Science.gov

Sample records for dust clumps quantifying

  1. Glass Frit Clumping And Dusting

    SciTech Connect

    Steimke, J. L.

    2013-09-26

    DWPF mixes a slurry of glass frit (Frit 418) and dilute (1.5 wt%) formic acid solution with high level waste in the Slurry Mix Evaporator (SME). There would be advantages to introducing the frit in a non-slurry form to minimize water addition to the SME, however, adding completely dry frit has the potential to generate dust which could clog filters or condensers. Prior testing with another type of frit, Frit 320, and using a minimal amount of water reduced dust generation, however, the formation of hard clumps was observed. To examine options and behavior, a TTQAP [McCabe and Stone, 2013] was written to initiate tests that would address these concerns. Tests were conducted with four types of glass frit; Frit 320, DWPF Frit 418, Bekeson Frit 418 and Multi-Aspirator Frit 418. The last two frits are chemically identical to DWPF Frit 418 but smaller particles were removed by the respective vendors. Test results on Frit Clumping and Dusting are provided in this report. This report addresses the following seven questions. Short answers are provided below with more detailed answers to follow. 1. Will the addition of a small amount of water, 1.5 wt%, to dry DWPF Frit 418 greatly reduce the dust generation during handling at DWPF? a. Yes, a small scale test showed that adding a little water to the frit greatly reduced dust generation during handling. 2. Will the addition of small amounts of water to the frit cause clumping that will impair frit handling at DWPF? a. No, not with Frit 418. Although clumps were observed to form when 1.5 wt% water was mixed with DWPF Frit 418, then compressed and air-dried overnight, the clumps were easily crushed and did not form the hardened material noted when Frit 320 was tested. 3. What is the measured size distribution of dust generated when dry frit is handled? (This affects the feasibility and choice of processing equipment for removing the dust generating fraction of the frit before it is added to the SME.) a. The size distribution for

  2. Using Spinning Dust Emission To Constrain The Evolution Of Dust Grains In Cold Clumps

    NASA Astrophysics Data System (ADS)

    Tibbs, C.; Paladini, R.; Cleary, K.; Grainge, K.; Muchovej, S.; Pearson, T.; Perrott, Y.; Rumsey, C.; Scaife, A.; Stevenson, M.; Villadsen, J.

    Within many molecular clouds in our Galaxy there are cold, dense regions known as cold clumps in which stars form. These dense environments provide a great location in which to study dust grain evolution. Given the low temperatures (˜10-15 K) and high densities (˜105 cm-3 ), these environments are dark at mid-infrared (IR) wavelengths and emit strongly at wavelengths ≥160 µm. The lack of mid-IR emission can be attributed to one of two reasons: i) a deficit of the small dust grains that emit stochastically at mid-IR wavelengths; or ii) small dust grains are present, but due to the high densities, the stellar photons cannot penetrate deep enough into the clumps to excite them. Using mid-IR observations alone it is impossible to distinguish between these two scenarios. However, by using spinning dust emission at cm wavelengths it is possible to break this degeneracy, because if small dust grains are present in these clumps, then even though stellar photons cannot excite them to emit at mid-IR wavelengths, these dust grains will be spunup by collisions and hence emit spinning dust radiation. If spinning dust were detected in these clumps it would prove that there are small dust grains present and that the lack of mid-IR emission is due to a lack of stellar photons. Conversely, a lack of spinning dust emission would indicate a deficit of small dust grains in these clumps. Since small dust grains require harsh radiation fields to be destroyed, a lack of small dust grains is likely a result of dust grain coagulation. With this in mind, we present preliminary results illustrating our method of using spinning dust observations to determine the evolution of small dust grains in these environments.

  3. Far-infrared Dust Temperatures and Column Densities of the MALT90 Molecular Clump Sample

    NASA Astrophysics Data System (ADS)

    Guzmán, Andrés E.; Sanhueza, Patricio; Contreras, Yanett; Smith, Howard A.; Jackson, James M.; Hoq, Sadia; Rathborne, Jill M.

    2015-12-01

    We present dust column densities and dust temperatures for ˜3000 young, high-mass molecular clumps from the Millimeter Astronomy Legacy Team 90 GHz survey, derived from adjusting single-temperature dust emission models to the far-infrared intensity maps measured between 160 and 870 μm from the Herschel/Herschel Infrared Galactic Plane Survey (Hi-Gal) and APEX/APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) surveys. We discuss the methodology employed in analyzing the data, calculating physical parameters, and estimating their uncertainties. The population average dust temperature of the clumps are 16.8 ± 0.2 K for the clumps that do not exhibit mid-infrared signatures of star formation (quiescent clumps), 18.6 ± 0.2 K for the clumps that display mid-infrared signatures of ongoing star formation but have not yet developed an H ii region (protostellar clumps), and 23.7 ± 0.2 and 28.1 ± 0.3 K for clumps associated with H ii and photo-dissociation regions, respectively. These four groups exhibit large overlaps in their temperature distributions, with dispersions ranging between 4 and 6 K. The median of the peak column densities of the protostellar clump population is 0.20 ± 0.02 g cm-2, which is about 50% higher compared to the median of the peak column densities associated with clumps in the other evolutionary stages. We compare the dust temperatures and column densities measured toward the center of the clumps with the mean values of each clump. We find that in the quiescent clumps, the dust temperature increases toward the outer regions and that these clumps are associated with the shallowest column density profiles. In contrast, molecular clumps in the protostellar or H ii region phase have dust temperature gradients more consistent with internal heating and are associated with steeper column density profiles compared with the quiescent clumps.

  4. FAR-INFRARED DUST TEMPERATURES AND COLUMN DENSITIES OF THE MALT90 MOLECULAR CLUMP SAMPLE

    SciTech Connect

    Guzmán, Andrés E.; Smith, Howard A.; Sanhueza, Patricio; Contreras, Yanett; Rathborne, Jill M.; Jackson, James M.; Hoq, Sadia

    2015-12-20

    We present dust column densities and dust temperatures for ∼3000 young, high-mass molecular clumps from the Millimeter Astronomy Legacy Team 90 GHz survey, derived from adjusting single-temperature dust emission models to the far-infrared intensity maps measured between 160 and 870 μm from the Herschel/Herschel Infrared Galactic Plane Survey (Hi-Gal) and APEX/APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) surveys. We discuss the methodology employed in analyzing the data, calculating physical parameters, and estimating their uncertainties. The population average dust temperature of the clumps are 16.8 ± 0.2 K for the clumps that do not exhibit mid-infrared signatures of star formation (quiescent clumps), 18.6 ± 0.2 K for the clumps that display mid-infrared signatures of ongoing star formation but have not yet developed an H ii region (protostellar clumps), and 23.7 ± 0.2 and 28.1 ± 0.3 K for clumps associated with H ii and photo-dissociation regions, respectively. These four groups exhibit large overlaps in their temperature distributions, with dispersions ranging between 4 and 6 K. The median of the peak column densities of the protostellar clump population is 0.20 ± 0.02 g cm{sup −2}, which is about 50% higher compared to the median of the peak column densities associated with clumps in the other evolutionary stages. We compare the dust temperatures and column densities measured toward the center of the clumps with the mean values of each clump. We find that in the quiescent clumps, the dust temperature increases toward the outer regions and that these clumps are associated with the shallowest column density profiles. In contrast, molecular clumps in the protostellar or H ii region phase have dust temperature gradients more consistent with internal heating and are associated with steeper column density profiles compared with the quiescent clumps.

  5. The JCMT Gould Belt Survey: Evidence for Dust Grain Evolution in Perseus Star-forming Clumps

    NASA Astrophysics Data System (ADS)

    Chen, Michael Chun-Yuan; Di Francesco, J.; Johnstone, D.; Sadavoy, S.; Hatchell, J.; Mottram, J. C.; Kirk, H.; Buckle, J.; Berry, D. S.; Broekhoven-Fiene, H.; Currie, M. J.; Fich, M.; Jenness, T.; Nutter, D.; Pattle, K.; Pineda, J. E.; Quinn, C.; Salji, C.; Tisi, S.; Hogerheijde, M. R.; Ward-Thompson, D.; Bastien, P.; Bresnahan, D.; Butner, H.; Chrysostomou, A.; Coude, S.; Davis, C. J.; Drabek-Maunder, E.; Duarte-Cabral, A.; Fiege, J.; Friberg, P.; Friesen, R.; Fuller, G. A.; Graves, S.; Greaves, J.; Gregson, J.; Holland, W.; Joncas, G.; Kirk, J. M.; Knee, L. B. G.; Mairs, S.; Marsh, K.; Matthews, B. C.; Moriarty-Schieven, G.; Mowat, C.; Pezzuto, S.; Rawlings, J.; Richer, J.; Robertson, D.; Rosolowsky, E.; Rumble, D.; Schneider-Bontemps, N.; Thomas, H.; Tothill, N.; Viti, S.; White, G. J.; Wouterloot, J.; Yates, J.; Zhu, M.

    2016-07-01

    The dust emissivity spectral index, β, is a critical parameter for deriving the mass and temperature of star-forming structures and, consequently, their gravitational stability. The β value is dependent on various dust grain properties, such as size, porosity, and surface composition, and is expected to vary as dust grains evolve. Here we present β, dust temperature, and optical depth maps of the star-forming clumps in the Perseus Molecular Cloud determined from fitting spectral energy distributions to combined Herschel and JCMT observations in the 160, 250, 350, 500, and 850 μm bands. Most of the derived β and dust temperature values fall within the ranges of 1.0-2.7 and 8-20 K, respectively. In Perseus, we find the β distribution differs significantly from clump to clump, indicative of grain growth. Furthermore, we also see significant localized β variations within individual clumps and find low-β regions correlate with local temperature peaks, hinting at the possible origins of low-β grains. Throughout Perseus, we also see indications of heating from B stars and embedded protostars, as well evidence of outflows shaping the local landscape.

  6. Will new horizons see dust clumps in the Edgeworth-Kuiper Belt?

    SciTech Connect

    Vitense, Christian; Krivov, Alexander V.; Löhne, Torsten

    2014-06-01

    Debris disks are thought to be sculptured by neighboring planets. The same is true for the Edgeworth-Kuiper debris disk, yet no direct observational evidence for signatures of giant planets in the Kuiper Belt dust distribution has been found so far. Here we model the dust distribution in the outer solar system to reproduce the dust impact rates onto the dust detector on board the New Horizons spacecraft measured so far and to predict the rates during the Neptune orbit traverse. To this end, we take a realistic distribution of trans-Neptunian objects to launch a sufficient number of dust grains of different sizes and follow their orbits by including radiation pressure, Poynting-Robertson and stellar wind drag, as well as the perturbations of four giant planets. In a subsequent statistical analysis, we calculate number densities and lifetimes of the dust grains in order to simulate a collisional cascade. In contrast to the previous work, our model not only considers collisional elimination of particles but also includes production of finer debris. We find that particles captured in the 3:2 resonance with Neptune build clumps that are not removed by collisions, because the depleting effect of collisions is counteracted by production of smaller fragments. Our model successfully reproduces the dust impact rates measured by New Horizons out to ≈23 AU and predicts an increase of the impact rate of about a factor of two or three around the Neptune orbit crossing. This result is robust with respect to the variation of the vaguely known number of dust-producing scattered disk objects, collisional outcomes, and the dust properties.

  7. CN Zeeman and dust polarization in a high-mass cold clump

    NASA Astrophysics Data System (ADS)

    Pillai, T.; Kauffmann, J.; Wiesemeyer, H.; Menten, K. M.

    2016-06-01

    We report on the young massive clump (G35.20w) in W48 that previous molecular line and dust observations have revealed to be in the very early stages of star formation. Based on virial analysis, we find that a strong field of 1640 μG is required to keep the clump in pressure equilibrium. We performed a deep Zeeman effect measurement of the 113 GHz CN (1-0) line towards this clump with the IRAM 30 m telescope. We combine simultaneous fitting of all CN hyperfines with Monte Carlo simulations for a large range in realization of the magnetic field to obtain a constraint on the line-of-sight field strength of -687 ± 420 μG. We also analyze archival dust polarization observations towards G35.20w. A strong magnetic field is implied by the remarkably ordered field orientation that is perpendicular to the longest axis of the clump. Based on this, we also estimate the plane-of-sky component of the magnetic field to be ~740 μG. This allows for a unique comparison of the two orthogonal measurements of magnetic field strength of the same region and at similar spatial scales. The expected total field strength shows no significant conflict between the observed field and that required for pressure equilibrium. By producing a probability distribution for a large range in field geometries, we show that plane-of-sky projections are much closer to the true field strengths than line-of-sight projections. This can present a significant challenge for Zeeman measurements of magnetized structures, even with ALMA. We also show that CN molecule does not suffer from depletion on the observed scales in the predominantly cold and highly deuterated core in an early stage of high-mass star formation and is thus a good tracer of the dense gas. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

  8. The Small Magellanic Cloud Investigation of Dust and Gas Evolution (SMIDGE): The Dust Extinction Curve in the Small Magellanic Cloud from Red Clump Stars

    NASA Astrophysics Data System (ADS)

    Yanchulova Merica-Jones, Petia; Sandstrom, Karin; Johnson, Lent C.; SMIDGE Team

    2016-06-01

    We present preliminary measurements of the average dust extinction curve in a 200 pc x 100 pc region in the Small Magellanic Cloud (SMC) using multi-band Hubble Space Telescope observations of resolved stellar populations from SMIDGE. Extinction curve determinations from a fully-sampled region of the SMC are of great interest. SMC-like extinction is widely used to correct for the effects of dust in low metallicity or high redshift galaxies, however, there are currently very few extinction curve measurements in the SMC. We measure the extinction curve using color-magnitude diagrams of red clump stars experiencing reddening by dust along a vector from which the curve shape can theoretically be directly measured. In addition, our analysis of the extincted and unextincted red clump stars shows a substantial line-of-sight depth for the stellar distribution of the SMC, consistent with recent observations of Cepheids. With the deep multi-band photometry from SMIDGE we are able to separate these two effects and measure both the extinction curve and the line-of-sight depth. Our study implies that extinction curve measurements in nearby galaxies need to take into account the impact of an extended galactic structure on dust extinction along the line of sight.

  9. Star Formation Laws in Both Galactic Massive Clumps and External Galaxies: Extensive Study with Dust Coninuum, HCN (4-3), and CS (7-6)

    NASA Astrophysics Data System (ADS)

    Liu, Tie; Kim, Kee-Tae; Yoo, Hyunju; Liu, Sheng-yuan; Tatematsu, Ken'ichi; Qin, Sheng-Li; Zhang, Qizhou; Wu, Yuefang; Wang, Ke; Goldsmith, Paul F.; Juvela, Mika; Lee, Jeong-Eun; Tóth, L. Viktor; Mardones, Diego; Garay, Guido; Bronfman, Leonardo; Cunningham, Maria R.; Li, Di; Lo, Nadia; Ristorcelli, Isabelle; Schnee, Scott

    2016-10-01

    We observed 146 Galactic clumps in HCN (4-3) and CS (7-6) with the Atacama Submillimeter Telescope Experiment 10 m telescope. A tight linear relationship between star formation rate and gas mass traced by dust continuum emission was found for both Galactic clumps and the high redshift (z > 1) star forming galaxies (SFGs), indicating a constant gas depletion time of ˜100 Myr for molecular gas in both Galactic clumps and high z SFGs. However, low z galaxies do not follow this relation and seem to have a longer global gas depletion time. The correlations between total infrared luminosities (L TIR) and molecular line luminosities ({L}{mol}\\prime ) of HCN (4-3) and CS (7-6) are tight and sublinear extending down to clumps with L TIR ˜ 103 L ⊙. These correlations become linear when extended to external galaxies. A bimodal behavior in the L TIR-{L}{mol}\\prime correlations was found for clumps with different dust temperature, luminosity-to-mass ratio, and σ line/σ vir. Such bimodal behavior may be due to evolutionary effects. The slopes of L TIR-L‧mol correlations become more shallow as clumps evolve. We compared our results with lower J transition lines in Wu et al. (2010). The correlations between clump masses and line luminosities are close to linear for low effective excitation density tracers but become sublinear for high effective excitation density tracers for clumps with L TIR larger than L TIR ˜ 104.5 L ⊙. High effective excitation density tracers cannot linearly trace the total clump masses, leading to a sublinear correlations for both M clump-L‧mol and L TIR-L‧mol relations.

  10. VizieR Online Data Catalog: ATLASGAL inner Galaxy massive cold dust clumps (Wienen+, 2015)

    NASA Astrophysics Data System (ADS)

    Wienen, M.; Wyrowski, F.; Menten, K. M.; Urquhart, J. S.; Csengeri, T.; Walmsley, C. M.; Bontemps, S.; Russeil, D.; Bronfman, L.; Koribalski, B. S.; Schuller, F.

    2016-02-01

    ATLASGAL clumps with observed radial velocities are divided into groups of sources, which are coherent according to their location and kinematics. We calculate kinematic distances to 689 groups of submm clumps and distinguish between near and far distances using HI self-absorption and HI absorption toward sources with strong radio continuum emission. For each complex we give the group number, the mean position, number of sources per group, the mean velocity, the velocity dispersion, and the size of the groups. No velocity dispersion and size are calculated for sources, which are not associated with another ATLASGAL source within 0.3 deg and 10km/s. If the number of sources is 0 in a complex, there were initially velocities of sources, but the complex is not taken into account because of missing HI data and no distance could be determined. In addition, for each source within the groups, we list the ATLASGAL name associated with the measurement, the observation name, the LSR velocity, the KDA solution, the kinematic distance calculated from the LSR velocity of each source, the distance of the group, in which the clump is located, its errors, the logarithm of the gas mass, radius and the group number with "n" for sources in the first quadrant and "s" for clumps in the fourth quadrant. Some sources were observed, but are not associated with an ATLASGAL source, because they have ammonia spectra with low S/N ratio. To describe the KDA solution we denote the near distance by "n", the far distance by "f" and the tangent point by "t". The distance of the group is computed from the mean of all source coordinates and velocities inside the group. To avoid any influence of peculiar motion, we recommend the distance of the group, which is used to determine gas masses and sizes. A few sources have velocities inconsistent with the rotation model and we do not assign a distance to them. Clumps with velocities close to 0km/s have large errors in the distance. Because these sources

  11. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust

    PubMed Central

    Perera, Inoka E.; Sapko, Michael J.; Harris, Marcia L.; Zlochower, Isaac A.; Weiss, Eric S.

