered by the ingestion of gluten proteins from wheat, rye, and barley. The 33-mer peptide from α2-gliadin has frequently been described as the most important CD-immunogenic sequence within gluten. However, from more than 890 published amino acid sequences of α-gliadins, only 19 sequences contain the 33-mer. In order to make a precise assessment of the importance of the 33-mer, it is necessary to elucidate which wheat species and cultivars contain the peptide and at which concentrations. This paper presents the development of a stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry to quantitate the 33-mer in flours of 23 hexaploid modern and 15 old common (bread) wheat as well as two spelt cultivars. All flours contained the 33-mer peptide at levels ranging from 91–603 μg/g flour. In contrast, the 33-mer was absent (durum wheat, emmer, einkorn), most likely because of the absence of the D-genome, which encodes α2-gliadins. Due to the presence of the 33-mer in all common wheat and spelt flours analysed here, the special focus in the literature on this most immunodominant peptide seems to be justified. PMID:28327674

  20. Quantitation of the immunodominant 33-mer peptide from α-gliadin in wheat flours by liquid chromatography tandem mass spectrometry.

    PubMed

    Schalk, Kathrin; Lang, Christina; Wieser, Herbert; Koehler, Peter; Scherf, Katharina Anne

    2017-03-22

    Coeliac disease (CD) is triggered by the ingestion of gluten proteins from wheat, rye, and barley. The 33-mer peptide from α2-gliadin has frequently been described as the most important CD-immunogenic sequence within gluten. However, from more than 890 published amino acid sequences of α-gliadins, only 19 sequences contain the 33-mer. In order to make a precise assessment of the importance of the 33-mer, it is necessary to elucidate which wheat species and cultivars contain the peptide and at which concentrations. This paper presents the development of a stable isotope dilution assay followed by liquid chromatography tandem mass spectrometry to quantitate the 33-mer in flours of 23 hexaploid modern and 15 old common (bread) wheat as well as two spelt cultivars. All flours contained the 33-mer peptide at levels ranging from 91-603 μg/g flour. In contrast, the 33-mer was absent (durum wheat, emmer, einkorn), most likely because of the absence of the D-genome, which encodes α2-gliadins. Due to the presence of the 33-mer in all common wheat and spelt flours analysed here, the special focus in the literature on this most immunodominant peptide seems to be justified.

  1. Production of a monoclonal antibody specific for high molecular weight glutenin subunits (HMW-GS) in wheat and its antigenic determinant.

    PubMed

    Wang, Hanqian; Zhang, Xueyong; Wang, Hongmei; Pang, Binshuang

    2005-02-01

    Wheat high molecular weight glutenin subunits (HMW-GS) 1Bx14 and 1By15 isolated by preparative SDS-PAGE are used as antigen to immunize BALB/c mice. Subcutaneous inoculation of the antigen is performed. The intra-peritoneal injection is completed 3 days before fusion with myeloma cell (SP2/0) via PEG-1500. The fusion cells are selected by indirect enzyme-linked immuno-sorbent assay (ELISA). Positive hybrid cells are further verified three times by limit dilution of the culture cells. A hybridoma cell line is successfully obtained. The monoclonal antibody belongs to IgG1 subclass. In immunoblotting, the antibody binds to all HMW-GS of T. aestivum cultivars, but does not bind to other storage proteins in seeds of wheat. This result is consisting with the high homology in amino acid sequences among the HMW glutenin subunits in wheat. The antibody also binds to HMW-GS storage proteins in Aegilops squarrosa and T. durum (durum wheat). Furthermore, it also binds to HMW storage proteins in Secale cereale (rye), Hordeum vulgare (barley). However, it never binds seed storage proteins in other cereals such as maize, oat, rice, foxtail millet, sorghum etc. The antigen determinant recognized by the antibody has been located within hexapeptide [PGQGQQ] or / and nonapeptide [GYYPTSPQQ] in the central repetitive region of HMW-GS.

  2. Molecular characterization and chromosome-specific TRAP-marker development for Langdon durum D-genome disomic substitution lines.

    PubMed

    Li, J; Klindworth, D L; Shireen, F; Cai, X; Hu, J; Xu, S S

    2006-12-01

    The aneuploid stocks of durum wheat (Triticum turgidum L. subsp. durum (Desf.) Husnot) and common wheat (T. aestivum L.) have been developed mainly in 'Langdon' (LDN) and 'Chinese Spring' (CS) cultivars, respectively. The LDN-CS D-genome chromosome disomic substitution (LDN-DS) lines, where a pair of CS D-genome chromosomes substitute for a corresponding homoeologous A- or B-genome chromosome pair of LDN, have been widely used to determine the chromosomal locations of genes in tetraploid wheat. The LDN-DS lines were originally developed by crossing CS nulli-tetrasomics with LDN, followed by 6 backcrosses with LDN. They have subsequently been improved with 5 additional backcrosses with LDN. The objectives of this study were to characterize a set of the 14 most recent LDN-DS lines and to develop chromosome-specific markers, using the newly developed TRAP (target region amplification polymorphism)-marker technique. A total of 307 polymorphic DNA fragments were amplified from LDN and CS, and 302 of them were assigned to individual chromosomes. Most of the markers (95.5%) were present on a single chromosome as chromosome-specific markers, but 4.5% of the markers mapped to 2 or more chromosomes. The number of markers per chromosome varied, from a low of 10 (chromosomes 1A and 6D) to a high of 24 (chromosome 3A). There was an average of 16.6, 16.6, and 15.9 markers per chromosome assigned to the A-, B-, and D-genome chromosomes, respectively, suggesting that TRAP markers were detected at a nearly equal frequency on the 3 genomes. A comparison of the source of the expressed sequence tags (ESTs), used to derive the fixed primers, with the chromosomal location of markers revealed that 15.5% of the TRAP markers were located on the same chromosomes as the ESTs used to generate the fixed primers. A fixed primer designed from an EST mapped on a chromosome or a homoeologous group amplified at least 1 fragment specific to that chromosome or group, suggesting that the fixed primers

  3. [Alleles at storage protein loci in Triticum spelta L. accessions and their occurrence in related wheats].

    PubMed

    Kozub, N A; Boguslavskiĭ, R L; Sozinov, I A; Tverdokhleb, E V; Ksinias, I N; Blium, Ia B; Sozinov, A A

    2014-01-01

    Variation at eight storage protein loci was analyzed in the collection of T. spelta accessions from the National Centre of Plant Genetic Resources of Ukraine, most of which are European spelts. The analysis allowed identification of seven alleles at the Gli-B1 locus, five alleles at the Gli-A1 and Glu-B1 loci, three alleles at the Gli-A3 locus, two at the Gli-D1, Gli-B5, Glu-A1, and Glu-D1 loci. The majority of alleles are encountered among common wheat cultivars, only five alleles were specific for spelts. The high frequency of the alleles Gli-B1hs* and h encoding the 45-type gamma-gliadin in European spelts and durum wheat cultivars, as well as the occurrence of these alleles in T. dicoccum, in particular, in accessions from Switzerland and Germany, supports von Büren's hypothesis that European spelt resulted from hybridization between a tetraploid wheat with the 45-type y-gliadin and a hexaploid wheat. Analysis of genetic distances based on the genotypes at eight storage protein loci permitted differentiation of the Asian spelt accession from European spelts.

  4. Canopy Apparent Photosynthetic Characteristics and Yield of Two Spike-Type Wheat Cultivars in Response to Row Spacing under High Plant Density

    PubMed Central

    Cai, Tie

    2016-01-01

    In northern China, large-spike wheat (Triticum aestivum L) is considered to have significant potential for increasing yields due to its greater single-plant productivity despite its lower percentage of effective tillers, and increasing the plant density is an effective means of achieving a higher grain yield. However, with increases in plant density, the amount of solar radiation intercepted by lower strata leaves is decreased and the rate of leaf senescence is accelerated. Row spacing can be manipulated to optimize the plant spatial distribution under high plant density, therefore improving light conditions within the canopy. Consequently, field experiments were conducted from 2010 to 2012 to investigate whether changes in row spacing under high plant density led to differences in canopy apparent photosynthesis (CAP), individual leaf photosynthesis and grain yield. Two different spike-type winter wheat cultivars, Jimai22 (a small-spike cultivar as a control cultivar) and Wennong6 (a large-spike cultivar), were grown at a constant plant density of 3,600,000 plants ha–1 (a relatively higher plant density) over a wide range of row spacing as follows: 5-cm row spacing (R0), 15-cm row spacing (R1), 25-cm conventional row spacing (R2), and 35-cm row spacing (R3). The two-year investigations revealed that increased row spacing exhibited a significantly higher light transmission ratio (LT), which improved light conditions within the canopy; however, excessive light leakage losses in R2 and R3 treatments were not favorable to improved irradiation energy utilization efficiency. Aboveground biomass accumulation was influenced by row spacing. Two spike-type wheat accumulated greater biomass under 15-cm row spacing compared to other row spacing treatments, although a markedly improved photosynthetic rate (PN), effective quantum yield of photosystem II (ΦPSII) and maximal efficiency of photosystem II photochemistry (Fv/Fm) in the penultimate and third leaves were observed in

  5. Establishment of phosphate-solubilizing strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions.

    PubMed

    Kumar, V; Behl, R K; Narula, N

    2001-01-01

    A pot experiment was conducted in the green house to investigate the establishment of phosphate solubilizing strains of Azotobacter chroococcum, including soil isolates and their mutants, in the rhizosphere and their effect on growth parameters and root biomass of three genetically divergent wheat cultivars (Triticum aestivum L.). Five fertilizer treatments were performed: Control, 90 kg N ha(-1), 90 kg N + 60 kg P2O5 ha(-1), 120 kg N ha(-1) and 120 kg N + 60 kg P2O5 ha(-1). Phosphate solubilizing and phytohormone producing parent soil isolates and mutant strains of A. chroococcum were isolated and selected by an enrichment method. In vitro phosphate solubilization and growth hormone production by mutant strains was increased compared with soil isolates. Seed inoculation of wheat varieties with P solubilizing and phytohormone producing A. chroococcum showed better response compared with controls. Mutant strains of A. chroococcum showed higher increase in grain (12.6%) and straw (11.4%) yield over control and their survival (12-14%) in the rhizosphere as compared to their parent soil isolate (P4). Mutant strain M37 performed better in all three varieties in terms of increase in grain yield (14.0%) and root biomass (11.4%) over control.

  6. [Nutritional evaluation of sweet potato cultivars Ipomea batata (L.) Lam used in bread as partial substitute of wheat flour].

    PubMed

    Cárdenas, H; Kalinowski, J; Huaman, Z; Scott, G

    1993-12-01

    Four hundred and forty entries of sweet potato tubers from the International Potato Center were evaluated for chemical characteristics related to nutritional value. Dry matter range in the group was 15 to 45g/100g. The native entries DLP 2393, DLP 1120, DLP 2312, DLP 1908 and the foreign RCB 361F were selected for use in bread manufacture. Their average dry matter and crude protein was 38.5 and 9.2% respectively. Sweet potato bread was made replacing 30% of wheat flour with grinded sweet potato tubers. This bread had 11.0% crude protein in dry matter basis which were the same for bread made of wheat flour. There were no differences in organoleptic characteristics or protein quality (Apparent biological value: 37 vs 42%; apparent digestibility: 81 vs 80%; net protein utilization: 33 vs 39%) between sweet potato or full wheat flour breads respectively.

  7. Characterization of resistance to stripe rust in contemporary cultivars and lines of winter wheat from the eastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripe rust, caused by Puccinia striiformis f. sp. tritici, has been an important disease of winter wheat (Triticum aestivum) in the eastern United States since 2000, when a new strain of the pathogen emerged. The new strain overcame the widely used resistance gene, Yr9, and was more aggressive and...

  8. Genes conferring sensitivity to stagonospora nodorum necrotrophic effectors in stagonospora nodorum blotch-susceptible U.S. wheat cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stagonospora nodorum is a necrotrophic fungal pathogen that causes Stagonospora nodorum blotch (SNB), a yield- and quality-reducing disease of wheat. S. nodorum produces a set of necrotrophic effectors (NEs) that interact with the products of host sensitivity genes to cause cell death and increased...

  9. Effects of fungicide application timing and cultivar resistance on Fusarium head blight and deoxynivalenol in winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum causes Fusarium head blight (FHB) in wheat. FHB reduces yield and quality and contaminates grain with the mycotoxin deoxynivalenol (DON). Effective management strategies are needed. The objectives of this research were to 1) Determine the effect of fungicide application timing a...

  10. Novel QTL for stripe rust resistance on chromosomes 4A and 6B in soft white winter wheat cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripe rust (caused by Puccinia striiformis f. sp. tritici) of wheat (Triticum aestivum) is a devastating disease in temperate regions when susceptible varieties are grown and environmental conditions sustain high disease pressures. With frequent and severe outbreaks, disease resistance is a key too...

  11. Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hard red winter wheat crops on the U.S. Southern Great Plains often experience moderate to severe drought stress, especially during the grain filling stage, resulting in significant yield losses. Among popular commercial varieties, TAM 111 and TAM 112 showed a superior adaptation to water-deficit c...

  12. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landrace and cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Domesticated crops have experienced strong human-driven selection aimed at the development of improved varieties adapted to local conditions. To detect regions of the wheat genome subject to selection during improvement, we developed a high-throughput array to interrogate 9,000 gene-associated DNA m...

  13. Identification of Genomic Associations for Adult Plant Resistance in the Background of Popular South Asian Wheat Cultivar, PBW343

    PubMed Central

    Li, Huihui; Singh, Sukhwinder; Bhavani, Sridhar; Singh, Ravi P.; Sehgal, Deepmala; Basnet, Bhoja R.; Vikram, Prashant; Burgueno-Ferreira, Juan; Huerta-Espino, Julio

    2016-01-01

    Rusts, a fungal disease as old as its host plant wheat, has caused havoc for over 8000 years. As the rust pathogens can evolve into new virulent races which quickly defeat the resistance that primarily rely on race specificity, adult plant resistance (APR) has often been found to be race non-specific and hence is considered to be a more reliable and durable strategy to combat this malady. Over decades sets of donor lines have been identified at International Maize and Wheat Improvement Center (CIMMYT) representing a wide range of APR sources in wheat. In this study, using nine donors and a common parent “PBW343,” a popular Green Revolution variety at CIMMYT, the nested association mapping (NAM) population of 1122 lines was constructed to understand the APR genetics underlying these founder lines. Thirty-four QTL were associated with APR to rusts, and 20 of 34 QTL had pleiotropic effects on SR, YR and LR resistance. Three chromosomal regions, associated with known APR genes (Sr58/Yr29/Lr46, Sr2/Yr30/Lr27, and Sr57/Yr18/Lr34), were also identified, and 13 previously reported QTL regions were validated. Of the 18 QTL first detected in this study, 7 were pleiotropic QTL, distributing on chromosomes 3A, 3B, 6B, 3D, and 6D. The present investigation revealed the genetic relationship of historical APR donor lines, the novel knowledge on APR, as well as the new analytical methodologies to facilitate the applications of NAM design in crop genetics. Results shown in this study will aid the parental selection for hybridization in wheat breeding, and envision the future rust management breeding for addressing potential threat to wheat production and food security. PMID:27877188

  14. Agronomic selenium biofortification in Triticum durum under Mediterranean conditions: from grain to cooked pasta.

    PubMed

    Poblaciones, M J; Rodrigo, S; Santamaría, O; Chen, Y; McGrath, S P

    2014-03-01

    To improve the nutritional value of durum wheat and derived products, two foliar Se fertilisers (sodium selenate and selenite) were tested at four rates (0-10-20-40gha(-1)) in 2010/2011 and 2011/2012 in southwestern Spain. There was a strong and linear relationship between total Se or selenomethionine (Se-Met) accumulation in grain and Se dose for both fertilisers, although selenate was much more efficient. Se-Met was the main Se species (≈90%) of the total Se extracted from all materials. Milling caused a 27% loss of Se due to the removal of Se located in bran and germ. In the pasta making process and the cooking process the loss of Se, mainly as selenite, was about 7%. Durum wheat may be a good candidate to be included in Se biofortification programs under rainfed Mediterranean conditions, as foodstuffs derived from it could efficiently increase the Se content in the human diet.

