Sample records for dust analysis laboratory

  1. Laboratory Investigation of Space and Planetary Dust Grains

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.

  2. Contents of microscopic fungi in dusts coming from cereal analysis laboratories.

    PubMed

    Szwajkowska-Michalek, Lidia; Stuper, Kinga; Lakomy, Piotr; Matysiak, Anna; Perkowski, Juliusz

    2010-01-01

    Microscopic fungi - components of bioaerosol found in the workplace environment of individuals employed in the agricultural sector - constitute a considerable hazard for their health. This study includes quantitative and qualitative analyses of mycobionta contained in 20 samples of dusts collected from laboratories conducting analyses of cereals. A total of 27 species of viable microscopic fungi were isolated. The most frequently isolated genera Penicillium and Aspergillus, accounting for 27 percent and 26 percent of analyzed isolates. The content of fungal biomass was determined quantitatively using a fungal marker, ergosterol (ERG). Concentrations of this metabolite for all samples ranged from 0.48 mg/kg-212.36 mg/kg. Based on the analyses, it may be stated that the concentration of microfungi in settled dust from laboratories conducting analyses of cereals was varied, and in several cases markedly exceeded admissible concentration levels.

  3. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.

  4. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust

    PubMed Central

    Barone, T. L.; Patts, J. R.; Janisko, S. J.; Colinet, J. F.; Patts, L. D.; Beck, T. W.; Mischler, S. E.

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine. PMID:26618374

  5. Atmospheric aging of dust ice nucleating particles - a combined laboratory and field approach

    NASA Astrophysics Data System (ADS)

    Boose, Yvonne; Rodríguez, Sergio; García, M. Isabel; Linke, Claudia; Schnaiter, Martin; Zipori, Assaf; Crawford, Ian; Lohmann, Ulrike; Kanji, Zamin A.; Sierau, Berko

    2016-04-01

    We present INP data measured in-situ at two mostly free tropospheric locations: the High Altitude Research Station Jungfraujoch (JFJ) in the Swiss Alps, located at 3580 m above sea level (asl) and the Izaña observatory on Tenerife, off the West African shore (2373 m asl). INP concentrations were measured online with the Portable Ice Nucleation Chamber, PINC, at the Jungfraujoch in the winters of 2012, 2013 and 2014 and at Izaña in the summers of 2013 and 2014. Each measurement period lasted between 2 to 6 weeks. During summer, Izaña is frequently within the Saharan Air Layer and thus often exposed to Saharan dust events. Saharan dust also reaches the Jungfraujoch mainly during spring. For offline ice nucleation analysis in the laboratory under similar thermodynamic conditions, airborne dust was collected a) at Izaña with a cyclone directly from the air and b) collected from the surface of the Aletsch glacier close to the JFJ after deposition. Supporting measurements of aerosol particle size distributions and fluorescence were conducted at both locations, as well as cloud water isotope analysis at the Jungfraujoch and aerosol chemistry at Izaña. For both locations the origin of the INPs was investigated with a focus on dust and biological particles using back trajectories and chemical signature. Results show that dust aerosol is the dominant INP type at both locations at a temperature of 241 K. In addition to Saharan dust, also more local, basaltic dust is found at the Jungfraujoch. Biological particles are not observed to play a role for ice nucleation in clouds during winter at Jungfraujoch but are enriched in INP compared to the total aerosol at Izaña also during dust events. The comparison of the laboratory and the field measurements at Izaña indicates a good reproducibility of the field data by the collected dust samples. Field and laboratory data of the dust samples from both locations show that the dust arriving at JFJ is less ice nucleation active

  6. Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.

    2008-09-01

    Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully

  7. Dust emissions of organic soils observed in the field and laboratory

    NASA Astrophysics Data System (ADS)

    Zobeck, T. M.; Baddock, M. C.; Guo, Z.; Van Pelt, R.; Acosta-Martinez, V.; Tatarko, J.

    2011-12-01

    According to the U.S. Soil Taxonomy, Histosols (also known as organic soils) are soils that are dominated by organic matter (>20% organic matter) in half or more of the upper 80 cm. These soils, when intensively cropped, are subject to wind erosion resulting in loss in crop productivity and degradation of soil, air, and water quality. Estimating wind erosion on Histosols has been determined by USDA-Natural Resources Conservation Service as a critical need for the Wind Erosion Prediction System (WEPS) model. WEPS has been developed to simulate wind erosion on agricultural land in the US, including soils with organic soil material surfaces. However, additional field measurements are needed to calibrate and validate estimates of wind erosion of organic soils using WEPS. In this study, we used a field portable wind tunnel to generate suspended sediment (dust) from agricultural surfaces for soils with a range of organic contents. The soils were tilled and rolled to provide a consolidated, friable surface. Dust emissions and saltation were measured using an isokinetic vertical slot sampler aspirated by a regulated suction source. Suspended dust was collected on filters of the dust slot sampler and sampled at a frequency of once every six seconds in the suction duct using a GRIMM optical particle size analyzer. In addition, bulk samples of airborne dust were collected using a sampler specifically designed to collect larger dust samples. The larger dust samples were analyzed for physical, chemical, and microbiological properties. In addition, bulk samples of the soils were tested in a laboratory wind tunnel similar to the field wind tunnel and a laboratory dust generator to compare field and laboratory results. For the field wind tunnel study, there were no differences between the highest and lowest organic content soils in terms of their steady state emission rate under an added abrader flux, but the soil with the mid-range of organic matter had less emission by one third

  8. Laboratory investigation of surface processes on airless bodies due to electrostatic dust mobilization

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hood, N.; Schwan, J.; Hsu, H. W.; Horanyi, M.

    2017-12-01

    Electrostatic dust mobilization on the surfaces of airless bodies due to direct exposure to solar wind and solar ultraviolet (UV) radiation has been suggested from a number of unusual planetary observations and supported by our recent laboratory experiments. This electrostatic process may have a significant contribution in the evolution of these surfaces in addition to other surface processes, e.g., thermal fragmentation. The critical questions are how this process changes the surface physical characteristics and how efficient this process can be. We report new laboratory experiments that record dust activities as function of the incoming fluxes of photons or energetic electrons over a long exposure time under Earth gravity. Dust is observed to hop and move on the surface, causing the significant change in surface morphology and becoming smoother over time. Our results indicate that the dynamics of dust mobilization may be complicated by temporal charging effect as dust moves. Various sizes and types of dust are examined, showing large effects on dust mobilization. These laboratory data will help us to predict the electrostatic surface processes and estimate their timescales in space conditions.

  9. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  10. Laboratory evaluation of the CIP 10 personal dust sampler.

    PubMed

    Gero, A; Tomb, T

    1988-06-01

    The "capteur individuel de poussiere" CIP 10 personal dust sampler--developed by the Centre d'Etudes et Recherches de Charbonnages de France (CERCHAR) research organization--is a small, quiet, lightweight unit which samples at a flow rate of 10 L/min. It is a three-stage sampler, using two stages to remove nonrespirable dust particles and one stage to collect the respirable fraction. Airflow through the sampler is induced by the third stage, which is a rotating collector cup that contains a fine grade sponge. Laboratory tests were conducted in a dust chamber using aerosols of Arizona road dust, coal dust and silica dust. Aerosol concentrations measured with the CIP 10 were compared to those measured with the coal mine dust personal sampler unit used in the United States. The results of this study showed that aerosol concentrations measured with the CIP 10 were linearly related to those obtained with the coal mine dust personal sampler. The relationship, however, was dependent on preselector configuration and aerosol characteristics. The collection medium allows some small particles (less than 3 microns) to pass through the sampler without being collected. As much as 13% (by weight) of the aerosol that penetrated through the preseparating stages was exhausted from the sampler.

  11. A comparison of two laboratories for the measurement of wood dust using button sampler and diffuse reflection infrared Fourier-transform spectroscopy (DRIFTS).

    PubMed

    Chirila, Madalina M; Sarkisian, Khachatur; Andrew, Michael E; Kwon, Cheol-Woong; Rando, Roy J; Harper, Martin

    2015-04-01

    The current measurement method for occupational exposure to wood dust is by gravimetric analysis and is thus non-specific. In this work, diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) for the analysis of only the wood component of dust was further evaluated by analysis of the same samples between two laboratories. Field samples were collected from six wood product factories using 25-mm glass fiber filters with the Button aerosol sampler. Gravimetric mass was determined in one laboratory by weighing the filters before and after aerosol collection. Diffuse reflection mid-infrared spectra were obtained from the wood dust on the filter which is placed on a motorized stage inside the spectrometer. The metric used for the DRIFTS analysis was the intensity of the carbonyl band in cellulose and hemicellulose at ~1735 cm(-1). Calibration curves were constructed separately in both laboratories using the same sets of prepared filters from the inhalable sampling fraction of red oak, southern yellow pine, and western red cedar in the range of 0.125-4 mg of wood dust. Using the same procedure in both laboratories to build the calibration curve and analyze the field samples, 62.3% of the samples measured within 25% of the average result with a mean difference between the laboratories of 18.5%. Some observations are included as to how the calibration and analysis can be improved. In particular, determining the wood type on each sample to allow matching to the most appropriate calibration increases the apparent proportion of wood dust in the sample and this likely provides more realistic DRIFTS results. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  12. Laboratory Spectroscopy of Astrophysically-Relevant Materials: Developing Dust as a Diagnostic

    NASA Technical Reports Server (NTRS)

    Rinehart, Stephen A.

    2010-01-01

    Over forty years ago, observations in the new field of infrared astronomy showed a broad spectral feature at 10 microns; the feature was quickly associated with the presence of silicate-rich dust. Since that time, improvements in infrared astronomy have led to the discovery of a plethora of additional spectral features attributable to dust. By combining these observations with spectroscopic data acquired in the laboratory, astronomers have a diagnostic tool that can be used to explore underlying astronomical phenomena. As the laboratory data improves, so does our ability to interpret the astronomical observations. Here, we discuss some recent progress in laboratory spectroscopy and attempt to identify future research directions.

  13. Effect of soil texture and chemical properties on laboratory-generated dust emissions from SW North America

    NASA Astrophysics Data System (ADS)

    Mockford, T.; Zobeck, T. M.; Lee, J. A.; Gill, T. E.; Dominguez, M. A.; Peinado, P.

    2012-12-01

    Understanding the controls of mineral dust emissions and their particle size distributions during wind-erosion events is critical as dust particles play a significant impact in shaping the earth's climate. It has been suggested that emission rates and particle size distributions are independent of soil chemistry and soil texture. In this study, 45 samples of wind-erodible surface soils from the Southern High Plains and Chihuahuan Desert regions of Texas, New Mexico, Colorado and Chihuahua were analyzed by the Lubbock Dust Generation, Analysis and Sampling System (LDGASS) and a Beckman-Coulter particle multisizer. The LDGASS created dust emissions in a controlled laboratory setting using a rotating arm which allows particle collisions. The emitted dust was transferred to a chamber where particulate matter concentration was recorded using a DataRam and MiniVol filter and dust particle size distribution was recorded using a GRIMM particle analyzer. Particle size analysis was also determined from samples deposited on the Mini-Vol filters using a Beckman-Coulter particle multisizer. Soil textures of source samples ranged from sands and sandy loams to clays and silts. Initial results suggest that total dust emissions increased with increasing soil clay and silt content and decreased with increasing sand content. Particle size distribution analysis showed a similar relationship; soils with high silt content produced the widest range of dust particle sizes and the smallest dust particles. Sand grains seem to produce the largest dust particles. Chemical control of dust emissions by calcium carbonate content will also be discussed.

  14. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-09-01

    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  15. The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.

    1999-01-01

    In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic

  16. Laboratory investigation of dust impacts on antennas in space

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Malaspina, D.; Gruen, E.; Drake, K.

    2013-10-01

    Recent observations of sharp voltage spikes by the WAVES electric field experiments onboard the twin STEREO spacecraft have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The reported dust fluxes are much higher than those measured by dedicated dust detectors at 1 AU, which leads to the interpretation that the STEREO observations are due to nanometer-sized dust particles originating from the inner solar system and accelerated to high velocities by the solar wind magnetic field. However, this interpretation is based on a simplified model of coupling between the expanding plasma cloud from the dust impact and the WAVES electric field instrument. A series of laboratory measurements are performed to validate this model and to calibrate/investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility operating at the University of Colorado is used for the measurement with micron and submicron sized particles accelerated to 50 km/s. The first set of measurements is performed to calibrate the impact charge generated from materials specific the STEREO spacecraft and will help to interpret electric field data.

  17. Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica

    2007-01-01

    It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.

  18. Investigation of dust transport on the lunar surface in laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Wang, X.; Horanyi, M.; Robertson, S. H.

    2009-12-01

    There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.

  19. Laboratory investigation of dust impacts on antennas in space

    NASA Astrophysics Data System (ADS)

    Drake, K.; Gruen, E.; Malaspina, D.; Sternovsky, Z.

    2013-12-01

    We are performing calibration measurements in our laboratory using a dust accelerator to understand the mechanisms how dust impact generated plasma clouds couple into electric field antennas on spacecraft. The S/WAVES electric field instruments on board the twin STEREO spacecraft observed short duration (milliseconds), large amplitude (> 15 mV) voltage spikes associated with the impact of high velocity dust particles on the spacecraft [St. Cyr et al., 2009, MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. These sharp spikes have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The high count rate has lead to the interpretation that S/WAVES is detecting nanometer sized dust particles (nano-dust) generated in the inner solar system and accelerated to close to solar wind velocities before impacting the spacecraft at 1 AU. The S/WAVES nano-dust interpretation is currently based on an incomplete understanding of the charge generated from relevant materials and the coupling mechanism between the plasma cloud and the electric field instrument. Calibration measurements are performed at the dust accelerator facility at the University of Colorado to investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility allows experimental control over target materials, size (micron to sub-micron), and velocity (1-60 km/s) of impacting dust particles, geometry of the impact, the ';spacecraft' potential, and the presence or absence of photoelectrons, allowing each coupling factor to be isolated and quantified. As the first step in this effort, we measure the impact charge generation for materials relevant for the STEREO spacecraft.

  20. Laboratory Studies of Optical Characteristics and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.; Venturini, C. C.

    2000-01-01

    Information about the optical characteristics and physical processes involving cosmic dust particles is vital for interpretation of astronomical observations and an understanding of the formation and processing of dust in the evolutionary cycle of matter in the interstellar medium. Cosmic dust particles are formed in a variety of astrophysical environments such as in cool stellar outflows and circumstellar envelopes. Definitive knowledge of the nature, composition, and physical processes of cosmic dust grains, however, can only be inferred from astronomical observations through laboratory experiments on the analogs of hypothesized dust particles and with modeling calculations. Laboratory investigations of the nature, composition, and optical characteristics of cosmic dust particles are being, carried out at many institutions with a variety of experimental techniques. Despite a wealth of available data, however, many basic issues remain unresolved. An experimental facility based on suspension of dust particles in electrodynamic balance in a pressure/temperature controlled environment in a cavity has been operational at the NASA Marshall Space Flight Center, and is currently being employed for studies of dust particle charging mechanisms using electron beams and with UV radiation. In this paper, we discuss two general classes of experiments under planning stages that may be simultaneously carried out on this facility for cosmic dust investigations (i) Infrared optical characteristics (extinction coefficients and scattering phase functions) of the analogs of hypothesized of cosmic dust particles, such as natural and synthetic amorphous silicates with varying compositions, amorphous carbon grains, polycyclic aromatic hydrocarbons (PAHs), and icy core-mantle particles etc. The initial spectral range under consideration is 1-25 micrometers, to be extended to the far infrared region in the future (ii) Condensation of volatile gases on nucleus dust particles to be

  1. A Laboratory Scale Vortex Generator for Simulation of Martian Dust Devils.

    NASA Astrophysics Data System (ADS)

    Balme, M.; Greeley, R.; Mickelson, B.; Iversen, J.; Beardmore, G.; Metzger, S.

    2001-12-01

    Martian dust particles are a few microns in diameter. Current Martian ambient wind speeds appear to be insufficient to lift such fine particles and are marginal to entrain even the optimum particles sizes for threshold (100-160mm diameter). Instead, dust devils were suggested as a local source of airborne particles and have been observed on Mars both from orbit and from lander data. Dust devils lift particles through enhanced local wind speeds and by a pressure drop often associated with the vortex which provides `lift'. This study seeks to 1) quantify the relative importance of enhanced wind speed versus pressure drop lift in dust devil entrainment threshold; 2) measure the mass transport potential of dust devils; 3) investigate the effects of surface roughness and topography on dust devil morphology; 4) quantify the overall effects of low atmospheric pressure on the formation, structure and entrainment processes of dust devils. To investigate the particle lifting properties of dust devils, a laboratory vortex generator was fabricated. It consists of a large vertical cylinder (45 and 75cm in diameter) containing a motor-driven rotor comprised of four vertical blades. Beneath the cylinder is a 2.4 by 2.4 m tabletop containing 14 differential pressure transducer ports used to measure the surface pressure structure of the vortex. Both the distance between the cylinder and the tabletop and the height of the blades within the cylinder can be varied. By controlling these variables and the angular velocity of the blades, a wide range of geometries and intensities of atmospheric vortices can be achieved. The apparatus is portable for use both under terrestrial atmospheric conditions and in the NASA-Ames Research Center Mars Surface Wind Tunnel facility to simulate Martian atmospheric conditions. The laboratory simulation is preferable to a numerical model because direct measurements of dust lifting threshold can be made and holds several advantages over terrestrial field

  2. Characterizing Dust from Cutting Corian®, a Solid-Surface Composite Material, in a Laboratory Testing System.

    PubMed

    Qi, Chaolong; Echt, Alan; Murata, Taichi K

    2016-06-01

    We conducted a laboratory test to characterize dust from cutting Corian(®), a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01mg cm(-3), respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian(®) is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian(®), with the total airborne and respirable dusts containing 86.0±6.6 and 82.2±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian(®) were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian(®) had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm(-3), and another peak for ultrafine particles at 11.8nm with an average total concentration of 1.19×10(6) particles cm(-3) The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2016.

  3. Characterizing Dust from Cutting Corian®, a Solid-Surface Composite Material, in a Laboratory Testing System

    PubMed Central

    Qi, Chaolong; Echt, Alan; Murata, Taichi K

    2016-01-01

    We conducted a laboratory test to characterize dust from cutting Corian®, a solid-surface composite material, with a circular saw. Air samples were collected using filters and direct-reading instruments in an automatic laboratory testing system. The average mass concentrations of the total and respirable dusts from the filter samples were 4.78±0.01 and 1.52±0.01 mg cm−3, respectively, suggesting about 31.8% mass of the airborne dust from cutting Corian® is respirable. Analysis of the metal elements on the filter samples reveals that aluminum hydroxide is likely the dominant component of the airborne dust from cutting Corian®, with the total airborne and respirable dusts containing 86.0%±6.6% and 82.2%±4.1% aluminum hydroxide, respectively. The results from the direct-reading instruments confirm that the airborne dust generated from cutting Corian® were mainly from the cutting process with very few particles released from the running circular saw alone. The number-based size distribution of the dusts from cutting Corian® had a peak for fine particles at 1.05 µm with an average total concentration of 871.9 particles cm−3, and another peak for ultrafine particles at 11.8 nm with an average total concentration of 1.19×106 particles cm−3. The small size and high concentration of the ultrafine particles suggest additional investigation is needed to study their chemical composition and possible contribution to pulmonary effect. PMID:26872962

  4. Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.

    2006-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  5. The Martian Dust Devil Electron Avalanche: Laboratory Measurements of the E-Field Fortifying Effects of Dust-Electron Absorption

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; McLain, J. L.; Collier, M. R.; Keller, J. W.

    2017-01-01

    Analogous to terrestrial dust devils, charged dust in Mars dust devils should become vertically stratified in the convective features, creating large scale E-fields. This E-field in a Martian-like atmosphere has been shown to stimulate the development of a Townsend discharge (electron avalanche) that acts to dissipate charge in regions where charge build-up occurs. While the stratification of the charged dust is a source of the electrical energy, the uncharged particulates in the dust population may absorb a portion of these avalanching electrons, thereby inhibiting dissipation and leading to the development of anomalously large E-field values. We performed a laboratory study that does indeed show the presence of enhanced E-field strengths between an anode and cathode when dust-absorbing filaments (acting as particulates) are placed in the avalanching electron flow. Further, the E-field threshold condition to create an impulsive spark discharge increases to larger values as more filaments are placed between the anode and cathode. We conclude that the spatially separated charged dust creates the charge centers and E-fields in a dust devil, but the under-charged portion of the population acts to reduce Townsend electron dissipation currents, further fortifying the development of larger-than-expected E-fields.

  6. A New Laboratory For Terahertz Characterization Of Cosmic Analog Dusts

    NASA Astrophysics Data System (ADS)

    Perera, Thushara; Liu, Lunjun; Breyer, Fiona; Schonert, Ryan; O'Shea, Kyle; Roesner, Rebecca

    2016-06-01

    Most studies conducted with observatories such as ALMA, SOFIA, PLANCK, and Herschel will benefit from knowledge of (1) the predominant cosmic dust species in various environments and (2) the mm/sub-mm optical properties of cosmic dusts, including the temperature dependent-emissivity and spectral index. We have undertaken two efforts to enable the laboratory study of cosmic analogs dusts in the frequency range 60-2000 GHz. They are: (1) the construction of a novel compact Fourier Transform Spectrometer (FTS) design coupled to a dry 4-K cryostat which houses a cooled sample exchanger (filter wheel) and a bolometer. (2) The production of Mg- and Fe-rich silicate dusts using sol-gel methods; various tests to determine their physical and chemical properties; embedding of samples in LDPE pellets for insertion into the novel FTS. This presentation will focus on the current status of the apparatus and data from its first few months of use.

  7. [Dust concentration analysis in non-coal mining. Exposure evaluation based on measurements performed by occupational hygiene laboratories in the years 2001-2005 in Poland].

    PubMed

    Bujak-Pietrek, Stella; Mikołajczyk, Urszula; Szadkowska-Stańczyk, Irena

    2011-01-01

    Non-coal mining includes the extraction of materials for construction (stone, gravel, sand and clay), chemical industry (salt and sulfur), metallurgy (metal ores, uranium and thorium) and other mining and quarrying. Regardless of the type of mining company one of the most common health hazards in this sector is exposure to high concentrations of dust occurring during the extraction of materials. Such activities as drilling, use of blasting agents, processing of raw material, its transportation and loading are the source of large amounts of dust containing crystalline silica. Data on exposure to dust, collected by industrial hygiene laboratories on the basis of dust concentration measurements in the work environment, were obtained from the sanitary inspection service. The analysis of dust concentrations at workplaces in non-coal mining covered the years 2001-2005. The average concentration of inhalable and respirable dust and the degree of results dispersion at workposts in different branches of non-coal mining (according to NACE rev1.1) were evaluated. Also there was estimated the percentage of surveys indicating dust concentrations above hygiene standards. Almost 5000 measurements of dust concentrations were performed in the years under study. The highest concentration of inhalable dust was noted for the production of salt (5.51 mg/m3), other mining and quarrying (4.30 mg/m3) and quarrying of slate (3.77 mg/m3). For respirable dust the highest concentrations were noted in other mining and quarrying (1.10 mg/m3), quarrying of slate (1.09 mg/m3) and quarrying of stone (0.81 mg/m3). Exposure to high concentrations of dust during the extraction of non-carbon is still an important hazard to human health. Almost for all workposts under study the excess of hygiene standards were observed.

  8. Laboratory modeling of dust impact detection by the Cassini spacecraft

    NASA Astrophysics Data System (ADS)

    Nouzák, L.; Hsu, S.; Malaspina, D.; Thayer, F. M.; Ye, S.-Y.; Pavlů, J.; Němeček, Z.; Šafránková, J.; Sternovsky, Z.

    2018-07-01

    The paper presents laboratory investigations of the response of a scaled down model of the Cassini spacecraft to impacts of submicron iron grains accelerated to velocities 5-25 km/s. The aim of the study is to help in a detailed analysis and interpretation of signals provided by the RPWS (Radio Wave Plasma Science) instrument that were attributed to dust impacts onto RPWS antennas or spacecraft body. The paper describes the experimental set-up, discusses its limitations, and presents the first results. Both monopole and dipole antenna configurations are investigated. We demonstrate that the amplitude and polarity of the impulse signals recorded by antenna amplifiers depend on the voltages applied onto the antennas or the spacecraft body and briefly introduce the mechanism leading to the signal generation. The experimental results support the recent suggestion by Ye et al. (2016) that antennas operated in a dipole mode are greatly insensitive to dust impacts on the spacecraft body. The pre-peak phenomenon, commonly observed in space, is also reproduced in the measurements and explained as the induced charge on the antenna from the impact plasma cloud that is becoming non-neutral due to the escape of the faster electrons.

  9. a New Laboratory for Terahertz Characterization of Cosmic Analog Dusts

    NASA Astrophysics Data System (ADS)

    Perera, Thushara

    2016-06-01

    Two efforts have been underway to enable the laboratory study of cosmic analogs dusts in the frequency range 60--2000 GHz. They are: (1) the construction of a novel compact Fourier Transform Spectrometer (FTS) design coupled to a dry 4-K cryostat which houses a cooled sample exchanger (filter wheel) and a bolometer. (2) The production of Mg- and Fe-rich silicate dusts using sol-gel methods; various tests to determine their physical and chemical properties; embedding of samples in LDPE pellets for insertion into the novel FTS. This presentation will focus on the current status of the apparatus and data from its first few months of use.

  10. Laboratory investigation of antenna signals from dust impacts on spacecraft

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltan; Collette, Andrew; Malaspina, David M.; Thayer, Frederick

    2016-04-01

    Electric field and plasma wave instruments act as dust detectors picking up voltage pulses induced by impacts of particulates on the spacecraft body. These signals enable the characterization of cosmic dust environments even with missions without dedicated dust instruments. For example, the Voyager 1 and 2 spacecraft performed the first detection of dust particles near Uranus, Neptune, and in the outer solar system [Gurnett et al., 1987, 1991, 1997]. The two STEREO spacecraft observed distinct signals at high rate that were interpreted as nano-sized particles originating from near the Sun and accelerated to high velocities by the solar wind [MeyerVernet et al, 2009a, Zaslavsky et al., 2012]. The MAVEN spacecraft is using the antennas onboard to characterize the dust environment of Mars [Andersson et al., 2014] and Solar Probe Plus will do the same in the inner heliosphere. The challenge, however, is the correct interpretation of the impact signals and calculating the mass of the dust particles. The uncertainties result from the incomplete understanding of the signal pickup mechanisms, and the variation of the signal amplitude with impact location, the ambient plasma environment, and impact speed. A comprehensive laboratory study of impact generated antenna signals has been performed recently using the IMPACT dust accelerator facility operated at the University of Colorado. Dust particles of micron and submicron sizes with velocities of tens of km/s are generated using a 3 MV electrostatic analyzer. A scaled down model spacecraft is exposed to the dust impacts and one or more antennas, connected to sensitive electronics, are used to detect the impact signals. The measurements showed that there are three clearly distinct signal pickup mechanisms due to spacecraft charging, antenna charging and antenna pickup sensing space charge from the expanding plasma cloud. All mechanisms vary with the spacecraft and antenna bias voltages and, furthermore, the latter two

  11. Characteristics of Cometary Dust Tracks in Stardust Aerogel and Laboratory Calibrations

    NASA Technical Reports Server (NTRS)

    Burchell, M. J.; Fairey, S. A. J.; Wozniakiewicz, P.; Brownlee, D. E.; Hoerz, F.; Kearsley, A. T.; See, T. H.; Tsou, P.; Westphal, A.; Green, S. F.; hide

    2007-01-01

    The cometary tray of the NASA Stardust spacecraft s aerogel collector has been examined to study the dust that was captured during the 2004 fly by of comet 81P/Wild-2. An optical scan of the entire collector surface revealed 256 impact features in the aerogel (width > 100 microns). 20 aerogel blocks (out of a total of 132) were removed from the collector tray for a higher resolution optical scan and 186 tracks were observed (track length > 50 microns and width > 8 microns). The impact features were classified into three types based on their morphology. Laboratory calibrations were conducted which reproduce all three types. This work suggests that the cometary dust consisted of some cohesive, relatively strong particles as well as particles with a more friable or low cohesion matrix containing smaller strong grains. The calibrations also permitted a particle size distribution to be estimated for the cometary dust. We estimate that approximately 1200 particles bigger than 1 micron struck the aerogel. The cumulative size distribution of the captured particles was obtained and compared with observations made by active dust detectors during the encounter. At large sizes (>20 microns) all measures of the dust are compatible, but at micrometer scales and smaller discrepancies exist between the various measurement systems which may reflect structure in the dust flux (streams, clusters etc.) along with some possible instrument effects.

  12. Improved Dust Forecast Products for Southwest Asia Forecasters through Dust Source Database Advancements

    NASA Astrophysics Data System (ADS)

    Brooks, G. R.

    2011-12-01

    Dust storm forecasting is a critical part of military theater operations in Afghanistan and Iraq as well as other strategic areas of the globe. The Air Force Weather Agency (AFWA) has been using the Dust Transport Application (DTA) as a forecasting tool since 2001. Initially developed by The Johns Hopkins University Applied Physics Laboratory (JHUAPL), output products include dust concentration and reduction of visibility due to dust. The performance of the products depends on several factors including the underlying dust source database, treatment of soil moisture, parameterization of dust processes, and validity of the input atmospheric model data. Over many years of analysis, seasonal dust forecast biases of the DTA have been observed and documented. As these products are unique and indispensible for U.S. and NATO forces, amendments were required to provide the best forecasts possible. One of the quickest ways to scientifically address the dust concentration biases noted over time was to analyze the weaknesses in, and adjust the dust source database. Dust source database strengths and weaknesses, the satellite analysis and adjustment process, and tests which confirmed the resulting improvements in the final dust concentration and visibility products will be shown.

  13. Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    the electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Laboratory measurements on charging of analogs of the interstellar dust as well as Apollo 11 dust grains conducted at the NASA-MSFC Dusty Plasma Lab. are presented here

  14. Laboratory investigation of dust impacts induced signals on antennas in space

    NASA Astrophysics Data System (ADS)

    Rocha, J. R.; Collette, A.; Malaspina, D.; Gruen, E.; Sternovsky, Z.

    2014-12-01

    Recent observations of sharp voltage spikes by the WAVES electric field experiments onboard the twin STEREO spacecraft have been attributed to plasma clouds generated by the impact ionization of high velocity dust particles. The reported dust fluxes are much higher than those measured by dedicated dust detectors at 1 AU, which leads to the interpretation that the STEREO observations are due to nanometer-sized dust particles originating from the inner solar system and accelerated to high velocities by the solar wind magnetic field. However, this interpretation is based on a simplified model of coupling between the expanding plasma cloud from the dust impact and the WAVES electric field instrument. A series of laboratory measurements are performed to validate this model and to calibrate/investigate the effect of various impact parameters on the signals measured by the electric field instrument. The dust accelerator facility operating at the University of Colorado is used for the measurement with micron and submicron sized particles accelerated to 50 km/s. The first set of measurements was aimed at the understanding of the charge yield of impact-generated plasmas from common materials used on spacecraft, i.e. BeCu, germanium coated black Kapton, MLI, and solar cells. The measurements show that at 10 km/s these materials yield similar charge signals. At higher speeds (~50 km/s) the variation is with material increases. The impact charge is also found to depend on angle of incidence; the data suggest a maximum at 45 degrees. The second set of measurements investigates the variation of the induced dust signal with bias potential applied on the simulated spacecraft.

  15. A Laboratory Study of the Charging/Discharging Mechanisms of a Dust Particle Exposed to an Electron Beam

    NASA Technical Reports Server (NTRS)

    Venturini, C. C.; Spann, J. F.; Comfort, R. H.

    1999-01-01

    The interaction of micron sized particles or "dust particles" with different space and planetary environments has become an important area of research. One particular area of interest is how dust particles interact with plasmas. Studies have shown that charged dust particles immersed in plasmas can alter plasma characteristics, while ions and electrons in plasmas can affect a particle's potential and thereby, its interaction with other particles. The basis for understanding these phenomena is the charging mechanisms of the dust particle, specifically, how the particle's charge and characteristics are affected when exposed to ions and electrons. At NASA Marshall Space Flight Center, a laboratory experiment has been developed to study the interaction of dust particles with electrons. Using a unique laboratory technique known as electrodynamic suspension, a single charged particle is suspended in a modified quadrupole trap. Once suspended, the particle is then exposed to an electron beam to study the charging/discharging mechanisms due to collisions of energetic electrons. The change in the particle's charge, approximations of the charging/discharging currents, and the charging/discharging yield are calculated.

  16. Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry

    USGS Publications Warehouse

    Johnson, J. R.; Sohl-Dickstein, J.; Grundy, W.M.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Graff, T.; Guinness, E.A.; Kinch, K.; Morris, Robert; Shepard, M.K.

    2006-01-01

    Laboratory visible/near-infrared multispectral observations of Mars Exploration Rover Pancam calibration target materials coated with different thicknesses of Mars spectral analog dust were acquired under variable illumination geometries using the Bloomsburg University Goniometer. The data were fit with a two-layer radiative transfer model that combines a Hapke formulation for the dust with measured values of the substrate interpolated using a He-Torrance approach. We first determined the single-scattering albedo, phase function, opposition effect width, and amplitude for the dust using the entire data set (six coating thicknesses, three substrates, four wavelengths, and phase angles 3??-117??). The dust exhibited single-scattering albedo values similar to other Mars analog soils and to Mars Pathfinder dust and a dominantly forward scattering behavior whose scattering lobe became narrower at longer wavelengths. Opacity values for each dust thickness corresponded well to those predicted from the particles sizes of the Mars analog dust. We then restricted the number of substrates, dust thicknesses, and incidence angles input to the model. The results suggest that the dust properties are best characterized when using substrates whose reflectances are brighter and darker than those of the deposited dust and data that span a wide range of dust thicknesses. The model also determined the dust photometric properties relatively well despite limitations placed on the range of incidence angles. The model presented here will help determine the photometric properties of dust deposited on the MER rovers and to track the multiple episodes of dust deposition and erosion that have occurred at both landing sites. Copyright 2006 by the American Geophysical Union.

  17. Dust Aerosol Particle Size at the Mars Science Laboratory Landing Site

    NASA Astrophysics Data System (ADS)

    Vicente-Retortillo, Alvaro; Martínez, Germán; Renno, Nilton; Lemmon, Mark; de la Torre-Juárez, Manuel

    2017-04-01

    We have developed a new methodology to retrieve dust aerosol particle size from Mars Science Laboratory (MSL) observations [1]. We use photodiode output currents measured by the Rover Environmental Monitoring Station (REMS) UV sensor (UVS), ancillary data records (ADR) containing the geometry of the rover and the Sun, and values of the atmospheric opacity retrieved from Mastcam measurements. In particular, we analyze REMS UVS measurements when the Sun is blocked by the masthead and the mast of the rover since the behavior of the output currents during these shadow events depends on the dust phase function, which depends on particle size. The retrieved dust effective radii show a significant seasonal variability, ranging from 0.6 μm during the low opacity season (Ls = 60° - 140°) to 2 μm during the high opacity season (Ls = 180° - 360°). The relationship between atmospheric opacity and dust particle size indicates that dust-lifting events originate at various distances from Gale Crater. The external origin of high dust content events is consistent with the strong and persistent northerly and northwesterly winds at Gale Crater during the perihelion season centered around Ls = 270° [2]. From an interannual perspective, the general behavior of the particle size evolution in MY 31-32 is similar to that in MY 32-33, although some differences are noted. During the low opacity season (Ls = 60° - 140°), the retrieved dust effective radii in MY 33 are significantly lower than in MY 32. A larger contribution of water ice clouds to the total atmospheric opacity during the aphelion season of MY 33 can partially explain such a departure. Differences during the perihelion season are caused by interannual variability of enhanced opacity events. The determination of dust aerosol particle size is important to improve the accuracy of models in simulating the UV environment at the surface [3] and in predicting heating rates, which affect the atmospheric thermal and dynamical

  18. Integrative Analysis of Desert Dust Size and Abundance Suggests Less Dust Climate Cooling

    NASA Technical Reports Server (NTRS)

    Kok, Jasper F.; Ridley, David A.; Zhou, Qing; Miller, Ron L.; Zhao, Chun; Heald, Colette L.; Ward, Daniel S.; Albani, Samuel; Haustein, Karsten

    2017-01-01

    Desert dust aerosols affect Earths global energy balance through interactions with radiation, clouds, and ecosystems. But the magnitudes of these effects are so uncertain that it remains unclear whether atmospheric dust has a net warming or cooling effect on global climate. Consequently, it is still uncertain whether large changes in atmospheric dust loading over the past century have slowed or accelerated anthropogenic climate change, and the climate impact of possible future alterations in dust loading is similarly disputed. Here we use an integrative analysis of dust aerosol sizes and abundance to constrain the climatic impact of dust through direct interactions with radiation. Using a combination of observational, experimental, and model data, we find that atmospheric dust is substantially coarser than represented in current climate models. Since coarse dust warms global climate, the dust direct radiative effect (DRE) is likely less cooling than the 0.4 W m superscript 2 estimated by models in a current ensemble. We constrain the dust DRE to -0.20 (-0.48 to +0.20) W m superscript 2, which suggests that the dust DRE produces only about half the cooling that current models estimate, and raises the possibility that dust DRE is actually net warming the planet.

  19. A detailed characterization of the Saharan dust collected during the Fennec campaign in 2011: in situ ground-based and laboratory measurements

    NASA Astrophysics Data System (ADS)

    Rocha-Lima, Adriana; Vanderlei Martins, J.; Remer, Lorraine A.; Todd, Martin; Marsham, John H.; Engelstaedter, Sebastian; Ryder, Claire L.; Cavazos-Guerra, Carolina; Artaxo, Paulo; Colarco, Peter; Washington, Richard

    2018-01-01

    Millions of tons of mineral dust are lifted by the wind from arid surfaces and transported around the globe every year. The physical and chemical properties of the mineral dust are needed to better constrain remote sensing observations and are of fundamental importance for the understanding of dust atmospheric processes. Ground-based in situ measurements and in situ filter collection of Saharan dust were obtained during the Fennec campaign in the central Sahara in 2011. This paper presents results of the absorption and scattering coefficients, and hence single scattering albedo (SSA), of the Saharan dust measured in real time during the last period of the campaign and subsequent laboratory analysis of the dust samples collected in two supersites, SS1 and SS2, in Algeria and in Mauritania, respectively. The samples were taken to the laboratory, where their size and aspect ratio distributions, mean chemical composition, spectral mass absorption efficiency, and spectral imaginary refractive index were obtained from the ultraviolet (UV) to the near-infrared (NIR) wavelengths. At SS1 in Algeria, the time series of the scattering coefficients during the period of the campaign show dust events exceeding 3500 Mm-1, and a relatively high mean SSA of 0.995 at 670 nm was observed at this site. The laboratory results show for the fine particle size distributions (particles diameter  < 5µm and mode diameter at 2-3 µm) in both sites a spectral dependence of the imaginary part of the refractive index Im(m) with a bow-like shape, with increased absorption in UV as well as in the shortwave infrared. The same signature was not observed, however, in the mixed particle size distribution (particle diameter < 10 µm and mode diameter at 4 µm) in Algeria. Im(m) was found to range from 0.011 to 0.001i for dust collected in Algeria and 0.008 to 0.002i for dust collected in Mauritania over the wavelength range of 350-2500 nm. Differences in the mean elemental

  20. Cometary Dust Characteristics: Comparison of Stardust Craters with Laboratory Impacts

    NASA Technical Reports Server (NTRS)

    Kearsley, A. T.; Burchell, M. J.; Graham, G. A.; Horz, F.; Wozniakiewicz, P. A.; Cole, M. J.

    2007-01-01

    Aluminium foils exposed to impact during the passage of the Stardust spacecraft through the coma of comet Wild 2 have preserved a record of a wide range of dust particle sizes. The encounter velocity and dust incidence direction are well constrained and can be simulated by laboratory shots. A crater size calibration programme based upon buckshot firings of tightly constrained sizes (monodispersive) of glass, polymer and metal beads has yielded a suite of scaling factors for interpretation of the original impacting grain dimensions. We have now extended our study to include recognition of particle density for better matching of crater to impactor diameter. A novel application of stereometric crater shape measurement, using paired scanning electron microscope (SEM) images has shown that impactors of differing density yield different crater depth/diameter ratios. Comparison of the three-dimensional gross morphology of our experimental craters with those from Stardust reveals that most of the larger Stardust impacts were produced by grains of low internal porosity.

  1. Laboratory evaluation to reduce respirable crystalline silica dust when cutting concrete roofing tiles using a masonry saw.

    PubMed

    Carlo, Rebecca V; Sheehy, John; Feng, H Amy; Sieber, William K

    2010-04-01

    Respirable crystalline silica dust exposure in residential roofers is a recognized hazard resulting from cutting concrete roofing tiles. Roofers cutting tiles using masonry saws can be exposed to high concentrations of respirable dust. Silica exposures remain a serious threat for nearly two million U.S. construction workers. Although it is well established that respiratory diseases associated with exposure to silica dust are preventable, they continue to occur and cause disability or death. The effectiveness of both a commercially available local exhaust ventilation (LEV) system and a water suppression system in reducing silica dust was evaluated separately. The LEV system exhausted 0.24, 0.13, or 0.12 m(3)/sec of dust laden air, while the water suppression system supplied 0.13, 0.06, 0.03, or 0.02 L/sec of water to the saw blade. Using a randomized block design, implemented under laboratory conditions, the aforementioned conditions were evaluated independently on two types of concrete roofing tiles (s-shape and flat) using the same saw and blade. Each engineering control (LEV or water suppression) was replicated eight times, or four times for each type of tile. Analysis of variance was performed by comparing the mean airborne respirable dust concentrations generated during each run and engineering control treatment. The use of water controls and ventilation controls compared with the "no control" treatment resulted in a statistically significant (p < 0.05) reduction of mean respirable dust concentrations generated per tile cut. The percent reduction for respirable dust concentrations was 99% for the water control and 91% for the LEV. Results suggest that water is an effective method for reducing crystalline silica exposures. However, water damage potential, surface discolorations, cleanup, slip hazards, and other requirements may make the use of water problematic in many situations. Concerns with implementing an LEV system to control silica dust exposures include

  2. Frontiers in In-Situ Cosmic Dust Detection and Analysis

    NASA Astrophysics Data System (ADS)

    Sternovsky, Zoltán; Auer, Siegfried; Drake, Keith; Grün, Eberhard; Horányi, Mihály; Le, Huy; Srama, Ralf; Xie, Jianfeng

    2011-11-01

    In-situ cosmic dust instruments and measurements played a critical role in the emergence of the field of dusty plasmas. The major breakthroughs included the discovery of β-meteoroids, interstellar dust particles within the solar system, Jovian stream particles, and the detection and analysis of Enceladus's plumes. The science goals of cosmic dust research require the measurements of the charge, the spatial, size and velocity distributions, and the chemical and isotopic compositions of individual dust particles. In-situ dust instrument technology has improved significantly in the last decade. Modern dust instruments with high sensitivity can detect submicron-sized particles even at low impact velocities. Innovative ion optics methods deliver high mass resolution, m/dm>100, for chemical and isotopic analysis. The accurate trajectory measurement of cosmic dust is made possible even for submicron-sized grains using the Dust Trajectory Sensor (DTS). This article is a brief review of the current capabilities of modern dust instruments, future challenges and opportunities in cosmic dust research.

  3. The footprint of cometary dust analogues - I. Laboratory experiments of low-velocity impacts and comparison with Rosetta data

    NASA Astrophysics Data System (ADS)

    Ellerbroek, L. E.; Gundlach, B.; Landeck, A.; Dominik, C.; Blum, J.; Merouane, S.; Hilchenbach, M.; Bentley, M. S.; Mannel, T.; John, H.; van Veen, H. A.

    2017-07-01

    Cometary dust provides a unique window on dust growth mechanisms during the onset of planet formation. Measurements by the Rosetta spacecraft show that the dust in the coma of comet 67P/Churyumov-Gerasimenko has a granular structure at size scales from sub-μmup to several hundreds of μm, indicating hierarchical growth took place across these size scales. However, these dust particles may have been modified during their collection by the spacecraft instruments. Here, we present the results of laboratory experiments that simulate the impact of dust on the collection surfaces of the COSIMA (Cometary Secondary Ion Mass Anaylzer) and MIDAS (Micro-Imaging Dust Analysis System) instruments onboard the Rosetta spacecraft. We map the size and structure of the footprints left by the dust particles as a function of their initial size (up to several hundred μm) and velocity (up to 6 m s-1). We find that in most collisions, only part of the dust particle is left on the target; velocity is the main driver of the appearance of these deposits. A boundary between sticking/bouncing and fragmentation as an outcome of the particle-target collision is found at v ˜ 2 m s-1. For velocities below this value, particles either stick or leave a single deposit on the target plate, or bounce, leaving a shallow footprint of monomers. At velocities >2 m s-1and sizes >80 μm, particles fragment upon collision, transferring up to 50 per cent of their mass in a rubble-pile-like deposit on the target plate. The amount of mass transferred increases with the impact velocity. The morphologies of the deposits are qualitatively similar to those found by the COSIMA instrument.

  4. Particle atlas of World Trade Center dust

    USGS Publications Warehouse

    Lowers, Heather; Meeker, Gregory P.

    2005-01-01

    The United States Environmental Protection Agency (EPA) has begun a reassessment of the presence of World Trade Center (WTC) dust in residences, public buildings, and office spaces in New York City, New York. Background dust samples collected from residences, public buildings, and office spaces will be analyzed by multiple laboratories for the presence of WTC dust. Other laboratories are currently studying WTC dust for other purposes, such as health effects studies. To assist in inter-laboratory consistency for identification of WTC dust components, this particle atlas of phases in WTC dust has been compiled.

  5. Laboratory Measurements on Charging of Individual Micron-Size Apollo-11 Dust Grains by Secondary Electron Emissions

    NASA Technical Reports Server (NTRS)

    Tankosic, D.; Abbas, M. M.

    2012-01-01

    Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.

  6. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.

    2002-01-01

    A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on

  7. Hypervelocity Dust Impacts in Space and the Laboratory

    NASA Astrophysics Data System (ADS)

    Horanyi, Mihaly; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Interplanetary dust particles continually bombard all objects in the solar system, leading to the excavation of material from the target surfaces, the production of secondary ejecta particles, plasma, neutral gas, and electromagnetic radiation. These processes are of interest to basic plasma science, planetary and space physics, and engineering to protect humans and instruments against impact damages. The Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) has recently completed a 3 MV dust accelerator, and this talk will summarize our initial science results. The 3 MV Pelletron contains a dust source, feeding positively charged micron and sub-micron sized particles into the accelerator. We will present the technical details of the facility and its capabilities, as well as the results of our initial experiments for damage assessment of optical devices, and penetration studies of thin films. We will also report on the completion of our dust impact detector, the Lunar Dust Experiment (LDEX), is expected to be flying onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission by the time of this presentation. LDEX was tested, and calibrated at our dust accelerator. We will close by offering the opportunity to use this facility by the planetary, space and plasma physics communities.

  8. Experimental studies of two-stage centrifugal dust concentrator

    NASA Astrophysics Data System (ADS)

    Vechkanova, M. V.; Fadin, Yu M.; Ovsyannikov, Yu G.

    2018-03-01

    The article presents data of experimental results of two-stage centrifugal dust concentrator, describes its design, and shows the development of a method of engineering calculation and laboratory investigations. For the experiments, the authors used quartz, ceramic dust and slag. Experimental dispersion analysis of dust particles was obtained by sedimentation method. To build a mathematical model of the process, dust collection was built using central composite rotatable design of the four factorial experiment. A sequence of experiments was conducted in accordance with the table of random numbers. Conclusion were made.

  9. Dust Evolution in Protoplanetary Discs and the Formation of Planetesimals. What Have We Learned from Laboratory Experiments?

    NASA Astrophysics Data System (ADS)

    Blum, Jürgen

    2018-03-01

    After 25 years of laboratory research on protoplanetary dust agglomeration, a consistent picture of the various processes that involve colliding dust aggregates has emerged. Besides sticking, bouncing and fragmentation, other effects, like, e.g., erosion or mass transfer, have now been extensively studied. Coagulation simulations consistently show that μm-sized dust grains can grow to mm- to cm-sized aggregates before they encounter the bouncing barrier, whereas sub-μm-sized water-ice particles can directly grow to planetesimal sizes. For siliceous materials, other processes have to be responsible for turning the dust aggregates into planetesimals. In this article, these processes are discussed, the physical properties of the emerging dusty or icy planetesimals are presented and compared to empirical evidence from within and without the Solar System. In conclusion, the formation of planetesimals by a gravitational collapse of dust "pebbles" seems the most likely.

  10. Lunar and Planetary Science XXXV: Mars: Wind, Dust Sand, and Debris

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Wind, Dust Sand, and Debris" included: Mars Exploration Rovers: Laboratory Simulations of Aeolian Interactions; Thermal and Spectral Analysis of an Intracrater Dune Field in Amazonis Planitia; How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars; Dust Devils on Mars: Scaling of Dust Flux Based on Laboratory Simulations; A Close Encounter with a Terrestrial Dust Devil; Interpretation of Wind Direction from Eolian Features: Herschel Crater, Mars Erosion Rates at the Viking 2 Landing Site; Mars Dust: Characterization of Particle Size and Electrostatic Charge Distributions; Simple Non-fluvial Models of Planetary Surface Modification, with Application to Mars; Comparison of Geomorphically Determined Winds with a General Circulation Model: Herschel Crater, Mars; Analysis of Martian Debris Aprons in Eastern Hellas Using THEMIS; Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons; Debris Aprons in the Tempe/Mareotis Region of Mars;and Constraining Flow Dynamics of Mass Movements on Earth and Mars.

  11. Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins

    NASA Technical Reports Server (NTRS)

    Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko

    2016-01-01

    Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.

  12. Supernova Remnants As Laboratories For Determining The Properties Of Ejecta Dust And The Processing Of Dust Grains In Shocks

    NASA Astrophysics Data System (ADS)

    Dwek, Eli; Temim, Tea

    Recent infrared satellites, such as the Spitzer, Herschel, and WISE, have obtained a wealth of spectral and broadband data on the infrared (IR) emission from dust in supernova remnants (SNRs). Supernovae (SNe) are important producers of newly condensed dust during the early free-expansion phase of their evolution, and the dominant destroyers of dust during the subsequent remnant phase of their evolution. The infrared observations hold the key for determining their role in the origin and evolution of dust in the universe. We propose to model the composition, abundance, and size distribution of the dust in select Galactic and Magellanic Cloud remnants. As explained in detail below, the remnants were selected for the availability of IR and X-ray observations. All selected remnants have Spitzer IRS spectral data in the 5-35 μm regions which allow us to determine the effect of grain processing in the shock. Some have spectral maps that allow the distinction between the IR emission from SN-condensed and swept up circumstellar and interstellar dust. All remnants have also been covered by Spitzer, Herschel, and WISE imaging, and have existing X-ray Chandra and/or XMM observations. The dust in some remnants is radiatively-heated by a pulsar wind nebula, and in others collisionally- heated by shocked X-ray or line emitting gas. We will use physical models to calculate the radiative and collisional heating of SNR dust, the equilibrium or fluctuating dust temperatures, and the resulting IR emission for various dust compositions and size distributions. Specific examples of Cas A, SN1987A, the Crab Nebula, and Puppis A, are discussed in detail to illustrate our modeling approach. Our study will be the first comprehensive and physical analysis of a large sample of SNRs in different evolutionary states and different astrophysical environments. They will cover a wide range of interactions between the dust grains and their surroundings, including the radioactively- powered and

  13. Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)

    2002-01-01

    A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron

  14. Should precipitation influence dust emission in global dust models?

    NASA Astrophysics Data System (ADS)

    Okin, Gregory

    2016-04-01

    Soil moisture modulates the threshold shear stress required to initiate aeolian transport and dust emission. Most of the theoretical and laboratory work that has confirmed the impact of soil moisture has appropriately acknowledged that it is the soil moisture of a surface layer a few grain diameters thick that truly controls threshold shear velocity. Global and regional models of dust emission include the effect of soil moisture on transport threshold, but most ignore the fact that only the moisture of the very topmost "active layer" matters. The soil moisture in the active layer can differ greatly from that integrated through the top 2, 5, 10, or 100 cm (surface layers used by various global models) because the top 2 mm of heavy texture soils dries within ~1/2 day while sandy soils dry within less than 2 hours. Thus, in drylands where dust emission occurs, it is likely that this top layer is drier than the underlying soil in the days and weeks after rain. This paper explores, globally, the time between rain events in relation to the time for the active layer to dry and the timing of high wind events. This analysis is carried out using the same coarse reanalyses used in global dust models and is intended to inform the soil moisture controls in these models. The results of this analysis indicate that the timing between events is, in almost all dust-producing areas, significantly longer than the drying time of the active layer, even when considering soil texture differences. Further, the analysis shows that the probability of a high wind event during the period after a rain where the surface is wet is small. Therefore, in coarse global models, there is little reason to include rain-derived soil moisture in the modeling scheme.

  15. Reduction and analysis of data from cosmic dust experiments on Mariner 4, OGO 3, and Lunar Explorer 35

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The analysis of data from the cosmic dust experiment on three NASA missions is discussed. These missions were Mariner IV, OGO III, and Lunar Explorer 35. The analysis effort has included some work in the laboratory of the physics of microparticle hypervelocity impact. This laboratory effort was initially aimed at the calibration and measurements of the different sensors being used in the experiment. The latter effort was conducted in order to better understand the velocity and mass distributions of the picogram sized ejecta particles.

  16. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.

    2014-06-01

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion freezing

  17. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; Kreidenweis, S. M.

    2015-01-01

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration

  18. Star-Forming Regions in Orion as a Dust Evolution Laboratory

    NASA Astrophysics Data System (ADS)

    Wiebe, D.; Murga, M.; Sivkova, E.

    2017-06-01

    Star-forming regions (SFR) represent a convenient opportunity to study various processes related both to dust growth and to dust destruction. While extragalactic SFRs allow considering these processes in a wide range of metallicities, UV field intensities, etc., the Orion star-forming complex opens up a possibility to observe dust evolution with an unprecedented angular resolution. We review various observations related to dust evolution in some most prominent Orion regions, paying special attention to organic dust evolution, and introduce a new model of organic dust evolution.

  19. Analysis of isocyanates in indoor dust.

    PubMed

    Bekki, Kanae; Uchiyama, Shigehisa; Kunugita, Naoki

    2018-05-04

    Isocyanates are harmful semi-volatile organic compounds that are emitted from various consumer products like polyurethane foam-based mattresses. Although it is a concern that isocyanates might accumulate in indoor dust, causing infants and toddlers, in particular, to be exposed to them, little information is available on the levels of isocyanates in the indoor environment. In this study, we investigated the suitability of an analytical method for determining the presence and level of isocyanates in the indoor dust. The method we developed displayed acceptable linearity, accuracy, and precision in the analysis of eleven different isocyanates. By using this analytical method, we could detect five isocyanates (ICA, MIC, EIC, PIC, and PHI) and quantify three isocyanates (MIC, EIC, and PHI) in indoor dust collected in different houses. This study is the first to focus on the pollution of indoor dust by isocyanates, and the tested method is suitable for the estimation of the level of isocyanate exposure. Graphical abstract ᅟ.

  20. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...

    2014-06-27

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterizationmore » developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion

  1. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; ...

    2015-01-13

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RH w) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. Themore » parameterization developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RH w of 105% vs. maximum fractions active at higher RH w. Instrumental factors that affect activation behavior vs. RH w in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including

  2. Building Blocks of Dust and Large Organic Molecules: a Coordinated Laboratory and Astronomical Study of AGB Stars

    NASA Astrophysics Data System (ADS)

    McCarthy, Michael C.; Gottlieb, Carl A.; Cernicharo, Jose

    2017-06-01

    The increased sensitivity and angular resolution of high-altitude ground-based interferometers in the sub-millimeter band has enabled the physics and chemistry of carbon- and oxygen-rich evolved stars to be re-examined at an unprecedented level of detail. Observations of rotational lines in the inner envelope - the region within a few stellar radii of the central star where the molecular seeds of dust are formed - allows one to critically assess models of dust growth. Interferometric observations of the outer envelope provide stringent tests of neutral and ionized molecule formation. All of the astronomical studies are crucially dependent on precise laboratory measurements of the rotational spectra of new species and of vibrationally excited levels of known molecules and their rare isotopic species. By means of a closely coordinated laboratory and astronomical program, a number of exotic species including the disilicon carbide SiCSi, titanium oxides TiO and TiO_2, and carbon chain anions ranging from CN^- to C_8H^- have recently been observed in evolved stars. This talk will provide overview of these findings, and how they impact current models of the ``chemical laboratories'' of evolved stars. Ongoing laboratory studies of small silicon-bearing molecules such as H_2SiO_2 and vibrationally excited SiC_2 will be highlighted.

  3. Analysis of Dust Devils on Mars using CFD

    NASA Astrophysics Data System (ADS)

    Lange, C. F.; Chen, K.; Davis, J. A.; Gheynani, B. T.

    2009-05-01

    Recent Mars missions have reported evidence of the existence of dust devils. A detailed study of vortex dynamics will provide a better understanding of this swirling flow of the Martian atmosphere. Further, it is believed that there is a relationship between dust devils and water transport. Recently, the Phoenix Mars mission, designed to investigate ice water and natural events on Mars, has successfully finished. The Phoenix Surface Stereo Imager (SSI) camera captured images of the passage of dust devils over or close to the lander. Additionally, dustless devils, which have similar vortex characteristics but insufficient strength to raise dust from the surface, have been detected in the lander's pressure measurements. It was found that dust devils occur mainly in the early afternoon. Because of this, numerical models of a vortex generator are used to study the physics of this complex swirling flow and the effect of dust devils on the transport of water vapour from the regolith. Characteristic parameters such as core radius and swirl ratio are being explored for scaling factors. Scaling factors will be studied and tested, comparing the small and large scales of numerically generated vortices and laboratory generated vortices. Small scale of numerical models of atmospheric vortices are studied using a commercial software package, ANSYS/CFX11.0 with finite volume method (FVM). Large eddy simulations (LES) of planetary boundary layers are based on NCAR LES code to simulate convective vertical vortices that naturally form in quiescent convective boundary layers (CBL) over homogeneous flat surfaces. This will help to find the approximate location and physical characteristics of the vortices on the surface. The numerical models of atmospheric vortices and the experimental vortex generator validations will help to define the water vapour cycle on Mars.

  4. Laboratory study of PCB transport from primary sources to settled dust.

    PubMed

    Liu, Xiaoyu; Guo, Zhishi; Krebs, Kenneth A; Greenwell, Dale J; Roache, Nancy F; Stinson, Rayford A; Nardin, Joshua A; Pope, Robert H

    2016-04-01

    Dust is an important sink for indoor air pollutants, such as polychlorinated biphenyls (PCBs) that were used in building materials and products. In this study, two types of dust, house dust and Arizona Test Dust, were tested in a 30-m(3) stainless steel chamber with two types of panels. The PCB-containing panels were aluminum sheets coated with a PCB-spiked primer or caulk. The PCB-free panels were coated with the same materials but without PCBs. The dust evenly spread on each panel was collected at different times to determine its PCB content. The data from the PCB panels were used to evaluate the PCB migration from the source to the dust through direct contact, and the data from the PCB-free panels were used to evaluate the sorption of PCBs through the dust/air partition. Settled dust can adsorb PCBs from air. The sorption concentration was dependent on the congener concentration in the air and favored less volatile congeners. When the house dust was in direct contact with the PCB-containing panel, PCBs migrated into the dust at a much faster rate than the PCB transfer rate due to the dust/air partition. The dust/source partition was not significantly affected by the congener's volatility. For a given congener, the ratio between its concentration in the dust and in the source was used to estimate the dust/source partition coefficient. The estimated values ranged from 0.04 to 0.16. These values are indicative of the sink strength of the tested house dust being in the middle or lower-middle range. Published by Elsevier Ltd.

  5. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  6. Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  7. Laboratory Studies on the Charging of Dust Grains in a Plasma

    NASA Astrophysics Data System (ADS)

    Xu, Wenjun

    1993-01-01

    The charging of dust grains by the surrounding plasma is studied in a dusty plasma device (DPD) (Xu, W., B. Song, R. L. Merlino, and N. D'Angelo, Rev. Sci. Instrum., 63, 5266, 1992). The dusty plasma device consists of a rotating-drum dust dispersal device used in conjunction with an existing Q-machine, to produce extended, steady state, magnetized plasma columns. The dust density in the dust chamber is controlled by the drum rotation speed. The device is capable of generating a dusty plasma in which as much as about 90% of the negative charge is attached to the dust grains of 1-10mu m size. Measurements of the dust parameter eta, the percentage of negative charge on free electrons in the dusty plasma, are presented. The dust parameter eta is found to depend on the rotational speed of the dust chamber, plasma density and the type and size of different dust. The dust parameter eta is calculated from a pair of Langmuir curves taken with and without dust under the same conditions. The operation of the dust chamber as described above has been confirmed by the agreement between the measurements of eta and the direct mechanical measurements consisting of weighing dust samples collected within the rotation dust chamber, at different rotation rates. By varying the ratio d/lambda_ {rm D} between the intergrain distance and the plasma Debye length, the effects predicted by Goertz and Ip (Goertz, C. K., and W-H. Ip, Geophys. Res. Lett., 11, 349, 1984), and subsequently reanalyzed in a more general fashion by Whipple et al. (Whipple, E. C., T. G. Northrop, and D. A. Mendis, J. Geophys. Rev., 90, 7405, 1985), as "isolated" dust grains become "closely packed" grains, have been demonstrated experimentally (Xu, W., N. D'Angelo, and R. L. Merlino, J. Geophys. Rev., 98, 7843, 1993). Similar results are presented and compared for two types of dust, kaolin and Al_2O _3, which have been studied in the experiment.

  8. Cometary Dust

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, Anny-Chantal; Agarwal, Jessica; Cottin, Hervé; Engrand, Cécile; Flynn, George; Fulle, Marco; Gombosi, Tamas; Langevin, Yves; Lasue, Jérémie; Mannel, Thurid; Merouane, Sihane; Poch, Olivier; Thomas, Nicolas; Westphal, Andrew

    2018-04-01

    This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth's orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.

  9. Martian Dust Devils: Laboratory Simulations of Particle Threshold

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Balme, Matthew R.; Iverson, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim; White, Bruce

    2003-01-01

    An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 micron in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lower-pressure experiments down to approx. 65 mbar follow this trend for sand-sized particles. However, smaller particles (i.e., dust) and all particles at very low pressures (w 10-60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains approx. 2 microns in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.

  10. Ice nucleation by soil dust compared to desert dust aerosols

    NASA Astrophysics Data System (ADS)

    Moehler, O.; Steinke, I.; Ullrich, R.; Höhler, K.; Schiebel, T.; Hoose, C.; Funk, R.

    2015-12-01

    A minor fraction of atmospheric aerosol particles, so-called ice-nucleating particles (INPs), initiates the formation of the ice phase in tropospheric clouds and thereby markedly influences the Earth's weather and climate systems. Whether an aerosol particle acts as an INP depends on its size, morphology and chemical compositions. The INP fraction of certain aerosol types also strongly depends on the temperature and the relative humidity. Because both desert dust and soil dust aerosols typically comprise a variety of different particles, it is difficult to assess and predict their contribution to the atmospheric INP abundance. This requires both accurate modelling of the sources and atmospheric distribution of atmospheric dust components and detailed investigations of their ice nucleation activities. The latter can be achieved in laboratory experiments and parameterized for use in weather and climate models as a function of temperature and particle surface area, a parameter called ice-nucleation active site (INAS) density. Concerning ice nucleation activity studies, the soil dust is of particular interest because it contains a significant fraction of organics and biological components, both with the potential for contributing to the atmospheric INP abundance at relatively high temperatures compared to mineral components. First laboratory ice nucleation experiments with a few soil dust samples indicated their INP fraction to be comparable or slightly enhanced to that of desert dust. We have used the AIDA (Aerosol Interaction and Dynamics in the Atmosphere) cloud simulation chamber to study the immersion freezing ability of four different arable soil dusts, sampled in Germany, China and Argentina. For temperatures higher than about -20°C, we found the INP fraction of aerosols generated from these samples by a dry dispersion technique to be significantly higher compared to various desert dust aerosols also investigated in AIDA experiments. In this contribution, we

  11. [Petrological Analysis of Astrophysical Dust Analog Evolution

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1997-01-01

    This project "Petrological analysis of astrophysical dust analog evolution" was initiated to try to understand the vapor phase condensation, and the nature of the reaction products, in circumstellar environments, such as the solar nebula 4,500 Myrs ago, and in the interstellar medium. Telescope-based infrared [IR] spectroscopy offers a broad-scale inventory of the various types of dust in these environments but no details on small-scale variations in terms of chemistry and morphology and petrological phase relationships. Vapor phase condensation in these environments is almost certainly a non-equilibrium process. The main challenge to this research was to document the nature of this process that, based on astrophysical observations, seems to yield compositionally consistent materials. This observation may suggest a predictable character during non-equilibrium condensation. These astrophysical environments include two chemically distinct, that is, oxygen-rich and carbon-rich environments. The former is characterized by silicates the latter by carbon-bearing solids. According to cosmological models of stellar evolution circumstellar dust accreted into protoplanets wherein thermal and/or aqueous processes will alter the dust under initially, non-equilibrium conditions.