    2015-01-01

    Dispersible rock dust must be applied to the surfaces of entries in underground coal mines in order to inert the coal dust entrained or made airborne during an explosion and prevent propagating explosions. 30 CFR. 75.2 states that “… [rock dust particles] when wetted and dried will not cohere to form a cake which will not be dispersed into separate particles by a light blast of air …” However, a proper definition or quantification of “light blast of air” is not provided. The National Institute for Occupational Safety and Health (NIOSH) has, consequently, designed a dust dispersion chamber to conduct quantitative laboratory-scale dispersibility experiments as a screening tool for candidate rock dusts. A reproducible pulse of air is injected into the chamber and across a shallow tray of rock dust. The dust dispersed and carried downwind is monitored. The mass loss of the dust tray and the airborne dust measurements determine the relative dispersibility of the dust with respect to a Reference rock dust. This report describes the design and the methodology to evaluate the relative dispersibility of rock dusts with and without anti-caking agents. Further, the results of this study indicate that the dispersibility of rock dusts varies with particle size, type of anti-caking agent used, and with the untapped bulk density. Untreated rock dusts, when wetted and dried forming a cake that was much less dispersible than the reference rock dust used in supporting the 80% total incombustible content rule. PMID:26834390

  12. Quantifying the contribution of individual dust sources to the summertime dust hotspot in the central and western Sahara

    NASA Astrophysics Data System (ADS)

    Ashpole, Ian; Washington, Richard; Engelstaedter, Sebastian

    2014-05-01

    The central and western Sahara (CWS), a huge area encompassing parts of Algeria, Niger, Mali and Mauritania, is the dustiest place on Earth during the northern hemisphere summer. This dust is known to come from a large number of disperse sources across the region, which have been identified predominantly from satellite observations. We utilise an automated scheme that tracks individual dust plumes in data from the spaceborne Spinning Enhanced Visible and Infrared Imager (SEVIRI), available every 15 minutes at ~0.03° spatial resolution, to quantify the contribution of dust plumes from known sources to the overall CWS dust hotspot in terms of 1) frequency of dust detection and 2) total plume Aerosol Optical Depth (also derived from SEVIRI data). Results show that dust sources in the south of the region, whose activation is strongly linked to the dynamics of the West African Monsoon and convective processes, make a significantly greater contribution to the dust hotspot than sources in central Algeria and northwest Mali that, while equally or even more frequently active, give rise to plumes that are much more spatially constricted and short lived.

  13. THE HERSCHEL AND JCMT GOULD BELT SURVEYS: CONSTRAINING DUST PROPERTIES IN THE PERSEUS B1 CLUMP WITH PACS, SPIRE, AND SCUBA-2

    SciTech Connect

    Sadavoy, S. I.; Di Francesco, J.; Johnstone, D.; Fallscheer, C.; Matthews, B.; Currie, M. J.; Jenness, T.; Drabek, E.; Hatchell, J.; Nutter, D.; Andre, Ph.; Hennemann, M.; Hill, T.; Koenyves, V.; Benedettini, M.; Bernard, J.-P.; Duarte-Cabral, A.; Friesen, R.; Greaves, J.; Collaboration: JCMT and Herschel Gould Belt Survey teams; and others

    2013-04-20

    We present Herschel observations from the Herschel Gould Belt Survey and SCUBA-2 science verification observations from the JCMT Gould Belt Survey of the B1 clump in the Perseus molecular cloud. We determined the dust emissivity index using four different techniques to combine the Herschel PACS+SPIRE data at 160-500 {mu}m with the SCUBA-2 data at 450 {mu}m and 850 {mu}m. Of our four techniques, we found that the most robust method was filtering out the large-scale emission in the Herschel bands to match the spatial scales recovered by the SCUBA-2 reduction pipeline. Using this method, we find {beta} Almost-Equal-To 2 toward the filament region and moderately dense material and lower {beta} values ({beta} {approx}> 1.6) toward the dense protostellar cores, possibly due to dust grain growth. We find that {beta} and temperature are more robust with the inclusion of the SCUBA-2 data, improving estimates from Herschel data alone by factors of {approx}2 for {beta} and by {approx}40% for temperature. Furthermore, we find core mass differences of {approx}< 30% compared to Herschel-only estimates with an adopted {beta} = 2, highlighting the necessity of long-wavelength submillimeter data for deriving accurate masses of prestellar and protostellar cores.

  14. The Herschel and JCMT Gould Belt Surveys: Constraining Dust Properties in the Perseus B1 Clump with PACS, SPIRE, and SCUBA-2

    NASA Astrophysics Data System (ADS)

    Sadavoy, S. I.; Di Francesco, J.; Johnstone, D.; Currie, M. J.; Drabek, E.; Hatchell, J.; Nutter, D.; André, Ph.; Arzoumanian, D.; Benedettini, M.; Bernard, J.-P.; Duarte-Cabral, A.; Fallscheer, C.; Friesen, R.; Greaves, J.; Hennemann, M.; Hill, T.; Jenness, T.; Könyves, V.; Matthews, B.; Mottram, J. C.; Pezzuto, S.; Roy, A.; Rygl, K.; Schneider-Bontemps, N.; Spinoglio, L.; Testi, L.; Tothill, N.; Ward-Thompson, D.; White, G.; JCMT, the; Herschel Gould Belt Survey Teams

    2013-04-01

    We present Herschel observations from the Herschel Gould Belt Survey and SCUBA-2 science verification observations from the JCMT Gould Belt Survey of the B1 clump in the Perseus molecular cloud. We determined the dust emissivity index using four different techniques to combine the Herschel PACS+SPIRE data at 160-500 μm with the SCUBA-2 data at 450 μm and 850 μm. Of our four techniques, we found that the most robust method was filtering out the large-scale emission in the Herschel bands to match the spatial scales recovered by the SCUBA-2 reduction pipeline. Using this method, we find β ≈ 2 toward the filament region and moderately dense material and lower β values (β >~ 1.6) toward the dense protostellar cores, possibly due to dust grain growth. We find that β and temperature are more robust with the inclusion of the SCUBA-2 data, improving estimates from Herschel data alone by factors of ~2 for β and by ~40% for temperature. Furthermore, we find core mass differences of <~ 30% compared to Herschel-only estimates with an adopted β = 2, highlighting the necessity of long-wavelength submillimeter data for deriving accurate masses of prestellar and protostellar cores.

  15. Quantifying the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds

    SciTech Connect

    Zhang, Damao; Wang, Zhien; Heymsfield, Andrew; Fan, Jiwen; Liu, Dong; Zhao, Ming

    2012-09-26

    Dust aerosols have been regarded as effective ice nuclei (IN), but large uncertainties regarding their efficiencies remain. Here, four years of collocated CALIPSO and CloudSat measurements are used to quantify the impact of dust on heterogeneous ice generation in midlevel supercooled stratiform clouds (MSSCs) over the ‘dust belt’. The results show that the dusty MSSCs have an up to 20% higher mixed-phase cloud occurrence, up to 8 dBZ higher mean maximum Ze (Ze_max), and up to 11.5 g/m2 higher ice water path (IWP) than similar MSSCs under background aerosol conditions. Assuming similar ice growth and fallout history in similar MSSCs, the significant differences in Ze_max between dusty and non-dusty MSSCs reflect ice particle number concentration differences. Therefore, observed Ze_max differences indicate that dust could enhance ice particle concentration in MSSCs by a factor of 2 to 6 at temperatures colder than -12°C. The enhancements are strongly dependent on the cloud top temperature, large dust particle concentration and chemical compositions. Finally, these results imply an important role of dust particles in modifying mixed-phase cloud properties globally.

  16. Quantifying atmospheric processing of mineral dust as a source of bioavailable phosphorus to the open oceans

    NASA Astrophysics Data System (ADS)

    Herbert, Ross; Stockdale, Anthony; Carslaw, Ken; Krom, Michael

    2016-04-01

    The transport and deposition of mineral dust is known to be the dominant source of phosphorus (P) to the surface waters of the open oceans. However, the fraction of this P that is deemed available for primary productivity remains a key uncertainty due to a limited understanding of the processes occurring during transport of the dust. Through a series of detailed laboratory experiments using desert dust and dust precursors, we show that the dissolution behaviour of P in these samples is controlled by a surface-bound labile pool, and an additional mineral pool primarily consisting of apatite. The acid dissolution of the apatite occurs rapidly and is controlled by the absolute number of H+ ions present in the solution surrounding the dust. Using these results we develop a new conceptual model that reproduces the major processes controlling P dissolution in the atmosphere. We then use a global aerosol microphysics model with a global soil database to quantify the deposition of bioavailable P to the open oceans and ice sheets. We show that, globally, the labile pool contributes 2.4 Gg P a-1 to the oceans and, from a potential pool of 11.5 Gg P a-1, the dissolved apatite pool contributes 0.24 Gg P a-1. A series of sensitivity studies identifying sources of acid in the atmosphere show that anthropogenic emissions of SO2 contribute 61% of the global mass of dissolved apatite, volcanic events contribute 11%, and DMS emissions contribute 10%. Finally, we show that the fraction of mineral dust P that is available for primary productivity varies, regionally, from <20% in the North Atlantic Ocean to >50% in the South Pacific Ocean; this explains the variability in the fraction of bioavailable P commonly observed in important oceanic regions.

  17. Quantifying atmospheric processing of mineral dust as a source of bioavailable phosphorus to the open oceans

    NASA Astrophysics Data System (ADS)

    Herbert, Ross; Stockdale, Anthony; Carslaw, Ken; Krom, Michael

    2016-04-01

    The transport and deposition of mineral dust is known to be the dominant source of phosphorus (P) to the surface waters of the open oceans. However, the fraction of this P that is deemed available for primary productivity remains a key uncertainty due to a limited understanding of the processes occurring during transport of the dust. Through a series of detailed laboratory experiments using desert dust and dust precursors, we show that the dissolution behaviour of P in these samples is controlled by a surface-bound labile pool, and an additional mineral pool primarily consisting of apatite. The acid dissolution of the apatite occurs rapidly and is controlled by the absolute number of H+ ions present in the solution surrounding the dust. Using these results we develop a new conceptual model that reproduces the major processes controlling P dissolution in the atmosphere. We then use a global aerosol microphysics model with a global soil database to quantify the deposition of bioavailable P to the open oceans and ice sheets. We show that, globally, the labile pool contributes 2.4 Gg P a‑1 to the oceans and, from a potential pool of 11.5 Gg P a‑1, the dissolved apatite pool contributes 0.24 Gg P a‑1. A series of sensitivity studies identifying sources of acid in the atmosphere show that anthropogenic emissions of SO2 contribute 61% of the global mass of dissolved apatite, volcanic events contribute 11%, and DMS emissions contribute 10%. Finally, we show that the fraction of mineral dust P that is available for primary productivity varies, regionally, from <20% in the North Atlantic Ocean to >50% in the South Pacific Ocean; this explains the variability in the fraction of bioavailable P commonly observed in important oceanic regions.

  18. Quantifying road dust resuspension in urban environment by Multilinear Engine: A comparison with PMF2

    NASA Astrophysics Data System (ADS)

    Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P. K.

    Atmospheric PM pollution from traffic comprises not only direct emissions but also non-exhaust emissions because resuspension of road dust that can produce high human exposure to heavy metals, metalloids, and mineral matter. A key task for establishing mitigation or preventive measures is estimating the contribution of road dust resuspension to the atmospheric PM mixture. Several source apportionment studies, applying receptor modeling at urban background sites, have shown the difficulty in identifying a road dust source separately from other mineral sources or vehicular exhausts. The Multilinear Engine (ME-2) is a computer program that can solve the Positive Matrix Factorization (PMF) problem. ME-2 uses a programming language permitting the solution to be guided toward some possible targets that can be derived from a priori knowledge of sources (chemical profile, ratios, etc.). This feature makes it especially suitable for source apportionment studies where partial knowledge of the sources is available. In the present study ME-2 was applied to data from an urban background site of Barcelona (Spain) to quantify the contribution of road dust resuspension to PM 10 and PM 2.5 concentrations. Given that recently the emission profile of local resuspended road dust was obtained (Amato, F., Pandolfi, M., Viana, M., Querol, X., Alastuey, A., Moreno, T., 2009. Spatial and chemical patterns of PM 10 in road dust deposited in urban environment. Atmospheric Environment 43 (9), 1650-1659), such a priori information was introduced in the model as auxiliary terms of the object function to be minimized by the implementation of the so-called "pulling equations". ME-2 permitted to enhance the basic PMF solution (obtained by PMF2) identifying, beside the seven sources of PMF2, the road dust source which accounted for 6.9 μg m -3 (17%) in PM 10, 2.2 μg m -3 (8%) of PM 2.5 and 0.3 μg m -3 (2%) of PM 1. This reveals that resuspension was responsible of the 37%, 15% and 3% of total

  19. Clumps in stellar winds

    NASA Astrophysics Data System (ADS)

    Vink, J. S.

    2014-07-01

    We discuss the origin and quantification of wind clumping and mass-loss rates (Ṁ), particularly in close proximity to the Eddington (Γ) limit, relevant for very massive stars (VMS). We present evidence that clumping may not be the result of the line-deshadowing instability (LDI), but that clumps are already present in the stellar photosphere.

  20. Quantifying dust and the ultraviolet radiation density in the local Universe

    NASA Astrophysics Data System (ADS)

    Rowan-Robinson, Michael

    2003-09-01

    A sample of local galaxies for which far-infrared and ultraviolet fluxes are available is used to estimate the characteristic dust extinction in galaxies and to test whether standard dust properties are plausible. Assuming galaxies can be characterized by a single dust optical depth (certainly not valid for galaxies with a dominant starburst component), the infrared excess and ultraviolet colours of local galaxies are found to be consistent with normal Milky Way dust, with a mean value for E(B-V) of 0.16. A significant fraction of the dust heating is caused by older, lower-mass stars, and this fraction increases towards earlier galaxy types. Analysis of (FFIR/FUV) versus ultraviolet colour diagrams for starburst galaxies in terms of a simple screen dust model does not support a Calzetti (1997) rather than a Milky Way extinction law, though the absence of the expected strong 2200-Å feature in several galaxies with IUE spectra does show that more detailed radiative transfer models are needed - probably with nonspherical geometry. A simple treatment in which the 100/60-μm flux ratio is used to subtract the optically thick starburst contribution to the far-infrared radiation results in lower extinction estimates for the optically thin cirrus component, with a mean E(B-V) of 0.10. The ultraviolet luminosity density, corrected for dust extinction, is derived and a value for the local mean star formation rate inferred. This is consistent with previous estimates from ultraviolet surveys and from Hα surveys.

  1. Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition During Current and Past Orbital Epochs with the NASA Ames GCM

    NASA Astrophysics Data System (ADS)

    Emmett, J. A.; Murphy, J. R.

    2016-09-01

    The NASA Ames GCM will be used to quantify net annual polar deposition rates of water ice and dust on Mars during current and past orbital epochs to investigate the formation history, structure, and stratigraphy of the polar layered terrains.

  2. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; et al

    2014-06-27

    Data from both laboratory studies and atmospheric measurements are used to develop a simple parametric description for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken to approximate the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterization developedmore » follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A correction factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this correction factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization to the immersion

  3. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles

    DOE PAGES

    DeMott, P. J.; Prenni, A. J.; McMeeking, G. R.; Sullivan, R. C.; Petters, M. D.; Tobo, Y.; Niemand, M.; Möhler, O.; Snider, J. R.; Wang, Z.; et al

    2015-01-13

    Data from both laboratory studies and atmospheric measurements are used to develop an empirical parameterization for the immersion freezing activity of natural mineral dust particles. Measurements made with the Colorado State University (CSU) continuous flow diffusion chamber (CFDC) when processing mineral dust aerosols at a nominal 105% relative humidity with respect to water (RHw) are taken as a measure of the immersion freezing nucleation activity of particles. Ice active frozen fractions vs. temperature for dusts representative of Saharan and Asian desert sources were consistent with similar measurements in atmospheric dust plumes for a limited set of comparisons available. The parameterizationmore » developed follows the form of one suggested previously for atmospheric particles of non-specific composition in quantifying ice nucleating particle concentrations as functions of temperature and the total number concentration of particles larger than 0.5 μm diameter. Such an approach does not explicitly account for surface area and time dependencies for ice nucleation, but sufficiently encapsulates the activation properties for potential use in regional and global modeling simulations, and possible application in developing remote sensing retrievals for ice nucleating particles. A calibration factor is introduced to account for the apparent underestimate (by approximately 3, on average) of the immersion freezing fraction of mineral dust particles for CSU CFDC data processed at an RHw of 105% vs. maximum fractions active at higher RHw. Instrumental factors that affect activation behavior vs. RHw in CFDC instruments remain to be fully explored in future studies. Nevertheless, the use of this calibration factor is supported by comparison to ice activation data obtained for the same aerosols from Aerosol Interactions and Dynamics of the Atmosphere (AIDA) expansion chamber cloud parcel experiments. Further comparison of the new parameterization, including calibration

  4. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-08-18

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  5. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  6. Statistical clumped isotope signatures

    NASA Astrophysics Data System (ADS)

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-08-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules.

  7. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  8. Magnetically regulated fragmentation of a massive, dense, and turbulent clump

    NASA Astrophysics Data System (ADS)

    Fontani, F.; Commerçon, B.; Giannetti, A.; Beltrán, M. T.; Sánchez-Monge, A.; Testi, L.; Brand, J.; Caselli, P.; Cesaroni, R.; Dodson, R.; Longmore, S.; Rioja, M.; Tan, J. C.; Walmsley, C. M.

    2016-09-01

    Massive stars, multiple stellar systems, and clusters are born of the gravitational collapse of massive, dense, gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical simulations show that magnetic fields may be the key ingredient in regulating fragmentation. Here we present ALMA observations at ~ 0.25'' resolution of the thermal dust continuum emission at ~ 278 GHz towards a turbulent, dense, and massive clump, IRAS 16061-5048c1, in a very early evolutionary stage. The ALMA image shows that the clump has fragmented into many cores along a filamentary structure. We find that the number, the total mass, and the spatial distribution of the fragments are consistent with fragmentation dominated by a strong magnetic field. Our observations support the theoretical prediction that the magnetic field plays a dominant role in the fragmentation process of massive turbulent clumps.