  15. Development of a multiple bulked segregant analysis (MBSA) method used to locate a new stem rust resistance gene (Sr54) in the winter wheat cultivar Norin 40.

    PubMed

    Ghazvini, Habibollah; Hiebert, Colin W; Thomas, Julian B; Fetch, Thomas

    2013-02-01

    An important aspect of studying putative new genes in wheat is determining their position on the wheat genetic map. The primary difficulty in mapping genes is determining which chromosome carries the gene of interest. Several approaches have been developed to address this problem, each with advantages and disadvantages. Here we describe a new approach called multiple bulked segregant analysis (MBSA). A set of 423 simple sequence repeat (SSR) markers were selected based on profile simplicity, frequency of polymorphism, and distribution across the wheat genome. SSR primers were preloaded in 384-well PCR plates with each primer occupying 16 wells. In practice, 14 wells are reserved for "mini-bulks" that are equivalent to four gametes (e.g. two F(2) individuals) comprised of individuals from a segregated population that have a known homozygous genotype for the gene of interest. The remaining two wells are reserved for the parents of the population. Each well containing a mini-bulk can have one of three allele compositions for each SSR: only the allele from one parent, only the allele from the other parent, or both alleles. Simulation experiments were performed to determine the pattern of mini-bulk allele composition that would indicate putative linkage between the SSR in question and the gene of interest. As a test case, MBSA was employed to locate an unidentified stem rust resistance (Sr) gene in the winter wheat cultivar Norin 40. A doubled haploid (DH) population (n = 267) was produced from hybrids of the cross LMPG-6S/Norin 40. The DH population segregated for a single gene (χ (1:1) (2) = 0.093, p = 0.76) for resistance to Puccinia graminis f.sp. tritici race LCBN. Four resistant DH lines were included in each of the 14 mini-bulks for screening. The Sr gene was successfully located to the long arm of chromosome 2D using MBSA. Further mapping confirmed the chromosome location and revealed that the Sr gene was located in a linkage block that may represent an alien

  16. Wheat and barley dehydrins under cold, drought, and salinity - what can LEA-II proteins tell us about plant stress response?

    PubMed

    Kosová, Klára; Vítámvás, Pavel; Prášil, Ilja T

    2014-01-01

    Dehydrins as a group of late embryogenesis abundant II proteins represent important dehydration-inducible proteins whose accumulation is induced by developmental processes (embryo maturation) as well as by several abiotic stress factors (low temperatures, drought, salinity). In the review, an overview of studies aimed at investigation of dehydrin accumulation patterns at transcript and protein levels as well as their possible functions in common wheat (Triticum aestivum), durum wheat (T. durum), and barley (Hordeum vulgare) plants exposed to various abiotic stress factors (cold, frost, drought, salinity) is provided. Possible roles of dehydrin proteins in an acquisition and maintenance of an enhanced frost tolerance are analyzed in the context of plant developmental processes (vernalization). Quantitative and qualitative differences as well as post-translational modifications in accumulated dehydrin proteins between barley cultivars revealing differential tolerance to drought and salinity are also discussed. Current knowledge on dehydrin role in wheat and barley response to major dehydrative stresses is summarized and the major challenges in dehydrin research are outlined.

  17. Nematicides increase grain yields in spring wheat cultivars and suppress plant-parasitic and bacterial-feeding nematodes.

    PubMed

    Kimpinski, J; Martin, R A; Sturz, A V

    2005-12-01

    Grain yields of spring wheat (Triticum aestivum L. cvs. AC Barrie, AC Walton, AC Wilmot, Belvedere, Glenlea) in field plots over a 3-year period were increased (P < 0.001) by an average of 0.56 (25.1%) and 1.17 (52.5%) tonnes/ha in comparison to untreated check plots when aldicarb at 2.24 kg or fosthiazate at 13.5 a.i./ha, respectively, were broadcast and incorporated into the soil to suppress nematodes. The planned F test using orthogonal coefficients indicated that the mean response of grain yields to nematicide treatments of AC Barrie and Glenlea, which are grown primarily in the prairie provinces of Canada, was greater (48.5%) than the mean response of Belvedere, AC Walton, and AC Wilmot (33.7%), which are more common in the Maritime region of Canada (P < 0.001). Root lesion nematodes (primarily Pratylenchus penetrans) in wheat roots and in root zone soil at harvest were reduced by the nematicide applications (P < 0.001). Bacterial-feeding nematodes (primarily Diplogaster lheritieri (Maupas)) in root zone soil were also suppressed by fosthiazate (P < 0.01) but not by aldicarb. These data indicate that root lesion nematodes cause substantial yield losses in spring wheat in the Maritime region of Canada.

  18. Photoperiod and vernalization effect on anthesis date in winter-sown spring wheat regions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate prediction of phenology is required to guide crop management decisions and to predict crop growth and yield. However, the relative importance of photoperiod and vernalization in predicting anthesis dates for spring bread and durum wheat (Triticum aestivum L. and T. durum Desf.) grown as a w...

  19. Biochemical and functional properties of wheat gliadins: a review.

    PubMed

    Barak, Sheweta; Mudgil, Deepak; Khatkar, B S

    2015-01-01

    Gliadins account for 40-50% of the total storage proteins of wheat and are classified into four subcategories, α-, β-, γ-, and ω-gliadins. They have also been classified as ω5-, ω1, 2-, α/β-, and γ-gliadins on the basis of their primary structure and molecular weight. Cysteine residues of gliadins mainly form intramolecular disulfide bonds, although α-gliadins with odd numbers of cysteine residues have also been reported. Gliadins are generally regarded to possess globular protein structure, though recent studies report that the α/β-gliadins have compact globular structures and γ- and ω-gliadins have extended rod-like structures. Newer techniques such as Mass Spectrometry with the development of matrix-assisted laser desorption/ionization (MALDI) in combination with time-of-flight mass spectrometry (TOFMS) have been employed to determine the molecular weight of purified ω- gliadins and to carry out the direct analysis of bread and durum wheat gliadins. Few gliadin alleles and components, such as Gli-B1b, Gli-B2c and Gli-A2b in bread wheat cultivars, γ-45 in pasta, γ-gliadins in cookies, lower gliadin content for chapatti and alteration in Gli 2 loci in tortillas have been reported to improve the product quality, respectively. Further studies are needed in order to elucidate the precise role of gliadin subgroups in dough strength and product quality.

  20. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles.

    PubMed

    Bentley, A R; Horsnell, R; Werner, C P; Turner, A S; Rose, G A; Bedard, C; Howell, P; Wilhelm, E P; Mackay, I J; Howells, R M; Greenland, A; Laurie, D A; Gosman, N

    2013-04-01

    Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes. In the current study, an allelic series of BC2F4 lines in the winter wheat cultivars 'Robigus' and 'Alchemy' was developed to elucidate the influence on flowering of eight gene variants from the B- and D-genomes of bread wheat and the A-genome of durum wheat. Allele effects were tested in short, natural, and extended photoperiods in the field and controlled environments. Across genetic background and treatment, the D-genome PI allele, Ppd-D1a, had a more potent effect on reducing flowering time than Ppd-B1a. However, there was significant donor allele effect for both Ppd-D1a and Ppd-B1a, suggesting the presence of linked modifier genes and/or additional sources of latent sensitivity. Development of Ppd-A1a BC2F4 lines derived from synthetic hexaploid wheat provided an opportunity to compare directly the flowering time effect of the A-genome allele from durum with the B- and D-genome variants from bread wheat for the first time. Analyses indicated that the reducing effect of Ppd-A1a is comparable with that of Ppd-D1a, confirming it as a useful alternative source of PI.

  1. Physiological and spectral characterization of the effects of atmospheric carbon dioxide and tropospheric ozone on wheat and soybean cultivars grown under well-watered and restricted moisture conditions

    NASA Astrophysics Data System (ADS)

    Leblanc, Eric

    Vegetative responses to elevated atmospheric carbon dioxide (CO 2) and tropospheric ozone (O3) have been extensively characterized for many agricultural crops. Generally, positive effects of elevated CO 2 concentrations may be partially or completely counteracted by high O3 concentrations. The objectives of these studies were to investigate the single and combined effects of realistic, near-future, levels of above-ambient CO2 (+150 muL L-1) and O3 (+35 +/- 5 nL L-1) on wheat (Triticum aestivum) and soybean (Glycine max) cultivars grown under well-watered (WW) and restricted moisture (RM) conditions. Wheat was grown in open-top chambers during the spring of 1995 to 1997, while soybean was grown during summers from 1994 to 1997. In wheat, responses to air quality were generally similar under WW and RM conditions. Elevated CO2 enhanced photosynthesis (Pn) even with high O3 concentrations. Stomatal conductances (gs) were reduced by CO2 and O3, and even more when combined at high levels, which led to increases in leaf temperature (Tleaf), no changes in transpiration (E) rates, and increases in water-use efficiency (WUE). Intercellular CO2 concentrations (C i) increased much more from elevated CO2 than from O 3 from pre- to post-flowering. Damage to the photosynthetic apparatus from O3 was undetectable with chlorophyll fluorescence. Variations in chlorophyll a and b were not a sensitive indicator of air quality-induced stress. Leaf area index (LAI) was not significantly affected by the treatments; above ground biomass and yields were significantly reduced by high O3 conditions. Seed test weights, milling quality scores, and flour yields were reduced, while flour protein was increased by high O3 concentrations under WW conditions. In soybean, CO2 stimulated Pn regardless of the O3 level. Responses in gs, Tleaf, WUE, chlorophyll fluorescence, and chlorophyll contents were similar to those observed in wheat. LAI, biomass, and yields were reduced by high O3 conditions. High

  2. Identifying variation in resistance to the take-all fungus, Gaeumannomyces graminis var. tritici, between different ancestral and modern wheat species

    PubMed Central

    2014-01-01

    Background Ancestral wheat relatives are important sources of genetic diversity for the introduction of novel traits for the improvement of modern bread wheat. In this study the aim was to assess the susceptibility of 34 accessions of the diploid wheat Triticum monococcum (A genome) to Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease. The second aim was to explore the susceptibility of tetraploid wheat (T. durum) and the B genome progenitor species Aegilops speltoides to Ggt. Results Field trials, conducted over 5 years, identified seven T. monococcum accessions with a good level of resistance to take-all when exposed to natural inoculum under UK field conditions. All other accessions were highly susceptible or did not exhibit a consistent phenotype across years. DArT marker genotyping revealed that whole genome diversity was not closely related to resistance to take-all within T. monococcum, suggesting that multiple genetic sources of resistance may exist within the species. In contrast the tetraploid wheat cultivars and Ae. speltoides were all highly susceptible to the disease, including those with known elevated levels of benzoxazinoids. Conclusions The diploid wheat species T. monococcum may provide a genetic source of resistance to take-all disease that could be utilised to improve the performance of T. aestivum in high disease risk situations. This represents an extremely valuable resource to achieve economic and sustainable genetic control of this root disease. PMID:25084989

  3. Identification of QTL for grain quality traits in a cross of soft wheat cultivars Pioneer brand ‘25R26’ and ‘Foster’

    Technology Transfer Automated Retrieval System (TEKTRAN)

    End-use quality of wheat, defined by milling, composition, and rhealogical properties, is vital to the entire wheat industry. An improved understanding of the genetics that control wheat quality is needed to efficiently improve wheat quality. Our objective was to determine the genetics of multipl...

  4. Pentaploid Wheat Hybrids: Applications, Characterisation, and Challenges

    PubMed Central

    Padmanaban, Sriram; Zhang, Peng; Hare, Ray A.; Sutherland, Mark W.; Martin, Anke

    2017-01-01

    Interspecific hybridisation between hexaploid and tetraploid wheat species leads to the development of F1 pentaploid hybrids with unique chromosomal constitutions. Pentaploid hybrids derived from bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum spp. durum Desf.) crosses can improve the genetic background of either parent by transferring traits of interest. The genetic variability derived from bread and durum wheat and transferred into pentaploid hybrids has the potential to improve disease resistance, abiotic tolerance, and grain quality, and to enhance agronomic characters. Nonetheless, pentaploid wheat hybrids have not been fully exploited in breeding programs aimed at improving crops. There are several potential barriers for efficient pentaploid wheat production, such as low pollen compatibility, poor seed set, failed seedling establishment, and frequent sterility in F1 hybrids. However, most of the barriers can be overcome by careful selection of the parental genotypes and by employing the higher ploidy level genotype as the maternal parent. In this review, we summarize the current research on pentaploid wheat hybrids and analyze the advantages and pitfalls of current methods used to assess pentaploid-derived lines. Furthermore, we discuss current and potential applications in commercial breeding programs and future directions for research into pentaploid wheat. PMID:28367153

  5. Genome-wide association study reveals genetic architecture of coleoptile length in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat cultivars with long coleoptiles are preferred in wheat growing regions where deep planting is practiced, whereas the wide use in wheat cultivars of GA-insensitive dwarfing genes, Rht-B1b and Rht-D1b, makes it a challenging task to breed dwarf wheat cultivars with long coleoptiles. To understa...

  6. Powdery Mildew Resistance in Wheat Cultivar Mv Hombár is Conferred by a New Gene, PmHo.

    PubMed

    Komáromi, Judit; Jankovics, Tünde; Fábián, Attila; Puskás, Katalin; Zhang, Zengyan; Zhang, Miao; Li, Hongjie; Jäger, Katalin; Láng, László; Vida, Gyula

    2016-11-01

    A new powdery mildew resistance gene designated as PmHo was identified in 'Mv Hombár' winter wheat, bred in Martonvásár, Hungary. It has exhibited a high level of resistance over the last two decades. Genetic mapping of recombinant inbred lines derived from the cross 'Ukrainka'/Mv Hombár located this gene on chromosome 2AL. The segregation ratio and consistent effect in all environments indicated that PmHo is a major dominant powdery mildew resistance gene. The race-specific nature of resistance in Mv Hombár was shown by the emergence of a single virulent pathotype designated as 51-Ho. This pathotype was, to some extent, able to infect Mv Hombár, developing visible symptoms with sporulating colonies. Microscopic studies revealed that, in incompatible interactions, posthaustorial hypersensitivity reaction was the most prevalent but not exclusive plant defense response in Mv Hombár, and fungal growth was mostly arrested during haustorium formation or in the early stages of colony development. The delayed fungal development of the virulent pathotype 51-Ho may be explained by additional effects of other loci that were also involved in the powdery mildew resistance of Mv Hombár.

  7. Individual and interactive effects of elevated carbon dioxide and ozone on tropical wheat (Triticum aestivum L.) cultivars with special emphasis on ROS generation and activation of antioxidant defence system.