  12. Wood dust exposure and lung cancer risk: a meta-analysis.

    PubMed

    Hancock, David G; Langley, Mary E; Chia, Kwan Leung; Woodman, Richard J; Shanahan, E Michael

    2015-12-01

    Occupational lung cancers represent a major health burden due to their increasing prevalence and poor long-term outcomes. While wood dust is a confirmed human carcinogen, its association with lung cancer remains unclear due to inconsistent findings in the literature. We aimed to clarify this association using meta-analysis. We performed a search of 10 databases to identify studies published until June 2014. We assessed the lung cancer risk associated with wood dust exposure as the primary outcome and with wood dust-related occupations as a secondary outcome. Random-effects models were used to pool summary risk estimates. 85 publications were included in the meta-analysis. A significantly increased risk for developing lung cancer was observed among studies that directly assessed wood dust exposure (RR 1.21, 95% CI 1.05 to 1.39, n=33) and that assessed wood dust-related occupations (RR 1.15, 95% CI 1.07 to 1.23, n=59). In contrast, a reduced risk for lung cancer was observed among wood dust (RR 0.63, 95% CI 0.39 to 0.99, n=5) and occupation (RR 0.96, 95% CI 0.95 to 0.98, n=1) studies originating in Nordic countries, where softwood dust is the primary exposure. These results were independent of the presence of adjustment for smoking and exposure classification methods. Only minor differences in risk between the histological subtypes were identified. This meta-analysis provides strong evidence for an association between wood dust and lung cancer, which is critically influenced by the geographic region of the study. The reasons for this region-specific effect estimates remain to be clarified, but may suggest a differential effect for hardwood and softwood dusts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  13. Using thermal infrared (TIR) data to characterize dust sources, dust fall and the linkage to climate in the Middle East

    NASA Astrophysics Data System (ADS)

    Mohammad, R.; Ramsey, M.; Scheidt, S. P.

    2010-12-01

    Prior to mineral dust deposition affecting albedo, aerosols can have direct and indirect effects on local to regional scale climate by changing both the shortwave and longwave radiative forcing. In addition, mineral dust causes health hazards, such as respiratory-related illnesses and deaths, loss of agricultural soil, and safety hazards to aviation and motorists due to reduced visibility. Previous work utilized satellite and ground-based TIR data to describe the direct longwave radiative effect of the Saharan Air Layer (SAL) over the Atlantic Ocean originating from dust storms in the Western Sahara. TIR emission spectroscopy was used to identify the spectral absorption features of that dust. The current research focuses on Kuwait and utilizes a comprehensive set of spatial, analytical and geological tools to characterize dust emissions and its radiative effects. Surface mineral composition maps for the Kuwait region were created using ASTER images and GIS datasets in order to identify the possible sources of wind-blown dust. Backward trajectory analysis using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggests the dust source areas were located in Iraq, Syria, Jordan and Saudi Arabia. Samples collected from two dust storms (May and July 2010) were analyzed for their mineral composition and to validate the dust source areas identified by the modeling and remote sensing analysis. These air fall dust samples were collected in glass containers on a 13 meter high rooftop in the suburb of Rumaithiya in Kuwait. Additional samples will be collected to expand the analysis and their chemical compositions will be characterized by a combination of laboratory X-ray fluorescence (XRF), Scanning Electron Microscopy (SEM) and TIR emission spectroscopy. The overarching objective of this ongoing research is to both characterize the effects of mineral dust on climate as well as establish a predictive tool that can identify dust storm sources and

  14. Obtaining mathematical models for assessing efficiency of dust collectors using integrated system of analysis and data management STATISTICA Design of Experiments

    NASA Astrophysics Data System (ADS)

    Azarov, A. V.; Zhukova, N. S.; Kozlovtseva, E. Yu; Dobrinsky, D. R.

    2018-05-01

    The article considers obtaining mathematical models to assess the efficiency of the dust collectors using an integrated system of analysis and data management STATISTICA Design of Experiments. The procedure for obtaining mathematical models and data processing is considered by the example of laboratory studies on a mounted installation containing a dust collector in counter-swirling flows (CSF) using gypsum dust of various fractions. Planning of experimental studies has been carried out in order to reduce the number of experiments and reduce the cost of experimental research. A second-order non-position plan (Box-Bencken plan) was used, which reduced the number of trials from 81 to 27. The order of statistical data research of Box-Benken plan using standard tools of integrated system for analysis and data management STATISTICA Design of Experiments is considered. Results of statistical data processing with significance estimation of coefficients and adequacy of mathematical models are presented.

  15. Workshop on the Analysis of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E. (Editor)

    1994-01-01

    Great progress has been made in the analysis of interplanetary dust particles (IDP's) over the past few years. This workshop provided a forum for the discussion of the following topics: observation and modeling of dust in the solar system, mineralogy and petrography of IDP's, processing of IDP's in the solar system and terrestrial atmosphere, comparison of IDP's to meteorites and micrometeorites, composition of IDP's, classification, and collection of IDP's.

  16. A Comparative Study Of Dust Devils

    NASA Astrophysics Data System (ADS)

    Lange, C. F.; Prieto, L. E.

    2005-12-01

    computational models. This was accomplished by examining features of the dust devils in the form of three main flow parameters: the ratio of the inflow layer height h to the updraft radius r_0 (aspect ratio), the radial Reynolds number characterizing the updraft zone, and the ratio of the tangential velocity to the mean radial velocity (swirl ratio) at the radius of the updraft zone, r_0. The detailed analysis of the numerical flow solutions led to a simple definition of h and r_0, valid for the types of model flows analyzed. This study is a necessary part of a larger effort to examine and compare both numerical and laboratory simulations of atmospheric vortices in terrestrial and Martian conditions. References [1] R. Greeley et al., XXXII Lunar and Planetary Science, 2001. [2] D. E. Lund and J. T. Snow, The Tornado: Its Structure, Dynamics, Prediction, and Hazards, 1993, p. 297--306. [3] N. B. Ward, J. Atmos. Sci., 1972, 1194--1204.

  17. Ground level and Lidar monitoring of volcanic dust and dust from Patagonia

    NASA Astrophysics Data System (ADS)

    Otero, L. A.; Losno, R.; Salvador, J. O.; Journet, E.; Qu, Z.; Triquet, S.; Monna, F.; Balkanski, Y.; Bulnes, D.; Ristori, P. R.; Quel, E. J.

    2013-05-01

    A combined approach including ground level aerosol sampling, lidar and sunphotometer measurements is used to monitor suspended particles in the atmosphere at several sites in Patagonia. Motivated by the Puyehue volcanic eruption in June 2011 two aerosol monitoring stations with several passive and active instruments were installed in Bariloche and Comodoro Rivadavia. The main goal which is to monitor ground lifted and transported ashes and dust involving danger to civil aviation, is achieved by measuring continuously aerosol concentration at ground level and aerosol vertical distribution using lidar. In addition, starting from December 2011, continuous series of weekly accumulated aerosol concentrations at Rio Gallegos are being measured to study the impact of Patagonian dust over the open ocean on phytoplankton primary productivity and CO2 removal. These measurements are going to be coupled with LIDAR monitoring and a dust optical response models to test if aerosol extrapolation can be done from the ground to the top of the layer. Laboratory chemical analysis of the aerosols will include elemental composition, solubilisation kinetic and mineralogical determination. Expected deliverables for this study is the estimation of the amount of dust exported from Patagonia towards the South Atlantic, its chemical properties, including bioavailability simulation, from model and comparison to experimental measurements.

  18. Laboratory polarization and permittivity measurements to interpret dust polarimetric observations and in-situ radar studies. Significance for Rosetta mission at 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Levasseur-Regourd, Anny-Chantal; Brouet, Yann; Hadamcik, Edith; Heggy, Essam; Hines, Dean; Lasue, Jérémie; Renard, Jean-Baptiste

    2015-08-01

    Polarimetric astronomical observations on dust clouds and regolithic surfaces require laboratory simulations on samples to provide information on properties (size distribution, porosity, refractive index) of the scattering media. Similarly, in-situ radar investigations in the solar system require laboratory studies on samples to infer physical properties (e.g. porosity, ice/dust ratio) of sub-surfaces and interiors. Recent developments are illustrated with present studies related to the Rosetta mission, which begun its rendezvous with comet 67P/Churyumov-Gerasimeko (C-G) and landed the Philae module on its nucleus in 2014.We will summarize laboratory simulations with the PROGRA2 suite of instruments that study (in the visible to near IR domain) the polarimetric properties of dust samples in microgravity conditions or on surfaces [1], with emphasis on the interpretation of polarimetric observations of C-G, during its previous perihelion passages from Earth observatories, and currently from HST [2,3]. The presence of large dust particles in the pre-perihelion coma previously inferred from remote observations agrees with Rosetta ground truth [4]. We will also present measurements on the permittivity (in the millimeter to meter domain) of various dust samples, with emphasis on porous samples [5,6]. Results provide constraints on the properties of the subsurface and interior of C-G, as explored by MIRO on Rosetta and CONSERT on Philae.Such studies are relevant for the interpretation of polarimetric observations of other dust clouds (e.g. debris disks, interplanetary dust cloud, clouds in planetary atmospheres) and surfaces (e.g. planets, moons), as well as for those of other radar characterization studies (e.g. Mars, moons, asteroids).[1] Levasseur-Regourd et al. In Polarization of stars and planetary systems, Cambridge UP, in press 2015.[2] Hadamcik et al. A&A 517 2010.[3] Hines and Levasseur-Regourd, PSS submitted 2015.[4] Schulz et al. Nature 518 2015.[5] Heggy et al

  19. Numerical Prediction of Dust. Chapter 10

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; hide

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions

  20. Dust control effectiveness of drywall sanding tools.

    PubMed

    Young-Corbett, Deborah E; Nussbaum, Maury A

    2009-07-01

    In this laboratory study, four drywall sanding tools were evaluated in terms of dust generation rates in the respirable and thoracic size classes. In a repeated measures study design, 16 participants performed simulated drywall finishing tasks with each of four tools: (1) ventilated sander, (2) pole sander, (3) block sander, and (4) wet sponge. Dependent variables of interest were thoracic and respirable breathing zone dust concentrations. Analysis by Friedman's Test revealed that the ventilated drywall sanding tool produced significantly less dust, of both size classes, than did the other three tools. The pole and wet sanders produced significantly less dust of both size classes than did the block sander. The block sander, the most commonly used tool in drywall finishing operations, produced significantly more dust of both size classes than did the other three tools. When compared with the block sander, the other tools offer substantial dust reduction. The ventilated tool reduced respirable concentrations by 88% and thoracic concentrations by 85%. The pole sander reduced respirable concentrations by 58% and thoracic by 50%. The wet sander produced reductions of 60% and 47% in the respirable and thoracic classes, respectively. Wet sponge sanders and pole sanders are effective at reducing breathing-zone dust concentrations; however, based on its superior dust control effectiveness, the ventilated sander is the recommended tool for drywall finishing operations.

  1. Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment

    NASA Astrophysics Data System (ADS)

    Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.

    2015-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.

  2. Analysis of dust storms observed in Mongolia during 1937-1999

    NASA Astrophysics Data System (ADS)

    Natsagdorj, L.; Jugder, D.; Chung, Y. S.

    Climatology of dust storms in Mongolia is compiled based on observational data of 49 meteorological stations from 1960 to 1999 and compared them with data between 1937 and 1989. Three different maps of the distribution of dust storms, drifting dust and the number of dusty days are presented. The results of the analysis show that the number of days with dust storms is <5 days over the Altai, the Khangai and the Khentei mountainous regions and more than 20-37 days in the Gobi Desert and semi-desert area. The greatest occurrence of drifting dust arises around the Mongol Els area of west Mongolia. The number of dusty days, which is derived from the sum of the number of days with dust storms and drifting dust, is <10 days in the mountainous area and 61-127 days in the Gobi Desert and the Great Lakes hollow of west Mongolia. It is found that 61% of dust storms occur in the spring in Mongolia and a dust storm lasts on average from 3.1 to 6.0 h. About 65.5-91.0% of dust storms occur in daytime and 9.0-34.5% at night. Dust storms occur more frequently in the city region and are accompanied by surface wind speeds usually from 6 to 20 ms -1. Dust storms usually occur when soil and air are dry, and 70% of dust storms occur in dry soil conditions. When dust storms occur, relative humidity averages 20-40% in Mongolia. An important outcome of this study is the trend of dusty days between 1960 and 1999. It shows that the number of dusty days has tripled from the 1960s to 1990s and has decreased since 1990.

  3. Detection of pinworm eggs in the dust of laboratory animals breeding facility, in the cages and on the hands of the technicians.

    PubMed

    Lytvynets, A; Langrova, I; Lachout, J; Vadlejch, J

    2013-01-01

    Pinworms (Nematoda: Oxyurida) are common contaminants in most laboratory rodent colonies. The aim of the study was to monitor the transmission of Syphacia muris eggs in laboratory rat breeding facilities. Dust in a breeding room was investigated using special grids (free fallout, or through the help suction chamber). Furthermore, the ventilation system, breeding cages and the hands of the laboratory technical staff were examined. In the case of free fallout, the percentage of positive grids increased slightly over time: from 5.5% (after 24 h) to 8.2% (72 h). Similar values were also found when using the suction chamber (7.6%). Many more pinworm eggs were found in samples collected every second month from suction holes of the ventilation system (28.7%). One-half of the samples taken from the breeding cages (before washing) exhibited pinworm eggs (50.8%). Examination of the hands of technical staff showed positive detection in 37.9% of cases. In this study, certain transmission factors (dust, unclean cages and technicians) were proved to be significant in the distribution of pinworm infection in laboratory rodent facilities.

  4. Dust particles interaction with plasma jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ticos, C. M.; Jepu, I.; Lungu, C. P.

    2009-11-10

    The flow of plasma and particularly the flow of ions play an important role in dusty plasmas. Here we present some instances in laboratory experiments where the ion flow is essential in establishing dust dynamics in strongly or weakly coupled dust particles. The formation of ion wake potential and its effect on the dynamics of dust crystals, or the ion drag force exerted on micron size dust grains are some of the phenomena observed in the presented experiments.

  5. Characterization of Sintering Dust, Blast Furnace Dust and Carbon Steel Electric Arc Furnace Dust

    NASA Astrophysics Data System (ADS)

    Chang, Feng; Wu, Shengli; Zhang, Fengjie; Lu, Hua; Du, Kaiping

    In order to make a complete understanding of steel plant metallurgical dusts and to realize the goal of zero-waste, a study of their properties was undertaken. For these purposes, samples of two sintering dusts (SD), two blast furnace dusts (BFD), and one electric arc furnace dust (EAFD) taken from the regular production process were subjected to a series of tests. The tests were carried out by using granulometry analysis, chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy via SEM (EDS), and Fourier transform infrared spectroscopy (FTIR). The dominant elements having an advantage of reuse are Fe, K, Cl, Zn, C. The dominant mineralogical phases identified in sintering dust are KCl, Fe2O3, CaCO3, CaMg(CO3)2, NaCl, SiO2. Mineralogical phases exist in blast furnace dust are Fe2O3, Fe3O4, with small amount of KCl and kaolinite coexist. While in electric arc furnace dust, Fe3O4, ZnFe2O4, CaCO3, CaO, Ca(OH)2 are detected.

  6. Directional analysis and filtering for dust storm detection in NOAA-AVHRR imagery

    NASA Astrophysics Data System (ADS)

    Janugani, S.; Jayaram, V.; Cabrera, S. D.; Rosiles, J. G.; Gill, T. E.; Rivera Rivera, N.

    2009-05-01

    In this paper, we propose spatio-spectral processing techniques for the detection of dust storms and automatically finding its transport direction in 5-band NOAA-AVHRR imagery. Previous methods that use simple band math analysis have produced promising results but have drawbacks in producing consistent results when low signal to noise ratio (SNR) images are used. Moreover, in seeking to automate the dust storm detection, the presence of clouds in the vicinity of the dust storm creates a challenge in being able to distinguish these two types of image texture. This paper not only addresses the detection of the dust storm in the imagery, it also attempts to find the transport direction and the location of the sources of the dust storm. We propose a spatio-spectral processing approach with two components: visualization and automation. Both approaches are based on digital image processing techniques including directional analysis and filtering. The visualization technique is intended to enhance the image in order to locate the dust sources. The automation technique is proposed to detect the transport direction of the dust storm. These techniques can be used in a system to provide timely warnings of dust storms or hazard assessments for transportation, aviation, environmental safety, and public health.

  7. Further Analysis on the Mystery of the Surveyor III Dust Deposits

    NASA Technical Reports Server (NTRS)

    Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John

    2011-01-01

    The Apollo 12 lunar module (LM) landing near the Surveyor 1lI spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor 1lI camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the Apollo 12 LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing were reexamined by a KSC research team using SEM/EDS and XPS analysis. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues. Several likely scenarios are proposed to explain the Surveyor III dust observations. These include electrostatic attraction of the dust to the surface of the Surveyor as a result of electrostatic charging of the jet gas exiting the engine nozzle during descent; dust blown by the Apollo 12 LM fly-by while on its descent trajectory; dust ejected from the lunar surface due to gas forced into the soil by the Surveyor 1lI rocket nozzle, based on Darcy's law; and mechanical movement of dust during the Surveyor landing. Even though an absolute answer is not possible based on available data and theory, various computational models are employed to estimate the feasibility of each of these proposed mechanisms. Scenarios are then discussed which combine multiple mechanisms to produce results consistent with observations.

  8. Dust Analyzer Instrument (DANTE) for the detection and elemental analysis of dust particles originating from the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; O'brien, L.; Gruen, E.; Horanyi, M.; Malaspina, D.; Moebius, E.; Rocha, J. R. R.

    2016-12-01

    Nano- to sub-micron-size dust particles generated by the collisional breakup of interplanetary dust particles (IDPs) in the inner solar system can be accelerated away from the Sun and are available for detection and analysis near 1 AU. Beta-meteoroids are sub-micron sized particles for which the radiation pressure dominates over gravity and have already been detected by dedicated dust instrument. Charged nano-sized dust particles are picked up by the expanding solar wind and arrive to 1 AU with high velocity. The recent observations by the WAVE instrument on the two STEREO spacecraft indicated that these particles may exist in large numbers. The Dust Analyzer Instrument (DANTE) is specifically developed to detect and analyze these two populations of dust particles arriving from a direction close to the Sun. DANTE is a linear time-of-flight (ToF) mass spectrometer analyzing the ions generated by the dust impact on a target surface. DANTE is derived from the Cosmic Dust Analyzer instrument operating on Cassini. DANTE has a 300 cm2 target area and a mass resolution of approximately m/dm = 50. The instrument performance has been verified using the dust accelerator facility operating at the University of Colorado. A light trap system, consisting of optical baffles, is designed and optimized in terms of geometry and surface optical properties. A solar wind ion repeller system is included to prevent solar wind from entering the sensor. Both measures facilitate the detection with the instrument pointing close to the Sun's direction. The DANTE measurements will help to understand the sources, sinks and distribution of dust between the Sun and 1 AU, and, when combined with solar wind ion analyzer instrument, they will provide insight on the suspected link between dust particles and pickup ions, and how the massive particles affect the dynamics and energetics of the solar wind.

  9. African Dust Blows over the Caribbean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shuttle astronauts frequently track Saharan dust storms as they blow from north Africa across the Atlantic Ocean. Dust palls blowing from Africa take about a week to cross the Atlantic. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The top photograph, a classic image showing African dust over the Caribbean, was taken at a time when few scientists had considered the possibility. The image was taken by Space Shuttle astronauts on July 11, 1994 (STS065-75-47). This photograph looks southwest over the northern edge of a large trans-Atlantic dust plume that blew off the Sahara desert in Africa. In this view, Caicos Island in the Bahamas and the mountainous spines of Haiti are partly obscured by the dust. Closer to the foreground, (about 26 degrees north latitude), the skies are clear. The lower photograph (STS105-723-7) was taken by Space Shuttle astronauts while docked to the International Space Station on August 19, 2001. The spacecraft is over the Atlantic Ocean at roughly 45oN, 60oW. The astronauts were looking obliquely to the south; the boundaries of the dust plumes can be traced visually by the abrupt change from clear to hazy atmosphere-the hazy line marks the northern edge of the dust pall near the Caribbean. Images provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  10. The Martian dust cycle: A proposed model

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald

    1987-01-01

    Despite more than a decade of study of martian dust storms, many of their characteristics and associated processes remain enigmatic, including the mechanisms for dust raising, modes of settling, and the nature of dust deposits. However, observations of Mars dust, considerations of terrestrial analogs, theoretical models, and laboratory simulations permit the formulation of a Martian Dust Cycle Model, which consists of three main processes: (1) suspension threshold, (2) transportation, and (3) deposition; two associated processes are also included: (4) dust removal and (5) the addition of new dust to the cycle. Although definitions vary, dust includes particles less than 4 to approx. 60 microns in diameter, which by terrestrial usage includes silt, loess, clay, and aerosolic dust particles. The dust cycle model is explained.

  11. Physical properties of interplanetary dust: laboratory and numerical simulations

    NASA Astrophysics Data System (ADS)

    Hadamcik, Edith; Lasue, Jeremie; Levasseur-Regourd, Anny-Chantal; Renard, Jean-Baptiste; Buch, Arnaud; Carrasco, Nathalie; Cottin, Hervé; Fray, Nicolas; Guan, Yuan Yong; Szopa, Cyril

    Laboratory light scattering measurements with the PROGRA2 experiment, in A300-CNES and ESA dedicated microgravity flights or in ground based configurations, offer an alternative to models for exploring the scattering properties of particles with structures too complex to be easily handled by computer simulations [1,2]. The technique allows the use of large size distributions (nanometers to hundreds of micrometers) and a large variety of materials, similar to those suspected to compose the interplanetary particles [3]. Asteroids are probably the source of compact particles, while comets have been shown to eject compact and fluffy materials [4]. Moreover giant planets provide further a small number of interplanetary particles. Some interstellar particles are also present. To choose the best samples and size distributions, we consider previous numerical models for the interplanetary particles and their evolution with solar distance. In this model, fluffy particles are simulated by fractal aggregates and compact particles by ellipsoids. The materials considered are silicates and carbonaceous compound. The silicate grains can be coated by the organics. Observations are fitted with two parameters: the size distribution of the particles and the ratio of silicates over carbonaceous compounds. From the light scattering properties of the particles, their equilibrium temperature can be calculated for different structures and composition. The variation of their optical properties and temperatures are studied with the heliocentric distance [5,6]. Results on analogs of cometary particles [7] and powdered meteorites as asteroidal particles will be presented and compared to numerical simulations as well as observations. Organics on cometary grains can constitute distributed sources if degraded by solar UV and heat [8, 9]. The optical properties of CxHyNz compounds are studied after thermal evolution [10]. As a first approach, they are used to simulate the evolution of cometary or

  12. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in subject, we have carried out some unique experiments to illuminate the processes involved in the rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron-sized, nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low-frequency (approximately 0 - 100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in light of the current theories of alignment.

  13. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.

    PubMed

    Patts, Justin R; Barone, Teresa L

    2017-05-01

    Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may

  14. Inactivation of dust mites, dust mite allergen, and mold from carpet.

    PubMed

    Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin

    2014-01-01

    Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p < 0.05) when compared to other methods. The two physical methods, steam vapor and vacuuming, have no statistically significant efficacy in inactivating dust mite allergens (p = 0.084), but have higher efficacy when compared to the chemical method on dust mite allergens (p = 0.002). There is no statistically significant difference in the efficacy for reducing mold in carpet (p > 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.

  15. Particle Lifting Processes in Dust Devils

    NASA Astrophysics Data System (ADS)

    Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.

    2016-11-01

    Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

  16. Electrodynamic Dust Shield Demonstrator

    NASA Technical Reports Server (NTRS)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  17. Dust Removal on Mars Using Laser-Induced Breakdown Spectroscopy

    NASA Technical Reports Server (NTRS)

    Graff, T. G.; Morris, R. V.; Clegg, S. M.; Wiens, R. C.; Anderson, R. B.

    2011-01-01

    Dust coatings on the surface of Mars complicate and, if sufficiently thick, mask the spectral characteristics and compositional determination of underlying material from in situ and remote sensing instrumentation. The Laser-Induced Breakdown Spectroscopy (LIBS) portion of the Chemistry & Camera (ChemCam) instrument, aboard the Mars Science Laboratory (MSL) rover, will be the first active remote sensing technique deployed on Mars able to remove dust. ChemCam utilizes a 5 ns pulsed 1067 nm high-powered laser focused to less than 400 m diameter on targets at distances up to 7 m [1,2]. With multiple laser pulses, dust and weathering coatings can be remotely analyzed and potentially removed using this technique [2,3]. A typical LIBS measurement during MSL surface operations is planned to consist of 50 laser pulses at 14 mJ, with the first 5 to 10 pulses used to analyze as well as remove any surface coating. Additionally, ChemCam's Remote Micro-Imager (RMI) is capable of resolving 200 m details at a distance of 2 m, or 1 mm at 10 m [1,4]. In this study, we report on initial laboratory experiments conducted to characterize the removal of dust coatings using similar LIBS parameters as ChemCam under Mars-like conditions. These experiments serve to better understand the removal of surface dust using LIBS and to facilitate the analysis of ChemCam LIBS spectral data and RMI images.

  18. Infrared spectroscopy of interplanetary dust in the laboratory

    NASA Technical Reports Server (NTRS)

    Fraundorf, P.; Patel, R. I.; Freeman, J. J.

    1981-01-01

    A mount containing three crushed chondritic interplanetary dust particles (IDPs) collected in the earth's stratosphere and subjected to infrared spectroscopic measurements shows features near 1000 and 500/cm, suggesting crystalline pyroxene rather than crystalline olivine, amorphous olivine, or meteoritic clay minerals. Chondritic IDP structural diversity and atmospheric heating effects must be considered when comparing this spectrum with interplanetary and cometary dust astrophysical spectra. TEM and infrared observations of one member of the rare subset of IDPs resembling hydrated carbonaceous chondrite matrix material shows a close infrared spectrum resemblance between 4000 and 400/cm to the C2 meteorite Murchison. TEM observations suggest that this class of particles may be used as an atmospheric entry heating-process thermometer.

  19. Analysis of IRAS solar system dust data

    NASA Technical Reports Server (NTRS)

    Dermott, S. F.; Nicholson, P. D.

    1991-01-01

    Data in the Infrared Astronomical Satellite (IRAS) Zodiacal History File were analyzed to extract dust band locations and peak brightness measurements from approximately 1,000 individual IRAS scans. The study had three goals. One was to show that the prominent solar system dust bands are associated with Hirayama asteroid families and thus that collisions between asteroids account for a significant fraction of the particles in the zodiacal cloud. Recent work suggests that while the Hirayama families are a major source of the dust in the bands, there may also be contributions from two or three smaller, more recently recognized asteroid families. A second goal was to show that there is evidence in the IRAS dust data for the transport of particles from asteroid belt to the Earth by Poynting-Robertson light drag and thus account for the fact that asteroid particles are collected in the Earth's stratosphere. Results of the study will confirm the location of the dust bands within the inner asteroid belt, and show conclusively that the material seen by IRAS is now spread over a wide range of distances from the sun. The third goal was to construct a model of the background zodiacal cloud that satisfies the proper dynamical constraints. Figures are provided to show the scans processed to remove zodiacal background and Galactic signals, and the resulting polynomial fits to the 25 micron scan. The latter provided objective estimates of band widths, peak locations, and peak fluxes. Modelling and analysis of the resulting band data has been presented at several conferences and is the subject of a number of forthcoming papers.

  20. Laboratory and observational study of the interrelation of the carbonaceous component of interstellar dust and solar system materials

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sanford, S. A.; Schutte, W. A.; Tielens, A. G. G. M.

    1991-01-01

    By studying the chemical and isotopic composition of interstellar ice and dust, one gains insight into the composition and chemical evolution of the solid bodies in the solar nebula and the nature of the material subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to spectroscopically probe the composition of interstellar ice and dust in the mid-infrared, the spectral range which is most diagnostic of fundamental molecular vibrations. We can compare these spectra of various astronomical objects (including the diffuse and dense interstellar medium, comets, and the icy outer planets and their satellites) with the spectra of analogs we produce in the laboratory under conditions which mimic those in these different objects. In this way one can determine the composition and abundances of the major constituents of the various ices and place general constraints on the types of organics coating the grains in the diffuse interstellar medium. In particular we have shown the ices in the dense clouds contain H2O, CH3OH, CO, perhaps some NH3 and H2CO, we well as nitriles and ketones or esters. Furthermore, by studying the photochemistry of these ice analogs in the laboratory, one gains insight into the chemistry which takes place in interstellar/precometary ices. Chemical and spectroscopic studies of photolyzed analogs (including deuterated species) are now underway. The results of some of these studies will be presented and implications for the evolution of the biogenic elements in interstellar dust and comets will be discussed.

  1. Dust trajectories and diagnostic applications beyond strongly coupled dusty plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticoş, Cǎtǎlin M.; Wurden, Glen A.

    2007-10-01

    Plasma interaction with dust is of growing interest for a number of reasons. On the one hand, dusty plasma research has become one of the most vibrant branches of plasma science. On the other hand, substantially less is known about dust dynamics outside the laboratory strongly coupled dusty-plasma regime, which typically corresponds to 1015m-3 electron density with ions at room temperature. Dust dynamics is also important to magnetic fusion because of concerns about safety and potential dust contamination of the fusion core. Dust trajectories are measured under two plasma conditions, both of which have larger densities and hotter ions than in typical dusty plasmas. Plasma-flow drag force, dominating over other forces in flowing plasmas, can explain the dust motion. In addition, quantitative understanding of dust trajectories is the basis for diagnostic applications using dust. Observation of hypervelocity dust in laboratory enables dust as diagnostic tool (hypervelocity dust injection) in magnetic fusion. In colder plasmas (˜10eV or less), dust with known physical and chemical properties can be used as microparticle tracers to measure both the magnitude and directions of flows in plasmas with good spatial resolution as the microparticle tracer velocimetry.

  2. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section

    PubMed Central

    Patts, Justin R.; Barone, Teresa L.

    2017-01-01

    Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may

  3. Aliphatic Hydrocarbon Content of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Günay, B.; Schmidt, T. W.; Burton, M. G.; Afşar, M.; Krechkivska, O.; Nauta, K.; Kable, S. H.; Rawal, A.

    2018-06-01

    There is considerable uncertainty as to the amount of carbon incorporated in interstellar dust. The aliphatic component of the carbonaceous dust is of particular interest because it produces a significant 3.4 μm absorption feature when viewed against a background radiation source. The optical depth of the 3.4 μm absorption feature is related to the number of aliphatic carbon C-H bonds along the line of sight. It is possible to estimate the column density of carbon locked up in the aliphatic hydrocarbon component of interstellar dust from quantitative analysis of the 3.4 μm interstellar absorption feature providing that the absorption coefficient of aliphatic hydrocarbons incorporated in the interstellar dust is known. We report laboratory analogues of interstellar dust by experimentally mimicking interstellar/circumstellar conditions. The resultant spectra of these dust analogues closely match those from astronomical observations. Measurements of the absorption coefficient of aliphatic hydrocarbons incorporated in the analogues were carried out by a procedure combining FTIR and 13C NMR spectroscopies. The absorption coefficients obtained for both interstellar analogues were found to be in close agreement (4.76(8) × 10-18 cm group-1 and 4.69(14) × 10-18 cm group-1), less than half those obtained in studies using small aliphatic molecules. The results thus obtained permit direct calibration of the astronomical observations, providing rigorous estimates of the amount of aliphatic carbon in the interstellar medium.

  4. Similarities Between Cometary, Meteoritic, and Laboratory Analog Dust: Hints from the Attribution of the 10-micrometer Band

    NASA Astrophysics Data System (ADS)

    Colangeli, L.; Mennella, V.; Bussoletti, E.; Merluzzi, P.; Rotundi, A.; Palumbo, P.; di Marino, C.

    1993-07-01

    It is well known that the infrared emission of many comets is characterized by a broad feature at 10 micrometers, that has been attributed to a Si-O stretching resonance in amorphous and/or hydrated silicate grains. In the case of comets Halley [1,2], Bradfield [3] and Levy [4] two spectral components have been observed: the wide peak centered at 9.8 micrometers and a sharp feature at 11.3 micrometers. This last band has been interpreted with crystalline olivine silicatic grains [1,2,5]. However, recently, it has been pointed out [6] that the laboratory data frequently used in the fits refer to grains embedded in a matrix, which should produce a significant shift of the peak position, according to Mie computations. We have performed laboratory experiments on various silicatic samples with the perspective of determining their optical properties, to study experimentally the influence of matrix effects, and to use the final spectra to perform comparisons with observations. The samples are four terrestrial materials, olivine forsterite, jadeite pyroxene, andesite feldspar and impactite glass, and two meteoritic samples, chondrite (Zacatecas, Mexico) and pallasite (Atacama, Chile). Fine powders of the bulk materials were obtained by grinding calibrated mass amounts of the various samples in an agata mill. The morphological characterization of the samples was performed by means of S.E.M. (scanning electron microscopy) technique. EDX analysis was also performed to determine elemental composition. IR transmission spectra were obtained by using a double beam spectrophotometer that covers the spectral range 2.5-50 micrometers. The standard pellet technique was used by embedding dust samples in KBr or CsI matrices. For comparison, measurements were also performed by depositing small amounts of dust onto KBr windows. In this last case, dust-matrix interaction should be practically absent as grains are simply sitting onto the matrix. The data obtained from the spectroscopic

  5. The Life Cycle of Dust in the Universe: Observations, Theory, and Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Kemper, Ciska; Andersen, Anja; Baes, Maarten; Gomez, Haley; Watson, Darach

    This meeting addresses the life cycle of dust in the Universe, which covers the formation, evolution and destruction of dust in a range of environments, ranging from the smallest to the largest scales. Bringing together observational and theoretical astrophysicists as well as meteoriticists and experimentalists allows for a cross-disciplinary dialogue. The meeting follows a successful tradition of astrophysical dust meetings, starting in Albany in 1972, with the latest edition "Cosmic Dust: Near and Far" organized by Th. Henning taking place in Heidelberg in 2008. Since that meeting, the field of dust astrophysics has made major leaps forward with the host of data arriving from such missions as the infrared space telescopes Spitzer and Herschel, and the sample return mission, Stardust, which took dust samples from comet Wild-2. The largest telescope on Earth, ALMA, has also recently come online, allowing for investigations into the origin of dust in the Universe, making this is excellent time to review the status of the field of dust astrophysics. The meeting aims to create an environment in which all aspects of the life cycle of dust are discussed, from an astrophysical, chemical and mineralogical perspective, and its effect on a range of environments. Observational insights, theoretical models and experimental approaches all contribute to our view of the life cycle of dust, and the meeting addresses new developments and future projects in all these areas.

  6. Synchrotron FTIR Examination of Interplanetary Dust Particles: An Effort to Determine the Compounds and Minerals in Interstellar and Circumstellar Dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Keller, L. P.

    2002-01-01

    Some interplanetary dust particles (IDPs), collected by NASA from the Earth's stratosphere, are the most primitive extraterrestrial material available for laboratory analysis. Many exhibit isotopic anomalies in H, N, and O, suggesting they contain preserved interstellar matter. We report the preliminary results of a comparison of the infrared absorption spectra of subunits of the IDPs with astronomical spectra of interstellar grains.

  7. Resuspended dust as a novel source of marine ice nucleating particles

    NASA Astrophysics Data System (ADS)

    Cornwell, G.; Sultana, C. M.; Schill, G. P.; Hill, T. C. J.; Cochran, R. E.; DeMott, P. J.; Prather, K. A.

    2017-12-01

    Recent studies of marine ice nucleating particles (INPs) have focused upon their production from phytoplankton blooms, the products of their metabolism, and resulting from their decomposition. In this work, we provide evidence for an additional, inorganic source of marine INPs independent of the marine mesocosm. Laboratory studies of aerosols generated from both synthetic seawater solutions spiked with mineral dust and from nascent coastal Pacific Ocean seawater indicate that dust can be ejected from seawater during the bubble bursting processes. Online and offline measurements of INP concentrations showed that these dust particles were ice nucleation-active in concentrations up to 40 L-1 at -30 °C, an order of magnitude more than those found in marine boundary layers or in laboratory mesocosms. Additional single particle composition measurements using an aerosol time of flight mass spectrometer (ATOFMS) collected along the Californian coast at Bodega Marine Laboratory found dust particles that contained markers from internal mixing with sea salt similar to those observed in the laboratory studies. The evidence from both laboratory and field studies suggests that there is a reservoir of dust particles within the ocean that can be ejected from the ocean's surface and act as INPs.

  8. Modelling heterogeneous ice nucleation on mineral dust and soot with parameterizations based on laboratory experiments

    NASA Astrophysics Data System (ADS)

    Hoose, C.; Hande, L. B.; Mohler, O.; Niemand, M.; Paukert, M.; Reichardt, I.; Ullrich, R.

    2016-12-01

    Between 0 and -37°C, ice formation in clouds is triggered by aerosol particles acting as heterogeneous ice nuclei. At lower temperatures, heterogeneous ice nucleation on aerosols can occur at lower supersaturations than homogeneous freezing of solutes. In laboratory experiments, the ability of different aerosol species (e.g. desert dusts, soot, biological particles) has been studied in detail and quantified via various theoretical or empirical parameterization approaches. For experiments in the AIDA cloud chamber, we have quantified the ice nucleation efficiency via a temperature- and supersaturation dependent ice nucleation active site density. Here we present a new empirical parameterization scheme for immersion and deposition ice nucleation on desert dust and soot based on these experimental data. The application of this parameterization to the simulation of cirrus clouds, deep convective clouds and orographic clouds will be shown, including the extension of the scheme to the treatment of freezing of rain drops. The results are compared to other heterogeneous ice nucleation schemes. Furthermore, an aerosol-dependent parameterization of contact ice nucleation is presented.

  9. Evaluation of coral pathogen growth rates after exposure to atmospheric African dust samples

    USGS Publications Warehouse

    Lisle, John T.; Garrison, Virginia H.; Gray, Michael A.

    2014-01-01

    Laboratory experiments were conducted to assess if exposure to atmospheric African dust stimulates or inhibits the growth of four putative bacterial coral pathogens. Atmospheric dust was collected from a dust-source region (Mali, West Africa) and from Saharan Air Layer masses over downwind sites in the Caribbean [Trinidad and Tobago and St. Croix, U.S. Virgin Islands (USVI)]. Extracts of dust samples were used to dose laboratory-grown cultures of four putative coral pathogens: Aurantimonas coralicida (white plague type II), Serratia marcescens (white pox), Vibrio coralliilyticus, and V. shiloi (bacteria-induced bleaching). Growth of A. coralicida and V. shiloi was slightly stimulated by dust extracts from Mali and USVI, respectively, but unaffected by extracts from the other dust sources. Lag time to the start of log-growth phase was significantly shortened for A. coralicida when dosed with dust extracts from Mali and USVI. Growth of S. marcescens and V. coralliilyticus was neither stimulated nor inhibited by any of the dust extracts. This study demonstrates that constituents from atmospheric dust can alter growth of recognized coral disease pathogens under laboratory conditions.

  10. Laboratory Experiments on Rotation and Alignment of the Analogs of Interstellar Dust Grains by Radiation

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.

    2004-01-01

    The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 Angstroms, and the grain rotation rates are obtained by analyzing the low frequency (approximately 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.

  11. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust.

    PubMed

    Perera, Inoka E; Sapko, Michael J; Harris, Marcia L; Zlochower, Isaac A; Weiss, Eric S

    2016-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that "… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …" However, a proper definition or quantification of "light blast of air" is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule.

  12. Chemical reaction and dust formation studies in laboratory hydrocarbon plasmas.

    NASA Astrophysics Data System (ADS)

    Hippler, Rainer; Majumdar, Abhijit; Thejaswini, H. C.

    Plasma chemical reaction studies with relevance to, e.g., Titan's atmosphere have been per-formed in various laboratory plasmas [1,2]. Chemical reactions in a dielectric barrier discharge at medium pressure of 250-300 mbar have been studied in CH4 /N2 and CH4 /Ar gas mixtures by means of mass spectrometry. The main reaction scheme is production of H2 by fragmenta-tion of CH4 , but also production of larger hydrocarbons like Cn Hm with n up to 10 including formation of different functional CN groups is observed. [1] A. Majumdar and R. Hippler, Development of dielectric barrier discharge plasma processing apparatus for mass spectrometry and thin film deposition, Rev. Sci. Instrum. 78, 075103 (2007) [2] H.T. Do, G. Thieme, M. Frühlich, H. Kersten, and R. Hippler, Ion Molecule and Dust Particle Formation in Ar/CH4 , Ar/C2 H2 and Ar/C3 H6 Radio-frequency Plasmas, Contrib. Plasma Phys. 45, No. 5-6, 378-384 (2005)

  13. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  14. Laboratory simulation of intact capture of cometary and asteroidal dust particles in ISAS

    NASA Technical Reports Server (NTRS)

    Fujiwara, A.; Nakamura, A.; Kadono, T.

    1994-01-01

    In order to develop a collector for intact capturing of cometary dust particles in the SOCCER mission and regolith dust particles released from asteroid surfaces by the impact of projectiles launched from a flying-by spacecraft, various kinds of materials as the collector candidates have been exposed to hypervelocity projectiles in our laboratory. Data based on the penetration characteristics of various materials (penetration depth, hole profile, effectiveness for intact capturing) are greatly increased. The materials tested for these simulation experiments include various kinds of low-density media and multisheet stacks; these are foamed plastics (polystyrene 0.01 g/cc), silica aerogels (0.04 g/cc), air (0.001 g/cc), liquid, and multisheet stack consisting of thin Al sheets (thickness 0.002 to 0.1 mm) or polyethylene sheets. Projectiles used are spheres or cylinders of nylon, polycarbonate, basalt, copper, iron, and volatile organics (e.g.,paradichlorobenzene) of size ranging from 30 micrometers to 1 cm launched by a two-stage light gas gun and a rail gun in ISAS at velocity up to about 7 km/s. Some results obtained by using nylon projectiles of velocity less than about 5 km/s are presented; the penetration depth vs. bulk density of the collector material for several kinds of materials and the velocity at which the projectiles begin to fragment vs. material density for foamed polystyrene.

  15. [Free crystalline silica: a comparison of methods for its determination in total dust].

    PubMed

    Maciejewska, Aleksandra; Szadkowska-Stańczyk, Irena; Kondratowicz, Grzegorz

    2005-01-01

    The major objective of the study was to compare and investigate the usefulness of quantitative analyses of free crystalline silica (FCS) in the assessment of dust exposure in samples of total dust of varied composition, using three methods: chemical method in common use in Poland; infrared spectrometry; and x-ray powder diffraction. Mineral composition and FCS contents were investigated in 9 laboratory samples of raw materials, materials, and industrial wastes, containing from about 2 to over 80% of crystalline silica and reduced to particles of size corresponding with that of total dust. Sample components were identified using XRD and FT-IR methods. Ten independent determinations of FCS with each of the three study methods were performed in dust samples. An analysis of linear correlation was applied to investigate interrelationship between mean FCS determinations. In analyzed dust samples, along with silica dust there were numerous minerals interfering with silica during the quantitative analysis. Comparison of mean results of FCS determinations showed that the results obtained using the FT-IR method were by 12-13% lower than those obtained with two other methods. However, the differences observed were within the limits of changeability of results associated with their precision and dependence on reference materials used. Assessment of occupational exposure to dusts containing crystalline silica can be performed on the basis of quantitative analysis of FCS in total dusts using each of the compared methods. The FT-IR method is most appropriate for the FCS determination in samples of small amount of silica or collected at low dust concentrations; the XRD method for the analysis of multicomponent samples; and the chemical method in the case of medium and high FCS contents in samples or high concentrations of dusts in the work environment.

  16. Laboratory study of PCB transport from primary sources to settled dust

    EPA Science Inventory

    Transport of house dust and Arizona Test Dust on polychlorinated biphenyl (PCB)-containing panels and PCB-free panels was investigated in a 30-m3 stainless steel chamber. The PCB-containing panels were aluminum sheets coated with a PCB-spiked, oil-based primer or two-part polysul...

  17. Lunar dust charging by photoelectric emissions

    NASA Astrophysics Data System (ADS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-05-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with

  18. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with

  19. Lunar Dust Charging by Photoelectric Emissions

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2007-01-01

    The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield

  20. Biopersistent Granular Dust and Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis

    PubMed Central

    Brüske, Irene; Thiering, Elisabeth; Heinrich, Joachim; Huster, Katharina; Nowak, Dennis

    2013-01-01

    Objective Applying a systematic review to identify studies eligible for meta-analysis of the association between occupational exposure to inorganic dust and the development of chronic obstructive pulmonary disease (COPD), and conducting a meta-analysis. Data Sources Searches of PubMed and Embase for the time period 1970–2010 yielded 257 cross-sectional and longitudinal studies on people exposed to inorganic dust at the workplace with data on lung function. These studies were independently abstracted and evaluated by two authors; any disagreement was resolved by a third reviewer. Of 55 publications accepted for meta-analysis, 27 investigated the effects of occupational exposure to biopersistent granular dust (bg-dust). Methods A random effects meta-analysis allowed us to provide an estimate of the average exposure effect on spirometric parameters presented in forest plots. Between-study heterogeneity was assessed by using I2 statistics, with I2>25% indicating significant heterogeneity. Publication bias was investigated by visual inspection of funnel plots. The influence of individual studies was assessed by dropping the respective study before pooling study-specific estimates. Results The mean FEV1 of workers exposed to bg-dust was 160 ml lower or 5.7% less than predicted compared to workers with no/low exposure. The risk of an obstructive airway disease—defined as FEV1/FVC < 70%—increased by 7% per 1 mg· m-3 respirable bg-dust. Conclusion Occupational inhalative exposure to bg-dust was associated with a statistically significant decreased FEV1 and FEV1/FVC revealing airway obstruction consistent with COPD. PMID:24278358

  1. A critical evaluation of combustible/explosible dust testing methods-part 1

    USDA-ARS?s Scientific Manuscript database

    Tests were conducted by the Center for Agricultural Air Quality Engineering and Science (CAAQES) and by Safety Consulting Engineers Inc. (SCE) to determine if dust found in cotton gins (gin dust) would serve as fuel for dust explosions. In other words, is gin dust explosible? The laboratory tests us...

  2. Characteristics of dust voids in a strongly coupled laboratory dusty plasma

    NASA Astrophysics Data System (ADS)

    Bailung, Yoshiko; Deka, T.; Boruah, A.; Sharma, S. K.; Pal, A. R.; Chutia, Joyanti; Bailung, H.

    2018-05-01

    A void is produced in a strongly coupled dusty plasma by inserting a cylindrical pin (˜0.1 mm diameter) into a radiofrequency discharge argon plasma. The pin is biased externally below the plasma potential to generate the dust void. The Debye sheath model is used to obtain the sheath potential profile and hence to estimate the electric field around the pin. The electric field force and the ion drag force on the dust particles are estimated and their balance accounts well for the maintenance of the size of the void. The effects of neutral density as well as dust density on the void size are studied.

  3. Blowing dust and highway safety in the southwestern United States: Characteristics of dust emission "hotspots" and management implications.

    PubMed

    Li, Junran; Kandakji, Tarek; Lee, Jeffrey A; Tatarko, John; Blackwell, John; Gill, Thomas E; Collins, Joe D

    2018-04-15

    Despite the widespread media attention of chain-reaction traffic incidents and property damage caused by windblown dust in the U.S. and elsewhere in the world, very few studies have provided in-depth analysis on this issue. Remote sensing and field observations reveal that wind erosion in the southwestern U.S. typically occurs in localized source areas, characterized as "hotspots", while most of the landscape is not eroding. In this study, we identified the spatial and temporal distribution patterns of hotspots that may contribute dust blowing onto highways in the southwestern U.S. We further classified the hotspots for the potential of blowing dust production based upon field observations and wind erosion modeling. Results of land use and land cover show that shrubland, grassland, and cropland accounted for 42%, 31%, and 21% of the overall study area, respectively. However, of the 620 total hotspots identified, 164 (26%), 141 (22%), and 234 (38%) are located on shrubland, grassland, and cropland, respectively. Barren land represented 0.9% of the land area but 8% of the dust hotspots. While a majority of these hotspots are located close to highways, we focused on 55 of them, which are located <1km to adjacent highways and accessible via non-private roads. Field investigations and laboratory analysis showed that soils at these hotspot sites are dominated by sand and silt particles with threshold shear velocities ranging from 0.17-0.78m s -1 , largely depending on the land use of the hotspot sites. Dust emission modeling showed that 13 hotspot sites could produce annual emissions >3.79kg m -2 , yielding highly hazardous dust emissions to ground transportation with visibility <200m. Results of location, timing, and magnitude of the dust production at the hotspots are critical information for highway authorities to make informed and timely management decisions when wind events strike. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Viking Lander image analysis of Martian atmospheric dust

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Ockert-Bell, Maureen E.; Shepard, Michael K.

    1995-01-01

    We have reanalyzed three sets of Viking Lander 1 and 2 (VL1 and VL2) images of the Martian atmosphere to better evaluate the radiative properties of the atmospheric dust particles. The properties of interest are the first two moments of the size distribution, the single-scattering albedo, the dust single-scattering phase function, and the imaginary index of refraction. These properties provide a good definition of the influence that the atmospheric dust has on heating of the atmosphere. Our analysis represents a significant improvement over past analyses (Pollack et al. 1977, 1979) by deriving more accurate brightness closer to the sun, by carrying out more precise analyses of the data to acquire the quantities of interest, and by using a better representation of scattering by nonspherical particles. The improvements allow us to better define the diffraction peak and hence the size distribution of the particles. For a lognormal particle size distribution, the first two moments of the size distribution, weighted by the geometric cross section, are found. The geometric cross-section weighted mean radius r(sub eff) is found to be 1.85 +/- 0.3 micrometers at VL2 during northern summer when dust loading was low and 1.52 +/- 0.3 micrometers at VL1 during the first dust storm. In both cases the best cross-section weighted mean variance nu(sub eff) of the size distribution is equal to 0.5 +/- 0.2 micrometers. The changes in size distribution, and thus radiative properties, do not represent a substantial change in solar energy deposition in the atmosphere over the Pollak et al. (1977, 1979) estimates.

  5. Viking Lander image analysis of Martian atmospheric dust

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Ockert-Bell, Maureen E.; Shepard, Michael K.

    1995-01-01

    We have reanalyzed three sets of Viking Lander 1 and 2 (VL1 and VL2) images of the Martian atmosphere to better evaluate the radiative properties of the atmospheric dust particles. The properties of interest are the first two moments of the size distribution, the single-scattering albedo, the dust single-scattering phase function, and the imaginary index of refraction. These properties provide a good definition of the influence that the atmospheric dust has on heating of the atmosphere. Our analysis represents a significant improvement over past analyses (Pollack et al. 1977,1979) by deriving more accurate brightnesses closer to the sun, by carrying out more precise analyses of the data to acquire the quantities of interest, and by using a better representation of scattering by nonspherical particles. The improvements allow us to better define the diffraction peak and hence the size distribution of the particles. For a lognormal particle size distribution, the first two moments of the size distribution, weighted by the geometric cross section, are found. The geometric cross-section weighted mean radius (r(sub eff)) is found to be 1.85 +/- 0.3 microns at VL2 during northern summer when dust loading was low and 1.52 +/- 0.3 microns at VL1 during the first dust storm. In both cases the best cross-section weighted mean variance (nu(eff)) of the size distribution is equal to 0.5 +/- 0.2 microns. The changes in size distribution, and thus radiative properties, do not represent a substantial change in solar energy deposition in the atmosphere over the Pollack et al. (1977,1979) estimates.

  6. Method development for analysis of urban dust using scanning electron microscopy with energy dispersive x-ray spectrometry to detect the possible presence of world trade center dust constituents

    USGS Publications Warehouse

    Bern, A.M.; Lowers, H.A.; Meeker, G.P.; Rosati, J.A.

    2009-01-01

    The collapse of the World Trade Center Towers on September 11, 2001, sent dust and debris across much of Manhattan and in the surrounding areas. Indoor and outdoor dust samples were collected and characterized by U.S. Geological Survey (USGS) scientists using scanning electron microscopy with energy-dispersive spectrometry (SEM/EDS). From this characterization, the U.S. Environmental Protection Agency and USGS developed a particulate screening method to determine the presence of residual World Trade Center dust in the indoor environment using slag wool as a primary "signature". The method describes a procedure that includes splitting, ashing, and sieving of collected dust. From one split, a 10 mg/mL dust/ isopropanol suspension was prepared and 10-30 ??L aliquots of the suspension placed on an SEM substrate. Analyses were performed using SEM/EDS manual point counting for slag wool fibers. Poisson regression was used to identify some of the sources of uncertainty, which are directly related to the small number of fibers present on each sample stub. Preliminary results indicate that the procedure is promising for screening urban background dust for the presence of WTC dust. Consistent sample preparation of reference materials and samples must be performed by each laboratory wishing to use this method to obtain meaningful and accurate results. ?? 2009 American Chemical Society.

  7. Direct-reading inhalable dust monitoring--an assessment of current measurement methods.

    PubMed

    Thorpe, Andrew; Walsh, Peter T

    2013-08-01

    Direct-reading dust monitors designed specifically to measure the inhalable fraction of airborne dust are not widely available. Current practice therefore often involves comparing the response of photometer-type dust monitors with the concentration measured with a reference gravimetric inhalable sampler, which is used to adjust the dust monitor measurement. However, changes in airborne particle size can result in significant errors in the estimation of inhalable concentration by this method. The main aim of this study was to assess how these dust monitors behave when challenged with airborne dust containing particles in the inhalable size range and also to investigate alternative dust monitors whose response might not be as prone to variations in particle size or that could be adapted to measure inhalable dust concentration. Several photometer-type dust monitors and a Respicon TM, tapered element oscillating microbalance (TEOM) personal dust monitor (PDM) 3600, TEOM 1400, and Dustrak DRX were assessed for the measurement of airborne inhalable dust during laboratory and field trials. The PDM was modified to allow it to sample and measure larger particles in the inhalable size range. During the laboratory tests, the dust monitors and reference gravimetric samplers were challenged inside a large dust tunnel with aerosols of industrial dusts known to present an inhalable hazard and aluminium oxide powders with a range of discrete particle sizes. A constant concentration of each dust type was generated and peak concentrations of larger particles were periodically introduced to investigate the effects of sudden changes in particle size on monitor calibration. The PDM, Respicon, and DataRam photometer were also assessed during field trials at a bakery, joinery, and a grain mill. Laboratory results showed that the Respicon, modified PDM, and TEOM 1400 observed good linearity for all types of dust when compared with measurements made with a reference IOM sampler; the

  8. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  9. Final Reports of the Stardust ISPE: Seven Probable Interstellar Dust Particles

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Sans Tresseras, Juan-Angel; Westphal, Andrew J.; Stroud, Rhonda M.; Bechtel, Hans A.; Brenker, Frank E.; Butterworth, Anna L.; Flynn, George J.; Frank, David R.; Gainsforth, Zack; hide

    2014-01-01

    The Stardust spacecraft carried the first spaceborne collector specifically designed to capture and return a sample of contemporary interstellar dust to terrestrial laboratories for analysis [1]. The collector was exposed to the interstellar dust stream in two periods in 2000 and 2002 with a total exposure of approximately 1.8 10(exp 6) square meters sec. Approximately 85% of the collector consisted of aerogel, and the remainder consisted of Al foils. The Stardust Interstellar Preliminary Examination (ISPE) was a consortiumbased effort to characterize the collection in sufficient detail to enable future investigators to make informed sample requests. Among the questions to be answered were these: How many impacts are consistent in their characteristics with interstellar dust, with interplanetary dust, and with secondary ejecta from impacts on the spacecraft? Are the materials amorphous or crystalline? Are organics detectable? An additional goal of the ISPE was to develop or refine the techniques for preparation, analysis, and curation of these tiny samples, expected to be approximately 1 picogram or smaller, roughly three orders of magnitude smaller in mass than the samples in other small particle collections in NASA's collections - the cometary samples returned by Stardust, and the collection of Interplanetary Dust Particles collected in the stratosphere.

  10. Dust That's Worth Keeping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazi, A

    2006-01-25

    Images taken of interstellar space often display a colorful canvas of portions of the electromagnetic spectrum. Dispersed throughout the images are interstellar clouds of dust and gas--remnants ejected from stars and supernovae over billions and billions of years. For more than 40 years, astronomers have observed that interstellar dust exhibits a consistent effect at a spectral wavelength of 2,175 angstroms, the equivalent of 5.7 electronvolts in energy on the electromagnetic spectrum. At this wavelength, light from stars is absorbed by dust in the interstellar medium, blocking the stars light from reaching Earth. The 2,175-angstrom feature, which looks like a bumpmore » on spectra, is the strongest ultraviolet-visible light spectral signature of interstellar dust and is visible along nearly every observational line of sight. Scientists have sought to solve the mystery of what causes the 2,175-angstrom feature by reproducing the effect in the laboratory. They speculated a number of possibilities, including fullerenes (buckyballs), nanodiamonds, and even interstellar organisms. However, none of these materials fits the data for the unique spectral feature. Limitations in the energy and spatial resolution achievable with electron microscopes and ion microprobes--the two main instruments used to study samples of dust--have also prevented scientists from finding the answer. A collaborative effort led by Livermore physicist John Bradley and funded by the National Aeronautics and Space Administration (NASA) has used a new-generation transmission electron microscope (TEM) and nanoscale ion microprobe to unlock the mystery. The Livermore group includes physicists Zu Rong Dai, Ian Hutcheon, Peter Weber, and Sasa Bajt and postdoctoral researchers Hope Ishii, Giles Graham, and Julie Smith. They collaborated with the University of California at Davis (UCD), Lawrence Berkeley National Laboratory, Washington University's Laboratory for Space Sciences in St. Louis, and NASA

  11. Dust That's Worth Keeping

    NASA Technical Reports Server (NTRS)

    Hazi, A.

    2006-01-01

    Images taken of interstellar space often display a colorful canvas of portions of the electromagnetic spectrum. Dispersed throughout the images are interstellar clouds of dust and gas--remnants ejected from stars and supernovae over billions and billions of years. For more than 40 years, astronomers have observed that interstellar dust exhibits a consistent effect at a spectral wavelength of 2,175 angstroms, the equivalent of 5.7 electronvolts in energy on the electromagnetic spectrum. At this wavelength, light from stars is absorbed by dust in the interstellar medium, blocking the stars light from reaching Earth. The 2,175-angstrom feature, which looks like a bump on spectra, is the strongest ultraviolet-visible light spectral signature of interstellar dust and is visible along nearly every observational line of sight. Scientists have sought to solve the mystery of what causes the 2,175-angstrom feature by reproducing the effect in the laboratory. They speculated a number of possibilities, including fullerenes (buckyballs), nanodiamonds, and even interstellar organisms. However, none of these materials fits the data for the unique spectral feature. Limitations in the energy and spatial resolution achievable with electron microscopes and ion microprobes--the two main instruments used to study samples of dust--have also prevented scientists from finding the answer. A collaborative effort led by Livermore physicist John Bradley and funded by the National Aeronautics and Space Administration (NASA) has used a new-generation transmission electron microscope (TEM) and nanoscale ion microprobe to unlock the mystery. The Livermore group includes physicists Zu Rong Dai, Ian Hutcheon, Peter Weber, and Sasa Bajt and postdoctoral researchers Hope Ishii, Giles Graham, and Julie Smith. They collaborated with the University of California at Davis (UCD), Lawrence Berkeley National Laboratory, Washington University's Laboratory for Space Sciences in St. Louis, and NASA's Ames

  12. Polluted Dust Classification and Its Optical Properties Analysis Using CALIPSO Data and Simulation

    NASA Astrophysics Data System (ADS)

    Ding, J.; Yang, P.; Holz, R.; Vaughan, M. A.; Hu, Y.

    2015-12-01

    In CALIPSO Level 2 aerosol data, dust particles are classified into two subtypes, namely, pure dust and polluted dust based on lidar backscatter, depolarization ratio and surface types. In this research, the polluted dust subtype is found to have two distinct modes in terms of integrated depolarization ratio (IDR) and integrated total color ratio (ICR). Dust with smaller IDR and ICR occurs mainly over areas with strong smoke emissions such as industrial cities. This kind of polluted dust originating from East Asia is also found over the Pacific Ocean. In contrast, the other type originating from the Saharan desert with larger IDR and ICR occurs mainly over the Atlantic Ocean. The disparities of IDR and ICR may result from different pollutants. The polluted dust with smaller ICR and IDR should have stronger absorption of light and may contain black carbon. Other chemical compounds such as sea salts may account for polluted dust with larger ICR and IDR. To further separate the types of polluted dust, cluster analysis is applied to determine the centroid of each type in terms of IDR and ICR. Furthermore, scattering models of dust mixed with various pollutants are constructed to be included in a CALIPSO simulator. The simulated IDR and ICR values are compared with data to retrieve the chemical compositions of polluted dust. The difference of polluted dust over the Pacific and Atlantic Ocean provides new evidence about long-range transport of Asian dust to North America. The distribution of dust polluted by black carbon is determined, which can improve knowledge about the effect of black carbon on the earth's radiation budget.

  13. The Micro Imaging and Dust Analysis System - New Possibilities for Space Sciences

    NASA Astrophysics Data System (ADS)

    Schmied, R.; Torkar, K..; Jeszenszky, H.; Romstedt, J.; Mannel, T.; Bentley, M. S.

    2015-10-01

    The Rosetta mission addresses a range of fundamental questions in Solar System and cometary science and the MIDAS instrument on-board the orbiter is one of the dust analysis systems. While GIADA analyses the dust flux and spatial distribution as a function of time and space and COSIMA investigates the elemental composition of cometary grains, MIDAS is a unique high resolution Atomic Force Microscope (AFM) combined with a dust collection and handling system designed to reveal the three-dimensional topographical structure of nanoand micrometer sized dust particles [1]. In this work we concentrate on the instrumental functionality and limitations coming from the constcution and operation dealing with an AFM fabricated nearly 20 years ago and operating in a harsh environment.

  14. Electrodynamic Dust Shield for Lunar/ISS Experiment Project

    NASA Technical Reports Server (NTRS)

    Zeitlin, Nancy; Calle, Carlos; Hogue, Michael; Johansen, Michael; Mackey, Paul

    2015-01-01

    The Electrostatics and Surface Physics Laboratory at Kennedy Space Center is developing a dust mitigation experiment and testing it on the lunar surface and on the International Space Station (ISS). The Electrodynamic Dust Shield (EDS) clears dust off surfaces and prevents accumulation by using a pattern of electrodes to generate a non-uniform electric field over the surface being protected. The EDS experiment will repel dust off materials such as painted Kapton and glass to demonstrate applications for thermal radiators, camera lenses, solar panels, and other hardware and equipment.

  15. Nano-Dust Analyzer for the detection and chemical composition measurement particles originating from near the Sun

    NASA Astrophysics Data System (ADS)

    OBrien, L. E.; Gemer, A.; Gruen, E.; Collette, A.; Horanyi, M.; Moebius, E.; Auer, S.; Juhasz, A.; Srama, R.; Sternovsky, Z.

    2012-12-01

    We report the development of the Nano-Dust Analyzer (NDA) instrument and the results from the first laboratory testing and calibration. The two STEREO spacecrafts have indicated that nano-sized dust particles, potentially with very high flux, are delivered to 1 AU from the inner solar system [Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009]. These particles are generated by collisional grinding or evaporation near the Sun and subsequently accelerated outward by the solar wind. The temporal variability and directionality are governed by conditions in the inner heliosphere and the mass analysis of the particles reveals the chemical differentiation of solid matter near the Sun. NDA is a highly sensitive dust analyzer that is developed under NASA's Heliophysics program. NDA is a linear time-of-flight mass analyzer that modeled after Cosmic Dust Analyzer (CDA) on Cassini and the more recent Lunar Dust EXperiment (LDEX) for the upcoming LADEE mission to the Moon. The ion optics of the instrument is optimized through numerical modeling. By applying technologies implemented in solar wind instruments and coronagraphs, the highly sensitive dust analyzer will be able to be pointed towards the solar direction. A laboratory prototype is built and tested and calibrated at the dust accelerator facility at the University of Colorado, Boulder, using particles with from 1 to over 50 km/s velocity.