  9. Quantifying bioavailable iron delivery by dust during the icehouse of the late Paleozoic

    NASA Astrophysics Data System (ADS)

    Owens, J. D.; Lyons, T. W.; Soreghan, G. S.; Soreghan, M. J.; Chappaz, A.; Raiswell, R.

    2011-12-01

    The late Paleozoic glaciation (~300 million years ago) marks the last major, pre-Cenozoic icehouse climate. Delivery of reactive Fe-rich eolian particles to the nutrient-depleted open ocean potentially stimulates primary production during glacial intervals, yet the details remain unclear for recent glaciations and completely unknown for the ancient. Bioavailable Fe is a limiting nutrient in high-nitrate, low-chlorophyll portions of the open ocean. Because primary abundances of the most labile forms of Fe are not easily assessed in ancient sediments, we use highly reactive Fe (FeHR) (mostly crystalline oxides, some or most of which might have been more soluble precursors at the time of deposition) as determined by a well-calibrated sequential extraction scheme, as a rough proxy for bioavailable Fe. Here we present data from multiple Pennsylvanian-Permian loess and intercalated paleosol (ancient soil) deposits, as well as dust (glacial and nonglacial) from modern sites. We also compare ratios of total Fe (FeT) to Al to ratios of FeHR to FeT to assess whether increased Fe reactivity in dust reflects a net Fe addition or internal mineral repartitioning, and we are investigating the reactivity and valence of the reactive Fe using X-ray Absorption Fine Structure spectroscopy (XANES and EXAFS). These paired proxies may provide a unique fingerprint of source relationships. In the modern dust deposits (Chinese loess, Saharan dust from the Turks and Caicos Islands) and glacially derived Alaskan and New Zealand dusts, FeT/Al and FeHR/FeT show a positive correlation. In contrast, these ratios are antithetical in ancient loessite. Therefore, FeHR was enriched when compared to total Fe and, by inference, bioavailable despite net Fe loss reflected in sub-crustal FeT/Al ratios. Most work to date has presumed an arid soil source for the majority of bioavailable Fe. However, in light of our work and recent studies in modern glacial settings, we are exploring other possible ties to

  10. A new dust transport approach to quantify anthropogenic sources of atmospheric PM10 deposition on lakes

    NASA Astrophysics Data System (ADS)

    Weiss, Lee; Thé, Jesse; Gharabaghi, Bahram; Stainsby, Eleanor A.; Winter, Jennifer G.

    2014-10-01

    Windblown dust simulations are one of the most uncertain types of atmospheric transport models. This study presents an integrated PM10 emission, transport and deposition model which has been validated using monitored data. This model characterizes the atmospheric phosphorus load focusing on the major local sources within the Lake Simcoe airshed including paved and unpaved roads, agricultural sources, construction sites and aggregate mining sources. This new approach substantially reduces uncertainty by providing improved estimates of the friction velocities than those developed previously. Modeling improvements were also made by generating and validating an hourly windfield using detailed meteorology, topography and land use data for the study area. The model was used to estimate dust emissions generated in the airshed and to simulate the long-range transport and deposition of PM10 to Lake Simcoe. The deposition results from the model were verified against observed bulk collector phosphorus concentration data for both wet and dry deposition. Bulk collector data from stations situated outside the airshed in a remote, undeveloped area were also compared to determine the background contribution from distant sources.

  11. Quantifying the contribution of long-range Saharan dust transport on particulate matter concentrations in Houston, Texas, using detailed elemental analysis.

    PubMed

    Bozlaker, Ayse; Prospero, Joseph M; Fraser, Matthew P; Chellam, Shankararaman

    2013-09-17

    The trans-Atlantic transport of North African dust by summertime trade winds occasionally increases ambient particulate matter (PM) concentrations in Texas above air quality standards. Exemptions from such exceedences can be sought for episodic events that are beyond regulatory control by providing qualitative supportive information such as satellite images and back-trajectories. Herein we demonstrate that chemical mass balancing can successfully isolate, differentiate, and quantify the relative contributions from local and global mineral dust sources through detailed measurements of a wide suite of elements in ambient PM. We identified a major dust storm originating in Northwest Africa in mid-July 2008 which eventually impacted air quality in Houston during July 25, 26, and 27, 2008. Daily PM2.5 and PM10 samples were collected at two sites in Houston over a 2-week period encompassing the Saharan dust episode to quantify the transported mineral dust concentrations during this peak event. Average PM concentrations more than doubled during the Saharan intrusion compared with non-Saharan. Relative concentrations of several elements often associated with anthropogenic sources were significantly diluted by crustal minerals coincident with the large-scale Saharan dust intrusion. During non-Saharan days, local mineral dust sources including cement manufacturing and soil and road dust contributed in total 26% to PM2.5 mass and 50% to PM10 mass; during the three-day Saharan episode the total dust contribution increased to 64% for PM2.5 and 85% for PM10. Importantly, this approach was also able to determine that local emissions of crustal minerals dominated the period immediately following the Saharan dust episode: simple quantification of bulk crustal materials may have misappropriated this elevated PM to trans-Atlantic transport of Saharan dust. PMID:23957269

  12. Quantifying the contribution of long-range Saharan dust transport on particulate matter concentrations in Houston, Texas, using detailed elemental analysis.

    PubMed

    Bozlaker, Ayse; Prospero, Joseph M; Fraser, Matthew P; Chellam, Shankararaman

    2013-09-17

    The trans-Atlantic transport of North African dust by summertime trade winds occasionally increases ambient particulate matter (PM) concentrations in Texas above air quality standards. Exemptions from such exceedences can be sought for episodic events that are beyond regulatory control by providing qualitative supportive information such as satellite images and back-trajectories. Herein we demonstrate that chemical mass balancing can successfully isolate, differentiate, and quantify the relative contributions from local and global mineral dust sources through detailed measurements of a wide suite of elements in ambient PM. We identified a major dust storm originating in Northwest Africa in mid-July 2008 which eventually impacted air quality in Houston during July 25, 26, and 27, 2008. Daily PM2.5 and PM10 samples were collected at two sites in Houston over a 2-week period encompassing the Saharan dust episode to quantify the transported mineral dust concentrations during this peak event. Average PM concentrations more than doubled during the Saharan intrusion compared with non-Saharan. Relative concentrations of several elements often associated with anthropogenic sources were significantly diluted by crustal minerals coincident with the large-scale Saharan dust intrusion. During non-Saharan days, local mineral dust sources including cement manufacturing and soil and road dust contributed in total 26% to PM2.5 mass and 50% to PM10 mass; during the three-day Saharan episode the total dust contribution increased to 64% for PM2.5 and 85% for PM10. Importantly, this approach was also able to determine that local emissions of crustal minerals dominated the period immediately following the Saharan dust episode: simple quantification of bulk crustal materials may have misappropriated this elevated PM to trans-Atlantic transport of Saharan dust.

  13. Quantifying the climatological cloud-free shortwave direct radiative forcing of mineral dust aerosol over the Red Sea

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Brindley, H. E.; Osipov, S.; Bantges, R. J.; Smirnov, A.; Prakash, P. J.

    2014-12-01

    While there have been a number of campaigns designed to probe dust-climate interactions over much of the world, relatively little attention has been paid to the Red Sea. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements, which can be used to evaluate retrievals, are thus highly desirable. Here we take advantage of ship-based hand-held sun-photometer (microtops) observations gathered within the framework of NASA Aerosol Maritime Network from a series of cruises, which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Here we used the microtops measurements to evaluate the performance of co-located satellite retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the MODerate Imaging Spectrometer (MODIS). Both algorithms show good agreement with the ship-based measurements and with each other, although it appears that the MODIS cloud detection scheme in particular is rather conservative. The stand alone Rapid Radiative Transfer Model (RRTM) driven by reanalysis meteorological fields is used to estimate the cloud-free aerosol direct radiative effect at the surface and TOA along the ship tracks. The TOA effects are compared to co-located measurements from the Geostationary Earth Radiation Budget (GERB) instrument. Having evaluated both the quality of the retrievals and the ability of the model to capture the associated radiative effect, we will present a climatology of aerosol loading over the

  14. Interstellar Clump Behavior and Magnetic Effects in Small Clumps

    NASA Astrophysics Data System (ADS)

    Vallée, Jacques P.

    2000-07-01

    Cold, dusty molecular clumps (0.01 pcclumps. There are universal physical relations in clumps governing mean parameters such as gas density n, diameter D, magnetic field B, and gas line width σ, with the forms ~Dc, ~p, ~k, <σ>~q. For clumps with diameters <0.5 pc, one finds c=-1.5+/-0.1, p=-1.5+/-0.1, k=1.0+/-0.2. These exponent values differ from those found by Larson for molecular clouds with sizes greater than 1 pc. These differences in c and k could be indicative of ongoing accretion processes in shocked media as a prelude to star formation. The energy distribution in clumps reveals the following: the support against gravitational collapse in clumps with sizes greater than 0.1 pc comes mainly from turbulent energy, while smaller clumps with sizes less than 0.1 pc are supported by both magnetic and turbulent energies. The clump size of 0.1 pc is critical in many other respects.

  15. Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR - MCEARD

    EPA Science Inventory

    Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mo...

  16. Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR

    EPA Science Inventory

    Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mol...

  17. Mold Species in Dust from the International Space Station Identified and Quantified by Mold Specific Quantitative PCR

    NASA Technical Reports Server (NTRS)

    Vesper, Stephen J.; Wong, Wing; Kuo, C. Mike; Pierson, Duane L.

    2008-01-01

    Dust was collected over a period of several weeks in 2007 from various HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved, and the DNA was extracted. Using a DNA-based method called mold specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Opportunistic pathogens Aspergillus flavus and A. niger and toxin producers Penicillium chrysogenum and P. brevicompactum were found at relatively high concentrations (compared to U.S. homes). No cells of the opportunistic pathogens A. fumigatus, A. terreus, Fusarium solani or Candida albicans were detected.

  18. Mold species in dust from the International Space Station identified and quantified by mold-specific quantitative PCR.

    PubMed

    Vesper, Stephen J; Wong, Wing; Kuo, C Mike; Pierson, Duane L

    2008-01-01

    Dust was collected over a period of several weeks in 2007 from HEPA filters in the U.S. Laboratory Module of the International Space Station (ISS). The dust was returned on the Space Shuttle Atlantis, mixed, sieved and the DNA was extracted. Using a DNA-based method called mold-specific quantitative PCR (MSQPCR), 39 molds were measured in the dust. Potential opportunistic pathogens Aspergillus flavus and Aspergillus niger and potential moderate toxin producers Penicillium chrysogenum and Penicillium brevicompactum were noteworthy. No cells of the potential opportunistic pathogens Aspergillus fumigatus, Aspergillus terreus, Fusarium solani or Candida albicans were detected.

  19. In my Beginning is my End: Dust Destruction in the Cassiopeia A Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Micelotta, E.; Dwek, E.

    It has been demonstrated by observations that young supernovae (SNe) are indeed able to efficiently synthesize dust. However, it is unclear how much of the freshly formed dust can reach the interstellar medium and contribute to the observed emission. At the same time, SNe represent the major agent responsible for dust destruction. Because SNe are possibly the only viable dust factory in the early Universe, it is extremely important to establish the fate of the newly formed dust. Our work explores the possibility that a significant fraction of any dust formed after the explosion is destroyed within the supernova remnant itself. In the Cassiopeia A supernova remnant, dust emission has been observed associated with optical knots containing recently formed material. The dust present in such clumps is threatened by the reverse shock traveling through the ejecta toward the center of the remnant. The shock is able to disrupt the clumps and will inject the dust grains into a hot gas, where they will be eroded and possibly destroyed by thermal and inertial sputtering. We present a model that describes the propagation of the reverse shock into the supernova cavity and evaluates the modifications in the grain size distribution due to the encounter with the reverse shock. This is the first step required to quantify the amount of dust ultimately able to survive. Our model accounts for the variation of the physical properties of both the shock and the ejecta across the remnant. In particular, this means taking explicitly into consideration, for the first time in this kind of studies, the effect of clumping of the ejecta.

  20. Cosmic Reionization On Computers III. The Clumping Factor

    SciTech Connect

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2015-09-09

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludes computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.

  1. Cosmic Reionization On Computers III. The Clumping Factor

    DOE PAGES

    Kaurov, Alexander A.; Gnedin, Nickolay Y.

    2015-09-09

    We use fully self-consistent numerical simulations of cosmic reionization, completed under the Cosmic Reionization On Computers project, to explore how well the recombinations in the ionized intergalactic medium (IGM) can be quantified by the effective "clumping factor." The density distribution in the simulations (and, presumably, in a real universe) is highly inhomogeneous and more-or-less smoothly varying in space. However, even in highly complex and dynamic environments, the concept of the IGM remains reasonably well-defined; the largest ambiguity comes from the unvirialized regions around galaxies that are over-ionized by the local enhancement in the radiation field ("proximity zones"). This ambiguity precludesmore » computing the IGM clumping factor to better than about 20%. Furthermore, we discuss a "local clumping factor," defined over a particular spatial scale, and quantify its scatter on a given scale and its variation as a function of scale.« less

  2. CO depletion in ATLASGAL-selected high-mass clumps

    NASA Astrophysics Data System (ADS)

    Giannetti, A.; Wyrowski, F.; Brand, J.; Csengeri, T.; Fontani, F.; Walmsley, C. M.; Nguyen Luong, Q.; Beuther, H.; Schuller, F.; Güsten, R.; Menten, K. M.

    2016-05-01

    In the low-mass regime, it is found that the gas-phase abundances of C-bearing molecules in cold starless cores rapidly decrease with increasing density. Here the molecules tend to stick to the grains, forming ice mantles. We study CO depletion in the TOP100 sample of the ATLASGAL survey, and investigate its correlation with evolutionary stage and with the physical parameters of the sources. We use low-J emission lines of CO isotopologues and the dust continuum emission to infer the depletion factor fD. RATRAN one-dimensional models were also used to determine fD and to investigate the presence of depletion above a density threshold. The isotopic ratios and optical depth were derived with a Bayesian approach. We find a significant number of clumps with a large CO depletion, up to ˜20. Larger values are found for colder clumps, thus for earlier evolutionary phases. For massive clumps in the earliest stages of evolution we estimate the radius of the region where CO depletion is important to be a few tenths of a pc. CO depletion in high-mass clumps seems to behave as in the low-mass regime, with less evolved clumps showing larger values for the depletion than their more evolved counterparts, and increasing for denser sources.

  3. Red Clump Stars

    NASA Astrophysics Data System (ADS)

    Girardi, Léo

    2016-09-01

    Low-mass stars in their core-helium-burning stage define the sharpest feature present in the color-magnitude diagrams of nearby galaxy systems: the red clump (RC). This feature has given rise to a series of methods aimed at measuring the distributions of stellar distances and extinctions, especially in the Magellanic Clouds and Milky Way Bulge. Because the RC is easily recognizable within the data of large spectroscopic and asteroseismic surveys, it is a useful probe of stellar densities, kinematics, and chemical abundances across the Milky Way disk; it can be applied up to larger distances than that allowed by dwarfs; and it has better accuracy than is possible with other kinds of giants. Here, we discuss the reasons for the RC narrowness in several sets of observational data, its fine structure, and the presence of systematic changes in the RC properties as regards age, metallicity, and the observed passband. These factors set the limits on the validity and accuracy of several RC methods defined in the literature.

  4. QUANTIFYING THE HEATING SOURCES FOR MID-INFRARED DUST EMISSIONS IN GALAXIES: THE CASE OF M 81

    SciTech Connect

    Lu, N.; Zhao, Y.; Bendo, G. J.; Boselli, A.; Baes, M.; De Looze, I.; Wu, H.; Lam, M. I.; Madden, S. C.; Rémy-Ruyer, A.; Wilson, C. D.; Galametz, M.; Cooray, A.; Spinoglio, L.

    2014-12-20

    With the newly available photometric images at 250 and 500 μm from the Herschel Space Observatory, we study quantitative correlations over a sub-kiloparsec scale among three distinct emission components in the interstellar medium of the nearby spiral galaxy M 81 (NGC 3031): (1) I {sub 8} or I {sub 24}, the surface brightness of the mid-infrared emission observed in the Spitzer Space Telescope 8 or 24 μm band, with I {sub 8} and I {sub 24} being dominated by the emissions from polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs) of dust, respectively; (2) I {sub 500}, that of the cold dust continuum emission in the Herschel Space Observatory 500 μm band, dominated by the emission from large dust grains heated by evolved stars; and (3) I {sub Hα}, a nominal surface brightness of the Hα line emission, from gas ionized by newly formed massive stars. The results from our correlation study, free from any assumption on or modeling of dust emissivity law or dust temperatures, present solid evidence for significant heating of PAHs and VSGs by evolved stars. In the case of M 81, about 67% (48%) of the 8 μm (24 μm ) emission derives its heating from evolved stars, with the remainder attributed to radiation heating associated with ionizing stars.

  5. Remarks on the clump theory

    SciTech Connect

    Krommes, J.A.

    1986-07-01

    Further details are provided of a soon-to-be published dialog (Phys. Fluids 29 (July, 1986)) which discussed the role of the small scales in fluid clump theory. It is argued that the approximation of the clump lifetime which is compatible with exponentially rapid separation of adjacent orbits is inappropriate for the description of the dynamically important large scales. Various other remarks are made relating to the analytic treatment of strong drift-wave-like turbulence.