    PubMed

    Mishra, Amit Kumar; Rai, Richa; Agrawal, S B

    2013-04-01

    The effects of elevated CO2 and O3, singly and in combination were investigated on various physiological, biochemical and yield parameters of two locally grown wheat (Triticum aestivum L.) cultivars (HUW-37 and K-9107) in open top chambers (OTCs). Elevated CO2 stimulated photosynthetic rate (Ps) and Fv/Fm ratio and reduced the stomatal conductance (gs). Reactive oxygen species, lipid peroxidation, anti-oxidative enzymes, ascorbic acid and total phenolics were higher, whereas Ps, gs, Fv/Fm, protein and photosynthetic pigments were reduced in elevated O3 exposure, as compared to their controls. Under elevated CO2 + O3, elevated levels of CO2 modified the plant performance against O3 in both the cultivars. Elevated CO2 caused significant increase in economic yield. Exposure to elevated O3 caused significant reduction in yield and the effect was cultivar-specific. The study concluded that elevated CO2 ameliorated the negative impact of elevated O3 and cultivar HUW-37 was more sensitive to elevated O3 than K-9107.

  8. Comparative Analysis of WRKY Genes Potentially Involved in Salt Stress Responses in Triticum turgidum L. ssp. durum.

    PubMed

    Yousfi, Fatma-Ezzahra; Makhloufi, Emna; Marande, William; Ghorbel, Abdel W; Bouzayen, Mondher; Bergès, Hélène

    2016-01-01

    WRKY transcription factors are involved in multiple aspects of plant growth, development and responses to biotic stresses. Although they have been found to play roles in regulating plant responses to environmental stresses, these roles still need to be explored, especially those pertaining to crops. Durum wheat is the second most widely produced cereal in the world. Complex, large and unsequenced genomes, in addition to a lack of genomic resources, hinder the molecular characterization of tolerance mechanisms. This paper describes the isolation and characterization of five TdWRKY genes from durum wheat (Triticum turgidum L. ssp. durum). A PCR-based screening of a T. turgidum BAC genomic library using primers within the conserved region of WRKY genes resulted in the isolation of five BAC clones. Following sequencing fully the five BACs, fine annotation through Triannot pipeline revealed 74.6% of the entire sequences as transposable elements and a 3.2% gene content with genes organized as islands within oceans of TEs. Each BAC clone harbored a TdWRKY gene. The study showed a very extensive conservation of genomic structure between TdWRKYs and their orthologs from Brachypodium, barley, and T. aestivum. The structural features of TdWRKY proteins suggested that they are novel members of the WRKY family in durum wheat. TdWRKY1/2/4, TdWRKY3, and TdWRKY5 belong to the group Ia, IIa, and IIc, respectively. Enrichment of cis-regulatory elements related to stress responses in the promoters of some TdWRKY genes indicated their potential roles in mediating plant responses to a wide variety of environmental stresses. TdWRKY genes displayed different expression patterns in response to salt stress that distinguishes two durum wheat genotypes with contrasting salt stress tolerance phenotypes. TdWRKY genes tended to react earlier with a down-regulation in sensitive genotype leaves and with an up-regulation in tolerant genotype leaves. The TdWRKY transcripts levels in roots increased

  9. Comparative Analysis of WRKY Genes Potentially Involved in Salt Stress Responses in Triticum turgidum L. ssp. durum

    PubMed Central

    Yousfi, Fatma-Ezzahra; Makhloufi, Emna; Marande, William; Ghorbel, Abdel W.; Bouzayen, Mondher; Bergès, Hélène

    2017-01-01

    WRKY transcription factors are involved in multiple aspects of plant growth, development and responses to biotic stresses. Although they have been found to play roles in regulating plant responses to environmental stresses, these roles still need to be explored, especially those pertaining to crops. Durum wheat is the second most widely produced cereal in the world. Complex, large and unsequenced genomes, in addition to a lack of genomic resources, hinder the molecular characterization of tolerance mechanisms. This paper describes the isolation and characterization of five TdWRKY genes from durum wheat (Triticum turgidum L. ssp. durum). A PCR-based screening of a T. turgidum BAC genomic library using primers within the conserved region of WRKY genes resulted in the isolation of five BAC clones. Following sequencing fully the five BACs, fine annotation through Triannot pipeline revealed 74.6% of the entire sequences as transposable elements and a 3.2% gene content with genes organized as islands within oceans of TEs. Each BAC clone harbored a TdWRKY gene. The study showed a very extensive conservation of genomic structure between TdWRKYs and their orthologs from Brachypodium, barley, and T. aestivum. The structural features of TdWRKY proteins suggested that they are novel members of the WRKY family in durum wheat. TdWRKY1/2/4, TdWRKY3, and TdWRKY5 belong to the group Ia, IIa, and IIc, respectively. Enrichment of cis-regulatory elements related to stress responses in the promoters of some TdWRKY genes indicated their potential roles in mediating plant responses to a wide variety of environmental stresses. TdWRKY genes displayed different expression patterns in response to salt stress that distinguishes two durum wheat genotypes with contrasting salt stress tolerance phenotypes. TdWRKY genes tended to react earlier with a down-regulation in sensitive genotype leaves and with an up-regulation in tolerant genotype leaves. The TdWRKY transcripts levels in roots increased

  10. Wheat streak mosaic virus resistance in eight wheat germplasm lines

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat Streak Mosaic Virus (WSMV) disease is an important disease in wheat. Use of resistant cultivars is the most effective approach to reduce the yield losses caused by the disease. To identify new sources of resistance to WSMV, eight resistant wheat lines that were selected based on the results fr...

  11. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides x T. tauschii) as a source of favourable alleles for milling and baking quality traits.

    PubMed

    Kunert, Antje; Naz, Ali Ahmad; Dedeck, Oliver; Pillen, Klaus; Léon, Jens

    2007-09-01

    The advanced backcross QTL (AB-QTL) strategy was utilised to locate quantitative trait loci (QTLs) for baking quality traits in two BC(2)F(3) populations of winter wheat. The backcrosses are derived from two German winter wheat cultivars, Batis and Zentos, and two synthetic, hexaploid wheat accessions, Syn022 and Syn086. The synthetics originate from hybridisations of wild emmer (T. turgidum spp. dicoccoides) and T. tauschii, rather than from durum wheat and T. tauschii and thus allowed for the first time to test for exotic QTL effects on wheat genomes A and B in addition to genome D. The investigated quality traits comprised hectolitre weight, grain hardness, flour yield Type 550, falling number, grain protein content, sedimentation volume and baking volume. One hundred and forty-nine SSR markers were applied to genotype a total of 400 BC(2)F(3) lines. For QTL detection, a mixed-model ANOVA was conducted, including the effects DNA marker, BC(2)F(3) line, environment and marker x environment interaction. Overall 38 QTLs significant for a marker main effect were detected. The exotic allele improved trait performance at 14 QTLs (36.8%), while the elite genotype contributed the favourable effect at 24 QTLs (63.2%). The favourable exotic alleles were mainly associated with grain protein content, though the greatest improvement of trait performance due to the exotic alleles was achieved for the traits falling number and sedimentation volume. At the QTL on chromosome 4B the exotic allele increased the falling number by 19.6% and at the QTL on chromosome 6D the exotic allele led to an increase of the sedimentation volume by 21.7%. The results indicate that synthetic wheat derived from wild emmer x T. tauschii carries favourable QTL alleles for baking quality traits, which might be useful for breeding improved wheat varieties by marker-assisted selection.

  12. Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage

    PubMed Central

    Chen, Yang-Er; Cui, Jun-Mei; Su, Yan-Qiu; Yuan, Shu; Yuan, Ming; Zhang, Huai-Yu

    2015-01-01

    Wheat stripe rust (Puccinia striiformis f. sp. tritici, Pst), is one of the most serious diseases of wheat (Triticum aestivum L.) worldwide. To gain a better understanding of the protective mechanism against stripe rust at the adult plant stage, the differences in photosystem II and antioxidant enzymatic systems between susceptible and resistant wheat in response to stripe rust disease (P. striiformis) were investigated. We found that chlorophyll fluorescence and the activities of the antioxidant enzymes were higher in resistant wheat than in susceptible wheat after stripe rust infection. Compared with the susceptible wheat, the resistant wheat accumulated a higher level of D1 protein and a lower level of reactive oxygen species after infection. Furthermore, our results demonstrate that D1 and light-harvesting complex II (LHCII) phosphorylation are involved in the resistance to stripe rust in wheat. The CP29 protein was phosphorylated under stripe rust infection, like its phosphorylation in other monocots under environmental stresses. More extensive damages occur on the thylakoid membranes in the susceptible wheat compared with the resistant wheat. The findings provide evidence that thylakoid protein phosphorylation and antioxidant enzyme systems play important roles in plant responses and defense to biotic stress. PMID:26442087

  13. Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared

    NASA Astrophysics Data System (ADS)

    Olinger, Jill M.; Griffiths, Peter R.

    1989-12-01

    Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9

  14. [The Inheritance of Endosperm Storage Proteins by the Line of the Saratovskaya 29 Cultivar of Common Wheat from its Parental Forms].

    PubMed

    Obukhova, L V; Shumny, V K

    2016-01-01

    We ran a comparative analysis of storage proteins (gliadins, high- (HMW) and low-molecular-weight (LMW) glutenins, puroindolines, and exogenous α-amylase pest inhibitors) in the Saratovskaya 29 cultivar line from the collection of a genetic engineering laboratory, its parental forms (Albidum 24 and Lyutescens 55/11), and distant ancestors (Poltavka, Selivanovskiy Rusak, Sarroza, and tetraploid Beloturka). It was confirmed that the allelic states of storage proteins in the Gli-1, Gli-2 and Glu-1 loci originate from ancestral forms from the collection of the Vavilov Institute of Plant Industry. Moreover, new alleles were found in Lyutescense 55/11 (Glu-Ala) and Selivanovskiy Rusak (Glu-B1b) cultivars from the collection of the Institute of Cytology and Genetics. A new allelic state, Ha, was observed in the loci of the Poltavka cultivar as a soft-grain cultivar, and the ha allele was found in the hard-grain Albidum 24 and Sarroza cultivars. It was found that the expression rate of exogenous α-amylase inhibitors of pests in the Saratovskaya 29 cultivar line is lower than that of ancestral cultivars (Albidum 24, Sarroza, Poltavka, and Beloturka). Such inhibitors are absent in the paternal form Lyutescense 55/11. A high expression rate of protein pest inhibitors for exogenous α-amylases and puroindolines was observed in the Poltavka cultivar. The allelic composition of Glu-1 loci was newly studied in the Sarroza cultivar, which has some promising features. The Saratovskaya 29 cultivar line, on the basis of which a wide range of diverse lines were created in the Institute of Cytology and Genetics, is isogenic for all of the studied traits.

  15. Ancient wheat and health: a legend or the reality? A review on KAMUT khorasan wheat.

    PubMed

    Bordoni, Alessandra; Danesi, Francesca; Di Nunzio, Mattia; Taccari, Annalisa; Valli, Veronica

    2017-05-01

    After WWII, the industrialized agriculture selected modern varieties of Triticum turgidum spp. durum and spp. aestivum (durum wheat and common wheat) based on higher yields and technological characteristics. Nowadays, the use of whole ancient grains and pseudo cereals is considered nutritionally important. How ancient grains have positive effects is not entirely known, the fragmentation of the scientific knowledge being also related to the fact that ancient grains are not a homogeneous category. The KAMUT(®) trademark indicates a specific and ancient variety of grain (Triticum turgidum ssp. turanicum, commonly khorasan wheat), and guarantees certain attributes making studies sufficiently comparable. In this work, studies on KAMUT(®) khorasan wheat have been systematically reviewed, evidencing different aspects supporting its benefits. Although it is not possible to establish whether all ancient grains share these positive characteristics, in total or in part, this review provides further evidences supporting the consumption of ancient grains.

  16. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying

    PubMed Central

    Li, Feng-Min

    2012-01-01

    A pot experiment was conducted to investigate the effect of the non-protein amino acid, β-aminobutyric acid (BABA), on the homeostasis between reactive oxygen species (ROS) and antioxidant defence during progressive soil drying, and its relationship with the accumulation of abscisic acid (ABA), water use, grain yield, and desiccation tolerance in two spring wheat (Triticum aestivum L.) cultivars released in different decades and with different yields under drought. Drenching the soil with 100 µM BABA increased drought-induced ABA production, leading to a decrease in the lethal leaf water potential (Ψ) used to measure desiccation tolerance, decreased water use, and increased water use efficiency for grain (WUEG) under moderate water stress. In addition, at severe water stress levels, drenching the soil with BABA reduced ROS production, increased antioxidant enzyme activity, and reduced the oxidative damage to lipid membranes. The data suggest that the addition of BABA triggers ABA accumulation that acts as a non-hydraulic root signal, thereby closing stomata, and reducing water use at moderate stress levels, and also reduces the production of ROS and increases the antioxidant defence enzymes at severe stress levels, thus increasing the desiccation tolerance. However, BABA treatment had no effect on grain yield of wheat when water availability was limited. The results suggest that there are ways of effectively priming the pre-existing defence pathways, in addition to genetic means, to improve the desiccation tolerance and WUEG of wheat. PMID:22859677

  17. Wheat Rusts in the United States in 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2007 90% of wheat stem rust races were QFC and 10% were RCRS Both races are relatively avirulent to wheat cultiars grown in the U.S. Wheat stem rust occurred in scattered locations on research plots of susceptible wheat cultivars in 2007, and did not cause yield loss. Wheat leaf rust was widespr...

  18. 21 CFR 137.220 - Durum flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Durum flour. 137.220 Section 137.220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours...

  19. 21 CFR 137.220 - Durum flour.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Durum flour. 137.220 Section 137.220 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized Cereal Flours...

  20. Insights into Tan Spot and Stem Rust Resistance and Susceptibility by Studying the Pre-Green Revolution Global Collection of Wheat

    PubMed Central

    Abdullah, Sidrat; Sehgal, Sunish Kumar; Jin, Yue; Turnipseed, Brent; Ali, Shaukat

    2017-01-01

    Tan spot (TS), caused by the fungus Pyrenophora tritici-repentis (Died) Drechs, is an important foliar disease of wheat and has become a threat to world wheat production since the 1970s. In this study a globally diverse pre-1940s collection of 247 wheat genotypes was evaluated against Ptr ToxA, P. tritici-repentis race 1, and stem rust to determine if; (i) acquisition of Ptr ToxA by the P. tritici-repentis from Stagonospora nodorum led to increased pathogen virulence or (ii) incorporation of TS susceptibility during development stem rust resistant cultivars led to an increase in TS epidemics globally. Most genotypes were susceptible to stem rust; however, a range of reactions to TS and Ptr ToxA were observed. Four combinations of disease-toxin reactions were observed among the genotypes; TS susceptible-Ptr ToxA sensitive, TS susceptible-Ptr ToxA insensitive, TS resistant-Ptr ToxA insensitive, and TS resistant-Ptr ToxA toxin sensitive. A weak correlation (r = 0.14 for bread wheat and −0.082 for durum) was observed between stem rust susceptibility and TS resistance. Even though there were no reported epidemics in the pre-1940s, TS sensitive genotypes were widely grown in that period, suggesting that Ptr ToxA may not be an important factor responsible for enhanced prevalence of TS. PMID:28381959

  1. Nonstarch polysaccharide-degrading enzymes alter the microbial community and the fermentation patterns of barley cultivars and wheat products in an in vitro model of the porcine gastrointestinal tract.