  16. Characterization of Dust Emissions from an Actively Retreating Glacier

    NASA Astrophysics Data System (ADS)

    King, J.

    2017-12-01

    The Kaskawulsh glacier in Yukon, Canada, part of the St. Elias Mountain Glacier system, is experiencing increased ablation from rising air temperatures and in 2016 changed its main fluvial outlet (the Slims River and Kluane Lake) for the first time in over 300 years to drain into the Gulf of Alaska. In the recent earth history, changes in temperature within glaciated valleys have produced large amounts of wind-blown dust, evident in layers of loess within surrounding soils. Mineral aerosols in the atmosphere affect the environment of the earth through their direct effect on solar radiation, modifying cloud processes, and ground insolation, while the deposition of mineral aerosols can provide essential nutrients for ocean and terrestrial productivity. This potential drastic reduction in fluvial inputs into Kluane Lake will result in the rapid exposure of deltaic sediments and extended periods of dust emissions, similar to those suggested to occur during the rapid warming in the early Holocene. This drastic change already starting to occur makes this system an excellent natural laboratory for investigating the impact of dust storms under past and future climates. This research is focused on analyzing the connections between proglacial valley dust emissions and glacier dynamics, within ancient and modern climates. Measurements made directly in the valley of dust emission frequency, local climatological data analysis, and a remote sensing analysis approach in 2016 and 2017, have been combined to provide an insight into the effects that rapid changes in proglacial systems can have on dust dynamics. Strong interdependencies exist between glacier mass and diurnal winds, as well as air temperature and river levels, that combine to control the magnitude and frequency of dust emissions. The methodology utilized in this study could be applied to similar regions to produce estimates of dust emissions where direct measurements are minimal or difficult to attain, and can be fed

  17. Flying Through Dust From Asteroids

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment

  18. Reactive organic species on natural dust

    NASA Astrophysics Data System (ADS)

    Batsaikhan, A.; Schoeler, H.; Williams, J.

    2008-05-01

    Annually 1000-3000 Tg mineral dust aerosol are emitted into the atmosphere, and transported over the oceans from one continent to the other. During the transport dust particles interact with components in the marine atmosphere and also with seawater as they fall into the ocean. Increased methyl iodide concentrations were observed during a field campaign on the Atlantic Ocean when dust storms occurred. Volatile halogenated organic compounds (VHOC) are photolyzed to produce reactive halogen species which are responsible for ozone depletion. An abiotic production mechanism for VHOC, involving humic-like substance (HULIS), iron and halide, was supposed to produce methyl iodide through the interaction of dust particles with seawater as all necessary ingredients were present. The main goal of this study was to test this hypothesis and to further elucidate the process. For this, simple dust-seawater addition experiments in headspace glasses were conducted in the laboratory, following a purge-and-trap GC-MS analysis of the headspace gas. Dust samples were collected in the source regions in southern Algeria and the Gobi Desert and, as representatives for aeolian dust, samples from Cape Verde Island and Lanzarote Island were used. To exclude the biological contribution, sterilized samples were also employed in this study. As assumed, methyl iodide was produced abiotically and the concentration increased tenfold after addition of Fe (III) within half an hour. Methylene chloride was also produced abiotically along with methyl iodide. In contrast to methyl iodide and methylene chloride, methyl chloride and isoprene were produced biologically, provided the production occurred after at least 24 hours of interaction of only non-sterilized samples with seawater. If the microorganisms responsible for the production of isoprene are common soil organisms found everywhere in the world, this process can be the reason for a hitherto not fully explained increase in atmospheric isoprene

  19. Nonlinear screening of dust grains and structurization of dusty plasma: II. formation and stability of dust structures

    NASA Astrophysics Data System (ADS)

    Tsytovich, V. N.; Gusein-zade, N. G.; Ignatov, A. M.

    2017-10-01

    The second part of the review on dust structures (the first part was published in Plasma Phys. Rep. 39, 515 (2013)) is devoted to experimental and theoretical studies on the stability of structures and their formation from the initially uniform dusty plasma components. The applicability limits of theoretical results and the role played by nonlinearity in the screening of dust grains are considered. The importance of nonlinearity is demonstrated by using numerous laboratory observations of planar clusters and volumetric dust structures. The simplest compact agglomerates of dust grains in the form of stable planar clusters are discussed. The universal character of instability resulting in the structurization of an initially uniform dusty plasma is shown. The fundamental correlations described in the first part of the review, supplemented with effects of dust inertia and dust friction by the neutral gas, are use to analyze structurization instability. The history of the development of theoretical ideas on the physics of the cluster formation for different types of interaction between dust grains is described.

  20. Testing of a Plasmadynamic Hypervelocity Dust Accelerator

    NASA Astrophysics Data System (ADS)

    Ticos, Catalin M.; Wang, Zhehui; Dorf, Leonid A.; Wurden, G. A.

    2006-10-01

    A plasmadynamic accelerator for microparticles (or dust grains) has been designed, built and tested at Los Alamos National laboratory. The dust grains are expected to be accelerated to hypervelocities on the order of 1-30 km/s, depending on their size. The key components of the plasmadynamic accelerator are a coaxial plasma gun operated at 10 kV, a dust dispenser activated by a piezoelectric transducer, and power and remote-control systems. The coaxial plasma gun produces a high density (10^18 cm-3) and low temperature (˜ 1 eV) plasma in deuterium ejected by J x B forces, which provides drag on the dust particles in its path. Carbon dust particles will be used, with diameters from 1 to 50 μm. The plasma parameters produced in the coaxial gun are presented and their implication to dust acceleration is discussed. High speed dust will be injected in the National Spherical Torus Experiment to measure the pitch angle of magnetic field lines.

  1. The influence of coal physical and mechanical properties and mining energy consumption factor on airborne respirable dust level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koziel, A.; Malec, M.; Wardas, E.

    1999-07-01

    The fact that there are not any explicitly defined relationships describing the influence of physical and mechanical properties of coal and of energy consumption factor on dust level prompted Polish and American investigators to carry out a joint research project within the framework of the US-Poland Maria Sklodowska-Curie Joint Fund II. The paper presents methods used to perform tests under laboratory conditions at the Pittsburgh Research Laboratory as well as under real conditions in the course of coal cutting in Polish coal mines. Measuring systems and results of the tests are described. The analysis carried out has provided a basismore » for determining the influence of specified operational parameters, i.e., coal compression strength R{sub c}, coal cuttability factor A, energy consumption factor of mining E{sub uc}, load of cutting drums as well as of laboratory parameters, i.e., grindability, coal breakage characteristics (product size distribution), moisture content, volatile and fixed carbon content, specific energy of crushing on a level of generated dust (total dust, specific dust and airborne respirable dust). The effect of technical parameters, i.e., face height, airflow velocity in a face, amount and pressure of water in spraying systems of longwall shearers, depth of cut taken by a cutting drum and application of powered cowls on dust level under operating conditions are also presented. Results of the tests made it possible to work out guidelines relating to methods and technology for effective reduction of dust emission on longwall faces.« less

  2. Space Environmental Testing of the Electrodynamic Dust Shield Technology

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mackey, P. J.; Hogue, M. D.; Johansen, M .R.; Yim, H.; Delaune, P. B.; Clements, J. S.

    2013-01-01

    NASA's exploration missions to Mars and the moon may be jeopardized by dust that will adhere to surfaces of (a) Optical systems, viewports and solar panels, (b) Thermal radiators, (c) Instrumentation, and (d) Spacesuits. We have developed an active dust mitigation technology, the Electrodynamic Dust Shield, a multilayer coating that can remove dust and also prevents its accumulation Extensive testing in simulated laboratory environments and on a reduced gravity flight shows that high dust removal performance can be achieved Long duration exposure to the space environment as part of the MISSE-X payload will validate the technology for lunar missions.

  3. Reliability on intra-laboratory and inter-laboratory data of hair mineral analysis comparing with blood analysis.

    PubMed

    Namkoong, Sun; Hong, Seung Phil; Kim, Myung Hwa; Park, Byung Cheol

    2013-02-01

    Nowadays, although its clinical value remains controversial institutions utilize hair mineral analysis. Arguments about the reliability of hair mineral analysis persist, and there have been evaluations of commercial laboratories performing hair mineral analysis. The objective of this study was to assess the reliability of intra-laboratory and inter-laboratory data at three commercial laboratories conducting hair mineral analysis, compared to serum mineral analysis. Two divided hair samples taken from near the scalp were submitted for analysis at the same time, to all laboratories, from one healthy volunteer. Each laboratory sent a report consisting of quantitative results and their interpretation of health implications. Differences among intra-laboratory and interlaboratory data were analyzed using SPSS version 12.0 (SPSS Inc., USA). All the laboratories used identical methods for quantitative analysis, and they generated consistent numerical results according to Friedman analysis of variance. However, the normal reference ranges of each laboratory varied. As such, each laboratory interpreted the patient's health differently. On intra-laboratory data, Wilcoxon analysis suggested they generated relatively coherent data, but laboratory B could not in one element, so its reliability was doubtful. In comparison with the blood test, laboratory C generated identical results, but not laboratory A and B. Hair mineral analysis has its limitations, considering the reliability of inter and intra laboratory analysis comparing with blood analysis. As such, clinicians should be cautious when applying hair mineral analysis as an ancillary tool. Each laboratory included in this study requires continuous refinement from now on for inducing standardized normal reference levels.

  4. Dust Measurements by the Student Dust Counter (SDC) onboard the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    James, David; Horanyi, Mihaly; Poppe, Andrew

    The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (7/2008), VSDC will have operated for about 500 days, covering an approximate distance of 1.2 to 10.5 AU. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses, Galileo and Cassini.

  5. Data analysis and interpretation of lunar dust exosphere

    NASA Technical Reports Server (NTRS)

    Andrews, George A., Jr.

    1992-01-01

    The lunar horizon glow observed by Apollo astronauts and captured on film during the Surveyor mission is believed to result from the scattering of sunlight off lunar fines suspended in a dust layer over the lunar surface. For scale heights on the order of tens of kilometers, it is anticipated that the size of the dust particles will be small enough to admit Rayleigh scattering. Such events would result in scattered light which is polarized to a degree which is a function of observation angle and produce spectra containing large high frequency components ('bluing'). Believing these signatures to be observable from ground based telescopes, observational data has been collected from McDonald Observatory and the task of reduction and analysis of this data is the focus of the present report.

  6. Constraining the Origin of Impact Craters on Al Foils from the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Stroud, Rhonda M.; Achilles, Cheri; Allen, Carlton; Ansari, Asna; Bajt, Sasa; Bassim, Nabil; Bastien, Ron S.; Bechtel, H. A.; Borg, Janet; Brenker, Frank E.; hide

    2012-01-01

    Preliminary examination (PE) of the aerogel tiles and Al foils from the Stardust Interstellar Dust Collector has revealed multiple impact features. Some are most likely due to primary impacts of interstellar dust (ISD) grains, and others are associated with secondary impacts of spacecraft debris, and possibly primary impacts of interplanetary dust particles (IDPs) [1, 2]. The current focus of the PE effort is on constraining the origin of the individual impact features so that definitive results from the first direct laboratory analysis of contemporary ISD can be reported. Because crater morphology depends on impacting particle shape and composition, in addition to the angle and direction of impact, unique particle trajectories are not easily determined. However, elemental analysis of the crater residues can distinguish real cosmic dust from the spacecraft debris, due to the low cosmic abundance of many of the elements in the spacecraft materials. We present here results from the elemental analysis of 24 craters and discuss the possible origins of 4 that are identified as candidate ISD impacts

  7. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.; Taylor, Larry

    2008-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. NASA established the Lunar Airborne Dust Toxicity Advisory Group (LADTAG) to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Because the toxicity of lunar dust is not known, LADTAG has recommended investigating its toxicity in the lungs of laboratory animals. After receiving this recommendation, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust in exposed rodents. The rodent pulmonary toxicity studies proposed here are the same as those proposed by the LADTAG. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal instillation (ITI). This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. We succeeded in completing an ITI study on JSC-1 lunar dust simulant in mice (Lam et al., Inhalation Toxicology 14:901-916, 2002, and Inhalation Toxicology 14: 917-928, 2002), and have conducted a pilot ITI study to examine the acute toxicity of an Apollo lunar (highland) dust sample. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies have been planned to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The ITI results will also be

  8. Dust Storm Monitoring Using Satellite Observatory and Numerical Modeling Analysis

    NASA Astrophysics Data System (ADS)

    Taghavi, Farahnaz

    In recent years, the frequency of dust pollution events in the Iran Southwest are increased which caused huge damage and imposed a negative impacts on air quality, airport traffic and people daily life in local areas. Dust storms in this area usually start with the formation of a low-pressure center over the Arabian Peninsula. The main objectives of this study is to asses and monitor the movement of aerosols and pollutions from origin source to local areas using satellite imagery and numerical modeling analysis. Observational analyses from NCEP such as synoptic data (Uwind,Vwind,Vorticity and Divergence Fields), upper air radiosonde, measured visibility distributions, land cover data are also used in model comparisons to show differences in occurrence of dust events. The evolution and dynamics of this phenomena are studied on the based a method to modify the initial state of NWP output using discrepancies between dynamic fields and WV imagery in a grid. Results show that satellite images offers a means to control the behavior of numeric models and also the model using land cover data improving the wind-blown dust modeling.

  9. Chemical composition and morphology of welding fume particles and grinding dusts.

    PubMed

    Karlsen, J T; Farrants, G; Torgrimsen, T; Reith, A

    1992-05-01

    Elemental composition and morphology of pure manual metal arc (MMA) welding fumes, pure grinding dust, and combined fume/dust air samples were collected and determined separately under semilaboratory conditions. The base material was stainless steel. The purpose of the present study was to create a "synthetic" work situation under semilaboratory conditions by combining one grinding period and two MMA welding periods and comparing these results with results during welding in a workshop. The duty cycles of pure welding and of pure grinding were also observed. A comparison was also made between metal inert gas (MIG) and MMA welding on stainless steel as well as a nickel-rich alloy under regular conditions. The amount of collected material was determined by weighing the membrane filters before and after exposure, and the element contents were determined by atomic spectroscopy. Other transmission electron microscopy (TEM) filters were used for TEM and computer-image analysis, in which the amount of collected material and its morphological characteristics were observed. The arcing time and the consumption of filler material were estimated for different kinds of electrodes. Chemical analysis showed that the contents of manganese and total chromium were lower in grinding dust than in welding fumes. The contents of hexavalent chromium, Cr(VI), in grinding dust were undetectable. Samples collected in welding shops where concomitant grinding was performed contained about 30% less Cr(VI) than those collected under laboratory conditions during welding only. The sizes and shapes of the particles depend on the welding process and distance of collection from the plume of the fume. To compare laboratory experiments with regular welding situations, the experiment must resemble industrial welding.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator.

    PubMed

    Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A; Munsat, Tobin; Plane, John M C; Sternovsky, Zoltan

    2017-03-01

    A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N 2 , air, CO 2 , and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.

  11. Experimental setup for the laboratory investigation of micrometeoroid ablation using a dust accelerator

    NASA Astrophysics Data System (ADS)

    Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horányi, Mihály; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan

    2017-03-01

    A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 km/s. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 cm along the ablating particles' path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities >20 km/s, and are reported by Thomas et al. [Geophys. Res. Lett. 43, 3645 (2016)]. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 cm and 90 ns. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.

  12. Experimental Setup for the Laboratory Investigation of Micrometeoroid Ablation Using a Dust Accelerator

    NASA Technical Reports Server (NTRS)

    Thomas, Evan; Simolka, Jonas; DeLuca, Michael; Horanyi, Mihaly; Janches, Diego; Marshall, Robert A.; Munsat, Tobin; Plane, John M. C.; Sternovsky, Zoltan

    2017-01-01

    A facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to generate iron particles with velocities of 10-70 kilometers. The particles are then introduced into a chamber pressurized with a target gas, where the pressure is adjustable between 0.01 and 0.5 Torr, and the particle partially or completely ablates over a short distance. An array of biased electrodes above and below the ablation path is used to collect the generated ions/electrons with a spatial resolution of 2.6 centimeters along the ablating particles path, thus allowing the study of the spatiotemporal evolution of the process. For completely ablated particles, the total collected charge directly yields the ionization coefficient of a given dust material-target gas combination. The first results of this facility measured the ionization coefficient of iron atoms with N2, air, CO2, and He target gases for impact velocities greater than 20 kilometers per second, and are reported by Thomas et al. The ablation chamber is also equipped with four optical ports that allow for the detection of the light emitted by the ablating particle. A multichannel photomultiplier tube system is used to observe the ablation process with a spatial and temporal resolution of 0.64 centimeters and 90 nanoseconds. The preliminary results indicate that it is possible to calculate the velocity of the ablating particle from the optical observations, and in conjunction with the spatially resolved charge measurements allow for experimental validation of ablation models in future studies.

  13. Localized treatments using commercial dust and liquid formulations of fipronil against Coptotermes formosanus (Isoptera: Rhinotermitidae) in the laboratory.

    PubMed

    Gautam, Bal K; Henderson, Gregg; Wang, Cai

    2014-04-01

    Use of proper application methods and formulations of termiticides are important to reduce their negative impact to the environment. In this study, we conducted laboratory experiments to determine the effect of localized treatments with commercial dust and liquid formulations of fipronil against Formosan subterranean termites, Coptotermes formosanus Shiraki. The test arena consisted of a specially designed 16-chambered structure with a center chamber connected to 5 foraging chambers that themselves were connected to 10 additional foraging chambers. One peripheral chamber received a liquid or dust treatment and termites were released in the center chamber. Results showed that >91% of the termites were dead within the 9-d test period despite the localized treatment of only 1 foraging chamber. Termites that were still alive after 9 d were transferred to an untreated dish and held for 10 more days. The majority of those termites were dead and the rest were moribund on day 19. Regardless of the specific dish treated, both formulations of fipronil were found to be highly efficacious. Termites did not exhibit repellency to either formulation. Our results suggest that localized (or spot) treatment with either commercially available dust or liquid formulations of fipronil can be a viable option for control of a termite infestation where complete soil drenching is not desirable. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  14. Student Dust Counter I : Science Objectives

    NASA Astrophysics Data System (ADS)

    Mitchell, C.; Bryant, C.; Bunch, N.; Chanthawanich, T.; Colgan, M.; Fernandez, A.; Grogan, B.; Holland, G.; Krauss, C.; Krauss, E.; Krauss, O.; Neeland, M.; Horanyi, M.

    2003-12-01

    The New Horizons mission to Pluto and the Kuiper Belt is scheduled for launch in January 2006. As part of the Education and Public Outreach activity of the mission, undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics, University of Colorado, are building a space experiment: the Student Dust Counter (SDC). This talk will summarize the scientific goals of this experiment. An accompanying poster describes the technical details of SDC. The primary goal of SDC is to map the dust distribution in the Solar System from 1 to 50 AU. It will greatly enhance our knowledge of dust production and transport in the outer Solar System by providing more sensitive observations than earlier experiments past Saturn, and the first in situ dust observations beyond 18 AU.

  15. Association between Occupational Exposure to Wood Dust and Cancer: A Systematic Review and Meta-Analysis

    PubMed Central

    Alonso-Sardón, Montserrat; Chamorro, Antonio-J.; Hernández-García, Ignacio; Iglesias-de-Sena, Helena; Martín-Rodero, Helena; Herrera, Cristian; Marcos, Miguel; Mirón-Canelo, José Antonio

    2015-01-01

    Objective To perform a systematic review to analyze the association between occupational exposure to wood dust and cancer. Methods A systematic literature search of entries made in the MEDLINE-PubMed database between 1957 and 2013 was conducted to identify studies that had assessed the relationship between occupational exposure to wood dust and different types of cancer. A meta-analysis of selected case-control and cohort studies was subsequently performed. Results A total of 114 studies were identified and 70 were selected for review. Of these, 42 studies focused on the relationship between wood dust and nasal cancer (n = 22), lung cancer (n = 11), and other types of cancer (n = 9). Low-to-moderate quality evidence that wood dust acts as a carcinogen was obtained, and a stronger association between wood dust and nasal adenocarcinoma was observed. A lesser association between wood dust exposure and lung cancer was also observed. Several studies suggested that there is a relationship between wood dust and the onset of other cancers, although there was no evidence to establish an association. A meta-analysis that included four case-controls studies showed that workers exposed to wood dust exhibited higher rates of nasal adenocarcinoma than other workers (odds ratio = 10.28; 95% confidence interval: 5.92 and 17.85; P<0,0001), although a large degree of heterogeneity was found. Conclusions Low-to-moderate quality evidence supports a causal association between cancer and occupational exposure to wood dust, and this association was stronger for nasal adenocarcinoma than for lung cancer. There was no evidence of an association between wood dust exposure and the other cancers examined. PMID:26191795

  16. Surface Measurements of dust/local aerosol properties over Northern China during 2008 China-US joined dust field campaign

    NASA Astrophysics Data System (ADS)

    Wang, X.; Huang, J.

    2009-12-01

    The objective of this study is to understand the detailed characteristics and underlying mechanisms of aerosol physical and optical parameters over China Loess Plateau and its potential impacts on the regional/global climate. In order to characterize the emission, transport, and removal of atmospheric pollutants emitted from East Asia, the 2008 China-US joined field campaign are conducted from late April to May 2008 focused specifically on the Asian direct measurements of dust and pollution transport, following the plume from the Northern China which from the Taklamakan desert and Gobi desert to the Eastern Pacific and into North America. Such measurements are crucial to understanding how the dust and the pollution plume (including black carbon) are modified as their age. Three sites involved this campaign, including one permanent site (Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL)) (located in Yuzhong, 35.95N/104.1E), one SACOL's Mobile Facility (SMF) (deployed in Jintai, 37.57N/104.23E) and the U.S. Department of Energy Atmospheric Radiation Measurements(ARM) Ancillary Facility (AAF mobile laboratories, SMART-COMMIT) (deployed in Zhangye, 39.08N/100.27E). Results indicate that the dust plumes are transported from the surface to a long distance from their sources have a significant influence on the air quality in the study area. The meteorological analysis indicates that these polluted layers are not from local sources during dust plume and this large-scale transport of dust and pollutants remains a major uncertainty in quantifying the global effect of emissions from Northern China.

  17. Analysis of two Saharan dust events of North Africa in the Mediterranean region by Using SKIRON/Eta model

    NASA Astrophysics Data System (ADS)

    Benaouda, D.; Kallos, G.; Azzi, A.; Louka, P.; Benlefki, A.

    2009-04-01

    As it is well known established that significant ecosystems effects can be produced by pollutants generated many hundreds of kilometres away. Desert is natural laboratories containing valuable mineral deposits that were formed in the arid environment or that were exposed by erosion. Dust is a key species of many biogeochemical. One important effect of the dust cycle is triggering of various biochemical reactions between dust ingredients and the environment. The biogeochemical impact of desert dust also remains a matter of discussion regarding its contribution for different major and minor elements to terrestrial and marine systems and especially its potential fertilising role for remote oceanic areas by supplying micronutrients such as phosphorus and iron. Saharan dust is responsible for the supply of nutrients resulting in the increase of the production of the pelagic system, but competitively may remove phosphorus, through the adsorption on dust particles, contributing to the oligotrophy of the system, in addition, the presence of Si and Fe in the dust deposition may change the phytoplankton communities resulting in fast growth rates leading to blooms. In addition to direct radiative forcing, dust participates in indirect climate forcing through its role as a cloud-condensation nucleus and potential atmospheric CO2 regulator via biospheric nutrient delivery. Scattering and absorption of radiation by dust have impacts on the Earth's radiation budget, the thermal structure of the troposphere, and actinic fluxes, altering dynamical and photochemical processes. Coating of dust particles under polluted conditions can change microphysical properties and promote surface chemical. The Mediterranean Sea is a semi-enclosed basin, which receives substances sporadically from the arid regions of the Sahara desert. In such processes, dust modifies biochemistry of the Mediterranean water, changes features of the terrestrial ecosystems, and neutralises acid rains. Mineral dust

  18. Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust.

    PubMed

    Gaston, Cassandra J; Pratt, Kerri A; Suski, Kaitlyn J; May, Nathaniel W; Gill, Thomas E; Prather, Kimberly A

    2017-02-07

    Playas emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dusts for cloud formation, most climate models assume that all dust is nonhygroscopic; however, measurements are needed to clarify the role of dusts in aerosol-cloud interactions. Here, we report measurements of CCN activation from playa dusts and parameterize these results in terms of both κ-Köhler theory and adsorption activation theory for inclusion in atmospheric models. κ ranged from 0.002 ± 0.001 to 0.818 ± 0.094, whereas Frankel-Halsey-Hill (FHH) adsorption parameters of A FHH = 2.20 ± 0.60 and B FHH = 1.24 ± 0.14 described the water uptake properties of the dusts. Measurements made using aerosol time-of-flight mass spectrometry (ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that mineralogy, including salts, plays in water uptake by dust. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values. However, several samples were poorly predicted suggesting that chemical heterogeneities as a function of size or chemically distinct particle surfaces can determine the hygroscopicity of playa dusts. Our results further demonstrate the importance of dust in aerosol-cloud interactions.

  19. [Characteristics of fugitive dust emission from paved road near construction activities].

    PubMed

    Tian, Gang; Fan, Shou-Bin; Li, Gang; Qin, Jian-Ping

    2007-11-01

    Because of the mud/dirt carryout from construction activities, the silt loading of paved road nearby is higher and the fugitive dust emission is stronger. By sampling and laboratory analysis of the road surface dust samples, we obtain the silt loading (mass of material equal to or less than 75 micromaters in physical diameter per unit area of travel surface) of paved roads near construction activities. The result show that silt loading of road near construction activities is higher than "normal road", and silt loading is negatively correlated with length from construction's door. According to AP-42 emission factor model of fugitive dust from roads, the emission factor of influenced road is 2 - 10 times bigger than "normal road", and the amount of fugitive dust emission influenced by one construction activity is "equivalent" to an additional road length of approximately 422 - 3 800 m with the baseline silt loading. Based on the spatial and temporal distribution of construction activities, in 2002 the amount of PM10 emission influenced by construction activities in Beijing city areas account of for 59% of fugitive dust from roads.

  20. Featured Image: Making Dust in the Lab

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-12-01

    This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224

  1. Global scale variability of the mineral dust longwave refractive index from laboratory chamber experiments: re‒evaluation of its direct radiative effect

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Formenti, P.; Balkanski, Y.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Boucher, O.; Doussin, J. F.

    2017-12-01

    New measurements of the longwave complex refractive index (LW CRI) of mineral dust and its global variability were obtained in situ in the 4.2 m3CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Aerosols generated by mechanical shaking from nineteen natural soils with contrasted mineralogical composition were suspended in the chamber, where their LW extinction spectra (2-16 μm), size distribution, and mineralogical composition were measured. The CRI of the dust aerosol was obtained by optical calculations based upon the measured extinction spectrum and size distribution. Laboratory results indicate that the LW refractive index of dust strongly varies with the source region of emission in link with the changes of its mineralogy. In the 2-16 μm spectral range, the imaginary refractive index (k) is between 0.001 and 0.92, and the real part (n) in the range 0.84-1.94. The strength of the dust absorption at 7 and 11.4 µm depends on the amount of calcite within the samples, while the absorption between 8 and 14 µm is determined by the relative abundance of quartz and clays. A linear relationship between the magnitude of k at 7, 9.2, and 11.4 µm and the mass concentration of calcite and quartz absorbing at these wavelengths was found, which suggests that predictive rules could be established to estimate the LW refractive index of dust in specific bands based on an assumed or predicted mineralogical composition. Our observations also suggest that the LW CRI of dust does not change as a result of the loss of coarse particles by gravitational settling, so that a constant value can be assumed close to sources and following transport. This unprecedented dataset of refractive indices was used as input into the LMDZORINCA model coupled with the RRTM radiative transfer module in order to re‒evaluate the direct dust LW radiative effect. This represents a first attempt to use regional‒dependent values of the

  2. Absorption and scattering by interstellar dust in the silicon K-edge of GX 5-1

    NASA Astrophysics Data System (ADS)

    Zeegers, S. T.; Costantini, E.; de Vries, C. P.; Tielens, A. G. G. M.; Chihara, H.; de Groot, F.; Mutschke, H.; Waters, L. B. F. M.; Zeidler, S.

    2017-03-01

    Context. We study the absorption and scattering of X-ray radiation by interstellar dust particles, which allows us to access the physical and chemical properties of dust. The interstellar dust composition is not well understood, especially on the densest sight lines of the Galactic plane. X-rays provide a powerful tool in this study. Aims: We present newly acquired laboratory measurements of silicate compounds taken at the Soleil synchrotron facility in Paris using the Lucia beamline. The dust absorption profiles resulting from this campaign were used in this pilot study to model the absorption by interstellar dust along the line of sight of the low-mass X-ray binary GX 5-1. Methods: The measured laboratory cross-sections were adapted for astrophysical data analysis and the resulting extinction profiles of the Si K-edge were implemented in the SPEX spectral fitting program. We derive the properties of the interstellar dust along the line of sight by fitting the Si K-edge seen in absorption in the spectrum of GX 5-1. Results: We measured the hydrogen column density towards GX 5-1 to be 3.40 ± 0.1 × 1022 cm-2. The best fit of the silicon edge in the spectrum of GX 5-1 is obtained by a mixture of olivine and pyroxene. In this study, our modeling is limited to Si absorption by silicates with different Mg:Fe ratios. We obtained an abundance of silicon in dust of 4.0 ± 0.3 × 10-5 per H atom and a lower limit for total abundance, considering both gas and dust of >4.4 × 10-5 per H atom, which leads to a gas to dust ratio of >0.22. Furthermore, an enhanced scattering feature in the Si K-edge may suggest the presence of large particles along the line of sight.

  3. Probing the pre-PN Mass Loss Histories in the PPN Dust Shells

    NASA Astrophysics Data System (ADS)

    Ueta, T.

    2001-12-01

    Proto-planetary nebulae (PPNs) are immediate progenitors of planetary nebulae (PNs) rapidly evolving over a relatively short time scale. Unlike the full-fledged PNs, the circumstellar dust shells of PPNs have neither been photo-ionized nor been swept up by fast winds. Since the PPN shells retain pristine fossil records of mass loss histories of these stars during the pre-PN phases, these dust shells provide ideal astronomical laboratories in which to investigate the origin of complex PN structures that we observe. We have conducted imaging surveys of the PPN shells in mid-infrared and optical wavelengths, probing the dust distribution directly via mid-infrared thermal dust emission arising from the shells and indirectly via dust-scattered stellar optical emission passing through the shells. From these surveys, we have found that (1) the PPN shells are intrinsically axisymmetric due to equatorially-enhanced superwind mass loss that occurred immediately before the beginning of the PPN phase, and (2) the variable degree of equatorial enhancement in the shells, which is probably related to the progenitor mass, has resulted in different optical depths and morphologies. To characterize the PPN shell geometries, we have developed and employed a 2.5 dimensional radiative transfer code that treats dust absorption, reemission, and an/isotropic scattering in any axisymmetric system illuminated by a central energy source. In the code, the dust optical properties are derived from the laboratory-measured refractive index using Mie theory allowing a distribution of sizes for each species in each composition layer in the shell. Our numerical analysis would be able to de-project and recover 3-D geometrical quantities, such as the pole-to-equator density ratio, from the observational data. These model calculations would provide constraining parameters for hydrodynamical models intended to generate equatorial enhancements during dust mass loss as well as initial parameters for

  4. Head-on collision of dust acoustic solitons in a nonextensive plasma with variable size dust grains of arbitrary charge

    NASA Astrophysics Data System (ADS)

    Behery, E. E.

    2016-11-01

    The head-on collision of two dust acoustic solitons (DASs) in a nonextensive plasma with positive or negative dust grains fluid including the effect of dust size distribution (DSD) is studied. The phase shifts for the two solitons due to the collision are derived by applying the extended Poincaré-Lighthill-Kuo (PLK) method. The influences of the power law DSD and the nonextensivity of plasma particles on the characteristic properties of the head-on collision of DASs are analyzed. It is found that the phase shifts can vanish, only for the case of positive dust grains, for certain values and ranges of the dust grain radius and the entropic index of ions (qi) . Also, they undergo a cutoff in the range of qi>1 for the subextensive distribution. A brief discussion of possible applications in laboratory and space plasmas is included.

  5. Nano-Dust Analyzer For the Detection and Chemical Composition Measurement of Particles Originating in the Inner Heliosphere

    NASA Astrophysics Data System (ADS)

    O'Brien, Leela; Gruen, E.; Sternovsky, Z.; Horanyi, M.; Juhasz, A.; Eberhard, M.; Srama, R.

    2013-10-01

    The development of the Nano-Dust Analyzer (NDA) instrument and the results from the first laboratory testing and calibration are reported. The two STEREO spacecrafts have indicated that nanometer-sized dust particles, potentially with very high flux, are delivered to 1 AU from the inner solar system [Meyer-Vernet, N. et al., Solar Physics, 256, 463, 2009]. These particles are generated by collisional grinding or evaporation near the Sun and accelerated outward by the solar wind. The temporal variability reveals the complex interaction with the solar wind magnetic field within 1 AU and provides the means to learn about solar wind conditions and can supply additional parameters or verification for heliospheric magnetic field models. The composition analysis will report on the processes that generated the nanometer-sized particle. NDA is a highly sensitive dust analyzer that is developed under NASA's Heliophysics program. The instrument is a linear time-of-flight mass analyzer that utilizes dust impact ionization and is modeled after the Cosmic Dust Analyzer (CDA) on Cassini. By applying technologies implemented in solar wind instruments and coronagraphs, the highly sensitive dust analyzer will be able to be pointed toward the solar direction. A laboratory prototype has been built, tested, and calibrated at the dust accelerator facility at the University of Colorado, Boulder, using particles with 1 to over 50 km/s velocity. NDA is unique in its requirement to operate with the Sun in its field-of-view. A light trap system has been designed and optimized in terms of geometry and surface optical properties to mitigate Solar UV contribution to detector noise. In addition, results from laboratory tests performed with a 1 keV ion beam at the University of New Hampshire’s Space Sciences Facility confirm the effectiveness of the instrument’s solar wind particle rejection system.

  6. Curation of Microscopic Astromaterials by NASA: "Gathering Dust Since 1981"

    NASA Technical Reports Server (NTRS)

    Frank, D. R.; Bastien, R. K.; Rodriguez, M.; Gonzalez, C.; Zolensky, M. E.

    2013-01-01

    Employing the philosophy that "Small is Beautiful", NASA has been collecting and curating microscopic astromaterials since 1981. These active collections now include interplanetary dust collected in Earth's stratosphere by U-2, ER-2 and WB-57F aircraft (the Cosmic Dust Program - our motto is "Gathering dust since 1981"), comet Wild-2 coma dust (the Stardust Mission), modern interstellar dust (also the Stardust Mission), asteroid Itokawa regolith dust (the Hayabusa Mission - joint curation with JAXA-ISAS), and interplanetary dust impact features on recovered portions of the following spacecraft: Skylab, the Solar Maximum Satellite, the Palapa Satellite, the Long Duration Exposure Facility (LDEF), the MIR Space Station, the International Space Station, and the Hubble Space Telescope (all in the Space Exposed Hardware Laboratory).

  7. Increase in dust storm related PM10 concentrations: A time series analysis of 2001-2015.

    PubMed

    Krasnov, Helena; Katra, Itzhak; Friger, Michael

    2016-06-01

    Over the last decades, changes in dust storms characteristics have been observed in different parts of the world. The changing frequency of dust storms in the southeastern Mediterranean has led to growing concern regarding atmospheric PM10 levels. A classic time series additive model was used in order to describe and evaluate the changes in PM10 concentrations during dust storm days in different cities in Israel, which is located at the margins of the global dust belt. The analysis revealed variations in the number of dust events and PM10 concentrations during 2001-2015. A significant increase in PM10 concentrations was identified since 2009 in the arid city of Beer Sheva, southern Israel. Average PM10 concentrations during dust days before 2009 were 406, 312, and 364 μg m(-3) (median 337, 269,302) for Beer Sheva, Rehovot (central Israel) and Modi'in (eastern Israel), respectively. After 2009 the average concentrations in these cities during dust storms were 536, 466, and 428 μg m(-3) (median 382, 335, 338), respectively. Regression analysis revealed associations between PM10 variations and seasonality, wind speed, as well as relative humidity. The trends and periodicity are stronger in the southern part of Israel, where higher PM10 concentrations are found. Since 2009 dust events became more extreme with much higher daily and hourly levels. The findings demonstrate that in the arid area variations of dust storms can be quantified easier through PM10 levels over a relatively short time scale of several years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Stardust@home: A Massively Distributed Public Search for Interstellar Dust in the Stardust Interstellar Dust Collector

    NASA Technical Reports Server (NTRS)

    Westphal, Andrew J.; Butterworth, Anna L.; Snead, Christopher J.; Craig, Nahide; Anderson, David; Jones, Steven M.; Brownlee, Donald E.; Farnsworth, Richard; Zolensky, Michael E.

    2005-01-01

    In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon. Stardust was in the news in January 2004, when it encountered comet Wild2 and captured a sample of cometary dust. But Stardust carries an equally important payload: the first samples of contemporary interstellar dust ever collected. Although it is known that interstellar (IS) dust penetrates into the inner solar system [2, 3], to date not even a single contemporary interstellar dust particle has been captured and analyzed in the laboratory. Stardust uses aerogel collectors to capture dust samples. Identification of interstellar dust impacts in the Stardust Interstellar Dust Collector probably cannot be automated, but will require the expertise of the human eye. However, the labor required for visual scanning of the entire collector would exceed the resources of any reasonably-sized research group. We are developing a project to recruit the public in the search for interstellar dust, based in part on the wildly popular SETI@home project, which has five million subscribers. We call the project Stardust@home. Using sophisticated chemical separation techniques, certain types of refractory ancient IS particles (so-called presolar grains) have been isolated from primitive meteorites (e.g., [4] ). Recently, presolar grains have been identified in Interplanetary Dust Particles[6]. Because these grains are not isolated chemically, but are recognized only by their unusual isotopic compositions, they are probably less biased than presolar grains isolated from meteorites. However, it is entirely possible that the typical interstellar dust particle is isotopically solar in composition. The Stardust collection of interstellar dust will be the first truly unbiased one.

  9. Effects of nonthermal distribution of electrons and polarity of net dust-charge number density on nonplanar dust-ion-acoustic solitary waves.

    PubMed

    Mamun, A A; Shukla, P K

    2009-09-01

    Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.

  10. "Kicking Up Some Dust": An Experimental Investigation Relating Lunar Dust Erosive Wear to Solar Power Loss

    NASA Technical Reports Server (NTRS)

    Mpagazehe, Jeremiah N.; Street, Kenneth W., Jr.; Delgado, Irebert R.; Higgs, C. Fred, III

    2013-01-01

    The exhaust from retrograde rockets fired by spacecraft landing on the Moon can accelerate lunar dust particles to high velocities. Information obtained from NASA's Apollo 12 mission confirmed that these high-speed dust particles can erode nearby structures. This erosive wear damage can affect the performance of optical components such as solar concentrators. Solar concentrators are objects which collect sunlight over large areas and focus the light into smaller areas for purposes such as heating and energy production. In this work, laboratory-scale solar concentrators were constructed and subjected to erosive wear by the JSC-1AF lunar dust simulant. The concentrators were focused on a photovoltaic cell and the degradation in electrical power due to the erosive wear was measured. It was observed that even moderate exposure to erosive wear from lunar dust simulant resulted in a 40 percent reduction in power production from the solar concentrators.

  11. AzTEC Survey of the Central Molecular Zone: Modeling Dust SEDs and N-PDF with Hierarchical Bayesian Analysis

    NASA Astrophysics Data System (ADS)

    Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark

    2018-01-01

    We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.

  12. Dust devil characteristics and associated dust entrainment based on large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Klose, Martina; Kwidzinski, Nick; Shao, Yaping

    2015-04-01

    The characteristics of dust devils, such as occurrence frequency, lifetime, size, and intensity, are usually inferred from in situ field measurements and remote sensing. Numerical models, e.g. large-eddy simulation (LES) models, have also been established as a tool to investigate dust devils and their structures. However, most LES models do not contain a dust module. Here, we present results from simulations using the WRF-LES model coupled to the convective turbulent dust emission (CTDE) scheme of Klose et al. (2014). The scheme describes the stochastic process of aerodynamic dust entrainment in the absence of saltation. It therefore allows for dust emission even below the threshold friction velocity for saltation. Numerical experiments have been conducted for different atmospheric stability and background wind conditions at 10 m horizontal resolution. A dust devil tracking algorithm is used to identify dust devils in the simulation results. The detected dust devils are statistically analyzed with regard to e.g. radius, pressure drop, lifetime, and turbulent wind speeds. An additional simulation with higher horizontal resolution (2 m) is conducted for conditions, which are especially favorable for dust devil development, i.e. unstable atmospheric stratification and weak mean winds. The higher resolution enables the identification of smaller dust devils and a more detailed structure analysis. Dust emission fluxes, dust concentrations, and dust mass budgets are calculated from the simulations. The results are compared to field observations reported in literature.

  13. Theory of Dust Voids in Plasmas

    NASA Technical Reports Server (NTRS)

    Goree, J.; Morfill, G. E.; Tsytovich, V. N.; Vladimirov, S. V.

    1999-01-01

    Dusty plasmas in a gas discharge often feature a stable void, i.e., a dust-free region inside the dust cloud. This occurs under conditions relevant to both plasma processing discharges and plasma crystal experiments. The void results from a balance of the electrostatic and ion drag forces on a dust particle. The ion drag force is driven by a flow of ions outward from an ionization source and toward the surrounding dust cloud, which has a negative space charge. In equilibrium the force balance for dust particles requires that the boundary with the dust cloud be sharp, provided that the particles are cold and monodispersive. Numerical solutions of the one-dimensional nonlinear fluid equations are carried out including dust charging and dust-neutral collisions, but not ion-neutral collisions. The regions of parameter space that allow stable void equilibria are identified. There is a minimum ionization rate that can sustain a void. Spatial profiles of plasma parameters in the void are reported. In the absence of ion-neutral collisions, the ion flow enters the dust cloud's edge at Mach number M = 1. Phase diagrams for expanding or contracting voids reveal a stationary point corresponding to a single stable equilibrium void size, provided the ionization rate is constant. Large voids contract and small voids expand until they attain this stationary void size. On the other hand, if the ionization rate is not constant, the void size can oscillate. Results are compared to recent laboratory and microgravity experiments.

  14. Laboratory Studies of the Cloud Droplet Activation Properties and Corresponding Chemistry of Saline Playa Dust

    NASA Astrophysics Data System (ADS)

    Gaston, C.; Pratt, K.; Suski, K. J.; May, N.; Gill, T. E.; Prather, K. A.

    2016-12-01

    Saline playas (dried lake beds) emit large quantities of dust that can facilitate the activation of cloud droplets. Despite the potential importance of playa dust for cloud formation, several models assume that dust is non-hygroscopic highlighting the need for measurements to clarify the role of dust from multiple sources in aerosol-cloud-climate interactions. Here we present water uptake measurements onto playa dust represented by the hygroscopicity parameter κ, which ranged from 0.002 ± 0.001 to 0.818 ± 0.094. Single-particle measurements made using an aircraft-aerosol time-of-flight mass spectrometer (A-ATOFMS) revealed the presence of halite, sodium sulfates, and sodium carbonates that were strongly correlated with κ underscoring the role that dust composition plays in water uptake. Predictions of κ made using bulk chemical techniques generally showed good agreement with measured values; however, several samples were poorly predicted using bulk particle composition. The lack of measurements/model agreement using this method and the strong correlations between κ and single-particle data are suggestive of chemical heterogeneities as a function of particle size and/or chemically distinct particle surfaces that dictate the water uptake properties of playa dust particles. Overall, our results highlight the ability of playa dust particles to act as cloud condensation nuclei that should be accounted for in models.

  15. Kinematic dust viscosity effect on linear and nonlinear dust-acoustic waves in space dusty plasmas with nonthermal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Hanbaly, A. M.; Sallah, M., E-mail: msallahd@mans.edu.eg; El-Shewy, E. K.

    2015-10-15

    Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions aremore » related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.« less

  16. Spatial and Temporal Dust Source Variability in Northern China Identified Using Advanced Remote Sensing Analysis

    NASA Technical Reports Server (NTRS)

    Taramelli, A.; Pasqui, M.; Barbour, J.; Kirschbaum, D.; Bottai, L.; Busillo, C.; Calastrini, F.; Guarnieri, F.; Small, C.

    2013-01-01

    The aim of this research is to provide a detailed characterization of spatial patterns and temporal trends in the regional and local dust source areas within the desert of the Alashan Prefecture (Inner Mongolia, China). This problem was approached through multi-scale remote sensing analysis of vegetation changes. The primary requirements for this regional analysis are high spatial and spectral resolution data, accurate spectral calibration and good temporal resolution with a suitable temporal baseline. Landsat analysis and field validation along with the low spatial resolution classifications from MODIS and AVHRR are combined to provide a reliable characterization of the different potential dust-producing sources. The representation of intra-annual and inter-annual Normalized Difference Vegetation Index (NDVI) trend to assess land cover discrimination for mapping potential dust source using MODIS and AVHRR at larger scale is enhanced by Landsat Spectral Mixing Analysis (SMA). The combined methodology is to determine the extent to which Landsat can distinguish important soils types in order to better understand how soil reflectance behaves at seasonal and inter-annual timescales. As a final result mapping soil surface properties using SMA is representative of responses of different land and soil cover previously identified by NDVI trend. The results could be used in dust emission models even if they are not reflecting aggregate formation, soil stability or particle coatings showing to be critical for accurately represent dust source over different regional and local emitting areas.

  17. Gas and dust spectral analysis of galactic and extragalactic symbiotic stars

    NASA Astrophysics Data System (ADS)

    Angeloni, Rodolfo

    2009-02-01

    Symbiotic stars are recognized as unique laboratories for studying a large variety of phenomena that are relevant to a number of important astro-physical problems. This PhD thesis deals with a spectral analysis of galactic and extragalactic symbiotic stars. The former are mainly D-type symbiotic stars for which a comprehensive study, from radio to X-ray spectral region, has been performed. With the latter, we refer to symbiotic stars in the Magellanic Clouds, to be analyzed mainly in the IR range. The common theoretical scenario that lies in the background of this work is the colliding-wind model, developed already during the 80's, supported by first observational evidence at the beginning of 90's (mainly thanks to Nussbaumer and collaborators), and finally completed with detailed and powerful hydrodynamical simulations by various authors in these recent years. In the light of this scenario, we have tried to interpret gas and dust spectra of our targets in a unique and self-consistent way. The spectral analysis has been performed by means of the numerical code SUMA, developed at the Instituto Astronomico e Geofisico of the University of Sao Paulo by Sueli M. Viegas (Aldrovandi) and Marcella Contini from the School of Physics and Astronomy of the Tel-Aviv University.

  18. Dust Flux Monitor Instrument for the Stardust mission to comet Wild 2

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Economou, T. E.; McKibben, R. B.; Simpson, J. A.; McDonnell, J. A. M.; Burchell, M. J.; Vaughan, B. A. M.; Tsou, P.; Hanner, M. S.; Clark, B. C.; Brownlee, D. E.

    2003-10-01

    The Dust Flux Monitor Instrument (DFMI) is part of the Stardust instrument payload. The prime goal of the DFMI is to measure the particle flux, intensity profile, and mass distribution during passage through the coma of comet Wild 2 in January 2004. This information is valuable for assessment of spacecraft risk and health and also for interpretation of the laboratory analysis of dust captured by the Aerogel dust collectors and returned to Earth. At the encounter speed of 6.1 km/s, the DFMI measurements will extend over the particle mass range of 8 decades, from 10-11 to >10-3 g. A secondary science goal is to measure the particle flux and mass distribution during the ~7 year interplanetary portions of the mission, where, in addition to measurements of the background interplanetary dust over the radial range 0.98 AU to 2.7 AU, multiple opportunities exist for possible detection by the DFMI of interplanetary meteor-stream particles and interstellar dust. The DFMI consists of two different dust detector systems: a polyvinylidene fluoride (PVDF) Dust Sensor Unit (SU), which measures particles with mass <~10-4 g, and a Dual Acoustic Sensor System (DASS), which utilizes two quartz piezoelectric accelerometers mounted on the first two layers of the spacecraft Whipple dust shield to measure the flux of particles with mass >10-4 g. The large Whipple shield structures provide the large effective sensitive area required for detection of the expected low flux of high-mass particles.

  19. Analysis of the Impact of Major Dust Events on the Aerosols Characteristics over Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf; El-Askary, Hesham; Al-Shaibani, Abdulaziz; Hariri, Mustafa M.

    2015-04-01

    The Kingdom of Saudi Arabia is a major source of atmospheric dust. Frequent dust storms blow up and significantly affect human activities, airports and citizens' health. Aerosols optical and physical characteristics are influenced by major dust storms outbreaks. In this, paper, ground based AERONET measurements are integrated with space-borne sensors, namely MODIS and CALIPSO to analyze aerosols' characteristics during March - May of 2009 where a massive dust storm blew up and caused a widespread heavy atmospheric dust load over Saudi Arabia and the same period during 2010, where less dust activities were reported. The MODIS Deep Blue AOD analysis showed similar aerosols pattern over the land, however a substantial variance in aerosol loading during March - May 2009 compared with the same period in 2010 was observed. The angstrom exponent analysis showed that the majority of aerosol measurements in 2009 and 2010 are dominated by coarse-mode particles with angstrom exponent < 0.5. Detailed analysis of aerosol optical properties shows significant influence of coarse mode particles in the enhanced aerosol loading in 2009. The volume depolarization rations (VDR) derived from CALIPSO backscattering measurements is used to find latitudinal profile of mean aerosol optical depth to indicate the type of particles and to discriminate spherical aerosols with non-spherical particles. Acknowledgement The authors would like to acknowledge the support provided by the King Abdel Aziz City for Science & Technology (KACST) for funding this work under grant No. (MT-32-76). The support provided by the Deanship of Research at King Fahd University of Petroleum & Minerals (KFUPM) is gratefully acknowledged.

  20. Electrostatic dust transport on the surfaces of airless bodies

    NASA Astrophysics Data System (ADS)

    Wang, X.; Schwan, J.; Hsu, H. W.; Horanyi, M.

    2015-12-01

    The surfaces of airless bodies are charged due to the exposure to solar wind plasma and UV radiation. Dust particles on the regolith of these surfaces can become charged, and may move and even get lofted due to electrostatic force. Electrostatic dust transport has been a long-standing problem that may be related to many observed phenomena on the surfaces of airless planetary bodies, including the lunar horizon glow, the dust ponds on asteroid Eros, the spokes in Saturn's rings, and more recently, the collection of dust particles ejected off Comet 67P, observed by Rosetta. In order to resolve these puzzles, a handful of laboratory experiments have been performed in the past and demonstrated that dust indeed moves and lifts from surfaces exposed to plasma. However, the exact mechanisms for the mobilization of dust particles still remain a mystery. Current charging models, including the so-called "shared charge model" and the charge fluctuation theory, will be discussed. It is found that neither of these models can explain the results from either laboratory experiments or in-situ observations. Recently, single dust trajectories were captured with our new dust experiments, enabling novel micro-scale investigations. The particles' initial launch speeds and size distributions are analyzed, and a new so-called "patched charge model" is proposed to explain our findings. We identify the role of plasma micro-cavities that are formed in-between neighboring dust particles. The emitted secondary or photo- electrons are proposed to be absorbed inside the micro-cavities, resulting in significant charge accumulation on the exposed patches of the surfaces of neighboring particles. The resulting enhanced Coulomb force (repulsion) between particles is likely the dominant force to mobilize and lift them off the surface. The role of other properties, including surface morphology, cohesion and photoelectron charging, will also be discussed.

  1. Dust dynamics and diagnostic applications in quasi-neutral plasmas and magnetic fusion

    NASA Astrophysics Data System (ADS)

    Wang, Zhehui; Ticos, Catalin M.; Si, Jiahe; Delzanno, Gian Luca; Lapenta, Gianni; Wurden, Glen

    2007-11-01

    Little is known about dust dynamics in highly ionized quasi-neutral plasmas with ca. 1.0 e+20 per cubic meter density and ion temperature at a few eV and above, including in magnetic fusion. For example, dust motion in fusion, better known as UFO's, has been observed since 1980's but not explained. Solid understanding of dust dynamics is also important to International Thermonuclear Experimental Reactor (ITER) because of concerns about safety and dust contamination of fusion core. Compared with well studied strongly-coupled dusty plasma regime, new physics may arise in the higher density quasi-neutral plasma regime because of at least four orders of magnitude higher density and two orders of magnitude hotter ion temperature. Our recent laboratory experiments showed that plasma-flow drag force dominates over other forces in a quasi-neutral flowing plasma. In contrast, delicate balance among different forces in dusty plasma has led to many unique phenomena, in particular, the formation of dust crystal. Based on our experiments, we argue that 1) dust crystal will not form in the highly ionized plasmas with flows; 2) the UFO's are moving dust dragged by plasma flows; 3) dust can be used to measure plasma flow. Two diagnostic applications using dust for laboratory quasi-neutral plasmas and magnetic fusion will also be presented.

  2. Mineralogical analysis of dust collected from typical recycling line of waste printed circuit boards.

    PubMed

    Wang, Fangfang; Zhao, Yuemin; Zhang, Tao; Duan, Chenlong; Wang, Lizhang

    2015-09-01

    As dust is one of the byproducts originating in the mechanical recycling process of waste printed circuit boards such as crushing and separating, from the viewpoints of resource reuse and environmental protection, an effective recycling method to recover valuable materials from this kind of dust is in urgent need. In this paper, detailed mineralogical analysis on the dust collected from a typical recycling line of waste printed circuit boards is investigated by coupling several analytical techniques. The results demonstrate that there are 73.1wt.% organic matters, 4.65wt.% Al, 4.55wt.% Fe, 2.67wt.% Cu and 1.06wt.% Pb in the dust, which reveals the dust is worthy of reuse and harmful to environment. The concentration ratios of Fe, Mn and Zn can reach 12.35, 12.33 and 6.67 respectively by magnetic separation. The yield of dust in each size fraction is nonuniform, while the yield of -0.75mm size fraction is up to 51.15wt.%; as the particle size decreases, the content of liberated metals and magnetic materials increase, and metals are mainly in elemental forms. The F, Cl and Br elements combing to C in the dust would make thermal treatment dangerous to the environment. Based on these results, a flowsheet to recycle the dust is proposed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold

    NASA Technical Reports Server (NTRS)

    Neakrase, Lynn D.; Greeley, Ronald; Iversen, James D.; Balme, Matthew L.; Foley, Daniel J.; Eddlemon, Eric E.

    2005-01-01

    Dust devils have been proposed as effective mechanisms for lofting large quantities of dust into the martian atmosphere. Previous work showed that vortices lift dust more easily than simple boundary layer winds. The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces. Additional information is included in the original extended abstract.

  4. Laboratory Impact Experiments

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Munsat, T.

    2017-12-01

    The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.

  5. Further Analysis on the Mystery of the Surveyor III Dust Deposits

    NASA Technical Reports Server (NTRS)

    Metzger, Philip; Hintze, Paul; Trigwell, Steven; Lane, John

    2012-01-01

    The Apollo 12 lunar module (LM) landing near the Surveyor III spacecraft at the end of 1969 has remained the primary experimental verification of the predicted physics of plume ejecta effects from a rocket engine interacting with the surface of the moon. This was made possible by the return of the Surveyor III camera housing by the Apollo 12 astronauts, allowing detailed analysis of the composition of dust deposited by the LM plume. It was soon realized after the initial analysis of the camera housing that the LM plume tended to remove more dust than it had deposited. In the present study, coupons from the camera housing have been reexamined. In addition, plume effects recorded in landing videos from each Apollo mission have been studied for possible clues.

  6. Dust from southern Africa: rate of emission and biogeochemical properties

    USDA-ARS?s Scientific Manuscript database

    The stabilized linear dunefields in the southern Kalahari show signs of reactivation due to reduced vegetation cover owing to drought and/or overgrazing. It has been demonstrated with a laboratory dust generator that the southern Kalahari soils are good emitters of dust and that large-scale dune rea...

  7. The Fate of Saharan Dust Across the Atlantic and Implications for a Central American Dust Barrier

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, P.; da Silva, A.; Hlavka, D.; McGill, M.

    2011-01-01

    Saharan dust was observed over the Caribbean basin during the summer 2007 NASA Tropical Composition, Cloud, and Climate Coupling (TC4) field experiment. Airborne Cloud Physics Lidar (CPL) and satellite observations from MODIS suggest a barrier to dust transport across Central America into the eastern Pacific. We use the NASA GEOS-5 atmospheric transport model with online aerosol tracers to perform simulations of the TC4 time period in order to understand the nature of this barrier. Our simulations are driven by the Modem Era Retrospective-Analysis for Research and Applications (MERRA) meteorological analyses. We evaluate our baseline simulated dust distributions using MODIS and CALIOP satellite and ground-based AERONET sun photometer observations. GEOS-5 reproduces the observed location, magnitude, and timing of major dust events, but our baseline simulation does not develop as strong a barrier to dust transport across Central America as observations suggest. Analysis of the dust transport dynamics and lost processes suggest that while both mechanisms play a role in defining the dust transport barrier, loss processes by wet removal of dust are about twice as important as transport. Sensitivity analyses with our model showed that the dust barrier would not exist without convective scavenging over the Caribbean. The best agreement between our model and the observations was obtained when dust wet removal was parameterized to be more aggressive, treating the dust as we do hydrophilic aerosols.

  8. Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.

    2008-01-01

    It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.

  9. Dust and Ocean Plants

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Adding iron to the diet of marine plant life has been shown in shipboard experiments to boost the amount of carbon-absorbing phytoplankton in certain parts of the world's oceans. A new study promises to give scientists their first global picture of the extent of these unique 'iron-limited' ocean regions, an important step in understanding how the ocean's biology controls the flow of carbon between the atmosphere and the ocean. The new study by researchers at NASA's Goddard Space Flight Center and the Department of Energy's Oak Ridge National Laboratory was presented at the American Geophysical Union's annual meeting in San Francisco on Friday, Dec. 15, 2000. Oceanic phytoplankton remove nearly as much carbon from the atmosphere each year as all land-based plants. Identifying the location and size of nutrient-limited areas in the open ocean has challenged oceanographers for nearly a century. The study pinpointed iron-limited regions by seeing which phytoplankton-rich areas of the world's oceans were also areas that received iron from wind-blown dust. In this map, areas with high levels of chlorophyll from phytoplankton and high levels of dust deposition (high correlation coefficients) are indicated in dark brown. Dust deposition was calculated by a 3-year modelled climatology for the years 1996-1998. The chlorophyll measurements are from 1998 observations from the SeaWiFS (Sea-viewing Wide Field-of-view Sensor) instrument on the OrbView-2 satellite. 'Global, satellite-based analyses such as this gives us insight into where iron deposition may be limiting ocean biological activity,' says lead author David Erickson of Oak Ridge National Laboratory's Computer Science and Mathematics Division. 'With this information we will be able to infer how the ocean productivity/iron deposition relationship might shift in response to climate change.' Map Source: David Erickson, Oak Ridge National Laboratory's Computer Science and Mathematics Division

  10. Electrodynamic Dust Shield for Solar Panels on Mars

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Mantovani, J. G.; Clements S.; Chen, A.; Mazumder, M. K.; Biris, A. S.; Nowicki, A. W.

    2004-01-01

    The Materials Adherence Experiment on the Mars Pathfinder mission measured an obscuration of the solar arrays due to dust deposition at a rate of about 0.2 8% per day. It was estimated that settling dust may cause degradation in performance of a solar panel of between 22% and 89% over the course of two years [1, 2]. These results were obtained without the presence of a global dust storm. Several types of adherence forces keep dust particles attached to surfaces. The most widely discussed adherence force is the electrostatic force. Laboratory experiments [3] as well as indirect evidence from the Wheel Abrasion Experiment on Pathfinder [4] indicate that it is very likely that the particles suspended in the Martian atmosphere are electrostatically charged.

  11. Dust loading in Gusev crater, Mars: Results from two active dust devil seasons

    NASA Astrophysics Data System (ADS)

    Waller, D. A.; Greeley, R.; Neakrase, L. D.; Landis, G. A.; Whelley, P.; Thompson, S. D.

    2009-12-01

    Dust devils dominate the volcanic plains at the Mars Exploration Rover (MER) landing site within the Low Albedo Zone (LAZ) in Gusev Crater. Previous studies indicate that the inferred pressure drop within the dust devil core allows the vortex to lift large amounts of unconsolidated dust high into the atmosphere which contributes to the atmospheric haze. Previous laboratory results indicate that dust devils are efficient in lifting very fine-grained (<10 μm) material, even when boundary layer winds do not exceed previously predicted threshold wind speeds (~30-35 m/s at 1.5 m above the surface for Mars conditions). Since landing in Gusev crater in January 2004, MER Spirit has obtained data for two dust devil seasons (defined as the period of time when the first and last dust devils were imaged), with a third season currently being analyzed. These seasons typically correspond to southern spring and summer, when winds capable of lifting sediment are determined to be most frequent. All observations for Season One were taken as Spirit neared the summit of Husband Hill. During Season Two Spirit imaged dust devils in the plains as it traversed within the Inner Basin, a low-lying area in the Columbia Hills complex. All results were extrapolated so that they are representative of the entire LAZ. Season One lasted 270 sols (March 2005 to December 2005 corresponding to Ls 173.2 to 339.5 degrees), whereas Season Two lasted 153 sols (January 2007 to June 2007 corresponding to Ls 171.2 to 266.7 degrees) and ended suddenly on sol 1240 just after the dust devil frequency peaked for the season. This abrupt drop in dust devil activity corresponded to atmospheric opacity levels that exceeded 1.0 and the onset of a global dust storm that originated in the southern hemisphere that engulfed Gusev within weeks. Results show a large contrast in activity between the two seasons. An 81% decrease in dust devil frequency across the plains was found in Season Two. 533 dust devils were imaged

  12. Optical and microphysical properties of natural mineral dust and anthropogenic soil dust near dust source regions over northwestern China

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Wen, Hui; Shi, Jinsen; Bi, Jianrong; Huang, Zhongwei; Zhang, Beidou; Zhou, Tian; Fu, Kaiqi; Chen, Quanliang; Xin, Jinyuan

    2018-02-01

    Mineral dust aerosols (MDs) not only influence the climate by scattering and absorbing solar radiation but also modify cloud properties and change the ecosystem. From 3 April to 16 May 2014, a ground-based mobile laboratory was deployed to measure the optical and microphysical properties of MDs near dust source regions in Wuwei, Zhangye, and Dunhuang (in chronological order) along the Hexi Corridor over northwestern China. Throughout this dust campaign, the hourly averaged (±standard deviation) aerosol scattering coefficients (σsp, 550 nm) of the particulates with aerodynamic diameters less than 2.5 µm (PM2.5) at these three sites were sequentially 101.5 ± 36.8, 182.2 ± 433.1, and 54.0 ± 32.0 Mm-1. Correspondingly, the absorption coefficients (σap, 637 nm) were 9.7 ± 6.1, 6.0 ± 4.6, and 2.3 ± 0.9 Mm-1; single-scattering albedos (ω, 637 nm) were 0.902 ± 0.025, 0.931 ± 0.037, and 0.949 ± 0.020; and scattering Ångström exponents (Åsp, 450-700 nm) of PM2.5 were 1.28 ± 0.27, 0.77 ± 0.51, and 0.52 ± 0.31. During a severe dust storm in Zhangye (i.e., from 23 to 25 April), the highest values of σsp2.5 ( ˜ 5074 Mm-1), backscattering coefficient (σbsp2.5, ˜ 522 Mm-1), and ω637 ( ˜ 0.993) and the lowest values of backscattering fraction (b2.5, ˜ 0.101) at 550 nm and Åsp2.5 ( ˜ -0.046) at 450-700 nm, with peak values of aerosol number size distribution (appearing at the particle diameter range of 1-3 µm), exhibited that the atmospheric aerosols were dominated by coarse-mode dust aerosols. It is hypothesized that the relatively higher values of mass scattering efficiency during floating dust episodes in Wuwei and Zhangye are attributed to the anthropogenic soil dust produced by agricultural cultivations.