  6. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong

    2016-02-01

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model

  7. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    DOE PAGES

    Zhang, Kai; Zhao, Chun; Wan, Hui; Qian, Yun; Easter, Richard C.; Ghan, Steven J.; Sakaguchi, Koichi; Liu, Xiaohong

    2016-02-12

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by mesoscale systems and fine-scale topography overmore » land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature. Wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis data set at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from 1 year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing.The wind-distribution-based emission calculations are implemented in CAM5. In terms of computational cost, the increase in total simulation time turns out to be less than 3 %. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and mesoscale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the

  8. CUPID: Clump Identification and Analysis Package

    NASA Astrophysics Data System (ADS)

    Berry, David S.; Reinhold, K.; Jenness, Tim; Economou, Frossie

    2013-11-01

    The CUPID package allows the identification and analysis of clumps of emission within 1, 2 or 3 dimensional data arrays. Whilst targeted primarily at sub-mm cubes, it can be used on any regularly gridded 1, 2 or 3D data. A variety of clump finding algorithms are implemented within CUPID, including the established ClumpFind (ascl:1107.014) and GaussClumps algorithms. In addition, two new algorithms called FellWalker and Reinhold are also provided. CUPID allows easy inter-comparison between the results of different algorithms; the catalogues produced by each algorithm contains a standard set of columns containing clump peak position, clump centroid position, the integrated data value within the clump, clump volume, and the dimensions of the clump. In addition, pixel masks are produced identifying which input pixels contribute to each clump. CUPID is distributed as part of the Starlink (ascl:1110.012) software collection.

  9. An Infrared Through Radio Study of the Properties and Evolution of IRDC Clumps

    NASA Astrophysics Data System (ADS)

    Battersby, Cara; Bally, John; Jackson, James M.; Ginsburg, Adam; Shirley, Yancy L.; Schlingman, Wayne; Glenn, Jason

    2010-09-01

    We examine the physical properties and evolutionary stages of a sample of 17 clumps within 8 Infrared Dark Clouds (IRDCs) by combining existing infrared, millimeter, and radio data with new Bolocam Galactic Plane Survey (BGPS) 1.1 mm data, Very Large Array radio continuum data, and Heinrich Hertz Telescope dense gas (HCO+ and N2H+) spectroscopic data. We combine literature studies of star formation tracers and dust temperatures within IRDCs with our search for ultracompact (UC) H II regions to discuss a possible evolutionary sequence for IRDC clumps. In addition, we perform an analysis of mass tracers in IRDCs and find that 8 μm extinction masses and 1.1 mm BGPS masses are complementary mass tracers in IRDCs except for the most active clumps (notably those containing UC H II regions), for which both mass tracers suffer biases. We find that the measured virial masses in IRDC clumps are uniformly higher than the measured dust continuum masses on the scale of ~1 pc. We use 13CO, HCO+, and N2H+ to study the molecular gas properties of IRDCs and do not see any evidence of chemical differentiation between hot and cold clumps on the scale of ~1 pc. However, both HCO+ and N2H+ are brighter in active clumps, due to an increase in temperature and/or density. We report the identification of four UC H II regions embedded within IRDC clumps and find that UC H II regions are associated with bright (gsim1 Jy) 24 μm point sources, and that the brightest UC H II regions are associated with "diffuse red clumps" (an extended enhancement at 8 μm). The broad stages of the discussed evolutionary sequence (from a quiescent clump to an embedded H II region) are supported by literature dust temperature estimates; however, no sequential nature can be inferred between the individual star formation tracers.

  10. Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Zhao, C.; Wan, H.; Qian, Y.; Easter, R. C.; Ghan, S. J.; Sakaguchi, K.; Liu, X.

    2015-08-01

    This paper evaluates the impact of sub-grid variability of surface wind on sea salt and dust emissions in the Community Atmosphere Model version 5 (CAM5). The basic strategy is to calculate emission fluxes multiple times, using different wind speed samples of a Weibull probability distribution derived from model-predicted grid-box mean quantities. In order to derive the Weibull distribution, the sub-grid standard deviation of surface wind speed is estimated by taking into account four mechanisms: turbulence under neutral and stable conditions, dry convective eddies, moist convective eddies over the ocean, and air motions induced by meso-scale systems and fine-scale topography over land. The contributions of turbulence and dry convective eddy are parameterized using schemes from the literature, while the wind variabilities caused by moist convective eddies and fine-scale topography are estimated using empirical relationships derived from an operational weather analysis dataset at 15 km resolution. The estimated sub-grid standard deviations of surface wind speed agree well with reference results derived from one year of global weather analysis at 15 km resolution and from two regional model simulations with 3 km grid spacing. The wind-distribution-based emission calculations are implemented in CAM5. Simulations at 2° resolution indicate that sub-grid wind variability has relatively small impacts (about 7 % increase) on the global annual mean emission of sea salt aerosols, but considerable influence on the emission of dust. Among the considered mechanisms, dry convective eddies and meso-scale flows associated with topography are major causes of dust emission enhancement. With all the four mechanisms included and without additional adjustment of uncertain parameters in the model, the simulated global and annual mean dust emission increase by about 50 % compared to the default model. By tuning the globally constant dust emission scale factor, the global annual mean

  11. Simulations of Supernova Reverse Shock Dust Destruction in Metal-Enriched Clouds

    NASA Astrophysics Data System (ADS)

    Silvia, Devin W.; Smith, B. D.; Shull, J. M.

    2011-01-01

    In following previous work, we present hydrodynamic simulations used to study the effects of dust destruction by sputtering in the reverse shocks of supernova remnants. As before (Silvia et al. 2010), we use an idealized setup of a planar shock impacting a dense, spherical clump implanted with a population of Lagrangian particles that act as tracers of dust. These tracers represent a distribution of dust grains that vary in both species and size. Specifically, we investigate those cases in which the cloud initially has super-solar metal abundances (Z 1000 Z⊙), as we expect the ejecta knots from supernova explosions to be extremely metal-enriched. A high abundance of metals has significant influence on both the cooling properties of the cloud and the thermal sputtering rates of the embedded dust grains. We also include a brief discussion about the difficulty of using the piecewise parabolic method for solving the hydrodynamic equations with high cooling rates produced by high metallicities. Through these simulations, we seek to quantify the fragmentation of ejecta clumps for comparison to observations of nearby supernova remnants and calculate the dust survival rate for these heavily metal-enriched cases. Estimates for dust survival in supernova shocks is critical in determining the source of dust at high redshift.

  12. Clumped isotopes in soil carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J. M.; Daeron, M.

    2011-12-01

    We are monitoring soil temperature and measuring clumped isotopes from modern soil carbonate in North and South America, Hawaii, and Tibet. Clumped isotopes from 50-200 cm soil depth show a strong and systematic bias toward formation in the warmest summer months. For example, soil carbonate as these depths exceed local mean annual temperature by 10-15°C in soils from India and Tibet. Clumped isotope temperatures from modern carbonate increase very regularly (r2 = 0.90) with elevation gain from lowland India to Tibet. Here carbonate forms largely in May-June, just prior to the arrival of the soil-cooling monsoon rains. In this regard, clumped isotopes hold great promise as a paleoaltimeter on the plateau. The question is whether these patterns from a monsoonal climate can be generalized (and they probably can't be) to other climate regimes when soil carbonate forms at a different time of year than the pre-monsoon. For example, in winter-dominated rainfall regimes soil carbonate may form as soils dewater in the spring and soil temperature is closer to mean annual temperature. These are open questions. Diurnal temperature information is also archived in the upper 30 cm of soils. Modern carbonate in Tibet appears to form in very late morning through afternoon, when the surface soil is warmest. Shade and aspect also strongly influence measured soil and clumped isotope temperatures. Both variables will have to be controlled for to correctly interpret clumped isotopes from the paleosol record. Clumped isotope values correlate with δ13C values in soil carbonate from shallowly buried (<1 km) paleosols from Nepal and Pakistan. This makes sense since δ13C values in the sub-tropics are determined the fraction of tree (C3) to grass (C4) cover, and soils under tree-covered areas are cooler. Finally, clumped isotopes from carbonates are reset to higher temperatures at burial depths roughly >2-3 km or >50-75°C. This was reproduced from paleosol and lake carbonates from three

  13. Molecular Line Emission Towards High-Mass Clumps: The MALT90 Catalogue

    NASA Astrophysics Data System (ADS)

    Rathborne, J. M.; Whitaker, J. S.; Jackson, J. M.; Foster, J. B.; Contreras, Y.; Stephens, I. W.; Guzmán, A. E.; Longmore, S. N.; Sanhueza, P.; Schuller, F.; Wyrowski, F.; Urquhart, J. S.

    2016-07-01

    The Millimetre Astronomy Legacy Team 90 GHz survey aims to characterise the physical and chemical evolution of high-mass clumps. Recently completed, it mapped 90 GHz line emission towards 3 246 high-mass clumps identified from the ATLASGAL 870 μm Galactic plane survey. By utilising the broad frequency coverage of the Mopra telescope's spectrometer, maps in 16 different emission lines were simultaneously obtained. Here, we describe the first catalogue of the detected line emission, generated by Gaussian profile fitting to spectra extracted towards each clumps' 870 μm dust continuum peak. Synthetic spectra show that the catalogue has a completeness of > 95%, a probability of a false-positive detection of < 0.3%, and a relative uncertainty in the measured quantities of < 20% over the range of detection criteria. The detection rates are highest for the (1-0) transitions of HCO+, HNC, N2H+, and HCN (~77-89%). Almost all clumps (~95%) are detected in at least one of the molecular transitions, just over half of the clumps (~53%) are detected in four or more of the transitions, while only one clump is detected in 13 transitions. We find several striking trends in the ensemble of properties for the different molecular transitions when plotted as a function of the clumps' evolutionary state as estimated from Spitzer mid-IR images, including (1) HNC is relatively brighter in colder, less evolved clumps than those that show active star formation, (2) N2H+ is relatively brighter in the earlier stages, (3) that the observed optical depth decreases as the clumps evolve, and (4) the optically thickest HCO+ emission shows a `blue-red asymmetry' indicating overall collapse that monotonically decreases as the clumps evolve. This catalogue represents the largest compiled database of line emission towards high-mass clumps and is a valuable data set for detailed studies of these objects.

  14. Inter- and intra-annual variations of clumping index derived from the MODIS BRDF product

    NASA Astrophysics Data System (ADS)

    He, Liming; Liu, Jane; Chen, Jing M.; Croft, Holly; Wang, Rong; Sprintsin, Michael; Zheng, Ting; Ryu, Youngryel; Pisek, Jan; Gonsamo, Alemu; Deng, Feng; Zhang, Yongqin

    2016-02-01

    Clumping index quantifies the level of foliage aggregation, relative to a random distribution, and is a key structural parameter of plant canopies and is widely used in ecological and meteorological models. In this study, the inter- and intra-annual variations in clumping index values, derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF product, are investigated at six forest sites, including conifer forests, a mixed deciduous forest and an oak-savanna system. We find that the clumping index displays large seasonal variation, particularly for the deciduous sites, with the magnitude in clumping index values at each site comparable on an intra-annual basis, and the seasonality of clumping index well captured after noise removal. For broadleaved and mixed forest sites, minimum clumping index values are usually found during the season when leaf area index is at its maximum. The magnitude of MODIS clumping index is validated by ground data collected from 17 sites. Validation shows that the MODIS clumping index can explain 75% of variance in measured values (bias = 0.03 and rmse = 0.08), although with a narrower amplitude in variation. This study suggests that the MODIS BRDF product has the potential to produce good seasonal trajectories of clumping index values, but with an improved estimation of background reflectance.

  15. Molecules and dust in Cassiopeia A. II. Dust sputtering and diagnosis of supernova dust survival in remnants

    NASA Astrophysics Data System (ADS)

    Biscaro, Chiara; Cherchneff, Isabelle

    2016-05-01

    We study the dust evolution in the supernova remnant Cassiopeia A. We follow the processing of dust grains that formed in the Type II-b supernova ejecta by modelling the sputtering of grains. The dust is located in dense ejecta clumps that are crossed by the reverse shock. We also investigate further sputtering in the inter-clump medium gas once the clumps have been disrupted by the reverse shock. The dust evolution in the dense ejecta clumps of Type II-P supernovae and their remnants is also explored. We study oxygen-rich clumps that describe the oxygen core of the ejecta, and carbon-rich clumps that correspond to the outermost carbon-rich ejecta zone. We consider the various dust components that form in the supernova, several reverse shock velocities and inter-clump gas temperatures, and derive grain-size distributions and masses for the dust as a function of time. Both non-thermal sputtering within clumps and thermal sputtering in the inter-clump medium gas are studied. We find that non-thermal sputtering in the clumps is important for all supernova types and accounts for reducing the grain population by ~ 40% to 80% in mass, depending on the clump gas over-density, the grain type and size, and the shock velocity in the clump. A Type II-b SN forms small grains that are sputtered within the clumps and in the inter-clump medium. For Cas A, silicate grains do not survive thermal sputtering in the inter-clump medium, while alumina, silicon carbide, and carbon dust may survive in the remnant. Our derived masses of currently processed silicate, alumina and carbon grains agree well with the values derived from the observations of warm dust, and seem to indicate that the dust is currently being processed within clumps by non-thermal sputtering. Out of the ~ 0.03M⊙ of dust formed in the ejecta, between 30% and 60% of this mass is present today in Cas A, and only 6% to 11% of the initial mass will survive the remnant phase. Grains formed in Type II-P supernovae are

  16. Chemistry of dense clumps near moving Herbig-Haro objects

    NASA Astrophysics Data System (ADS)

    Christie, H.; Viti, S.; Williams, D. A.; Girart, J. M.; Morata, O.

    2011-09-01

    Localized regions of enhanced emission from HCO+, NH3 and other species near Herbig-Haro objects (HHOs) have been interpreted as arising in a photochemistry stimulated by the HHO radiation on high-density quiescent clumps in molecular clouds. Static models of this process have been successful in accounting for the variety of molecular species arising ahead of the jet; however, recent observations show that the enhanced molecular emission is widespread along the jet as well as ahead. Hence, a realistic model must take into account the movement of the radiation field past the clump. It was previously unclear as to whether the short interaction time between the clump and the HHO in a moving source model would allow molecules such as HCO+ to reach high enough levels, and to survive for long enough to be observed. In this work we model a moving radiation source that approaches and passes a clump. The chemical picture is qualitatively unchanged by the addition of the moving source, strengthening the idea that enhancements are due to evaporation of molecules from dust grains. In addition, in the case of several molecules, the enhanced emission regions are longer lived. Some photochemically induced species, including methanol, are expected to maintain high abundances for ˜104 yr.

  17. Clumped isotope thermometry and catagenesis

    NASA Astrophysics Data System (ADS)

    Eiler, J. M.; Clog, M. D.; Dallas, B.; Douglas, P. M.; Piasecki, A.; Sessions, A. L.; Stolper, D. A.

    2014-12-01

    Clumped- and site-specific isotopic compositions of organic compounds can constrain their formation temperatures, sources, and chemical reaction histories. The large number of isotopologues of organic molecules may allow for the isotopic composition of a single compound to illuminate many processes. For example, it is possible that clumping or site specific effects in different parts of the same molecule will differ in blocking temperature, such that a molecule's full isotopic structure could simultaneously constrain conditions of biosynthesis, catagenic 'cracking', and storage in the crust. Recent innovations in high-resolution mass spectrometry and methods of IR and NMR spectroscopy make it possible to explore these questions. Methane is the first organic molecule to have its clumped isotope geochemistry analyzed in a variety of natural environments and controlled experiments. Methane generated through catagenic cracking of kerogen and other organic matter forms in equilibrium with respect to isotopic clumping, and preserves that state through later storage or migration, up to temperatures of ~250 ˚C. This kinetic behavior permits a variety of useful geological applications. But it is unexpected because the bulk stable isotope composition of thermogenic methane is thought to reflect kinetic isotope effects on irreversible reactions. Our observations imply a new interpretation of the chemical physics of catagenic methane formation. Additional instrument and methods developments are currently extending the measurement of isotopic clumping and position specific effects to larger alkanes, other hydrocarbon compounds, and amino acids. These measurements will ultimately expand our capacity to understand the formational conditions and fates of organic molecules in high- and low-temperature environments through geological time.

  18. A process-based model for non-equilibrium clumped isotope effects in carbonates

    NASA Astrophysics Data System (ADS)

    Watkins, J. M.; Hunt, J. D.

    2015-12-01

    The equilibrium clumped isotope composition of carbonate minerals is independent of the composition of the aqueous solution. However, many carbonate minerals grow at rates that place them in a non-equilibrium regime with respect to carbon and oxygen isotopes with unknown consequences for clumped isotopes. We develop a process-based model that allows one to calculate the oxygen, carbon, and clumped isotope composition of calcite as a function of temperature, crystal growth rate, and solution pH. In the model, carbon and oxygen isotope fractionation occurs through the mass-dependent attachment/detachment kinetics of the isotopologues of HCO-3 and CO2-3 to and from the calcite surface, which in turn, influence the clumped isotope composition of calcite. At experimental and biogenic growth rates, the mineral is expected to inherit a clumped isotopic composition that is similar to that of the DIC pool, which helps to explain (1) why different organisms share the same clumped isotope versus temperature calibration curves, (2) why many inorganic calibration curves are slightly different from one another, and (3) why foraminifera, coccoliths, and deep sea corals can have near-equilibrium clumped isotope compositions but far-from-equilibrium carbon and oxygen isotope compositions. Some aspects of the model can be generalized to other mineral systems and should serve as a useful reference in future efforts to quantify kinetic clumped isotope effects.

  19. Gas of 96 Planck Cold Clumps in the Second Quadrant

    NASA Astrophysics Data System (ADS)

    Zhang, Tianwei; Wu, Yuefang; Liu, Tie; Meng, Fanyi

    2016-06-01

    Ninety-six Planck cold dust clumps in the second quadrant were mapped with 12CO (1-0), 13CO (1-0), and C18O (1-0) lines at the 13.7 m telescope of Purple Mountain Observatory. 12CO (1-0) and 13CO (1-0) emissions were detected for all 96 clumps, while C18O (1-0) emissions were detected in 81 of them. Fifteen clumps have more than one velocity component. In the 115 mapped velocity components, 225 cores were obtained. We found that 23.1% of the cores have non-Gaussian profiles. We acquired the V lsr, FWHM, and T A of the lines. Distances, T ex, velocity dispersions, {N}{{{H}}2}, and masses were also derived. Generally, turbulence may dominant the cores because {σ }{NT}/{σ }{Therm}\\gt 1 in almost all of the cores and Larson’s relationship is not apparent in our massive cores. Virial parameters are adopted to test the gravitational stability of cores and 51% of the cores are likely collapsing. The core mass function of the cores in the range 0-1 kpc suggests a low core-to-star conversional efficiency (0.62%). Only 14 of 225 cores (6.2%) have associated stellar objects at their centers, while the others are starless. The morphologies of clumps are mainly filamentary structures. Seven clumps may be located on an extension of the new spiral arm in the second quadrant while three are on the known outer arm.