    PubMed

    Bindelle, Jérôme; Pieper, Robert; Montoya, Carlos A; Van Kessel, Andrew G; Leterme, Pascal

    2011-06-01

    An in vitro experiment was carried out to assess how nonstarch polysaccharide (NSP)-degrading enzymes influence the fermentation of dietary fiber in the pig large intestine. Seven wheat and barley products and cultivars with differing carbohydrate fractions were hydrolyzed using pepsin and pancreatin in the presence or not of NSP-degrading enzymes (xylanase and β-glucanase) and the filter retentate was subsequently fermented with sow fecal bacteria. Dry matter, starch, crude protein and β-glucan digestibilities during hydrolysis were measured. Fermentation kinetics of the hydrolyzed ingredients were modelled. Short-chain fatty acids (SCFA) production and molar ratio were compared after 12, 24 and 72 h. Microbial communities were analyzed after 72 h of fermentation using terminal restriction fragment length polymorphism. The results showed an increase of nutrient digestibility (P<0.001), whereas fermentability and SCFA production decreased (P<0.001) with addition of the enzyme. SCFA and bacterial community profiles also indicated a shift from propionate to acetate and an increase in cellulolytic Ruminococcus- and xylanolytic Clostridium-like bacteria. This is explained by the increase in slowly fermentable insoluble carbohydrate and the lower proportion of rapidly fermentable β-glucan and starch in the retentate when grains were incubated with NSP-degrading enzymes. Shifts were also different for the four barley varieties investigated, showing that the efficiency of the enzymes depends on the structure of the carbohydrate fractions in cereal products and cultivars.

  2. Registration of ‘3434’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft red winter (SRW) wheat (Triticum aestivum L.) cultivar 3434 (Reg. No. CV-1040, PI 656754) developed and tested as VA03W-434 by the Virginia Agricultural Experiment Station was released in March 2008. Cultivar 3434 was derived from the three-way cross ‘Roane’/‘Coker 9835’//VA96W-270. Cultivar 34...

  3. Developing improved durum wheat germplasm by altering the cytoplasmic genome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In eukaryotic organisms, nuclear and cytoplasmic genomes interact to drive cellular functions. These genomes have co-evolved to form specific nuclear-cytoplasmic interactions that are essential to the origin, success, and evolution of diploid and polyploid species. Hundreds of genetic diseases in h...

  4. LACIE: Wheat yield models for the United States, revision A

    NASA Technical Reports Server (NTRS)

    1977-01-01

    For abstract, see volume 1 N77-30577. The enclosed maps indicate the areal coverage of the various models for spring (durum and other spring) and winter wheat. The given regions are the combination of several climatic divisions and many times comprise an entire state.

  5. CANCER MORTALITY IN FOUR NORTHERN WHEAT PRODUCING STATES

    EPA Science Inventory

    Chlorophenoxy herbicides are used both in cereal grain agriculture and in nonagricultural settings such as right-of-ways, lawns, and parks. Minnesota, North Dakota, South Dakota, and Montana grow most of the spring and durum wheat produced in the United States. More than 90% of s...

  6. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...(a), (f)(2), (f)(3), and (g), except that: (1) Soy flour is added in a quantity not less than 12.5 percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from heat... derived from semolina, durum flour, farina, flour or any combination of these used, does not exceed...

  7. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...(a), (f)(2), (f)(3), and (g), except that: (1) Soy flour is added in a quantity not less than 12.5 percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from heat... derived from semolina, durum flour, farina, flour or any combination of these used, does not exceed...

  8. 21 CFR 139.140 - Wheat and soy macaroni products.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...(a), (f)(2), (f)(3), and (g), except that: (1) Soy flour is added in a quantity not less than 12.5 percent of the combined weight of the wheat and soy ingredients used (the soy flour used is made from heat... derived from semolina, durum flour, farina, flour or any combination of these used, does not exceed...

  9. Registration of 'UI Stone' spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soft white spring wheat (Triticum aestivumL.) is an important wheat class being used in domestic and international markets, especially in Idaho and Pacific Northwest (PNW). The objective of this study was to develop a SWS wheat cultivar with high grain yield, desirable end-use quality, and resistanc...

  10. Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat.

    PubMed

    Ben-David, Roi; Xie, Weilong; Peleg, Zvi; Saranga, Yehoshua; Dinoor, Amos; Fahima, Tzion

    2010-08-01

    The gene-pool of wild emmer wheat, Triticum turgidum ssp. dicoccoides, harbors a rich allelic repertoire for disease resistance. In the current study, we made use of tetraploid wheat mapping populations derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16) to identify and map a new powdery mildew resistance gene derived from wild emmer wheat. Initially, the two parental lines were screened with a collection of 42 isolates of Blumeria graminis f. sp. tritici (Bgt) from Israel and 5 isolates from Switzerland. While G18-16 was resistant to 34 isolates, Langdon was resistant only to 5 isolates and susceptible to 42 isolates. Isolate Bgt#15 was selected to differentiate between the disease reactions of the two genotypes. Segregation ratio of F(2-3) and recombinant inbreed line (F(7)) populations to inoculation with isolate Bgt#15 indicated the role of a single dominant gene in conferring resistance to Bgt#15. This gene, temporarily designated PmG16, was located on the distal region of chromosome arm 7AL. Genetic map of PmG16 region was assembled with 32 simple sequence repeat (SSR), sequence tag site (STS), Diversity array technology (DArT) and cleaved amplified polymorphic sequence (CAPS) markers and assigned to the 7AL physical bin map (7AL-16). Using four DNA markers we established colinearity between the genomic region spanning the PmG16 locus within the distal region of chromosome arm 7AL and the genomic regions on rice chromosome 6 and Brachypodium Bd1. A comparative analysis was carried out between PmG16 and other known Pm genes located on chromosome arm 7AL. The identified PmG16 may facilitate the use of wild alleles for improvement of powdery mildew resistance in elite wheat cultivars via marker-assisted selection.

  11. Assessment of the nutritional values of genetically modified wheat, corn, and tomato crops.

    PubMed

    Venneria, Eugenia; Fanasca, Simone; Monastra, Giovanni; Finotti, Enrico; Ambra, Roberto; Azzini, Elena; Durazzo, Alessandra; Foddai, Maria Stella; Maiani, Giuseppe

    2008-10-08

    The genetic modification in fruit and vegetables could lead to changes in metabolic pathways and, therefore, to the variation of the molecular pattern, with particular attention to antioxidant compounds not well-described in the literature. The aim of the present study was to compare the quality composition of transgenic wheat ( Triticum durum L.), corn ( Zea mays L.), and tomato ( Lycopersicum esculentum Mill.) to the nontransgenic control with a similar genetic background. In the first experiment, Ofanto wheat cultivar containing the tobacco rab1 gene and nontransgenic Ofanto were used. The second experiment compared two transgenic lines of corn containing Bacillus thuringiensis "Cry toxin" gene (PR33P67 and Pegaso Bt) to their nontransgenic forms. The third experiment was conducted on transgenic tomato ( Lycopersicum esculentum Mill.) containing the Agrobacterium rhizogenes rolD gene and its nontransgenic control (cv. Tondino). Conventional and genetically modified crops were compared in terms of fatty acids content, unsaponifiable fraction of antioxidants, total phenols, polyphenols, carotenoids, vitamin C, total antioxidant activity, and mineral composition. No significant differences were observed for qualitative traits analyzed in wheat and corn samples. In tomato samples, the total antioxidant activity (TAA), measured by FRAP assay, and the naringenin content showed a lower value in genetically modified organism (GMO) samples (0.35 mmol of Fe (2+) 100 g (-1) and 2.82 mg 100 g (-1), respectively), in comparison to its nontransgenic control (0.41 mmol of Fe (2+) 100 g (-1) and 4.17 mg 100 g (-1), respectively). On the basis of the principle of substantial equivalence, as articulated by the World Health Organization, the Organization for Economic Cooperation and Development, and the United Nations Food and Agriculture Organization, these data support the conclusion that GM events are nutritionally similar to conventional varieties of wheat, corn, and tomato on

  12. Molecular mapping re-locates the Stb2 gene for resistance to Septoria tritici blotch derived from cultivar Veranopolis on wheat chromosome 1BS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Septoria tritici blotch (STB) is one of the most destructive foliar diseases in many of the wheat (Triticum aestivum L.) growing regions of the world. Gene Stb2, derived from cv. ‘Veranopolis’, provides effective resistance against STB. Attempts to refine the map location of this resistance gene cou...

  13. The dissection and SSR mapping of a high-temperature adult-plant stripe rust resistance gene in American spring wheat cultivar Alturas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stripe rust is one of major diseases in wheat production worldwide. The best economic and efficient method is to utilize resistant varieties. Alturas has high-temperature adult-plant resistance. In order to determine stripe rust resistance characteristics, resistance gene combination and molecular m...

  14. Evaluation of 19,460 Wheat Accessions Conserved in the Indian National Genebank to Identify New Sources of Resistance to Rust and Spot Blotch Diseases.

    PubMed

    Kumar, Sundeep; Archak, Sunil; Tyagi, R K; Kumar, Jagdish; Vk, Vikas; Jacob, Sherry R; Srinivasan, Kalyani; Radhamani, J; Parimalan, R; Sivaswamy, M; Tyagi, Sandhya; Yadav, Mamata; Kumari, Jyotisna; Deepali; Sharma, Sandeep; Bhagat, Indoo; Meeta, Madhu; Bains, N S; Chowdhury, A K; Saha, B C; Bhattacharya, P M; Kumari, Jyoti; Singh, M C; Gangwar, O P; Prasad, P; Bharadwaj, S C; Gogoi, Robin; Sharma, J B; Gm, Sandeep Kumar; Saharan, M S; Bag, Manas; Roy, Anirban; Prasad, T V; Sharma, R K; Dutta, M; Sharma, Indu; Bansal, K C

    2016-01-01

    A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat-Triticum aestivum, T. durum and T. dicoccum were screened sequentially at multiple disease hotspots, during the 2011-14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu), a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab), a hotspot for stripe rust and at Cooch Behar (West Bengal), a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels.

  15. Tetraploid and hexaploid wheat varieties reveal large differences in expression of alpha-gliadins from homoeologous Gli-2 loci

    PubMed Central

    Salentijn, Elma MJ; Goryunova, Svetlana V; Bas, Noor; van der Meer, Ingrid M; van den Broeck, Hetty C; Bastien, Thomas; Gilissen, Luud JWJ; Smulders, Marinus JM

    2009-01-01

    Background Α-gliadins form a multigene protein family encoded by multiple α-gliadin (Gli-2) genes at three genomic loci, Gli-A2, Gli-B2 and Gli-D2, respectively located on the homoeologous wheat chromosomes 6AS, 6BS, and 6DS. These proteins contain a number of important celiac disease (CD)-immunogenic domains. The α-gliadins expressed from the Gli-B2 locus harbour fewer conserved CD-epitopes than those from Gli-A2, whereas the Gli-D2 gliadins have the highest CD-immunogenic potential. In order to detect differences in the highly CD-immunogenic α-gliadin fraction we determined the relative expression level from the homoeologous Gli-2 loci in various tetraploid and hexaploid wheat genotypes by using a quantitative pyrosequencing method and by analyzing expressed sequence tag (EST) sequences. Results We detected large differences in relative expression levels of α-gliadin genes from the three homoeologous loci among wheat genotypes, both as relative numbers of expressed sequence tag (EST) sequences from specific varieties and when using a quantitative pyrosequencing assay specific for Gli-A2 genes. The relative Gli-A2 expression level in a tetraploid durum wheat cultivar ('Probstdorfer Pandur') was 41%. In genotypes derived from landraces, the Gli-A2 frequency varied between 12% and 58%. In some advanced hexaploid bread wheat cultivars the genes from locus Gli-B2 were hardly expressed (e.g., less than 5% in 'Lavett') but in others they made up more than 40% (e.g., in 'Baldus'). Conclusion Here, we have shown that large differences exist in relative expression levels of α-gliadins from the homoeologous Gli-2 loci among wheat genotypes. Since the homoelogous genes differ in the amount of conserved CD-epitopes, screening for differential expression from the homoeologous Gli-2 loci can be employed for the pre-selection of wheat varieties in the search for varieties with very low CD-immunogenic potential. Pyrosequencing is a method that can be employed for such a

  16. Wheat Mitochondria

    PubMed Central

    Raison, John K.; Chapman, Elza A.; White, P. Y.

    1977-01-01

    Mitochondrial oxidative activity and membrane lipid structure of two wheat (Triticum aestivum L.) cultivars were measured as a function of temperature. The Arrhenius activation energy for the oxidation of both succinate and α-ketoglutarate was constant over the temperature range of 3 to 27 C. The activation energy for succinate-cytochrome c oxidoreductase activity was also constant over the same temperature range. The concentration of mitochondria in the reaction, the degree of initial inhibition of state 3 respiration, and the time after isolation of mitochondria were each shown to be capable of causing a disproportionate decrease in the rate of oxidation at low temperatures which resulted in an apparent increase in the activation energy of oxidative activity. Using three spin-labeling techniques, wheat membrane lipids were shown to undergo phase changes at about 0 C and 30 C. It is concluded that the membrane lipids of wheat, a chillingresistant plant, undergo a phase transition similar to the transition observed in the membrane lipids of chilling-sensitive plants. For wheat, however, the transition is initiated at a lower temperature and extends over a wider temperature range. PMID:16659906

  17. Switchgrass cultivar

    DOEpatents

    Wu, Yanqi; Taliaferro, Charles M.

    2012-10-02

    A new cultivar of switchgrass `Cimarron` (SL93 2001-1) having increased biomass yield is provided. The switchgrass comprises all the morphological and physiological properties of the cultivar grown from a seed deposited under American Type Culture Collection (ATCC) No. PTA-10116. The invention also provides seeds, progeny, parts and methods of use of Cimarron, such as for the production of biofuels.

  18. Evaluation and reselection of wheat resistance to Russian wheat aphid biotype 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Russian wheat aphid (RWA, Diuraphis noxia, Mordvilko) biotype 2 (RWA2) is virulent to most known RWA resistance genes and severely threatens wheat production in the hard winter wheat area of the US western Great Plains. We determined RWA2 reactions of 386 cultivars from China, 227 advanced breeding...

  19. Binary mixtures of waxy wheat and conventional wheat as measured by nir reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Waxy wheat contains very low concentration (generally <2%) of amylose in endosperm starch, in contrast to conventional wheat whose starch is typically 20% amylose, with the balance being the branched macromolecule, amylopectin. With the release of a commercial hard winter waxy wheat cultivar in the ...

  20. Carbon and nitrogen allocation and partitioning in traditional and modern wheat genotypes under pre-industrial and future CO₂ conditions.

    PubMed

    Aljazairi, S; Arias, C; Nogués, S

    2015-05-01

    The results of a simultaneous (13)C and (15)N labelling experiment with two different durum wheat cultivars, Blanqueta (a traditional wheat) and Sula (modern), are presented. Plants were grown from the seedling stage in three fully controllable plant growth chambers for one growing season and at three different CO₂ levels (i.e. 260, 400 and 700 ppm). Short-term isotopic labelling (ca. 3 days) was performed at the anthesis stage using (13)CO₂ supplied with the chamber air and (15)NH₄₋(15)NO₃ applied with the nutrient solution, thereby making it possible to track the allocation and partitioning of (13)C and (15) N in the different plant organs. We found that photosynthesis was up-regulated at pre-industrial CO₂ levels, whereas down-regulation occurred under future CO₂ conditions. (13)C labelling revealed that at pre-industrial CO₂ carbon investment by plants was higher in shoots, whereas at future CO₂ levels more C was invested in roots. Furthermore, the modern genotype invested more C in spikes than did the traditional genotype, which in turn invested more in non-reproductive shoot tissue. (15)N labelling revealed that the modern genotype was better adapted to assimilating N at higher CO₂ levels, whereas the traditional genotype was able to assimilate N more efficiently at lower CO₂ levels.