  13. UV-VIS depolarization from Arizona Test Dust particles at exact backscattering angle

    NASA Astrophysics Data System (ADS)

    Miffre, Alain; Mehri, Tahar; Francis, Mirvatte; Rairoux, Patrick

    2016-01-01

    In this paper, a controlled laboratory experiment is performed to accurately evaluate the depolarization from mineral dust particles in the exact backward scattering direction (ϴ=180.0±0.2°). The experiment is carried out at two wavelengths simultaneously (λ=355 nm, λ=532 nm), on a determined size and shape distribution of Arizona Test Dust (ATD) particles, used as a proxy for mineral dust particles. After validating the set-up on spherical water droplets, two determined ATD-particle size distributions, representative of mineral dust after long-range transport, are generated to accurately retrieve the UV-VIS depolarization from ATD-particles at exact backscattering angle, which is new. The measured depolarization reaches at most 37.5% at λ=355 nm (35.5% at λ=532 nm), and depends on the particle size distribution. Moreover, these laboratory findings agree with T-matrix numerical simulations, at least for a determined particle size distribution and at a determined wavelength, showing the ability of the spheroidal model to reproduce mineral dust particles in the exact backward scattering direction. However, the spectral dependence of the measured depolarization could not be reproduced with the spheroidal model, even for not evenly distributed aspect ratios. Hence, these laboratory findings can be used to evaluate the applicability of the spheroidal model in the backward scattering direction and moreover, to invert UV-VIS polarization lidar returns, which is useful for radiative transfer and climatology, in which mineral dust particles are strongly involved.

  14. On the dust load and rainfall relationship in South Asia: an analysis from CMIP5

    NASA Astrophysics Data System (ADS)

    Singh, Charu; Ganguly, Dilip; Dash, S. K.

    2018-01-01

    This study is aimed at examining the consistency of the relationship between load of dust and rainfall simulated by different climate models and its implication for the Indian summer monsoon system. Monthly mean outputs of 12 climate models, obtained from the archive of the Coupled Model Intercomparison Project phase 5 (CMIP5) for the period 1951-2004, are analyzed to investigate the relationship between dust and rainfall. Comparative analysis of the model simulated precipitation with the India Meteorological Department (IMD) gridded rainfall, CRU TS3.21 and GPCP version 2.2 data sets show significant differences between the spatial patterns of JJAS rainfall as well as annual cycle of rainfall simulated by various models and observations. Similarly, significant inter-model differences are also noted in the simulation of load of dust, nevertheless it is further noted that most of the CMIP5 models are able to capture the major dust sources across the study region. Although the scatter plot analysis and the lead-lag pattern correlation between the dust load and the rainfall show strong relationship between the dust load over distant sources and the rainfall in the South Asian region in individual models, the temporal scale of this association indicates large differences amongst the models. Our results caution that it would be pre-mature to draw any robust conclusions on the time scale of the relationship between dust and the rainfall in the South Asian region based on either CMIP5 results or limited number of previous studies. Hence, we would like to emphasize upon the fact that any conclusions drawn on the relationship between the dust load and the South Asian rainfall using model simulation is highly dependent on the degree of complexity incorporated in those models such as the representation of aerosol life cycle, their interaction with clouds, precipitation and other components of the climate system.

  15. Dust ablation laboratory experiments to measure the plasma and light production of meteoroids in the atmosphere

    NASA Astrophysics Data System (ADS)

    Sternovsky, Z.; DeLuca, M.; Janches, D.; Marshall, R. A.; Munsat, T.; Plane, J. M. C.; Horanyi, M.

    2017-12-01

    Radars play an important role in characterizing the distribution of meteoroids entering Earth's atmosphere, and they are sensitive to the size range where most of the mass input occurs. The interpretation of meteor radar measurements, however, is handicapped by the incomplete understanding of the microphysical processes relevant to meteoric ablation. A facility has been developed to simulate the ablation of small dust particles in laboratory conditions and to determine the most critical parameters. An electrostatic dust accelerator is used to generate iron, aluminum and meteoric analog particles with velocities of 1-70 km/s. The particles are then introduced into a cell filled with nitrogen, air, oxygen, or carbon dioxide gas with pressures adjustable in the 0.02 - 0.5 Torr range, where partial or complete ablation occurs over a short distance. An array of biased electrodes is used to collect the ionized products with spatial resolution along the ablating particles' path. An optical observation setup using a 64 channel PMT system allows direct observation of the particle and estimating the light output. A new addition to the facility, using pickup tube detectors and precise timing, allows measurement of the drag coefficient of the particle's slowdown, which we find to be significantly higher than commonly used in existing models. Measurements also indicated that the ionization efficiency of iron and aluminum at low velocities is larger than previously expected.

  16. Comprehensive Examination of Bottom Ash, Soil Dust, and Direct Emissions and Aging of Laboratory Biomass Burning as Potential Sources of Ice Nucleating Particles

    NASA Astrophysics Data System (ADS)

    Polen, M.; Jahl, L.; Jahn, L.; Somers, J.; Sullivan, R. C.

    2017-12-01

    Recent laboratory and field studies have found that biomass burning can produce ice nucleating particles (INP) with varying efficiencies depending on fuel and burn conditions. Few studies have examined the ice nucleating potential of bottom ash, which has the potential to be lofted during intense burning events. To date, no publications have examined the impact of atmospheric aging or lofted soil particles on INP emitted from biomass burning. This study investigated each of these aspects through laboratory biomass fuel combustion studies. We burned a number of grasses from different locations, and collected filter samples of fresh and photochemically aged biomass burning aerosol, as well as bottom ash collected after the burn. Some burns included soil that the grasses grew in to test for the importance of soil dust to INP emissions lofting during intense fires. The composition and mixing state of the aerosol was determined using a suite of online and offline single-particle techniques. Our findings suggest that bottom ash is a relatively weak INP, but all samples froze consistently at -20 °C < T < -25 °C. We also found that oxidation of the biomass burning aerosol typically enhances ice nucleating activity over fresh, unaged particles, increasing the ice active site surface density by up to a factor of 3 at T = -25 °C. Lastly, the presence of soil dust can greatly enhance INP concentrations for biomass burning events with an increase in the freezing temperature spectrum by > 3 °C. Detailed analysis of these samples aims to provide a clearer understanding of what components of biomass burning increase the ambient concentrations of ice nucleation active particles, and how their ice nucleation properties evolve during atmospheric aging.

  17. ELECTRIC CHARGING OF DUST AGGREGATES AND ITS EFFECT ON DUST COAGULATION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okuzumi, Satoshi

    2009-06-20

    Mutual sticking of dust aggregates is the first step toward planetesimal formation in protoplanetary disks. In spite that the electric charging of dust particles is well recognized in some contexts, it has been largely ignored in the current modeling of dust coagulation. In this study, we present a general analysis of the dust charge state in protoplanetary disks, and then demonstrate how the electric charging could dramatically change the currently accepted scenario of dust coagulation. First, we describe a new semianalytical method to calculate the dust charge state and gas ionization state self-consistently. This method is far more efficient thanmore » previous numerical methods, and provides a general and clear description of the charge state of a gas-dust mixture. Second, we apply this analysis to compute the collisional cross section of growing aggregates taking their charging into account. As an illustrative example, we focus on early evolutionary stages where the dust has been thought to grow into fractal (D {approx} 2) aggregates with a quasi-monodisperse (i.e., narrow) size distribution. We find that, for a wide range of model parameters, the fractal growth is strongly inhibited by the electric repulsion between colliding aggregates and eventually 'freezes out' on its way to the subsequent growth stage involving collisional compression. Strong disk turbulence would help the aggregates to overcome this growth barrier, but then it would cause catastrophic collisional fragmentation in later growth stages. These facts suggest that the combination of electric repulsion and collisional fragmentation would impose a serious limitation on dust growth in protoplanetary disks. We propose a possible scenario of dust evolution after the freezeout. Finally, we point out that the fractal growth of dust aggregates tends to maintain a low ionization degree and, as a result, a large magnetorotationally stable region in the disk.« less

  18. Characterizing Particle Size Distributions of Crystalline Silica in Gold Mine Dust

    PubMed Central

    Chubb, Lauren G.; Cauda, Emanuele G.

    2017-01-01

    Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies. PMID:28217139

  19. Oil refinery dusts: morphological and size analysis by TEM.

    PubMed

    Sielicki, Przemysław; Janik, Helena; Guzman, Agnieszka; Broniszewski, Mieczysław; Namieśnik, Jacek

    2011-03-01

    The objectives of this work were to develop a means of sampling atmospheric dusts on the premises of an oil refinery for electron microscopic study to carry out preliminary morphological analyses and to compare these dusts with those collected at sites beyond the refinery limits. Carbon and collodion membranes were used as a support for collection of dust particles straight on transmission electron microscopy (TEM) grids. Micrographs of the dust particles were taken at magnifications from ×4,000 to ×80,000 with a Tesla BS500 transmission electron microscope. Four parameters were defined on the basis of the micrographs: surface area, Feret diameter, circumference, and shape coefficient. The micrographs and literature data were used to classify the atmospheric dusts into six groups: particles with an irregular shape and rounded edges; particles with an irregular shape and sharp edges; soot and its aggregates; spherical particles; singly occurring, ultrafine dust particles; and particles not allocated to any of the previous five groups. The types of dusts found in all the samples were similar, although differences did exist between the various morphological parameters. Dust particles with the largest Feret diameter were present in sample 3 (mean, 0.739 μm)-these were collected near the refinery's effluent treatment plant. The particles with the smallest diameter were found in the sample that had been intended to be a reference sample for the remaining results (mean, 0.326 μm). The dust particles collected in the refinery had larger mean Feret diameters, even 100% larger, than those collected beyond it. Particles with diameters from 0.1 to 0.2 μm made up the most numerous group in all the samples collected in the refinery.

  20. Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, S.; Westphal, A. J.; Palma, R. L.

    2015-01-01

    The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection..

  1. Laboratory Ventilation and Safety.

    ERIC Educational Resources Information Center

    Steere, Norman V.

    1965-01-01

    In order to meet the needs of both safety and economy, laboratory ventilation systems must effectively remove air-borne toxic and flammable materials and at the same time exhaust a minimum volume of air. Laboratory hoods are the most commonly used means of removing gases, dusts, mists, vapors, and fumed from laboratory operations. To be effective,…

  2. From Nuclei to Dust Grains: How the AGB Machinery Works

    NASA Astrophysics Data System (ADS)

    Gobrecht, D.; Cristallo, S.; Piersanti, L.

    2015-12-01

    With their circumstellar envelopes AGB stars are marvelous laboratories to test our knowledge of microphysics (opacities, equation of state), macrophysics (convection, rotation, stellar pulsations, magnetic fields) and nucleosynthesis (nuclear burnings, slow neutron capture processes, molecules and dust formation). Due to the completely different environments those processes occur, the interplay between stellar interiors (dominated by mixing events like convection and dredge-up episodes) and stellar winds (characterized by dust formation and wind acceleration) is often ignored. We intend to develop a new approach involving a transition region, taking into consideration hydrodynamic processes which may drive AGB mass-loss. Our aim is to describe the process triggering the mass-loss in AGB stars with different masses, metallicities and chemical enrichments, possibly deriving a velocity field of the outflowing matter. Moreover, we intend to construct an homogeneous theoretical database containing detailed abundances of atomic and molecular species produced by these objects. As a long term goal, we will derive dust production rates for silicates, alumina and silicon carbides, in order to explain laboratory measurements of isotopic ratios in AGB dust grains.

  3. Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model.

    PubMed

    Li, Nan; Long, Xin; Tie, Xuexi; Cao, Junji; Huang, Rujin; Zhang, Rong; Feng, Tian; Liu, Suixin; Li, Guohui

    2016-01-15

    We developed a regional dust dynamical model (WRF-Dust) to simulate surface dust concentrations in the Guanzhong (GZ) basin of China during two typical dust cases (19th Aug. and 26th Nov., 2013), and compared model results with the surface measurements at 17 urban and rural sites. The important improvement of the model is to employ multiple high-resolution (0.5-500 m) remote sensing data to construct dust sources. The new data include the geographic information of constructions, croplands, and barrens over the GZ basin in summer and winter of 2013. For the first time, detailed construction dust emissions have been introduced in a regional dust model in large cities of China. Our results show that by including the detailed dust sources, model performance at simulating dust pollutions in the GZ basin is significantly improved. For example, the simulated dust concentration average for the 17 sites increases from 28 μg m(-3) to 59 μg m(-3), closing to the measured concentration of 66 μg m(-3). In addition, the correlation coefficient (r) between the calculated and measured dust concentrations is also improved from 0.17 to 0.57, suggesting that our model better presents the spatial variation. Further analysis shows that urban construction activities are the crucial source in controlling urban dust pollutions. It should be considered by policy makers for mitigating particulate air pollution in many Chinese cities. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, Chiu-wing; James, John T.

    2009-01-01

    NASA will build an outpost on the lunar surface for long-duration human habitation and research. The surface of the Moon is covered by a layer of fine, reactive dust, and the living quarters in the lunar outpost are expected to be contaminated by lunar dust. Because the toxicity of lunar dust is not known, NASA has tasked its toxicology laboratory to evaluate the risk of exposure to the dust and to establish safe exposure limits for astronauts working in the lunar habitat. Studies of the pulmonary toxicity of a dust are generally done first in rodents by intratracheal/intrapharyngeal instillation. This toxicity screening test is then followed by an inhalation study, which requires much more of the test dust and is labor intensive. Preliminary results obtained by examining lung lavage fluid from dust-treated mice show that lunar dust was somewhat toxic (more toxic than TiO2, but less than quartz dust). More extensive studies are in progress to further examine lung lavage fluid for biomarkers of toxicity and lung tissues for histopathological lesions in rodents exposed to aged and activated (ground) lunar dust samples. In these studies, reference dusts (TiO2 and quartz) of known toxicities and have industrial exposure limits will be studied in parallel so the relative toxicity of lunar dust can be determined. The results from the instillation studies will be useful for choosing exposure concentrations for the animal inhalation study. The animal inhalation exposure will be conducted with lunar dust simulant prior to the study with the lunar dust. The experiment with the simulate will ensure that the study techniques used with actual lunar dust will be successful. The results of instillation and inhalation studies will reveal the toxicological risk of exposures and are essential for setting exposure limits on lunar dust for astronauts living in the lunar habitat.

  5. The Electric Environment of Martian Dust Devils

    NASA Astrophysics Data System (ADS)

    Barth, E. L.; Farrell, W. M.; Rafkin, S. C.

    2017-12-01

    While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.

  6. Dust analysis on board the Destiny+ mission to 3200 Phaethon

    NASA Astrophysics Data System (ADS)

    Krüger, H.; Kobayashi, M.; Arai, T.; Srama, R.; Sarli, B. V.; Kimura, H.; Moragas-Klostermeyer, G.; Soja, R.; Altobelli, N.; Grün, E.

    2017-09-01

    The Japanese Destiny+ spacecraft will be launched to the active asteroid 3200 Phaethon in 2022. Among the proposed core payload is an in-situ dust instrument based on the Cassini Cosmic Dust Analyzer. We use the ESA Interplanetary Meteoroid Engineering Model (IMEM), to study detection conditions and fluences of interplanetary and interstellar dust with a dust analyzer on board Destiny+.

  7. 7 CFR 160.17 - Laboratory analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Laboratory analysis. 160.17 Section 160.17 Agriculture... STANDARDS FOR NAVAL STORES Methods of Analysis, Inspection, Sampling and Grading § 160.17 Laboratory analysis. The analysis and laboratory testing of naval stores shall be conducted, so far as is practicable...

  8. 7 CFR 160.17 - Laboratory analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Laboratory analysis. 160.17 Section 160.17 Agriculture... STANDARDS FOR NAVAL STORES Methods of Analysis, Inspection, Sampling and Grading § 160.17 Laboratory analysis. The analysis and laboratory testing of naval stores shall be conducted, so far as is practicable...

  9. Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Fanciullo, L.; Guillet, V.; Aniano, G.; Jones, A. P.; Ysard, N.; Miville-Deschênes, M.-A.; Boulanger, F.; Köhler, M.

    2015-08-01

    Aims: We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. Methods: We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS, and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. Results: We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor ~2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Conclusions: Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the V band extinction cross-section presents variations of the order of ~20% (40-50% in extreme cases), while ISRF intensity varies by ~30% (~60% in extreme cases). This must be accounted for in future modelling. Appendices are available in electronic form at http://www.aanda.org

  10. Workshop on Thermal Emission Spectroscopy and Analysis of Dust, Disk, and Regoliths

    NASA Technical Reports Server (NTRS)

    Sprague, Ann L. (Editor); Lynch, David K. (Editor); Sitko, Michael (Editor)

    1999-01-01

    This volume contains abstracts that have been accepted for presentation at the workshop on Thermal Emission Spectroscopy and analysis of Dust, Disks and Regoliths, held April 28-30, 1999, in Houston Texas.

  11. Dust Devil Tracks

    NASA Astrophysics Data System (ADS)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    -sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic

  12. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover.

    PubMed

    Sobrado, J M; Martín-Soler, J; Martín-Gago, J A

    2015-10-01

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severely affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.

  13. Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.

    2005-01-01

    Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.

  14. Metagenomic Analysis of Airborne Bacterial Community and Diversity in Seoul, Korea, during December 2014, Asian Dust Event.

    PubMed

    Cha, Seho; Srinivasan, Sathiyaraj; Jang, Jun Hyeong; Lee, Dongwook; Lim, Sora; Kim, Kyung Sang; Jheong, Weonhwa; Lee, Dong-Won; Park, Eung-Roh; Chung, Hyun-Mi; Choe, Joonho; Kim, Myung Kyum; Seo, Taegun

    2017-01-01

    Asian dust or yellow sand events in East Asia are a major issue of environmental contamination and human health, causing increasing concern. A high amount of dust particles, especially called as particulate matter 10 (PM10), is transported by the wind from the arid and semi-arid tracks to the Korean peninsula, bringing a bacterial population that alters the terrestrial and atmospheric microbial communities. In this study, we aimed to explore the bacterial populations of Asian dust samples collected during November-December 2014. The dust samples were collected using the impinger method, and the hypervariable regions of the 16S rRNA gene were amplified using PCR followed by pyrosequencing. Analysis of the sequencing data were performed using Mothur software. The data showed that the number of operational taxonomic units and diversity index during Asian dust events were higher than those during non-Asian dust events. At the phylum level, the proportions of Proteobacteria, Actinobacteria, and Firmicutes were different between Asian dust and non-Asian dust samples. At the genus level, the proportions of the genus Bacillus (6.9%), Arthrobacter (3.6%), Blastocatella (2%), Planomicrobium (1.4%) were increased during Asian dust compared to those in non-Asian dust samples. This study showed that the significant relationship between bacterial populations of Asian dust samples and non-Asian dust samples in Korea, which could significantly affect the microbial population in the environment.

  15. Analysis of Interplanetary Dust Experiment Detectors and Other Witness Plates

    NASA Technical Reports Server (NTRS)

    Griffis, D. P.; Wortman, J. J.

    1992-01-01

    The development of analytical procedures for identifying the chemical composition of residue from impacts that occurred on the Interplanetary Dust Experiment (IDE) detectors during the flight of Long Duration Exposure Facility (LDEF) and the carrying out of actual analysis on IDE detectors and other witness plates are discussed. Two papers on the following topics are presented: (1) experimental analysis of hypervelocity microparticle impact sites on IDE sensor surfaces; and (2) contaminant interfaces with secondary Ion Mass Spectrometer (SIMS) analysis of microparticle impactor residues on LDEF surfaces.

  16. Advances in Dust Detection and Removal for Tokamaks

    NASA Astrophysics Data System (ADS)

    Campos, A.; Skinner, C. H.; Roquemore, A. L.; Leisure, J. O. V.; Wagner, S.

    2008-11-01

    Dust diagnostics and removal techniques are vital for the safe operation of next step fusion devices such as ITER. An electrostatic dust detector[1] developed in the laboratory is being applied to NSTX. In the tokamak environment, large particles or fibres can fall on the grid potentially causing a permanent short. We report on the development of a gas puff system that uses helium to clear such particles from the detector. Experiments with varying nozzle designs, backing pressures, puff durations, and exit flow orientations have obtained an optimal configuration that effectively removes particles from a 25 cm^2 area. Dust removal from next step tokamaks will be required to meet regulatory dust limits. A tripolar grid of fine interdigitated traces has been designed that generates an electrostatic travelling wave for conveying dust particles to a ``drain.'' First trials have shown particle motion in optical microscope images. [1] C. H. Skinner et al., J. Nucl. Mater., 376 (2008) 29.

  17. Sahara Dust Cloud

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24

    A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean.

    These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward.

    In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005.

    In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie

    The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the

  18. A new dust source map of Central Asia derived from MODIS Terra/Aqua data using dust enhancement techniques

    NASA Astrophysics Data System (ADS)

    Nobakht, Mohamad; Shahgedanova, Maria; White, Kevin

    2017-04-01

    Central Asian deserts are a significant source of dust in the middle latitudes, where economic activity and health of millions of people are affected by dust storms. Detailed knowledge of sources of dust, controls over their activity, seasonality and atmospheric pathways are of crucial importance but to date, these data are limited. This paper presents a detailed database of sources of dust emissions in Central Asia, from western China to the Caspian Sea, obtained from the analysis of the Moderate Resolution Imaging Spectroradiometer (MODIS) data between 2003 and 2012. A dust enhancement algorithm was employed to obtain two composite images per day at 1 km resolution from MODIS Terra/Aqua acquisitions, from which dust point sources (DPS) were detected by visual analysis and recorded in a database together with meteorological variables at each DPS location. Spatial analysis of DPS has revealed several active source regions, including some which were not widely discussed in literature before (e.g. Northern Afghanistan sources, Betpak-Dala region in western Kazakhstan). Investigation of land surface characteristics and meteorological conditions at each source region revealed mechanisms for the formation of dust sources, including post-fire wind erosion (e.g. Lake Balkhash basin) and rapid desertification (e.g. the Aral Sea). Different seasonal patterns of dust emissions were observed as well as inter-annual trends. The most notable feature was an increase in dust activity in the Aral Kum.

  19. Evolution of efficient methods to sample lead sources, such as house dust and hand dust, in the homes of children

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Que Hee, S.S.; Peace, B.; Clark, C.S.

    Efficient sampling methods to recover lead-containing house dust and hand dust have been evolved so that sufficient lead is collected for analysis and to ensure that correlational analyses linking these two parameters to blood lead are not dependent on the efficiency of sampling. Precise collection of loose house dust from a 1-unit area (484 cmS) with a Tygon or stainless steel sampling tube connected to a portable sampling pump (1.2 to 2.5 liters/min) required repetitive sampling (three times). The Tygon tube sampling technique for loose house dust <177 m in diameter was around 72% efficient with respect to dust weightmore » and lead collection. A representative house dust contained 81% of its total weight in this fraction. A single handwipe for applied loose hand dust was not acceptably efficient or precise, and at least three wipes were necessary to achieve recoveries of >80% of the lead applied. House dusts of different particle sizes <246 m adhered equally well to hands. Analysis of lead-containing material usually required at least three digestions/decantations using hot plate or microwave techniques to allow at least 90% of the lead to be recovered. It was recommended that other investigators validate their handwiping, house dust sampling, and digestion techniques to facilitate comparison of results across studies. The final methodology for the Cincinnati longitudinal study was three sampling passes for surface dust using a stainless steel sampling tube; three microwave digestion/decantations for analysis of dust and paint; and three wipes with handwipes with one digestion/decantation for the analysis of six handwipes together.« less

  20. Real-Time Detection of Dust Devils from Pressure Readings

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri

    2009-01-01

    A method for real-time detection of dust devils at a given location is based on identifying the abrupt, temporary decreases in atmospheric pressure that are characteristic of dust devils as they travel through that location. The method was conceived for use in a study of dust devils on the Martian surface, where bandwidth limitations encourage the transmission of only those blocks of data that are most likely to contain information about features of interest, such as dust devils. The method, which is a form of intelligent data compression, could readily be adapted to use for the same purpose in scientific investigation of dust devils on Earth. In this method, the readings of an atmospheric- pressure sensor are repeatedly digitized, recorded, and processed by an algorithm that looks for extreme deviations from a continually updated model of the current pressure environment. The question in formulating the algorithm is how to model current normal observations and what minimum magnitude deviation can be considered sufficiently anomalous as to indicate the presence of a dust devil. There is no single, simple answer to this question: any answer necessarily entails a compromise between false detections and misses. For the original Mars application, the answer was sought through analysis of sliding time windows of digitized pressure readings. Windows of 5-, 10-, and 15-minute durations were considered. The windows were advanced in increments of 30 seconds. Increments of other sizes can also be used, but computational cost increases as the increment decreases and analysis is performed more frequently. Pressure models were defined using a polynomial fit to the data within the windows. For example, the figure depicts pressure readings from a 10-minute window wherein the model was defined by a third-degree polynomial fit to the readings and dust devils were identified as negative deviations larger than both 3 standard deviations (from the mean) and 0.05 mbar in magnitude. An

  1. Pulmonary Toxicity Studies of Lunar Dusts in Rodents

    NASA Technical Reports Server (NTRS)

    Lam, C.-W.; James, J. T.; Taylor, L.; Zeidler-Erdely, P. C.; Castranova, V.

    2009-01-01

    NASA will build an outpost on the Moon for prolonged human habitation and research. The lunar surface is covered by a layer of fine, reactive dust. Astronauts on the Moon will go in and out of the base for various activities, and will inevitably bring some dust into the living quarters. Depressurizing the airlock so that astronauts can exit for outdoor activities could also bring dust inside the airlock to the habitable area. Concerned about the potential health effects on astronauts exposed to airborne lunar dust, NASA directed the JSC Toxicology Laboratory to determine the pulmonary toxicity of lunar dust. The toxicity data also will be needed by toxicologists to establish safe exposure limits for astronauts residing in the lunar habitat and by environmental engineers to design an appropriate dust mitigation strategy. We conducted a study to examine biomarkers of toxicity (inflammation and cytotoxicity) in lung lavage fluids from mice intrapharyngeally instilled with lunar dust samples; we also collected lung tissue from the mice for histopathological examination 3 months after the dust instillation. Reference dusts (TiO2 and quartz) having known toxicities and industrial exposure limits were studied in parallel with lunar dust so that the relative toxicity of lunar dust can be determined. A 6-month histopathology study has been planned. These instillation experiments will be followed by inhalation studies, which are more labor intensive and technologically difficult. The animal inhalation studies will be conducted first with an appropriate lunar dust simulant to ensure that the exposure techniques to be used with actual lunar dust will be successful. The results of these studies collectively will reveal the toxicological risk of exposures and enable us to establish exposure limits on lunar dust for astronauts living in the lunar habitat.

  2. Version 2.0 AERONET Dust Aerosol properties, Constraints and Application to Asian Dust Observations

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Eck, Tom; Holben, Brent; Eck, Tom; Siniuk, Aliaksander; Huangand, Jianping; Zang, Wu

    2007-01-01

    In November 2006, AERONET released Version 2 of the Dubovik and King sky radiance and optical depth inversion. Reanalysis of the entire AERONET database revealed marked differences in aerosol properties in arid and semi arid regions with dust dominated aerosols. The change will be illustrated through sensitivity analysis and examples from the UAE2 (United Arab Emirates Unified Aerosol Experiment) field campaign. Properties of dust dominated aerosols will be presented from regional AERONET sites in China showing variations in dust aerosol properties. The constraints and limitations of the AERONET inversion will be presented that will facilitate analysis by the user community of these data.

  3. Metagenomic Analysis of Airborne Bacterial Community and Diversity in Seoul, Korea, during December 2014, Asian Dust Event

    PubMed Central

    Cha, Seho; Srinivasan, Sathiyaraj; Jang, Jun Hyeong; Lee, Dongwook; Lim, Sora; Kim, Kyung Sang; Jheong, Weonhwa; Lee, Dong-Won; Park, Eung-Roh; Chung, Hyun-Mi; Choe, Joonho; Kim, Myung Kyum; Seo, Taegun

    2017-01-01

    Asian dust or yellow sand events in East Asia are a major issue of environmental contamination and human health, causing increasing concern. A high amount of dust particles, especially called as particulate matter 10 (PM10), is transported by the wind from the arid and semi-arid tracks to the Korean peninsula, bringing a bacterial population that alters the terrestrial and atmospheric microbial communities. In this study, we aimed to explore the bacterial populations of Asian dust samples collected during November–December 2014. The dust samples were collected using the impinger method, and the hypervariable regions of the 16S rRNA gene were amplified using PCR followed by pyrosequencing. Analysis of the sequencing data were performed using Mothur software. The data showed that the number of operational taxonomic units and diversity index during Asian dust events were higher than those during non-Asian dust events. At the phylum level, the proportions of Proteobacteria, Actinobacteria, and Firmicutes were different between Asian dust and non-Asian dust samples. At the genus level, the proportions of the genus Bacillus (6.9%), Arthrobacter (3.6%), Blastocatella (2%), Planomicrobium (1.4%) were increased during Asian dust compared to those in non-Asian dust samples. This study showed that the significant relationship between bacterial populations of Asian dust samples and non-Asian dust samples in Korea, which could significantly affect the microbial population in the environment. PMID:28122054

  4. The Lunar Dust Environment

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  5. Interactive Soil Dust Aerosol Model in the GISS GCM. Part 1; Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Tegen, Ina; Miller, Ron L.

    2000-01-01

    The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably

  6. Scattering Properties of Large Irregular Cosmic Dust Particles at Visible Wavelengths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escobar-Cerezo, J.; Palmer, C.; Muñoz, O.

    The effect of internal inhomogeneities and surface roughness on the scattering behavior of large cosmic dust particles is studied by comparing model simulations with laboratory measurements. The present work shows the results of an attempt to model a dust sample measured in the laboratory with simulations performed by a ray-optics model code. We consider this dust sample as a good analogue for interplanetary and interstellar dust as it shares its refractive index with known materials in these media. Several sensitivity tests have been performed for both structural cases (internal inclusions and surface roughness). Three different samples have been selected tomore » mimic inclusion/coating inhomogeneities: two measured scattering matrices of hematite and white clay, and a simulated matrix for water ice. These three matrices are selected to cover a wide range of imaginary refractive indices. The selection of these materials also seeks to study astrophysical environments of interest such as Mars, where hematite and clays have been detected, and comets. Based on the results of the sensitivity tests shown in this work, we perform calculations for a size distribution of a silicate-type host particle model with inclusions and surface roughness to reproduce the experimental measurements of a dust sample. The model fits the measurements quite well, proving that surface roughness and internal structure play a role in the scattering pattern of irregular cosmic dust particles.« less

  7. Dust bands in the asteroid belt

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.; Greenberg, Richard; Dermott, Stanley F.; Nicholson, Philip D.; Burns, Joseph A.

    1989-01-01

    This paper describes the original IRAS observations leading to the discovery of the three dust bands in the asteroid belt and the analysis of data. Special attention is given to an analytical model of the dust band torus and to theories concerning the origin of the dust bands, with special attention given to the collisional equilibrium (asteroid family), the nonequilibrium (random collision), and the comet hypotheses of dust-band origin. It is noted that neither the equilibrium nor nonequilibrium models, as currently formulated, present a complete picture of the IRAS dust-band observations.

  8. Dust around Mira variables: An analysis of IRAS LRS spectra

    NASA Technical Reports Server (NTRS)

    Slijkhuis, S.

    1989-01-01

    The spatial extent and spectral appearance of the thin dust shell around Mira variables is determined largely by the dust absorptivity, Q(sub abs)(lambda), and the dust condensation temperature T(sub cond). Both Q(sub abs)(lambda) and T(sub cond) are extracted from IRAS low-resolution spectra (LRS) spectra. In order to do this, the assumption that the ratio of total power in the 10 micron feature to that in the 20 micron feature should be equal to that measured in other amorphous silicates (e.g., synthesized amorphous Mg2SiO4). It was found that T(sub cond) decreases with decreasing strength of the 10 micron feature, from T(sub cond) = 1000 K to 500 K (estimated error 20 percent). A value for the near-infrared dust absorptivity could not be determined. Although this parameter strongly affects the condensation radius, it hardly affects the shape of the LRS spectrum (as long as the optically thin approximation is valid), because it scales the spatial distribution of the dust. Information on the magnitude of the near-infrared dust absorptivity may be deduced from the unique carbon star BM Gem. This star has a LRS spectrum with silicate features indication an inner dust shell temperature of at least 1000 K. However, on the basis of observations in the 1920s-30s one may infer an inner dust shell radius of at least 6x10(exp 12)m. To have this high temperature at such a large distance, the near-infrared absorptivity of the dust must be high.

  9. The Impacts of Dust Storm Particles on Human Lung Cells - an Analysis at the Single Cell Level

    NASA Astrophysics Data System (ADS)

    Ardon-Dryer, K.; Mock, C.; Reyes, J.; Lahav, G.

    2017-12-01

    Aerosols particles (Natural and anthropogenic) are a key component of our atmosphere, their presence defines air quality levels and they can affect our health. Small particles penetrate into our lungs and this exposure can cause our lung cells to stress and in some cases leads to the death of the cells and to inflammation. During dust storm events there is an increase in particle concentration, many of them are breathable particles that can penetrate deep into our lungs. Exposure to dust particles can lead to respiratory problems, particularly for people with asthma. Therefore, during and after a dust storm event the number of people who are hospitalized with inflammation and respiratory problems increase. However, the exact mechanism that causes these health problems is still unclear. In this project, we are investigating the impacts that dust storm particles from different sources and of different concentrations (doses) have on human lung cells, performing a new and unique analysis at the single cell level. To accomplish this, each individual lung cell is continuously tracked after being exposed to dust particles. We monitor the behavior of the cell over time, identify the cells time of death and type of death (e.g. cell explosion). With this analysis, we can quantify cell death as a function of dust concertation (doses); to our surprise, an increase in cells death was not observed only as a function of an increase of dust concertation. In addition, we noticed that the way particles come in contact with cells, by sticking to or being engulfed by, and the interaction duration has an effect; cells that interact with dust particles for a longer period died earlier compared to cells with a shorter interaction period. These findings will help us to better understand the health related consequences of exposure to dust storm events and serve as a baseline for when evaluating other aerosol.

  10. First real-time detection of surface dust in a tokamak.

    PubMed

    Skinner, C H; Rais, B; Roquemore, A L; Kugel, H W; Marsala, R; Provost, T

    2010-10-01

    The first real-time detection of surface dust inside a tokamak was made using an electrostatic dust detector. A fine grid of interlocking circuit traces was installed in the NSTX vessel and biased to 50 V. Impinging dust particles created a temporary short circuit and the resulting current pulse was recorded by counting electronics. The techniques used to increase the detector sensitivity by a factor of ×10,000 to match NSTX dust levels while suppressing electrical pickup are presented. The results were validated by comparison to laboratory measurements, by the null signal from a covered detector that was only sensitive to pickup, and by the dramatic increase in signal when Li particles were introduced for wall conditioning purposes.

  11. Mimicking Martian dust: An in-vacuum dust deposition system for testing the ultraviolet sensors on the Curiosity rover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobrado, J. M., E-mail: sobradovj@inta.es; Martín-Soler, J.; Martín-Gago, J. A.

    We have designed and developed an in-vacuum dust deposition system specifically conceived to simulate and study the effect of accumulation of Martian dust on the electronic instruments of scientific planetary exploration missions. We have used this device to characterize the dust effect on the UV sensor of the Rover Environmental Monitoring Station in the Mars science Laboratory mission of NASA in similar conditions to those found on Mars surface. The UV sensor includes six photodiodes for measuring the radiation in all UV wavelengths (direct incidence and reflected); it is placed on the body of Curiosity rover and it is severelymore » affected by the dust deposited on it. Our experimental setup can help to estimate the duration of reliable reading of this instrument during operation. We have used an analogous of the Martian dust in chemical composition (magnetic species), color, and density, which has been characterized by X-ray spectroscopy. To ensure a Brownian motion of the dust during its fall and a homogeneous coverage on the instrumentation, the operating conditions of the vacuum vessel, determined by partial pressures and temperature, have to be modified to account for the different gravities of Mars with respect to Earth. We propose that our designed device and operational protocol can be of interest to test optoelectronic instrumentation affected by the opacity of dust, as can be the degradation of UV photodiodes in planetary exploration.« less

  12. ANALYSIS OF THE INSTABILITY DUE TO GAS–DUST FRICTION IN PROTOPLANETARY DISKS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadmehri, Mohsen, E-mail: m.shadmehri@gu.ac.ir

    2016-02-01

    We study the stability of a dust layer in a gaseous disk subject to linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary disks (PPDs). A second dust phase with a small mass, compared to the first dust phase, would reduce the growth timescale by a factormore » of two or more, especially when its coupling to the gas is weak. This means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping is accelerated. Thus, the presence of dust particles of various sizes must be considered in studies of dust clumping in PPDs where both large and small dust grains are present.« less

  13. Atmospheric bioaerosols transported via dust storms in the western United States

    NASA Astrophysics Data System (ADS)

    Hallar, A. Gannet; Chirokova, Galina; McCubbin, Ian; Painter, Thomas H.; Wiedinmyer, Christine; Dodson, Craig

    2011-09-01

    Measurements are presented showing the presence of biological material within frequent dust storms in the western United States. Previous work has indicated that biological particles were enhancing the impact of dust storms on the formation of clouds. This paper presents multiple case studies, between April and May 2010, showing the presence of and quantifying the amount of biological material via an Ultraviolet Aerodynamic Particle Sizer during dust events. All dust storms originated in the Four Corners region in the western Untied States and were measured at Storm Peak Laboratory, a high elevation facility in northwestern Colorado. From an Aerodynamic Particle Sizer, the mean dust particle size during these events was approximately 1 μm, with number concentrations between 6 cm-3 and 12 cm-3. Approximately 0.2% of these dust particles had fluorescence signatures, indicating the presence of biological material.

  14. IDIS Small Bodies and Dust Node

    NASA Astrophysics Data System (ADS)

    de Sanctis, M. C.; Capria, M. T.; Carraro, F.; Fonte, S.; Giacomini, L.; Turrini, D.

    2009-04-01

    The EuroPlaNet information service provides access to lists of researchers, laboratories and data archives relevant to many aspects of planetary and space physics. Information can be accessed through EuroPlaNet website or, for advanced searches, via web-services available at the different thematic nodes. The goal of IDIS is to provide easy-to-use access to resources like people, laboratories, modeling activities and data archives related to planetary sciences. The development of IDIS is an international effort started under the European Commission's 6th Framework Programme and which will expand its capabilities during the 7th Framework Programme, as part of the Capacities Specific Programme/Research Infrastructures. IDIS is complemented by a set of other EuroPlaNet web-services maintained under the responsibility of separate institutions. Each activity maintains its own web-portal with cross-links pointing to the other elements of EuroPlaNet. General access is provided via the EuroPlaNet Homepage. IDIS is not a repository of original data but rather supports the access to various data sources. The final goal of IDIS is to provide Virtual Observatory tools for the access to data from laboratory measurements and ground- and spaced-based observations to modeling results, allowing the combination of as divergent data sources as feasible. IDIS is built around four scientific nodes located in different European countries. Each node deals with a subset of the disciplines related to planetary sciences and, working in cooperation with international experts in these fields, provides a wealth of information to the international planetary science community. The EuroPlaNet IDIS thematic node "Small Bodies and Dust Node" is hosted by the Istituto di Fisica dello Spazio Interplanetario and is established in close cooperation with the Istituto di Astrofisica Spaziale. Both these institutes are part of the Istituto Nazionale di Astrofisica (INAF). The IDIS Small Bodies and Dust

  15. Laboratory Simulations of Micrometeoroid Ablation

    NASA Astrophysics Data System (ADS)

    Thomas, Evan Williamson

    Each day, several tons of meteoric material enters Earth's atmosphere, the majority of which consist of small dust particles (micrometeoroids) that completely ablate at high altitudes. The dust input has been suggested to play a role in a variety of phenomena including: layers of metal atoms and ions, nucleation of noctilucent clouds, effects on stratospheric aerosols and ozone chemistry, and the fertilization of the ocean with bio-available iron. Furthermore, a correct understanding of the dust input to the Earth provides constraints on inner solar system dust models. Various methods are used to measure the dust input to the Earth including satellite detectors, radar, lidar, rocket-borne detectors, ice core and deep-sea sediment analysis. However, the best way to interpret each of these measurements is uncertain, which leads to large uncertainties in the total dust input. To better understand the ablation process, and thereby reduce uncertainties in micrometeoroid ablation measurements, a facility has been developed to simulate the ablation of micrometeoroids in laboratory conditions. An electrostatic dust accelerator is used to accelerate iron particles to relevant meteoric velocities (10-70 km/s). The particles are then introduced into a chamber pressurized with a target gas, and they partially or completely ablate over a short distance. An array of diagnostics then measure, with timing and spatial resolution, the charge and light that is generated in the ablation process. In this thesis, we present results from the newly developed ablation facility. The ionization coefficient, an important parameter for interpreting meteor radar measurements, is measured for various target gases. Furthermore, experimental ablation measurements are compared to predictions from commonly used ablation models. In light of these measurements, implications to the broader context of meteor ablation are discussed.

  16. Dust Storm over the Middle East: Retrieval Approach, Source Identification, and Trend Analysis

    NASA Astrophysics Data System (ADS)

    Moridnejad, A.; Karimi, N.; Ariya, P. A.

    2014-12-01

    The Middle East region has been considered to be responsible for approximately 25% of the Earth's global emissions of dust particles. By developing Middle East Dust Index (MEDI) and applying to 70 dust storms characterized on MODIS images and occurred during the period between 2001 and 2012, we herein present a new high resolution mapping of major atmospheric dust source points participating in this region. To assist environmental managers and decision maker in taking proper and prioritized measures, we then categorize identified sources in terms of intensity based on extracted indices for Deep Blue algorithm and also utilize frequency of occurrence approach to find the sensitive sources. In next step, by implementing the spectral mixture analysis on the Landsat TM images (1984 and 2012), a novel desertification map will be presented. The aim is to understand how human perturbations and land-use change have influenced the dust storm points in the region. Preliminary results of this study indicate for the first time that c.a., 39 % of all detected source points are located in this newly anthropogenically desertified area. A large number of low frequency sources are located within or close to the newly desertified areas. These severely desertified regions require immediate concern at a global scale. During next 6 months, further research will be performed to confirm these preliminary results.

  17. Martian Arctic Dust Devil, Phoenix Sol 104

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The dust devil visible in the center of this image just below the horizon is estimated to be about 400 meters (about 1,300 feet) from Phoenix, and 4 meters (13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those.

    The image has been enhanced to make the dust devil easier to see.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Comprehensive Modeling of Superficial Dust Removal via Electrostatic and Dielectrophoretic Forces in Extraterres-trial Exploration Mission

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Phillips, James R. III; Mackey, Paul J.; Hogue, Michael D.; Johansen, Michael R.; Cox, Rachel E.; Calle, Carlos I.

    2017-01-01

    The Electrostatics and Surface Physics Laboratory (ESPL) at NASA Kennedy Space Center has developed a dust mitigation technology that uses electrostatic and dielectrophoretic (DEP) forces to disperse and remove the dust already deposited on surfaces preventing the accumulation of dust particles approaching or already deposited on those surfaces.

  19. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    PubMed

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  20. Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign

    NASA Astrophysics Data System (ADS)

    Tang, Kai; Huang, Zhongwei; Huang, Jianping; Maki, Teruya; Zhang, Shuang; Shimizu, Atsushi; Ma, Xiaojun; Shi, Jinsen; Bi, Jianrong; Zhou, Tian; Wang, Guoyin; Zhang, Lei

    2018-05-01

    Previous studies have shown that bioaerosols are injected into the atmosphere during dust events. These bioaerosols may affect leeward ecosystems, human health, and agricultural productivity and may even induce climate change. However, bioaerosol dynamics have rarely been investigated along the transport pathway of Asian dust, especially in China where dust events affect huge areas and massive numbers of people. Given this situation, the Dust-Bioaerosol (DuBi) Campaign was carried out over northern China, and the effects of dust events on the amount and diversity of bioaerosols were investigated. The results indicate that the number of bacteria showed remarkable increases during the dust events, and the diversity of the bacterial communities also increased significantly, as determined by means of microscopic observations with 4,6-diamidino-2-phenylindole (DAPI) staining and MiSeq sequencing analysis. These results indicate that dust clouds can carry many bacteria of various types into downwind regions and may have potentially important impacts on ecological environments and climate change. The abundances of DAPI-stained bacteria in the dust samples were 1 to 2 orders of magnitude greater than those in the non-dust samples and reached 105-106 particles m-3. Moreover, the concentration ratios of DAPI-stained bacteria to yellow fluorescent particles increased from 5.1 % ± 6.3 % (non-dust samples) to 9.8 % ± 6.3 % (dust samples). A beta diversity analysis of the bacterial communities demonstrated the distinct clustering of separate prokaryotic communities in the dust and non-dust samples. Actinobacteria, Bacteroidetes, and Proteobacteria remained the dominant phyla in all samples. As for Erenhot, the relative abundances of Acidobacteria and Chloroflexi had a remarkable rise in dust events. In contrast, the relative abundances of Acidobacteria and Chloroflexi in non-dust samples of R-DzToUb were greater than those in dust samples. Alphaproteobacteria made the major

  1. Possible method for diagnosing waves in dusty plasmas with magnetized charged dust particulates

    NASA Astrophysics Data System (ADS)

    Rosenberg, M.; Shukla, P. K.

    2005-05-01

    We discuss theoretically a possible method for diagnosing some features of dust wave behavior in a magnetized plasma containing small (tens of nm) charged dust grains whose motion is magnetized. It is easier to magnetize a small dust particle because its charge-to-mass ratio increases as its size decreases. However, it is more difficult to use the backscattering of light from the dust as a diagnostic as the dust size decreases below the diffraction limit. The idea proposed here is to measure the reduction in transmitted UV or optical light intensity due to enhanced extinction by small metal dust particles that have surface plasmon resonances at those wavelengths. Such measurements could indicate the spatial location of the dust density compressions or rarefactions, which may yield information on the dust wave behavior, or perhaps even charged dust transport. Parameters that may be relevant to possible laboratory dusty plasma experiments are discussed.

  2. Respirable dust measured downwind during rock dust application.

    PubMed

    Harris, M L; Organiscak, J; Klima, S; Perera, I E

    2017-05-01

    The Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health (NIOSH) conducted underground evaluations in an attempt to quantify respirable rock dust generation when using untreated rock dust and rock dust treated with an anticaking additive. Using personal dust monitors, these evaluations measured respirable rock dust levels arising from a flinger-type application of rock dust on rib and roof surfaces. Rock dust with a majority of the respirable component removed was also applied in NIOSH's Bruceton Experimental Mine using a bantam duster. The respirable dust measurements obtained downwind from both of these tests are presented and discussed. This testing did not measure miners' exposure to respirable coal mine dust under acceptable mining practices, but indicates the need for effective continuous administrative controls to be exercised when rock dusting to minimize the measured amount of rock dust in the sampling device.

  3. Forecasting Dust Storms Using the CARMA-Dust Model and MM5 Weather Data

    NASA Astrophysics Data System (ADS)

    Barnum, B. H.; Winstead, N. S.; Wesely, J.; Hakola, A.; Colarco, P.; Toon, O. B.; Ginoux, P.; Brooks, G.; Hasselbarth, L. M.; Toth, B.; Sterner, R.

    2002-12-01

    An operational model for the forecast of dust storms in Northern Africa, the Middle East and Southwest Asia has been developed for the United States Air Force Weather Agency (AFWA). The dust forecast model uses the 5th generation Penn State Mesoscale Meteorology Model (MM5), and a modified version of the Colorado Aerosol and Radiation Model for Atmospheres (CARMA). AFWA conducted a 60 day evaluation of the dust model to look at the model's ability to forecast dust storms for short, medium and long range (72 hour) forecast periods. The study used satellite and ground observations of dust storms to verify the model's effectiveness. Each of the main mesoscale forecast theaters was broken down into smaller sub-regions for detailed analysis. The study found the forecast model was able to forecast dust storms in Saharan Africa and the Sahel region with an average Probability of Detection (POD)exceeding 68%, with a 16% False Alarm Rate (FAR). The Southwest Asian theater had average POD's of 61% with FAR's averaging 10%.

  4. Khuzestan dust phenomenon: a content analysis of most widely circulated newspapers.

    PubMed

    Mojadam, Mehdi; Matlabi, Mohammad; Haji, Alireza; Cheraghi, Maria; Bitaraf, Saeid; Khafaie, Morteza Abdullatif

    2018-06-01

    Dust is an atmospheric phenomenon that causes adverse environmental effects. It is deemed to have harmful effects on health, economics, and climate. This study aimed to analyze the content published on the phenomenon of dust in the widely circulated newspapers in Iran. We investigated the content of all national and provincial newspapers that were published between July and August 2014. Data on the materials related to the dust phenomenon in the newspapers were categorized and coded. From a total of 510 newspaper issues, 143 articles were devoted to the dust phenomenon which 74.1% of them were published in provincial newspapers. Among the national newspapers, Hamshahri newspaper with 16 headlines and from the provincial newspapers; Karoon with 23 headlines published the highest number of articles on dust phenomenon. 45.5% of content on dust were printed on the first page of the newspapers. The most common approach to the type of content published in these newspapers was an interview. Moreover, we noticed that 28.7% of the content published in the newspapers was related to the health issue. The media plays an important role in the transmission of health information. Weaknesses in addressing the causes of dust occurrence and also in providing solutions for the dust control and prevention were noticeable in the content published in the newspaper. It seems necessary to take practical measures to disseminate relevant information to dust and also address the needs of the target audience community influenced by the dust phenomenon properly.

  5. Properties of dust and clouds in the Mars atmosphere: Analysis of Viking IRTM emission phase function sequences

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.

    1991-01-01

    An analysis of emission-phase-function (EPF) observations from the Viking Orbiter Infrared Thermal Mapper (IRTM) yields a wide variety of results regarding dust and cloud scattering in the Mars atmosphere and atmospheric-corrected albedos for the surface of Mars. A multiple scattering radiative transfer model incorporating a bidirectional phase function for the surface and atmospheric scattering by dust and clouds is used to derive surface albedos and dust and ice optical properties and optical depths for these various conditions on Mars.

  6. Shock structures in a strongly coupled self-gravitating opposite-polarity dust plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, A. A.; Schlickeiser, R.

    2016-03-15

    A strongly coupled, self-gravitating, opposite-polarity dust plasma (containing strongly coupled inertial positive and negative dust fluids, and inertialess weakly coupled ions) is considered. The generalized hydrodynamic model and the reductive perturbation method are employed to examine the possibility for the formation of the dust-acoustic (DA) shock structures in such an opposite-polarity dust plasma. It has been shown that the strong correlation among charged dust is a source of dissipation and is responsible for the formation of the DA shock structures in such the opposite-polarity dust plasma medium. The parametric regimes for the existence of the DA shock structures (associated withmore » electrostatic and gravitational potentials) and their basic properties (viz., polarity, amplitude, width, and speed) are found to be significantly modified by the combined effects of positively charged dust component, self-gravitational field, and strong correlation among charged dust. The implications of our results in different space plasma environments and laboratory plasma devices are briefly discussed.« less

  7. Mars Environmental Chamber for Dynamic Dust Deposition and Statics Analysis

    NASA Technical Reports Server (NTRS)

    Moeller, L. E.; Tuller, M.; Islam, M. R.; Baker, L.; Kuhlman, K.

    2004-01-01

    Recent observations of the 2001 dust storms encircling Mars confirm predictions of environmental challenges for exploration. Martian dust has been found to completely mantle the Martian surface over thousands of square kilometers and the opacity of airborne dust has been shown to be capable of modifying atmospheric temperature, radiative transfer and albedo. Planetary dust cycling dynamics are suggested to be a key factor in the evolution of the Martian surface. Long-term robotic and manned exploration of Mars will be confronted by dust deposition in periods of atmospheric calm and violent wind storms. Aeolian dust deposition recorded during the Mars Pathfinder mission was estimated to fall at rates of 20-45 microns per Earth year. Although many tools of exploration will be challenged by coating, adhesion, abrasion and possible chemical reaction of deposited, wind blown and actively disturbed Martian dust, solar cells are thought to be of primary concern. Recent modeling work of power output by gallium arsenide/germanium solar cells was validated by the Pathfinder Lander data and showed power output decreases of 0.1 to 0.5% per Martian day. A major determinant for the optimal positioning angle of solar panels employed in future missions is the angle of repose of the settling dust particles that is dependent on a variety of physical and chemical properties of the particles, the panel surface, and the environmental conditions on the Mars surface. While the effects of many of these factors are well understood qualitatively, quantitative analyses, especially under physical and chemical conditions prevailing on the Mars surface are lacking.

  8. Use of Monte Carlo analysis in a risk-based prioritization of toxic constituents in house dust.

    PubMed

    Ginsberg, Gary L; Belleggia, Giuliana

    2017-12-01

    Many chemicals have been detected in house dust with exposures to the general public and particularly young children of potential health concern. House dust is also an indicator of chemicals present in consumer products and the built environment that may constitute a health risk. The current analysis compiles a database of recent house dust concentrations from the United States and Canada, focusing upon semi-volatile constituents. Seven constituents from the phthalate and flame retardant categories were selected for risk-based screening and prioritization: diethylhexyl phthalate (DEHP), butyl benzyl phthalate (BBzP), diisononyl phthalate (DINP), a pentabrominated diphenyl ether congener (BDE-99), hexabromocyclododecane (HBCDD), tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and tris(2-chloroethyl) phosphate (TCEP). Monte Carlo analysis was used to represent the variability in house dust concentration as well as the uncertainty in the toxicology database in the estimation of children's exposure and risk. Constituents were prioritized based upon the percentage of the distribution of risk results for cancer and non-cancer endpoints that exceeded a hazard quotient (HQ) of 1. The greatest percent HQ exceedances were for DEHP (cancer and non-cancer), BDE-99 (non-cancer) and TDCIPP (cancer). Current uses and the potential for reducing levels of these constituents in house dust are discussed. Exposure and risk for other phthalates and flame retardants in house dust may increase if they are used to substitute for these prioritized constituents. Therefore, alternative assessment and green chemistry solutions are important elements in decreasing children's exposure to chemicals of concern in the indoor environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Sensitivity of Sahelian Precipitation to Desert Dust under ENSO variability: a regional modeling study

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.

    2016-12-01

    Mineral dust is estimated to comprise over half the total global aerosol burden, with a majority coming from the Sahara and Sahel region. Bounded by the Sahara Desert to the north and the Sahelian Savannah to the south, the Sahel experiences high interannual rainfall variability and a short rainy season during the boreal summer months. Observation-based data for the past three decades indicates a reduced dust emission trend, together with an increase in greening and surface roughness within the Sahel. Climate models used to study regional precipitation changes due to Saharan dust yield varied results, both in sign convention and magnitude. Inconsistency of model estimates drives future climate projections for the region that are highly varied and uncertain. We use the NASA-Unified Weather Research and Forecasting (NU-WRF) model to quantify the interaction and feedback between desert dust aerosol and Sahelian precipitation. Using nested domains at fine spatial resolution we resolve changes to mesoscale atmospheric circulation patterns due to dust, for representative phases of El Niño-Southern Oscillation (ENSO). The NU-WRF regional earth system model offers both advanced land surface data and resolvable detail of the mechanisms of the impact of Saharan dust. Results are compared to our previous work assessed over the Western Sahel using the Geophysical Fluid Dynamics Laboratory (GFDL) CM2Mc global climate model, and to other previous regional climate model studies. This prompts further research to help explain the dust-precipitation relationship and recent North African dust emission trends. This presentation will offer a quantitative analysis of differences in radiation budget, energy and moisture fluxes, and atmospheric dynamics due to desert dust aerosol over the Sahel.

  10. A new physically-based windblown dust emission ...

    EPA Pesticide Factsheets

    Dust has significant impacts on weather and climate, air quality and visibility, and human health; therefore, it is important to include a windblown dust emission module in atmospheric and air quality models. In this presentation, we summarize our efforts in development of a physics-based windblown dust emission scheme and its implementation in the CMAQ modeling system. The new model incorporates the effect of the surface wind speed, soil texture, soil moisture, and surface roughness in a physically sound manner. Specifically, a newly developed dynamic relation for the surface roughness length in this model is believed to adequately represent the physics of the surface processes involved in the dust generation. Furthermore, careful attention is paid in integrating the new windblown dust module within the CMAQ to ensure that the required input parameters are correctly configured. The new model is evaluated for the case studies including the continental United States and the Northern hemisphere, and is shown to be able to capture the occurrence of the dust outbreak and the level of the soil concentration. We discuss the uncertainties and limitations of the model and briefly describe our path forward for further improvements. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based

  11. Dust Measurements Between Earth and Saturn by the Venetia Burney Student Dust Counter of the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    James, D.; Poppe, A.; Horanyi, M.

    2008-12-01

    The Venetia Burney Student Dust Counter (VSDC) on the New Horizons mission is a dust impact detector designed to map the interplanetary dust distribution along the trajectory of the spacecraft as it traverses our solar system. VSDC is the first student-built instrument on a deep space mission and is currently operated by a small group of undergraduate and graduate students at the Laboratory for Atmospheric and Space Physics (LASP), University of Colorado. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when a dust particle impacts them. The total surface area is about 0.1 square meters and the detection threshold is about 1 micron in radius. By the time of this meeting (12/2008), VSDC will have operated for about 500 days, and will have data covering an approximate distance of 1.2 to 11.0 AU from the Sun. In this talk, we will briefly review the VSDC instrument, including the in-flight calibrations and tests. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the New Horizons encounter with Jupiter. These data will also be compared to earlier measurements by Ulysses and Galileo.

  12. Dust around the Cool Component of D-Type Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2018-04-01

    D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.

  13. Analysis of Measurements of Saharan Dust by Airborne and Ground-based Remote Sensing Methods during the Puerto Rico Dust Experiment (PRIDE)

    NASA Technical Reports Server (NTRS)

    Reid, Jeffrey S.; Kinney, James E.; Westphal, Douglas L.; Holben, Brent N.; Welton, E. Judd; Tsay, Si-Chee; Eleuterio, Daniel P.; Campbell, James; Christopher, Sundar A.; Jonsson, Haflidi H.

    2003-01-01

    For 26 days in mid-June and July 2000, a research group comprised of U.S. Navy, NASA, and university scientists conducted the Puerto Rico Dust Experiment (PRIDE). In this paper we give a brief overview of mean meteorological conditions during the study. We focus on findings on African dust transported into the Caribbean utilizing Navajo aircraft and AERONET Sun photometer data. During the study midvisible aerosol optical thickness (AOT) in Puerto Rico averaged 0.25, with a maximum less than 0.5 and with clean marine periods of _0.08. Dust AOTs near the coast of Africa (Cape Verde Islands and Dakar) averaged _0.4, 30% less than previous years. By analyzing dust vertical profiles in addition to supplemental meteorology and MPLNET lidar data we found that dust transport cannot be easily categorized into any particular conceptual model. Toward the end of the study period, the vertical distribution of dust was similar to the commonly assumed Saharan Air Layer (SAL) transport. During the early periods of the study, dust had the highest concentrations in the marine and convective boundary layers with only a, weak dust layer in the SAL being present, a state usually associated with wintertime transport patterns. We corroborate the findings of Maring et al. that in most cases, there was an unexpected lack of vertical stratification of dust particle size. We systematically analyze processes which may impact dust vertical distribution and determine and speculate that dust vertical distribution predominately influenced by flow patterns over Africa and differential advection couple with mixing by easterly waves and regional subsidence.

  14. Microbiological and meteorological analysis of two Australian dust storms in April 2009.

    PubMed

    Lim, Natalie; Munday, Chris I; Allison, Gwen E; O'Loingsigh, Tadhg; De Deckker, Patrick; Tapper, Nigel J

    2011-12-15

    Dust is an important source of bioaerosols including bacteria. In this study, the microbiology and meteorology of specific dust storms in Australia were investigated. The samples were collected from two dust events in April 2009 that were characterised by intense cold fronts that entrained dust from the highly erodible and drought-stricken Mallee and Riverina regions of Victoria and central NSW. In the first storm, the dust travelled eastward over Canberra and Sydney, and in the second storm, the dust travelled east/southeastward over Canberra and Melbourne. Rain fell on both cities during the second dust storm. Dust and rain samples were collected, cultured, and the composition compared using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Multiple bands were evident on DGGE indicative of a diverse microflora, and identification of several bands confirmed the presence of multiple genera and species representing three phyla. Numerous bands represented Bacillus species, and these were present in multiple dust samples collected from both Canberra and Melbourne. Interestingly, the microflora present in rain samples collected in Canberra during the second dust storm was quite different and the DGGE banding patterns from these samples clustered separately to most dust samples collected at the same time. Identification of several DGGE bands and PCR products from these rain samples indicated the presence of Pseudomonas species. These results indicate that Australian dust and rain have a diverse microflora and highlights the contribution of dust events to the distribution of microbes in the environment. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. The Vertical Dust Profile Over Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Newman, C. E.; Smith, M. D.; Moores, J. E.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D.; Kleinböhl, A.; Mischna, M.; Martín-Torres, F. J.; Zorzano-Mier, M.-P.; Battalio, M.

    2017-12-01

    We create a vertically coarse, but complete, profile of dust mixing ratio from the surface to the upper atmosphere over Gale Crater, Mars, using the frequent joint atmospheric observations of the orbiting Mars Climate Sounder (MCS) and the Mars Science Laboratory Curiosity rover. Using these data and an estimate of planetary boundary layer (PBL) depth from the MarsWRF general circulation model, we divide the vertical column into three regions. The first region is the Gale Crater PBL, the second is the MCS-sampled region, and the third is between these first two. We solve for a well-mixed dust mixing ratio within this third (middle) layer of atmosphere to complete the profile. We identify a unique seasonal cycle of dust within each atmospheric layer. Within the Gale PBL, dust mixing ratio maximizes near southern hemisphere summer solstice (Ls = 270°) and minimizes near winter solstice (Ls = 90-100°) with a smooth sinusoidal transition between them. However, the layer above Gale Crater and below the MCS-sampled region more closely follows the global opacity cycle and has a maximum in opacity near Ls = 240° and exhibits a local minimum (associated with the "solsticial pause" in dust storm activity) near Ls = 270°. With knowledge of the complete vertical dust profile, we can also assess the frequency of high-altitude dust layers over Gale. We determine that 36% of MCS profiles near Gale Crater contain an "absolute" high-altitude dust layer wherein the dust mixing ratio is the maximum in the entire vertical column.

  16. Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.

    Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less

  17. Alpha Air Sample Counting Efficiency Versus Dust Loading: Evaluation of a Large Data Set

    DOE PAGES

    Hogue, M. G.; Gause-Lott, S. M.; Owensby, B. N.; ...

    2018-03-03

    Dust loading on air sample filters is known to cause a loss of efficiency for direct counting of alpha activity on the filters, but the amount of dust loading and the correction factor needed to account for attenuated alpha particles is difficult to assess. In this paper, correction factors are developed by statistical analysis of a large database of air sample results for a uranium and plutonium processing facility at the Savannah River Site. As is typically the case, dust-loading data is not directly available, but sample volume is found to be a reasonable proxy measure; the amount of dustmore » loading is inferred by a combination of the derived correction factors and a Monte Carlo model. The technique compares the distribution of activity ratios [beta/(beta + alpha)] by volume and applies a range of correction factors on the raw alpha count rate. The best-fit results with this method are compared with MCNP modeling of activity uniformly deposited in the dust and analytical laboratory results of digested filters. Finally, a linear fit is proposed to evenly-deposited alpha activity collected on filters with dust loading over a range of about 2 mg cm -2 to 1,000 mg cm -2.« less

  18. A portable x-ray fluorescence instrument for analyzing dust wipe samples for lead: evaluation with field samples.

    PubMed

    Sterling, D A; Lewis, R D; Luke, D A; Shadel, B N

    2000-06-01

    Dust wipe samples collected in the field were tested by nondestructive X-ray fluorescence (XRF) followed by laboratory analysis with flame atomic absorption spectrophotometry (FAAS). Data were analyzed for precision and accuracy of measurement. Replicate samples with the XRF show high precision with an intraclass correlation coefficient (ICC) of 0.97 (P<0.0001) and an overall coefficient of variation of 11.6%. Paired comparison indicates no statistical difference (P=0.272) between XRF and FAAS analysis. Paired samples are highly correlated with an R(2) ranging between 0.89 for samples that contain paint chips and 0.93 for samples that do not contain paint chips. The ICC for absolute agreement between XRF and laboratory results was 0.95 (P<0.0001). The relative error over the concentration range of 25 to 14,200 microgram Pb is -12% (95% CI, -18 to -5). The XRF appears to be an excellent method for rapid on-site evaluation of dust wipes for clearance and risk assessment purposes, although there are indications of some confounding when paint chips are present. Copyright 2000 Academic Press.