  20. Formation of the Martian Polar Layered Terrains: Quantifying Polar Water Ice and Dust Surface Deposition during Current and Past Orbital Epochs with the NASA Ames GCM

    NASA Astrophysics Data System (ADS)

    Emmett, Jeremy; Murphy, Jim

    2016-10-01

    Structural and compositional variability in the layering sequences comprising Mars' polar layered terrains (PLT's) is likely explained by orbital-forced climatic variations in the sedimentary cycles of water ice and dust from which they formed [1]. The PLT's therefore contain a direct, extensive record of the recent climate history of Mars encoded in their structure and stratigraphy, but deciphering this record requires understanding the depositional history of their dust and water ice constituents. 3D Mars atmosphere modeling enables direct simulation of atmospheric dynamics, aerosol transport and quantification of surface accumulation for a range of past and present orbital configurations. By quantifying the net yearly polar deposition rates of water ice and dust under Mars' current and past orbital configurations characteristic of the last several millions of years, and integrating these into the present with a time-stepping model, the formation history of the north and south PLT's will be investigated, further constraining their age and composition, and, if reproducible, revealing the processes responsible for prominent features and stratigraphy observed within the deposits. Simulating the formation of the deposits by quantifying net deposition rates during past orbital epochs and integrating these into the present, effectively 'rebuilding' the terrains, could aid in understanding deeper stratigraphic trends, correlating between geographically-separated deposits, explaining the presence and shapes of large-scale polar features, and correlating stratigraphy with geological time. Quantification of the magnitude and geographical distribution of surface aerosol accumulation will build on the work of previous GCM-based investigations [3]. Construction and analysis of hypothetical stratigraphic sequences in the PLT's will draw from previous climate-controlled stratigraphy methodologies [2,4], but will utilize GCM-derived net deposition rates to model orbital

  1. A DELAUNAY TRIANGULATION APPROACH FOR SEGMENTING CLUMPS OF NUCLEI

    SciTech Connect

    Wen, Quan; Chang, Hang; Parvin, Bahram

    2009-05-07

    Cell-based fluorescence imaging assays have the potential to generate massive amount of data, which requires detailed quantitative analysis. Often, as a result of fixation, labeled nuclei overlap and create a clump of cells. However, it is important to quantify phenotypic read out on a cell-by-cell basis. In this paper, we propose a novel method for decomposing clumps of nuclei using high-level geometric constraints that are derived from low-level features of maximum curvature computed along the contour of each clump. Points of maximum curvature are used as vertices for Delaunay triangulation (DT), which provides a setof edge hypotheses for decomposing a clump of nuclei. Each hypothesis is subsequently tested against a constraint satisfaction network for a near optimum decomposition. The proposed method is compared with other traditional techniques such as the watershed method with/without markers. The experimental results show that our approach can overcome the deficiencies of the traditional methods and is very effective in separating severely touching nuclei.

  2. The Bolocam Galactic Plane Survey. XIV. Physical Properties of Massive Starless and Star-forming Clumps

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian E.; Shirley, Yancy L.; Battersby, Cara; Rosolowsky, Erik W.; Ginsburg, Adam G.; Ellsworth-Bowers, Timothy P.; Pestalozzi, Michele R.; Dunham, Miranda K.; Evans, Neal J., II; Bally, John; Glenn, Jason

    2016-05-01

    We sort 4683 molecular clouds between 10° < ℓ < 65° from the Bolocam Galactic Plane Survey based on observational diagnostics of star formation activity: compact 70 μm sources, mid-IR color-selected YSOs, H2O and CH3OH masers, and UCH ii regions. We also present a combined NH3-derived gas kinetic temperature and H2O maser catalog for 1788 clumps from our own GBT 100 m observations and from the literature. We identify a subsample of 2223 (47.5%) starless clump candidates (SCCs), the largest and most robust sample identified from a blind survey to date. Distributions of flux density, flux concentration, solid angle, kinetic temperature, column density, radius, and mass show strong (>1 dex) progressions when sorted by star formation indicator. The median SCC is marginally subvirial (α ˜ 0.7) with >75% of clumps with known distance being gravitationally bound (α < 2). These samples show a statistically significant increase in the median clump mass of ΔM ˜ 170-370 M ⊙ from the starless candidates to clumps associated with protostars. This trend could be due to (i) mass growth of the clumps at \\dot{M}˜ 200{--}440 M ⊙ Myr-1 for an average freefall 0.8 Myr timescale, (ii) a systematic factor of two increase in dust opacity from starless to protostellar phases, and/or (iii) a variation in the ratio of starless to protostellar clump lifetime that scales as ˜M -0.4. By comparing to the observed number of CH3OH maser containing clumps, we estimate the phase lifetime of massive (M > 103 M ⊙) starless clumps to be 0.37 ± 0.08 Myr (M/103 M ⊙)-1 the majority (M < 450 M ⊙) have phase lifetimes longer than their average freefall time.

  3. Cooperation, clumping and the evolution of multicellularity

    PubMed Central

    Biernaskie, Jay M.; West, Stuart A.

    2015-01-01

    The evolution of multicellular organisms represents one of the major evolutionary transitions in the history of life. A potential advantage of forming multicellular clumps is that it provides an efficiency benefit to pre-existing cooperation, such as the production of extracellular ‘public goods’. However, this is complicated by the fact that cooperation could jointly evolve with clumping, and clumping could have multiple consequences for the evolution of cooperation. We model the evolution of clumping and a cooperative public good, showing that (i) when considered separately, both clumping and public goods production gradually increase with increasing genetic relatedness; (ii) in contrast, when the traits evolve jointly, a small increase in relatedness can lead to a major shift in evolutionary outcome—from a non-clumping state with low public goods production to a cooperative clumping state with high values of both traits; (iii) high relatedness makes it easier to get to the cooperative clumping state and (iv) clumping can be inhibited when it increases the number of cells that the benefits of cooperation must be shared with, but promoted when it increases relatedness between those cells. Overall, our results suggest that public goods sharing can facilitate the formation of well-integrated cooperative clumps as a first step in the evolution of multicellularity. PMID:26246549

  4. Cooperation, clumping and the evolution of multicellularity.

    PubMed

    Biernaskie, Jay M; West, Stuart A

    2015-08-22

    The evolution of multicellular organisms represents one of the major evolutionary transitions in the history of life. A potential advantage of forming multicellular clumps is that it provides an efficiency benefit to pre-existing cooperation, such as the production of extracellular 'public goods'. However, this is complicated by the fact that cooperation could jointly evolve with clumping, and clumping could have multiple consequences for the evolution of cooperation. We model the evolution of clumping and a cooperative public good, showing that (i) when considered separately, both clumping and public goods production gradually increase with increasing genetic relatedness; (ii) in contrast, when the traits evolve jointly, a small increase in relatedness can lead to a major shift in evolutionary outcome—from a non-clumping state with low public goods production to a cooperative clumping state with high values of both traits; (iii) high relatedness makes it easier to get to the cooperative clumping state and (iv) clumping can be inhibited when it increases the number of cells that the benefits of cooperation must be shared with, but promoted when it increases relatedness between those cells. Overall, our results suggest that public goods sharing can facilitate the formation of well-integrated cooperative clumps as a first step in the evolution of multicellularity.

  5. Herschel Reveals Massive Cold Clumps in NGC 7538

    NASA Astrophysics Data System (ADS)

    Fallscheer, C.; Reid, M. A.; Di Francesco, J.; Martin, P. G.; Hill, T.; Hennemann, M.; Nguyen-Luong, Q.; Motte, F.; Men'shchikov, A.; André, Ph.; Ward-Thompson, D.; Griffin, M.; Kirk, J.; Konyves, V.; Rygl, K. L. J.; Sadavoy, S.; Sauvage, M.; Schneider, N.; Anderson, L. D.; Benedettini, M.; Bernard, J.-P.; Bontemps, S.; Ginsburg, A.; Molinari, S.; Polychroni, D.; Rivera-Ingraham, A.; Roussel, H.; Testi, L.; White, G.; Williams, J. P.; Wilson, C. D.; Wong, M.; Zavagno, A.

    2013-08-01

    We present the first overview of the Herschel observations of the nearby high-mass star-forming region NGC 7538, taken as part of the Herschel imaging study of OB young stellar objects (HOBYS) Key Programme. These PACS and SPIRE maps cover an approximate area of one square degree at five submillimeter and far-infrared wavebands. We have identified 780 dense sources and classified 224 of those. With the intention of investigating the existence of cold massive starless or class 0-like clumps that would have the potential to form intermediate- to high-mass stars, we further isolate 13 clumps as the most likely candidates for follow-up studies. These 13 clumps have masses in excess of 40 M ⊙ and temperatures below 15 K. They range in size from 0.4 pc to 2.5 pc and have densities between 3 × 103 cm-3 and 4 × 104 cm-3. Spectral energy distributions are then used to characterize their energetics and evolutionary state through a luminosity-mass diagram. NGC 7538 has a highly filamentary structure, previously unseen in the dust continuum of existing submillimeter surveys. We report the most complete imaging to date of a large, evacuated ring of material in NGC 7538 which is bordered by many cool sources. Herschel is an ESA space observatory that has science instruments provided by European-led Principal Investigator consortia with important participation from NASA.

  6. Transient Clumps in Saturn's F Ring

    NASA Astrophysics Data System (ADS)

    Meinke, B. K.; Esposito, L. W.; Sremcevic, M.

    2011-10-01

    The Cassini Ultraviolet Imaging Spectrograph has detected 27 statistically significant features in 101 occultations by Saturn's F ring since July 2004. Of those 27 features, 17 likely correspond to transient clumps of material. We calculate from these observations the total number and total mass of transient clumps in the F ring. Constraints from observations place an upper limit on the number and total mass of such clumps. In turn, an upper limit on mass indicates that the clumps are not solid, spherical objects, rather they are loosely-packed, triaxial ellipsoids elongated in azimuth and vertically flattened. The total mass of clumps in the F ring is thus 6.1 x 1014 kg, the equivalent of a 6.8 km icy moon with a density equivalent to that of Prometheus. The differences in optical depth and morphology of the 17 significant features considered here also lead us to believe porosity differences exist among clumps. We investigate how the size distribution of clumps of different porosities evolves and how compaction of such clumps could lead to denser states that resemble moonlets, which describes 2 of the 17 features observed. The results presented here lead to a better model of how transient clumps form, evolve, and survive.

  7. Quantifying small-scale temporal surface change on glaciers and salt pans using terrestrial laser scanning: implications for modelling ablation and dust emission

    NASA Astrophysics Data System (ADS)

    Nield, J. M.; Wiggs, G. F. S.; Leyland, J.; Darby, S. E.; King, J.; Eckardt, F. D.; Chiverrell, R. C.; Vircavs, L. H.; Jacobs, B.

    2012-04-01

    Physical surface roughness is important in glacial and desert environments as it influences aerodynamic roughness, which in turn determines the ability of the wind to contribute to the turbulent heat flux component of the energy balance for glacial ice ablation or the likelihood of a surface emitting dust. Surface microtopography has traditionally been quantified by single 2D transects, but little is known about how these surfaces vary over time and the feedback between surface properties and other geomorphic processes. Terrestrial laser scanning (TLS) is the perfect tool to examine geomorphic microtopography over large spatial areas relatively quickly with the opportunity for repeat temporal measurements. Here we present examples of daily and weekly surface change measured on the Sua Pan, Botswana and the Svínafellsjökull, Iceland with mm accuracy using TLS. For the first time it is possible to quantify salt crust plucking and extrusion events and elucidate links between surface and wind shear interactions, as well as possible changes in aerodynamic roughness over time as surfaces evolve. Clear patterning is evident, with crust expansion limited to topographic highs. Likewise, we illustrate examples of measured daily ablation rates and patterns, and allude to implications for energy balance modelling by improving estimates of aerodynamic roughness. Specific ice patterning includes melt water eroding channels, the unique interactions of surface debris (volcanic ash from the 21 - 30 May 2011 eruption of Grímsvötn) melting out from the glacier and surface water forming a diverse microtopography of debris cones, cryoconite holes and perched blocks. However, whilst TLS represents a step-change in our ability to move from small transect derived roughness measurements to complete 3D surface change, detecting change on mobile surfaces through time is challenging, and linking surface properties to other point-based process measurements can be problematic.

  8. MAGNETIC FIELD IN THE ISOLATED MASSIVE DENSE CLUMP IRAS 20126+4104

    SciTech Connect

    Shinnaga, Hiroko; Phillips, Thomas G.; Novak, Giles; Vaillancourt, John E.; Machida, Masahiro N.; Kataoka, Akimasa; Tomisaka, Kohji; Davidson, Jacqueline; Houde, Martin; Dowell, C. Darren; Leeuw, Lerothodi

    2012-05-10

    We measured polarized dust emission at 350 {mu}m toward the high-mass star-forming massive dense clump IRAS 20126+4104 using the SHARC II Polarimeter, SHARP, at the Caltech Submillimeter Observatory. Most of the observed magnetic field vectors agree well with magnetic field vectors obtained from a numerical simulation for the case when the global magnetic field lines are inclined with respect to the rotation axis of the dense clump. The results of the numerical simulation show that rotation plays an important role on the evolution of the massive dense clump and its magnetic field. The direction of the cold CO 1-0 bipolar outflow is parallel to the observed magnetic field within the dense clump as well as the global magnetic field, as inferred from optical polarimetry data, indicating that the magnetic field also plays a critical role in an early stage of massive star formation. The large-scale Keplerian disk of the massive (proto)star rotates in an almost opposite sense to the clump's envelope. The observed magnetic field morphology and the counterrotating feature of the massive dense clump system provide hints to constrain the role of magnetic fields in the process of high-mass star formation.

  9. AN INFRARED THROUGH RADIO STUDY OF THE PROPERTIES AND EVOLUTION OF IRDC CLUMPS

    SciTech Connect

    Battersby, Cara; Bally, John; Ginsburg, Adam; Glenn, Jason; Jackson, James M.; Shirley, Yancy L.; Schlingman, Wayne

    2010-09-20

    We examine the physical properties and evolutionary stages of a sample of 17 clumps within 8 Infrared Dark Clouds (IRDCs) by combining existing infrared, millimeter, and radio data with new Bolocam Galactic Plane Survey (BGPS) 1.1 mm data, Very Large Array radio continuum data, and Heinrich Hertz Telescope dense gas (HCO{sup +} and N{sub 2}H{sup +}) spectroscopic data. We combine literature studies of star formation tracers and dust temperatures within IRDCs with our search for ultracompact (UC) H II regions to discuss a possible evolutionary sequence for IRDC clumps. In addition, we perform an analysis of mass tracers in IRDCs and find that 8 {mu}m extinction masses and 1.1 mm BGPS masses are complementary mass tracers in IRDCs except for the most active clumps (notably those containing UC H II regions), for which both mass tracers suffer biases. We find that the measured virial masses in IRDC clumps are uniformly higher than the measured dust continuum masses on the scale of {approx}1 pc. We use {sup 13}CO, HCO{sup +}, and N{sub 2}H{sup +} to study the molecular gas properties of IRDCs and do not see any evidence of chemical differentiation between hot and cold clumps on the scale of {approx}1 pc. However, both HCO{sup +} and N{sub 2}H{sup +} are brighter in active clumps, due to an increase in temperature and/or density. We report the identification of four UC H II regions embedded within IRDC clumps and find that UC H II regions are associated with bright ({approx}>1 Jy) 24 {mu}m point sources, and that the brightest UC H II regions are associated with 'diffuse red clumps' (an extended enhancement at 8 {mu}m). The broad stages of the discussed evolutionary sequence (from a quiescent clump to an embedded H II region) are supported by literature dust temperature estimates; however, no sequential nature can be inferred between the individual star formation tracers.

  10. Photoevaporation of Clumps in Photodissociation Regions

    NASA Technical Reports Server (NTRS)

    Gorti, Uma; Hollenbach, David; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We present the results of an investigation of the effects of Far Ultraviolet (FUV) radiation (6.0eV < hv < 13.6eV) from hot early type OB stars on clumps in star-forming molecular clouds. Clumps in FUV-illuminated regions (or photodissociation regions or PDRs) undergo external heating and photodissociation as they are exposed to the FUV field, resulting in a loss of cold, molecular lump mass as it is converted to warm atomic gas. The heating, if rapid, creates strong photoevaporative mass flows off the clump surfaces, and drives shocks into the clumps, compressing them to high densities. The clumps lose mass on relatively short timescales. The evolution of an individual clump is found to be sensitive to three dimensionless parameters: Nc0, the ratio of the initial column density of the clump to the column N(0) approx. 10(exp 21) cm(exp -2) of a warm FUV-heated surface region; upsilon, the ratio of the sound speed in the heated surface to that in the cold clump material: and t(FUV)t(c), the ratio of the "turn-on time" t(FUV) of the heating flux on a clump to its initial sound crossing-time t(c). The evolution also depends on whether a confining interclump medium exists, or whether the interclump region has negligible pressure, as is the case for turbulence-generated clumps. In this paper, we use spherical 1-D numerical hydrodynamic models as well as approximate analytical models to study the dependence of clump photoevaporation on the physical parameters of the clump, and to derive the dynamical evolution, mass loss rates and photoevaporative timescales of a clump for a variety of astrophysical situations. Turbulent clumps evolve so that their column densities are equal to a critical value determined by the local FUV field, and typically have short photo evaporation timescales, approx. 10(exp 4-5) years for a 1 M(solar mass) clump in a typical star-forming region (Nc0 = 10, upsilon = 10). Clumps with insufficient magnetic pressure support, and in strong FUV fields

  11. SOFIA follow-ups of massive clumps from the ATLASGAL galactic plane survey

    NASA Astrophysics Data System (ADS)

    Wyrowski, F.; Güsten, R.; Menten, K. M.; Wiesemeyer, H.; Csengeri, T.; König, C.; Urquhart, J. S.