  1. A disulphide isomerase gene (PDI-V) from Haynaldia villosa contributes to powdery mildew resistance in common wheat

    PubMed Central

    Faheem, Muhammad; Li, Yingbo; Arshad, Muhammad; Jiangyue, Cheng; Jia, Zhao; Wang, Zongkuan; Xiao, Jin; Wang, Haiyan; Cao, Aizhong; Xing, Liping; Yu, Feifei; Zhang, Ruiqi; Xie, Qi; Wang, Xiue

    2016-01-01

    In this study, we report the contribution of a PDI-like gene from wheat wild relative Haynaldia villosa in combating powdery mildew. PDI-V protein contains two conserved thioredoxin (TRX) active domains (a and a′) and an inactive domain (b). PDI-V interacted with E3 ligase CMPG1-V protein, which is a positive regulator of powdery mildew response. PDI-V was mono-ubiquitinated by CMPG1-V without degradation being detected. PDI-V was located on H. villosa chromosome 5V and encoded for a protein located in the endoplasmic reticulum. Bgt infection in leaves of H. villosa induced PDI-V expression. Virus induced gene silencing of PDIs in a T. durum-H. villosa amphiploid compromised the resistance. Single cell transient over-expression of PDI-V or a truncated version containing the active TXR domain a decreased the haustorial index in moderately susceptible wheat cultivar Yangmai 158. Stable transgenic lines over-expressing PDI-V in Yangmai 158 displayed improved powdery mildew resistance at both the seedling and adult stages. By contrast over-expression of point-mutated PDI-VC57A did not increase the level of resistance in Yangmai 158. The above results indicate a pivotal role of PDI-V in powdery mildew resistance and showed that conserved TRX domain a is critical for its function. PMID:27071705

  2. A disulphide isomerase gene (PDI-V) from Haynaldia villosa contributes to powdery mildew resistance in common wheat.

    PubMed

    Faheem, Muhammad; Li, Yingbo; Arshad, Muhammad; Jiangyue, Cheng; Jia, Zhao; Wang, Zongkuan; Xiao, Jin; Wang, Haiyan; Cao, Aizhong; Xing, Liping; Yu, Feifei; Zhang, Ruiqi; Xie, Qi; Wang, Xiue

    2016-04-13

    In this study, we report the contribution of a PDI-like gene from wheat wild relative Haynaldia villosa in combating powdery mildew. PDI-V protein contains two conserved thioredoxin (TRX) active domains (a and a') and an inactive domain (b). PDI-V interacted with E3 ligase CMPG1-V protein, which is a positive regulator of powdery mildew response. PDI-V was mono-ubiquitinated by CMPG1-V without degradation being detected. PDI-V was located on H. villosa chromosome 5V and encoded for a protein located in the endoplasmic reticulum. Bgt infection in leaves of H. villosa induced PDI-V expression. Virus induced gene silencing of PDIs in a T. durum-H. villosa amphiploid compromised the resistance. Single cell transient over-expression of PDI-V or a truncated version containing the active TXR domain a decreased the haustorial index in moderately susceptible wheat cultivar Yangmai 158. Stable transgenic lines over-expressing PDI-V in Yangmai 158 displayed improved powdery mildew resistance at both the seedling and adult stages. By contrast over-expression of point-mutated PDI-V(C57A) did not increase the level of resistance in Yangmai 158. The above results indicate a pivotal role of PDI-V in powdery mildew resistance and showed that conserved TRX domain a is critical for its function.

  3. Registration of 'Otto' Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Resistance to strawbreaker foot rot (caused by Oculimacula yallundae Crous & W. Gams and O. acuformis Crous & W. Gams) and to stripe rust (caused by Puccinia striiformis Westend. f. sp. tritici Eriks.) are important traits for winter wheat cultivars produced in the Pacifi Northwest region of the Uni...

  4. Evaluation of 19,460 Wheat Accessions Conserved in the Indian National Genebank to Identify New Sources of Resistance to Rust and Spot Blotch Diseases

    PubMed Central

    Jacob, Sherry R.; Srinivasan, Kalyani; Radhamani, J.; Parimalan, R.; Sivaswamy, M.; Tyagi, Sandhya; Yadav, Mamata; Kumari, Jyotisna; Deepali; Sharma, Sandeep; Bhagat, Indoo; Meeta, Madhu; Bains, N. S.; Chowdhury, A. K.; Saha, B. C.; Bhattacharya, P. M.; Kumari, Jyoti; Singh, M. C.; Gangwar, O. P.; Prasad, P.; Bharadwaj, S. C.; Gogoi, Robin; Sharma, J. B.; GM, Sandeep Kumar; Saharan, M. S.; Bag, Manas; Roy, Anirban; Prasad, T. V.; Sharma, R. K.; Dutta, M.; Sharma, Indu; Bansal, K. C.

    2016-01-01

    A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat–Triticum aestivum, T. durum and T. dicoccum were screened sequentially at multiple disease hotspots, during the 2011–14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu), a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab), a hotspot for stripe rust and at Cooch Behar (West Bengal), a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels. PMID:27942031

  5. Tracking wheat rust on a continental scale.

    PubMed

    Kolmer, James A

    2005-08-01

    The rusts of wheat are important fungal plant pathogens that can be disseminated thousands of kilometers across continents and oceans by wind. Rusts are obligate parasites that interact with resistance genes in wheat in a gene-for-gene manner. New races of rust develop by mutation and selection for virulence against rust resistance genes in wheat. In recent years, new races of wheat leaf rust, wheat stripe rust, and wheat stem rust have been introduced into wheat production areas in different continents. These introductions have complicated efforts to develop wheat cultivars with durable rust resistance and have reduced the number of effective rust-resistance genes that are available for use. The migration patterns of wheat rusts are characterized by identifying their virulence against important rust resistance genes in wheat and by the use of molecular markers.

  6. Change in biotypic diversity of Russian wheat aphid (Hemiptera: Aphididae) populations in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A key component of Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), management has been through planting resistant wheat cultivars. A new biotype, RWA2, appeared in 2003 which caused widespread damage to wheat cultivars containing Dn4 gene. Biotypic diversity in RWA populations has not been...

  7. Targeted discovery of single-nucleotide polymorphisms in an unmarked wheat chromosomal region containing the Hessian fly resistance gene H33

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highly effective Hessian fly-resistance gene, H33, was introgressed from durum wheat into common wheat and genetically mapped to chromosome 3AS, in previous research. However, H33 located to a region that is well-known to be devoid of molecular markers, with the closest flanking simple sequence ...

  8. Cadmium minimization in wheat: A critical review.

    PubMed

    Rizwan, Muhammad; Ali, Shafaqat; Abbas, Tahir; Zia-Ur-Rehman, Muhammad; Hannan, Fakhir; Keller, Catherine; Al-Wabel, Mohammad I; Ok, Yong Sik

    2016-08-01

    Cadmium (Cd) accumulation in wheat (Triticum aestivum L.) and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding wheat response to Cd stress and its management for aiming to reduce Cd uptake and accumulation in wheat may help to improve wheat growth and grain quality. This paper reviewed the toxic effects, tolerance mechanisms, and management of Cd stress in wheat. It was concluded that Cd decreased germination, growth, mineral nutrients, photosynthesis and grain yield of wheat and plant response to Cd toxicity varies with cultivars, growth conditions and duration of stress applied. Cadmium caused oxidative stress and genotoxicity in wheat plants. Stimulation of antioxidant defense system, osmoregulation, ion homeostasis and over production of signalling molecules are important adaptive strategies of wheat under Cd stress. Exogenous application of plant growth regulators, inorganic amendments, proper fertilization, silicon, and organic, manures and biochar, amendments are commonly used for the reduction of Cd uptake in wheat. Selection of low Cd-accumulating wheat cultivars, crop rotation, soil type, and exogenous application of microbes are among the other agronomic practices successfully employed in reducing Cd uptake by wheat. These management practices could enhance wheat tolerance to Cd stress and reduce the transfer of Cd to the food chain. However, their long-term sustainability in reducing Cd uptake by wheat needs further assessment.

  9. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during...

  10. Yield, Quality, Water and Nitrogen Use of Durum and Annual Forages in Two-year Rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Available water and nitrogen (N) are typically the biggest constraints to dryland spring durum (Triticum turgidum L. var. durum) production in the northern Great Plains (NGP). A common rotation for spring durum is with summer fallow, which is used to accrue additional soil moisture and N for the su...

  11. Tetraploid Wheat Landraces in the Mediterranean Basin: Taxonomy, Evolution and Genetic Diversity

    PubMed Central

    Oliveira, Hugo R.; Campana, Michael G.; Jones, Huw; Hunt, Harriet V.; Leigh, Fiona; Redhouse, David I.; Lister, Diane L.; Jones, Martin K.

    2012-01-01

    The geographic distribution of genetic diversity and the population structure of tetraploid wheat landraces in the Mediterranean basin has received relatively little attention. This is complicated by the lack of consensus concerning the taxonomy of tetraploid wheats and by unresolved questions regarding the domestication and spread of naked wheats. These knowledge gaps hinder crop diversity conservation efforts and plant breeding programmes. We investigated genetic diversity and population structure in tetraploid wheats (wild emmer, emmer, rivet and durum) using nuclear and chloroplast simple sequence repeats, functional variations and insertion site-based polymorphisms. Emmer and wild emmer constitute a genetically distinct population from durum and rivet, the latter seeming to share a common gene pool. Our population structure and genetic diversity data suggest a dynamic history of introduction and extinction of genotypes in the Mediterranean fields. PMID:22615891

  12. Registration of ‘3434’ Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The soft red winter (SRW) wheat (Triticum aestivum L.) cultivar ‘3434’ (Reg. No. CV-, PI) was developed by the Virginia Agricultural Experiment Station and released in March 2008. Cultivar 3434 was derived from the three-way cross ‘Roane’ (PI 612958) / ’Coker 9835’ (PI 548846 PVPO) // VA96W-270. Cul...

  13. BIRTH MALFORMATIONS AND OTHER ADVERSE PERINATAL OUTCOMES IN FOUR U.S. WHEAT PRODUCING STATES: RESPONSE

    EPA Science Inventory

    Chlorophenoxy herbicides are widely used in the U.S. and Western Europe for broadleaf weed control in grain farming and park maintenance. Most of the spring and durum wheat produced in the U.S. is grown in Minnesota, Montana, North Dakota, and South Dakota, with over 85% of the a...

  14. Identifying rare FHB-resistant transgressive segregants in intransigent backcross and F2 winter wheat populations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB), caused mainly by Fusarium graminearum Schwabe [telomorph: Gibberella zeae Schwein.(Petch)] in the US, is one of the most destructive diseases of wheat (Triticum aestivum L. and T. durum L.). FHB-infected grain is usually contaminated with deoxynivalenol (DON) a mycotoxin ...

  15. MALFORMATIONS AND OTHER ADVERSE PERINATAL OUTCOMES IN FOUR U.S. WHEAT-PRODUCING STATES

    EPA Science Inventory

    ABSTRACT
    Chlorophenoxy herbicides are widely used in the U.S. and Western Europe in
    grain agriculture and for weed control. Most of the spring and durum wheat
    produced in the U.S. is grown in Minnesota, Montana, North Dakota, and
    South Dakota, with over 85% of th...

  16. Quantification of genetic relationships among A genomes of wheats.

    PubMed

    Brandolini, A; Vaccino, P; Boggini, G; Ozkan, H; Kilian, B; Salamini, F

    2006-04-01

    The genetic relationships of A genomes of Triticum urartu (Au) and Triticum monococcum (Am) in polyploid wheats are explored and quantified by AFLP fingerprinting. Forty-one accessions of A-genome diploid wheats, 3 of AG-genome wheats, 19 of AB-genome wheats, 15 of ABD-genome wheats, and 1 of the D-genome donor Ae. tauschii have been analysed. Based on 7 AFLP primer combinations, 423 bands were identified as potentially A genome specific. The bands were reduced to 239 by eliminating those present in autoradiograms of Ae. tauschii, bands interpreted as common to all wheat genomes. Neighbour-joining analysis separates T. urartu from T. monococcum. Triticum urartu has the closest relationship to polyploid wheats. Triticum turgidum subsp. dicoccum and T. turgidum subsp. durum lines are included in tightly linked clusters. The hexaploid spelts occupy positions in the phylogenetic tree intermediate between bread wheats and T. turgidum. The AG-genome accessions cluster in a position quite distant from both diploid and other polyploid wheats. The estimates of similarity between A genomes of diploid and polyploid wheats indicate that, compared with Am, Au has around 20% higher similarity to the genomes of polyploid wheats. Triticum timo pheevii AG genome is molecularly equidistant from those of Au and Am wheats.

  17. Stem rust resistance in 'Jagger' winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    "Jagger" has been utilized widely as a parent to develop hard red winter wheat varieties throughout the U.S. southern Great Plains. Jagger has resistance to stem rust pathogen race TTTTF, which is virulent to many winter wheat cultivars, yet the genetic basis of this resistance remains unknown. Mark...

  18. Genetic mapping of flavor loci in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flavor is an essential aspect of consumer acceptance, especially with whole-wheat foods. However, little if any selection is performed during breeding of new wheat cultivars for flavor, and little is known regarding the genetics of flavor. Our research is aimed at identifying genes that impart eithe...

  19. Association study of resistance to soil-borne wheat mosaic virus (SBWMV) in U.S. winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-borne wheat mosaic virus (SBWMV) is one of the most important winter wheat pathogens worldwide. To identify genes for resistance to the virus in U.S. winter wheat, association study was conducted using a selected panel of 205 elite experimental lines and cultivars from U.S. hard and soft winter...

  20. Combining ability for tolerance to pre-harvest sprouting in common wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pre-harvest sprouting (PHS) affects wheat (Triticum aestivum L.) yield and end-use product quality leading to massive economic losses. Red wheat cultivars are typically more resistant to PHS than white wheat. The objective of this study was to identify red wheat genotypes capable of donating genes f...

  1. Registration of ‘NE06545’ (husker genetics brand freeman) hard red winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Providing more productive wheat (Triticum aestivum L.) cultivars with broad adaptation in their target regions to wheat producers is a major goal of wheat breeding programs. 'NE06545' ( PI 667038) hard red winter wheat was developed cooperatively by the Nebraska Agricultural Experiment Station and ...

  2. Synthetic hexaploids: Harnessing species of the primary gene pool for wheat improvement

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Incorporation of genetic diversity into elite wheat cultivars has long been recognized as a means of improving wheat productivity and securing the global wheat supply. Synthetic hexaploid wheat (SHW) recreated from its two progenitor species, the tetraploid, Triticum turgidum and its diploid wild r...

  3. Linkage disequilibrium and genome-wide association mapping in tetraploid wheat (Triticum turgidum L.).

    PubMed

    Laidò, Giovanni; Marone, Daniela; Russo, Maria A; Colecchia, Salvatore A; Mastrangelo, Anna M; De Vita, Pasquale; Papa, Roberto

    2014-01-01

    Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker-trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker-trait associations.