  19. 2. Credit BG. View down dust ditch at northeast side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Credit BG. View down dust ditch at northeast side of A Street, looking north northwest in "the loop". Note culverts used to give vehicular and pedestrian access to buildings northeast of A Street, some foundations of which may be seen at right of view. Structures in background belong to Jet Propulsion Laboratory Edwards Facility. - Edwards Air Force Base, North Base, Dust Ditch System, Traversing North Base, Boron, Kern County, CA

  20. The Vertical Dust Profile over Gale Crater

    NASA Astrophysics Data System (ADS)

    Guzewich, S.; Newman, C. E.; Smith, M. D.; Moores, J.; Smith, C. L.; Moore, C.; Richardson, M. I.; Kass, D. M.; Kleinboehl, A.; Martin-Torres, F. J.; Zorzano, M. P.; Battalio, J. M.

    2017-12-01

    Regular joint observations of the atmosphere over Gale Crater from the orbiting Mars Reconnaissance Orbiter/Mars Climate Sounder (MCS) and Mars Science Laboratory (MSL) Curiosity rover allow us to create a coarse, but complete, vertical profile of dust mixing ratio from the surface to the upper atmosphere. We split the atmospheric column into three regions: the planetary boundary layer (PBL) within Gale Crater that is directly sampled by MSL (typically extending from the surface to 2-6 km in height), the region of atmosphere sampled by MCS profiles (typically 25-80 km above the surface), and the region of atmosphere between these two layers. Using atmospheric optical depth measurements from the Rover Environmental Monitoring System (REMS) ultraviolet photodiodes (in conjunction with MSL Mast Camera solar imaging), line-of-sight opacity measurements with the MSL Navigation Cameras (NavCam), and an estimate of the PBL depth from the MarsWRF general circulation model, we can directly calculate the dust mixing ratio within the Gale Crater PBL and then solve for the dust mixing ratio in the middle layer above Gale Crater but below the atmosphere sampled by MCS. Each atmospheric layer has a unique seasonal cycle of dust opacity, with Gale Crater's PBL reaching a maximum in dust mixing ratio near Ls = 270° and a minimum near Ls = 90°. The layer above Gale Crater, however, has a seasonal cycle that closely follows the global opacity cycle and reaches a maximum near Ls = 240° and exhibits a local minimum (associated with the "solsticial pauses") near Ls = 270°. Knowing the complete vertical profile also allows us to determine the frequency of high-altitude dust layers above Gale, and whether such layers truly exhibit the maximum dust mixing ratio within the entire vertical column. We find that 20% of MCS profiles contain an "absolute" high-altitude dust layer, i.e., one in which the dust mixing ratio within the high-altitude dust layer is the maximum dust mixing ratio

  1. Measuring the Dust Flux and Dust Particle Mass Distribution in the Saturn Rings with HRD Dust Instrument on the Cassini Mission

    NASA Astrophysics Data System (ADS)

    Tuzzolino, A. J.; Economou, T. E.

    In July 2004, the Cassini spacecraft will go into the Saturn orbit and start a 4 year intensive investigation of the planet itself, its multiple satellites and its rings with a multinational instrument payload. The High Rate Detectors (HRD) instrument provided by the Laboratory of Astrophysics and Space Research of the University of is part of the German Cosmic Dust Analyzer (CDA) and its main scientific objective is to provide quantitative measurements and mass distributions of dust particles in the rings of Saturn in the 10-11 to 10-4 grams mass range. The HRD instrument consists of two dust detectors -- a 20 and a 200 cm2 polyvinylidene fluoride (PVDF) sensors -- and an electronic box that contains all the analog and digital electronics and in addition provides interface between the HRD and CDA instrument. The CDA stores all the HRD data in its memory and transmits the data to Earth. The HRD weighs 1.7 kg and consumes 1.8 W of power [1]. The HRD instrument was fully calibrated through the entire mass range using two dust particle accelerators at Heidelberg and Munich in Germany. The HRD electronics is very fast and it will provide spatial and time distributions of up to 0.1 second. It can handle rates up to 104 counts/sec expected to be encountered during the Saturn ring crossings without any dead time. The HRD instrument operated successfully during all of the time that it was under power and detected many interplanetary dust particles. Almost all of these particles were close to the lowest mass threshold. References 1 A.J. TUZZOLINO, T.E. ECONOMOU, R.B. MCKIBBEN, J.A. SIMPSON, J.A.M. MCDONNELL, M.J. BURCHELL, B.A.M. VAUGHAN, P. TSOU, M.S. HANNER, B.C. CLARK AND D.E. BROWNLEE. THE DUST FLUX MONITOR INSTRUMENT FOR THE STARDUST MISSION TO COMET WILD-2, J. GEOPHYS. RES., 108, DOI:10.1029/2003JE002091, 2003.

  2. Space dust and debris; Proceedings of the Topical Meeting of the Interdisciplinary Scientific Commission B (Meetings B2, B3, and B5) of the COSPAR 28th Plenary Meeting, The Hague, Netherlands, June 25-July 6, 1990

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Editor); Zarnecki, J. C. (Editor); Matson, D. L. (Editor)

    1991-01-01

    The present conference on space dust and debris encompasses orbital debris, in situ measurements and laboratory analysis of space-dust particles, comparative studies of comets, asteroids, and dust, the protection and maneuvering of spacecraft in space-debris environments, and the out-of-elliptic distribution of interplanetary dust derived from near-earth flux. Specific issues addressed include asteroid taxonomy, the optical properties of dust from cometary and interplanetary grains, light scattering by rough surfaces on asteroidal/lunar regoliths, and the first results of particulate impacts and foil perforations on the Long Duration Exposure Facility. Also addressed are collision probability and spacecraft disposition in the geostationary orbit, a flash on the moon caused by orbital debris, the limits of population growth in low earth orbit due to collisional cascading, and the simulation of cosmic man-made dust effects on space-vehicle elements in rocket and laboratory experiments.

  3. Multi-scale analysis of the occurrence of Pb, Cr and Mn in the NIST standards: Urban dust (SRM 1649a) and indoor dust (SRM 2584)

    NASA Astrophysics Data System (ADS)

    Jiang, Mingyu; Nakamatsu, Yuki; Jensen, Keld A.; Utsunomiya, Satoshi

    2014-01-01

    Adverse health effects of ambient particulate matters are closely related to the speciation of the constituting organic matters and toxic metals. To determine multi-parameters of the metal speciation in urban and indoor dusts, we have performed systematic bulk- to nano-scale (“multi-scale”) analysis on the speciation of Pb, Mn, and Cr in two National Institute of Standards and Technology (NIST) standard reference materials (SRMs): urban dust (SRM 1649a) and indoor dust (SRM 2584), utilizing X-ray absorption near-edge structure, powder X-ray diffraction analysis, electron microprobe analysis, scanning electron microscopy, and transmission electron microscopy. Major crystalline phases are quartz, gypsum, kaolinite, and muscovite in SRM 1649a, while quartz, gypsum, calcite, and possibly muscovite (or chabazite) in SRM 2584. A number of Pb sulfate nanoparticles (50-200 nm) occur in SRM 1649a, whereas micron-sized Pb carbonate is present containing various concentrations of Zn and Ti in the complex texture in SRM 2584. Relatively soluble Mn(II) sulfate is the bulk-averaged Mn speciation in SRM 1649a, although discrete Mn sulfate particles are not characterized by individual particle analysis, implying the diluted Mn distribution within other sulfate. In SRM 2584, Mn speciation includes a mixture of oxides and carbonates, and trace Mn in chromite. Chromite (FeCr2O4) is the major Cr speciation in SRM1694a, while unidentified Cr(III) phases with minor chromite and Pb chromate are present in SRM 2584, among which the Pb chromate is composed of Cr(VI). A significant number of the metal-bearing particles are distributed to the submicron-size fraction in the urban dust, SRM 1649a, suggesting that these metal nanoparticles can potentially penetrate into the deep respiratory system. This study demonstrates that multi-scale analysis combining nano and bulk analytical techniques is a powerful approach to investigate the multi-parameters of metal-bearing nanoparticles in

  4. The sensitivity of a general circulation model to Saharan dust heating

    NASA Technical Reports Server (NTRS)

    Randall, D. A.; Carlson, T.; Mintz, Y.

    1984-01-01

    During the Northern summer, sporadic outbreaks of wind borne Saharan dust are carried out over the Atlantic by the tropical easterlies. Optical depths due to the dust can reach 3 near the African coast, and the dust cloud can be detected as far west as the Caribbean Sea (Carlson, 1979). In order to obtain insight into the possible effects of Saharan dust on the weather and climate of North Africa and the tropical Atlantic Ocean, simulation experiments have been performed with the Climate Model of the Goddard Laboratory for Atmospheric Sciences. The most recent version of the model is described by Randall (1982). The model produces realistic simulations of many aspects of the observed climate and its seasonal variation.

  5. Exploration Laboratory Analysis - ARC

    NASA Technical Reports Server (NTRS)

    Krihak, Michael K.; Fung, Paul P.

    2012-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL). The SMEMCL provided diagnosis and treatment for the evidence-based medical conditions and hence, a basis for developing ELA functional requirements.

  6. Optimization of the Nano-Dust Analyzer (NDA) for operation under solar UV illumination

    NASA Astrophysics Data System (ADS)

    O`Brien, L.; Grün, E.; Sternovsky, Z.

    2015-12-01

    The performance of the Nano-Dust Analyzer (NDA) instrument is analyzed for close pointing to the Sun, finding the optimal field-of-view (FOV), arrangement of internal baffles and measurement requirements. The laboratory version of the NDA instrument was recently developed (O'Brien et al., 2014) for the detection and elemental composition analysis of nano-dust particles. These particles are generated near the Sun by the collisional breakup of interplanetary dust particles (IDP), and delivered to Earth's orbit through interaction with the magnetic field of the expanding solar wind plasma. NDA is operating on the basis of impact ionization of the particle and collecting the generated ions in a time-of-flight fashion. The challenge in the measurement is that nano-dust particles arrive from a direction close to that of the Sun and thus the instrument is exposed to intense ultraviolet (UV) radiation. The performed optical ray-tracing analysis shows that it is possible to suppress the number of UV photons scattering into NDA's ion detector to levels that allow both high signal-to-noise ratio measurements, and long-term instrument operation. Analysis results show that by avoiding direct illumination of the target, the photon flux reaching the detector is reduced by a factor of about 103. Furthermore, by avoiding the target and also implementing a low-reflective coating, as well as an optimized instrument geometry consisting of an internal baffle system and a conical detector housing, the photon flux can be reduced by a factor of 106, bringing it well below the operation requirement. The instrument's FOV is optimized for the detection of nano-dust particles, while excluding the Sun. With the Sun in the FOV, the instrument can operate with reduced sensitivity and for a limited duration. The NDA instrument is suitable for future space missions to provide the unambiguous detection of nano-dust particles, to understand the conditions in the inner heliosphere and its temporal

  7. Martian and Asteroid Dusts as Toxicological Risks for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    James, John T.

    2012-01-01

    As the lunar dust toxicity project winds down, our attention is drawn to the potential toxicity of dust present at the surface of more distant celestial objects. Lunar dust has proven to be surprisingly toxic to the respiratory systems of test animals, so one might expect dust from other celestial bodies to hold toxicological surprises for us. At this point all one can do is consider what should be known about these dusts to characterize their toxicity, and then ask to what extent that information is known. In an ideal world it might be possible to suggest an exposure standard based on the known properties of a celestial dust without direct testing of the dust in laboratory animals. Factors known to affect the toxicity of mineral dusts under some conditions include the following: particle size distribution, particle shape/porosity, mineralogical properties (crystalline vs. amorphous), chemical properties and composition, and surface reactivity. Data from a recent Japanese mission to the S-type asteroid Itokawa revealed some surprises about the dust found there, given that there is only a very week gravitational field to hold the dust on the surface. On Mars the reddish-brown dust is widely distributed by global dust storms and by local clusters of dust devils. Past surface probes have revealed some of the properties of dust found there. Contemporary data from Curiosity and other surface probes will be weighed against the data needed to set a defensible safe exposure limit. Gaps will emerge.

  8. Observation of dust acoustic shock wave in a strongly coupled dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Sumita K., E-mail: sumita-sharma82@yahoo.com; Boruah, A.; Nakamura, Y.

    2016-05-15

    Dust acoustic shock wave is observed in a strongly coupled laboratory dusty plasma. A supersonic flow of charged microparticles is allowed to perturb a stationary dust fluid to excite dust acoustic shock wave. The evolution process beginning with steepening of initial wave front and then formation of a stable shock structure is similar to the numerical results of the Korteweg-de Vries-Burgers equation. The measured Mach number of the observed shock wave agrees with the theoretical results. Reduction of shock amplitude at large distances is also observed due to the dust neutral collision and viscosity effects. The dispersion relation and themore » spatial damping of a linear dust acoustic wave are also measured and compared with the relevant theory.« less

  9. Laboratory study of the effect of oxalic acid on the cloud condensation nuclei activity of mineral dust aerosol

    NASA Astrophysics Data System (ADS)

    Gierlus, Kelly M.; Laskina, Olga; Abernathy, Tricia L.; Grassian, Vicki H.

    2012-01-01

    Dicarboxylic acids, which make up a significant portion of the atmospheric organic aerosol, are emitted directly through biomass burning as well as produced through the oxidation of volatile organic compounds. Oxalic acid, the most abundant of the dicarboxylic acids, has been shown by recent field studies to be present in mineral dust aerosol particles. The presence of these internally mixed organic compounds can alter the water absorption and cloud condensation nuclei (CCN) abilities of mineral particles in the Earth's atmosphere. The University of Iowa's Multi-Analysis Aerosol Reactor System ( MAARS) was used to measure the CCN activity of internally mixed particles that were generated from a mixture of either calcite or polystyrene latex spheres (PSLs) in an aqueous solution of oxalic acid. Although PSL is not a mineral dust component, it is used here as a non-reactive, insoluble particle. CCN measurements indicate that the internally mixed oxalate/calcite particles showed nearly identical CCN activity compared to the original calcite particles whereas oxalic acid/PSL internally mixed particles showed much greater CCN activity compared to PSL particles alone. This difference is due to the reaction of calcite with oxalic acid, which produces a relatively insoluble calcium oxalate coating on the particle surface and not a soluble coating as it does on the PSL particle. Our results suggest that atmospheric processing of mineral dust aerosol through heterogeneous processes will likely depend on the mineralogy and the specific chemistry involved. Increase in the CCN activity by incorporation of oxalic acid are only expected for unreactive insoluble dust particles that form a soluble coating.

  10. An analysis of employee exposure to organic dust at large-scale composting facilities

    NASA Astrophysics Data System (ADS)

    Sykes, P.; Allen, J. A.; Wildsmith, J. D.; Jones, K. P.

    2009-02-01

    The occupational health implications from exposure to dust, endotoxin and 1-3 β Glucan at commercial composting sites are uncertain. This study aims to establish employee exposure levels to inhalable and respirable dust, endotoxin and 1-3 β Glucan during various operational practices in the composting process. Personal samples were collected and the inhalable and respirable dust fractions were determined by gravimetric analysis. Endotoxin concentrations were determined using a Limulus Amebocyte Lysate assay (LAL). 1-3 β Glucan levels were estimated using a specific blocking agent to establish the contribution that these compounds gave to the original endotoxin assay. Employees' exposure to dust was found to be generally lower than the levels stipulated in the Control of Substances Hazardous to Health Regulations (COSHH) 2002 (as amended), (median inhalable fraction 1.08 mg/m3, min 0.25 mg/m3 max 10.80 mg/m3, median respirable fraction 0.05 mg/m3, min 0.02 mg/m3, max 1.49 mg/m3). Determination of the biological component of the dust showed that employees' exposures to endotoxin were elevated (median 31.5 EU/m3, min 2.00 EU/m3, max 1741.78 EU/m3), particularly when waste was agitated (median 175.0 EU/m3, min 2.03 EU/m3, max 1741.78 EU/m3). Eight out of 32 (25%) of the personal exposure data for endotoxin exceeded the 200 EU/m3 temporary legal limit adopted in the Netherlands and thirteen out of 32 (40.6%) exceeded the suggested 50 EU/m3 guidance level suggested to protect workers from respiratory health effects. A significant correlation was observed between employee inhalable dust exposure and personal endotoxin concentration (r = 0.728, p<0.05) and also personal endotoxin exposure and 1-3 β Glucan concentration (r = 0.817, p<0.05). Further work is needed to explore the possibility of using inhalable dust concentration as a predictor for personal endotoxin exposure. The general dust levels stipulated in the COSHH Regulations 2002 (as amended) are inadequate for

  11. Evaluation of Brushing as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Journey, Hhrissaundra; Christopher, Steven; Davis, Shanon

    2011-01-01

    Evaluation of brushing to remove lunar simulant dust from thermal control surfaces is described. First, strip brushes made with nylon, PTFE, or Thunderon bristles were used to remove JSC-1AF dust from AZ93 thermal control paint or aluminized FEP (AlFEP) thermal control surface under ambient laboratory conditions. Nylon and PTFE bristles removed a promising amount of dust from AZ93, and nylon and Thunderon bristles from AlFEP. But when these were tested under simulated lunar conditions in the lunar dust adhesion bell jar (LDAB), they were not effective. In a third effort, seven brushes made up of three different materials, two different geometries, and different bristle lengths and thicknesses were tested under laboratory conditions against AZ93 and AlFEP. Two of these brushes, the Zephyr fiberglass fingerprint brush and the Escoda nylon fan brush, removed over 90 percent of the dust, and so were tested in the fourth effort in the LDAB. They also performed well under these conditions recovering 80 percent or more of the original thermal performance (solar absorptance/thermal emittance) of both AZ93 and AgFEP after 20 strokes, and 90 or more percent after 200 strokes.

  12. Trajectory-capture cell instrumentation for measurement of dust particle mass, velocity and trajectory, and particle capture

    NASA Technical Reports Server (NTRS)

    Simpson, J. A.; Tuzzolino, A. J.

    1989-01-01

    The development of the polyvinylidene fluoride (PVDF) dust detector for space missions--such as the Halley Comet Missions where the impact velocity was very high as well as for missions where the impact velocity is low was extended to include: (1) the capability for impact position determination - i.e., x,y coordinate of impact; and (2) the capability for particle velocity determination using two thin PVDF sensors spaced a given distance apart - i.e., by time-of-flight. These developments have led to space flight instrumentation for recovery-type missions, which will measure the masses (sizes), fluxes and trajectories of incoming dust particles and will capture the dust material in a form suitable for later Earth-based laboratory measurements. These laboratory measurements would determine the elemental, isotopic and mineralogical properties of the captured dust and relate these to possible sources of the dust material (i.e., comets, asteroids), using the trajectory information. The instrumentation described here has the unique advantages of providing both orbital characteristics and physical and chemical properties--as well as possible origin--of incoming dust.

  13. An analysis of the dust deposition on solar photovoltaic modules.

    PubMed

    Styszko, Katarzyna; Jaszczur, Marek; Teneta, Janusz; Hassan, Qusay; Burzyńska, Paulina; Marcinek, Ewelina; Łopian, Natalia; Samek, Lucyna

    2018-03-29

    Solid particles impair the performance of the photovoltaic (PV) modules. This results in power losses which lower the efficiency of the system as well as the increases of temperature which additionally decreases the performance and lifetime. The deposited dust chemical composition, concentration and formation of a dust layer on the PV surface differ significantly in reference to time and location. In this study, an evaluation of dust deposition on the PV front cover glass during the non-heating season in one of the most polluted European cities, Kraków, was performed. The time-dependent particle deposition and its correlation to the air pollution with particulate matter were analysed. Dust deposited on several identical PV modules during variable exposure periods (from 1 day up to 1 week) and the samples of total suspended particles (TSP) on quartz fibre filters using a low volume sampler were collected during the non-heating season in the period of 5 weeks. The concentration of TSP in the study period ranged between 12.5 and 60.05 μg m -3 while the concentration of PM10 observed in the Voivodeship Inspectorate of Environmental Protection traffic station, located 1.2 km from the TSP sampler, ranged from 14 to 47 μg m -3 . It was revealed that dust deposition density on a PV surface ranged from 7.5 to 42.1 mg m -2 for exposure periods of 1 day while the measured weekly dust deposition densities ranged from 25.8 to 277.0 mg m -2 . The precipitation volume and its intensity as well as humidity significantly influence the deposited dust. The rate of dust accumulation reaches approximately 40 mg m -2 day -1 in the no-precipitation period and it was at least two times higher than fluxes calculated on the basis of PM10 and TSP concentrations which suggest that additional forces such as electrostatic forces significantly influence dust deposition.

  14. THE REBOUND CONDITION OF DUST AGGREGATES REVEALED BY NUMERICAL SIMULATION OF THEIR COLLISIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, Koji; Tanaka, Hidekazu; Yamamoto, Tetsuo

    2011-08-10

    Collisional growth of dust aggregates is a plausible root of planetesimals forming in protoplanetary disks. However, a rebound of colliding dust aggregates prevents dust from growing into planetesimals. In fact, rebounding aggregates are observed in laboratory experiments but not in previous numerical simulations. Therefore, the condition of rebound between dust aggregates should be clarified to better understand the processes of dust growth and planetesimal formation. We have carried out numerical simulations of aggregate collisions for various types of aggregates and succeeded in reproducing a rebound of colliding aggregates under specific conditions. Our finding is that in the rebound process, themore » key factor of the aggregate structure is the coordination number, namely, the number of particles in contact with a particle. A rebound is governed by the energy dissipation along with restructuring of the aggregates and a large coordination number inhibits the restructuring at collisions. Results of our numerical simulation for various aggregates indicate that they stick to each other when the mean coordination number is less than 6, regardless of their materials and structures, as long as their collision velocity is less than the critical velocity for fragmentation. This criterion of the coordination number would correspond to a filling factor of {approx}0.3, which is somewhat larger than that reported in laboratory experiments. In protoplanetary disks, dust aggregates are expected to have low bulk densities (<0.1 g cm{sup -3}) during their growth, which would prevent dust aggregates from rebounding. This result supports the formation of planetesimals with direct dust growth in protoplanetary disks.« less

  15. Quantitative detection of mass concentration of sand-dust storms via wind-profiling radar and analysis of Z- M relationship

    NASA Astrophysics Data System (ADS)

    Wang, Minzhong; Ming, Hu; Ruan, Zheng; Gao, Lianhui; Yang, Di

    2018-02-01

    With the aim to achieve quantitative monitoring of sand-dust storms in real time, wind-profiling radar is applied to monitor and study the process of four sand-dust storms in the Tazhong area of the Taklimakan Desert. Through evaluation and analysis of the spatial-temporal distribution of reflectivity factor, it is found that reflectivity factor ranges from 2 to 18 dBz under sand-dust storm weather. Using echo power spectrum of radar vertical beams, sand-dust particle spectrum and sand-dust mass concentration at the altitude of 600 ˜ 1500 m are retrieved. This study shows that sand-dust mass concentration reaches 700 μg/m3 under blowing sand weather, 2000 μg/m3 under sand-dust storm weather, and 400 μg/m3 under floating dust weather. The following equations are established to represent the relationship between the reflectivity factor and sand-dust mass concentration: Z = 20713.5 M 0.995 under floating dust weather, Z = 22988.3 M 1.006 under blowing sand weather, and Z = 24584.2 M 1.013 under sand-dust storm weather. The retrieval results from this paper are almost consistent with previous monitoring results achieved by former researchers; thus, it is implied that wind-profiling radar can be used as a new reference device to quantitatively monitor sand-dust storms.

  16. Marching Dust Devils

    NASA Image and Video Library

    2015-11-05

    On an early fall afternoon in Ganges Chasma Valles Marineris, NASA Mars Reconnaissance Orbiter spacecraft managed to capture a cluster of eight dust devils, five of them in the enhanced color strip. They're together on a dark sandy surface that tilts slightly to the north, towards the Sun. Both of these factors help warm the surface and generate convection in the air above. The surface is streaked with the faint tracks of earlier dust devils. A pair of dust devils appears together at top right, spaced only 250 meters apart. These two have quite different morphologies. The bigger one (on the right) is about 100 meters in diameter and is shaped like a doughnut with a hole in the middle. Its smaller companion is more compact and plume-like, but it too has a small hole in the center, where the air pressure is lowest. It may be that the smaller dust devil is younger than the larger one. A row of four dust devils are in the middle of the color strip, separated by about 900 meters from one another. This image might answer some interesting questions about the behavior of dust devils. Dust devils are theoretically expected to migrate uphill on a sloping surface, or migrate downwind when there is a breeze. Where they are found close together in pairs, they are expected to rotate in opposite directions. HiRISE color observations can be used to determine the direction of rotation and-for fast moving dust devils-the direction of their travel. This is because the different color observations (infrared, red, and blue) are taken at slightly different times. The differences between the earliest color observation and the last tell us about the changes that took place during that time interval. All this requires careful analysis, but if these dust devils are moving fast enough, and spaced closely enough, these here might display some interesting "social dynamics," possibly marching together and rotating in alternating directions. http://photojournal.jpl.nasa.gov/catalog/PIA20045

  17. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  18. Propagation of electromagnetic wave in dusty plasma and the influence of dust size distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Hui; China Research Institute of Radio Wave Propagation; Wu, Jian

    The effect of charged dust particle and their size distribution on the propagation of electromagnetic wave in a dusty plasma is investigated. It is shown that the additional collision mechanism provided by charged dust particles can significantly alter the electromagnetic properties of a plasma, leading to the appearance of attenuation of electromagnetic wave through dusty plasma. The attenuation coefficient mainly depends on the dust density, radius, and the charge numbers on the dust surface. The results described here will be used to enhance understanding of electromagnetic wave propagation processed in space and laboratory dusty plasma.

  19. Ice Nucleating Particle Properties in the Saharan Air Layer Close to the Dust Source

    NASA Astrophysics Data System (ADS)

    Boose, Y.; Garcia, I. M.; Rodríguez, S.; Linke, C.; Schnaiter, M.; Nickovic, S.; Lohmann, U.; Kanji, Z. A.; Sierau, B.

    2015-12-01

    In August 2013 and 2014 measurements of ice nucleating particle (INP) concentrations, aerosol particle size distributions, chemistry and fluorescence were conducted at the Izaña Atmospheric Observatory located at 2373 m asl on Tenerife, west off the African shore. During summer, the observatory is frequently within the Saharan Air Layer and thus often exposed to dust. Absolute INP concentrations and activated fractions at T=-40 to -15°C and RHi=100-150 % were measured. In this study, we discuss the in-situ measured INP properties with respect to changes in the chemical composition, the biological content, the source regions as well as transport pathways and thus aging processes of the dust aerosol. For the first time, ice crystal residues were also analyzed with regard to biological content by means of their autofluorescence signal close to a major dust source region. Airborne dust samples were collected with a cyclone for additional offline analysis in the laboratory under similar conditions as in the field. Both, in-situ and offline dust samples were chemically characterized using single-particle mass spectrometry. The DREAM8 dust model extended with dust mineral fractions was run to simulate meteorological and dust aerosol conditions for ice nucleation. Results show that the background aerosol at Izaña was dominated by carbonaceous particles, which were hardly ice-active under the investigated conditions. When Saharan dust was present, INP concentrations increased by up to two orders of magnitude even at water subsaturated conditions at T≤-25°C. Differences in the ice-activated fraction were found between different dust periods which seem to be linked to variations in the aerosol chemical composition (dust mixed with changing fractions of sea salt and differences in the dust aerosol itself). Furthermore, two biomass burning events in 2014 were identified which led to very low INP concentrations under the investigated temperature and relative humidity

  20. An investigation of Martian and terrestrial dust devils

    NASA Astrophysics Data System (ADS)

    Ringrose, Timothy John

    2004-10-01

    It is the purpose of this work to provide an insight into the theoretical and practical dynamics of dust devils and how they are detected remotely from orbit or in situ on planetary surfaces. There is particular interest in the detection of convective vortices on Mars; this has been driven by involvement in the development of the Beagle 2 Environmental Sensor Suite. This suite of sensors is essentially a martian weather station and will be the first planetary lander experiment specifically looking for the presence of dust devils on Mars. Dust devils are characterised by their visible dusty core and intense rotation. The physics of particle motion, including dust lofting and the rotational dynamics within convective vortices are explained and modelled. This modelling has helped in identifying dust devils in meteorological data from both terrestrial and martian investigations. An automated technique for dust devil detection using meteorological data has been developed. This technique searches data looking for the specific vortex signature as well as detecting other transient events. This method has been tested on both terrestrial and martian data with surprising results. 38 possible convective vortices were detected in the first 60 sols of the Viking Lander 2 meteorological data. Tests were also carried out on data from a terrestrial dust devil campaign, which provided conclusive evidence from visual observations of the reliability of this technique. A considerable amount of this work does focus on terrestrial vortices. This is to aid in the understanding of dust devils, specifically how, why and when they form. Both laboratory and terrestrial fieldwork is investigated, providing useful data on the general structure of dust devils.

  1. Modern dust aerosol availability in northwestern China.

    PubMed

    Wang, Xunming; Cheng, Hong; Che, Huizheng; Sun, Jimin; Lu, Huayu; Qiang, Mingrui; Hua, Ting; Zhu, Bingqi; Li, Hui; Ma, Wenyong; Lang, Lili; Jiao, Linlin; Li, Danfeng

    2017-08-18

    The sources of modern dust aerosols and their emission magnitudes are fundamental for linking dust with climate and environment. Using field sample data, wind tunnel experiments and statistical analysis, we determined the contributions of wadis, gobi (stony desert), lakebeds, riverbeds, and interdunes to modern dust aerosol availability in the three important potential dust sources including the Tarim Basin, Qaidam Basin, and Ala Shan Plateau of China. The results show that riverbeds are the dominant landscape for modern dust aerosol availabilities in the Qaidam Basin, while wadis, gobi, and interdunes are the main landscapes over the Ala Shan Plateau and Tarim Basin. The Ala Shan Plateau and Tarim Basin are potential dust sources in northwestern China, while the Qaidam Basin is not a major source of the modern dust aerosols nowadays, and it is not acting in a significant way to the Loess Plateau presently. Moreover, most of modern dust aerosol emissions from China originated from aeolian processes with low intensities rather than from major dust events.

  2. Active Dust Mitigation Technology for Thermal Radiators for Lunar Exploration

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Buhler, C. R.; Hogue, M. D.; Johansen, M. R.; Hopkins, J. W.; Holloway, N. M. H.; Connell, J. W.; Chen, A.; Irwin, S. A.; Case, S. O.; hide

    2010-01-01

    Dust accumulation on thermal radiator surfaces planned for lunar exploration will significantly reduce their efficiency. Evidence from the Apollo missions shows that an insulating layer of dust accumulated on radiator surfaces could not be removed and caused serious thermal control problems. Temperatures measured at different locations in the magnetometer on Apollo 12 were 38 C warmer than expected due to lunar dust accumulation. In this paper, we report on the application of the Electrodynamic Dust Shield (EDS) technology being developed in our NASA laboratory and applied to thermal radiator surfaces. The EDS uses electrostatic and dielectrophoretic forces generated by a grid of electrodes running a 2 micro A electric current to remove dust particles from surfaces. Working prototypes of EDS systems on solar panels and on thermal radiators have been successfully developed and tested at vacuum with clearing efficiencies above 92%. For this work EDS prototypes on flexible and rigid thermal radiators were developed and tested at vacuum.

  3. Lab Analysis of Dust Wipe Samples

    EPA Pesticide Factsheets

    Dust wipe samples collected on residential properties near the fenceline of KCBX North and South Terminals in Chicago, which store and handle pet coke, were analyzed for polycyclic aromatic hydrocarbons (PAHs) and trace metals and minerals.

  4. Levels, occurrence and human exposure to novel brominated flame retardants (NBFRs) and Dechlorane Plus (DP) in dust from different indoor environments in Hangzhou, China.

    PubMed

    Sun, Jianqiang; Xu, Ying; Zhou, Huabiao; Zhang, Anping; Qi, Hong

    2018-08-01

    In this work, sixteen novel brominated flame retardants (NBFRs) and Dechlorane Plus (DP) were investigated in dust samples collected from different indoor environments (home, office, laboratory, classroom and dormitory) in Hangzhou, China. High detection frequencies for most of the congeners were observed, suggesting the widespread use of NBFRs and DP. The mean concentrations of ∑ 16 NBFRs were 389ngg -1 in the home dust, 1125ngg -1 in the office dust, 204ngg -1 in the laboratory dust, 259ngg -1 in the classroom dust, and 825ngg -1 in the dormitory dust. Regarding DP, the mean concentrations of DP were 106ngg -1 in the office dust, 59ngg -1 in the dormitory dust, 56ngg -1 in the classroom dust, 52ngg -1 in the home dust, and 40ngg -1 in the laboratory dust. The concentrations of NBFRs and DP in the indoor dust were positively related to the number of indoor electric appliances and negatively related to the air ventilation rate. The age of the interior decoration has a profound effect on the concentration of NBFRs in indoor dust. The daily exposure doses (DED) of NBFRs and DP were estimated to be 4595pg (kgbw) -1 d -1 for toddlers and 1099pg (kgbw) -1 d -1 for adults. Thus, toddlers have a higher risk for NBFRs exposure than adults. The DED of young adults in college in different indoor microenvironments decreased in the following order: dormitory (657pg (kg bw) -1 d -1 )>laboratory (145pg (kgbw) -1 d -1 )>classroom (140pg (kgbw) -1 d -1 ). More attention should be paid to the exposure of young adults to indoor pollutants, which has not previously been the subject of great concern. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. The Physics of Protoplanetary Dust Agglomerates. X. High-velocity Collisions between Small and Large Dust Agglomerates as a Growth Barrier

    NASA Astrophysics Data System (ADS)

    Schräpler, Rainer; Blum, Jürgen; Krijt, Sebastiaan; Raabe, Jan-Hendrik

    2018-01-01

    In a protoplanetary disk, dust aggregates in the μm to mm size range possess mean collision velocities of 10–60 m s‑1 with respect to dm- to m-sized bodies. We performed laboratory collision experiments to explore this parameter regime and found a size- and velocity-dependent threshold between erosion and growth. By using a local Monte Carlo coagulation calculation and along with a simple semi-analytical timescale approach, we show that erosion considerably limits particle growth in protoplanetary disks and leads to a steady-state dust-size distribution from μm- to dm-sized particles.

  6. Combustibility Determination for Cotton Gin Dust and Almond Huller Dust.

    PubMed

    Hughs, Sidney E; Wakelyn, Phillip J

    2017-04-26

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar, can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, the Occupational Safety and Health Administration (OSHA) initiated action to develop a mandatory standard to comprehensively address the fire and explosion hazards of combustible dusts. Cotton fiber and related materials from cotton ginning, in loose form, can support smoldering combustion if ignited by an outside source. However, dust fires and other more hazardous events, such as dust explosions, are unknown in the cotton ginning industry. Dust material that accumulates inside cotton gins and almond huller plants during normal processing was collected for testing to determine combustibility. Cotton gin dust is composed of greater than 50% inert inorganic mineral dust (ash content), while almond huller dust is composed of at least 7% inert inorganic material. Inorganic mineral dust is not a combustible dust. The collected samples of cotton gin dust and almond huller dust were sieved to a known particle size range for testing to determine combustibility potential. Combustibility testing was conducted on the cotton gin dust and almond huller dust samples using the UN test for combustibility suggested in NFPA 652.. This testing indicated that neither the cotton gin dust nor the almond huller dust should be considered combustible dusts (i.e., not a Division 4.1 flammable hazard per 49 CFR 173.124). Copyright© by the American Society of Agricultural Engineers.

  7. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis.

    PubMed

    Yıldırım, Gülşen; Tokalıoğlu, Şerife

    2016-02-01

    A total of 36 street dust samples were collected from the streets of the Organised Industrial District in Kayseri, Turkey. This region includes a total of 818 work places in various industrial areas. The modified BCR (the European Community Bureau of Reference) sequential extraction procedure was applied to evaluate the mobility and bioavailability of trace elements (Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in street dusts of the study area. The BCR was classified into three steps: water/acid soluble fraction, reducible and oxidisable fraction. The remaining residue was dissolved by using aqua regia. The concentrations of the metals in street dust samples were determined by flame atomic absorption spectrometry. Also the effect of the different grain sizes (<38µm, 38-53µm and 53-74µm) of the 36 street dust samples on the mobility of the metals was investigated using the modified BCR procedure. The mobility sequence based on the sum of the first three phases (for <74µm grain size) was: Cd (71.3)>Cu (48.9)>Pb (42.8)=Cr (42.1)>Ni (41.4)>Zn (40.9)>Co (36.6)=Mn (36.3)>Fe (3.1). No significant difference was observed among metal partitioning for the three particle sizes. Correlation, principal component and cluster analysis were applied to identify probable natural and anthropogenic sources in the region. The principal component analysis results showed that this industrial district was influenced by traffic, industrial activities, air-borne emissions and natural sources. The accuracy of the results was checked by analysis of both the BCR-701 certified reference material and by recovery studies in street dust samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Restoration and Future Analysis of the Apollo Lunar Dust Detector Data

    NASA Astrophysics Data System (ADS)

    McBride, M.; Williams, D. R.; Hills, H. K.

    2012-12-01

    The Dust, Thermal and Radiation Engineering Measurement (DTREM) packages mounted on the central stations of the Apollo 11, 12, 14, and 15 ALSEPs (Apollo Lunar Surface Experiments Packages) measured the outputs of exposed solar cells and thermistors over time. The goal of the experiment, also commonly known as the dust detector, was to study the long-term effects of dust, radiation, and temperature at the lunar surface on solar cells. The original data were never archived with NASA, with the exception of 38 reels of microfilm archived at the National Space Science Data Center. These reels contained images of computer printouts of times and raw and calibrated DTREM data for Apollo 14 and 15. The high volume of data is not readily accessible in this form. The raw telemetry for the DTREM also exists as part of the ALSEP housekeeping (Word 33) telemetry. As part of the lunar data restoration effort we are converting the telemetry to digital tables containing the fully calibrated dust detector data. These restored data sets will be archived through the Lunar Data Node of the Planetary Data System (PDS) for general use by the lunar community. In this form, these data will finally be amenable to study by modern techniques not available during the Apollo era. Over the past year, analysis of the correlation between the NSSDC microfilm record and the raw telemetry was used to determine the translations and calibrations necessary to convert the digital telemetry into a fully calibrated data set giving temperatures and solar cell outputs over time. The final data set consists of a reading every 54 seconds over periods of 5 years for Apollo 14 and 15. The sheer quantity of data shows why a fully digital form is necessary for proper analysis. The Apollo 11 DTREM was designed for a short lifetime and returned less than two lunations of data. We do not currently have the translation and calibration information necessary to convert the raw telemetry to a calibrated data set for

  9. Dust at Various Workplaces—Microbiological and Toxicological Threats

    PubMed Central

    Gutarowska, Beata; Szulc, Justyna; Otlewska, Anna; Jachowicz, Anita; Majchrzycka, Katarzyna

    2018-01-01

    The aim of the present study was to evaluate the relation between the chemical (analysis of elements and pH) and microbiological composition (culture and metagenomics analysis) of the dust at various workplaces (cement plant, composting plant, poultry farm, and cultivated area) and the cytotoxicity effect on the human adenocarcinoma lung epithelial adherent cell line A-549 (MTT assay test). Analysis of the Particulate Matter (PM) fraction showed that the dust concentration in cultivated areas exceeded the OELs. For the remaining workplaces examined, the dust concentration was lower than OELs limits. The number of microorganisms in the dust samples was 3.8 × 102–1.6 × 108 CFU/g bacteria and 1.5 × 102–6.5 × 106 CFU/g fungi. The highest number of microorganisms was noted for dust from cultivated areas (total number of bacteria, actinomycetes, P. fluorescens) and composting plants (xerophilic fungi and staphylococci), while the least number of microorganisms was observed for dust from cement plants. Many types of potentially pathogenic microorganisms have been identified, including bacteria, such as Bacillus, Actinomyces, Corynebacterium, Prevotella, Clostridium, and Rickettsia, and fungi, such as Alternaria, Cladosporium, Penicillium, and Aspergillus. The most cytotoxic to the human lung cell line A-549 was dust from cultivated areas (IC50 = 3.8 mg/mL after 72 h). The cytotoxicity of the tested dust samples depends on the PM concentration, the number of microorganisms, including potentially pathogenic genera, and the exposure time. PMID:29702619

  10. Exploration Laboratory Analysis FY13

    NASA Technical Reports Server (NTRS)

    Krihak, Michael; Perusek, Gail P.; Fung, Paul P.; Shaw, Tianna, L.

    2013-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk, which is stated as the Risk of Inability to Adequately Treat an Ill or Injured Crew Member, and ExMC Gap 4.05: Lack of minimally invasive in-flight laboratory capabilities with limited consumables required for diagnosing identified Exploration Medical Conditions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability in future exploration missions. Mission architecture poses constraints on equipment and procedures that will be available to treat evidence-based medical conditions according to the Space Medicine Exploration Medical Conditions List (SMEMCL), and to perform human research studies on the International Space Station (ISS) that are supported by the Human Health and Countermeasures (HHC) element. Since there are significant similarities in the research and medical operational requirements, ELA hardware development has emerged as a joint effort between ExMC and HHC. In 2012, four significant accomplishments were achieved towards the development of exploration laboratory analysis for medical diagnostics. These achievements included (i) the development of high priority analytes for research and medical operations, (ii) the development of Level 1 functional requirements and concept of operations documentation, (iii) the selection and head-to-head competition of in-flight laboratory analysis instrumentation, and (iv) the phase one completion of the Small Business Innovation Research (SBIR) projects under the topic Smart Phone Driven Blood-Based Diagnostics. To utilize resources efficiently, the associated documentation and advanced technologies were integrated into a single ELA plan that encompasses ExMC and HHC development efforts. The requirements and high priority analytes was used in the selection of the four in-flight laboratory analysis performers. Based upon the

  11. LDEX-PLUS: Lunar Dust Experiment with Chemical Analysis Capability to search for Water

    NASA Astrophysics Data System (ADS)

    Horanyi, M.; Sternovsky, Z.; Gruen, E.; Kempf, S.; Srama, R.; Postberg, F.

    2010-12-01

    The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphee and Dust Explorer Mission (LADEE) is scheduled for launch in early 2013. It will map the variability of the density and size distributions of dust in the lunar vicinity. LDEX is an impact ionization instrument, at an impact speed of > 1.6 km/s, it is capable of measuring the mass of grains with m > 10^(-11) g, and it can also identify a population of smaller grains with m > 10^(-14) kg with a density of n > 10^(-4) cm^(-3). This talk is to introduce the LDEX-PLUS instrument that extends the LDEX capabilities to also measure the chemical composition of the impacting particles with a mass resolution of M/ΔM > 30. We will summarize the science goals, measurement requirements, and the resource needs of this instrument. Traditional methods to analyze surfaces of airless planetary objects from an orbiter are IR and gamma ray spectroscopy, and neutron backscatter measurements. Here we present a complementary method to analyze dust particles as samples of planetary objects from which they were released. The Moon, Mercury, and all other airless planetary object are exposed to the ambient meteoroid bombardment that erodes their surface and generates secondary ejecta particles. Therefore, such objects are enshrouded in clouds of dust particles that have been lifted from their surfaces. In situ mass spectroscopic analysis of these dust particles impacting onto a detector of an orbiting spacecraft reveals their composition, and the origin of each analyzed grain can be determined with an accuracy at the surface that is approximately the altitude of the orbit. Since the detection rates can be on the order of thousands per day, a spatially resolved mapping of the surface composition can be achieved. Possible enhancements include the addition of a dust trajectory sensor to improve the spatial resolution on the surface to ~ 10 km from an altitude of 100 km, and a reflectron type instrument geometry to increase the

  12. Examination of water spray airborne coal dust capture with three wetting agents

    PubMed Central

    Organiscak, J.A.

    2015-01-01

    Water spray applications are one of the principal means of controlling airborne respirable dust in coal mines. Since many coals are hydrophobic and not easily wetted by water, wetting agents can be added to the spray water in an effort to improve coal wetting and assist with dust capture. In order to study wetting agent effects on coal dust capture, laboratory experiments were conducted with three wetting agents used by the coal industry on -325 mesh sized Pocahontas No. 3 coal dust. Significant differences in coal dust sink times were observed among the three wetting agents at water mixture concentrations of 0.05%, 0.1% and 0.2%. The best wetting agent as identified by the coal dust sink test was only tested at the lowest 0.05% water mixture concentration and was found to have a negligible effect on spray airborne dust capture. Water spray airborne dust capture results for all three wetting agents tested at a 0.2% water mixture concentration showed that all three wetting agents exhibit similar but small improvements in dust capture efficiency as compared with water. These results indicate that the coal dust sink test may not be a good predictor for the capture of airborne dust. Additional research is needed to examine if the coal dust sink test is a better predictor of wetting agent dust suppression effects during cutting, loading, conveying and dumping of coal products by comparison to airborne dust capture from sprays. PMID:26251565

  13. Dust in Cometary Comae: Present Understanding of the Structure and Composition of Dust Particles

    NASA Technical Reports Server (NTRS)

    Levasseur-Regourd, A. C.; Zolensky, M.; Lasue, J.

    2007-01-01

    In situ probing of a very few cometary comae has shown that dust particles present a low albedo and a low density, and that they consist of both rocky material and refractory organics. Remote observations of solar light scattered by cometary dust provide information on the properties of dust particles in the coma of a larger set of comets. The observations of the linear polarization in the coma indicate that the dust particles are irregular, with a size greater (on the average) than about one micron. Besides, they suggest, through numerical and experimental simulations, that both compact grains and fluffy aggregates (with a power law of the size distribution in the -2.6 to -3 range), and both rather transparent silicates and absorbing organics are present in the coma. Recent analysis of the cometary dust samples collected by the Stardust mission provide a unique ground truth and confirm, for comet 81P/Wild 2, the results from remote sensing observations. Future space missions to comets should, in the next decade, lead to a more precise characterization of the structure and composition of cometary dust particles.

  14. Cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-08-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Wet generated regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Wet generated clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (from low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on the method of threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  15. The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants

    NASA Technical Reports Server (NTRS)

    Blasius, T. D.; Monnier, J. D.; Tuthill, P. G.; Danchi, W. C.; Anderson, M.

    2012-01-01

    While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 m and 3.1 m. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC +10216 or CIT 6. Using radiative transfer models, we find the sublimation temperature of Tsub(silicates) = 1130 90K and Tsub(amorphous carbon) = 1170 60 K, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. The fact that O-rich and C-rich dust types showed the same sublimation temperature was surprising as well. For the most optically-thick shells ( 2.2 m > 2), the temperature profile of the inner dust shell is observed to change substantially, an effect we suggest could arise when individual dust clumps become optically-thick at the highest mass-loss rates.

  16. Overview of Dust Model Inter-comparison (DMIP) in East Asia

    NASA Astrophysics Data System (ADS)

    Uno, I.

    2004-12-01

    Dust transport modeling plays an important role in understanding the recent increase of Asian Dust episodes and its impact to the regional climate system. Several dust models have been developed in several research institutes and government agencies independently since 1990s. Their numerical results either look very similar or different. Those disagreements are caused by difference in dust modules (concepts and basic mechanisms) and atmospheric models (meteorological and transport models). Therefore common understanding of performance and uncertainty of dust erosion and transport models in the Asian region becomes very important. To have a better understanding of dust model application, we proposed the dust model intercomparison under the international cooperation networks as a part of activity of ADEC (Aeolian Dust Experiment on Climate Impact) project research. Current participants are Kyusyu Univ. (Japan), Meteorological Research Institute (Japan), Hong-Kong City Univ. (China), Korean Meteorological Agency METRI (Korea), US Naval Research Laboratory (USA), Chinese Meteorological Agency (China), Institute of Atmospheric Physics (China), Insular Coastal Dynamics (Malta) and Meteorological Service of Canada (Canada). As a case study episode, we set two huge dust storms occurred in March and April 2002. Results from the dust transport model from all the participants are compiled on the same methods and examined the model characteristics against the ground and airborne measurement data. We will also examine the dust model results from the horizontal distribution at specified levels, vertical profiles, concentration at special check point and emission flux at source region, and show the important parameters for dust modeling. In this paper, we will introduce the general overview of this DMIP activity and several important conclusions from this activity.

  17. Evaluation of Brushing as a Lunar Dust Mitigation Strategy for Thermal Control Surfaces

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Journey, Khrissaundra; Christopher, Steven; Davis, Shanon

    2011-01-01

    Evaluation of brushing to remove lunar simulant dust from thermal control surfaces is described. First, strip brushes made with nylon, PTFE, or Thunderon (Nihon Sanmo Dyeing Company Ltd.) bristles were used to remove JSC-1AF dust from AZ93 thermal control paint or aluminized FEP (AlFEP) thermal control surface under ambient laboratory conditions. Nylon and PTFE bristles removed a promising amount of dust from AZ93, and nylon and Thunderon bristles from AlFEP. But when these were tested under simulated lunar conditions in the lunar dust adhesion bell jar (LDAB), they were not effective. In a third effort, seven brushes made up of three different materials, two different geometries, and different bristle lengths and thicknesses were tested under laboratory conditions against AZ93 and AlFEP. Two of these brushes, the Zephyr fiberglass fingerprint brush and the Escoda nylon fan brush, removed over 90 percent of the dust, and so were tested in the fourth effort in the LDAB. They also performed well under these conditions recovering 80 percent or more of the original thermal performance (solar absorptance/thermal emittance) of both AZ93 and AgFEP after 20 strokes, and 90 or more percent after 200 strokes

  18. Strength Characteristics of Quarry Dust in Replacement of Sand

    NASA Astrophysics Data System (ADS)

    Shyam Prakash, K.; Hanumantha Rao, Ch, Dr

    2017-08-01

    The replacement of natural fine aggregate by using quarry dust leads to consumption of generated quarry dust, the requirement of land fill area can be reduced and solves the natural sand scarcity problem. The sand availability as a fine aggregate at low cost which needs the reason to search as a alternative material. Even it causes saddle to dump the crusher dust at one place which causes environmental pollution. The chemical analysis, specific gravity, sieve analysis and compressive strength is identified for various percentage and grades of concrete by replacement of sand with quarry dust.

  19. Dust control products at Hagerman National Wildlife Refuge, Texas: environmental safety and performance

    USGS Publications Warehouse

    Kunz, Bethany K.; Little, Edward E.

    2015-01-01

    Controlling fugitive dust while protecting natural resources is a challenge faced by all managers of unpaved roads. Unfortunately, road managers choosing between dust control products often have little objective environmental information to aid their decisions. To address this information gap, the U.S. Geological Survey and the U.S. Fish and Wildlife Service collaborated on a field test of three dust control products with the objectives of (a) evaluating product performance under real-world conditions, (b) verifying the environmental safety of products identified as practically nontoxic in laboratory tests, and (c) testing the feasibility of several environmental monitoring techniques for use in dust control tests. In cooperation with refuge staff and product vendors, three products (one magnesium chloride plus binder, one cellulose, and one synthetic fluid plus binder) were applied in July 2012 to replicated road sections at the Hagerman National Wildlife Refuge in Texas. These sections were monitored periodically for 12 months after application. Product performance was assessed by mobile-mounted particulate-matter meters measuring production of fugitive dust and by observations of road conditions. Environmental safety was evaluated through on-site biological observations and leaching tests with samples of treated aggregate. All products reduced dust and improved surface condition during those 12 months. Planned environmental measurements were not always compatible with day-to-day refuge management actions; this incompatibility highlighted the need for flexible biological monitoring plans. As one of the first field tests of dust suppressants that explicitly incorporated biological endpoints, this effort provides valuable information for improving field tests and for developing laboratory or semifield alternatives.

  20. Dust release rates and dust-to-gas mass ratios of eight comets

    NASA Technical Reports Server (NTRS)

    Singh, P. D.; De Almeida, A. A.; Huebner, W. F.

    1992-01-01

    Mass release rates of dust and mass ratios of dust-to-gas release rates of Comets Thiele (1985m), Wilson (1986l), P/Borrelly (1987p), Liller (1988a), Bradfield (1987s), Hartley-Good (1985l), P/Giacobini-Zinner (1984e), and P/Halley (1982i) are estimated from the analysis of continuum flux measurements at optical wavelengths. An attempt is made to estimate the size of each comet nucleus on the basis of water-ice sublimation (vaporization), assuming that the nucleus is spherical and only a fraction of its surface area is active. Where possible, the dust mass release rates are compared with those obtained by other investigators in the optical and IR wavelength regions. Good agreement with results based on IR observations is found.

  1. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  2. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the downselection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institute's rHEALTH X and Intelligent Optical System's lateral flow assays combined with Holomic's smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements. The technology demonstrations and metrics for success will be finalized in FY16. Also, the downselected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  3. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Temimi, Marouane; Ghedira, Hosni

    2018-01-01

    Dust storms are among the most severe environmental problems in arid and semi-arid regions of the world. The predictability of seven dust events, viz. D1: April 2-4, 2014; D2: February 23-24, 2015; D3: April 1-3, 2015; D4: March 26-28, 2016; D5: August 3-5, 2016; D6: March 13-14, 2017 and D7:March 19-21, 2017, are investigated over the Arabian Peninsula using a regionally adapted chemistry transport model CHIMERE coupled with the Weather Research and Forecast (WRF) model. The hourly forecast products of particulate matter concentrations (PM10) and aerosol optical depths (AOD) are compared against both satellite-based (MSG/SEVRI RGB dust, MODIS Deep Blue Aerosol Optical Depth: DB-AOD, Ozone Monitoring Instrument observed UV Aerosol Absorption Index: OMI-AI) and ground-based (AERONET AOD) remote sensing products. The spatial pattern and the time series of the simulations show good agreement with the observations in terms of the dust intensity as well as the spatiotemporal distribution. The causative mechanisms of these dust events are identified by the concurrent analyses of the meteorological data. From these seven storms, five are associated with synoptic scale meteorological processes, such as prefrontal storms (D1 and D7), postfrontal storms of short (D2), and long (D3) duration types, and a summer shamal storm (D6). However, the storms D4 and D6 are partly associated with mesoscale convective type dust episodes known as haboobs. The socio-economic impacts of the dust events have been assessed by estimating the horizontal visibility, air quality index (AQI), and the dust deposition flux (DDF) from the forecasted dust concentrations. During the extreme dust events, the horizontal visibility drops to near-zero values co-occurred withhazardous levels of AQI and extremely high dust deposition flux (250 μg cm- 2 day- 1).

  4. Effect of anisotropic dust pressure and superthermal electrons on propagation and stability of dust acoustic solitary waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashir, M. F., E-mail: frazbashir@yahoo.com; Behery, E. E., E-mail: eebehery@gmail.com; Department of Physics, Faculty of Science, Damietta University, P.O. 34517, New Damietta

    2015-06-15

    Employing the reductive perturbation technique, Zakharov–Kuznetzov (ZK) equation is derived for dust acoustic (DA) solitary waves in a magnetized plasma which consists the effects of dust anisotropic pressure, arbitrary charged dust particles, Boltzmann distributed ions, and Kappa distributed superthermal electrons. The ZK solitary wave solution is obtained. Using the small-k expansion method, the stability analysis for DA solitary waves is also discussed. The effects of the dust pressure anisotropy and the electron superthermality on the basic characteristics of DA waves as well as on the three-dimensional instability criterion are highlighted. It is found that the DA solitary wave is rarefactivemore » (compressive) for negative (positive) dust. In addition, the growth rate of instability increases rapidly as the superthermal spectral index of electrons increases with either positive or negative dust grains. A brief discussion for possible applications is included.« less

  5. Workshop on Cometary Dust in Astrophysics

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The paper include contribution of each Lunar and Planetary Institute. Contents include the following: Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. In-situ analysis of complex organic matter in cometary dust by ion microprobe. Pristine presolar silicon carbide. Infrared spectra of melilite solid solution. Comet observations with SIRTF. Ice and carbon chemistry in comets. The nature in interstellar dust. Modeling the infrared emission from protoplanetary dust disks.

  6. Determining inert content in coal dust/rock dust mixture

    DOEpatents

    Sapko, Michael J.; Ward, Jr., Jack A.

    1989-01-01

    A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

  7. Dust Grain Charge above the Lunar terminator

    NASA Astrophysics Data System (ADS)

    Vaverka, Jakub; Richterova, Ivana; Nemecek, Zdenek; Safrankova, Jana; Pavlu, Jiri; Vysinka, Marek

    Interaction of a lunar surface with the solar wind and magnetosphere leads to its charging by several processes as photoemission, a collection of primary particles, and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a shielding of solar light and solar wind ions by hills, craters, and boulders that can locally influence the surface potential. Moreover, a presence of a plasma wake can strongly affect this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred volts (night side). An electric field above the charged surface can lead to a levitation of dust grains as it has been observed by several spacecraft and by astronauts during Apollo missions. Although charging and transport of dust grains above the lunar surface are in the center of interest for many years, these phenomena are not still completely understood. We present calculation of an equilibrium potential of dust grains above the lunar surface. We focus on a terminator area during the Earth’s plasma sheet crossing. We use the secondary electron emission model for dust grains which takes into account an influence of the grain size, material, and surface roughness and findings from laboratory experiments with charging of lunar dust simulants by an electron beam.

  8. Mineral dust photochemistry induces nucleation events in the presence of SO2

    PubMed Central

    Dupart, Yoan; King, Stephanie M.; Nekat, Bettina; Nowak, Andreas; Wiedensohler, Alfred; Herrmann, Hartmut; David, Gregory; Thomas, Benjamin; Miffre, Alain; Rairoux, Patrick; D’Anna, Barbara; George, Christian

    2012-01-01

    Large quantities of mineral dust particles are frequently ejected into the atmosphere through the action of wind. The surface of dust particles acts as a sink for many gases, such as sulfur dioxide. It is well known that under most conditions, sulfur dioxide reacts on dust particle surfaces, leading to the production of sulfate ions. In this report, for specific atmospheric conditions, we provide evidence for an alternate pathway in which a series of reactions under solar UV light produces first gaseous sulfuric acid as an intermediate product before surface-bound sulfate. Metal oxides present in mineral dust act as atmospheric photocatalysts promoting the formation of gaseous OH radicals, which initiate the conversion of SO2 to H2SO4 in the vicinity of dust particles. Under low dust conditions, this process may lead to nucleation events in the atmosphere. The laboratory findings are supported by recent field observations near Beijing, China, and Lyon, France. PMID:23213230

  9. DustEM: Dust extinction and emission modelling

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.

    2013-07-01

    DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.

  10. Surface Winds and Dust Biases in Climate Models

    NASA Astrophysics Data System (ADS)

    Evan, A. T.

    2018-01-01

    An analysis of North African dust from models participating in the Fifth Climate Models Intercomparison Project (CMIP5) suggested that, when forced by observed sea surface temperatures, these models were unable to reproduce any aspects of the observed year-to-year variability in dust from North Africa. Consequently, there would be little reason to have confidence in the models' projections of changes in dust over the 21st century. However, no subsequent study has elucidated the root causes of the disagreement between CMIP5 and observed dust. Here I develop an idealized model of dust emission and then use this model to show that, over North Africa, such biases in CMIP5 models are due to errors in the surface wind fields and not due to the representation of dust emission processes. These results also suggest that because the surface wind field over North Africa is highly spatially autocorrelated, intermodel differences in the spatial structure of dust emission have little effect on the relative change in year-to-year dust emission over the continent. I use these results to show that similar biases in North African dust from the NASA Modern Era Retrospective analysis for Research and Applications (MERRA) version 2 surface wind field biases but that these wind biases were not present in the first version of MERRA.

  11. Deposition Rates and Characterization of Arabian Mineral Dust

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Stenchikov, G. L.; Engelbrecht, J. P.

    2015-12-01

    Airborne mineral dust directly and indirectly impacts on global climate, continental and marine biochemistry, human and animal health, agriculture, equipment, and visibility. Annual global dust emissions are poorly known with estimates differing by a factor of at least two. Local dust emission and deposition rates are even less quantified. Dust deposition rate is a key parameter, which helps to constrain the modeled dust budget of the atmosphere. However, dust deposition remains poorly known, due to the limited number of reliable measurements. Simulations and satellite observations suggest that coastal dusts contribute substantially to the total deposition flux into the Red Sea. Starting December 2014, deposition samplers, both the "frisbee" type, and passive samplers for individual particle scanning electron microscopy were deployed at King Abdullah University of Science and Technology (KAUST), along the Red Sea in Saudi Arabia. Sampling periods of one month were adopted. The deposition rates range from 3 g m-2 month-1 for fair weather conditions to 23 g m-2 month-1 for high dust events. The X-ray diffraction (XRD) analyses of deposited dust samples show mineralogical compositions different from any of the parent soils, the former consisting mainly of gypsum, calcite, and smaller amounts of albite, montmorillonite, chlorite, quartz and biotite. The deposited dust samples on the other hand contain more gypsum and less quartz than the previously collected soil samples. This presentation discusses the results from XRD, chemical analysis and SEM-based individual particle analysis of the soils and the deposited dust samples. The monthly dust accumulation rates and their seasonal and spatial variability are compared with the regional model predictions. Data from this study provide an observational basis for validating the regional dust mass balance along the Arabian Red Sea coastal plain.

  12. Removal of lead contaminated dusts from hard surfaces.

    PubMed

    Lewis, Roger D; Condoor, Sridhar; Batek, Joe; Ong, Kee Hean; Backer, Denis; Sterling, David; Siria, Jeff; Chen, John J; Ashley, Peter

    2006-01-15

    Government guidelines have widely recommended trisodium phosphate (TSP) or "lead-specific" cleaning detergents for removal of lead-contaminated dust (LCD) from hard surfaces, such as floors and window areas. The purpose of this study was to determine if low-phosphate, non-lead-specific cleaners could be used to efficiently remove LCD from 3 types of surfaces (vinyl flooring, wood, and wallpaper). Laboratory methods were developed and validated for simulating the doping, embedding, and sponge cleaning of the 3 surface types with 4 categories of cleaners: lead-specific detergents, nonionic cleaners, anionic cleaners, and trisodium phosphate (TSP). Vinyl flooring and wood were worn using artificial means. Materials were ashed, followed by ultrasound extraction, and anodic stripping voltammetry (ASV). One-way analysis of variance approach was used to evaluate the surface and detergent effects. Surface type was found to be a significant factor in removal of lead (p < 0.001). Vinyl flooring cleaned better than wallpaper by over 14% and wood cleaned better than wallpaper by 13%. There was no difference between the cleaning action of vinyl flooring and wood. No evidence was found to support the use of TSP or lead-specific detergents over all-purpose cleaning detergents for removal of lead-contaminated dusts. No-phosphate, non-lead-specific detergents are effective in sponge cleaning of lead-contaminated hard surfaces and childhood lead prevention programs should consider recommending all-purpose household detergents for removal of lead-contaminated dust after appropriate vacuuming.

  13. Techniques for identifying dust devils in mars pathfinder images

    USGS Publications Warehouse

    Metzger, S.M.; Carr, J.R.; Johnson, J. R.; Parker, T.J.; Lemmon, M.T.

    2000-01-01

    Image processing methods used to identify and enhance dust devil features imaged by IMP (Imager for Mars Pathfinder) are reviewed. Spectral differences, visible red minus visible blue, were used for initial dust devil searches, driven by the observation that Martian dust has high red and low blue reflectance. The Martian sky proved to be more heavily dust-laden than pre-Pathfinder predictions, based on analysis of images from the Hubble Space Telescope. As a result, these initial spectral difference methods failed to contrast dust devils with background dust haze. Imager artifacts (dust motes on the camera lens, flat-field effects caused by imperfections in the CCD, and projection onto a flat sensor plane by a convex lens) further impeded the ability to resolve subtle dust devil features. Consequently, reference images containing sky with a minimal horizon were first subtracted from each spectral filter image to remove camera artifacts and reduce the background dust haze signal. Once the sky-flat preprocessing step was completed, the red-minus-blue spectral difference scheme was attempted again. Dust devils then were successfully identified as bright plumes. False-color ratios using calibrated IMP images were found useful for visualizing dust plumes, verifying initial discoveries as vortex-like features. Enhancement of monochromatic (especially blue filter) images revealed dust devils as silhouettes against brighter background sky. Experiments with principal components transformation identified dust devils in raw, uncalibrated IMP images and further showed relative movement of dust devils across the Martian surface. A variety of methods therefore served qualitative and quantitative goals for dust plume identification and analysis in an environment where such features are obscure.