    2016-05-01

    With the GREAT receiver at the Stratospheric Observatory for Infrared Astronomy (SOFIA) we started a concerted observing effort towards a well selected sample of clumps with high masses covering a range of evolutionary stages based on their infrared properties. The sources were selected from the ATLASGAL sub-millimeter dust continuum survey of our Galaxy. The goal is threefold: (i) SOFIA/GREAT allows to study the cooling budget of the clumps, in particular with observations of the CII and OI cooling lines. (ii) With SOFIA/GREAT high-J CO lines can be observed to measure in combination with ground based data the CO SEDs of the sources. (iii) Using rotational transitions of ammonia at THz frequencies the kinematics of the clumps can be probed with absorption spectroscopy to search for infall. Here we will describe these efforts and in particular report new results from the ammonia 32+ - 22- (1.8 THz) observing program.

  12. Dust Growth in Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Tsytovich, V. N.

    2002-12-01

    Dust formation in space is important in diverse environments such as dust molecular clouds, proto-planetary nebulae, stellar outbursts, and supernova explosions. The formation of dust proceeds the formation of stellar objects and planets. In all these environments the dust particles interact with both neutral and plasma particles as well as with (ultraviolet) radiation and cosmic rays. The conventional view of grain growth is one based on accretion by the Van der Waals and chemical forces [Watson and Salpeter [14] considered in detail both theoretically and numerically (Kempf at all [6],Meaking [7]( and confirmed recently by micro-gravity experiments Blum et all [2]). The usual point of view is that the dust grow is occurring in dust molecular clouds at very low temperatures ~ (10 - 30)° K and is a slow process - dust grows to a size of about 0.1 μm in 106 - 109 years. This contradicts recent observations of dust growing in winds of C-stars in about 10 years and behind the supernova SN1987A shock in about 500 days. Also recent observation of star formation at the edge of irradiated dust clouds suggests that new plasma mechanism operates in star formation. Dusty plasma mechanisms of agglomeration are analyzed as an explanation of the new astrophysical observation. New micro-gravity experiments are proposed for observing the plasma mechanisms of dust agglomeration at gas pressures substantially higher than used in ([2]. Calculations for the growth rates of dust agglomeration due to plasma mechanisms are presented. It is shown that at large neutral gas densities the dust plasma attraction provides an explanation of dust grow in about 10 days observed in H-star winds. Ionization by cosmic rays and by radioactive dust can provide the dust attraction necessary for forming dust clumping observed in molecular clouds and the fractal plasma clumping can enhance the time to reach the gravitational contraction phase operating at the final stage of star formation. A new

  13. Recombination clumping factor during cosmic reionization

    SciTech Connect

    Kaurov, Alexander A.; Gnedin, Nickolay Y. E-mail: gnedin@fnal.gov

    2014-06-01

    We discuss the role of recombinations in the intergalactic medium, and the related concept of the clumping factor, during cosmic reionization. The clumping factor is, in general, a local quantity that depends on both the local overdensity and the scale below which the baryon density field can be assumed smooth. That scale, called the filtering scale, depends on over-density and local thermal history. We present a method for building a self-consistent analytical model of inhomogeneous reionization, assuming the linear growth rate of the density fluctuation, which simultaneously accounts for these effects. We show that taking into account the local clumping factor introduces significant corrections to the total recombination rate, compared to the model with a globally uniform clumping factor.

  14. Ejection of gaseous clumps from gravitationally unstable protostellar disks

    NASA Astrophysics Data System (ADS)

    Vorobyov, E. I.

    2016-05-01

    Aims: We investigate the dynamics of gaseous clumps formed via gravitational fragmentation in young protostellar disks, focusing on the fragments that are ejected from the disk via many-body gravitational interaction. Methods: Numerical hydrodynamics simulations were employed to study the evolution of young protostellar disks that were formed from the collapse of rotating pre-stellar cores. Results: The protostellar disks that formed in our models undergo gravitational fragmentation driven by continuing mass-loading from parental collapsing cores. Several fragments can be ejected from the disk during the early evolution, but the low-mass fragments (<15 MJup) disperse, which creates spectacular bow-type structures while passing through the disk and collapsing core. The least massive fragment that survived the ejection (21 MJup) straddles the planetary-mass limit, while the most massive ejected fragments (145 MJup) can break up into several pieces, leading to the ejection of wide separation binary clumps in the brown-dwarf mass range. About half of the ejected fragments are gravitationally bound, the majority are supported by rotation against gravity, and all fragments have the specific angular momentum that is much higher than that expected for brown dwarfs. We found that the internal structure of the ejected fragments is distinct from what would be expected for gravitationally contracting clumps formed via molecular cloud fragmentation, which can help in differentiating their origin. Conclusions: The ejection of fragments is an important process, which is inherent to massive protostellar disks, and which produces freely floating pre-brown dwarf cores, regulates the disk and stellar masses and, potentially, enriches the intracluster medium with processed dust and complex organics.

  15. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  16. The Clumped Isotope Composition of Biogenic Methane.

    NASA Astrophysics Data System (ADS)

    Sessions, A. L.; Douglas, P. M.; Eiler, J. M.; Stolper, D. A.

    2015-12-01

    The excess or lack of 13CH3D, a doubly substituted ("clumped") isotopologue of methane, relative to that expected for a random distribution of isotopes across molecules, is a function of the processes that generated the methane. For high-temperature thermogenic methane, which typically achieves internal equilibrium, an excess of 13CH3D is expected and the amount of excess can serve as a thermometer. In contrast, biogenic methane often - though not always - has a smaller excess of clumped isotopologues, and sometimes even a deficit of clumped species ("anti-clumped"). The effect presumably arises from kinetic isotope effects accompanying enzymatic reactions in the methanogenic pathway, though the particular reaction(s) has not yet been positively identified. The decrease in clumping is also known to correlate with both the reversibility of the pathway and the methane flux. In this talk, we will present recent data bearing on the origin and utility of biologic fractionations of clumped isotopologues in methane. Preliminary data suggest that methane deriving from the fermentative pathway is enriched in D-bearing isotopologues, at the same level of clumping, relative to that derived from the CO2-reductive pathway. This property offers another potential means to distinguish biogenic methane sources in the environment. Recently, we have also begun to measure the 12CH2D2 isotopologue, for which equilibrium and kinetic isotope effects are predicted to be distinct from 13CH3D. Preliminary data suggest that the combination of both doubly-substituted isotopologues will be especially useful for disentangling mixtures containing biogenic gas.

  17. Clumps and Temporal Changes in the Jovian Ring System as Viewed by New Horizons

    NASA Astrophysics Data System (ADS)

    Showalter, Mark R.; Cheng, A. F.; Weaver, H. A.; Stern, S. A.; Spencer, J. R.; Throop, H.; Birath, E. M.; Rose, D.; Moore, J. M.

    2007-10-01

    New Horizons obtained 400 ring images of the Jovian ring system using the Long Range Reconnaissance Imager (LORRI). This camera has a broad bandpass spanning wavelengths λ = 0.35 to 0.85 µm. The ring was imaged at phase angles 7°-159°. In addition, one sequence of near-IR spectra (λ = 1.25 to 2.5 µm) was obtained by the Linear Etalon Imaging Spectral Array (LEISA) for compositional studies. Two ring rotation movies during Jupiter approach were used to search for small moons embedded within the system. These bodies might serve as source bodies for the prevalent ring dust. No moons were detected down to a threshold of 500 m radius, suggesting a sharp cutoff in the population of inner Jovian moons below 8-km Adrastea. Although this search focused on the main Jovian ring, any 1-km moons from orbital radius r = 100,000 km to beyond the orbit of Amalthea (r = 181,000 km) should have been detected multiple times. More surprisingly, the ring revealed two clusters of tiny clumps, one pair and one set of three. These are definitively not moons because they have longitudinal extents of a few tenths of a degree. Separations between clumps are 2 to 4° but are not uniform. These clump families both orbit within a brightness peak just interior to the orbit of Adrastea, at r = 128,740 km. Their origin is unknown. They are not visible at high phase angles, indicating that they are composed primarily of larger "parent” bodies, not dust. They are definitely not related to a clump detected in Cassini images of the Jovian ring from December 2000, indicating that at least some ring clumps are transient. The large quadrant asymmetries reported in earlier images from Voyager and Galileo are completely absent in the new data.

  18. Formation of phase space holes and clumps.

    PubMed

    Lilley, M K; Nyqvist, R M

    2014-04-18

    It is shown that the formation of phase space holes and clumps in kinetically driven, dissipative systems is not restricted to the near threshold regime, as previously reported and widely believed. Specifically, we observe hole-clump generation from the edges of an unmodulated phase space plateau, created via excitation, phase mixing and subsequent dissipative decay of a linearly unstable bulk plasma mode in the electrostatic bump-on-tail model. This has now allowed us to elucidate the underlying physics of the hole-clump formation process for the first time. Holes and clumps develop from negative energy waves that arise due to the sharp gradients at the interface between the plateau and the nearly unperturbed, ambient distribution and destabilize in the presence of dissipation in the bulk plasma. We confirm this picture by demonstrating that the formation of such nonlinear structures in general does not rely on a "seed" wave, only on the ability of the system to generate a plateau. In addition, we observe repetitive cycles of plateau generation and erosion, the latter due to hole-clump formation and detachment, which appear to be insensitive to initial conditions and can persist for a long time. We present an intuitive discussion of why this continual regeneration occurs. PMID:24785043

  19. The Milky Way Project and ATLASGAL: The Distribution and Physical Properties of Cold Clumps Near Infrared Bubbles

    NASA Astrophysics Data System (ADS)

    Kendrew, Sarah; Beuther, Henrik; Simpson, Robert; Csengeri, Timea; Wienen, Marion; Lintott, Chris. J.; Povich, Matthew S.; Beaumont, Chris; Schuller, Frédéric

    2016-07-01

    We present a statistical study of the distribution and physical properties of cold, dense material in and around the inner Galactic Plane near-infrared bubbles as cataloged by the Milky Way Project citizen scientists. Using data from the Atacama Pathfinder Experiment (APEX) Telescope Large Area Survey of the Galaxy 870 μm survey, we show that 48 ± 2% of all cold clumps in the studied survey region (| l| ≤slant 65^\\circ , | b| ≤slant 1^\\circ ) are found in close proximity to a bubble, and 25 ± 2% appear directly projected toward a bubble rim. A two-point correlation analysis confirms the strong correlation of massive cold clumps with expanding bubbles. It shows an overdensity of clumps along bubble rims that grows with increasing bubble size, which shows how interstellar medium material is reordered on large scales by bubble expansion around regions of massive star formation. The highest column density clumps appear to be resistent to the expansion, remaining overdense toward the bubbles’ interior rather than being swept up by the expanding edge. Spectroscopic observations in ammonia show that cold dust clumps near bubbles appear to be denser, hotter, and more turbulent than those in the field, offering circumstantial evidence that bubble-associated clumps are more likely to be forming stars. These observed differences in physical conditions persist beyond the region of the bubble rims.

  20. A Predator-Prey Model for Moon-Triggered Clumping in Saturn's Rings

    NASA Astrophysics Data System (ADS)

    Esposito, L. W.; Albers, N.; Meinke, B. K.; Sremcevic, M.; Madhusudhanan, P.; Colwell, J. E.; Jerousek, R. E.

    2011-10-01

    UVIS occultation data show clumping in Saturn's F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations that are perturbed by Mimas and by Prometheus. Timescales range from hours to months. Structure near the B ring edge is seen in power spectral analysis at scales 200m - 2000m. We quantify this sub-km structure using wavelet analysis that estimates the statistical significance of the features. Similar structure is also seen at the strongest density waves, with significance increasing with resonance strength (FIGURE 1). For the B ring outer edge, the strongest structure is seen at longitudes 90° and 270° relative to Mimas. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predatorprey system: the mean aggregate size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. Moons may trigger clumping by streamline crowding, which reduces the relative velocity, leading to more aggregation and more clumping. Disaggregation may follow from disruptive collisions or tidal shedding as the clumps stir the relative velocity. For realistic values of the parameters this yields a limit cycle behavior, as for the ecology of foxes and hares or the "boom-bust" economic cycle. Solving for the longterm behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag roughly consistent with the UVIS occultation measurements (FIGURE 2).

  1. DYNAMO-HST Survey: Clumps in Nearby Massive Turbulent Disks and the Effects of Clump Clustering on Kiloparsec Scale Measurements of Clumps

    NASA Astrophysics Data System (ADS)

    Fisher, David B.; Glazebrook, Karl; Damjanov, Ivana; Abraham, Roberto G.; Obreschkow, Danail; Wisnioski, Emily; Bassett, Robert; Green, Andy; McGregor, Peter

    2016-09-01

    We present ˜100 pc resolution Hubble Space Telescope Hα images of 10 galaxies from the DYnamics of Newly-Assembled Massive Objects (DYNAMO) survey of low-z turbulent disk galaxies, and use these to undertake the first detailed systematic study of the effects of resolution and clump clustering on observations of clumps in turbulent disks. In the DYNAMO-HST sample we measure clump diameters spanning the range dclump ˜ 100 - 800 pc, and individual clump star formation rates as high as ˜5 M⊙ yr-1. DYNAMO clumps have very high SFR surface densities, ΣSFR ˜ 1 - 15 M⊙ yr-1 kpc-2, ˜100 × higher than in HII regions of nearby spirals. Indeed, SFR surface density provides a simple dividing line between massive star forming clumps and local star forming regions, where massive star forming clumps have ΣSFR > 0.5 M⊙ yr-1 kpc-2. When degraded to match the observations of galaxies in z ˜ 1 - 3 surveys, DYNAMO galaxies are similar in morphology and measured clump properties to clumpy galaxies observed in the high-z Universe. Emission peaks in the simulated high-redshift maps typically correspond to multiple clumps in full resolution images. This clustering of clumps systematically increases the apparent size and SFR of clumps in 1 kpc resolution maps, and decreases the measured SFR surface density of clumps by as much as a factor of 20×. From these results we can infer that clump clustering is likely to strongly effect the measured properties of clumps in high-z galaxies, which commonly have kiloparsec scale resolution.

  2. Infall through the evolution of high-mass star-forming clumps

    NASA Astrophysics Data System (ADS)

    Wyrowski, F.; Güsten, R.; Menten, K. M.; Wiesemeyer, H.; Csengeri, T.; Heyminck, S.; Klein, B.; König, C.; Urquhart, J. S.

    2016-01-01

    With the GREAT receiver at the Stratospheric Observatory for Infrared Astronomy (SOFIA), nine massive molecular clumps have been observed in the ammonia 32+-22- line at 1.8 THz in a search for signatures of infall. The sources were selected from the ATLASGAL submillimeter dust continuum survey of our Galaxy. Clumps with high masses covering a range of evolutionary stages based on their infrared properties were chosen. The ammonia line was detected in all sources, leading to five new detections and one confirmation of a previous detection of redshifted absorption in front of their strong THz continuum as a probe of infall in the clumps. These detections include two clumps embedded in infrared dark clouds. The measured velocity shifts of the absorptions compared to optically thin C17O (3-2) emission are 0.3-2.8 km s-1, corresponding to fractions of 3% to 30% of the free-fall velocities of the clumps. The ammonia infall signature is compared with complementary data of different transitions of HCN, HNC, CS, and HCO+, which are often used to probe infall because of their blue-skewed line profiles. The best agreement with the ammonia results is found for the HCO+ (4-3) transitions, but the latter is still strongly blended with emission from associated outflows. This outflow signature is far less prominent in the THz ammonia lines, which confirms it as a powerful probe of infall in molecular clumps. Infall rates in the range from 0.3 to 16 × 10-3 M⊙/yr were derived with a tentative correlation with the virial parameters of the clumps. The new observations show that infall on clump scales is ubiquitous through a wide range of evolutionary stages, from L/M covering about ten to several hundreds. Final reduced data cube (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A149

  3. Star Formation in the Perseus Molecular Cloud: A Detailed Look at Star-Forming Clumps with Herschel

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.

    2013-08-01

    This dissertation presents new Herschel observations at 70 micron, 160 micron, 250 micron, 350 micron, and 500 micron of the Perseus molecular cloud from the Herschel Gould Belt Survey. The Perseus molecular cloud is a nearby star-forming region consisting of seven main star-forming clumps. The Herschel observations are used to characterize and contrast the properties of these clumps, and to study their embedded core populations. First, we probed the exceptionally young clump, B1-E. Using complementary molecular line data, we demonstrate that B1-E is likely fragmenting into a first generation of dense cores in relative isolation. Such a core formation region has never been observed before. Second, we use complementary long wavelength observations at 850 micron to study the dust properties in the larger, more active B1 clump. We find that Herschel data alone cannot constrain well the dust properties of cold dust emission and that long wavelength observations are needed. Additionally, we find evidence of dust grain growth towards the dense cores in B1, where the dust emissivity index, beta, varies from the often assumed value of beta = 2. In the absence of long wavelength observations, however, assuming beta = 2 is preferable over measuring beta with the Herschel-only bands. Finally, we use the source extraction code, getsources, to identify the core populations within each clump from the Herschel data. In addition, we use complementary archival infrared observations to study their populations of young stellar objects (YSOs). We find that the more massive clumps have an excess of older stage YSOs, suggesting that these regions contracted first. Starless cores are typically associated with peaks in the column density, where those found towards regions of higher column density also have higher average densities and colder temperatures. Starless cores associated with a strong, local interstellar radiation field, however, have higher temperatures. We find that the clumps

  4. Carbonate clumped isotope thermometry in continental tectonics

    NASA Astrophysics Data System (ADS)

    Huntington, Katharine W.; Lechler, Alex R.