  4. Linkage Disequilibrium and Genome-Wide Association Mapping in Tetraploid Wheat (Triticum turgidum L.)

    PubMed Central

    Laidò, Giovanni; Marone, Daniela; Russo, Maria A.; Colecchia, Salvatore A.; Mastrangelo, Anna M.; De Vita, Pasquale; Papa, Roberto

    2014-01-01

    Association mapping is a powerful tool for the identification of quantitative trait loci through the exploitation of the differential decay of linkage disequilibrium (LD) between marker loci and genes of interest in natural and domesticated populations. Using a sample of 230 tetraploid wheat lines (Triticum turgidum ssp), which included naked and hulled accessions, we analysed the pattern of LD considering 26 simple sequence repeats and 970 mostly mapped diversity array technology loci. In addition, to validate the potential for association mapping in durum wheat, we evaluated the same genotypes for plant height, heading date, protein content, and thousand-kernel weight. Molecular and phenotypic data were used to: (i) investigate the genetic and phenotypic diversity; (ii) study the dynamics of LD across the durum wheat genome, by investigating the patterns of LD decay; and (iii) test the potential of our panel to identify marker–trait associations through the analysis of four quantitative traits of major agronomic importance. Moreover, we compared and validated the association mapping results with outlier detection analysis based on population divergence. Overall, in tetraploid wheat, the pattern of LD is extremely population dependent and is related to the domestication and breeding history of durum wheat. Comparing our data with several other studies in wheat, we confirm the position of many major genes and quantitative trait loci for the traits considered. Finally, the analysis of the selection signature represents a very useful complement to validate marker–trait associations. PMID:24759998

  5. Simulating the Influence of Vernalization, Photoperiod and Optimum Temperature on Wheat Developmental Rates

    PubMed Central

    McMaster, Gregory S.; White, Jeffrey W.; Hunt, L. A.; Jamieson, P. D.; Dhillon, S. S.; Ortiz-Monasterio, J. I.

    2008-01-01

    Background and Aims Accurately representing development is essential for applying crop simulations to investigate the effects of climate, genotypes or crop management. Development in wheat (Triticum aestivum, T. durum) is primarily driven by temperature, but affected by vernalization and photoperiod, and is often simulated by reducing thermal-time accumulation using vernalization or photoperiod factors or limiting accumulation when a lower optimum temperature (Toptl) is exceeded. In this study Toptl and methods for representing effects of vernalization and photoperiod on anthesis were examined using a range of planting dates and genotypes. Methods An examination was made of Toptl values of 15, 20, 25 and 50 °C, and either the most limiting or the multiplicative value of the vernalization and photoperiod development rate factors for simulating anthesis. Field data were from replicated trials at Ludhiana, Punjab, India with July through to December planting dates and seven cultivars varying in vernalization response. Key Results Simulations of anthesis were similar for Toptl values of 20, 25 and 50 °C, but a Toptl of 15 °C resulted in a consistent bias towards predicting anthesis late for early planting dates. Results for Toptl above 15 °C may have occurred because mean temperatures rarely exceeded 20 °C before anthesis for many planting dates. For cultivars having a strong vernalization response, anthesis was more accurately simulated when vernalization and photoperiod factors were multiplied rather than using the most limiting of the two factors. Conclusions Setting Toptl to a high value (30 °C) and multiplying the vernalization and photoperiod factors resulted in accurately simulating anthesis for a wide range of planting dates and genotypes. However, for environments where average temperatures exceed 20 °C for much of the pre-anthesis period, a lower Toptl (23 °C) might be appropriate. These results highlight the value of testing a model over a wide range

  6. Solid-stemmed wheat does not affect overwintering mortality of the wheat stem sawfly, Cephus cinctus.

    PubMed

    Cárcamo, Héctor A; Beres, Brian L; Herle, Carolyn E; McLean, Hugh; McGinne, Sean

    2011-01-01

    The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America. Host plant resistance in the form of solid-stemmed wheat cultivars is the main control strategy for C. cinctus. This study investigated the effect of novel and traditional solid wheat hosts on the overwintering mortality and cold-hardiness of C. cinctus. Field conditions from 2003-2005 showed that overwintering mortality in various wheat cultivars averaged 8% and was not related to the type of wheat cultivar. Similarly, supercooling points (-22° C) were not influenced by wheat host type. C. cintus are cold-hardy; up to 80% survive 10 days at -20° C and 10% survive 40 days. Its overwintering microhabitat near the crown area of the plant is well insulated for temperatures above -10° C and remains ~ 20° C above ambient minima. These data suggest that winter mortality is a minor factor in the population dynamics of wheat stem sawfly, and despite clear detrimental effects on larval weight and adult fitness, solid-stemmed cultivars do not reduce the ability of larvae to survive winters.

  7. Registration of Vision 45 Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ‘Vision 45’ (Reg. No. CV-1110, PI 667642), is a hard red winter (HRW) wheat (Triticum aestivum L.) cultivar that was developed and tested as VA07HRW-45 and released by the Virginia Agricultural Experiment Station in 2012. Vision 45 was derived from the cross ‘Provinciale’/‘Vision 10’ using a modifie...

  8. 21 CFR 137.225 - Whole durum flour.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Whole durum flour. 137.225 Section 137.225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized...

  9. 21 CFR 137.225 - Whole durum flour.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Whole durum flour. 137.225 Section 137.225 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION CEREAL FLOURS AND RELATED PRODUCTS Requirements for Specific Standardized...

  10. ASSOCIATION BETWEEN CANCER MORTALITY AND WHEAT ACREAGE AS A SURROGATE FOR CHLOROPHENOXY HERBICIDES IN COUNTIES OF OUR NORTHERN STATES

    EPA Science Inventory

    Chlorophenoxy herbicides which have endocrine disrupting properties, are used widely both in cereal grain agriculture and in non-agricultural settings, such as right-of-ways, lawns, and parks. Most of the spring and durum wheat produced in the U.S. is grown in four northern stat...

  11. Foliar nickel application alleviates detrimental effects of glyphosate drift on yield and seed quality of wheat.

    PubMed

    Kutman, Bahar Yildiz; Kutman, Umit Baris; Cakmak, Ismail

    2013-09-04

    Glyphosate drift to nontarget crops causes growth aberrations and yield losses. This herbicide can also interact with divalent nutrients and form poorly soluble complexes. The possibility of using nickel (Ni), an essential divalent metal, for alleviating glyphosate drift damage to wheat was investigated in this study. Effects of Ni applications on various growth parameters, seed yield, and quality of durum wheat ( Triticum durum ) treated with sublethal glyphosate at different developmental stages were investigated in greenhouse experiments. Nickel concentrations of various plant parts and glyphosate-induced shikimate accumulation were measured. Foliar but not soil Ni applications significantly reduced glyphosate injuries including yield losses, stunting, and excessive tillering. Both shoot and grain Ni concentrations were enhanced by foliar Ni treatment. Seed germination and seedling vigor were impaired by glyphosate and improved by foliar Ni application to parental plants. Foliar Ni application appears to have a great potential to ameliorate glyphosate drift injury to wheat.

  12. Spring wheat tolerance and resistance to Heterodera avenae in the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cereal cyst nematode Heterodera avenae reduces wheat yields in the Pacific Northwest. Previous evaluations of cultivar resistance had been in controlled environments. Cultivar tolerance had not been evaluated. Seven spring wheat trials were conducted in naturally infested fields in three states ...

  13. Comparison of selection methods for the development of white-seeded lines from red x white soft winter wheat crosses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Interest in breeding soft white winter (SWW) wheat (Triticum aestivum L.) cultivars in areas that have traditionally grown only soft red winter (SRW) wheat has increased in recent years. To efficiently generate and develop white wheat segregates from red wheat breeding programs, certain breeding de...

  14. Introgression of stem rust resistance genes SrTA10187 and SrTA10171 from Aegilops tauschii to wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The diploid progenitor of the wheat D genome, Aegilops tauschii, has provided a wealth of genes for resistance to many diseases and insect pests of wheat. Ae. tauschii is a readily accessible pool of genes for wheat breeding as genes can be transferred to elite wheat cultivars though direct hybridi...

  15. A genetic linkage map of the Durum x Triticum dicoccoides backcross population based on SSRs and AFLP markers, and QTL analysis for milling traits.

    PubMed

    Elouafi, I; Nachit, M M

    2004-02-01

    Durum wheat ( Triticum turgidum L. var durum) is mainly produced and consumed in the Mediterranean region; it is used to produce several specific end-products; such as local pasta, couscous and burghul. To study the genetics of grain-milling quality traits, chromosomal locations, and interaction with the environment, a genetic linkage map of durum was constructed and the quantitative trait loci QTLs for the milling-related traits, test weight (TW) and thousand-kernel weight (TKW), were identified. The population constituted 114 recombinant inbred lines derived from the cross: Omrabi 5 /Triticum dicoccoides 600545// Omrabi 5. TW and TKW were analyzed over 18 environments (sites x years). Single-sequence-repeat markers (SSRs), Amplified-fragment-length-polymorphism markers (AFLPs), and seed storage proteins (SSPs) showed a high level of polymorphism (>60%). The map was constructed with 124 SSRs, 149 AFLPs and 6 SSPs; its length covered 2,288.8 cM (8.2 cM/marker). The map showed high synteny with previous wheat maps, and both SSRs and AFLPs mapped evenly across the genome, with more markers in the B genome. However, some rearrangements were observed. For TW, a high genotypic effect was detected and two QTLs with epistasic effect were identified on 7AS and 6BS, explaining 30% of the total variation. The TKW showed a significant transgressive inheritance and five QTLs were identified, explaining 32% of the total variation, out of which 25% was of a genetic nature, and showing QTLxE interaction. The major TKW-QTLs were around the centromere region of 6B. For both traits, Omrabi 5 alleles had a significant positive effect. This population will be used to determine other QTLs of interest, as its parents are likely to harbor different genes for diseases and drought tolerance.

  16. Switchgrass cultivar EG1102

    DOEpatents

    Bouton, Joseph H; Wood, Donald T

    2012-11-20

    A switchgrass cultivar designated EG1102 is disclosed. The invention relates to the seeds of switchgrass cultivar EG1102, to the plants of switchgrass EG1102, to plant parts of switchgrass cultivar EG1102 and to methods for producing a switchgrass plant produced by crossing switchgrass cultivar EG1102 with itself or with another switchgrass variety. The invention also relates to methods for producing a switchgrass plant containing in its genetic material one or more transgenes and to the transgenic switchgrass plants and plant parts produced by those methods. This invention also relates to switchgrass cultivars or breeding cultivars and plant parts derived from switchgrass variety EG1102, to methods for producing other switchgrass cultivars, lines or plant parts derived from switchgrass cultivar EG1102 and to the switchgrass plants, varieties, and their parts derived from use of those methods. The invention further relates to hybrid switchgrass seeds, plants and plant parts produced by crossing the cultivar EG1102 with another switchgrass cultivar.

  17. Switchgrass cultivar EG1101

    DOEpatents

    Bouton, Joseph H; Wood, Donald T

    2012-11-27

    A switchgrass cultivar designated EG1101 is disclosed. Also disclosed are seeds of switchgrass cultivar EG1101, plants of switchgrass EG1101, plant parts of switchgrass cultivar EG1101 and methods for producing a switchgrass plant produced by crossing switchgrass cultivar EG1101 with itself or with another switchgrass variety. Methods are also described for producing a switchgrass plant containing in its genetic material one or more transgenes and to the transgenic switchgrass plants and plant parts produced by those methods. Switchgrass cultivars or breeding cultivars and plant parts derived from switchgrass variety EG1101, methods for producing other switchgrass cultivars, lines or plant parts derived from switchgrass cultivar EG1101 and the switchgrass plants, varieties, and their parts derived from use of those methods are described herein. Hybrid switchgrass seeds, plants and plant parts produced by crossing the cultivar EG1101 with another switchgrass cultivar are also described.

  18. Cancer mortality in four northern wheat-producing states.

    PubMed Central

    Schreinemachers, D M

    2000-01-01

    Chlorophenoxy herbicides are used both in cereal grain agriculture and in nonagricultural settings such as right-of-ways, lawns, and parks. Minnesota, North Dakota, South Dakota, and Montana grow most of the spring and durum wheat produced in the United States. More than 90% of spring and durum wheat is treated with chlorophenoxy herbicides, in contrast to treatment of approximately 30% of winter wheat. In this ecologic study I used wheat acreage as a surrogate for exposure to chlorophenoxy herbicides. I investigated the association of chlorophenoxy herbicides with cancer mortality during 1980-1989 for selected counties based on level of agriculture ([greater and equal to] 20%) and rural population ([greater and equal to] 50%). Age-standardized cancer mortality rates were determined for grouped counties based on tertiles of wheat acreage per county or for individual counties for frequently occurring cancers. The cancer sites that showed positive trends of increasing cancer mortality with increasing wheat acreage were esophagus, stomach, rectum, pancreas, larynx, prostate, kidney and ureter, brain, thyroid, bone, and all cancers (men) and oral cavity and tongue, esophagus, stomach, liver and gall bladder and bile ducts, pancreas, cervix, ovary, bladder, and other urinary organs, and all cancers (women). Rare cancers in men and women and cancers in boys and girls were studied by comparing counties above and below the median of wheat acreage per county. There was increased mortality for cancer of the nose and eye in both men and women, brain and leukemia in both boys and girls, and all cancers in boys. These results suggest an association between cancer mortality and wheat acreage in counties of these four states. PMID:11017893

  19. Tracking the fate of pasta (T. Durum semolina) immunogenic proteins by in vitro simulated digestion.

    PubMed

    Mamone, Gianfranco; Nitride, Chiara; Picariello, Gianluca; Addeo, Francesco; Ferranti, Pasquale; Mackie, Alan

    2015-03-18

    The aim of the present study was to identify and characterize the celiacogenic/immunogenic proteins and peptides released during digestion of pasta (Triticum durum semolina). Cooked pasta was digested using a harmonized in vitro static model of oral-gastro-duodenal digestion. The course of pasta protein digestion was monitored by SDS-PAGE, and gluten proteins were specifically analyzed by Western blot using sera of celiac patients. Among the allergens, nonspecific lipid-transfer protein was highly resistant to gastro-duodenal hydrolysis, while other digestion-stable allergens such as α-amylase/trypsin inhibitors were not detected being totally released in the pasta cooking water. To simulate the final stage of intestinal degradation, the gastro-duodenal digesta were incubated with porcine jejunal brush-border membrane hydrolases. Sixty-one peptides surviving the brush-border membrane peptidases were identified by liquid chromatography-mass spectrometry, including several gluten-derived sequences encrypting different motifs responsible for the induction of celiac disease. These results provide new insights into the persistence of wheat-derived peptides during digestion of cooked pasta samples.

  20. Using Geostatistical Data Fusion Techniques and MODIS Data to Upscale Simulated Wheat Yield

    NASA Astrophysics Data System (ADS)

    Castrignano, A.; Buttafuoco, G.; Matese, A.; Toscano, P.

    2014-12-01

    Population growth increases food request. Assessing food demand and predicting the actual supply for a given location are critical components of strategic food security planning at regional scale. Crop yield can be simulated using crop models because is site-specific and determined by weather, management, length of growing season and soil properties. Crop models require reliable location-specific data that are not generally available. Obtaining these data at a large number of locations is time-consuming, costly and sometimes simply not feasible. An upscaling method to extend coverage of sparse estimates of crop yield to an appropriate extrapolation domain is required. This work is aimed to investigate the applicability of a geostatistical data fusion approach for merging remote sensing data with the predictions of a simulation model of wheat growth and production using ground-based data. The study area is Capitanata plain (4000 km2) located in Apulia Region, mostly cropped with durum wheat. The MODIS EVI/NDVI data products for Capitanata plain were downloaded from the Land Processes Distributed Active Archive Center (LPDAAC) remote for the whole crop cycle of durum wheat. Phenological development, biomass growth and grain quantity of durum wheat were simulated by the Delphi system, based on a crop simulation model linked to a database including soil properties, agronomical and meteorological data. Multicollocated cokriging was used to integrate secondary exhaustive information (multi-spectral MODIS data) with primary variable (sparsely distributed biomass/yield model predictions of durum wheat). The model estimates looked strongly spatially correlated with the radiance data (red and NIR bands) and the fusion data approach proved to be quite suitable and flexible to integrate data of different type and support.