  14. The effectiveness of handheld ventilated sanders in reducing inhalable dust concentrations.

    PubMed

    Carlton, Gary N; Patel, Kalpesh B; Johnson, David L; Hall, Thomas A

    2003-01-01

    Ventilated sanders are commonly used during aircraft surface abrasion but there is limited data on their effectiveness in reducing worker exposures. This study compared two handheld ventilated sander brands, DCM and Dynabrade, in a laboratory glovebox. Both sanders collect particulates by drawing air through holes in the sanding pads; the dust subsequently passes into a vacuum collection system. Aluminum panels coated with aircraft epoxy primer and polyurethane paint were abraded and inhalable dust concentrations were measured inside the glovebox with IOM samplers. The results indicate that both sanders effectively control inhalable dust, with the DCM sander reducing mass concentrations by 93 percent, and the Dynabrade by 98 percent, when the ventilation system is used. The Dynabrade unit, however, was more aggressive and produced over four times as much dust per unit time as the DCM unit. In spite of this, the Dynabrade sander adequately collected this additional dust. Varying abrasive grit size did not significantly affect dust generation, although the differences between the grit sizes used (180 and 240 grit) were not great and may have influenced the results.

  15. Martian Dust Storm on May 18, 2008

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This false-color polar map was generated from images obtained by the Mars Reconnaissance Orbiter's Mars Color Imager (MARCI) on May 18, 2008. It shows a large local dust storm that researchers were monitoring to see if it would affect weather conditions at NASA's Phoenix spacecraft's landing site on landing day, May 25, 2008. The landing site is labeled and marked with the yellow dot.

    The dust storm, indicated with yellow arrows in the close-up view, is the sinuous, light-colored feature to the left of the white northern polar cap at the center of the map.

    This dust storm was too early and too far away to affect the lander.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  16. The Cassini Cosmic Dust Analyser CDA - A 10 year exploration of Saturn's dust environment

    NASA Astrophysics Data System (ADS)

    Srama, Ralf

    2014-05-01

    The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Since then, the German-lead Cosmic Dust Analyser (CDA) was operated continuously for 10 years in orbit around Saturn. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring (at least twice as large as previously known) allowed the definition of a dynamical dust model of Saturns E ring describing the observed properties. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn.

  17. Airborne Dust Monitoring Activities at the National Environmental Satellite, Data and Information Service

    NASA Astrophysics Data System (ADS)

    Stephens, G.; McNamara, D.; Taylor, J.

    2002-12-01

    Wind blown dust can be a hazard to transportation, industrial, and military operations, and much work has been devoted to its analysis and prediction from a meteorological viewpoint. The detection and forecasting of dust outbreaks in near real time is difficult, particularly in remote desert areas with sparse observation networks. The Regional Haze Regulation, passed by Congress in 1999, mandates a reduction in man made inputs to haze in 156 Class I areas (national parks and wilderness areas). Studies have demonstrated that satellite data can be useful in detection and tracking of dust storms. Environmental satellites offer frequent coverage of large geographic areas. The National Environmental Satellite, Data, and Information Service (NESDIS) of the U.S. National Oceanic and Atmospheric Administration (NOAA) operates a system of polar orbiting and geostationary environmental satellites, which sense data in two visible and three infrared channels. Promising results in the detection of airborne dust have been obtained using multispectral techniques to combine information from two or more channels to detect subtle spectral differences. One technique, using a ratio of two thermal channels, detects the presence of airborne dust, and discriminates it from both underlying ground and meteorological clouds. In addition, NESDIS accesses and is investigating for operational use data from several other satellites. The Total Ozone Mapping Spectrometer on board NASA's Earth Probe mission provides an aerosol index product which can detect dust and smoke, and the Moderate Resolution Imaging Spectroradiometer on NASA's Terra and Aqua satellites provide several channels which can detect aerosols in multispectral channel combinations. NESDIS, in cooperation with NOAA's Air Resources Laboratory, produces a daily smoke transport forecast, combining satellite derived smoke source points with a mathematical transport prediction model; such a scheme could be applied to other aerosol

  18. Multielement analysis of interplanetary dust particles using TOF-SIMS

    NASA Technical Reports Server (NTRS)

    Stephan, T.; Kloeck, W.; Jessberger, E. K.; Rulle, H.; Zehnpfenning, J.

    1993-01-01

    Sections of three stratospheric particles (U2015G1, W7029*A27, and L2005P9) were analyzed with TOF-SIMS (Time Of Flight-Secondary Ion Mass Spectrometry) continuing our efforts to investigate the element distribution in interplanetary dust particles (IDP's) with high lateral resolution (approximately 0.2 micron), to examine possible atmospheric contamination effects, and to further explore the abilities of this technique for element analysis of small samples. The samples, previously investigated with SXRF (synchrotron X-ray fluorescence analysis), are highly enriched in Br (Br/Fe: 59 x CI, 9.2 x CI, and 116 x CI, respectively). U2015G1 is the IDP with the by far highest Zn/Fe-ratio (81 x CI) ever reported in chondritic particles.

  19. [Analysis and prevention of dust pollution caused by 5 common prosthetic materials].

    PubMed

    Yang, Xiang-Wen; Wei, Bin; Zhu, Cao-Yun; Qian, Liang; Li, Yi-Han

    2017-10-01

    To analyze and evaluate dust pollution in prosthodontic clinic and make proposal for reasonable protection. This study analyzed the particle size, element composition and dust concentration of 5 materials which were commonly used in dental restorations (veneering ceramics, cobalt-chromium alloy, photosensitive plastic, hard base resin, advanced artificial teeth) by using scanning electron microscopy (SEM), X-ray energy dispersive spectrometer(EDS) and dust concentration laser tester, in order to assess the effects of prosthodontic dust posed on medical staff health and put forward reasonable suggestions for prevention and control of dust pollution. The particle size of veneering ceramics, cobalt-chromium alloy, photosensitive plastic, hard base resin and advanced artificial teeth was (2.15±3.00), (33.78±24.33), (7.78±11.86), (31.16±44.35) and (28.45±39.21)μm, respectively. The time weighted average respirable dust concentration of veneering ceramics was 0.393 mg/m 2 which was beyond the scope of national security. Dust pollution is serious in prosthodontic clinic to which we should pay more attention and take appropriate prevention measures.

  20. Dust Measurements On-board the New Horizons Mission

    NASA Astrophysics Data System (ADS)

    Poppe, A.; James, D.; Horanyi, M.

    2007-12-01

    The Venetia Burney Student Dust Counter (VSDC) on the New Horizons spacecraft was successfully commissioned on March 3, 2006 (DOY 2006/061). VSDC is a dust impact detector designed to map the dust distribution along the trajectory of the New Horizons spacecraft as it traverses our solar system. VSDC is the first student built instrument on a deep space mission and it is currently operated by a small group of undergraduate and graduate students at the Laboratory of Atmospheric and Space Physics (LASP), University of Colorado. By the time of this meeting (12/2007), VSDC will have operated for about 330 days, covering an approximate distance from 1.21 to 10 AU. VSDC is based on permanently polarized thin plastic film sensors that generate an electrical signal when an impacting dust particle penetrates them. The total surface area is about 0.1 square meters, and the detection threshold is about a micron in particle radius. In this talk we will briefly review the VSDC instrument. The in-flight tests and calibrations, as well as our initial science results will be discussed. We will report on the measured spatial and size distribution of interplanetary dust particles before and after the encounter with Jupiter. These measurements will be compared with earlier measurements by Ulysses, Galileo, and Cassini.

  1. DustPedia: A Definitive Study of Cosmic Dust in the Local Universe

    NASA Astrophysics Data System (ADS)

    Davies, J. I.; Baes, M.; Bianchi, S.; Jones, A.; Madden, S.; Xilouris, M.; Bocchio, M.; Casasola, V.; Cassara, L.; Clark, C.; De Looze, I.; Evans, R.; Fritz, J.; Galametz, M.; Galliano, F.; Lianou, S.; Mosenkov, A. V.; Smith, M.; Verstocken, S.; Viaene, S.; Vika, M.; Wagle, G.; Ysard, N.

    2017-04-01

    The European Space Agency has invested heavily in two cornerstones missions: Herschel and Planck. The legacy data from these missions provides an unprecedented opportunity to study cosmic dust in galaxies so that we can, for example, answer fundamental questions about the origin of the chemical elements, physical processes in the interstellar medium (ISM), its effect on stellar radiation, its relation to star formation and how this relates to the cosmic far-infrared background. In this paper we describe the DustPedia project, which enables us to develop tools and computer models that will help us relate observed cosmic dust emission to its physical properties (chemical composition, size distribution, and temperature), its origins (evolved stars, supernovae, and growth in the ISM), and the processes that destroy it (high-energy collisions and shock heated gas). To carry out this research, we combine the Herschel/Planck data with that from other sources of data, and provide observations at numerous wavelengths (≤slant 41) across the spectral energy distribution, thus creating the DustPedia database. To maximize our spatial resolution and sensitivity to cosmic dust, we limit our analysis to 4231 local galaxies (v< 3000 km s-1) selected via their near-infrared luminosity (stellar mass). To help us interpret this data, we developed a new physical model for dust (THEMIS), a new Bayesian method of fitting and interpreting spectral energy distributions (HerBIE) and a state-of-the-art Monte Carlo photon-tracing radiative transfer model (SKIRT). In this, the first of the DustPedia papers, we describe the project objectives, data sets used, and provide an insight into the new scientific methods we plan to implement.

  2. Controls on mineral dust emissions at four arid locations in the western USA

    NASA Astrophysics Data System (ADS)

    Engelbrecht, Johann P.; Gillies, John A.; Etyemezian, Vicken; Kuhns, Hampden; Baker, Sophie E.; Zhu, Dongzi; Nikolich, George; Kohl, Steven D.

    Dust emission measurements from unique military sources, including tracked and wheeled military vehicles, low flying rotary-winged aircraft, and artillery backblast, were conducted in the course of four field campaigns in 2005-2008, at Yuma Proving Ground (YPG) in Arizona (twice), Yakima Test Center (YTC) in Washington State, and Ft. Carson in Colorado. This paper reports on the observed relationships between levels of dust emission, and the mineralogy, particle size, and chemical composition of the surface sediment and associated airborne mineral dust. We propose a mechanism for the generation of fine particulate matter, providing an explanation for high emissions in certain regions. PM10 (particulate matter with aerodynamic diameter of <10 μm) and PM2.5 (particulate matter with aerodynamic diameter of <2.5 μm) filter as well as bulk samples were collected for laboratory analysis in the course of the field campaigns. Analytical techniques applied include X-ray diffraction, Scanning Electron Microscopy, laser particle size analysis, as well as X-ray fluorescence spectrometry, Ion Chromatography, and Automated Colorimetry. Previous work has shown YTC has higher dust emission factors than YPG and Ft. Carson. The results presented in this paper demonstrate that the high PM10 and PM2.5 emissions measured at YTC can be explained by the high silt and low clay content of the surface sediment, attributed to glacial loess. In the other test areas, the abrasion of microscopic clay and oxide coatings, from and by silicate mineral grains, is considered a factor in the generation of fine particulate matter.

  3. Some insights on the dust properties of nearby galaxies, as seen with Herschel

    NASA Astrophysics Data System (ADS)

    Galliano, Frédéric

    2017-12-01

    Nearby galaxies are particularly relevant laboratories to study dust evolution due to the diversity of physical conditions they harbor and to the wealth of data at our disposal. In this paper, we review several recent advances in this field, mainly based on Herschel observations. We first discuss the problems linked with our ignorance of grain emissivities, and show that it can be constrained in some cases. New models are starting to incorporate these constraints. We then present methodological issues encountered when fitting spectral energy distributions, leading to biases in derived dust properties, and some attempts to solve them. Subsequently, we review studies scrutinizing dust evolution: (i) from a global point of view, inferring long term cosmic dust evolution; (ii) from a local point of view, looking for indices of dust processing in the ISM.

  4. Analysis of "Midnight" Tracks in the Stardust Interstellar Dust Collector: Possible Discovery of a Contemporary Interstellar Dust Grain

    NASA Technical Reports Server (NTRS)

    Westphal, A. J.; Allen, C.; Bajit, S.; Bastien, R.; Bechtel, H.; Bleuet, P.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; hide

    2010-01-01

    In January 2006, the Stardust sample return capsule returned to Earth bearing the first solid samples from a primitive solar system body, Comet 81P/Wild2, and a collector dedicated to the capture and return of contemporary interstellar dust. Both collectors were approximately 0.1m(exp 2) in area and were composed of aerogel tiles (85% of the collecting area) and aluminum foils. The Stardust Interstellar Dust Collector (SIDC) was exposed to the interstellar dust stream for a total exposure factor of 20 m(exp 2) day. The Stardust Interstellar Preliminary Examination (ISPE) is a three-year effort to characterize the collection using nondestructive techniques.

  5. Martian Atmospheric Dust Mitigation for ISRU Intakes via Electrostatic Precipitation

    NASA Technical Reports Server (NTRS)

    Phillips, James R., III; Pollard, Jacob R. S.; Johansen, Michael R.; Mackey, Paul J.; Clements, J. Sid; Calle, Carlos I.

    2016-01-01

    The Mars 2020 and Mars Sample Return missions expected to fly to Mars within the next ten years will each include an In Situ Resource Utilization (ISRU) system. They convert carbon dioxide in the Martian atmosphere into consumable oxygen at 1% and 20% of the rate required by a full scale human exploration Mars mission, respectively. The ISRU systems will need to draw in the surrounding atmosphere at a rate of 110L/min and 550L/min, respectively, in order to meet their oxygen production goals. Over the duration of each respective mission, a total atmospheric dust mass of 4.86g and 243g will be drawn into each system, respectively. Ingestion of large quantities of dust may interfere with ISRU operations, so a dust mitigation device will be required. The atmospheric volume and dust mass flow rates above will be utilized to simulate Martian environmental conditions in a laboratory electrostatic precipitator being developed to provide active dust mitigation support for atmospheric ISRU systems such as these.

  6. Lunar dust, lunar observatories and other operations on the Moon

    NASA Astrophysics Data System (ADS)

    Johnson, Stewart W.; Chua, Koon Meng; Burns, Jack O.

    1995-02-01

    The pervasiveness of the lunar fine-grained particulates or dust was alluded to many times by the twelve Apollo astronauts who briefly lived and worked on the Moon. Neil Armstrong, on the first journey to the Moon, said of the lunar dust 'The surface is fine and powdery. I can - I can pick it up loosely with my toe. It does adhere in fine layers like powdered charcoal to the sole and sides of my boots.' For engineering, construction and operations on the Moon, the dust poses unresolved riddles. This paper discusses what some of the mechanisms are that may govern the behavior of the fine particles, suggests approaches to mitigating the dust hazard and notes that experiments in laboratories and on the Moon are needed to assist in establishing effective and suitable means of limiting the detrimental effects of dust on observatory operations. Te ideas presented have implications not only for observatories but also for a variety of mining and industrial operations on the surface of the Moon in the 21st Century.

  7. Martian Dust Devil Movie, Phoenix Sol 104

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west of the lander in four frames shot about 50 seconds apart from each other between 11:53 a.m. and 11:56 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The dust devil visible in this sequence was about 1,000 meters (about 3,300 feet) from the lander when the first frame was taken, and had moved to about 1,700 meters (about 5,600 feet) away by the time the last frame was taken about two and a half minutes later. The dust devil was moving westward at an estimated speed of 5 meters per second (11 miles per hour), which is similar to typical late-morning wind speed and direction indicated by the telltale wind gauge on Phoenix.

    This dust devil is about 5 meters (16 feet) in diameter. This is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those..

    The image has been enhanced to make the dust devil easier to see. Some of the frame-to-frame differences in the appearance of foreground rocks is because each frame was taken through a different color filter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Validation of MODIS Dust Aerosol Retrieval and Development Ambient Dust Phase Function using PRIDE Data

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Lau, William (Technical Monitor)

    2002-01-01

    The PRIDE data set of MODIS aerosol retrievals co-located with sunphotometer measurements provides the basis of MODIS validation in a dust environment. The sunphotometer measurements include AERONET automatic instruments, land-based Microtops instruments, ship-board Microtops instruments and the AATS-6 aboard the Navajo aircraft. Analysis of these data indicate that the MODIS retrieval is within pre-launch estimates of uncertainty within the spectral range of 600-900 nm. However, the MODIS algorithm consistently retrieves smaller particles than reality thus leading to incorrect spectral response outside of the 600-900 nm range and improper size information. Further analysis of MODIS retrievals in other dust environments shows the inconsistencies are due to nonspherical effects in the phase function. These data are used to develop an ambient phase function for dust aerosol to be used for remote sensing purposes.

  9. Laboratory-generated mixtures of mineral dust particles with biological substances: characterization of the particle mixing state and immersion freezing behavior

    NASA Astrophysics Data System (ADS)

    Augustin-Bauditz, Stefanie; Wex, Heike; Denjean, Cyrielle; Hartmann, Susan; Schneider, Johannes; Schmidt, Susann; Ebert, Martin; Stratmann, Frank

    2016-05-01

    Biological particles such as bacteria, fungal spores or pollen are known to be efficient ice nucleating particles. Their ability to nucleate ice is due to ice nucleation active macromolecules (INMs). It has been suggested that these INMs maintain their nucleating ability even when they are separated from their original carriers. This opens the possibility of an accumulation of such INMs in soils, resulting in an internal mixture of mineral dust and INMs. If particles from such soils which contain biological INMs are then dispersed into the atmosphere due to wind erosion or agricultural processes, they could induce ice nucleation at temperatures typical for biological substances, i.e., above -20 up to almost 0 °C, while they might be characterized as mineral dust particles due to a possibly low content of biological material. We conducted a study within the research unit INUIT (Ice Nucleation research UnIT), where we investigated the ice nucleation behavior of mineral dust particles internally mixed with INM. Specifically, we mixed a pure mineral dust sample (illite-NX) with ice active biological material (birch pollen washing water) and quantified the immersion freezing behavior of the resulting particles utilizing the Leipzig Aerosol Cloud Interaction Simulator (LACIS). A very important topic concerning the investigations presented here as well as for atmospheric application is the characterization of the mixing state of aerosol particles. In the present study we used different methods like single-particle aerosol mass spectrometry, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray analysis (EDX), and a Volatility-Hygroscopicity Tandem Differential Mobility Analyser (VH-TDMA) to investigate the mixing state of our generated aerosol. Not all applied methods performed similarly well in detecting small amounts of biological material on the mineral dust particles. Measuring the hygroscopicity/volatility of the mixed particles with the VH-TDMA was the most

  10. A decade of infrared versus visible AOD analysis within the dust belt

    NASA Astrophysics Data System (ADS)

    Capelle, Virginie; Chédin, Alain; Pondrom, Marc; Crevoisier, Cyril; Armante, Raymond; Crépeau, Laurent; Scott, Noëlle

    2017-04-01

    Aerosols represent one of the dominant uncertainties in radiative forcing, partly because of their very high spatiotemporal variability, a still insufficient knowledge of their microphysical and optical properties, or of their vertical distribution. A better understanding and forecasting of their impact on climate therefore requires precise observations of dust emission and transport. Observations from space offer a good opportunity to follow, day by day and at high spatial resolution, dust evolution at global scale and over long time series. In this context, infrared observations, by allowing retrieving simultaneously dust optical depth (AOD) as well as the mean dust layer altitude, daytime and nighttime, over oceans and over continents, in particular over desert, appears highly complementary to observations in the visible. In this study, a decade of infrared observations (Metop-A/IASI and AIRS/AQUA) has been processed pixel by pixel, using a "Look-Up-Table" (LUT) physical approach. The retrieved infrared 10µm coarse-mode AOD is compared with the Spectral Deconvolution Algorithm (SDA) 500nm coarse mode AOD observed at 50 ground-based Aerosol RObotic NETwork (AERONET) sites located within the dust belt. Analyzing their brings into evidence an important geographical variability. Lowest values are found close to dust sources ( 0.45 for the Sahel or Arabian Peninsula, 0.6-0.7 for the Northern part of Africa or India), whereas the ratio increases for transported dust with values of 0.9-1 for the Caribbean and for the Mediterranean basin. This variability is interpreted as a marker of clays abundance, and might be linked to the dust particle illite to kaolinite ratio, a recognized tracer of dust sources and transport. More generally, it suggests that the difference between the radiative impact of dust aerosols in the visible and in the infrared depends on the type of particles observed. This highlights the importance of taking into account the specificity of the

  11. A Dust Devil Playground

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02185 A Dust Devil Playground

    Dust Devil activity in this region between Brashear and Ross Craters is very common. Large regions of dust devil tracks surround the south polar region of Mars.

    Image information: VIS instrument. Latitude -55.2N, Longitude 244.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter

    NASA Astrophysics Data System (ADS)

    Flynn, George

    Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter Chondritic, porous interplanetary dust particles (CP IDPs), the most primitive samples of extraterrestrial material available for laboratory analysis [1], are unequilibrated aggregates of mostly submicron, anhydrous grains of a diverse mineralogy. They contain organic matter not produced by parent body aqueous processing [2], some carrying H and N isotopic anomalies consistent with molecular cloud or outer Solar System material [3]. Scanning Transmission X-Ray Microscope (STXM) imaging at the C K-edge shows the individual grains in 10 micron aggregate CP IDPs are coated by a layer of carbonaceous material 100 nm thick. This structure implies a three-step formation sequence. First, individual grains condensed from the cooling nebular gas. Then complex, refractory organic molecules covered the surfaces of the grains either by deposition, formation in-situ, or a combination of both processes. Finally, the grains collided and stuck together forming the first dust-size material in the Solar System. Ultramicrotome sections, 70 to 100 nm thick were cut from several CP IDPs, embedded in elemental S to avoid exposure to C-based embedding media. X-ray Absorption Near Edge Structure (XANES) spectra were derived from image stacks obtained using a STXM. "Cluster analysis" was used to compare the C-XANES spectra from each of the pixels in an image stack and identify pixels exhibiting similar spectra. When applied to a CP IDP, cluster analysis identifies most carbonaceous grain coatings in a particle as having similar C-XANES spectra. Two processes are commonly suggested in the literature for production of organic grain coatings. The similarity in thickness and C-XANES spectra of the coatings on different minerals in the same IDP indicates the first, mineral specific catalysis, was not the process that produced these organic rims. Our results

  13. Measurements of Lunar Dust Charging Properties by Electron Impact

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.

    2009-01-01

    Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.

  14. Temporal and spatial characteristics of dust devils and their contribution to the aerosol budget in East Asia-An analysis using a new parameterization scheme for dust devils

    NASA Astrophysics Data System (ADS)

    Tang, Yaoguo; Han, Yongxiang; Liu, Zhaohuan

    2018-06-01

    Dust aerosols are the main aerosol components of the atmosphere that affect climate change, but the contribution of dust devils to the atmospheric dust aerosol budget is uncertain. In this study, a new parameterization scheme for dust devils was established and coupled with WRF-Chem, and the diurnal and monthly variations and the contribution of dust devils to the atmospheric dust aerosol budget in East Asia was simulated. The results show that 1) both the diurnal and monthly variations in dust devil emissions in East Asia had unimodal distributions, with peaks in the afternoon and the summer that were similar to the observations; 2) the simulated dust devils occurred frequently in deserts, including the Gobi. The distributed area and the intensity center of the dust devil moved from east to west during the day; 3) the ratio between the availability of convective buoyancy relative to the frictional dissipation was the main factor that limited the presence of dust devils. The position of the dust devil formation, the surface temperature, and the boundary layer height determined the dust devil intensity; 4) the contribution of dust devils to atmospheric dust aerosols determined in East Asia was 30.4 ± 13%, thereby suggesting that dust devils contribute significantly to the total amount of atmospheric dust aerosols. Although the new parameterization scheme for dust devils was rough, it was helpful for understanding the distribution of dust devils and their contribution to the dust aerosol budget.

  15. Non-PBDE halogenated flame retardants in Canadian indoor house dust: sampling, analysis, and occurrence.

    PubMed

    Fan, Xinghua; Kubwabo, Cariton; Rasmussen, Pat E; Wu, Fang

    2016-04-01

    An analytical method was developed for the measurement of 18 novel halogenated flame retardants in house dust. Sample preparation was based on ultrasound-assisted solvent extraction and clean up with solid phase extraction (SPE). Sample extracts were analyzed by gas chromatography-mass spectrometry (GC/MS) operated in electron capture negative ion (ECNI) chemical ionization mode. Baseline data from 351 fresh (active) dust samples collected under the Canadian House Dust Study (CHDS) revealed that five out of 18 target chemicals were present with detection frequencies higher than 90 %. Median (range) concentrations for these five compounds were as follows: 104 (<1.5-13,000) ng/g for 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB), 8.5 (<1.7-2390) ng/g for 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), 10.2 (<1.7-430) ng/g for hexabromobenzene (HBB), 2.9 (<1.2-1410) ng/g for syn-dechlorane plus (syn-DP) and 5.6 (<1.9-1570) ng/g for anti-dechlorane plus (anti-DP). A comparison of two sampling methods in a subset of 40 homes showed significant positive correlations between samples of "active" dust and samples taken directly from the household vacuum cleaner for all target compounds having median values above their corresponding method detection limits (MDLs). In addition, the method was also applied to the analysis of the targeted compounds in National Institute of Standards and Technology (NIST) standard reference material (SRM 2585, organic contaminants in house dust). Results from the current study could contribute to the potential certification of target chemicals in SRM 2585.

  16. Evaluations of bit sleeve and twisted-body bit designs for controlling roof bolter dust

    PubMed Central

    Beck, T.W.

    2015-01-01

    Drilling into coal mine roof strata to install roof bolts has the potential to release substantial quantities of respirable dust. Due to the proximity of drill holes to the breathing zone of roof bolting personnel, dust escaping the holes and avoiding capture by the dust collection system pose a potential respiratory health risk. Controls are available to complement the typical dry vacuum collection system and minimize harmful exposures during the initial phase of drilling. This paper examines the use of a bit sleeve in combination with a dust-hog-type bit to improve dust extraction during the critical initial phase of drilling. A twisted-body drill bit is also evaluated to determine the quantity of dust liberated in comparison with the dust-hog-type bit. Based on the results of our laboratory tests, the bit sleeve may reduce dust emissions by one-half during the initial phase of drilling before the drill bit is fully enclosed by the drill hole. Because collaring is responsible for the largest dust liberations, overall dust emission can also be substantially reduced. The use of a twisted-body bit has minimal improvement on dust capture compared with the commonly used dust-hog-type bit. PMID:26257435

  17. Martian Arctic Dust Devil and Phoenix Meteorology Mast

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The vertical post near the left edge of this image is the mast of the Meteorological Station on Phoenix. The dust devil visible at the horizon just to the right of the mast is estimated to be 600 to 700 meters (about 2,000 to 2,300 feet) from Phoenix, and 4 to 5 meters (10 to 13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those.

    The image has been enhanced to make the dust devil easier to see.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  18. Dust, Abundances, and the Evolution of Novae

    NASA Astrophysics Data System (ADS)

    Woodward, Charles; Bode, Michael; Evans, Anuerin; Geballe, Thomas; Gehrz, Robert; Helton, Andrew; Krautter, Joachim; Lynch, David; Ness, Jan-Uwe; Rudy, Richard; Schwarz, Greg; Shore, Steve; Starrfield, Sumner; Truran, James; Vanlandingham, Karen; Wagner, R. Mark

    2008-03-01

    Evolved stars are the engines of energy production and chemical evolution in our Universe. They deposit radiative and mechanical energy into their environments. They enrich the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CNe) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. Our capstone study of 10 CNe will provide an ensemble of objects, well-populated in CNe parameter space (fast, slow, 'coronal', dusty) for detailed photoionization modeling and analysis. CNe are laboratories in which several poorly-understood astrophysical processes (e.g., mass transfer, thermonuclear runaway, optically thick winds, common envelope evolution, molecule and grain formation, coronal emission) may be observed. With Spitzer's unique wavelength coverage and point-source sensitivity we can: (i) investigate the in situ formation, astromineralogy, and processing of nova dust, (ii) determine the ejecta elemental abundances resulting from thermonuclear runaway, (iii) constrain the correlation of ejecta mass with progenitor type, (iv) measure the bolometric luminosity of the outburst, and (v) characterize the kinematics and structure of the ejected envelopes. Extensive ground-based and space-based (Chandra, Swift, XMM-Newton) programs led by team CoIs will complement Spitzer CNe observations.

  19. Systematic on-site monitoring of compliance dust samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayson, R.L.; Gandy, J.R.

    1996-12-31

    Maintaining compliance with U.S. respirable coal mine dust standards can be difficult on high-productivity longwall panels. Comprehensive and systematic analysis of compliance dust sample data, coupled with access to the U.S. Bureau of Mines (USBM) DUSTPRO, can yield important information for use in maintaining compliance. The objective of this study was to develop and apply a customized software for the collection, storage, modification, and analysis of respirable dust data while providing for flexible export of data and linking with the USBM`s expert advisory system on dust control. An executable, IBM-compatible software was created and customized for use by the personmore » in charge of collecting, submitting, analyzing, and monitoring respirable dust compliance samples. Both descriptive statistics and multiple regression analysis were incorporated. The software allows ASCH files to be exported and directly links with DUSTPRO. After development and validation of the software, longwall compliance data from two different mines was analyzed to evaluate the value of the software. Data included variables on respirable dust concentration, tons produced, the existence of roof/floor rock (dummy variable), and the sampling cycle (dummy variables). Because of confidentiality, specific data will not be presented, only the equations and ANOVA tables. The final regression models explained 83.8% and 61.1% of the variation in the data for the two panels. Important correlations among variables within sampling cycles showed the value of using dummy variables for sampling cycles. The software proved flexible and fast for its intended use. The insights obtained from use improved the systematic monitoring of respirable dust compliance data, especially for pinpointing the most effective dust control methods during specific sampling cycles.« less

  20. Laboratory estimate of the regional shortwave refractive index and single scattering albedo of mineral dust from major sources worldwide

    NASA Astrophysics Data System (ADS)

    Di Biagio, C.; Formenti, P.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M. O.; Kandler, K.; Saeed, T.; Piketh, S.; Seibert, D.; Williams, E.; Balkanski, Y.; Doussin, J. F.

    2017-12-01

    Mineral dust is one of the most abundant aerosol species in the atmosphere and strongly contributes to the global and regional direct radiative effect. Still large uncertainties persist on the magnitude and overall sign of the dust direct effect, where indeed one of the main unknowns is how much mineral dust absorbs light in the shortwave (SW) spectral range. Aerosol absorption is represented both by the imaginary part (k) of the complex refractive index or the single scattering albedo (SSA, i.e. the ratio of the scattering to extinction coefficient). In this study we present a new dataset of SW complex refractive indices and SSA for mineral dust aerosols obtained from in situ measurements in the 4.2 m3 CESAM simulation chamber at LISA (Laboratoire Interuniversitaire des Systemes Atmospheriques) in Créteil, France. Investigated dust aerosol samples were issued from major desert sources worldwide, including the African Sahara and Sahel, Eastern Asia, the Middle East, Southern Africa, Australia, and the Americas, with differing iron oxides content. Results from the present study provide a regional mapping of the SW absorption by dust and show that the imaginary part of the refractive index largely varies (by up to a factor 6, 0.003-0.02 at 370 nm and 0.001-0.003 at 950 nm) for the different source areas due to the change in the particle iron oxide content. The SSA for dust varies between 0.75-0.90 at 370 nm and 0.95-0.99 at 950 nm, with the largest absorption observed for Sahelian and Australian dust aerosols. Our range of variability for k and SSA is well bracketed by already published literature estimates, but suggests that regional‒dependent values should be used in models. The possible relationship between k and the dust iron oxides content is investigated with the aim of providing a parameterization of the regional‒dependent dust absorption to include in climate models.

  1. Cost analysis in the toxicology laboratory.

    PubMed

    Travers, E M

    1990-09-01

    The process of determining laboratory sectional and departmental costs and test costs for instrument-generated and manually generated reportable results for toxicology laboratories has been outlined in this article. It is hoped that the basic principles outlined in the preceding text will clarify and elucidate one of the most important areas needed for laboratory fiscal integrity and its survival in these difficult times for health care providers. The following general principles derived from this article are helpful aids for managers of toxicology laboratories. 1. To manage a cost-effective, efficient toxicology laboratory, several factors must be considered: the laboratory's instrument configuration, test turnaround time needs, the test menu offered, the analytic methods used, the cost of labor based on time expended and the experience and educational level of the staff, and logistics that determine specimen delivery time and costs. 2. There is a wide variation in costs for toxicologic methods, which requires that an analysis of capital (equipment) purchase and operational (test performance) costs be performed to avoid waste, purchase wisely, and determine which tests consume the majority of the laboratory's resources. 3. Toxicologic analysis is composed of many complex steps. Each step must be individually cost-accounted. Screening test results must be confirmed, and the cost for both steps must be included in the cost per reportable result. 4. Total costs will vary in the same laboratory and between laboratories based on differences in salaries paid to technical staff, differences in reagent/supply costs, the number of technical staff needed to operate the analyzer or perform the method, and the inefficient use of highly paid staff to operate the analyzer or perform the method. 5. Since direct test costs vary directly with the type and number of analyzers or methods and are dependent on the operational mode designed by the manufacturer, laboratory managers

  2. A simplified Suomi NPP VIIRS dust detection algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan

    2017-11-01

    Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.

  3. Martian Dust Cycle

    NASA Astrophysics Data System (ADS)

    Cantor, B. A.; James, P. B.

    The Mars Observer Camera (MOC), aboard Mars Global Surveyor (MGS), has completed approximately 3 consecutive Martian years of global monitoring, since entering its mapping orbit on March 9, 1999. MOC observations have shown the important role that dust devils and dust storms play in the Martian dust cycle on time scales ranging from semi-diurnally to interannually. These dust events have been observed across much of the planet from the depths of Hellas basin to the summit of Arsia Mons and range in size from10s of meters across (dust devils) to planet encircling (global dust veils). Though dust devils occur throughout most of the Martian year, each hemisphere has a "dust devil season" that generally follows the subsolar latitude and appears to be repeatable from year-to-year. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer. MOC observations show no evidence that dust devils cause or lead to dust storms, however, observations do suggest that dust storms can initiate dust devil activity. Dust devils also might play a role in maintaining the low background dust opacity of the Martian atmosphere. Dust storms occur almost daily with few exceptions, with 1000s occurring each year in the present Martian environment, dispelling the notion of a "Classical Dust Storm Season". However, there does appear to be an annual dust storm cycle, with storms developing in specific locations during certain seasons and that some individual storm events are repeatable from year-to-year. The majority of storms develop near the receding seasonal polar cap edge or along the corresponding polar hood boundaries in their respective hemispheres, but they also occur in the northern plains, the windward side of the large shield volcanoes, and in low laying regions such as Hellas, Argyre, and Chryse. The rarest of dust events are the "Great Storms" or "Global Events", of which only 6 (4 "planet encircling" and 2 "global") have been observed

  4. In situ dust measurements by the Cassini Cosmic Dust Analyzer in 2014 and beyond

    NASA Astrophysics Data System (ADS)

    Srama, R.

    2015-10-01

    Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 11 years in orbit around Saturn. Many discoveries like the Saturn nanodust streams or the large extended Ering were achieved. CDA provided unique results regarding Enceladus, his plume and the liquid water below the icy crust. In 2014 and 2015 CDA focuses on extended inclination and equatorial scans of the ring particle densities. Furthermore, scans are performed of the Pallene and Helene regions. Special attention is also given to the search of the dust cloud around Dione and to the Titan region. Long integration times are needed in order to characterize the flux and composition of exogenous dust (including interstellar dust) or possible retrograde dust particles. Finally, dedicated observation campaigns focus on the coupling of nanodust streams to Saturn's magnetosphere and the search of possible periodicities in the stream data. Saturn's rotation frequency was identified in the impact rate of nanodust particles at a Saturn distance of 40 Saturn radii. A special geometry in 2014-065 lead to an occultation of the dust stream by the moon Titan and its atmosphere when Titan crossed the line-of-sight between Saturn and Cassini. Here, CDA pointed towards Saturn for the measurement of stream particles. Around closest approach when Cassini was behind Titan, the flux of stream particles went down to zero (Fig. 1). This "dust occultation" is a new method to analyse the properties of the stream particles (speed, composition, mass) or the properties of Titans atmosphere (density). Furthermore, the particle trajectories can be constrained for a better analysis of their origin. In the final three years CDA performs exogenous and interstellar dust campaigns, studies of the composition and origin of Saturn's main rings by unique ring ejecta measurements, long-duration nano-dust stream observations, high-resolution maps of small moon orbit crossings, studies of the dust cloud around Dione and studies

  5. Distribution of dust during two dust storms in Iceland

    NASA Astrophysics Data System (ADS)

    Ösp Magnúsdóttir, Agnes; Dagsson-Waldhauserova, Pavla; Arnalds, Ólafur; Ólafsson, Haraldur

    2017-04-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 ?g?m?3 (PM10 = 7 to 583 ?g?m?3). The mean PM1 concentrations were 97-241 ?g?m?3 with a maximum of 261 ?g?m?3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34-0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  6. Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM

    NASA Astrophysics Data System (ADS)

    Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng; Xie, Xiaoxun; Wang, Hongli; Li, Jiandong; Shi, Zhengguo; Liu, Yangang

    2018-01-01

    East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments reveals that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10 m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution, and size distribution.

  7. Dust observations by PFS on Mars Express

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Grassi, D.; Ignatiev, N. I.; Blecka, M. I.; Maturilli, A.; Palomba, E.; Piccioni, G.; Pfs Team

    Dust is always present in the Martian atmosphere with opacity, which changes from values below 0.1 (at 9 μ m) up to several units during the dust storms. From the thermal IR (LW channel of PFS) the dust opacity is retrieved in a self consistent way together with the temperature profile from the same spectrum A preliminary investigation along the orbit, which comes through Hellas, shows that the value of dust opacity anticorrelates with surface altitude. From -70 to +25 of latitude the vertical dust distribution follows the exponential low with the scale of 12 km, which corresponds to the gaseous scale height near noon and indicates for well mixed condition. The dust opacity, corresponding to the zero surface altitude, is found of 0.25+-0.05. More detailed investigations of all available data will be presented, including analysis of both short- and long- wavelength spectra of PFS.

  8. Fractal cometary dust - a window into the early Solar system

    NASA Astrophysics Data System (ADS)

    Mannel, T.; Bentley, M. S.; Schmied, R.; Jeszenszky, H.; Levasseur-Regourd, A. C.; Romstedt, J.; Torkar, K.

    2016-11-01

    The properties of dust in the protoplanetary disc are key to understanding the formation of planets in our Solar system. Many models of dust growth predict the development of fractal structures which evolve into non-fractal, porous dust pebbles representing the main component for planetesimal accretion. In order to understand comets and their origins, the Rosetta orbiter followed comet 67P/Churyumov-Gerasimenko for over two years and carried a dedicated instrument suite for dust analysis. One of these instruments, the MIDAS (Micro-Imaging Dust Analysis System) atomic force microscope, recorded the 3D topography of micro- to nanometre-sized dust. All particles analysed to date have been found to be hierarchical agglomerates. Most show compact packing; however, one is extremely porous. This paper contains a structural description of a compact aggregate and the outstanding porous one. Both particles are tens of micrometres in size and show rather narrow subunit size distributions with noticeably similar mean values of 1.48^{+0.13}_{-0.59} μm for the porous particle and 1.36^{+0.15}_{-0.59} μm for the compact. The porous particle allows a fractal analysis, where a density-density correlation function yields a fractal dimension of Df = 1.70 ± 0.1. GIADA, another dust analysis instrument on board Rosetta, confirms the existence of a dust population with a similar fractal dimension. The fractal particles are interpreted as pristine agglomerates built in the protoplanetary disc and preserved in the comet. The similar subunits of both fractal and compact dust indicate a common origin which is, given the properties of the fractal, dominated by slow agglomeration of equally sized aggregates known as cluster-cluster agglomeration.

  9. Measurements of cloud condensation nuclei activity and droplet activation kinetics of wet processed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of particle size distributions, cloud condensation nuclei (CCN) activity, and droplet activation kinetics of wet generated aerosols from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. The dependence of critical supersaturation, sc, on particle dry diameter, Ddry, is used to characterize particle-water interactions and assess the ability of Frenkel-Halsey-Hill adsorption activation theory (FHH-AT) and Köhler theory (KT) to describe the CCN activity of the considered samples. Regional dust samples produce unimodal size distributions with particle sizes as small as 40 nm, CCN activation consistent with KT, and exhibit hygroscopicity similar to inorganic salts. Clays and minerals produce a bimodal size distribution; the CCN activity of the smaller mode is consistent with KT, while the larger mode is less hydrophilic, follows activation by FHH-AT, and displays almost identical CCN activity to dry generated dust. Ion Chromatography (IC) analysis performed on regional dust samples indicates a soluble fraction that cannot explain the CCN activity of dry or wet generated dust. A mass balance and hygroscopicity closure suggests that the small amount of ions (of low solubility compounds like calcite) present in the dry dust dissolve in the aqueous suspension during the wet generation process and give rise to the observed small hygroscopic mode. Overall these results identify an artifact that may question the atmospheric relevance of dust CCN activity studies using the wet generation method. Based on a threshold droplet growth analysis, wet generated mineral aerosols display similar activation kinetics compared to ammonium sulfate calibration aerosol. Finally, a unified CCN activity framework that accounts for concurrent effects of solute and adsorption is developed to describe the CCN activity of aged or hygroscopic dusts.

  10. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  11. Preliminary Results from Ultrahigh Vacuum and Cryogenic Dust Adhesion Experiments

    NASA Astrophysics Data System (ADS)

    Perko, H. A.; Green, J. R.; Nelson, J. D.

    2000-10-01

    Dust adhesion is a major factor affecting the design and performance of spacecraft for planetary surface and comet exploration. Dust adhesion is caused by a combination of electrostatic and van der Waals forces. A theoretical model has been constructed that indicates the magnitude of these forces is a function of pressure, temperature, and ambient gas composition1. A laboratory investigation is in progress to verify the theoretical model over a broad range of planetary environments from Earth-like to comet-like conditions. The experiments being conducted consist of depositing dust onto various spacecraft materials under different environmental conditions and attempting to mechanically shake the dust off to obtain a measure of adhesion. More specifically, the materials being used include pairs of aluminum, glass, stainless steel, and black painted specimens. One of the specimens from each pair is mounted to an electrometer and is used to witness accumulated dust mass and charge. The other specimen from each pair is affixed to a vibrating cantilever beam used to induce dust separation. Dust is sifted onto the specimens in the vacuum and cryogenic chamber. Dust adhesion force is determined from the amplitude and frequency of beam vibrations and the mass and size of dust particles. In order to enable comparison with the theoretical model, which assumes ideal spheres resting on a surface, the predominant dust material being used consists of 50 to 70 μ m glass spheres. This size glass sphere exerts an adhesive force that is capable of being measured by the experimental apparatus. The intent of this research is to increase our fundamental understanding of the effects of environmental conditions on dust adhesion and improve our ability to develop suitable dust mitigation techniques for the exploration of comet, asteroid and planetary surfaces. 1 Perko, H.A. (1998) ``Surface Cleanliness Based Dust Adhesion Model" Proceedings of the International Conference on Construction

  12. Bio-Oil Analysis Laboratory Procedures | Bioenergy | NREL

    Science.gov Websites

    Bio-Oil Analysis Laboratory Procedures Bio-Oil Analysis Laboratory Procedures NREL develops standard procedures have been validated and allow for reliable bio-oil analysis. Procedures Determination different hydroxyl groups (-OH) in pyrolysis bio-oil: aliphatic-OH, phenolic-OH, and carboxylic-OH. Download

  13. Source analysis of radiocesium in river waters using road dust tracers.

    PubMed

    Murakami, Michio; Saha, Mahua; Iwasaki, Yuichi; Yamashita, Rei; Koibuchi, Yukio; Tsukada, Hirofumi; Takada, Hideshige; Sueki, Keisuke; Yasutaka, Tetsuo

    2017-11-01

    Following the Fukushima Dai-ichi Nuclear Power Station accident, regional road dust, heavily contaminated with radiocesium, now represents a potential source of radiocesium pollution in river water. To promote effective countermeasures for reducing the risk from radiocesium pollution, it is important to understand its sources. This study evaluated the utility of metals, including Al, Fe, and Zn as road dust tracers, and applied them to analyze sources of 137 Cs in rivers around Fukushima during wet weather. Concentrations of Zn in road dust were higher than agricultural and forest soils, whereas concentrations of Fe and Al were the opposite. Concentrations of Zn were weakly but significantly correlated with benzothiazole, a molecular marker of tires, indicating Zn represents an effective tracer of road dust. Al, Fe, and Zn were frequently detected in suspended solids in river water during wet weather. Distribution coefficients of these metals and 137 Cs exceeded 10 4 , suggesting sorptive behavior in water. Although concentrations of Al, Fe, Zn, and 137 Cs were higher in fine fractions of road dust and soils than in coarse fractions, use of ratios of 137 Cs to Al, Fe, or Zn showed smaller differences among size fractions. The results demonstrate that combinations of these metals and 137 Cs are useful for analyzing sources of radiocesium in water. These ratios in river water during wet weather were found to be comparable with or lower than during dry weather and were closer to soils than road dust, suggesting a limited contribution from road dust to radiocesium pollution in river water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Fingerprints in the Dust

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These MISR nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a spectacularly dusty spring view from April 7, 2001 (middle). The left-hand and middle images are from Terra orbits 2967 and 6928, respectively, and extend from central Manchuria near the top to portions of North and South Korea at the bottom. They are approximately 380 kilometers in width.

    Asia's desert areas are prone to soil erosion, as underground water tables are lowered by prolonged drought and by industrial and agricultural water use. Heavy winds blowing eastward across the arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the April 2001 storm blew across the Pacific Ocean and were carried as far as North America. The minerals transported in this manner are believed to provide nutrients for both oceanic and land ecosystems.

    According to the Xinhua News Agency in China, nearly one million tons of Gobi Desert dust blow into Beijing each year. During a similar dust outbreak last year, the Associated Press reported that the visibility in Beijing had been reduced the point where buildings were barely visible across city streets, and airline schedules were significantly disrupted. The dust has also been implicated in adverse health effects such as respiratory discomfort and eye irritation.

    The image on the right is a higher resolution MISR nadir-camera view of a portion of the April 7, 2001 dust cloud. It covers an area roughly 250 kilometers wide by 470 kilometers high. When viewed at full magnification, a number of atmospheric wave features, like the ridges and valleys of a fingerprint, are apparent. These are probably induced by surface topography, which can disturb the wind flow. A few small cumulus clouds are also visible, and are casting shadows on the thick lower dust layer.

    Analyses of images such as these constitute one phase of MISR

  15. The influence of organic-containing soil dust on ice nucleation and cloud properties

    NASA Astrophysics Data System (ADS)

    Hummel, Matthias; Grini, Alf; Berntsen, Terje K.; Ekman, Annica

    2017-04-01

    Natural mineral dust from desert regions is known to be the most important contributor to atmospheric ice-nucleating particles (INP) which induce heterogeneous ice nucleation in mixed-phase clouds. Its ability to nucleate ice effectively is shown by various laboratory (Hoose and Möhler 2012) and field results (DeMott et al. 2015) and its abundance in ice crystal residuals has also been shown (Cziczo et al. 2013). Thus it is an important player when representing mixed-phase clouds in climate models. MODIS satellite data indicate that 1 /4 of the global dust emission originates from semi-arid areas rather than from arid deserts (Ginoux et al. 2012). Here, organic components can mix with minerals within the soil and get into the atmosphere. These so-called 'soil dust' particles are ice-nucleating active at high sub-zero temperatures, i.e. at higher temperatures than pure desert dust (Steinke et al. 2016). In this study, soil dust is incorporated into the Norwegian Earth System Model (NorESM, Bentsen et al. 2013) and applied to a modified ice nucleation parameterization (Steinke et al. 2016). Its influence on the cloud ice phase is evaluated by comparing a control run, where only pure desert dust is considered, and a sensitivity experiment, where a fraction of the dust emissions are classified as soil dust. Both simulations are nudged to ERA-interim meteorology and they have the same loading of dust emissions. NorESM gives a lower annual soil dust emission flux compared to Ginoux et al. (2012), but the desert dust flux is similar to the MODIS-retrieved data. Although soil dust concentrations are much lower than desert dust, the NorESM simulations indicate that the annual INP concentrations from soil dust are on average lower by a just a factor of 4 than INP concentrations from pure desert dust. The highest soil dust INP concentrations occur at a lower height than for desert dust, i.e at warmer temperatures inside mixed-phase clouds. Furthermore, soil dust INP

  16. Use of Laboratory Data to Model Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Vidali, Gianfranco; Roser, J. E.; Manico, G.; Pirronello, V.

    2006-01-01

    Our laboratory research program is about the formation of molecules on dust grains analogues in conditions mimicking interstellar medium environments. Using surface science techniques, in the last ten years we have investigated the formation of molecular hydrogen and other molecules on different types of dust grain analogues. We analyzed the results to extract quantitative information on the processes of molecule formation on and ejection from dust grain analogues. The usefulness of these data lies in the fact that these results have been employed by theoreticians in models of the chemical evolution of ISM environments.

  17. Sr-Nd-Hf Isotopic Analysis of <10 mg Dust Samples: Implications for Ice Core Dust Source Fingerprinting

    NASA Astrophysics Data System (ADS)

    Újvári, Gábor; Wegner, Wencke; Klötzli, Urs; Horschinegg, Monika; Hippler, Dorothee

    2018-01-01

    Combined Sr-Nd-Hf isotopic data of two reference materials (AGV-1/BCR2) and 50, 10, and 5 mg aliquots of carbonate-free fine grain (<10 μm) separates of three loess samples (Central Europe/NUS, China/BEI, USA/JUD) are presented. Good agreement between measured and reference Sr-Nd-Hf isotopic compositions (ICs) demonstrate that robust isotopic ratios can be obtained from 5 to 10 mg size rock samples using the ion exchange/mass spectrometry techniques applied. While 87Sr/86Sr ratios of dust aluminosilicate fractions are affected by even small changes in pretreatments, Nd isotopic ratios are found to be insensitive to acid leaching, grain-size or weathering effects. However, the Nd isotopic tracer is sometimes inconclusive in dust source fingerprinting (BEI and NUS both close to ɛNd(0) -10). Hafnium isotopic values (<10 μm fractions) are homogenous for NUS, while highly variable for BEI. This heterogeneity and vertical arrays of Hf isotopic data suggest zircon depletion effects toward the clay fractions (<2 μm). Monte Carlo simulations demonstrate that the Hf IC of the dust <10 μm fraction is influenced by both the abundance of zircons present and maturity of crustal rocks supplying this heavy mineral, while the <2 μm fraction is almost unaffected. Thus, ɛHf(0) variations in the clay fraction are largely controlled by the Hf IC of clays/heavy minerals having high Lu/Hf and radiogenic 176Hf/177Hf IC. Future work should be focused on Hf IC of both the <10 and <2 μm fractions of dust from potential source areas to gain more insight into the origin of last glacial dust in Greenland ice cores.

  18. Drift dust acoustic soliton in the presence of field-aligned sheared flow and nonextensivity effects

    NASA Astrophysics Data System (ADS)

    Shah, AttaUllah; Mushtaq, A.; Farooq, M.; Khan, Aurangzeb; Aman-ur-Rehman

    2018-05-01

    Low frequency electrostatic dust drift acoustic (DDA) waves are studied in an inhomogeneous dust magnetoplasma comprised of dust components of opposite polarity, Boltzmannian ions, and nonextensive distributed electrons. The magnetic-field-aligned dust sheared flow drives the electrostatic drift waves in the presence of ions and electrons. The sheared flow decreases or increases the frequency of the DDA wave, mostly depending on its polarity. The conditions of instability for this mode, with nonextensivity and dust streaming effects, are discussed. The nonlinear dynamics is then investigated for the DDA wave by deriving the Koeteweg-deVries (KdV) nonlinear equation. The KdV equation yields an electrostatic structure in the form of a DDA soliton. The relevancy of the work to laboratory four component dusty plasmas is illustrated.

  19. Parameters of Concrete Modified with Glass Meal and Chalcedonite Dust

    NASA Astrophysics Data System (ADS)

    Kotwa, Anna

    2017-10-01

    Additives used for production of concrete mixtures affect the rheological properties and parameters of hardened concrete, including compressive strength, water resistance, durability and shrinkage of hardened concrete. By their application, the use of cement and production costs may be reduced. The scheduled program of laboratory tests included preparation of six batches of concrete mixtures with addition of glass meal and / or chalcedonite dust. Mineral dust is a waste product obtained from crushed aggregate mining, with grain size below 0,063μm. The main ingredient of chalcedonite dust is silica. Glass meal used in the study is a material with very fine grain size, less than 65μm. This particle size is present in 60% - 90% of the sample. Additives were used to replace cement in concrete mixes in an amount of 15% and 25%. The amount of aggregate was left unchanged. The study used Portland cement CEM I 42.5R. Concrete mixes were prepared with a constant rate w / s = 0.4. The aim of the study was to identify the effect of the addition of chalcedonite dust and / or glass meal on the parameters of hardened concrete, i.e. compressive strength, water absorption and capillarity. Additives used in the laboratory tests significantly affect the compressive strength. The largest decrease in compressive strength of concrete samples was recorded for samples with 50% substitutes of cement additives. This decrease is 34.35%. The smallest decrease in compressive strength was noted in concrete with the addition of 15% of chalcedonite dust or 15% glass meal, it amounts to an average of 15%. The study of absorption shows that all concrete with the addition of chalcedonite dust and glass meal gained a percentage weight increase between 2.7 ÷ 3.1% for the test batches. This is a very good result, which is probably due to grout sealing. In capillary action for the test batches, the percentage weight gains of samples ranges from 4.6% to 5.1%. However, the reference concrete obtained

  20. Pharmaceutical dust exposure at pharmacies using automatic dispensing machines: a preliminary study.

    PubMed

    Fent, Kenneth W; Durgam, Srinivas; Mueller, Charles

    2014-01-01

    Automatic dispensing machines (ADMs) used in pharmacies concentrate and dispense large volumes of pharmaceuticals, including uncoated tablets that can shed dust. We evaluated 43 employees' exposures to pharmaceutical dust at three pharmacies where ADMs were used. We used an optical particle counter to identify tasks that generated pharmaceutical dust. We collected 72 inhalable dust air samples in or near the employees' breathing zones. In addition to gravimetric analysis, our contract laboratory used internal methods involving liquid chromatography to analyze these samples for active pharmaceutical ingredients (APIs) and/or lactose, an inactive filler in tablets. We had to choose samples for these additional analyses because many methods used different extraction solvents. We selected 57 samples for analysis of lactose. We used real-time particle monitoring results, observations, and information from employees on the dustiness of pharmaceuticals to select 28 samples (including 13 samples that were analyzed for lactose) for analysis of specific APIs. Pharmaceutical dust was generated during a variety of tasks like emptying and refilling of ADM canisters. Using compressed air to clean canisters and manual count machines produced the overall highest peak number concentrations (19,000-580,000 particles/L) of smallest particles (count median aerodynamic diameter ≤ 2 μm). Employees who refilled, cleaned, or repaired ADM canisters, or hand filled prescriptions were exposed to higher median air concentrations of lactose (5.0-12 μg/m(3)) than employees who did other jobs (0.04-1.3 μg/m(3)), such as administrative/office work, labeling/packaging, and verifying prescriptions. We detected 10 APIs in air, including lisinopril, a drug prescribed for high blood pressure, levothyroxine, a drug prescribed for hypothyroidism, and methotrexate, a hazardous drug prescribed for cancer and other disorders. Three air concentrations of lisinopril (1.8-2.7 μg/m(3)) exceeded the lower

  1. A method for combined Sr-Nd-Hf isotopic analysis of <10 mg dust samples: implication for ice core science

    NASA Astrophysics Data System (ADS)

    Ujvari, Gabor; Wegner, Wencke; Klötzli, Urs

    2017-04-01

    Aeolian mineral dust particles below the size of 10-20 μm often experience longer distance transport in the atmosphere, and thus Aeolian dust is considered an important tracer of large-scale atmospheric circulation. Since ice core dust is purely Aeolian in origin, discrimination of its potential source region(s) can contribute to a better understanding of past dust activity and climatic/environmental causes. Furthermore, ice core dust source information provides critical experimental constraints for model simulations of past atmospheric circulation patterns [1,2]. However, to identify dust sources in past dust archives such as ice cores, the mineralogy and geochemistry of the wind-blown dust material must be characterized. While the amount of dust in marine cores or common terrestrial archives is sufficient for different types of analyses and even for multiple repeat measurements, dust content in ice cores is usually extremely low even for the peak dusty periods such as the Last Glacial Maximum (LGM) (5-8 mg dust/kg ice; [3]). Since the most powerful dust fingerprinting methods, such as REE composition and Sr-Nd-Pb isotopic analyses are destructive there is a clear need to establish sequential separation techniques of Sr, Nd, Pb and other REEs to get the most information out of small (5-10 mg) dust samples recovered from ice cores. Although Hf isotopes have recently been added as a robust tool of aerosol/dust source discrimination (e.g. [4,5,6,7]), precise Hf isotopic measurements of small (<10 mg) dust samples are still challenging due to the small Hf amounts (on the order of 1-10 ng) and often compromised by potential problems arising during ion exchange chemistry. In this pilot study an improved method for chemical separation of Sr, Nd and Hf by Bast et al. [8] was applied, which allows the precise isotope analysis of sub-ng amounts of Hf by MC-ICPMS. This ion exchange chromatography procedure has been combined with established methods of separating and

  2. Electrostatic Levitation of Lunar Dust: Preliminary Experimental Observations

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Davis, S.; Laub, J.

    2007-12-01

    A lunar dust laboratory has been established in the Space Science Division at NASA Ames to evaluate fundamental electrostatic processes at the Moon's surface. Photoelectric charging, triboelectric charging, and interactions of these processes are investigated for dust-size materials. An electric field simulating the solar- plasma induced E-field of the lunar surface has been created with parallel charged capacitance plates. The field is linear, but field-shaping to create lunar-like exponentially decaying E-fields will be conducted in the near future. Preliminary tests of dust tribocharging have been conducted using a vibrating base plate within the electric field and have produced electrostatic levitation of 1.6 micron diameter silicate particles. We were able to achieve levitation in a modest vacuum environment (1.7 Torr) with the particles charged to approximately 15 percent of the Gaussian limit (defined as 2.64 E-5 C/m-2 for atmospheric air) at a threshold field strength of 2250 V/m. This charging corresponds to only a few hundred (negative) charges per particle; the field strength drops to 375 V/m when gravitationally scaled for the Moon, while dust tribocharging to greater than 100 percent of the Gaussian limit would be possible in the ultra high vacuum environment on the Moon and result in even lower threshold field strengths. We conclude therefore, that anthropogenic disturbance of lunar dust (as a result of NASA's proposed base construction, mining, vehicle motion, etc) could potentially pollute the lunar environment with levitated dust and severely impair scientific experiments requiring a pristine lunar exosphere.

  3. Decoding IR Spectra of Cosmic Ices and Organics in the Laboratory

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2006-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty-five years thanks to significant developments in observational IR astronomy and dedicated laboratory experiments. Twenty-five years ago the composition of interstellar dust was largely guessed at. Today the composition of interstellar dust is reasonably well understood. In the diffuse interstellar medium (ISM) the dust population is mainly comprised of small grains of silicates and amorphous carbon. In dark molecular clouds, the birthplace of stars and planets, these cold refractory dust particles are coated with mixed molecular ices whose composition is reasonably well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. This extraordinary progress has been made possible by the close collaboration of laboratory experimentalists and theoreticians with IR astronomers using groundbased, air-borne, and orbiting telescopes.

  4. Transfer of termiticidal dust compounds and their effects on symbiotic protozoa of Reticulitermes flavipes (Kollar)

    Treesearch

    Frederick Green; Rachel A. Arango; Glenn R. Esenther

    2008-01-01

    Dusting of termites in situ has been used as a control measure for decades; however environmental awareness of the toxicity of certain compounds now limits their use (eg arsenical dusts). Our laboratory is in the process of suppressing an isolated colony of Reticulitermes flavipes (Kollar) from a small village of 250 homes in mid-central Wisconsin (Endeavor, WI)....

  5. Quantification of Asian Dust Plume Seasonal Dynamics and Regional Features

    NASA Technical Reports Server (NTRS)

    Goetz, Michael

    2011-01-01

    Dust is but one of many aerosols that are analyzed at the Jet Propulsion Laboratory in Pasadena. The purpose of this paper is to describe the process in analyzing and digitizing dust within a source region to better explain the work achieved by my internship. This paper will go over how to view collected data by Multi-angle Imaging SpectroRadiometer (MISR) [1] and the procedure of downloading data to be analyzed. With this data, one can digitize dust plumes using two methods called plume lines and plume polygons with the help of the software MISR INteractive eXplorer (MINX)[3]; thus, the theory of MINX's[3] algorithm and these methods are discussed in detail. Research was gathered from these techniques and emphasis is also focused on the obtained data and results.

  6. Early-Holocene greening of the Afro-Asian dust belt changed sources of mineral dust in West Asia

    NASA Astrophysics Data System (ADS)

    Sharifi, Arash; Murphy, Lisa N.; Pourmand, Ali; Clement, Amy C.; Canuel, Elizabeth A.; Naderi Beni, Abdolmajid; Lahijani, Hamid A. K.; Delanghe, Doriane; Ahmady-Birgani, Hesam

    2018-01-01

    Production, transport and deposition of mineral dust have significant impacts on different components of the Earth systems through time and space. In modern times, dust plumes are associated with their source region(s) using satellite and land-based measurements and trajectory analysis of air masses through time. Reconstruction of past changes in the sources of mineral dust as related to changes in climate, however, must rely on the knowledge of the geochemical and mineralogical composition of modern and paleo-dust, and that of their potential source origins. In this contribution, we present a 13,000-yr record of variations in radiogenic Sr-Nd-Hf isotopes and Rare Earth Element (REE) anomalies as well as dust grain size from an ombrotrophic (rain fed) peat core in NW Iran as proxies of past changes in the sources of dust over the interior of West Asia. Our data shows that although the grain size of dust varies in a narrow range through the entire record, the geochemical fingerprint of dust particles deposited during the low-flux, early Holocene period (11,700-6,000 yr BP) is distinctly different from aerosols deposited during high dust flux periods of the Younger Dryas and the mid-late Holocene (6,000-present). Our findings indicate that the composition of mineral dust deposited at the study site changed as a function of prevailing atmospheric circulation regimes and land exposure throughout the last deglacial period and the Holocene. Simulations of atmospheric circulation over the region show the Northern Hemisphere Summer Westerly Jet was displaced poleward across the study area during the early Holocene when Northern Hemisphere insolation was higher due to the Earth's orbital configuration. This shift, coupled with lower dust emissions simulated based on greening of the Afro-Asian Dust Belt during the early Holocene likely led to potential sources in Central Asia dominating dust export to West Asia during this period. In contrast, the dominant western and

  7. EMC Test Report Electrodynamic Dust Shield

    NASA Technical Reports Server (NTRS)

    Carmody, Lynne M.; Boyette, Carl B.

    2014-01-01

    This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.

  8. Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM

    DOE PAGES

    Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng; ...

    2018-01-18

    East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments revealsmore » that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10-m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Thus, mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution and size distribution.« less

  9. Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoning; Liu, Xiaodong; Che, Huizheng

    East Asian dust and its radiative feedbacks are analyzed by the use of the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for the dust size distribution (CAM4-BAM). Two numerical experiments are conducted and intercompared: one with (Active) and one without (Passive) the radiative effects of dust aerosols. This CAM4-BAM captures the main spatial distribution of the dust aerosol optical depth (AOD) and the dust surface concentrations over East Asia, with positive correlations with the local observational data on annual and seasonal means. A comparative analysis of the Active and Passive experiments revealsmore » that consideration of the dust-radiation interaction can significantly reduce dust emissions, loading, transport, and dry and wet depositions over East Asia, which is opposite to the enhanced dust cycle over North Africa. Further analysis of the contrasting dust-radiation feedbacks between North Africa and East Asia shows that over North Africa, the dust radiative forcing significantly increases the surface temperature and 10-m wind speed, whereas it decreases the surface temperature and the surface wind speeds over East Asia. These contrasting radiative effects, in turn, result in distinct dust cycle changes over these two regions. Thus, mechanistic analysis reveals that the radiative contrasts between East Asia and North Africa are mainly due to the differences in their regional surface albedo, dust vertical distribution and size distribution.« less

  10. High Precision Oxygen Three Isotope Analysis of Wild-2 Particles and Anhydrous Chondritic Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Nakashima, D.; Ushikubo, T.; Zolensky, Michael E.; Weisberg, M. K.; Joswiak, D. J.; Brownlee, D. E.; Matrajt, G.; Kita, N. T.