    2015-04-01

    Reconstructing the thermal history of minerals and fluids in continental environments is a cornerstone of tectonics research. Paleotemperature constraints from carbonate clumped isotope thermometry have provided important tests of geodynamic, structural, topographic and basin evolution models. The thermometer is based on the 13C-18O bond ordering in carbonates (mass-47 anomaly, Δ47) and provides estimates of the carbonate formation temperature independent of the δ18O value of the water from which the carbonate grew; Δ47 is measured simultaneously with conventional measurements of carbonate δ13C and δ18O values, which together constrain the isotopic composition of the parent water. Depending on the geologic setting of carbonate growth, this information can help constrain paleoenvironmental conditions or basin temperatures and fluid sources. This review examines how clumped isotope thermometry can shed new light on problems in continental tectonics, focusing on paleoaltimetry, basin evolution and structural diagenesis applications. Paleoaltimetry is inherently difficult, and the precision in carbonate growth temperature estimates is at the limit of what is useful for quantitative paleoelevation reconstruction. Nevertheless, clumped isotope analyses have enabled workers to address previously intractable problems and in many settings offer the best chance of understanding topographic change from the geologic record. The portion of the shallow crust residing at temperatures up to ca. 200 °C is important as host to economic resources and records of tectonics and climate, and clumped isotope thermometry is one of the few proxies that can access this critical range with sensitivity to temperature alone. Only a handful of studies to date have used clumped isotopes to investigate diagenesis and other sub-surface processes using carbonate crystallization temperatures or the sensitivity of Δ47 values to a sample's thermal history. However, the thermometer is

  5. Characterizing the zone of influence of dark matter clumps on image positions and flux ratios in gravitational lensing systems

    NASA Astrophysics Data System (ADS)

    Johnson, Jyothisraj; Keeton, Charles R.; Brennan, Sean

    2016-01-01

    The Cold Dark Matter (CDM) model of the universe predicts that there should be hundreds to thousands of clumps surrounding a massive galaxy. However, observations have shown that we only see dozens of dwarf galaxies and not the hundreds to thousands that are predicted. This means that either the CDM model prediction is wrong, or most of the substructure consists of dark matter that cannot be observed directly. Massive galaxies serve as natural gravitational lenses throughout the universe that allow us to indirectly observe these dark matter perturbations. Strong gravitational lensing occurs when these massive elliptical galaxies have the critical density required to bend light from a source located behind it and produce multiple images of that same source. Dark matter clumps located near these multiple images affect their positions and flux ratios. We used lensing simulations to quantify how dark matter clumps affect image properties and to characterize this zone of influence through color maps of chi-squared values. Our results showed regions around each of the image positions that display significant perturbations for low mass clumps. For higher mass clumps, however, these distinct regions bleed together. We found that there is a correlation between the mass of the dark matter clump and the area it perturbs.This research has been supported by NSF grant PHY-1263280.

  6. Properties of Starless Clumps through Protoclusters from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Svoboda, Brian E.; Shirley, Yancy

    2014-07-01

    High mass stars play a key role in the physical and chemical evolution of the interstellar medium, yet the evolution of physical properties for high-mass star-forming regions remains unclear. We sort a sample of ~4668 molecular cloud clumps from the Bolocam Galactic Plane Survey (BGPS) into different evolutionary stages by combining the BGPS 1.1 mm continuum and observational diagnostics of star-formation activity from a variety of Galactic plane surveys: 70 um compact sources, mid-IR color-selected YSOs, H2O and CH3OH masers, EGOs, and UCHII regions. We apply Monte Carlo techniques to distance probability distribution functions (DPDFs) in order to marginalize over the kinematic distance ambiguity and calculate distributions for derived quantities of clumps in different evolutionary stages. We also present a combined NH3 and H2O maser catalog for ~1590 clumps from the literature and our own GBT 100m observations. We identify a sub-sample of 440 dense clumps with no star-formation indicators, representing the largest and most robust sample of pre-protocluster candidates from a blind survey to date. Distributions of I(HCO+), I(N2H+), dv(HCO+), dv(N2H+), mass surface density, and kinetic temperature show strong progressions when separated by evolutionary stage. No progressions are found in size or dust mass; however, weak progressions are observed in area > 2 pc^2 and dust mass > 3 10^3 Msun. An observed breakdown occurs in the size-linewidth relationship and we find no improvement when sampling by evolutionary stage.

  7. THE BOLOCAM GALACTIC PLANE SURVEY. XI. TEMPERATURES AND SUBSTRUCTURE OF GALACTIC CLUMPS BASED ON 350 μM OBSERVATIONS

    SciTech Connect

    Merello, Manuel; Evans II, Neal J.; Shirley, Yancy L.; Rosolowsky, Erik; Ginsburg, Adam; Bally, John; Battersby, Cara; Dunham, Michael M.

    2015-05-15

    We present 107 maps of continuum emission at 350 μm from Galactic molecular clumps. Observed sources were mainly selected from the Bolocam Galactic Plane Survey (BGPS) catalog, with three additional maps covering star-forming regions in the outer Galaxy. The higher resolution of the SHARC-II images (8.″5 beam) compared with the 1.1 mm images from BGPS (33″ beam) allowed us to identify a large population of smaller substructures within the clumps. A catalog is presented for the 1386 sources extracted from the 350 μm maps. The color temperature distribution of clumps based on the two wavelengths has a median of 13.3 K and mean of 16.3 ± 0.4 K, assuming an opacity law index of 1.7. For the structures with good determination of color temperatures, the mean ratio of gas temperature, determined from NH{sub 3} observations, to dust color temperature is 0.88 and the median ratio is 0.76. About half the clumps have more than 2 substructures and 22 clumps have more than 10. The fraction of the mass in dense substructures seen at 350 μm compared to the mass of their parental clump is ∼0.19, and the surface densities of these substructures are, on average, 2.2 times those seen in the clumps identified at 1.1 mm. For a well-characterized sample, 88 structures (31%) exceed a surface density of 0.2 g cm{sup −2}, and 18 (6%) exceed 1.0 g cm{sup −2}, thresholds for massive star formation suggested by theorists.

  8. Nonequilibrium clumped isotope signals in microbial methane

    NASA Astrophysics Data System (ADS)

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-04-01

    Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted “clumped” isotopologues (for example, 13CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  9. Nonequilibrium clumped isotope signals in microbial methane

    USGS Publications Warehouse

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-01-01

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  10. High-resolution simulations of clump-clump collisions using SPH with particle splitting

    NASA Astrophysics Data System (ADS)

    Kitsionas, S.; Whitworth, A. P.

    2007-06-01

    We investigate, by means of numerical simulations, the phenomenology of star formation triggered by low-velocity collisions between low-mass molecular clumps. The simulations are performed using a smoothed particle hydrodynamics code which satisfies the Jeans condition by invoking on-the-fly particle splitting. Clumps are modelled as stable truncated (non-singular) isothermal, i.e. Bonnor-Ebert, spheres. Collisions are characterized by M0 (clump mass), b (offset parameter, i.e. ratio of impact parameter to clump radius) and (Mach number, i.e. ratio of collision velocity to effective post-shock sound speed). The gas subscribes to a barotropic equation of state, which is intended to capture (i) the scaling of pre-collision internal velocity dispersion with clump mass, (ii) post-shock radiative cooling and (iii) adiabatic heating in optically thick protostellar fragments. The efficiency of star formation is found to vary between 10 and 30 per cent in the different collisions studied and it appears to increase with decreasing M0, and/or decreasing b, and/or increasing . For b < 0.5 collisions produce shock-compressed layers which fragment into filaments. Protostellar objects then condense out of the filaments and accrete from them. The resulting accretion rates are high, , for the first . The densities in the filaments, , are sufficient that they could be mapped in NH3 or CS line radiation, in nearby star formation regions.

  11. ­­A Clumped Isotope Calibration for Terrestrial Microbial Carbonates

    NASA Astrophysics Data System (ADS)

    Petryshyn, V. A.; Mering, J. A.; Mitsunaga, B. A.; Eagle, R.; Dunbar, R. B.; Bhattacharya, A.; Tripati, A.

    2014-12-01

    Accurate terrestrial paleotemperature records are key pieces of information in the paleoenvironmental reconstruction of Earth history. These records aid in building reliable climate models and help scientists understand the links between continental and oceanic climate data. Many different types of analyses are used to estimate terrestrial climate shifts, including leaf margin analysis, palynology, glacial deposits, elemental ratios, organic geochemistry, and stable isotopes of lacustrine deposits. Here we report a carbonate clumped isotope calibration for microbial carbonates. Application of the clumped isotope paleothermometer can potentially provide a direct temperature measurement of the water at the time of carbonate formation. Although different calibrations of the paleothermometer have been published for both inorganic and biotic carbonate minerals, the effects of clumping in microbialites (structures built under the influence of microbial activity) have not yet been quantified. Lacustrine microbialites present a potentially large, untapped archive of terrestrial climate data, however they are not strictly biotic or abiotic, but bio-induced carbonate, meaning that organisms (such as photosynthetic bacteria) influence but do not directly control precipitation. We have measured modern microbialites from multiple lacustrine sites and will report a comparison of these results to known water temperatures. Additionally we will compare lacustrine samples to marine microbialites (e.g., samples from Shark Bay) to assess potential differences between lacustrine and marine intertidal environments on clumped isotope compositions.

  12. The clump mass function of the dense clouds in the Carina nebula complex

    NASA Astrophysics Data System (ADS)

    Pekruhl, S.; Preibisch, T.; Schuller, F.; Menten, K.

    2013-02-01

    Context. The question how the initial conditions in a star-forming region affect the resulting mass function of the forming stars is one of the most fundamental open topics in star formation theory. Aims: We want to characterize the properties of the cold dust clumps in the Carina nebula complex, which is one of the most massive star forming regions in our Galaxy and shows a very high level of massive star feedback. We derive the clump mass function (ClMF), explore the reliability of different clump extraction algorithms, and investigate the influence of the temperatures within the clouds on the resulting shape of the ClMF. Methods: We analyze a 1.25° × 1.25° wide-field submillimeter map obtained with LABOCA at the APEX telescope, which provides the first spatially complete survey of the clouds in the Carina nebula complex. We use the three clump-finding algorithms CLUMPFIND, GAUSSCLUMPS and SExtractor to identify individual clumps and determine their total fluxes. In addition to assuming a common "typical" temperature for all clouds, we also employ an empirical relation between cloud column densities and temperature to determine an estimate of the individual clump temperatures, and use this to determine individual clump masses. Results: We find that the ClMFs resulting from the different extraction methods show considerable differences in their shape. While the ClMF based on the CLUMPFIND extraction is very well described by a power-law (for clump masses well above the completeness limit), the ClMFs based on the extractions with GAUSSCLUMPS and SExtractor are better represented by a log-normal distribution. We also find that the use of individual clump temperatures leads to a shallower ClMF slope than the (often used) assumption of a common temperature (e.g. 20 K) of all clumps. Conclusions: The power-law of dN/dM ∝ M-1.95 we find for the CLUMPFIND sample is in good agreement with ClMF slopes found in previous studies of the ClMFs of other regions. The

  13. Numerical Simulations of Dust Destruction in Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Silvia, Devin W.; Smith, B. D.; Shull, J. M.

    2010-01-01

    We investigate the destruction of newly-formed dust grains by sputtering in the reverse shocks of supernova remnants through hydrodynamic simulations.  Using an idealized setup of planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains, then post-process the simulation output to calculate the grain sputtering for a variety of species and size distributions. We explore the parameter space appropriate for this problem by altering the over-density of the ejecta clump, the density profile of the clump, and the speed of the reverse shock. Since radiative cooling could lower the temperature of the medium in which the dust is embedded and potentially protect the dust by slowing or halting grain sputtering, we study the effects of different cooling methods over the time scale of the simulations.  We also consider the influence of increased projectile mass on sputtering yields in metal-enriched plasmas. In general, results indicate that grains with radii less than 0.1 microns are sputtered to much smaller radii and often destroyed completely, while larger grains tend to survive their interaction with the reverse shock. The survival rate of grains formed by supernovae in the early universe is crucial in determining whether or not they can act as the "dust factories” needed to explain high-redshift dust mass estimates.

  14. Mass-density relationship in molecular cloud clumps

    NASA Astrophysics Data System (ADS)

    Donkov, Sava; Veltchev, Todor V.; Klessen, Ralf S.

    2011-12-01

    We study the mass-density relationship n ∝ mx in molecular cloud condensations (clumps), considering various equipartition relations between their gravitational, kinetic, internal and magnetic energies. Clumps are described statistically, with a density distribution that reflects a lognormal probability density function in turbulent cold interstellar medium. The clump mass-density exponent x derived at different scales L varies in most of the cases within the range -2.5 ≲x≲-0.2, with a pronounced scale dependence and in consistency with observations. When derived from the global size-mass relationship ? for set of clumps, generated at all scales, the clump mass-density exponent has typical values -3.0 ≲x(γglob) ≲-0.3 that depend on the forms of energy, included in the equipartition relations, and on the velocity scaling law, whereas the description of clump geometry is important when magnetic energy is taken into account.

  15. Carbonate clumped isotope bond reordering and geospeedometry

    NASA Astrophysics Data System (ADS)

    Passey, Benjamin H.; Henkes, Gregory A.

    2012-10-01

    Carbonate clumped isotope thermometry is based on the preference of 13C and 18O to form bonds with each other. At elevated temperatures such bond ordering is susceptible to resetting by diffusion of C and O through the solid mineral lattice. This type of bond reordering has the potential to obscure primary paleoclimate information, but could also provide a basis for reconstructing shallow crustal temperatures and cooling rates. We determined Arrhenius parameters for solid-state reordering of C-O bonds in two different calcites through a series of laboratory heating experiments. We find that the calcites have different susceptibilities to solid-state reordering. Reaction progress follows a first order rate law in both calcites, but only after an initial period of non-first order reaction that we suggest relates to annealing of nonequilibrium defects when the calcites are first heated to experimental temperature. We show that the apparent equilibrium temperature equations (or "closure temperature" equations) for carbonate clumped isotope reordering are analogous Dodson's equations for first order loss of daughter isotopes. For each calcite, the sensitivity of apparent equilibrium temperature to cooling rate is sufficiently high for inference of cooling rates within a factor of ˜5 or better for cooling rates ranging from tens of degrees per day to a few degrees per million years. However, because the calcites have different susceptibilities to reordering, each calcite defines its own cooling rate-apparent equilibrium temperature relationship. The cooling rates of Carrara marble inferred from carbonate clumped isotope geospeedometry are 10-6-10-3 degrees per annum and are in broad agreement with rates inferred from thermochronometric methods. Cooling rates for 13C-depleted calcites from the late Neoproterozoic Doushantou cap carbonates in south China are on the order of 102-104 degrees per annum, consistent with rapid cooling following formation of these calcites by a

  16. Clumped isotope thermometry of cryogenic cave carbonates

    NASA Astrophysics Data System (ADS)

    Kluge, Tobias; Affek, Hagit P.; Zhang, Yi Ge; Dublyansky, Yuri; Spötl, Christoph; Immenhauser, Adrian; Richter, Detlev K.

    2014-02-01

    Freezing of cave pool water that is increasingly oversaturated with dissolved carbonate leads to precipitation of a very specific type of speleothems known as cryogenic cave carbonates (CCC). At present, two different environments for their formation have been proposed, based on their characteristic carbon and oxygen isotope ratios. Rapidly freezing thin water films result in the fast precipitation of fine-grained carbonate powder (CCCfine). This leads to rapid physicochemical changes including CO2 degassing and CaCO3 precipitation, resulting in significantly 13C-enriched carbonates. Alternatively, slow carbonate precipitation in ice-covered cave pools results in coarse crystalline CCC (CCCcoarse) yielding strongly 18O-depleted carbonate. This is due to the formation of relatively 18O-enriched ice causing the gradual depletion of 18O in the water from which the CCC precipitates. Cryogenic carbonates from Central European caves were found to have been formed primarily during the last glacial period, specifically during times of permafrost thawing, based on the oxygen isotope ratios and U-Th dating. Information about the precise conditions of CCCcoarse formation, i.e. whether these crystals formed under equilibrium or disequilibrium conditions with the parent fluid, however, is lacking. An improved understanding of CCCcoarse formation will increase the predictive value of this paleo-permafrost archive. Here we apply clumped isotopes to investigate the formation conditions of cryogenic carbonates using well-studied CCCcoarse from five different cave systems in western Germany. Carbonate clumped isotope measurements yielded apparent temperatures between 3 and 18 °C and thus exhibit clear evidence of isotopic disequilibrium. Although the very negative carbonate δ18O values can only be explained by gradual freezing of pool water accompanied by preferential incorporation of 18O into the ice, clumped isotope-derived temperatures significantly above expected freezing

  17. Stellar age spreads in clusters as imprints of cluster-parent clump densities

    SciTech Connect

    Parmentier, G.; Grebel, E. K.; Pfalzner, S.

    2014-08-20

    It has recently been suggested that high-density star clusters have stellar age distributions much narrower than that of the Orion Nebula Cluster, indicating a possible trend of narrower age distributions for denser clusters. We show this effect to likely arise from star formation being faster in gas with a higher density. We model the star formation history of molecular clumps in equilibrium by associating a star formation efficiency per free-fall time, ε{sub ff}, to their volume density profile. We focus on the case of isothermal spheres and we obtain the evolution with time of their star formation rate. Our model predicts a steady decline of the star formation rate, which we quantify with its half-life time, namely, the time needed for the star formation rate to drop to half its initial value. Given the uncertainties affecting the star formation efficiency per free-fall time, we consider two distinct values: ε{sub ff} = 0.1 and ε{sub ff} = 0.01. When ε{sub ff} = 0.1, the half-life time is of the order of the clump free-fall time, τ{sub ff}. As a result, the age distributions of stars formed in high-density clumps have smaller full-widths at half-maximum than those of stars formed in low-density clumps. When the star formation efficiency per free-fall time is 0.01, the half-life time is 10 times longer, i.e., 10 clump free-fall times. We explore what happens if the duration of star formation is shorter than 10τ{sub ff}, that is, if the half-life time of the star formation rate cannot be defined. There, we build on the invariance of the shape of the young cluster mass function to show that an anti-correlation between the clump density and the duration of star formation is expected. We therefore conclude that, regardless of whether the duration of star formation is longer than the star formation rate half-life time, denser molecular clumps yield narrower star age distributions in clusters. Published densities and stellar age spreads of young clusters and star

  18. Stellar Age Spreads in Clusters as Imprints of Cluster-parent Clump Densities

    NASA Astrophysics Data System (ADS)

    Parmentier, G.; Pfalzner, S.; Grebel, E. K.