  1. Spring wheat gliadins: Have they changed in 100 years?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There have been many hard red spring (HRS) wheat cultivars released in North Dakota during the last 100 years. These cultivars have been improved for various characteristics such as, adaptation to weather conditions, high yield, and good milling and baking quality. The objectives of this study wer...

  2. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Septoria nodorum blotch (SNB), caused by Parastagonospora nodorum, is a severe foliar and glume disease on durum and common wheat. Pathogen-produced necrotrophic effectors (NEs) are the major determinants for SNB on leaves. One such NE is SnTox3, which evokes programmed cell death and leads to dis...

  3. Identification of Chromosome Locations of Genes Affecting pre-Harvest Sprouting and Seed Dormancy using Chromosome Substitution Lines in Tetraploid Wheat (Triticum turgidum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed dormancy, the main factor contributing to pre-harvest sprouting (PHS) resistance, is a complex trait and strongly influenced by environmental growth conditions. In this study, three sets of single chromosome substitution lines, including 37 genotypes, in a durum wheat (Triticum turgidum var. du...

  4. Genetics and mapping of stem rust resistance in MV Zelma winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seedling screening of winter wheat varieties identified Hungarian winter wheat cultivar MV Zelma as resistant to wheat stem rust after infection by P. graminis f. sp. tritici races TTKSK (Ug99), TTKST, TTTSK, and nine races from the United States. Though previous data suggest MV Zelma possessed stem...

  5. Storage conditions affecting increase in falling number of soft red winter wheat grain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Falling number (FN) of wheat grain, a measure of preharvest sprouting, tends to increase during storage; however, grain and storage conditions that impact FN changes are poorly understood. Wheat grain samples of varying FN from several cultivars were obtained by malting, by incubating wheat stalks,...

  6. Jointed goatgrass (Aegilops cylindrica) by imidazolinone-resistant wheat hybridization under field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene flow between jointed goatgrass and winter wheat is a concern because transfer of herbicide resistance genes from imidazolinone-resistant (IR) winter wheat cultivars to jointed goatgrass could restrict weed management options for this serious weed of winter wheat cropping systems. The objective...

  7. A spontaneous segmental deletion from chromosome arm 3DL enhances Fusarium head blight resistance in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much effort has been directed at identifying sources of resistance to Fusarium head blight (FHB) in wheat. We sought to identify molecular markers for what we hypothesized was a new major FHB resistance locus originating from the wheat cultivar 'Freedom' and introgressed into the susceptible wheat c...

  8. Registration of ‘NE05548’ (husker genetics brand panhandle) hard red winter wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Western Nebraska wheat producers and those in adjacent areas want taller wheat (Triticum aestivum L.) cultivars that retain their height under drought for better harvestability. ‘NE05548’ (Reg. No. CV-1117, PI 670462) hard red winter wheat was developed cooperatively by the Nebraska Agricultural Exp...

  9. Head blight of wheat in South Africa is associated with numerous Fusarium species and chemotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) of wheat is caused by numerous Fusarium species, including trichothecene-producers. In South Africa, FHB is mostly associated with irrigated wheat rotated with maize. Twenty symptomatic wheat heads were collected from four cultivars each in irrigated fields during 2008 and...

  10. Fusarium spp. associated with head blight of wheat in South Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) of wheat is caused by numerous Fusarium species, including trichothecene-producers. In South Africa, FHB is mostly associated with irrigated wheat rotated with maize. Twenty symptomatic wheat heads were collected from four cultivars each in irrigated fields in the Northern...

  11. Characterization of the surface properties of wheat spikelet components

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The physicochemical surface properties of wheat spikelet components were determined. The water and water:acetone (1:1, v/v) contact angle for the glumes and lemmas of two wheat cultivars were measured. The results demonstrate that the surface chemistry and ultrastructure of glume and lemma tissues...

  12. Phytochemical composition and anticancer activity of germinated wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed germination is a natural method to increase bioactive components that have beneficial effects on human health. Germinated wheat flour samples of a hard red wheat cultivar (Rampart) were prepared after germination of three and five days and investigated for phytochemical composition and anticanc...

  13. Using NIRS to Predict Fiber and Nutrient Content of Dryland Cereal Cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Residue from cultivars of spring wheat (Triticum aestivum L.), winter wheat and spring barley (Hordeum vulgare L.) was characterized for fiber and nutrient traits using reference methods and near infrared spectroscopy (NIRS). Calibration models were developed for neutral detergent fiber (NDF); acid...

  14. Determination compliance abilities of some triticale varieties and comparison with wheat in Southeastern Anatolia conditions of Turkey.

    PubMed

    Kendal, Enver; Tekdal, Sertaç; Aktas, Hüsnü; Karaman, Mehmet

    2014-01-01

    In this research, were used 3 triticale varieties (Tacettinbey, Karma 2000 and Presto), one durum (Sariçanak 98) and one bread (Nurkent) wheat varieties. The study, was randomized as complete block design with four replications in 4 location (southeastern Anatolia of Turkey) and under rainfed conditions during the growing season 2010-2011. With an analysis of variance, significant differences were determined among locations, genotypes and genotype x location interactions at the 1% and 5% level. Following results were obtained: period to heading 109 till 113 days, plant height between 96 and 127 cm, hectoliter weight between 68.2 and 81.7 kg/hl, thousand grain weight between 32.9 and 42.7 g, protein content between 13.3 and 14.7%, humidty kernels at harvest between 9.2 and 9.5% and grain yield between 4409 and 6119 kg/ha(-1). The highest grain yield was obtained with Sariçanak 98 (durum wheat variety) while the best thousant grain weight was obtained by the triticale variety Tacettinbey. The triticale variety Karma 2000 showed higher protein content (14.7%) than other the other triticale varieties as well as durum and bread wheat varieties included trial. For the Southeastern Anatolia Region he results of this study demonstrated that the grain yield of triticale varieties were lower compared to common wheat. Nevertheless the triticale grain yield was higher than these of durum and bread wheat varieties under the more extrem (higher temperature and drought) growing conditions of the Kiziltepe region. For triticale the highest mean grain yield has been obtained fwith the variety Tacettinbey which is spring type. New sping type vatieties are more suitable than wheat for the more extreme growing conditions of the Southeastern Anatolia Region.

  15. Mechanisms of resistance and tolerance to Mycosphaerella graminicola in wheat.

    PubMed

    El Chartouni, Léa; Randoux, B; Duyme, F; Renard-Merlier, D; Tisserant, B; Bourdon, N; Pillon, V; Sanssené, J; Durand, R; Halama, P; Reignault, Ph

    2009-01-01

    The aim of this study was to investigate the infection process of M. graminicola and the defence mechanisms related to active oxygen species (AOS) in five French wheat cultivars. These cultivars exhibited various resistant levels to M. graminicola infection: Maxyl, Caphorn and Gen11 are susceptible cultivars, whereas Capnor and Gen23 show high levels of quantitative resistances. In addition, Capnor, Gen23 and Gen11 are tolerant cultivars, i.e., their yield performance was less affected by infection compared to non-tolerant cultivars. Cultivars were inoculated with the IPO323 reference M. graminicola strain. First wheat leaves were collected 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 days after inoculation. The cytological and antioxidant response of the cultivars were both studied over the whole time course. Although infection occurred mainly through stomata, direct penetration attempts were also scored. Moreover, papilla formation turned out to be very rare. Assays for changes in peroxydase (PO), glutathione-S-transferase (GST) and lipoxygenase (LOX) activities allowed us to compare their levels in the five French wheat cultivars regarding to their resistance and/or tolerance towards M. graminicola infection. PO and GST were correlated to necrosis probably as a consequence of detoxification and LOX was related to some of the germination process steps. We also showed that significant differences for several biochemical parameters exist between the studied cultivars in non inoculated conditions but these differences were less important in the presence of the fungus.

  16. Impact of hessian fly, Mayetiola destructor, feeding on selected developmental aspects of hard red winter wheat in Kansas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Hessian fly (HF), Mayetiola destructor (Say), has historically been a significant pest of wheat in Kansas. The use of resistant wheat cultivars has been adopted to protect seedling plants from HF larval feeding in the fall. However, it is unknown if these cultivars are still providing protectio...

  17. A conserved locus conditioning Soil-borne wheat mosaic virus resistance on 5DL in common wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-borne wheat mosaic virus (SBWMV) is considered one of the most important diseases in winter wheat regions of the central and southeastern United States. Utilization of resistant cultivars is the only practical and environmentally friendly means of control. To identify QTL for SBWMV resistance, ...

  18. Organic Cultivation of Triticum turgidum subsp. durum Is Reflected in the Flour-Sourdough Fermentation-Bread Axis

    PubMed Central

    Rizzello, Carlo Giuseppe; Cavoski, Ivana; Turk, Jelena; Ercolini, Danilo; Nionelli, Luana; Pontonio, Erica; De Angelis, Maria; De Filippis, Francesca; Gobbetti, Marco

    2015-01-01

    Triticum turgidum subsp. durum was grown according to four farming systems: conventional (CONV), organic with cow manure (OMAN) or green manure (OLEG), and without inputs (NOINPUT). Some chemical and technological characteristics differed between CONV and organic flours. As shown by two-dimensional electrophoresis (2-DE) analysis, OMAN and OLEG flours showed the highest number of gliadins, and OMAN flour also had the highest number of high-molecular-mass glutenins. Type I sourdoughs were prepared at the laboratory level through a back-slopping procedure, and the bacterial ecology during sourdough preparation was described by 16S rRNA gene pyrosequencing. Before fermentation, the dough made with CONV flour showed the highest bacterial diversity. Flours were variously contaminated by genera belonging to the Proteobacteria, Firmicutes, and Actinobacteria. Mature sourdoughs were completely and stably dominated by lactic acid bacteria. The diversity of Firmicutes was the highest for mature sourdoughs made with organic and, especially, NOINPUT flours. Beta diversity analysis based on the weighted UniFrac distance showed differences between doughs and sourdoughs. Those made with CONV flour were separated from the other with organic flours. Lactic acid bacterium microbiota structure was qualitatively confirmed through the culturing method. As shown by PCR-denaturing gradient gel electrophoresis (DGGE) analysis, yeasts belonging to the genera Saccharomyces, Candida, Kazachstania, and Rhodotorula occurred in all sourdoughs. Levels of bound phenolic acids and phytase and antioxidant activities differed depending on the farming system. Mature sourdoughs were used for bread making. Technological characteristics were superior in the breads made with organic sourdoughs. The farming system is another determinant affecting the sourdough microbiota. The organic cultivation of durum wheat was reflected along the flour-sourdough fermentation-bread axis. PMID:25724957

  19. Organic cultivation of Triticum turgidum subsp. durum is reflected in the flour-sourdough fermentation-bread axis.

    PubMed

    Rizzello, Carlo Giuseppe; Cavoski, Ivana; Turk, Jelena; Ercolini, Danilo; Nionelli, Luana; Pontonio, Erica; De Angelis, Maria; De Filippis, Francesca; Gobbetti, Marco; Di Cagno, Raffaella

    2015-05-01

    Triticum turgidum subsp. durum was grown according to four farming systems: conventional (CONV), organic with cow manure (OMAN) or green manure (OLEG), and without inputs (NOINPUT). Some chemical and technological characteristics differed between CONV and organic flours. As shown by two-dimensional electrophoresis (2-DE) analysis, OMAN and OLEG flours showed the highest number of gliadins, and OMAN flour also had the highest number of high-molecular-mass glutenins. Type I sourdoughs were prepared at the laboratory level through a back-slopping procedure, and the bacterial ecology during sourdough preparation was described by 16S rRNA gene pyrosequencing. Before fermentation, the dough made with CONV flour showed the highest bacterial diversity. Flours were variously contaminated by genera belonging to the Proteobacteria, Firmicutes, and Actinobacteria. Mature sourdoughs were completely and stably dominated by lactic acid bacteria. The diversity of Firmicutes was the highest for mature sourdoughs made with organic and, especially, NOINPUT flours. Beta diversity analysis based on the weighted UniFrac distance showed differences between doughs and sourdoughs. Those made with CONV flour were separated from the other with organic flours. Lactic acid bacterium microbiota structure was qualitatively confirmed through the culturing method. As shown by PCR-denaturing gradient gel electrophoresis (DGGE) analysis, yeasts belonging to the genera Saccharomyces, Candida, Kazachstania, and Rhodotorula occurred in all sourdoughs. Levels of bound phenolic acids and phytase and antioxidant activities differed depending on the farming system. Mature sourdoughs were used for bread making. Technological characteristics were superior in the breads made with organic sourdoughs. The farming system is another determinant affecting the sourdough microbiota. The organic cultivation of durum wheat was reflected along the flour-sourdough fermentation-bread axis.

  20. Mineral composition of organically grown wheat genotypes: contribution to daily minerals intake.

    PubMed

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-09-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved.

  1. Genetics and Mapping of Seedling Resistance to Ug99 Stem Rust in the Winter Wheat Cultivar Triumph 64 and Differentiation of SrTmp, SrCad, and Sr42

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stem rust, caused by the fungus Puccinia graminis f. sp. tritici Eriks. & E. Henn. (Pgt), is an important disease of wheat that can be controlled by deploying effective stem rust resistance (Sr) genes. The emergence of virulent Pgt races in Africa, namely Ug99 and its variants, has stimulated the se...

  2. Water stress causes differential effects on germination indices, total soluble sugar and proline content in wheat (Triticum aestivum L.) genotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different cultivars differ inherently in their response to drought and those cultivars best adapted to growth in arid and semiarid conditions form the most uniform and vigorous stands when grown under water deficits. The seeds of five wheat cultivars (GA-2002, Chakwal-97, Uqab-2000, Chakwal-50 and W...

  3. Evaluation of Pakistan wheat germplasms for stripe rust resistance using molecular markers.

    PubMed

    Sobia, Tabassum; Muhammad, Ashraf; Chen, XianMing

    2010-09-01

    Wheat production in Pakistan is seriously constrained due to rust diseases and stripe rust (yellow) caused by Puccinia striiformis f. sp. tritici, which could limit yields. Thus development and cultivation of genetically diverse and resistant varieties is the most sustainable solution to overcome these diseases. The first objective of the present study was to evaluate 100 Pakistan wheat cultivars that have been grown over the past 60 years. These cultivars were inoculated at the seedling stage with two virulent stripe rust isolates from the United States and two from Pakistan. None of the wheat cultivars were resistant to all tested stripe rust isolates, and 16% of cultivars were susceptible to the four isolates at the seedling stage. The data indicated that none of the Pakistan wheat cultivars contained either Yr5 or Yr15 genes that were considered to be effective against most P. striiformis f. sp. tritici isolates from around the world. Several Pakistan wheat cultivars may have gene Yr10, which is effective against isolate PST-127 but ineffective against PST-116. It is also possible that these cultivars may have other previously unidentified genes or gene combinations. The second objective was to evaluate the 100 Pakistan wheat cultivars for stripe rust resistance during natural epidemics in Pakistan and Washington State, USA. It was found that a higher frequency of resistance was present under field conditions compared with greenhouse conditions. Thirty genotypes (30% of germplasms) were found to have a potentially high temperature adult plant (HTAP) resistance. The third objective was to determine the genetic diversity in Pakistan wheat germplasms using molecular markers. This study was based on DNA fingerprinting using resistance gene analog polymorphism (RGAP) marker analysis. The highest polymorphism detected with RGAP primer pairs was 40%, 50% and 57% with a mean polymorphism of 36%. A total of 22 RGAP markers were obtained in this study. RGAP, simple

  4. Deep Eutectic Solvents as Novel and Effective Extraction Media for Quantitative Determination of Ochratoxin A in Wheat and Derived Products.