    2011-01-01

    One of the most important discoveries from comet Wild-2 samples was observation of crystalline silicate particles that resemble chondrules and CAIs in carbonaceous chondrites. Previous oxygen isotope analyses of crystalline silicate terminal particles showed heterogeneous oxygen isotope ratios with delta(sup 18)O to approx. delta(sup 17)O down to -50% in the CAI-like particle Inti, a relict olivine grain in Gozen-sama, and an olivine particle. However, many Wild-2 particles as well as ferromagnesian silicates in anhydrous interplanetary dust particles (IDPs) showed Delta(sup 17)O values that cluster around -2%. In carbonaceous chondrites, chondrules seem to show two major isotope reservoirs with Delta(sup 17)O values at -5% and -2%. It was suggested that the Delta(sup 17)O = -2% is the common oxygen isotope reservoir for carbonaceous chondrite chondrules and cometary dust, from the outer asteroid belt to the Kuiper belt region. However, a larger dataset with high precision isotope analyses (+/-1-2%) is still needed to resolve the similarities or distinctions among Wild-2 particles, IDPs and chondrules in meteorites. We have made signifi-cant efforts to establish routine analyses of small particles (< or =10micronsm) at 1-2% precision using IMS-1280 at WiscSIMS laboratory. Here we report new results of high precision oxygen isotope analyses of Wild-2 particles and anhydrous chondritic IDPs, and discuss the relationship between the cometary dust and carbonaceous chondrite chondrules.

  11. Electrostatic Charging of Lunar Dust by UV Photoelectric Emissions and Solar Wind Electrons

    NASA Technical Reports Server (NTRS)

    Abbas, Mian M.; Tankosic, Dragana; Spann, James f.; LeClair, Andre C.; Dube, Michael J.

    2008-01-01

    The ubiquitous presence of dust in the lunar environment with its high adhesive characteristics has been recognized to be a major safety issue that must be addressed in view of its hazardous effects on robotic and human exploration of the Moon. The reported observations of a horizon glow and streamers at the lunar terminator during the Apollo missions are attributed to the sunlight scattered by the levitated lunar dust. The lunar surface and the dust grains are predominantly charged positively by the incident UV solar radiation on the dayside and negatively by the solar wind electrons on the night-side. The charged dust grains are levitated and transported over long distances by the established electric fields. A quantitative understanding of the lunar dust phenomena requires development of global dust distribution models, based on an accurate knowledge of lunar dust charging properties. Currently available data of lunar dust charging is based on bulk materials, although it is well recognized that measurements on individual dust grains are expected to be substantially different from the bulk measurements. In this paper we present laboratory measurements of charging properties of Apollo 11 & 17 dust grains by UV photoelectric emissions and by electron impact. These measurements indicate substantial differences of both qualitative and quantitative nature between dust charging properties of individual micron/submicron sized dust grains and of bulk materials. In addition, there are no viable theoretical models available as yet for calculation of dust charging properties of individual dust grains for both photoelectric emissions and electron impact. It is thus of paramount importance to conduct comprehensive measurements for charging properties of individual dust grains in order to develop realistic models of dust processes in the lunar atmosphere, and address the hazardous issues of dust on lunar robotic and human missions.

  12. Quantitative detection of settled coal dust over green canopy

    NASA Astrophysics Data System (ADS)

    Brook, Anna; Sahar, Nir

    2017-04-01

    /sq m. The stage 2 is completed by calculating: 1. Unmixing between the green canopy and the settle dust extraction only coal dust fraction, 2. Converting spectral feature of coal dust to concentration via PLSR spectral model. The spectral model was trained and validated PLSR model developed at laboratory using spectra across MIR (FTIR reflectance spectra) and NIR regions and XRD analysis. The obtained RMSE was satisfying for both spectral regions. Thus, it was concluded that field spectroscopy can be used for this purpose, and it can provide fully quantitative measures of settle coal dust. Nowadays this approach (both spectrometer and algorithm) has been accepted as a practical operational tool for environmental monitoring near power station Orot Rabin in Hadera and will be used by the Sharon-Carmel Districts Municipal Association for Environmental Protection, Israel as a regulatory tool. In summary, this work shows that coal dust can be assessed using in situ spectroscopy, making it a potentially powerful tool for environmental studies. References Chudnovsky, A., & Ben-Dor, E. (2009). Reflectance spectroscopy as a tool for settled dust monitoring in office environment. International Journal of Environment and Waste Management, 4(1), 32-49. Brook, A. (2014). Quantitative Detection of Settled dust over Green Canopy using Sparse Unmixing of Airborne Hyperspectral Data. IEEE-Whispers 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, 2014, Switzerland, 4-8. Brook, A. and Ben-Dor, E. (2016). Quantitative detection of settled dust over Green Canopy using sparse unmixing of airborne hyperspectral data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2), pp.884-897. Brook, A. (2016). Quantitative Detection and Long-Term Monitoring of Settle Dust Using Semisupervised Learning for Spectral Data. Water, Air, & Soil Pollution, 227(3), pp.1-9. Bioucas-Dias, J.M., Plaza, A., Dobigeon, N., Parente, M., Du, Q

  13. NETL - Thermogravimetric Analysis Laboratory

    ScienceCinema

    Richards, George

    2018-06-22

    Researchers in NETL's Thermal Analysis Laboratory are investigating chemical looping combustion. As a clean and efficient fossil fuel technology, chemical looping combustion controls CO2 emissions and offers a promising alternative to traditional combustion.

  14. Aeolian transport of Icelandic dust: a look from Space

    NASA Astrophysics Data System (ADS)

    Smejda, Ladislav; Dagsson Waldhauserova, Pavla; Hejcman, Michal

    2017-04-01

    Iceland represents a unique type of Arctic environment where glaciers capture the precipitation, consequently forming large deserts on the leeward side. Deserts are subject to strong winds and dust is reported to be suspended at least 135 days a year. Icelandic dust has seven major dust sources in extensive deserts, consisting mainly of volcanic glass. In this paper, we address a new approach to the question of the island's contribution to atmospheric dust transport in the North Atlantic and Arctic Oceans. We explore the strengths and limitations of satellite imagery for the study of high altitude dust storm phenomenon, and more specifically the potential of freely available set of tools for remote sensing and spatial data analysis, the Earth Engine provided by Google. This cloud-based geospatial processing platform requires only a web browser on the side of a user, and it allows writing powerful and versatile algorithms for scientific analysis of spatial data. We demonstrate how this approach can be applied to mapping of Icelandic dust sources and studying the wind erosion and transport of particles in the atmosphere in high latitudes.

  15. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  16. Global potential of dust devil occurrence

    NASA Astrophysics Data System (ADS)

    Jemmett-Smith, Bradley; Marsham, John; Knippertz, Peter; Gilkeson, Carl

    2014-05-01

    Mineral dust is a key constituent in the climate system. Airborne mineral dust forms the largest component of the global aerosol budget by mass and subsequently affects climate, weather and biogeochemical processes. There remains large uncertainty in the quantitative estimates of the dust cycle. Dry boundary-layer convection serves as an effective mechanism for dust uplift, typically through a combination of rotating dust devils and non-rotating larger and longer-lived convective plumes. These microscale dry-convective processes occur over length scales of several hundred metres or less. They are difficult to observe and model, and therefore their contribution to the global dust budget is highly uncertain. Using an analytical approach to extrapolate limited observations, Koch and Renno (2006) suggest that dust devils and plumes could contribute as much as 35%. Here, we use a new method for quantifying the potential of dust devil occurrence to provide an alternative perspective on this estimate. Observations have shown that dust devil and convective plume occurrence is favoured in hot arid regions under relatively weak background winds, large ground-to-air temperature gradients and deep dry convection. By applying such known constraints to operational analyses from the European Centre for Medium Range Weather Forecasts (ECMWF), we provide, to the best of the authors' knowledge, the first hourly estimates of dust devil occurrence including an analysis of sensitivity to chosen threshold uplift. The results show the expected diurnal variation and allow an examination of the seasonal cycle and day-to-day variations in the conditions required for dust devil formation. They confirm that desert regions are expected to have by far the highest frequency of dry convective vortices, with winds capable of dust uplift. This approach is used to test the findings of Koch and Renno (2006). Koch J., Renno N. (2006). The role of convective plumes and vortices on the global aerosol

  17. Migration of tungsten dust in tokamaks: role of dust-wall collisions

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.

    2013-12-01

    The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.

  18. Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR

    EPA Science Inventory

    Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mol...

  19. Cosmic Dust Collection Facility: Scientific objectives and programmatic relations

    NASA Technical Reports Server (NTRS)

    Hoerz, Fred (Editor); Brownlee, D. E.; Bunch, T. E.; Grounds, D.; Grun, E.; Rummel, Y.; Quaide, W. L.; Walker, R. M.

    1990-01-01

    The science objectives are summarized for the Cosmic Dust Collection Facility (CDCF) on Space Station Freedom and these objectives are related to ongoing science programs and mission planning within NASA. The purpose is to illustrate the potential of the CDCF project within the broad context of early solar system sciences that emphasize the study of primitive objects in state-of-the-art analytical and experimental laboratories on Earth. Current knowledge about the sources of cosmic dust and their associated orbital dynamics is examined, and the results are reviewed of modern microanalytical investigations of extraterrestrial dust particles collected on Earth. Major areas of scientific inquiry and uncertainty are identified and it is shown how CDCF will contribute to their solution. General facility and instrument concepts that need to be pursued are introduced, and the major development tasks that are needed to attain the scientific objectives of the CDCF project are identified.

  20. Development and Tests of Elements of a Dust Telescope

    NASA Astrophysics Data System (ADS)

    Gruen, E.; Srama, R.; Rachev, M.; Srowig, A.; Sternovsky, Z.; Horanyi, M.; Amyx, K.; Auer, S.

    2005-08-01

    A dust telescope is a combination of a dust trajectory sensor together with an analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of the electric signals that are induced when a charged grain flies through a position sensitive electrode system. The objective of the trajectory sensor is to measure dust charges in the range 10-16 to 10-13 C and dust speeds in the range 6 to 100 km/s. The trajectory sensor has four sensor planes consisting of about 16 wire electrodes each. Two adjacent planes have orthogonal wire direction. An ASIC charge sensitive amplifier has been developed with a RMS noise of about 1.5 10-17 C. The signals from 32 electrodes are digitized and sampled at 20 MHz rate by an ASIC transient recorder. First tests with a laboratory set-up have been performed and demonstrate a charge sensitivity corresponding to 100 electrons. The dust chemical analyzers shall have sufficient mass resolution in order to resolve ions with atomic mass number up to 100. The annular impact area of the mass analyzer will be > 0.1 m2. The mass spectrometer consists of the target area with an acceleration grid and the single-stage reflectron consisting of two grids and the central ion detector. Different field configurations have been found that have a mass resolution of M/Δ M > 150 for impacts onto the annular target between 100 and 240 mm from the center. An Ion Detector of 50 to 110 mm radius is necessary to collect all generated ions. A lab model has been constructed and first dust accelerator tests demonstrate a mass resolution (FWHM) of M/Δ M 250. Acknowledgements: This research is supported by NASA grant NAG5-11782 and by DLR grant 50OO0201.

  1. Saharan dust intrusions in Spain: Health impacts and associated synoptic conditions.

    PubMed

    Díaz, Julio; Linares, Cristina; Carmona, Rocío; Russo, Ana; Ortiz, Cristina; Salvador, Pedro; Trigo, Ricardo Machado

    2017-07-01

    A lot of papers have been published about the impact on mortality of Sahara dust intrusions in individual cities. However, there is a lack of studies that analyse the impact on a country and scarcer if in addition the analysis takes into account the meteorological conditions that favour these intrusions. The main aim is to examine the effect of Saharan dust intrusions on daily mortality in different Spanish regions and to characterize the large-scale atmospheric circulation anomalies associated with such dust intrusions. For determination of days with Saharan dust intrusions, we used information supplied by the Ministry of Agriculture, Food & Environment, it divides Spain into 9 main areas. In each of these regions, a representative province was selected. A time series analysis has been performed to analyse the relationship between daily mortality and PM 10 levels in the period from 01.01.04 to 31.12.09, using Poisson regression and stratifying the analysis by the presence or absence of Saharan dust advections. The proportion of days on which there are Saharan dust intrusions rises to 30% of days. The synoptic pattern is characterised by an anticyclonic ridge extending from northern Africa to the Iberian Peninsula. Particulate matter (PM) on days with intrusions are associated with daily mortality, something that does not occur on days without intrusions, indicating that Saharan dust may be a risk factor for daily mortality. In other cases, what Saharan dust intrusions do is to change the PM-related mortality behaviour pattern, going from PM 2.5 . A study such as the one conducted here, in which meteorological analysis of synoptic situations which favour Saharan dust intrusions, is combined with the effect on health at a city level, would seem to be crucial when it comes to analysing the differentiated mortality pattern in situations of Saharan dust intrusions. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Analysis of land surface and synoptic conditions during dust storm events in the Middle East via a new high resolution inventory of mineral dust derived from SEVIRI.

    NASA Astrophysics Data System (ADS)

    Hennen, Mark

    2017-04-01

    This paper provides the most up-to-date dust climatology for the Middle East, presenting a new high resolution inventory of over 27,000 dust emission events observed over the Middle East in 2006 - 2013. The inventory was derived from the dust RGB product of the Spinning Enhanced Visual and InfraRed Imager (SEVIRI) on-board Meteosat's second generation satellite (MSG). Mineral dust emissions were derived from visual inspection of the SEVIRI scenes which have 4-5 km2 spatial and 15-minute temporal resolution. The location of every emission event was recorded in a database, along with time and trajectory of dust movement. This is an improvement on previous studies, which derive dust source areas from the daily observations of Aerosol Optical Depth whose maxima do not necessarily coincide with sources of emissions and produces more accurate information on the location of the key dust sources in the region. Results showed that dust sources are constrained to relatively small areas, with 21% of dust emission generated from just 0.9% of total surface area of the Middle East, mainly from eight source regions including the Tigris-Euphrates flood plains of Iraq and Syria, Western and Northern Saudi Arabia and the Sistan Basin in Eastern Iran. The Tigris-Euphrates flood plain was the most active dust region, producing 41% of all dust events with a peak activity in 2009. The southern areas of the Arabian Peninsula recorded very few dust emission observations, in contrast to many previous studies which do not use such high temporal resolution data. The activation and frequency of dust emissions are characterised by strong seasonality developing in response to specific synoptic conditions. To characterise synoptic conditions conducive to the development of dust storms, dust days' emission thresholds, based on number of dust emission events per day / per region and specific to each of the eight main dust emitting regions, were determined. ERA Interim reanalysis data were used to

  3. Observation of Dust Particle Gyromotion in a Magnetized Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Compton, C. S.; Amatucci, W. E.; Gatling, G.; Tejero, E.

    2008-11-01

    In dusty plasma research, gyromotion of the dust has been difficult to observe experimentally. Previous experiments by Amatucci et al. have shown gyromotion of a single dust particle [1]. This early work was performed with alumina dust that had a size distribution and non-uniformly shaped particles. In the current experiment, evidence of spherical, monodispersed, dust particles exhibiting gyromotion has been observed. Silica particles 0.97 micrometers in diameter are suspended in a DC glow discharge argon plasma. The experiment is performed in the Naval Research Laboratory's DUsty PLasma EXperiment (DUPLEX Jr.). DUPLEX is a 61-cm tall by 46-cm diameter acrylic chamber allowing full 360 degree optical access for diagnostics. The neutral pressure for the experiment is 230 mTorr with a 275 V bias between the circular electrodes. The electrodes have a separation of 4 cm. A strong magnetic field is created by 2 pairs of neodymium iron boride magnets placed above and below the anode and cathode respectively. The resulting field is 1.4 kG. The dust particles are illuminated with a 25 mW, 672 nm laser. Images are captured using an intensified CCD camera and a consumer digital video cassette recorder. Recent evidence of gyromotion of spherical, monodispersed, dust particles will be presented. [1] Amatucci, W.E., et al., Phys. Plasmas, 11, 2097 (2004)

  4. Generation rate and particle size distribution of wood dust by handheld sanding operation.

    PubMed

    Ojima, Jun

    2016-11-29

    The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m 3 /min ventilation rate.

  5. Generation rate and particle size distribution of wood dust by handheld sanding operation

    PubMed Central

    Ojima, Jun

    2016-01-01

    Objectives: The International Agency for Research on Cancer (IARC) and Japan Society for Occupational Health (JSOH) classified wood dust as a human carcinogen. Former studies have suggested that sanding with a portable sander is one of the processes that are liable to cause highest exposure to wood dust. However, the wood dust by sanding operation has not been investigated sufficiently. In this study, the generation rate and the particle size distribution of the wood dust produced by handheld sanding operation were observed by laboratory experiments. Methods: Beech and cypress were taken as typical hard and soft wood specimen respectively, and sanded with a portable sander. Three grades of sand paper (coarse, medium, fine) were attached to the sander in turn to be tested. The quantity of the wood dust produced by the sander was measured by weighing the specimen before and after the sanding and then the generation rate of the dust was calculated. Results: Soft wood generated more dust than hard wood due to the difference in abrasion durability. A coarse sand paper produced more dust than a fine sand paper. The particles of less than 1 μm diameter were scarcely observed in the wood dust. When the specimens were sanded with a fine sand paper, the mass median aerodynamic diameters of beech dust and cypress dust were 9.0 μm and 9.8 μm, respectively. Conclusions: Respirable wood dust is able to be controlled by general ventilation with more than 0.7-4.2 m3/min ventilation rate. PMID:27725491

  6. The dust mass in Cassiopeia A

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Barlow, Mike; Marcowith, Alexandre; Tatischef, Vincent

    2016-06-01

    Theoretical models predict that core-collapse supernovae (CCSNe) can be efficient dust producers (0.1-1 Msun) and potentially responsible for most of the dust production in the early Universe. Observational evidence for this dust production efficiency has remained limited. Herschel observations from 70-500 microns of the 335-year old Cassiopeia A have indicated the presence of ˜0.1 Msun of cool (T˜35 K) dust interior to the reverse shock (Barlow et al. 2010), while Dunne et al. (2009) have claimed a detection of ˜1 Msun of cold (˜20 K) dust, based on SCUBA 850-micron polarimetric data. At sub-millimeter wavelengths, the supernova dust emission is heavily contaminated by interstellar dust emission and by the synchrotron radiation from the SNR. We present the first spatially resolved analysis of the infrared and submillimeter emission of Cas, A at better than 1 parsec resolution, based on our Herschel PACS and SPIRE 70-500um images. We used our PACS IFU and SPIRE FTS spectra to remove the contaminating emission from bright lines (e.g. [OIII]88, [CII]158). We updated the spectral index of the synchrotron emission based on recent Planck data, and extrapolated this synchrotron spectrum from a 3.7 mm VLA image to infrared/submillimeter wavelengths. We modeled the interstellar dust emission using a Galactic dust emission template from Jones et al. (2013), while the ISM dust mass is scaled to reproduce the continuum emission in the SPIRE FTS spectra at wavelengths > 650 micron (after subtraction of synchrotron emission). The UV radiation field that illuminates the ISM dust was constrained through PDR modelling of the [CI] 1-0, 2-1 and CO 4-3 lines observed in the SPIRE FTS spectra, and was found to range between 0.3 G0 and 1.0 G0 in units of the Draine IS radiation field. Within the uncertainties of the radiation field that illuminates the ISM material and the observational errors, we detect a dust mass of up to 0.8 Msun in Cas, A, with an average temperature of 30 K

  7. Gait Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Complete motion analysis laboratory has evolved out of analyzing walking patterns of crippled children at Stanford Children's Hospital. Data is collected by placing tiny electrical sensors over muscle groups of child's legs and inserting step-sensing switches in soles of shoes. Miniature radio transmitters send signals to receiver for continuous recording of abnormal walking pattern. Engineers are working to apply space electronics miniaturization techniques to reduce size and weight of telemetry system further as well as striving to increase signal bandwidth so analysis can be performed faster and more accurately using a mini-computer.

  8. 30 CFR 90.209 - Respirable dust samples; transmission by operator.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operator. 90.209 Section 90.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE... cassette to: Respirable Dust Processing Laboratory, Pittsburgh Safety and Health Technology Center, Cochran...

  9. 30 CFR 90.209 - Respirable dust samples; transmission by operator.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operator. 90.209 Section 90.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE... cassette to: Respirable Dust Processing Laboratory, Pittsburgh Safety and Health Technology Center, Cochran...

  10. 30 CFR 90.209 - Respirable dust samples; transmission by operator.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operator. 90.209 Section 90.209 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE... cassette to: Respirable Dust Processing Laboratory, Pittsburgh Safety and Health Technology Center, Cochran...

  11. Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2011-04-01

    This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we found that FHH (Frenkel, Halsey and Hill) adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFHH ∼ 2.25 ± 0.75, BFHH ∼ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on a threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.

  12. Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Sokolik, I. N.; Nenes, A.

    2010-12-01

    This study reports laboratory measurements of cloud condensation nuclei (CCN) activity and droplet activation kinetics of aerosols dry-generated from clays, calcite, quartz, and desert soil samples from Northern Africa, East Asia/China, and Northern America. Based on the observed dependence of critical supersaturation, sc, with particle dry diameter, Ddry, we find that FHH adsorption activation theory is a far more suitable framework for describing fresh dust CCN activity than Köhler theory. One set of FHH parameters (AFFH ~ 2.25 ± 0.75, BFFH ~ 1.20 ± 0.10) can adequately reproduce the measured CCN activity for all species considered, and also explains the large range of hygroscopicities reported in the literature. Based on threshold droplet growth analysis, mineral dust aerosols were found to display retarded activation kinetics compared to ammonium sulfate. Comprehensive simulations of mineral dust activation and growth in the CCN instrument suggest that this retardation is equivalent to a reduction of the water vapor uptake coefficient (relative to that for calibration ammonium sulfate aerosol) by 30-80%. These results suggest that dust particles do not require deliquescent material to act as CCN in the atmosphere.

  13. Clouds and Dust Storms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with

  14. Experimental study on effects of drilling parameters on respirable dust production during roof bolting operations.

    PubMed

    Jiang, Hua; Luo, Yi; McQuerrey, Joe

    2018-02-01

    Underground coalmine roof bolting operators exhibit a continued risk for overexposure to airborne levels of respirable coal and crystalline silica dust from the roof drilling operation. Inhaling these dusts can cause coal worker's pneumoconiosis and silicosis. This research explores the effect of drilling control parameters, specifically drilling bite depth, on the reduction of respirable dust generated during the drilling process. Laboratory drilling experiments were conducted and results demonstrated the feasibility of this dust control approach. Both the weight and size distribution of the dust particles collected from drilling tests with different bite depths were analyzed. The results showed that the amount of total inhalable and respirable dust was inversely proportional to the drilling bite depth. Therefore, control of the drilling process to achieve proper high-bite depth for the rock can be an important approach to reducing the generation of harmful dust. Different from conventional passive engineering controls, such as mist drilling and ventilation approaches, this approach is proactive and can cut down the generation of respirable dust from the source. These findings can be used to develop an integrated drilling control algorithm to achieve the best drilling efficiency as well as reducing respirable dust and noise.

  15. Asian dust events of April 1998

    USGS Publications Warehouse

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  16. Operational Dust Prediction

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; hide

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  17. Analysis of chromosomal aberrations in men occupationally exposed to cement dust.

    PubMed

    Fatima, S K; Prabhavathi, P A; Padmavathi, P; Reddy, P P

    2001-02-20

    Cement industry is considered as a major pollution problem on account of dust and particulate matter emitted at various steps of cement manufacture. Cement dust consists of many toxic constituents. The workers who are employed in cement industries are exposed to cement dust for long periods. Therefore, it is mandatory to evaluate the mutagenic effects of occupational exposure to cement dust in such workers. In the present study, we analyzed the samples of 124 male workers including 59 smokers and 65 non-smokers who were employed in cement industry for a period of 1-17 years. For comparison, 106 controls (including 47 smokers and 59 non-smokers) of the same age group and socio-economic status were also studied. Controls had no exposure to cement dust or any known physical or chemical agent. A significant increase in the incidence of chromosomal aberrations was observed in the exposed group when compared to the control group. The results were analyzed separately for non-smokers and smokers. The chromosomal damage was more pronounced in the smokers when compared with the non-smokers both in control and exposed groups. A significant increase in the frequency of chromosomal aberrations was also observed with increase in age in both control and exposed subjects.

  18. Two dimensional cylindrical fast magnetoacoustic solitary waves in a dust plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Haifeng; Wang Shiqing; Engineering and Technical College of Chengdu University of Technology, Leshan 614000

    2011-04-15

    The nonlinear fast magnetoacoustic solitary waves in a dust plasma with the combined effects of bounded cylindrical geometry and transverse perturbation are investigated in a new equation. In this regard, cylindrical Kadomtsev-Petviashvili (CKP) equation is derived using the small amplitude perturbation expansion method. Under a suitable coordinate transformation, the CKP equation can be solved analytically. It is shown that the dust cylindrical fast magnetoacoustic solitary waves can exist in the CKP equation. The present investigation may have relevance in the study of nonlinear electromagnetic soliton waves both in laboratory and astrophysical plasmas.

  19. Dust acoustic solitary and shock excitations in a Thomas-Fermi magnetoplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahim, Z.; Qamar, A.; National Center for Physics

    The linear and nonlinear properties of dust-acoustic waves are investigated in a collisionless Thomas-Fermi magnetoplasma, whose constituents are electrons, ions, and negatively charged dust particles. At dust time scale, the electron and ion number densities follow the Thomas-Fermi distribution, whereas the dust component is described by the classical fluid equations. A linear dispersion relation is analyzed to show that the wave frequencies associated with the upper and lower modes are enhanced with the variation of dust concentration. The effect of the latter is seen more strongly on the upper mode as compared to the lower mode. For nonlinear analysis, wemore » obtain magnetized Korteweg-de Vries (KdV) and Zakharov-Kuznetsov (ZK) equations involving the dust-acoustic solitary waves in the framework of reductive perturbation technique. Furthermore, the shock wave excitations are also studied by allowing dissipation effects in the model, leading to the Korteweg-de Vries-Burgers (KdVB) and ZKB equations. The analysis reveals that the dust-acoustic solitary and shock excitations in a Thomas-Fermi plasma are strongly influenced by the plasma parameters, e.g., dust concentration, dust temperature, obliqueness, magnetic field strength, and dust fluid viscosity. The present results should be important for understanding the solitary and shock excitations in the environments of white dwarfs or supernova, where dust particles can exist.« less

  20. Using Indium Tin Oxide To Mitigate Dust on Viewing Ports

    NASA Technical Reports Server (NTRS)

    2008-01-01

    NASA plans to use a number of onboard viewing ports to measure lunar regolith in situ and to monitor robotic and human activities on the lunar or Martian surface. Because of the size and abundance of dust particles on these bodies, the potential for dust to occlude viewing ports and windows is high enough to threaten system lifetime and reliability, especially when activities rely on relaying video to either a habitat module or controllers on Earth. This project uses a technology being developed by KSC's Electrostatics and Surface Physics Laboratory to remove dust from windowlike surfaces. The technology applies an alternating electric potential to interlaced electrodes. In this application, we use indium tin oxide (ITO) to create various electrode patterns in order to determine the most reliable pattern for dust removal. This technology has application to systems where optical clarity is important. Specifically, this project considers the in situ resource utilization (ISRU) application of a viewing port for Raman spectroscopy, where the electrode pattern on glass would be coated with a scratch-resistant sapphire film (Al2O3).

  1. Martian dust storms as a possible sink of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  2. Dust Particle Dynamics in The Presence of Highly Magnetized Plasmas

    NASA Astrophysics Data System (ADS)

    Lynch, Brian; Konopka, Uwe; Thomas, Edward; Merlino, Robert; Rosenberg, Marlene

    2016-10-01

    Complex plasmas are four component plasmas that contain, in addition to the usual electrons, ions, and neutral atoms, macroscopic electrically charged (nanometer to micrometer) sized ``dust'' particles. These macroscopic particles typically obtain a net negative charge due to the higher mobility of electrons compared to that of ions. Because the electrons, ions, and dust particles are charged, their dynamics may be significantly modified by the presence of electric and magnetic fields. Possible consequences of this modification may be the charging rate and the equilibrium charge. For example, in the presence of a strong horizontal magnetic field (B >1 Tesla), it may be possible to observe dust particle gx B deflection and, from that deflection, determine the dust grain charge. In this poster, we present recent data from performing multiple particle dropping experiments to characterize the g x B deflection in the Magnetized Dusty Plasma Experiment (MDPX). This work is supported by funding from the U. S. Department of Energy Grant Number DE - SC0010485 and the NASA/Jet Propulsion Laboratory, JPL-1543114.

  3. An Assessment of the Surface Longwave Direct Radiative Effect of Airborne Saharan Dust During the NAMMA Field Campaign

    NASA Technical Reports Server (NTRS)

    Hansell, R. A.; Tsay, S. C.; Ji, Q.; Hsu, N. C.; Jeong, M. J.; Wang, S. H.; Reid, J. S.; Liou, K. N.; Ou, S. C.

    2010-01-01

    In September 2006, NASA Goddard s mobile ground-based laboratories were deployed to Sal Island in Cape Verde (16.73degN, 22.93degW) to support the NASA African Monsoon Multidisciplinary Analysis (NAMMA) field study. The Atmospheric Emitted Radiance Interferometer (AERI), a key instrument for spectrally characterizing the thermal IR, was used to retrieve the dust IR aerosol optical depths (AOTs) in order to examine the diurnal variability of airborne dust with emphasis on three separate dust events. AERI retrievals of dust AOT are compared with those from the coincident/collocated multifilter rotating shadow-band radiometer (MFRSR), micropulse lidar (MPL), and NASA Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) sensors. The retrieved AOTs are then inputted into the Fu-Liou 1D radiative transfer model to evaluate local instantaneous direct longwave radiative effects (DRE(sub LW)) of dust at the surface in cloud-free atmospheres and its sensitivity to dust microphysical parameters. The top-of-atmosphere DRE(sub LW) and longwave heating rate profiles are also evaluated. Instantaneous surface DRE(sub LW) ranges from 2 to 10 W/sq m and exhibits a strong linear dependence with dust AOT yielding a DRE(sub LW) of 16 W/sq m per unit dust AOT. The DRE(sub LW) is estimated to be approx.42% of the diurnally averaged direct shortwave radiative effect at the surface but of opposite sign, partly compensating for the shortwave losses. Certainly nonnegligible, the authors conclude that DRE(sub LW) can significantly impact the atmospheric energetics, representing an important component in the study of regional climate variation.

  4. Deposition Uniformity of Coal Dust on Filters and Its Effect on the Accuracy of FTIR Analyses for Silica.

    PubMed

    Miller, Arthur L; Drake, Pamela L; Murphy, Nathaniel C; Cauda, Emanuele G; LeBouf, Ryan F; Markevicius, Gediminas

    Miners are exposed to silica-bearing dust which can lead to silicosis, a potentially fatal lung disease. Currently, airborne silica is measured by collecting filter samples and sending them to a laboratory for analysis. Since this may take weeks, a field method is needed to inform decisions aimed at reducing exposures. This study investigates a field-portable Fourier transform infrared (FTIR) method for end-of-shift (EOS) measurement of silica on filter samples. Since the method entails localized analyses, spatial uniformity of dust deposition can affect accuracy and repeatability. The study, therefore, assesses the influence of radial deposition uniformity on the accuracy of the method. Using laboratory-generated Minusil and coal dusts and three different types of sampling systems, multiple sets of filter samples were prepared. All samples were collected in pairs to create parallel sets for training and validation. Silica was measured by FTIR at nine locations across the face of each filter and the data analyzed using a multiple regression analysis technique that compared various models for predicting silica mass on the filters using different numbers of "analysis shots." It was shown that deposition uniformity is independent of particle type (kaolin vs. silica), which suggests the role of aerodynamic separation is negligible. Results also reflected the correlation between the location and number of shots versus the predictive accuracy of the models. The coefficient of variation (CV) for the models when predicting mass of validation samples was 4%-51% depending on the number of points analyzed and the type of sampler used, which affected the uniformity of radial deposition on the filters. It was shown that using a single shot at the center of the filter yielded predictivity adequate for a field method, (93% return, CV approximately 15%) for samples collected with 3-piece cassettes.

  5. Properties of Modern Dust Accumulating in the Uinta Mountains, Utah, USA, and Soil Evidence of Long-Term Dust Deposition

    NASA Astrophysics Data System (ADS)

    Munroe, J. S.

    2013-12-01

    Modern eolian sediment was collected at four locations in the alpine zone of the Uinta Mountains (Utah, USA) between July 2011 and July 2012. Collectors were a passive design based on the classic marble dust trap, but modified for use in this high-precipitation environment. On average the collectors accumulated 1.5 gm of dust, corresponding to an annual flux of 4.4 g/m2. This result is similar to values measured from snowpack samples in the Wind River (Wyoming) and San Juan (Colorado) Mountains. Dust flux was 3 to 5x higher during the winter compared with summer at the two sites featuring continuous vegetation, but was consistent between the seasons at the two collectors surrounded by a greater area of exposed soil. XRD analysis reveals that dust samples are dominated by quartz, potassium feldspar, plagioclase, and illite. Some samples contain amphibole and chlorite. In contrast, samples of fine sediment collected from the surface of modern snowbanks are dominated by clay with no feldspar or quartz, suggesting that these minerals are derived from the surrounding soil surface, which is snow-covered in the winter. ICP-MS analysis reveals that the geochemistry of the coarse (>63-μm) fraction of the dust resembles that of the underlying bedrock, confirming a local origin for this sediment. In contrast, the fine (<63-μm) fraction of the dust closely matches the fine fraction of the soil A horizon, supporting an eolian origin for the ubiquitous layer of fines that mantles soil profiles throughout the Uinta Mountains. Grain size analysis with laser scattering reveals that modern dust is very well-sorted, with a median size of 8 μm (7.0 Φ). Using the annual dust flux and mean grain size, and taking into account the measured bulk density (0.95 gm/cm3), organic matter content (20%), and silt content (32%) of this loess cap, the extrapolated loess accretion rate is ~18 cm per 10,000 years. Given that prior studies (Bockheim et al., 2000 Catena; Munroe, 2007, Arctic

  6. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  7. Desert dust suppressing precipitation: A possible desertification feedback loop

    PubMed Central

    Rosenfeld, Daniel; Rudich, Yinon; Lahav, Ronen

    2001-01-01

    The effect of desert dust on cloud properties and precipitation has so far been studied solely by using theoretical models, which predict that rainfall would be enhanced. Here we present observations showing the contrary; the effect of dust on cloud properties is to inhibit precipitation. Using satellite and aircraft observations we show that clouds forming within desert dust contain small droplets and produce little precipitation by drop coalescence. Measurement of the size distribution and the chemical analysis of individual Saharan dust particles collected in such a dust storm suggest a possible mechanism for the diminished rainfall. The detrimental impact of dust on rainfall is smaller than that caused by smoke from biomass burning or anthropogenic air pollution, but the large abundance of desert dust in the atmosphere renders it important. The reduction of precipitation from clouds affected by desert dust can cause drier soil, which in turn raises more dust, thus providing a possible feedback loop to further decrease precipitation. Furthermore, anthropogenic changes of land use exposing the topsoil can initiate such a desertification feedback process. PMID:11353821

  8. Combustible dusts: a serious industrial hazard.

    PubMed

    Joseph, Giby

    2007-04-11

    After investigating three fatal explosions in manufacturing plants, the U.S. Chemical Safety and Hazard Investigation Board (CSB) has concluded: The explosive hazard of combustible dust is not well known, and helping industry to understand this hazard is a priority. Prompted by these three incidents in North Carolina, Kentucky and Indiana and the need to increase the hazard awareness, CSB is conducting a study to examine the nature and scope of dust explosion risks in industry and to identify initiatives that may be necessary to more effectively prevent combustible dust fires and explosions. Such initiatives may include regulatory action, voluntary consensus standards, or other measures that could be taken by industry, labor, government, and other parties. A critical task of the dust study is analyzing past incidents to determine the severity of the problem within industry. The analysis is focusing on the number of incidents, injuries and fatalities, industrial sectors affected, and regulatory oversight. This paper presents the preliminary findings from CSBs analysis of combustible dust incidents over the past 25 years. This paper has not been approved by the Board and is published for general informational purposes only. Every effort has been made to accurately present the contents of any Board-approved report mentioned in this paper. Any material in the paper that did not originate in a Board-approved report is solely the responsibility of the authors and does not represent an official finding, conclusion, or position of the Board.

  9. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the NMS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the hEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  10. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the MPS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the BEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints

  11. Differences in ice nucleation behavior of arable and desert soil dust in deposition nucleation regime

    NASA Astrophysics Data System (ADS)

    Ullrich, Romy; Vogel, Franziska; Möhler, Ottmar; Höhler, Kristina; Schiebel, Thea

    2017-04-01

    Soil dust from arid and semi-arid regions is one of the most abundant aerosol types in the atmosphere with emission rates of about 1600 Tg per year (Andreae et al. (2009)). Therewith, soil dust plays an important role for the atmospheric radiative transfer and also for the formation of clouds. Soil dust refers to dust sampled from agricultural used areas, to dust from bare soil as well as to dust from desert regions. By mass-spectrometric measurements of the chemical composition of ice residuals, mineral dust as component of soil dust was found to be the major heterogeneous ice nucleating particle (INP) type (e.g. Cziczo et al. (2013)), in particular in the upper troposphere. Also in laboratory studies the ice nucleation efficiency of the different soil dusts was investigated. It was shown that desert dusts (Ullrich et al. (2017)) as well as soil dusts from arable regions (O'Sullivan et al. (2014), Tobo et al. (2014)) are efficient INP. However, there is still a lack of data for ice nucleation on soil dusts for temperatures below about 220 K. With the AIDA (Aerosol Interactions and Dynamics in the Atmosphere) cloud chamber, we are able to characterize the ice nucleation efficiency for different aerosol types to temperatures down to 180 K and high ice supersaturations. In order to extend the already existing AIDA data base for deposition nucleation on desert dusts and agricultural soil dusts, new experiments were done in the upper tropospheric temperature regime. This contribution will show the results of the new experiments with desert dust in comparison to existing data for higher temperatures. The first data analysis confirms the temperature dependent trend of the ice nucleation activity as discussed and parameterized in a recent paper by Ullrich et al. (2017). Furthermore, the update and extension of the recently published parameterization of deposition nucleation for desert dust to lower temperatures will be discussed. The experiments with agricultural soil

  12. Characteristics of mineral dust impacting the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Ahmady-Birgani, Hesam; McQueen, Kenneth G.; Mirnejad, Hassan

    2018-02-01

    It is generally assumed that severe dust events in western Iran could be responsible for elevated levels of toxic and radioactive elements in the region. Over a period of 5 months, from January 2012 to May 2012, dust particles in the size range PM10 (i.e. <10 μm) were collected at Abadan, a site beside the Persian Gulf. The research aim was to compare chemical compositions of dust and aerosol samples collected during the non-dusty periods and during two severe dust events. Results of ICP-MS analysis of components indicate that during dust events the concentrations of major elements such as Ca, Mg, Al and K increase relative to ambient conditions when Fe and trace elements such as Cu, Cr, Ni, Pb and Zn are in higher proportions. Toxic trace elements that are generally ascribed to human activities, including industrial and urban pollution, are thus proportionately more abundant in the dust under calm conditions than during dust events, when their concentration is diluted by more abundant mineral particles of quartz, calcite and clay. The variability of chemical species during two dust events, noted by tracking the dust plumes in satellite images, was also assessed and the results relate to two different source areas, namely northern Iraq and northwestern Syria.

  13. Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR - MCEARD

    EPA Science Inventory

    Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mo...

  14. Trans-Pacific transport of Asian dust: the CESM model analysis and comparison with satellite observations

    NASA Astrophysics Data System (ADS)

    Wu, M.; Liu, X.; Luo, T.; Wang, Z.; Yang, K.; Wu, C.; Wang, H.; Zhang, K.

    2017-12-01

    Mineral dust plays an important role in the Earth's climate system due to its effects on radiation budgets, clouds, chemistry and biosphere. However, modeled dust aerosol is not well constrained and large uncertainties exist in modeled dust lifecycles. We evaluate dust spatial distributions in the Community Earth System Model (CESM) with new dust extinction retrievals (Luo et al., 2015a, b) based on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) and CloudSat measurement, with special focus on the Asian dust transport across the Pacific. It is shown that the default CESM underestimates the dust extinction over the Pacific by 1-2 order of magnitude. Especially, the model fails to capture the observed high values of dust extinction occurring from 850 to 500 hPa across the North Pacific (20°N-50°N). Modeled dust optical depth (DOD) decreases faster across the Pacific compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) observations. Sensitivity experiments with altered emission, vertical transport and deposition schemes have been conducted to identify the key process impacting dust transport. For that purpose, two new dust emission schemes by Kok et al. (2014a, b) and Ginoux et al. (2001), a new dry deposition scheme by Petroff and Zhang (2010) are implemented to the CESM. In addition, a new unified scheme for convective transport and wet removal of aerosols (Wang et al., 2013) is implemented to the same version of CESM to examine the influence of convective transport and wet deposition on dust transport. It is found that changes in wet scavenging and convective transport can strongly impact dust transport over the Pacific compared to changes in other processes. One of the new emission schemes further decreases the dust extinction across the Pacific. Dust extinction across the Pacific slightly increases when dry deposition velocity for fine particles is reduced.

  15. Allergies, asthma, and dust

    MedlinePlus

    Reactive airway disease - dust; Bronchial asthma - dust; Triggers - dust ... Things that make allergies or asthma worse are called triggers. Dust is a common trigger. When your asthma or allergies become worse due to dust, you are ...

  16. Reconstructing transport pathways for late Quaternary dust from eastern Australia using the composition of trace elements of long traveled dusts

    NASA Astrophysics Data System (ADS)

    Petherick, Lynda M.; McGowan, Hamish A.; Kamber, Balz S.

    2009-04-01

    The southeast Australian dust transport corridor is the principal pathway through which continental emissions of dust from central and eastern Australia are carried to the oceans by the prevailing mid-latitude westerly circulation. The analysis of trace elements of aeolian dust, preserved in lake sediment on North Stradbroke Island, southeast Queensland, is used to reconstruct variation in the intensity and position of dust transport to the island over the past 25,000 yrs. Separation of local and long traveled dust content of lake sediments is achieved using a unique, four-element (Ga, Ni, Tl and Sc) separation method. The local and continental chronologies of aeolian deposition developed by this study show markedly different records, and indicate varied responses to climate variability on North Stradbroke Island (local aeolian sediment component) and in eastern and central Australia (long traveled dust component). The provenance of the continental component of the record to sub-geologic catchment scales was accomplished using a ternary mixing model in which the chemical identification of dusts extracted, from the lake sediments, was compared to potential chemical characteristics of surface dust from the source areas using 16 trace elements. The results indicate that the position and intensity of dust transport pathways during the late Quaternary varied considerably in response to changing atmospheric circulation patterns as well as to variations in sediment supply to dust source areas, which include the large anabranching river systems of the Lake Eyre and Murray-Darling Basins.

  17. [Statistical analysis of body and lung mass of animals subjected to a single experimental insufflation of soil dust and electro-energetic ashes].

    PubMed

    Matysiak, W; Królikowska-Prasał, I; Staszyc, J; Kifer, E; Romanowska-Sarlej, J

    1989-01-01

    The studies were performed on 44 white female Wistar rats which were intratracheally administered the suspension of the soil dust and the electro-energetic ashes. The electro-energetic ashes were collected from 6 different local heat and power generating plants while the soil dust from several random places of our country. The statistical analysis of the body and the lung mass of the animals subjected to the single dust and ash insufflation was performed. The applied variants proved the statistically significant differences between the body and the lung mass. The observed differences are connected with the kinds of dust and ash used in the experiment.

  18. Airborne Sea of Dust over China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    TDust covered northern China in the last week of March during some of the worst dust storms to hit the region in a decade. The dust obscuring China's Inner Mongolian and Shanxi Provinces on March 24, 2002, is compared with a relatively clear day (October 31, 2001) in these images from the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera aboard NASA's Terra satellite. Each image represents an area of about 380 by 630 kilometers (236 by 391 miles). In the image from late March, shown on the right, wave patterns in the yellowish cloud liken the storm to an airborne ocean of dust. The veil of particulates obscures features on the surface north of the Yellow River (visible in the lower left). The area shown lies near the edge of the Gobi desert, a few hundred kilometers, or miles, west of Beijing. Dust originates from the desert and travels east across northern China toward the Pacific Ocean. For especially severe storms, fine particles can travel as far as North America. The Multi-angle Imaging SpectroRadiometer, built and managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif., is one of five Earth-observing instruments aboard the Terra satellite, launched in December 1999. The instrument acquires images of Earth at nine angles simultaneously, using nine separate cameras pointed forward, downward and backward along its flight path. The change in reflection at different view angles affords the means to distinguish different types of atmospheric particles, cloud forms and land surface covers. Image courtesy NASA/GSFC/LaRC/JPL, MISR Team

  19. Remote sensing and modelling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in September 2015

    NASA Astrophysics Data System (ADS)

    Solomos, Stavros; Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Binietoglou, Ioannis; Patlakas, Platon; Marinou, Eleni; Amiridis, Vassilis

    2017-03-01

    The extreme dust storm that affected the Middle East and the eastern Mediterranean in September 2015 resulted in record-breaking dust loads over Cyprus with aerosol optical depth exceeding 5.0 at 550 nm. We analyse this event using profiles from the European Aerosol Research Lidar Network (EARLINET) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), geostationary observations from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI), and high-resolution simulations from the Regional Atmospheric Modeling System (RAMS). The analysis of modelling and remote sensing data reveals the main mechanisms that resulted in the generation and persistence of the dust cloud over the Middle East and Cyprus. A combination of meteorological and surface processes is found, including (a) the development of a thermal low in the area of Syria that results in unstable atmospheric conditions and dust mobilization in this area, (b) the convective activity over northern Iraq that triggers the formation of westward-moving haboobs that merge with the previously elevated dust layer, and (c) the changes in land use due to war in the areas of northern Iraq and Syria that enhance dust erodibility.

  20. Is the Electron Avalanche Process in a Martian Dust Devil Self-Quenching?

    NASA Technical Reports Server (NTRS)

    Farrell, William M.; McLain, Jason L.; Collier, M. R.; Keller, J. W.; Jackson, T. J.; Delory, G. T.

    2015-01-01

    Viking era laboratory experiments show that mixing tribocharged grains in a low pressure CO2 gas can form a discharge that glows, indicating the presence of an excited electron population that persists over many seconds. Based on these early experiments, it has been predicted that martian dust devils and storms may also contain a plasma and new plasma chemical species as a result of dust grain tribo-charging. However, recent results from modeling suggest a contrasting result: that a sustained electron discharge may not be easily established since the increase in gas conductivity would act to short-out the local E-fields and quickly dissipate the charged grains driving the process. In essence, the system was thought to be self-quenching (i.e., turn itself off). In this work, we attempt to reconcile the difference between observation and model via new laboratory measurements. We conclude that in a Mars-like low pressure CO2 atmosphere and expected E-fields, the electron current remains (for the most part) below the expected driving tribo-electric dust currents (approx. 10 microA/m(exp. 2)), thereby making quenching unlikely.

  1. Examination of a newly developed mobile dry scrubber (DS) for coal mine dust control applications

    PubMed Central

    Organiscak, J.; Noll, J.; Yantek, D.; Kendall, B.

    2017-01-01

    The Office of Mine Safety and Health Research of the U.S. National Institute for Occupational Safety and Health (NIOSH OMSHR) conducted laboratory testing of a self-tramming, remotely controlled mobile Dry Scrubber (DS) that J.H. Fletcher and Co. developed under a contract with NIOSH OMSHR to reduce the exposure of miners to airborne dust. The scrubber was found to average greater than 95 percent dust removal efficiency with disposable filters, and 88 and 90 percent, respectively, with optional washable filters in their prewash and post-wash test conditions. Although the washable filters can be reused, washing them generated personal and downstream respirable dust concentrations of 1.2 and 8.3 mg/m3, respectively, for a 10-min washing period. The scrubber’s velocity-pressure-regulated variable-frequency-drive fan maintained relatively consistent airflow near the targeted 1.42 and 4.25 m3/s (3,000 and 9,000 ft3/min) airflow rates during most of the laboratory dust testing until reaching its maximum 60-Hz fan motor frequency or horsepower rating at 2,610 Pa (10.5 in. w.g.) of filter differential pressure and 3.97 m3/s (8,420 ft3/min) of scrubber airflow quantity. Laboratory sound level measurements of the scrubber showed that the outlet side of the scrubber was noisier, and the loaded filters increased sound levels compared with clean filters at the same airflow quantities. With loaded filters, the scrubber reached a 90 dB(A) sound level at 2.83 m3/s (6,000 ft3/min) of scrubber airflow, indicating that miners should not be overexposed in relation to MSHA’s permissible exposure level — under Title 30 Code of Federal Regulations Part 62.101— of 90 dB(A) at or below this airflow quantity. The scrubber’s washable filters were not used during field-testing because of their lower respirable dust removal efficiency and the airborne dust generated by filter washing. Field-testing the scrubber with disposable filters at two underground coal mine sections showed that

  2. Sulfur in Cometary Dust

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.

    1997-01-01

    The computer-intensive project consisted of the analysis and synthesis of existing data on composition of comet Halley dust particles. The main objective was to obtain a complete inventory of sulfur containing compounds in the comet Halley dust by building upon the existing classification of organic and inorganic compounds and applying a variety of statistical techniques for cluster and cross-correlational analyses. A student hired for this project wrote and tested the software to perform cluster analysis. The following tasks were carried out: (1) selecting the data from existing database for the proposed project; (2) finding access to a standard library of statistical routines for cluster analysis; (3) reformatting the data as necessary for input into the library routines; (4) performing cluster analysis and constructing hierarchical cluster trees using three methods to define the proximity of clusters; (5) presenting the output results in different formats to facilitate the interpretation of the obtained cluster trees; (6) selecting groups of data points common for all three trees as stable clusters. We have also considered the chemistry of sulfur in inorganic compounds.

  3. Boundary Layer Regimes Conducive to Formation of Dust Devils on Mars

    NASA Astrophysics Data System (ADS)

    Williams, B.; Nair, U. S.

    2014-12-01

    Dust devils on Mars contribute to maintenance of background atmospheric aerosol loading and thus dust radiative forcing, which is an important modulator of Martian climate. Dust devils also cause surface erosion and change in surface albedo which impacts radiative energy budget. Thus there is a need for parameterizing dust devil impacts in Martian climate models. In this context it is important to understand environmental conditions that are favorable for formation of dust devils on Mars and associated implications for diurnal, seasonal, and geographical variation of dust devil occurrence. On earth, prior studies show that thresholds of ratio of convective and friction scale velocities may be used to identify boundary layer regimes that are conducive to formation of dust devils. On earth, a w*/u* ratio in excess of 5 is found to be conducive for formation of dust devils. In this study, meteorological observations collected during the Viking Lander mission are used to constrain Martian boundary layer model simulations, which is then used to estimate w*/u* ratio. The w*/u* ratio is computed for several case days during which dust devil occurrence was detected. A majority of dust devils occurred in convective boundary layer regimes characterized by w*/u* ratios exceeding 10. The above described analysis is being extended to other mars mission landing sites and results from the extended analysis will also be presented.

  4. Formation of Cosmic Carbon Dust Analogues in Plasma Reactors

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2016-01-01

    Cosmic carbon dust analogs are produced, processed and analyzed in the laboratory using NASA's COSmIC (COSmIC Simulation Chamber) Facility. These experiments can be used to derive information on the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars.

  5. Dust Transport, Deposition and Radiative Effects Observed from MODIS

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Koren, I.; Remer, L. A.; Tanre, D.; Ginoux, P.; Fan, S.

    2003-01-01

    Carlson (1977) used satellite (AVHRR) observation of dust episodes 3 estimate that 90 tg of dust are emitted from Africa (0-30 N) to the Atlantic Ocean between June and August. MODIS systematic measurements of aerosol optical thickness (AOT) and the fraction of the AOT (f) due to the fine mode (see Remer et al abstract), are used to derive the column concentration, flux and deposition of African dust over the Atlantic Ocean. The main data set is for 2001 but the results are consistent with MODIS measurements from 2002. The analysis first determines the properties of maritime baseline aerosol (AOT=0.06, f=0.5); followed by linear scaling of the dust AOT and the anthropogenic AOT, based on MODIS measured values of the fraction "f" being 0.9 for anthropogenic aerosol and 0.5 for dust. NCEP winds are used in the analysis and are evaluated against observed dust movements between the Terra and Aqua passes (see Koren et al. abstract). Monthly values of dust transport and deposition are calculated. Preliminary results show that 280 tg of dust are emitted annually from Africa to the Atlantic Ocean between 20s and 30N, with 40 tg returning to Africa and Europe between 30N and 50N. 85 tg reach the Americas, with 130-150 tg are deposited in the Atlantic Ocean. The results are compared with dust transport models that indicate 110-230 tg of dust being deposited in the Ocean. It is interesting to note that the early estimates of Carlson (1977) and Carlson & Prosper0 (1972) are very close to our estimate from MODIS of 100 tg for the same latitude range and monthly period.

  6. Constraints on the Interstellar Dust Flux Based on Stardust@Home Search Results

    NASA Astrophysics Data System (ADS)

    Westphal, A. J.; Allen, C.; Anderson, D.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.; Grün, E.; Heck, P. R.; Hillier, J. K.; Hoppe, P.; Howard, L.; Huss, G. R.; Huth, J.; Kearsley, A.; King, A. J.; Lai, B.; Leitner, J.; Lemelle, L.; Leroux, H.; Lettieri, R.; Lyverse, P.; Marchant, W.; Nittler, L. R.; Ogliore, R. C.; Postberg, F.; Price, M. C.; Sandford, S. A.; Sans Tresseras, J. A.; Schmitz, S.; Schoonjans, T.; Silversmit, G.; Simionovici, A.; Srama, R.; Stadermann, F. J.; Stephan, T.; Stodolna, J.; Stroud, R. M.; Sutton, S. R.; Toucoulou, R.; Trieloff, M.; Tsou, P.; Tsuchiyama, A.; Tyliczszak, T.; Vekemans, B.; Vincze, L.; von Korff, J.; Zevin, D.; Zolensky, M. E.; 29,000 Stardust@Home Dusters

    2011-03-01

    We present constraints on the interstellar dust flux based on Stardust@home search results, informed by recent high-fidelity laboratory calibrations of track sizes in aerogel in the difficult regime above 10 km/s and submicrometer sizes.

  7. Atmospheric response to Saharan dust deduced from ECMWF reanalysis increments

    NASA Astrophysics Data System (ADS)

    Kishcha, P.; Alpert, P.; Barkan, J.; Kirchner, I.; Machenhauer, B.

    2003-04-01

    This study focuses on the atmospheric temperature response to dust deduced from a new source of data - the European Reanalysis (ERA) increments. These increments are the systematic errors of global climate models, generated in reanalysis procedure. The model errors result not only from the lack of desert dust but also from a complex combination of many kinds of model errors. Over the Sahara desert the dust radiative effect is believed to be a predominant model defect which should significantly affect the increments. This dust effect was examined by considering correlation between the increments and remotely-sensed dust. Comparisons were made between April temporal variations of the ERA analysis increments and the variations of the Total Ozone Mapping Spectrometer aerosol index (AI) between 1979 and 1993. The distinctive structure was identified in the distribution of correlation composed of three nested areas with high positive correlation (> 0.5), low correlation, and high negative correlation (<-0.5). The innermost positive correlation area (PCA) is a large area near the center of the Sahara desert. For some local maxima inside this area the correlation even exceeds 0.8. The outermost negative correlation area (NCA) is not uniform. It consists of some areas over the eastern and western parts of North Africa with a relatively small amount of dust. Inside those areas both positive and negative high correlations exist at pressure levels ranging from 850 to 700 hPa, with the peak values near 775 hPa. Dust-forced heating (cooling) inside the PCA (NCA) is accompanied by changes in the static stability of the atmosphere above the dust layer. The reanalysis data of the European Center for Medium Range Weather Forecast(ECMWF) suggests that the PCA (NCA) corresponds mainly to anticyclonic (cyclonic) flow, negative (positive) vorticity, and downward (upward) airflow. These facts indicate an interaction between dust-forced heating /cooling and atmospheric circulation. The

  8. Mechanical and electrostatic experiments with dust particles collected in the inner coma of comet 67P by COSIMA onboard Rosetta.

    PubMed

    Hilchenbach, Martin; Fischer, Henning; Langevin, Yves; Merouane, Sihane; Paquette, John; Rynö, Jouni; Stenzel, Oliver; Briois, Christelle; Kissel, Jochen; Koch, Andreas; Schulz, Rita; Silen, Johan; Altobelli, Nicolas; Baklouti, Donia; Bardyn, Anais; Cottin, Herve; Engrand, Cecile; Fray, Nicolas; Haerendel, Gerhard; Henkel, Hartmut; Höfner, Herwig; Hornung, Klaus; Lehto, Harry; Mellado, Eva Maria; Modica, Paola; Le Roy, Lena; Siljeström, Sandra; Steiger, Wolfgang; Thirkell, Laurent; Thomas, Roger; Torkar, Klaus; Varmuza, Kurt; Zaprudin, Boris

    2017-07-13

    The in situ cometary dust particle instrument COSIMA (COmetary Secondary Ion Mass Analyser) onboard ESA's Rosetta mission has collected about 31 000 dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. The particles are identified by optical microscope imaging and analysed by time-of-flight secondary ion mass spectrometry. After dust particle collection by low speed impact on metal targets, the collected particle morphology points towards four families of cometary dust particles. COSIMA is an in situ laboratory that operates remotely controlled next to the comet nucleus. The particles can be further manipulated within the instrument by mechanical and electrostatic means after their collection by impact. The particles are stored above 0°C in the instrument and the experiments are carried out on the refractory, ice-free matter of the captured cometary dust particles. An interesting particle morphology class, the compact particles, is not fragmented on impact. One of these particles was mechanically pressed and thereby crushed into large fragments. The particles are good electrical insulators and transform into rubble pile agglomerates by the application of an energetic indium ion beam during the secondary ion mass spectrometry analysis.This article is part of the themed issue 'Cometary science after Rosetta'. © 2017 The Author(s).

  9. Dust feed mechanism

    DOEpatents

    Milliman, Edward M.

    1984-01-01

    The invention is a dust feed device for delivery of a uniform supply of dust for long periods of time to an aerosolizing means for production of a dust suspension. The device utilizes at least two tandem containers having spiral brushes within the containers which transport the dust from a supply to the aerosolizer means.

  10. Pulmonary and Systemic Immune Response to Chronic Lunar Dust Inhalation

    NASA Technical Reports Server (NTRS)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    Background: Due to millennia of meteorite impact with virtually no erosive effects, the surface of the Moon is covered by a layer of ultra-fine, reactive Lunar dust. Very little is known regarding the toxicity of Lunar dust on human physiology. Given the size and electrostatic characteristics of Lunar dust, countermeasures to ensure non-exposure of astronauts will be difficult. To ensure astronaut safety during any future prolonged Lunar missions, it is necessary to establish the effect of chronic pulmonary Lunar dust exposure on all physiological systems. Methods: This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and system immune system parameters. Rats were exposed to 0, 20.8, or 60.8 mg/m3 of lunar dust (6h/d; 5d/wk) for up to 13 weeks. Sacrifices occurred after exposure durations of 1day, 7 days, 4 weeks and 13 weeks post-exposure, when both blood and lung lavage fluid were collected for analysis. Lavage and blood assays included leukocyte distribution by flow cytometry, electron/fluorescent microscopy, and cytokine concentration. Cytokine production profiles following mitogenic stimulation were performed on whole blood only. Results: Untreated lavage fluid was comprised primarily of pulmonary macrophages. Lunar dust inhalation resulted in an influx of neutrophils and lymphocytes. Although the percentage of lymphocytes increased, the T cell CD4:CD8 ratio was unchanged. Cytokine analysis of the lavage fluid showed increased levels of IL-1b and TNFa. These alterations generally persisted through the 13 week sampling. Blood analysis showed few systemic effects from the lunar dust inhalation. By week 4, the peripheral granulocyte percentage was elevated in the treated rats. Plasma cytokine levels were unchanged in all treated rats compared to controls. Peripheral blood analysis showed an increased granulocyte percentage and altered cytokine production profiles consisting of increased in IL-1b and IL-6, and decreased IL-2

  11. Carbohydrate and protein contents of grain dusts in relation to dust morphology.

    PubMed Central

    Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A

    1986-01-01

    Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476

  12. Preliminary assessment of an economical fugitive road dust sampler for the collection of bulk samples for geochemical analysis.

    PubMed

    Witt, Emitt C; Wronkiewicz, David J; Shi, Honglan

    2013-01-01

    Fugitive road dust collection for chemical analysis and interpretation has been limited by the quantity and representativeness of samples. Traditional methods of fugitive dust collection generally focus on point-collections that limit data interpretation to a small area or require the investigator to make gross assumptions about the origin of the sample collected. These collection methods often produce a limited quantity of sample that may hinder efforts to characterize the samples by multiple geochemical techniques, preserve a reference archive, and provide a spatially integrated characterization of the road dust health hazard. To achieve a "better sampling" for fugitive road dust studies, a cyclonic fugitive dust (CFD) sampler was constructed and tested. Through repeated and identical sample collection routes at two collection heights (50.8 and 88.9 cm above the road surface), the products of the CFD sampler were characterized using particle size and chemical analysis. The average particle size collected by the cyclone was 17.9 μm, whereas particles collected by a secondary filter were 0.625 μm. No significant difference was observed between the two sample heights tested and duplicates collected at the same height; however, greater sample quantity was achieved at 50.8 cm above the road surface than at 88.9 cm. The cyclone effectively removed 94% of the particles >1 μm, which substantially reduced the loading on the secondary filter used to collect the finer particles; therefore, suction is maintained for longer periods of time, allowing for an average sample collection rate of about 2 g mi. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  13. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm     ... ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated ... cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of ...

  14. Fast camera observations of injected and intrinsic dust in TEXTOR

    NASA Astrophysics Data System (ADS)

    Shalpegin, A.; Vignitchouk, L.; Erofeev, I.; Brochard, F.; Litnovsky, A.; Bozhenkov, S.; Bykov, I.; den Harder, N.; Sergienko, G.

    2015-12-01

    Stereoscopic fast camera observations of pre-characterized carbon and tungsten dust injection in TEXTOR are reported, along with the modelling of tungsten particle trajectories with MIGRAINe. Particle tracking analysis of the video data showed significant differences in dust dynamics: while carbon flakes were prone to agglomeration and explosive destruction, spherical tungsten particles followed quasi-inertial trajectories. Although this inertial nature prevented any validation of the force models used in MIGRAINe, comparisons between the experimental and simulated lifetimes provide a direct evidence of dust temperature overestimation in dust dynamics codes. Furthermore, wide-view observations of the TEXTOR interior revealed the main production mechanism of intrinsic carbon dust, as well as the location of probable dust remobilization sites.

  15. Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  16. Cosmic Dust Catalog

    NASA Astrophysics Data System (ADS)

    Warren, J.; Watts, L.; Thomas-Keprta, K.; Wentworth, S.; Dodson, A.; Zolensky, Michael E.

    1997-07-01

    Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined and cataloged, and then made available to the scientific community for research. Cosmic dust thereby joins lunar samples and meteorites as an additional source of extraterrestrial materials for scientific study. This catalog summarizes preliminary observations on 468 particles retrieved from collection surfaces L2021 and L2036. These surfaces were flat plate Large Area Collectors (with a 300 cm2 surface area each) which was coated with silicone oil (dimethyl siloxane) and then flown aboard a NASA ER-2 aircraft during a series of flights that were made during January and February of 1994 (L2021) and June 7 through July 5 of 1994 (L2036). Collector L2021 was flown across the entire southern margin of the US (California to Florida), and collector L2036 was flown from California to Wallops Island, VA and on to New England. These collectors were installed in a specially constructed wing pylon which ensured that the necessary level of cleanliness was maintained between periods of active sampling. During successive periods of high altitude (20 km) cruise, the collectors were exposed in the stratosphere by barometric controls and then retracted into sealed storage container-s prior to descent. In this manner, a total of 35.8 hours of stratospheric exposure was accumulated for collector L2021, and 26 hours for collector L2036.

  17. High Energy Studies of Astrophysical Dust

    NASA Astrophysics Data System (ADS)

    Corrales, Lia Racquel

    Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how

  18. Re-Evaluation of Dust Radiative Forcing Using Remote Measurements of Dust Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Karnieli, Arnon; Remer, Lorraine A.

    1998-01-01

    Spectral remote observations of dust properties from space and from the ground creates a powerful tool for determination of dust absorption of solar radiation with an unprecedented accuracy. Absorption is a key component in understanding dust impact on climate. We use Landsat spaceborne measurements at 0.47 to 2.2 microns over Senegal with ground based sunphotometers to find that Saharan dust absorption of solar radiation is two to four times smaller than in models. Though dust absorbs in the blue, almost no absorption was found for wavelengths greater 0.6 microns. The new finding increases by 50% recent estimated solar radiative forcing by dust and decreases the estimated dust heating of the lower troposphere. Dust transported from Asia shows slightly higher absorption probably due to the presence of black carbon from populated regions. Large scale application of this method to satellite data from the Earth Observing System can reduce significantly the uncertainty in the dust radiative effects.

  19. Magnetic and geochemical characterization of iron pollution in subway dusts in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Zhang, Weiguo; Jiang, Huimin; Dong, Chenyin; Yan, Qun; Yu, Lizhong; Yu, Yang

    2011-06-01

    Dust samples collected from subway platforms in Shanghai, China, have been examined using magnetic measurements and geochemical analysis. Our results indicate that the Shanghai subway platform dusts have extremely strong magnetic signatures. These results, combined with X-ray diffraction analysis and scanning and transmission electron microscope examinations, indicate that the magnetic mineralogy of the dust is dominated by iron scraps due to wheel-rail mechanical abrasion and spherules rich in magnetite from fossil fuel combustion. Although the magnetic particles are primarily micrometer sized, fine submicron magnetic grains are also evident in the dust. The underground platform dusts have a much higher iron flake abundance and magnetic susceptibility than those from aboveground platforms because the latter ones are diluted by inputs of magnetically weaker ambient aerosols with a higher proportion of magnetite spherules. Geochemical analysis indicates that underground platform dusts have elevated Fe and Mn, but lower Al and Ti contents relative to aboveground subway dust. This is consistent with the closed nature of underground platforms, which therefore reduces exposure to soil-derived dust. Since the adverse environmental effects of subway particles may be linked to higher contents of iron and other metals, our results demonstrate that magnetic measurements provide a novel and effective approach for characterizing iron mineralogy and grain size in subway dusts.

  20. Development of an electrostatic dust detector for tungsten dust

    NASA Astrophysics Data System (ADS)

    Starkey, D.; Hammond, K.; Roquemore, L.; Skinner, C. H.

    2012-10-01

    Next-step fusion reactors, such as ITER, are expected to have large quantities of dust that will present hazards that have yet to be encountered in current fusion devices. To manage the amount of dust within the reactors a real-time dust detector must be implemented to ensure that dust does not reach hazardous levels. An electrostatic device that accomplishes this has already been tested on NSTX and Tore Supra [1,2]. We will present modifications of this device to improve its ruggedness to withstand the conditions that will be present in ITER. The detector consists of two tungsten wires wrapped around a macor cylinder that are biased at 100-300 V. Incident dust causes a measurable transient short circuit. Initial results have demonstrated the detection of tungsten particles. We will also present a potential method of electrostatic cleaning of residual dust from the detector.[4pt] [1] C. H. Skinner et al., Rev. Sci. Instrum., 81, 10E102 (2010)[0pt] [2] H. Roche et al., Phys. Scr., T145, (2011).

  1. Modeling light scattering by mineral dust particles using spheroids

    NASA Astrophysics Data System (ADS)

    Merikallio, Sini; Nousiainen, Timo

    Suspended dust particles have a considerable influence on light scattering in both terrestrial and planetary atmospheres and can therefore have a large effect on the interpretation of remote sensing measurements. Assuming dust particles to be spherical is known to produce inaccurate results when modeling optical properties of real mineral dust particles. Yet this approximation is widely used for its simplicity. Here, we simulate light scattering by mineral dust particles using a distribution of model spheroids. This is done by comparing scattering matrices calculated from a dust optical database of Dubovik et al. [2006] with those measured in the laboratory by Volten et al. [2001]. Wavelengths of 441,6 nm and 632,8 nm and refractive indexes of Re = 1.55 -1.7 and Im = 0.001i -0.01i were adopted in this study. Overall, spheroids are found to fit the measurements significantly better than Mie spheres. Further, we confirm that the shape distribution parametrization developed in Nousiainen et al. (2006) significantly improves the accuracy of simulated single-scattering for small mineral dust particles. The spheroid scheme should therefore yield more reliable interpretations of remote sensing data from dusty planetary atmospheres. While the spheroidal scheme is superior to spheres in remote sensing applications, its performance is far from perfect especially for samples with large particles. Thus, additional advances are clearly possible. Further studies of the Martian atmosphere are currently under way. Dubovik et al. (2006) Application of spheroid models to account for aerosol particle nonspheric-ity in remote sensing of desert dust, JGR, Vol. 111, D11208 Volten et al. (2001) Scattering matrices of mineral aerosol particles at 441.6 nm and 632.8 nm, JGR, Vol. 106, No. D15, pp. 17375-17401 Nousiainen et al. (2006) Light scattering modeling of small feldspar aerosol particles using polyhedral prisms and spheroids, JQSRT 101, pp. 471-487

  2. Hot Dust in Ultraluminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Shchekinov, Yu. A.; Vasiliev, E. O.

    2017-12-01

    Ultraluminous infrared galaxies with total luminosities an order of magnitude greater than that of our galaxy over wavelengths of λλ = 10-800 μm are characterized by a high mass concentration of dust. Because of this, the optical thickness of the interstellar gas is extremely high, especially in the central regions of the galaxies, ranging from 1 at millimeter wavelengths to 104 in the visible. The average temperature of the dust in them is about Td=30 K, but the variations from one galaxy to another are large, with Td=20-70 K. The main source of dust in these galaxies seems to be type II supernova bursts and the main heating source is stars. In addition, given that shock waves from supernovae are an effective mechanism for destruction of interstellar dust in our galaxy and the high optical thickness of the gas with respect to the heating radiation from the stars, this conclusion merits detailed analysis. This paper provides estimates of the dust mass balance and details of its heating in these galaxies based on the example of the ultraluminous galaxy closest to us, Arp 220. It is shown that when supernovae are dominant in the production and destruction of dust in the interstellar gas, the resultant dust mass fraction is close to the observed value for Arp 220. It is also found that the observed stellar population of this galaxy can support a high ( Td ≃ 67 K ) temperature if the dust in its central region is concentrated in small, dense (n 105 cm-3) clouds with radii of 0.003 ≲ pc. Mechanisms capable of maintaining an interstellar gas structure in this state are discussed.

  3. UV extinction properties of carina nebular dust

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1993-01-01

    I have performed an analysis of the UV extinction by dust along the line of sight to the young open cluster Tr 16. The observed curves are parameterized in order to extract quantitative information about the structure of the curves. Furthermore, by constructing differential extinction curves, obtained by differencing curves for stars which lie within a few arc seconds of each other on the sky, I was able to obtain a curve which is free of the effects of foreground extinction, and represents the extinction by the dust in the Tr 16 molecular cloud. I then show that this curve is nearly identical to one due to dust in the Orion molecular cloud. This result shows that dust in the Carina arm exhibits the same behavior as that in the local arm.

  4. Use of metallurgical dust for removal chromium ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Pająk, Magdalena; Dzieniszewska, Agnieszka; Kyzioł-Komosińska, Joanna; Chrobok, Michał

    2018-01-01

    The aim of the study was to determine the potential for the application of dust from steel plant as an effective sorbent for removing Cr(III) and Cr(VI) in the form of simple and complex ions - Acid Blue 193 dye from aqueous solutions. Three isotherms models were used to interpret the experimental results namely: Langmuir, Freundlich, and Dubinin-Radushkevich. Estimated equations parameters allowed to determine the binding mechanism. Based on laboratory studies it was found that the dust was characterized by high sorption capacities for Cr ions and dye from the aqueous solution. The sorption capacity of the dust for Cr(III) and Cr(VI) ions depended on the degree of oxidation, pH of solution and kind of anion and changed in series: Cr(III)-Cl pH=5.0> Cr(III)-SO4 pH=5.0> Cr(III)-Cl pH=3.0> Cr(III)-SO4 pH=3.0> Cr(VI) pH=5.0> Cr(VI) pH=3.0. Dust was also characterized by a high maximum sorption capacity of dye at a range of 38.2 - 91.7 mg/g, depending on the dose of dust. Based on the study it was found that dust from a steel plant, containing iron oxides, can be used as low-cost and effective sorbent to remove pollutions containing chromium ions, especially from acidic wastewater.

  5. A parameterization of dust emission (PM10) fluxes of dust events observed at Naiman in Inner Mongolia using the monitored tower data

    NASA Astrophysics Data System (ADS)

    Park, Soon-Ung; Ju, Jae-Won; Lee, In-Hye; Joo, Seung Jin

    2016-09-01

    The optimal regression equations for the dust emission flux parameterized with the friction velocity (u*) only, the friction velocity with the threshold friction velocity (u*t) and the friction velocity together with the flux Richardson number (Rf) in the dust source region are derived using the sonic anemometer measured momentum and kinematic heat fluxes at 8 m height and the two-level (3 m and 15 m height) measured PM10 concentrations from a 20-m monitoring tower located at Naiman in the Asian dust source region in China for the period from March 2013 to November 2014. The analysis period is divided into three sub-periods based on the Normalized Difference Vegetation Index (NDVI) to eliminate the effect of vegetation on the dust emission flux. The dust event is identified as a peak half hourly mean dust concentration (PM10) at 3 m height exceeding the sub-period mean dust concentration plus one standard deviation of the sub-period. The total of 317 dust events is identified with the highest number of dust event of 18.8 times a month in summer. The optimal regression equations of the dust emission flux (Fc) for dust events parameterized with u* and Rf are found to simulate quite well the dust emission flux estimated by the observed data at the site for all periods especially for the unstable stratification, suggesting the potential usefulness of these equations parameterized by u* with Rf rather than those by u* only and u* together with u*t for the estimation of the dust emission flux in the Asian dust source region.

  6. Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.

    1996-01-01

    The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar

  7. Systematic characterization of structural, dynamical and electrical properties of dust devils and implications for dust lifting processes

    NASA Astrophysics Data System (ADS)

    Franzese, Gabriele; Esposito, Francesca; Lorenz, Ralph D.; Popa, Ciprian; Silvestro, Simone; Deniskina, Natalia; Cozzolino, Fabio

    2017-04-01

    Dust devils are convective vortices able to lift sand and dust grains from the soil surface, even in conditions of low wind speed environment. They have been observed not only on Earth but also on other planets of the solar system; in particular, they are largely studied on Mars. Indeed, the contribution of the dust devils to the Martian climate is a highly debated question. In order to investigate this topic, it is important to understand the nature of the dust lifting mechanism by the vortex and characterize the induced electric field. As part of the development process of DREAMS, the meteorological station on board the Schiapparelli lander of the ExoMars 2016 mission, and of the Dust complex package of the ExoMars 2020 mission, we performed various field campaigns in the Sahara desert (Tafilalt region, Morocco). We deployed a fully equipped meteorological station and, during the 2014 summer, we observed three months of dust devils activity, collecting almost six hundreds events. For each dust devil, we monitored the horizontal wind speed and direction, the vertical wind speed, the pressure drop due to the vortex core, the temperature, the induced electric field and the concentration of dust lifted. This data set is unique in literature and represents up to now the most comprehensive one available for the dusty convective vortices. Here we will present the analysis of the Moroccan data with particular emphasis on the study of the atmospheric electric field variations due to the passage of the vortices. The distribution of the vortex parameters (wind speed and direction, pressure, E-field and dust lifted) are showed and compared, when possible, to the ones observed by the Martian surveys. The connection between the E-field and the other parameters will be presented. In the terrestrial environment, the development of the convective vortices is restricted by the presence of the vegetation and of the urban areas, hence dust devils can impact the climate only on local

  8. Impact ionisation mass spectrometry of platinum-coated olivine and magnesite-dominated cosmic dust analogues

    NASA Astrophysics Data System (ADS)

    Hillier, Jon K.; Sternovsky, Z.; Kempf, S.; Trieloff, M.; Guglielmino, M.; Postberg, F.; Price, M. C.

    2018-07-01

    Impact ionisation mass spectrometry enables the composition of cosmic dust grains to be determined in situ by spacecraft-based instrumentation. The proportion of molecular ions in the impact plasma is a function of the impact velocity, making laboratory calibration vital for the interpretation of the mass spectra, particularly at the low velocities typical of lunar or asteroid encounters. Here we present an analysis of laboratory impact ionisation mass spectra from primarily low (<15 km s-1) velocity impacts of both olivine and magnesite-dominated particles onto the SUrface Dust Mass Analyzer (SUDA) laboratory mass spectrometer. The cation mass spectra show characteristic peaks due to their constituent elements, with Mg, Al, Si, C, Ca, O and Fe frequently present. Contaminant species from the conductive coating process (B, Na, K, C, Pt) also occur, at varying frequencies. Possible saponite or talc inclusions in the magnesite particles are revealed by the presence of Si, Fe, Ca and Al in the magnesite mass spectra. Magnesium is clearly present at the lowest impact velocities (3 km s-1), at which alkali metals were presumed to dominate. Peaks attributed to very minor amounts of water or hydroxyl present in the grains are also seen at low velocities in both cation and anion mass spectra, demonstrating the feasibility of impact ionisation mass spectrometry in identifying hydrated or hydrous minerals, during very low velocity encounters or with very low abundances of water or hydroxy groups, in the impinging grains. Velocity thresholds for the reliable identification of the major elements within the magnesite and olivine cation spectra are presented. Additionally, relative sensitivity factors for Mg (5.1), Fe (1.5) and O (0.6) with respect to Si, in the olivine particles, at impact speeds >19 km s-1, were found to be very similar to those previously determined for orthopyroxene-dominated particles, despite different target and projectile materials. This confirms that

  9. Imaging-based dust sensors: equipment and methods

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Greco, Sonia

    2004-05-01

    to become "blind" to dust as dust presence increases, on the other hand severe dust production conditions is exactly the case where control strategies have to be applied to realize safer conditions for the workers. In this paper the possibility to utilize a new logic to perform an "on-line" airborne dust sampling and analysis utilizing imaging is described with particular reference to dusts flowing in a duct after the caption and before their abatement by classical mechanical filtering. The study was particularly addressed to define, design and implement a logic able to extract those parameters affecting airborne dust behavior with respect to its efficient abatement. All dust sampling was performed directly in an industrial plant where tests were carried out in a controlled environment.

  10. Martian Dust Collected by Phoenix's Arm

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image from NASA's Phoenix Lander's Optical Microscope shows particles of Martian dust lying on the microscope's silicon substrate. The Robotic Arm sprinkled a sample of the soil from the Snow White trench onto the microscope on July 2, 2008, the 38th Martian day, or sol, of the mission after landing.

    Subsequently, the Atomic Force Microscope, or AFM, zoomed in one of the fine particles, creating the first-ever image of a particle of Mars' ubiquitous fine dust, the most highly magnified image ever seen from another world.

    The Atomic Force Microscope was developed by a Swiss-led consortium in collaboration with Imperial College London. The AFM is part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer instrument.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Cooling of the North Atlantic by Saharan Dust

    NASA Technical Reports Server (NTRS)

    Lau, K. M.; Kim, K. M.

    2007-01-01

    Using aerosol optical depth, sea surface temperature, top-of-the-atmosphere solar radiation flux, and oceanic mixed-layer depth from diverse data sources that include NASA satellites, NCEP reanalysis, in situ observations, as well as long-term dust records from Barbados, we examine the possible relationships between Saharan dust and Atlantic sea surface temperature. Results show that the estimated anomalous cooling pattern of the Atlantic during June 2006 relative to June 2005 due to attenuation of surface solar radiation by Saharan dust remarkably resemble observations, accounting for approximately 30-40% of the observed change in sea surface temperature. Historical data analysis show that there is a robust negative correlation between atmospheric dust loading and Atlantic SST consistent with the notion that increased (decreased) Saharan dust is associated with cooling (warming) of the Atlantic during the early hurricane season (July- August-September).

  12. Chemical Evolution of Interstellar Dust into Planetary Materials

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    residues wherein the H, C and N are largely retained and ultimately accreted in cometary dust. The abundance of O is about the same for cometary dust, meteorites and interstellar dust. In all these samples, most of O in a solid phase is bonded to silicates. In dense molecular clouds, the abundance of O in dust+mantles is significantly higher then in cometary dust. This difference may reflect the greater lability of oxygenated species toward astrophysical processing. Laboratory studies show that O-bearing functional groups in organic compounds tend to be relatively easily removed by heating and/or UV and particle irradiation . In Halley's coma, O-containing organic grains, being unstable, were located closest to the nucleus. The decomposition of the organic grain component in the coma provided a significant extended source contribution to O-containing gaseous species such as CO and H2CO.

  13. Global dust cycle

    NASA Astrophysics Data System (ADS)

    Ridgwell, Andy

    Dust, micron to submicron particles and mostly comprising soil mineral fragments, affects a multitude of climatic and biogeochemical processes during its journey from its sources on land to sinks on land and in the ocean. Suspended in the atmosphere, the presence of dust can alter both shortwave and longwave radiation balances, enhance cloud nucleation, and affect photochemical reaction rates. Deposited to the land surface, dust has beneficial impacts on soil quality but detrimental implications for human health. At the interface of surface ocean and lower atmosphere, dust deposited to seawater supplies plankton with the essential micronutrient iron and hence provides an important control on marine ecosystems. This chapter reviews these various roles of dust in the Earth system; summarizes the factors controlling the production, transport, and deposition of dust; and, because the causes and consequences of dust are interlinked via climate and atmospheric CO2, discusses the potential importance of dusty feedback in past and future climate change.

  14. Cesium Speciation in Dust from Municipal Solid Waste and Sewage Sludge Incineration by Synchrotron Radiation Micro-X-ray Analysis.

    PubMed

    Shiota, Kenji; Takaoka, Masaki; Fujimori, Takashi; Oshita, Kazuyuki; Terada, Yasuko

    2015-11-17

    The chemical behavior of Cs in waste incineration processes is important to consider when disposing of radionuclide-contaminated waste from the Fukushima Daiichi nuclear power plant accident in Japan. To determine the speciation of Cs, we attempted the direct speciation of trace amounts of stable Cs in the dust from municipal solid waste incineration (MSWI) and sewage sludge incineration (SSI) by micro-X-ray fluorescence (μ-XRF) and micro-X-ray absorption fine structure (μ-XAFS) at the SPring-8 facility. The μ-XRF results revealed that locally produced Cs was present in MSWI and SSI dust within the cluster size range of 2-10 μm. The μ-XAFS analysis confirmed that the speciation of Cs in MSWI dust was similar to that of CsCl, while in SSI dusts it was similar to pollucite. The solubility of Cs was considered to be influenced by the exact Cs species present in incineration residue.

  15. Investigation of dust storms entering Western Iran using remotely sensed data and synoptic analysis.

    PubMed

    Boloorani, Ali D; Nabavi, Seyed O; Bahrami, Hosain A; Mirzapour, Fardin; Kavosi, Musa; Abasi, Esmail; Azizi, Rasoul

    2014-01-01

    One of the natural phenomena which have had considerable impacts on various regions of the world, including Iran, is "dust storm". In recent years, this phenomenon has taken on new dimensions in Iran and has changed from a local problem to a national issue. This study is an attempt to investigate the formation of the dust storms crossing the Western Iran. To find the sources of the dust storms entering Iran, first we examine three determined dust paths in the region and their temporal activities, using MODIS satellite images. Then, four regions were identified as dust sources through soil, land cover and wind data. Finally, atmospheric analyses are implemented to find synoptic patterns inducing dust storms. Source 1 has covered the region between the eastern banks of Euphrates and western banks of Tigris. Source 2 is in desert area of western and south-western Iraq. Finally source 3 is bounded in eastern and south-eastern deserts of Saudi Arabia called Rub-Al-Khali desert, or Empty Quarter. Moreover, south-eastern part of Iraq (source 4) was also determined as a secondary source which thickens the dust masses originating from the above mentioned sources. The study of synoptic circulations suggests that the dust storms originating from source 1 are formed due to the intense pressure gradient between the low-pressure system of Zagros and a high-pressure cell formed on Mediterranean Sea. The dust events in sources 2 and 3 are outcomes of the atmospheric circulations dominant in the cold period of the year in mid-latitudes.

  16. Instrument Synthesis and Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Wood, H. John

    2004-01-01

    The topics addressed in this viewgraph presentation include information on 1) Historic instruments at Goddard; 2) Integrated Design Capability at Goddard; 3) The Instrument Synthesis and Analysis Laboratory (ISAL).

  17. Dust sources and atmospheric circulation in concert controlling Saharan dust emission and transport towards the Western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Schepanski, Kerstin; Mallet, Marc; Heinold, Bernd; Ulrich, Max

    2017-04-01

    Dust transported from north African source regions towards Europe is a ubiquitous phenomenon in the Mediterranean region, a geographic region that is in part densely populated. Besides its impacts on the atmospheric radiation budget, dust suspended in the atmosphere results in reduced air quality, which is generally sensed as a reduction in quality of life. Furthermore, the exposure to dust aerosols enhances the prevalence of respiratory diseases, which reduces the general human wellbeing, and ultimately results in an increased loss of working hours due to illness and hospitalization rates. Characteristics of the atmospheric dust life cycle that determine dust transport will be presented with focus on the ChArMEx special observation period in June and July 2013 using the atmosphere-dust model COSMO-MUSCAT (COSMO: Consortium for Small-scale MOdeling; MUSCAT: MUltiScale Chemistry Aerosol Transport Model). Modes of atmospheric circulation were identified from empirical orthogonal function (EOF) analysis of the geopotential height at 850 hPa for summer 2013 and compared to EOFs calculated from 1979-2015 ERA-Interim reanalysis. Generally, two different phases were identified. They are related to the eastward propagation of the subtropical ridge into the Mediterranean basin, the position of the Saharan heat low, and the predominant Iberian heat low. The relation of these centres of action illustrates a dipole pattern for enhanced (reduced) dust emission fluxes, stronger (weaker) meridional dust transport, and consequent increase (decrease) atmospheric dust concentrations and deposition fluxes. In concert, the results from this study aim at illustrating the relevance of knowing the dust source locations in concert with the atmospheric circulation. Ultimately, this study addresses the question of what is finally transported towards the Mediterranean basin and Europe from which source regions - and fostered by which atmospheric circulation pattern. Outcomes from this study

  18. Urban dust in the Guanzhong Basin of China, part I: A regional distribution of dust sources retrieved using satellite data.

    PubMed

    Long, Xin; Li, Nan; Tie, Xuexi; Cao, Junji; Zhao, Shuyu; Huang, Rujin; Zhao, Mudan; Li, Guohui; Feng, Tian

    2016-01-15

    Urban dust pollution has been becoming an outstanding environmental problem due to rapid urbanization in China. However, it is very difficult to construct an urban dust inventory, owing to its small horizontal scale and strong temporal/spatial variability. With the analysis of visual interpretation, maximum likelihood classification, extrapolation and spatial overlaying, we quantified dust source distributions of urban constructions, barrens and croplands in the Guanzhong Basin using various satellite data, including VHR (0.5m), Lansat-8 OLI (30 m) and MCD12Q1 (500 m). The croplands were the dominant dust sources, accounting for 40% (17,913 km(2)) of the study area in summer and 36% (17,913 km(2)) in winter, followed by barrens, accounting for 5% in summer and 10% in winter. Moreover, the total constructions were 126 km(2), including 84% of active and 16% inactive. In addition, 59% of the constructions aggregated on the only megacity of the study area, Xi'an. With high accuracy exceeding 88%, the proposed satellite-data based method is feasible and valuable to quantify distributions of dust sources. This study provides a new perspective to evaluate regional urban dust, which is seldom quantified and reported. In a companied paper (Part-2 of the study), the detailed distribution of the urban dust sources is applied in a dynamical/aerosol model (WRF-Dust) to assess the effect of dust sources on aerosol pollution. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Dust Devil Tracks

    NASA Image and Video Library

    2017-03-06

    This image captured by NASA 2001 Mars Odyssey spacecraft shows dust devil tracks in Aonia Terra. As the dust devil moves along the surface it scours the dust and fine materials away, revealing the darker rocky surface below the dust. Orbit Number: 66962 Latitude: -68.8221 Longitude: 241.346 Instrument: VIS Captured: 2017-01-17 13:13 http://photojournal.jpl.nasa.gov/catalog/PIA21501

  20. Nonlinear dust-lattice waves: a modified Toda lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cramer, N. F.

    Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.

  1. Combustibility determination for cotton gin dust and almond huller dust

    USDA-ARS?s Scientific Manuscript database

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar (OSHA, 2009), can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, OSHA initiated action to develop a mandatory standard to comprehen...

  2. Preliminary measurements of kinetic dust temperature using stereoscopic particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Williams, Jeremiah; Thomas, Edward

    2004-11-01

    A dusty (or complex) plasma is a four-component system composed of ions, electrons, neutral particles and charged microparticles. The presence of the microparticle (i.e., dust) component alters the plasma environment, giving rise to a wide variety of new plasma phenomena. Recently, the Auburn Plasma Sciences Laboratory (PSL) has acquired and installed a stereoscopic PIV (stereo-PIV) diagnostic tool for dusty plasma investigations [Thomas, et. al., Phys. Plasmas, 11, L37 (2004)]. This presentation discusses the use of the stereo-PIV technique for determining the velocity space distribution function of the microparticle component of a dc glow discharge dusty plasma. These distribution functions are then used to make preliminary estimates of the kinetic temperature of the dust component. The data is compared to a simple energy balance model that relates the dust temperature to the electric field and neutral pressure.

  3. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  4. Summertime Dust Devil

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-464, 26 August 2003

    Dust devils are spinning, columnar vortices of air that move across a landscape, picking up dust as they go. They are common occurrences during summer on Mars. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer, shows a dust devil in the Phlegra region of Mars near 32.0oN, 182.1oW. Sunlight illuminates the scene from the lower left; the dust devil is casting a columnar shadow toward the upper right. Some dust devils on Mars make streaks as they disrupt the fine coating of dust on the surface--but others do not make streaks. This one did not make a streak. The view shown here is 3 km (1.9 mi) wide.

  5. Comparability of river suspended-sediment sampling and laboratory analysis methods

    USGS Publications Warehouse

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  6. Signal-adapted tomography as a tool for dust devil detection

    NASA Astrophysics Data System (ADS)

    Aguirre, C.; Franzese, G.; Esposito, F.; Vázquez, Luis; Caro-Carretero, Raquel; Vilela-Mendes, Rui; Ramírez-Nicolás, María; Cozzolino, F.; Popa, C. I.

    2017-12-01

    Dust devils are important phenomena to take into account to understand the global dust circulation of a planet. On Earth, their contribution to the injection of dust into the atmosphere seems to be secondary. Elsewhere, there are many indications that the dust devil's role on other planets, in particular on Mars, could be fundamental, impacting the global climate. The ability to identify and study these vortices from the acquired meteorological measurements assumes a great importance for planetary science. Here we present a new methodology to identify dust devils from the pressure time series testing the method on the data acquired during a 2013 field campaign performed in the Tafilalt region (Morocco) of the North-Western Sahara Desert. Although the analysis of pressure is usually studied in the time domain, we prefer here to follow a different approach and perform the analysis in a time signal-adapted domain, the relation between the two being a bilinear transformation, i.e. a tomogram. The tomographic technique has already been successfully applied in other research fields like those of plasma reflectometry or the neuronal signatures. Here we show its effectiveness also in the dust devils detection. To test our results, we compare the tomography with a phase picker time domain analysis. We show the level of agreement between the two methodologies and the advantages and disadvantages of the tomographic approach.

  7. Mitigation of soiling losses in solar collectors: Removal of surface-adhered dust particles using an electrodynamic screen

    NASA Astrophysics Data System (ADS)

    Sayyah, Arash

    Particulate contamination of the optical surfaces of solar collectors, often called "soiling", can have a significant deteriorating impact on energy yield due to the absorption and scattering of incident light. Soiling has more destructive effect on concentrated solar systems than on flat-plate photovoltaic panels, as the former are incapable of converting scattered sunlight. The first part of this thesis deals with the soiling losses of flat-plate photovoltaic (PV), concentrated solar power (CSP), and concentrated photovoltaic (CPV) systems in operation in several regions of the world. Influential parameters in dust accumulation losses, as well as different cleaning mechanisms in pursuit of restoring the efficiency of soiled systems, have been thoroughly investigated. In lieu of the most commonly-practiced manual cleaning method of using high-pressure water jets, the concept of automatic dust removal using the electrostatic forces of electrodynamic screen (EDS) technology is in a developmental stage and on its way toward commercialization. This thesis provides comprehensive analytical solutions for the electric potential and electric field distribution in EDS devices having different configurations. Numerical simulations developed using finite element analysis (FEA) software have corroborated the analytical solutions which can easily be embedded into software programs for particle trajectory simulations while also providing flexibility and generality in the study on the effect of different parameters of the EDS on the electric field and ensuing dust-removal performance. Evaluation and comparison of different repelling and attracting forces exerted on dust particles is of utmost importance to a detailed analysis of EDS performance in dust removal. Hence, the balance of electrostatic and adhesion forces, including van der Waals and capillary forces, have received significant attention in this dissertation. Furthermore, different numerical analyses have been

  8. Application of wind-profiling radar data to the analysis of dust weather in the Taklimakan Desert.

    PubMed

    Wang, Minzhong; Wei, Wenshou; Ruan, Zheng; He, Qing; Ge, Runsheng

    2013-06-01

    The Urumqi Institute of Desert Meteorology of the China Meteorological Administration carried out an atmospheric scientific experiment to detect dust weather using a wind-profiling radar in the hinterland of the Taklimakan Desert in April 2010. Based on the wind-profiling data obtained from this experiment, this paper seeks to (a) analyze the characteristics of the horizontal wind field and vertical velocity of a breaking dust weather in a desert hinterland; (b) calculate and give the radar echo intensity and vertical distribution of a dust storm, blowing sand, and floating dust weather; and (c) discuss the atmosphere dust counts/concentration derived from the wind-profiling radar data. Studies show that: (a) A wind-profiling radar is an upper-air atmospheric remote sensing system that effectively detects and monitors dust. It captures the beginning and ending of a dust weather process as well as monitors the sand and dust being transported in the air in terms of height, thickness, and vertical intensity. (b) The echo intensity of a blowing sand and dust storm weather episode in Taklimakan is about -1~10 dBZ while that of floating dust -1~-15 dBZ, indicating that the dust echo intensity is significantly weaker than that of precipitation but stronger than that of clear air. (c) The vertical shear of horizontal wind and the maintenance of low-level east wind are usually dynamic factors causing a dust weather process in Taklimakan. The moment that the low-level horizontal wind field finds a shear over time, it often coincides with the onset of a sand blowing and dust storm weather process. (d) When a blowing sand or dust storm weather event occurs, the atmospheric vertical velocity tends to be of upward motion. This vertical upward movement of the atmosphere supported with a fast horizontal wind and a dry underlying surface carries dust particles from the ground up to the air to form blown sand or a dust storm.

  9. A numerical study on dust devils with implications to global dust budget estimates

    USDA-ARS?s Scientific Manuscript database

    The estimates of the contribution of dust devils (DDs) to the global dust budget have large uncertainties because the dust emission mechanisms in DDs are not yet well understood. In this study, a large-eddy simulation model coupled with a dust scheme is used to investigate DD dust entrainment. DDs a...

  10. Mars Atmospheric Chemistry in Electrified Dust Devils and Storms

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.; Wong, A.-S.; Renno, N. O.; Sentmann, D. D.; Marshall, J. G.; Cummer, S. A.; Rafkin, S.; Catling, D.

    2005-01-01

    Laboratory studies, simulations and desert field tests all indicate that aeolian mixing dust can generate electricity via contact electrification or "triboelectricity". In convective structures like dust devils or storms, grain stratification (or charge separation) occurs giving rise to an overall electric dipole moment to the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous simulation studies [1] indicate that this storm electric field on Mars can approach atmospheric breakdown field strength of 20 kV/m. In terrestrial dust devils, coherent dipolar electric fields exceeding 20 kV/m have been measured directly via electric field instrumentation. Given the expected electrostatic fields in Martian dust devils and storms, electrons in the low pressure CO2 gas can be energized via the electric field to values exceeding the electron dissociative attachment energy of both CO2 and H2O, resulting in the formation of new chemical products CO and O- and OH and H- within the storm. Using a collisional plasma physics model we present a calculation of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with ambient electric field, with substantial production of dissociative products when fields approach breakdown levels of 20-30 kV/m.

  11. Dust Properties of Local Dust-obscured Galaxies with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 1011(L ⊙) and 4-14 × 107(M ⊙), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  12. Dust Destruction in the ISM: A Re-Evaluation of Dust Lifetimes

    NASA Technical Reports Server (NTRS)

    Jones, A. P.; Nuth, J. A., III

    2011-01-01

    There is a long-standing conundrum in interstellar dust studies relating to the discrepancy between the time-scales for dust formation from evolved stars and the apparently more rapid destruction in supernova-generated shock waves. Aims. We re-examine some of the key issues relating to dust evolution and processing in the interstellar medium. Methods. We use recent and new constraints from observations, experiments, modelling and theory to re-evaluate dust formation in the interstellar medium (ISM). Results. We find that the discrepancy between the dust formation and destruction time-scales may not be as significant as has previously been assumed because of the very large uncertainties involved. Conclusions. The derived silicate dust lifetime could be compatible with its injection time-scale, given the inherent uncertainties in the dust lifetime calculation. The apparent need to re-form significant quantities of silicate dust in the tenuous interstellar medium may therefore not be a strong requirement. Carbonaceous matter, on the other hand, appears to be rapidly recycled in the ISM and, in contrast to silicates, there are viable mechanisms for its re-formation in the ISM.

  13. Atmospheric Dynamics of Sub-Tropical Dust Storms

    NASA Astrophysics Data System (ADS)

    Pokharel, Ashok Kumar

    Meso-alpha/beta scale observational and meso-beta/gamma scale numerical model analyses were performed to study the atmospheric dynamics responsible for generating Harmattan, Saudi Arabian, and Bodele Depression dust storms. For each dust storm case study, MERRA reanalysis datasets, WRF simulated very high resolution datasets, MODIS/Aqua and Terra images, EUMETSAT images, NAAPS aerosol modelling plots, CALIPSO images, surface observations, and rawinsonde soundings were analyzed. The analysis of each dust storm carried out separately and an in-depth comparison of the events shows some similarities among the three case studies: (1) the presence of a well-organized baroclinic synoptic scale system, (2) small scale dust emission events which occurred prior to the formation of the primary large-scale dust storms, (3) cross mountain flows which produced a strong leeside inversion layer prior to the large scale dust storm, (4) the presence of thermal wind imbalance in the exit region of the mid-tropospheric jet streak in the lee of the mountains shortly after the time of the inversion formation, (5) major dust storm formation was accompanied by large magnitude ageostrophic isallobaric low-level winds as part of the meso-beta scale adjustment process, (6) substantial low-level turbulence kinetic energy (TKE), (7) formation in the lee of nearby mountains, and (8) the emission of the dust occurred initially in narrow meso-beta scale zones parallel to the mountains, and later reached the meso-alpha scale when suspended dust was transported away from the mountains. In addition to this there were additional meso-beta scale and meso-gamma scale adjustment processes resulting in Kelvin waves in the Harmattan and the Bodele Depression cases and the thermally-forced MPS circulation in all of these three cases. The Kelvin wave preceded a cold pool accompanying the air behind the large scale cold front instrumental in the major dust storm. The Kelvin wave organized the major dust

  14. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    NASA Astrophysics Data System (ADS)

    Wiacek, A.; Peter, T.; Lohmann, U.

    2010-02-01

    This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Without explicitly modelling dust emission and deposition processes, dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Practically none of the simulated air parcels reached regions where homogeneous ice nucleation can take place (T≲-40 °C) along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through regions supersaturated with respect to ice but subsaturated with respect to water, where "warm" (T≳-40 °C) ice clouds may form prior to supercooled water or mixed-phase clouds. The importance of "warm" ice clouds and the general influence of dust in the mixed-phase cloud region are highly uncertain due to

  15. Issues related to dust aerosols in the magnesite industry. I. Chamber exposure.

    PubMed

    Reichrtová, E; Takác, L

    1992-01-01

    The present paper is an overview of the experimental research into the effects of flue magnesite dust in the magnesite industry in which the raw material (magnesite) is processed into refractory magnesite clinker. The issues related to dust are divided into two problem areas: a) dust aerosol arising in the process of ore mining and consisting largely of magnesite (MgCO3) and b) dust aerosol originating during ore baking in rotatory furnaces and made up mostly of MgO. Thus, larger groups of people become exposed to these aerosols as a result of solid particles escaping into the atmosphere than in the case of occupational exposure. Experimental research carried out on laboratory animals after chamber exposure provided findings on the deposition, retention and elimination of magnesite dust, on impaired balance between magnesium and calcium leading to damage of biological membranes, on how the immune profile or reproduction and embryogenesis is impacted as well as on the possible interaction with sodium salicylate as a result of an impaired acid base balance. These findings are followed up by evidence produced in the course of biological monitoring (Part II).

  16. Mid-Infrared Spectrum of the Zodiacal Emission: Detection of Crystalline Silicates in Interplanetary Dust

    NASA Technical Reports Server (NTRS)

    Ootsubo, T.; Onaka, T.; Yamamura, I.; Ishihara, D.; Tanabe, T.; Roellig, T. L.

    2003-01-01

    Within a few astronomical units of the Sun the solar system is filled with interplanetary dust, which is believed to be dust of cometary and asteroidal origin. Spectroscopic observations of the zodiacal emission with moderate resolution provide key information on the composition and size distribution of the dust in the interplanetary space. They can be compared directly to laboratory measurements of candidate materials, meteorites, and dust particles collected in the stratosphere. Recently mid-infrared spectroscopic observations of the zodiacal emission have been made by two instruments on board the Infrared Space Observatory; the camera (ISOCAM) and the spectrophotometer (ISOPHOT-S). A broad excess emission feature in the 9-11 micron range is reported in the ISOCAM spectrum, whereas the ISOPHOT-S spectra in 6-12 microns can be well fitted by a blackbody radiation without spectral features.

  17. Respirable dust and respirable silica exposure in Ontario gold mines.

    PubMed

    Verma, Dave K; Rajhans, Gyan S; Malik, Om P; des Tombe, Karen

    2014-01-01

    A comprehensive survey of respirable dust and respirable silica in Ontario gold mines was conducted by the Ontario Ministry of Labor during 1978-1979. The aim was to assess the feasibility of introducing gravimetric sampling to replace the assessment method which used konimeters, a device which gave results in terms of number of particles per cubic centimeter (ppcc) of air. The study involved both laboratory and field assessments. The field assessment involved measurement of airborne respirable dust and respirable silica at all eight operating gold mines of the time. This article describes the details of the field assessment. A total of 288 long-term (7-8 hr) personal respirable dust air samples were collected from seven occupational categories in eight gold mines. The respirable silica (α-quartz) was determined by x-ray diffraction method. The results show that during 1978-1979, the industry wide mean respirable dust was about 1 mg/m(3), and the mean respirable silica was 0.08 mg/m(3.)The mean% silica in respirable dust was 7.5%. The data set would be useful in future epidemiological and health studies, as well as in assessment of workers' compensation claims for occupational diseases such as silicosis, chronic obstructive pulmonary disease (COPD), and autoimmune diseases such as renal disease and rheumatoid arthritis.

  18. The Effect of Dust on the Martian Polar Vortices

    NASA Technical Reports Server (NTRS)

    Guzewich, Scott D.; Toigo, A. D.; Waugh, D. W.

    2016-01-01

    The influence of atmospheric dust on the dynamics and stability of the martian polar vortices is examined, through analysis of Mars Climate Sounder observations and MarsWRF general circulation model simulations. We show that regional and global dust storms produce transient vortex warming events that partially or fully disrupt the northern winter polar vortex for brief periods. Increased atmospheric dust heating alters the Hadley circulation and shifts the downwelling branch of the circulation poleward, leading to a disruption of the polar vortex for a period of days to weeks. Through our simulations, we find this effect is dependent on the atmospheric heating rate, which can be changed by increasing the amount of dust in the atmosphere or by altering the dust optical properties (e.g., single scattering albedo). Despite this, our simulations show that some level of atmospheric dust is necessary to produce a distinct northern hemisphere winter polar vortex.

  19. The effect of dust on the martian polar vortices

    NASA Astrophysics Data System (ADS)

    Guzewich, Scott D.; Toigo, A. D.; Waugh, D. W.

    2016-11-01

    The influence of atmospheric dust on the dynamics and stability of the martian polar vortices is examined, through analysis of Mars Climate Sounder observations and MarsWRF general circulation model simulations. We show that regional and global dust storms produce ;transient vortex warming; events that partially or fully disrupt the northern winter polar vortex for brief periods. Increased atmospheric dust heating alters the Hadley circulation and shifts the downwelling branch of the circulation poleward, leading to a disruption of the polar vortex for a period of days to weeks. Through our simulations, we find this effect is dependent on the atmospheric heating rate, which can be changed by increasing the amount of dust in the atmosphere or by altering the dust optical properties (e.g., single scattering albedo). Despite this, our simulations show that some level of atmospheric dust is necessary to produce a distinct northern hemisphere winter polar vortex.

  20. A History of the Martian Dust Storms

    NASA Astrophysics Data System (ADS)

    McKim, R. J.

    2005-08-01

    The author reviews historical observations of Martian dust storms from the earliest telescopic records up to the present day (see R.J.McKim, Telescopic Martian Dust Storms: A Narrative and Catalogue, Memoirs of the British Astronomical Association, volume 44, 1999 (166 pp)). The earliest record begins with Maraldi in 1704. The term ``yellow cloud" was coined by Burton (1879). The first event which attracted much attention was the regional dust storm of 1894 October-November. The first planet-encircling event was that of 1909. The daily evolution of dust storms began to be studied in 1911; photography would not help until 1922. Other milestones in our understanding of the phenomenon are illustrated and explained. The telescopic literature is littered with errors of fact and interpretation, and the author describes some of the pitfalls and successes in the analysis of old telescopic records.

  1. Assessment of respirable dust exposures in an opencast coal mine.

    PubMed

    Onder, M; Yigit, E

    2009-05-01

    All major opencast mining activities produce dust. The major operations that produce dust are drilling, blasting, loading, unloading, and transporting. Dust not only deteriorates the environmental air quality in and around the mining site but also creates serious health hazards. Therefore, assessment of dust levels that arise from various opencast mining operations is required to prevent and minimize the health risks. To achieve this objective, an opencast coal mining area was selected to generate site-specific emission data and collect respirable dust measurement samples. The study covered various mining activities in different locations including overburden loading, stock yard, coal loading, drilling, and coal handling plant. The dust levels were examined to assess miners' exposure to respirable dust in each of the opencast mining areas from 1994 to 2005. The data obtained from the dust measurement studies were evaluated by using analysis of variance (ANOVA) and the Tukey-Kramer procedure. The analyses were performed by using Minitab 14 statistical software. It was concluded that, drilling operations produce higher dust concentration levels and thus, drill operators may have higher incidence of respiratory disorders related to exposure to dust in their work environment.

  2. Signaling Pathways Involved in Lunar Dust Induced Cytotoxicity

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Lam, Chiu-Wing; Scully, Robert R.; Williams, Kyle; Zalesak, Selina; Wu, Honglu; James, John T.

    2014-01-01

    The Moon's surface is covered by a layer of fine, reactive dust. Lunar dust contain about 1-2% of very fine dust (< 3 micron), that is respirable. The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to evaluate the toxicity of Apollo moon dust in rodents to assess the health risk of dust exposures to humans. One of the particular interests in the study is to evaluate dust-induced changes of the expression of fibrosis-related genes, and to identify specific signaling pathways involved in lunar dust-induced toxicity. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.1, 21, and 61 mg/m(exp 3) of lunar dust. Five rats per group were euthanized 1 day, 1 week, 1 month, and 3 months after the last inhalation exposure. The total RNAs were isolated from the blood or lung tissue after being lavaged, using the Qigen RNeasy kit. The Rat Fibrosis RT2 Profile PCR Array was used to profile the expression of 84 genes relevant to fibrosis. The genes with significant expression changes are identified and the gene expression data were further analyzed using IPA pathway analysis tool to determine the signaling pathways with significant changes.

  3. Histological findings and lung dust analysis as the basis for occupational disease compensation in asbestos-related lung cancer in Germany.

    PubMed

    Feder, Inke Sabine; Theile, Anja; Tannapfel, Andrea

    2018-01-15

    This study has researched the significance of histologically raised findings and lung dust analyses in the context of claiming the recognition of and thus compensation for an asbestos-associated occupational disease. For this approach, all findings from the German Mesothelioma Register in 2015 that included lung dust analyses were evaluated and were compared with information on asbestos fiber exposure at work based on fiber years, and with the results of radiological findings. For 68 insured persons, recognition of an asbestos-induced lung disease according to Section 4104 of the German Ordinance on Occupational Diseases (Berufskrankheitenverordnung - BKV) could be recommended solely on the basis of the histological examinations of lung tissues and complementary lung dust analyses. Neither did the calculation of the cumulative asbestos dust exposure at work yield 25 fiber years, nor could bridge findings (e.g., plaques) be identified. In addition, the autopsies of 12 patients revealed plaques that had not been diagnosed during radiological examinations. These results show that - irrespective of the prescribed working techniques and radiological diagnosis - pathological/anatomical and histological diagnostics are often the only way for the insureds to demonstrate the causal connection between asbestos and their disease. Even after long intervals of up to 40 years post last exposure, the asbestos fibers would still be easily detectable in the lung tissues evaluated. Whenever suitable tissue is available, it should be examined for mild asbestosis with the aid of a lung dust analysis. Otherwise there is a risk that an occupational disease is wrongfully rejected. In the context of health insurance, the lung dust analysis and the resulting proof of the presence of asbestosis often constitute one option of providing evidence of an occupational disease. Int J Occup Med Environ Health 2018;31(3):293-305. This work is available in Open Access model and licensed under a CC BY

  4. Middle East Dust

    Atmospheric Science Data Center

    2013-04-16

    ... only some of the dust over eastern Syria and southeastern Turkey can be discerned. The dust is much more obvious in the center panel, ... 18, 2002 - A large dust plume extends across Syria and Turkey. project:  MISR category:  gallery ...

  5. Understanding the Activation and Solution Properties of Lunar Dust for Future Lunar Habitation

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Jeevarajan, Antony S.

    2009-01-01

    The decision to return humans to the moon by 2020 makes it imperative to understand the effects of lunar dust on human and mechanical systems.( Bush 2004; Gaier 2005; Mendell 2005) During the Apollo missions, dust was found to cause numerous problems for various instruments and systems. Additionally, the dust may have caused health issues for some of the astronauts.(Gaier 2005; Rowe 2007) It is necessary, therefore, for studies to be carried out in a variety of disciplines in order to mitigate the effects of the dust as completely as possible. Due to the lack of an atmosphere, there is nothing to protect the lunar soil from ultraviolet radiation, solar wind, and meteorite impacts. These processes could all serve to "activate" the soil, or produce reactive surface species. In order to understand the possible toxic effects of the reactive dust, it is necessary to "reactivate" the dust, as samples returned during the Apollo missions were exposed to the atmosphere of the Earth. We have used grinding and exposure to UV radiation in order to mimic some of the processes occurring on the lunar surface. To monitor the reactivity of the dust, we have measured the ability of the dust to produce hydroxyl radicals in solution. These radicals have been measured using a novel fluorescent technique developed in our laboratory,(Wallace et al. 2008) as well as using electron paramagnetic resonance (EPR).

  6. Fifteen Years of Laboratory Astrophysics at Ames

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sandford, S. A.; Salama, F.; Hudgins, D. M.; Bernstein, M.; Goorvitch, David (Technical Monitor)

    1998-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past fifteen years thanks to significant, parallel developments in two closely related areas: observational astronomy and laboratory astrophysics. Fifteen years ago the composition of interstellar dust was largely guessed at, the concept of ices in dense molecular clouds ignored, and the notion of large, abundant, gas phase, carbon-rich molecules widespread throughout the interstellar medium (ISM) considered impossible. Today the composition of dust in the diffuse ISM is reasonably well constrained to cold refractory materials comprised of amorphous and crystalline silicates mixed with an amorphous carbonaceous material containing aromatic structural units and short, branched aliphatic chains. In the dense ISM, these cold dust particles are coated with mixed-molecular ices whose compositions are very well known. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the ISM. This great progress has only been made possible by the close collaboration of laboratory experimentalists with observers and theoreticians, all with the goal of applying their skills to astrophysical problems of direct interest to NASA programs. Such highly interdisciplinary collaborations ensure fundamental, in depth coverage of the wide-ranging challenges posed by astrophysics. These challenges include designing astrophysically focused experiments and data analysis, tightly coupled with astrophysical searches spanning 2 orders of magnitude in wavelength, and detailed theoretical modeling. The impact of our laboratory has been particularly effective as there is constant cross-talk and feedback between quantum theorists; theoretical astrophysicists and chemists; experimental physicists; organic, physical and petroleum chemists; and infrared and UV/Vis astronomers. In this paper, two examples

  7. Applying Dust-on-Snow Research to Colorado Water Management

    NASA Astrophysics Data System (ADS)

    Landry, C. C.; Painter, T. H.; Barrett, A. P.

    2008-12-01

    Snowmelt runoff from seasonal snowpacks in Western mountains provides a high proportion of regional water supplies and represents a critical resource subject to complex management imperatives at all levels of local, state, and federal government. Recent research performed in the San Juan Mountains of Southwest Colorado has revealed that deposition of desert dust from the Colorado Plateau onto Colorado mountain snowpacks is playing a hitherto underestimated forcing role in snowmelt timing and intensity. In spring 2006, embedded dust layers forced a 4-5 week advance in complete snowpack ablation at the Senator Beck Basin Study Area, near Red Mountain Pass, and professional water managers throughout Colorado were surprised by an early and compressed snowmelt runoff. Presentations of our preliminary findings during the summer of 2006 at local water district meetings and at a statewide forum resonated with Colorado water managers and resulted in direct stakeholder engagement in the ongoing research program during the subsequent winter. In spring 2007 the research team issued periodic Dust Alerts describing dust-on-snow conditions extant within the study area, as well as anecdotal reports of conditions elsewhere in the state, and discussed the snowmelt ramifications of those dust conditions in the coming 7-15 days, given mid-range NWS weather forecasts. Another round of presentations at district and state-wide stakeholder meetings in summer 2007 resulted in additional districts and agencies engaging in the program and expanding the dust-on-snow monitoring and Dust Alert analysis efforts in spring 2008 to additional sites distributed throughout the state. The original research project is ongoing and the team is now developing a Colorado Dust-on-Snow Program, CODOS, designed to serve all stakeholders in Colorado snowmelt with increasingly intensive monitoring and analysis of snowmelt forcing by dust, and with ongoing research regarding dust-driven mountain snowmelt

  8. Dust measurements in tokamaks (invited).

    PubMed

    Rudakov, D L; Yu, J H; Boedo, J A; Hollmann, E M; Krasheninnikov, S I; Moyer, R A; Muller, S H; Pigarov, A Yu; Rosenberg, M; Smirnov, R D; West, W P; Boivin, R L; Bray, B D; Brooks, N H; Hyatt, A W; Wong, C P C; Roquemore, A L; Skinner, C H; Solomon, W M; Ratynskaia, S; Fenstermacher, M E; Groth, M; Lasnier, C J; McLean, A G; Stangeby, P C

    2008-10-01

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  9. Spectrophotometry of Dust in Comet Hale-Bopp

    NASA Technical Reports Server (NTRS)

    Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".

  10. Mechanical properties of dust collected by dust separators in iron ore sinter plants.

    PubMed

    Lanzerstorfer, Christof

    2015-01-01

    The flow-related mechanical properties of dusts from the de-dusting systems of several sinter plants were investigated. The mass median diameters of the dusts were in the range from approximately 3 to 100 µm. Also, the bulk density of the dusts varied in a wide range (approximately 400 to 2300 kg/m³). A good correlation between the bulk density and the mass median diameter for most of the dusts was found. In contrast, the angles of repose did not vary very much, only for the coarsest dust a significantly lower value was measured. The angles of internal friction as well as the wall friction angles were lower for coarse dust and higher for fine dust. The shear tests showed that both angles depend considerably on the stress level. At low stress, the angles decreased significantly with increasing values of stress, whereas at higher stress, the dependence was small or even disappeared. The only exception to this behaviour was shown by the finest dust. The flowability decreased with the particle size. The flowability categories suggested by the three flowability indicators were passable only for the coarser dusts. For the finer dusts, the flowability was overestimated by all flowability indicators.

  11. CV-Dust: Atmospheric aerosol in the Cape Verde region: carbon and soluble fractions of PM10

    NASA Astrophysics Data System (ADS)

    Pio, C.; Nunes, T.; Cardoso, J.; Caseiro, A.; Custódio, D.; Cerqueira, M.; Patoilo, D.; Almeida, S. M.; Freitas, M. C.

    2012-04-01

    Every year, billions of tons of eroded mineral soils from the Saharan Desert and the Sahel region, the largest dust source in the world, cross Mediterranean towards Europe, western Asia and the tropical North Atlantic Ocean as far as the Caribbean and South America. Many aspects of the direct and indirect effects of dust on climate are not well understood and the bulk and surface chemistry of the mineral dust particles determines interactions with gaseous and other particle species. The quantification of the magnitude of warming or cooling remains open because of the strong variability of the atmospheric dust burden and the lack of representative data for the spatial and temporal distribution of the dust composition. CV-Dust is a project that aims at provide a detailed data on the size distribution and the size-resolved chemical and mineralogical composition of dust emitted from North Africa using a natural laboratory like Cape Verde. This archipelago is located in an area of massive dust transport from land to ocean, and is thus ideal to set up sampling devices that are able to characterize and quantify dust transported from Africa. Moreover, Cape Verde's future economic prospects depend heavily on the encouragement of tourism, therefore it is essential to elucidate the role of Saharan dust may play in the degradation of Cape Verde air quality. The main objectives of CV-Dust project are: 1) to characterize the chemical and mineralogical composition of dust transported from Africa by setting up an orchestra of aerosol sampling devices in the strategic archipelago of Cape Verde; 2) to identify the sources of particles in Cape Verde by using receptor models; 3) to elucidate the role Saharan dust may play in the degradation of Cape Verde air quality; 4) to model processes governing dust production, transport, interaction with the radiation field and removal from the atmosphere. Here we present part of the data obtained throughout the last year, involving a set of more

  12. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    NASA Astrophysics Data System (ADS)

    Wiacek, A.; Peter, T.; Lohmann, U.

    2010-09-01

    of dust in the mixed-phase cloud region are highly uncertain due to both a considerable scatter in recent laboratory data from ice nucleation experiments, which we briefly review in this work, and due to uncertainties in sub-grid scale vertical transport processes unresolved by the present trajectory analysis. For "classical" cirrus-forming temperatures (T≲-40 °C), our results show that only mineral dust ice nuclei that underwent mixed-phase cloud-processing, most likely acquiring coatings of organic or inorganic material, are likely to be relevant. While the potential paucity of deposition ice nuclei shown in this work dimishes the possibility of deposition nucleation, the absence of liquid water droplets at T≲-40 °C makes the less explored contact freezing mechanism (involving droplet collisions with bare ice nuclei) highly inefficient. These factors together indicate the necessity of further systematic studies of immersion mode ice nucleation on mineral dust suspended in atmospherically relevant coatings.

  13. [Dust absorption capacities of eight evergreen broad-leaved plants in Beijing, China.

    PubMed

    Fan, Shu Xin; Cai, Yu; Dong, Li

    2017-02-01

    Aiming at selecting the evergreen broad-leaved plants with excellent dust capturing capacity that can be applied in Beijing area for improving the urban vegetation dust removal, this study selected 8 evergreen (including semi-evergreen) broad-leaved plants used in urban green-space in Beijing area to measure the dust absorption per unit leaf area by the elution-mass method during winter and early spring in 2014. The dust deposition per leaf and per plant of each species was further calculated for tested species. Based on the dust capturing capacity measured in different units, cluster analysis on the comprehensive dust absorption capacities of different plants was carried out from the corresponding aspect. Results showed that the dust absorption ability differed significantly among the 8 evergreen broad-leaved (including semi-evergreen) species including Buxus sinica, Euonymus japonicus, Ligustrum quihoui, L. vicaryi, E. kiautschovicus, Indocalamus tessellatus, Phyllostachys violascens and Ph. aureosulcata. E. japonicus was best in dust absorption per unit leaf area and per plant, with 1.36 g·m -2 and 59.63 g·plant -1 . I. tessellates (with 1.62 mg·leaf -1 ) had the strongest dust absorption ability per leaf. With different measurement units selected, the ranking changed. The cluster analysis based on the multi index comprehensive dust absorption capacities could roughly divided the 8 evergreen broad-leaved species into 4 categories representing different dust absorption capacity levels. E. japonicus and Ph. sviolascens had the outstanding comprehensive dust capturing capacity, while B. sinica, L. vicaryi and Ph. aureosulcata showed the weak performance.

  14. Modeling dust emission in the Magellanic Clouds with Spitzer and Herschel

    NASA Astrophysics Data System (ADS)

    Chastenet, Jérémy; Bot, Caroline; Gordon, Karl D.; Bocchio, Marco; Roman-Duval, Julia; Jones, Anthony P.; Ysard, Nathalie

    2017-05-01

    Context. Dust modeling is crucial to infer dust properties and budget for galaxy studies. However, there are systematic disparities between dust grain models that result in corresponding systematic differences in the inferred dust properties of galaxies. Quantifying these systematics requires a consistent fitting analysis. Aims: We compare the output dust parameters and assess the differences between two dust grain models, the DustEM model and THEMIS. In this study, we use a single fitting method applied to all the models to extract a coherent and unique statistical analysis. Methods: We fit the models to the dust emission seen by Spitzer and Herschel in the Small and Large Magellanic Clouds (SMC and LMC). The observations cover the infrared (IR) spectrum from a few microns to the sub-millimeter range. For each fitted pixel, we calculate the full n-D likelihood based on a previously described method. The free parameters are both environmental (U, the interstellar radiation field strength; αISRF, power-law coefficient for a multi-U environment; Ω∗, the starlight strength) and intrinsic to the model (YI: abundances of the grain species I; αsCM20, coefficient in the small carbon grain size distribution). Results: Fractional residuals of five different sets of parameters show that fitting THEMIS brings a more accurate reproduction of the observations than the DustEM model. However, independent variations of the dust species show strong model-dependencies. We find that the abundance of silicates can only be constrained to an upper-limit and that the silicate/carbon ratio is different than that seen in our Galaxy. In the LMC, our fits result in dust masses slightly lower than those found in the literature, by a factor lower than 2. In the SMC, we find dust masses in agreement with previous studies.

  15. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{submore » ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.« less

  16. House-Dust Allergy

    PubMed Central

    Johnson, C. A.

    1982-01-01

    House-dust allergy is a common cause of perennial allergic rhinitis and extrinsic asthma. Symptoms tend to be worse when the patient is in bed. A positive skin test properly performed and interpreted confirms the diagnosis. The house-dust mite is the most important antigenic component of house-dust. Treatment consists of environmental control directed at reducing the mite content of bedroom dust, plus control of symptoms with drugs. Immunotherapy is controversial. ImagesFig. 1 PMID:21286201

  17. Photoemission Experiments for Charge Characteristics of Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; West, E.; Pratico, J.; Tankosic, D.; Venturini, C. C.; Six, N. Frank (Technical Monitor)

    2001-01-01

    Photoemission experiments with UV radiation have been performed to investigate the microphysics and charge characteristics of individual isolated dust grains of various compositions and sizes by using the electrodynamic balance facility at NASA Marshall Space Flight Center. Dust particles of 2-10 gm diameter are levitated in a vacuum chamber at pressures approximately 10(exp-5) torr and exposed to a collimated beam of UV radiation in the 120-200 nm spectral range from a deuterium lamp source with a MgF2 window. A monochromator is used to select the UV wavelength with a spectral resolution of 8 nm. The electrodynamic facility permits measurements of the charge and diameters of particles of known composition, and monitoring of photoemission rates with the incident UV radiation. Experiments have been conducted on test particles of silica and polystyrene to determine the photoelectric yields and surface equilibrium potentials when exposed to UV radiation. A brief description of an experimental procedure for photoemission studies is given and some preliminary laboratory measurements of the photoelectric yields of individual dust particles are presented.

  18. Modeling Respiratory Toxicity of Authentic Lunar Dust

    NASA Technical Reports Server (NTRS)

    Santana, Patricia A.; James, John T.; Lam, Chiu-Wing

    2010-01-01

    The lunar expeditions of the Apollo operations from the 60 s and early 70 s have generated awareness about lunar dust exposures and their implication towards future lunar explorations. Critical analyses on the reports from the Apollo crew members suggest that lunar dust is a mild respiratory and ocular irritant. Currently, NASA s space toxicology group is functioning with the Lunar Airborne Dust Toxicity Assessment Group (LADTAG) and the National Institute for Occupational Safety and Health (NIOSH) to investigate and examine toxic effects to the respiratory system of rats in order to establish permissible exposure levels (PELs) for human exposure to lunar dust. In collaboration with the space toxicology group, LADTAG and NIOSH the goal of the present research is to analyze dose-response curves from rat exposures seven and twenty-eight days after intrapharyngeal instillations, and model the response using BenchMark Dose Software (BMDS) from the Environmental Protection Agency (EPA). Via this analysis, the relative toxicities of three types of Apollo 14 lunar dust samples and two control dust samples, titanium dioxide (TiO2) and quartz will be determined. This will be executed for several toxicity endpoints such as cell counts and biochemical markers in bronchoaveolar lavage fluid (BALF) harvested from the rats.

  19. Transient atmospheric effects of the landing of the Mars Science Laboratory rover: The emission and dissipation of dust and carbazic acid

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Schieber, Juergen; Kling, Alexandre M.; Haberle, Robert M.; Moore, Casey A.; Anderson, Mark S.; Katz, Ira; Yavrouian, Andre; Malin, Michael C.; Olson, Timothy; Rafkin, Scot C. R.; Lemmon, Mark T.; Sullivan, Robert J.; Comeaux, Keith; Vasavada, Ashwin R.

    2016-09-01

    Imaging during and after the landing of the Mars Science Laboratory (MSL) rover in 2012 provides a means to examine two transitory phenomena for the first time: the settling of the plume of material raised by the powered terminal descent, and the possible dispersal of 140 kg of hydrazine into the atmosphere as fine-grained solid carbazic acid. The peri-landing images, acquired by the Mars Descent Imager (MARDI) and the rover hazard cameras (Hazcams), allow the first comparison of post-landing geological assessment of surface deflation with the plume itself. Examination of the Hazcam images acquired over a period of 4011 s shows that only a small fraction (350-1000 kg) of the total mass of fine-grained surface material displaced by the landing (4000 kg) remained in the atmosphere for this duration. Furthermore, a large component of this dust occurs as particles for which the characteristic optical radius is 20-60 μm, preventing them from being substantially mixed with the atmospheric column by eddy diffusion. Examination of the MARDI record over 225 s post-landing reveals a rapidly settling component that comprised approximately 1800-2400 kg and had a larger particle size with an optical radius of 360-470 μm. The possible release of hydrazine by the sky crane stage also may have created particles of carbazic acid that would, analogous to the dust, spread through eddy diffusivity and settle to the ground. Peri-landing Hazcam images of the plume created during sky crane destruction constrains the particle radius to be either less than 23 μm or greater than 400 μm. When combined with a Lagrangian model of the atmosphere, such particle sizes suggest that the carbazic acid was either deposited very near the sky crane crash site, or was widely dispersed as small particles which would have been quickly photodissociated to volatile ammonia and carbon dioxide. Surfaces visited by the MSL rover, Curiosity, would have received at most <0.2 ppb of carbazic acid and levels

  20. Towards zero industrial waste: Utilisation of brick dust waste in sustainable construction.

    PubMed

    Kinuthia, J M; Nidzam, R M

    2011-08-01

    Laboratory investigations were carried out to establish the potential utilisation of brick dust (BD) in construction. The dust is a waste material from the cutting of fired clay bricks. Currently, the disposal of the dust is a problem to the brick fabrication company, and hence an environmental pollution concern. The dust was stabilised either used on its own or in combination with Pulverised Fuel Ash (PFA), a by-product material from coal combustion. The traditional stabilisers of lime and/or Portland Cement (PC) were used as controls. The main aim was to use a sustainable stabiliser material, where these stabilisers were partially replaced with Ground Granulated Blastfurnace Slag (GGBS), a by-product material from steel manufacture. Compacted cylinder test specimens were made at typical stabiliser contents and moist cured for up to 56 days prior to testing for compressive and California Bearing Ratio (CBR) strength tests, and to linear expansion during moist curing and subsequent soaking in water. The results obtained showed that partial substitution of the dust with PFA resulted in stronger material compared to using it on its own. The blended stabilisers achieved better performance. These results suggest technological, economic as well as environmental advantages of using the brick dust and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste. Copyright © 2011 Elsevier Ltd. All rights reserved.