    PubMed

    Piemontese, Luca; Perna, Filippo Maria; Logrieco, Antonio; Capriati, Vito; Solfrizzo, Michele

    2017-01-12

    An unprecedented, environmentally friendly, and faster method for the determination of Ochratoxin A (OTA) (a mycotoxin produced by several species of Aspergillus and Penicillium and largely widespread in nature, in wheat and derived products) has, for the first time, been set up and validated using choline chloride (ChCl)-based deep eutectic solvents (DESs) (e.g., ChCl/glycerol (1:2) and ChCl/ urea (1:2) up to 40% (w/w) water) as privileged, green, and biodegradable extraction solvents. This also reduces worker exposure to toxic chemicals. Results are comparable to those obtained using conventional, hazardous and volatile organic solvents (VOCs) typical of the standard and official methods. OTA recovery from spiked durum wheat samples, in particular, was to up to 89% versus 93% using the traditional acetonitrile-water mixture with a repeatability of the results (RSDr) of 7%. Compatibility of the DES mixture with the antibodies of the immunoaffinity column was excellent as it was able to retain up to 96% of the OTA. Recovery and repeatability for durum wheat, bread crumbs, and biscuits proved to be within the specifications required by the current European Commission (EC) regulation. Good results in terms of accuracy and precision were achieved with mean recoveries between 70% (durum wheat) and 88% (bread crumbs) and an RSDr between 2% (biscuits) and 7% (bread).

  5. Registration of 'Advance' Hard Red Spring Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grower and end-user acceptance of new hard red spring wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent on satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also help to maxi...

  6. Registration of 'Prevail' hard red spring wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grower and end-user acceptance of new Hard Red Spring Wheat (HRSW; Triticum aestivum L.) cultivars is largely contingent upon satisfactory agronomic performance, end-use quality potential, and disease resistance levels. Additional characteristics, such as desirable plant height, can also contribute...

  7. Response of Russian wheat aphid resistance in wheat and barley to four Diuraphis (Hemiptera: Aphididae) species.

    PubMed

    Puterka, Gary J; Scott, J Nicholson; Brown, Michael J; Hammon, R W

    2013-04-01

    Three Diuraphis species, Diuraphis frequens (Walker), Diuraphis mexicana (McVicar Baker), and Diuraphis tritici (Gillette), were known to exist in the United States before the 1986 appearance of the Russian wheat aphid, Diuraphis noxia Kurdjumov. The Russian wheat aphid soon became a significant pest of wheat although other endemic Diuraphis species were known to infest wheat. Wheat and barley entries resistant and susceptible to Russian wheat aphid biotype 2 were evaluated against all four Diuraphis species to determine their host interrelationships. Leaf chlorosis, leaf roll, leaf number, plant height, and infestation levels were assessed 21 d after the plants were infested by aphids in a no-choice caged environment. D. mexicana was unable to survive on wheat by 21 d after infestation and effects on the plant damage variables were negligible. D. frequens survived at low levels on resistant and susceptible plant entries and had a low impact on plant damage and growth. Russian wheat aphid biotype 2 and D. tritici were damaged most wheat and barley lines except the Russian wheat aphid biotype 2-resistant wheat lines containing genes from Dn7, STARS 2414-11, and CI2401; and resistant barley containing genes from STARS 9577B and 9301B. Russian wheat aphid biotype 2 and D. tritici reduced the growth of resistant plants by 25-50% and susceptible entries by 65-75%. Reductions at this level are typical under no-choice studies but resistant cultivars do not have these reductions under field conditions. The Russian wheat aphid biotype 2 resistant wheat lines would be effective in managing both wheat pest species.

  8. Temperature-dependent Wsm1 and Wsm2 gene-specific blockage of viral long-distance transport provides resistance to Wheat streak mosaic virus and Triticum mosaic virus in wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are economically important viral pathogens of wheat. Wheat cultivars Mace with the resistance gene Wsm1 and Snowmass with the resistance gene Wsm2 are resistant to WSMV and TriMV, and WSMV, respectively. Viral resistance in both cult...

  9. Markers linked to wheat stem rust resistance gene Sr11 effective to Puccinia graminis f. sp. tritici race TKTTF

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wheat stem rust caused by Puccinia graminis f. sp. tritici can cause severe yield losses on susceptible wheat varieties and cultivars. Although stem rust can be controlled by the use of genetic resistance, population dynamics of P. graminis f. sp. tritici can frequently lead to defeat of wheat stem ...

  10. Waxy genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species

    PubMed Central

    Guzmán, Carlos; Caballero, Leonor; Martín, Luis M.; Alvarez, Juan B.

    2012-01-01

    Background and Aims Waxy proteins are responsible for amylose synthesis in wheat seeds, being encoded by three waxy genes (Wx-A1, Wx-B1 and Wx-D1) in hexaploid wheat. In addition to their role in starch quality, waxy loci have been used to study the phylogeny of wheat. The origin of European spelt (Triticum aestivum ssp. spelta) is not clear. This study compared waxy gene sequences of a Spanish spelt collection with their homologous genes in emmer (T. turgidum ssp. dicoccum), durum (T. turgidum ssp. durum) and common wheat (T. aestivum ssp. aestivum), together with other Asian and European spelt that could be used to determine the origin of European spelt. Methods waxy genes were amplified and sequenced. Geneious Pro software, DNAsp and MEGA5 were used for sequence, nucleotide diversity and phylogenetic analysis, respectively. Key Results Three, four and three new alleles were described for the Wx-A1, Wx-B1 and Wx-D1 loci, respectively. Spelt accessions were classified into two groups based on the variation in Wx-B1, which suggests that there were two different origins for the emmer wheat that has been found to be part of the spelt genetic make-up. One of these groups was only detected in Iberian material. No differences were found between the rest of the European spelt and the Asiatic spelt, which suggested that the Iberian material had a different origin from the other spelt sources. Conclusions The results suggested that the waxy gene variability present in wheat is undervalued. The evaluation of this variability has permitted the detection of ten new waxy alleles that could affect starch quality and thus could be used in modern wheat breeding. In addition, two different classes of Wx-B1 were detected that could be used for evaluating the phylogenetic relationships and the origins of different types of wheat. PMID:22984164

  11. Genetic analysis of wheat domestication and evolution under domestication.

    PubMed

    Peleg, Zvi; Fahima, Tzion; Korol, Abraham B; Abbo, Shahal; Saranga, Yehoshua

    2011-10-01

    Wheat is undoubtedly one of the world's major food sources since the dawn of Near Eastern agriculture and up to the present day. Morphological, physiological, and genetic modifications involved in domestication and subsequent evolution under domestication were investigated in a tetraploid recombinant inbred line population, derived from a cross between durum wheat and its immediate progenitor wild emmer wheat. Experimental data were used to test previous assumptions regarding a protracted domestication process. The brittle rachis (Br) spike, thought to be a primary characteristic of domestication, was mapped to chromosome 2A as a single gene, suggesting, in light of previously reported Br loci (homoeologous group 3), a complex genetic model involved in spike brittleness. Twenty-seven quantitative trait loci (QTLs) conferring threshability and yield components (kernel size and number of kernels per spike) were mapped. The large number of QTLs detected in this and other studies suggests that following domestication, wheat evolutionary processes involved many genomic changes. The Br gene did not show either genetic (co-localization with QTLs) or phenotypic association with threshability or yield components, suggesting independence of the respective loci. It is argued here that changes in spike threshability and agronomic traits (e.g. yield and its components) are the outcome of plant evolution under domestication, rather than the result of a protracted domestication process. Revealing the genomic basis of wheat domestication and evolution under domestication, and clarifying their inter-relationships, will improve our understanding of wheat biology and contribute to further crop improvement.

  12. Evaluation of winter wheat breeding lines for traits related to nitrogen use under organic management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is growing interest in breeding crop cultivars specifically for organic agriculture, based on recognized differences in environmental and management conditions. This study evaluated 12 diverse winter wheat breeding lines chosen from conventional and organic breeding nurseries, six historic var...

  13. Hop Cultivars and Breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pest management decision making in hops varies among cultivars. Historically, the primary objective of hop breeding programs has been to increase the yield or characteristics associated with either bittering (high alpha-acids) or aroma (unique volatile oil profiles) cultivars. Other factors consid...

  14. Assessing solar energy and water use efficiencies in winter wheat

    NASA Technical Reports Server (NTRS)

    Asrar, G.; Hipps, L. E.; Kanemasu, E. T.

    1982-01-01

    The water use and solar energy conversion efficiencies of two cultivars of winter wheat (Triticum aestivum L., vars, Centurk and Newton) planted at three densities, were examined during a growing season. Water use, based on soil moisture depletion, was the lowest under the light, and the highest under the heavy planting densities of both cultivars. Water use efficiency of medium and heavy planting densities were greater than the light planting densities in both cultivars. The canopy radiation extinction coefficients of both cultivars increased with increases in planting density. Efficiency of operation interception of photosynthetically active radiation by both cultivars improved from the time of jointing until anthesis, and then decreased during senescence. The efficiency of the conversion of intercepted radiation to dry matter (biochemical efficiency) decreased throughout the growing season both cultivars. The interception, biochemical, and photosynthetic efficiencies improved as planting density increased.

  15. Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture

    PubMed Central

    Bilgic, Hatice; Hakki, Erdogan E.; Akkaya, Mahinur S.

    2016-01-01

    Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961–65 excavations due to the recovery of primitive hexaploid wheat. However, despite the seeds being well preserved, a detailed archaeobotanical description of the samples is missing. In this article, we report on the DNA isolation, amplification and sequencing of ancient DNA of charred wheat grains from Çatalhöyük and other Turkish archaeological sites and the comparison of these wheat grains with contemporary wheat species including T. monococcum, T. dicoccum, T. dicoccoides, T. durum and T. aestivum at HMW glutenin protein loci. These ancient samples represent the oldest wheat sample sequenced to date and the first ancient wheat sample from the Middle East. Remarkably, the sequence analysis of the short DNA fragments preserved in seeds that are approximately 8400 years old showed that the Çatalhöyük wheat stock contained hexaploid wheat, which is similar to contemporary hexaploid wheat species including both naked (T. aestivum) and hulled (T. spelta) wheat. This suggests an early transitory state of hexaploid wheat agriculture from the Fertile Crescent towards Europe spanning present-day Turkey. PMID:26998604

  16. Ancient DNA from 8400 Year-Old Çatalhöyük Wheat: Implications for the Origin of Neolithic Agriculture.

    PubMed

    Bilgic, Hatice; Hakki, Erdogan E; Pandey, Anamika; Khan, Mohd Kamran; Akkaya, Mahinur S

    2016-01-01

    Human history was transformed with the advent of agriculture in the Fertile Crescent with wheat as one of the founding crops. Although the Fertile Crescent is renowned as the center of wheat domestication, archaeological studies have shown the crucial involvement of Çatalhöyük in this process. This site first gained attention during the 1961-65 excavations due to the recovery of primitive hexaploid wheat. However, despite the seeds being well preserved, a detailed archaeobotanical description of the samples is missing. In this article, we report on the DNA isolation, amplification and sequencing of ancient DNA of charred wheat grains from Çatalhöyük and other Turkish archaeological sites and the comparison of these wheat grains with contemporary wheat species including T. monococcum, T. dicoccum, T. dicoccoides, T. durum and T. aestivum at HMW glutenin protein loci. These ancient samples represent the oldest wheat sample sequenced to date and the first ancient wheat sample from the Middle East. Remarkably, the sequence analysis of the short DNA fragments preserved in seeds that are approximately 8400 years old showed that the Çatalhöyük wheat stock contained hexaploid wheat, which is similar to contemporary hexaploid wheat species including both naked (T. aestivum) and hulled (T. spelta) wheat. This suggests an early transitory state of hexaploid wheat agriculture from the Fertile Crescent towards Europe spanning present-day Turkey.

  17. Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breading? A perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In order to assess the possibility that wheat breeding has been responsible for an increase in the gluten content of U.S. wheat cultivars and thereby responsible for an increase in the incidence of celiac disease, the available data from the 20th century has been analyzed. Although much of the infor...

  18. Study of allelopathic effects of Eucalyptus erythrocorys L. crude extracts against germination and seedling growth of weeds and wheat.

    PubMed

    Ben Ghnaya, Asma; Hamrouni, Lamia; Amri, Ismail; Ahoues, Haifa; Hanana, Mohsen; Romane, Abderrahmane

    2016-09-01

    Allelopathic materials inside a tree can produce positive or negative change in the survival, growth, reproduction and behaviour of other organisms if they escape into the environment. To assess these effects, this work was carried out to evaluate the allelopathic impact of Eucalyptus erythrocorys L. on seed germination and seedling growth of two weeds: Sinapis arvensis L. and Phalaris canariensis L.; on one cultivated crop: Triticum durum L. Aqueous; and on ethanolic leaf extracts of E. erythrocorys L. The study was effected using four concentrations (10, 20, 25 and 30 μL/mL) while distilled water was used as a control. The results showed that the E. erythrocorys L. crude extracts had an inhibitory effect on seed germination and seedling growth of both studied weeds and wheat. The inhibition rate was increased by the increase in extract concentration. Only ethanolic extracts of E. erythrocorys L. induced a significant inhibition of seed germination of durum wheat. The effect of E. erythrocorys L. crude extracts was more severe on weeds than on durum wheat. These results indicate that the seedling growth, especially radicle elongation, was the more sensitive indicator to evaluate the effects of extracts than was the seed germination.

  19. A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana.

    PubMed

    Safi, Hela; Saibi, Walid; Alaoui, Meryem Mrani; Hmyene, Abdelaziz; Masmoudi, Khaled; Hanin, Moez; Brini, Faïçal

    2015-04-01

    Lipid transfer proteins (LTPs) are members of the family of pathogenesis-related proteins (PR-14) that are believed to be involved in plant defense responses. In this study, we report the isolation and characterization of a novel gene TdLTP4 encoding an LTP protein from durum wheat [Triticum turgidum L. subsp. Durum Desf.]. Molecular Phylogeny analyses of wheat TdLTP4 gene showed a high identity to other plant LTPs. Predicted three-dimensional structural model revealed the presence of six helices and nine loop turns. Expression analysis in two local durum wheat varieties with marked differences in salt and drought tolerance, revealed a higher transcript accumulation of TdLTP4 under different stress conditions in the tolerant variety, compared to the sensitive one. The overexpression of TdLTP4 in Arabidopsis resulted in a promoted plant growth under various stress conditions including NaCl, ABA, JA and H2O2 treatments. Moreover, the LTP-overexpressing lines exhibit less sensitivity to jasmonate than wild-type plants. Furthermore, detached leaves from transgenic Arabidopsis expressing TdLTP4 gene showed enhanced fungal resistance against Alternaria solani and Botrytis cinerea. Together, these data provide the evidence for the involvement of TdLTP4 gene in the tolerance to both abiotic and biotic stresses in crop plants.

  20. Wheat Newsletter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This review was written for readers of the Annual Wheat Newsletter, Volume 53. It summarizes activities on wheat research during 2006 at the U.S. Grain Marketing Research Laboratory (USGMRL). The article includes technical abstracts of research accomplishments from the Grain Quality and Structure ...