    2014-08-01

    It has recently been suggested that high-density star clusters have stellar age distributions much narrower than that of the Orion Nebula Cluster, indicating a possible trend of narrower age distributions for denser clusters. We show this effect to likely arise from star formation being faster in gas with a higher density. We model the star formation history of molecular clumps in equilibrium by associating a star formation efficiency per free-fall time, epsilonff, to their volume density profile. We focus on the case of isothermal spheres and we obtain the evolution with time of their star formation rate. Our model predicts a steady decline of the star formation rate, which we quantify with its half-life time, namely, the time needed for the star formation rate to drop to half its initial value. Given the uncertainties affecting the star formation efficiency per free-fall time, we consider two distinct values: epsilonff = 0.1 and epsilonff = 0.01. When epsilonff = 0.1, the half-life time is of the order of the clump free-fall time, τff. As a result, the age distributions of stars formed in high-density clumps have smaller full-widths at half-maximum than those of stars formed in low-density clumps. When the star formation efficiency per free-fall time is 0.01, the half-life time is 10 times longer, i.e., 10 clump free-fall times. We explore what happens if the duration of star formation is shorter than 10τff, that is, if the half-life time of the star formation rate cannot be defined. There, we build on the invariance of the shape of the young cluster mass function to show that an anti-correlation between the clump density and the duration of star formation is expected. We therefore conclude that, regardless of whether the duration of star formation is longer than the star formation rate half-life time, denser molecular clumps yield narrower star age distributions in clusters. Published densities and stellar age spreads of young clusters and star-forming regions

  19. ION AND NEUTRAL MOLECULES IN THE W43-MM1(G30.79 FIR 10) INFALLING CLUMP

    SciTech Connect

    Cortes, Paulo C.

    2011-12-20

    The high-mass star-forming clump W43-MM1 has been mapped in N{sub 2}H{sup +}(4 {yields} 3), C{sup 18}O(3 {yields} 2), SiO(8 {yields} 7), and in a single pointing in DCO{sup +}(5 {yields} 4) toward the center of the clump. Column densities from these observations as well as previous HCO{sup +}(4 {yields} 3), H{sup 13}CO{sup +}(4 {yields} 3), HCN(4 {yields} 3), H{sup 13}CN(4 {yields} 3), and CS(7 {yields} 6) data have been derived using the RADEX code; results later have been used to derive chemical abundances at selected points in the MM1 main axis. We compare with chemical models to estimate an evolutionary age of 10{sup 4} years for a remarkable warm hot core inside MM1. We also proposed that the dust temperature derived from the spectral energy distribution fitting in MM1 is not representative of the gas temperature deep inside the clump because dust emission may have become optically thick. By deriving a deuterium fractionation of 1.2 Multiplication-Sign 10{sup 3}, we estimate an electron fraction of X(e) = 6.5 Multiplication-Sign 10{sup -8}. Thus, the coupling between the neutral gas and the magnetic field is estimated by computing the ambipolar diffusion Reynolds number R{sub m} = 18 and the wave coupling number W = 110. Considering that the infalling speed is slightly supersonic (M = 1.1) but sub-Alfvenic, we conclude that the MM1 clump has recently been or is in the process of decoupling the field from the neutral fluid. Thus, the MM1 clump appears to be in an intermediate stage of evolution in which a hot core has developed while the envelope is still infalling and not fully decoupled from the ambient magnetic field.

  20. Gravitational microlensing as a probe for dark matter clumps

    NASA Astrophysics Data System (ADS)

    Fedorova, E.; Sliusar, V. M.; Zhdanov, V. I.; Alexandrov, A. N.; Del Popolo, A.; Surdej, J.

    2016-04-01

    Extended dark matter (DM) substructures may play the role of microlenses in the Milky Way and in extragalactic gravitational lens systems (GLSs). We compare microlensing effects caused by point masses (Schwarzschild lenses) and extended clumps of matter using a simple model for the lens mapping. A superposition of the point mass and the extended clump is also considered. For special choices of the parameters, this model may represent a cusped clump of cold DM, a cored clump of self-interacting dark matter (SIDM) or an ultra-compact minihalo of DM surrounding a massive point-like object. We built the resulting micro-amplification curves for various parameters of one clump moving with respect to the source in order to estimate differences between the light curves caused by clumps and by point lenses. The results show that it may be difficult to distinguish between these models. However, some region of the clump parameters can be restricted by considering the high amplification events at the present level of photometric accuracy. Then we estimate the statistical properties of the amplification curves in extragalactic GLSs. For this purpose, an ensemble of amplification curves is generated yielding the autocorrelation functions (ACFs) of the curves for different choices of the system parameters. We find that there can be a significant difference between these ACFs if the clump size is comparable with typical Einstein radii; as a rule, the contribution of clumps makes the ACFs less steep.

  1. A Fractal Model for the Capacitance of Lunar Dust and Lunar Dust Aggregates

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Keller, John W.; Farrell, William M.; Marshall, John; Richard, Denis Thomas

    2011-01-01

    Lunar dust grains and dust aggregates exhibit clumping, with an uneven mass distribution, as well as features that span many spatial scales. It has been observed that these aggregates display an almost fractal repetition of geometry with scale. Furthermore, lunar dust grains typically have sharp protrusions and jagged features that result from the lack of aeolian weathering (as opposed to space weathering) on the Moon. A perfectly spherical geometry, frequently used as a model for lunar dust grains, has none of these characteristics (although a sphere may be a reasonable proxy for the very smallest grains and some glasses). We present a fractal model for a lunar dust grain or aggregate of grains that reproduces (1) the irregular clumpy nature of lunar dust, (2) the presence of sharp points, and (3) dust features that span multiple scale lengths. We calculate the capacitance of the fractal lunar dust analytically assuming fixed dust mass (i.e. volume) for an arbitrary number of fractal levels and compare the capacitance to that of a non-fractal object with the same volume, surface area, and characteristic width. The fractal capacitance is larger than that of the equivalent non-fractal object suggesting that for a given potential, electrostatic forces on lunar dust grains and aggregates are greater than one might infer from assuming dust grains are sphericaL Consequently, electrostatic transport of lunar dust grains, for example lofting, appears more plausible than might be inferred by calculations based on less realistic assumptions about dust shape and associated capacitance.

  2. Thick disk and pseudobulge formation in a clump cluster

    NASA Astrophysics Data System (ADS)

    Inoue, S.

    2012-02-01

    Bulges in spiral galaxies have been supposed to be classified into two types: classical bulges or pseudobulges. Classical bulges are thought to form by galactic merger with bursty star formation, whereas pseudobulges are suggested to form by secular evolution. Noguchi (1998,199) suggested another bulge formation scenario, `clump-origin bulge' [1,2]. He demonstrated using a numerical simulation that a galactic disc suffers dynamical instability to form clumpy structures in the early stage of disc formation, then the clumps are sucked into the galactic centre by dynamical friction and merge into a single bulge at the centre. Therefore, clump-origin bulges may have their own unique properties. I perform a high-resolution N-body/SPH simulation for the formation of the clump-origin bulge in an isolated galaxy model and study the formation of the clump-origin bulge. I find that the clump-origin bulge resembles pseudobulges in dynamical properties, a nearly exponential surface density profile, a barred boxy shape and a significant rotation. I also find that this bulge consists of old and metal-rich stars. These natures, old metal-rich population but pseudobulge-like structures, mean that the clump-origin bulge can not be simply classified into classical bulges nor pseudobulges. From these results, I discuss similarities of the clump-origin bulge to the Milky Way (MW) bulge.

  3. Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Doi, Y.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Ikeda, N.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kitamura, Y.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Malinen, J.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Meny, C.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pagani, L.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Toth, V.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal morphology and physical characterictics of the Planck-detected sources. We focus on a sub-sample of ten sources from the C3PO list, selected to sample different environments, from high latitude cirrus to nearby (150pc) and remote (2kpc) molecular complexes. We present Planck surface brightness maps and derive the dust temperature, emissivity spectral index, and column densities of the fields. With the help of higher resolution Herschel and AKARI continuum observations and molecular line data, we investigate the morphology of the sources and the properties of the substructures at scales below the Planck beam size. The cold clumps detected by Planck are found to be located on large-scale filamentary (or cometary) structures that extend up to 20pc in the remote sources. The thickness of these filaments ranges between 0.3 and 3pc, for column densities NH2 ~ 0.1 to 1.6 × 1022 cm-2, and with linear mass density covering a broad range, between 15 and 400 M⊙ pc-1. The dust temperatures are low (between 10 and 15K) and the Planck cold clumps correspond to local minima of the line-of-sight averaged dust temperature in these fields. These low temperatures are confirmed when AKARI and Herschel data are added to the spectral energy distributions. Herschel data reveal a wealth of substructure within the Planck cold clumps. In all cases (except two sources harbouring young stellar objects), the substructures are found to be colder, with temperatures as low as 7K. Molecular line observations provide gas column densities which are consistent with those inferred from the dust. The linewidths are all supra-thermal, providing large virial linear mass densities in the range 10 to 300 M⊙ pc-1, comparable

  4. Dance into the fire: dust survival inside supernova remnants

    NASA Astrophysics Data System (ADS)

    Micelotta, Elisabetta R.; Dwek, Eli; Slavin, Jonathan D.

    2016-06-01

    Core collapse supernovae (CCSNe) are important sources of interstellar dust, potentially capable of producing 1 M_{⊙}) of dust in their explosively expelled ejecta. However, unlike other dust sources, the dust has to survive the passage of the reverse shock, generated by the interaction of the supernova blast wave with its surrounding medium. Knowledge of the net amount of dust produced by CCSNe is crucial for understanding the origin and evolution of dust in the local and high-redshift universe. Our goal is to identify the dust destruction mechanisms in the ejecta, and derive the net amount of dust that survives the passage of the reverse shock. To do so, we have developed analytical models for the evolution of a supernova blast wave and of the reverse shock, and the simultaneous processing of the dust inside the cavity of the supernova remnant. We have applied our models to the special case of the clumpy ejecta of the remnant of Cassiopeia A (Cas A), assuming that the dust (silicates and carbon grains) resides in cool oxygen-rich ejecta clumps which are uniformly distributed within the remnant and surrounded by a hot X-ray emitting plasma (smooth ejecta). The passage of the reverse shock through the clumps gives rise to a relative gas-grain motion and also destroys the clumps. While residing in the ejecta clouds, dust is processed via kinetic sputtering, which is terminated either when the grains escape the clumps, or when the clumps are destroyed by the reverse shock. In either case, grain destruction proceeds thereafter by thermal sputtering in the hot shocked smooth ejecta. We find that 12 and 16 percent of silicate and carbon dust, respectively, survive the passage of the reverse shock by the time the shock has reached the center of the remnant. These fractions depend on the morphology of the ejecta and the medium into which the remnant is expanding, as well as the composition and size distribution of the grains that formed in the ejecta. Results will

  5. Mycobacteria Clumping Increase Their Capacity to Damage Macrophages

    PubMed Central

    Brambilla, Cecilia; Llorens-Fons, Marta; Julián, Esther; Noguera-Ortega, Estela; Tomàs-Martínez, Cristina; Pérez-Trujillo, Miriam; Byrd, Thomas F.; Alcaide, Fernando; Luquin, Marina

    2016-01-01

    The rough morphotypes of non-tuberculous mycobacteria have been associated with the most severe illnesses in humans. This idea is consistent with the fact that Mycobacterium tuberculosis presents a stable rough morphotype. Unlike smooth morphotypes, the bacilli of rough morphotypes grow close together, leaving no spaces among them and forming large aggregates (clumps). Currently, the initial interaction of macrophages with clumps remains unclear. Thus, we infected J774 macrophages with bacterial suspensions of rough morphotypes of M. abscessus containing clumps and suspensions of smooth morphotypes, primarily containing isolated bacilli. Using confocal laser scanning microscopy and electron microscopy, we observed clumps of at least five rough-morphotype bacilli inside the phagocytic vesicles of macrophages at 3 h post-infection. These clumps grew within the phagocytic vesicles, killing 100% of the macrophages at 72 h post-infection, whereas the proliferation of macrophages infected with smooth morphotypes remained unaltered at 96 h post-infection. Thus, macrophages phagocytose large clumps, exceeding the bactericidal capacities of these cells. Furthermore, proinflammatory cytokines and granuloma-like structures were only produced by macrophages infected with rough morphotypes. Thus, the present study provides a foundation for further studies that consider mycobacterial clumps as virulence factors. PMID:27757105

  6. IN-SPIRALING CLUMPS IN BLUE COMPACT DWARF GALAXIES

    SciTech Connect

    Elmegreen, Bruce G.; Zhang Hongxin; Hunter, Deidre A.

    2012-03-10

    Giant star formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the central region in 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration of old stars, gas, and star formation that can produce a long-lived starburst in the inner region, identified with the blue compact dwarf (BCD) phase. This central concentration is proposed to be analogous to the bulge in a young spiral galaxy. Observations of star complexes in five local BCDs confirm the relatively large clump masses that are expected for this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case the clumps may be long-lived. The two examples with clumps closest to the center have the largest relative clump masses and the greatest contributions from old stars. An additional indication that the dense central regions of BCDs are like bulges is the high ratio of the inner disk scale height to the scale length, which is comparable to 1 for four of the galaxies.

  7. BCD Galaxies from In-spiraling Giant Clumps

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce; Zhang, H.; Hunter, D. A.

    2012-01-01

    Giant star-formation clumps in dwarf irregular galaxies can have masses exceeding a few percent of the galaxy mass enclosed inside their orbital radii. They can produce sufficient torques on dark matter halo particles, halo stars, and the surrounding disk to lose their angular momentum and spiral into the center in less than 1 Gyr. Pairs of giant clumps with similarly large relative masses can interact and exchange angular momentum to the same degree. The result of this angular momentum loss is a growing central concentration analogous to a bulge in an earlier-type galaxy. A long history of inward migration will also produce a long-lived starburst in the inner regions as the gas column density remains above a threshold for star formation. Such a burst may be identified with the BCD phase in some dwarfs. Observations of giant star formation clumps in five local dwarf irregulars illustrate the relatively large clump masses that are suggested by this process. The observed clumps also seem to contain old field stars, even after background light subtraction, in which case they may be gravitationally bound and long-lived. The two examples with clumps closest to the center have the largest relative clump masses and the greatest contributions from old stars. This work was funded in part by the National Science Foundation through grants AST-0707563 and AST-0707426 to DAH and BGE. HZ was partly supported by NSF of China through grants #10425313, #10833006 and #10621303 to Professor Yu Gao.

  8. Toxicity of lunar dust

    NASA Astrophysics Data System (ADS)

    Linnarsson, Dag; Carpenter, James; Fubini, Bice; Gerde, Per; Karlsson, Lars L.; Loftus, David J.; Prisk, G. Kim; Staufer, Urs; Tranfield, Erin M.; van Westrenen, Wim

    2012-12-01

    The formation, composition and physical properties of lunar dust are incompletely characterised with regard to human health. While the physical and chemical determinants of dust toxicity for materials such as asbestos, quartz, volcanic ashes and urban particulate matter have been the focus of substantial research efforts, lunar dust properties, and therefore lunar dust toxicity may differ substantially. In this contribution, past and ongoing work on dust toxicity is reviewed, and major knowledge gaps that prevent an accurate assessment of lunar dust toxicity are identified. Finally, a range of studies using ground-based, low-gravity, and in situ measurements is recommended to address the identified knowledge gaps. Because none of the curated lunar samples exist in a pristine state that preserves the surface reactive chemical aspects thought to be present on the lunar surface, studies using this material carry with them considerable uncertainty in terms of fidelity. As a consequence, in situ data on lunar dust properties will be required to provide ground truth for ground-based studies quantifying the toxicity of dust exposure and the associated health risks during future manned lunar missions.

  9. Molecular clumps in the W51 giant molecular cloud

    NASA Astrophysics Data System (ADS)

    Parsons, H.; Thompson, M. A.; Clark, J. S.; Chrysostomou, A.

    2012-08-01

    In this paper, we present a catalogue of dense molecular clumps located within the W51 giant molecular cloud (GMC). This work is based on Heterodyne Array Receiver Programme 13CO J = 3-2 observations of the W51 GMC and uses the automated CLUMPFIND algorithm to decompose the region into a total of 1575 clumps of which 1130 are associated with the W51 GMC. We clearly see the distinct structures of the W51 complex and the high-velocity stream previously reported. We find the clumps have characteristic diameters of 1.4 pc, excitation temperatures of 12 K, densities of 5.6 × 1021 cm-2, surface densities 0.02 g cm-2 and masses of 90 M⊙. We find a total mass of dense clumps within the GMC of 1.5 × 105 M⊙, with only 1 per cent of the clumps detected by number and 4 per cent by mass found to be supercritical. We find a clump-forming efficiency of 14 ± 1 per cent for the W51 GMC and a supercritical clump-forming efficiency of 0.5-0.5+2.3 per cent. Looking at the clump mass distribution, we find it is described by a single power law with a slope of α=2.4-0.1+0.2 above ˜100 M⊙. By comparing locations of supercritical clumps and young clusters, we see that any future star formation is likely to be located away from the currently active W51A region.

  10. GAS CLUMPING IN THE OUTSKIRTS OF {Lambda}CDM CLUSTERS

    SciTech Connect

    Nagai, Daisuke; Lau, Erwin T.

    2011-04-10

    Recent Suzaku X-ray observations revealed that the observed entropy profile of the intracluster medium (ICM) deviates significantly from the prediction of hydrodynamical simulations of galaxy clusters. In this work, we show that gas clumping introduces significant biases in X-ray measurements of the ICM profiles in the outskirts of galaxy clusters. Using hydrodynamical simulations of galaxy cluster formation in a concordance {Lambda}CDM model, we demonstrate that gas clumping leads to an overestimate of the observed gas density and causes flattening of the entropy profile. Our results suggest that gas clumping must be taken into account when interpreting X-ray measurements of cluster outskirts.

  11. Global Dust Budgets of the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Matsuura, Mikako

    2013-03-01

    Within galaxies, gas and dust are constantly exchanged between stars and the interstellar medium (ISM). The life-cycle of gas and dust is the key to the evolution of galaxies. Despite its importance, it is has been very difficult to trace the life-cycle of gas and dust via observations. The Spitzer Space Telescope and Herschel Space Observatory have provided a great opportunity to study the life-cycle of the gas and dust in very nearby galaxies, the Magellanic Clouds. AGB stars are more important contributors to the dust budget in the Large Magellanic Cloud (LMC), while in the Small Magellanic Cloud (SMC), SNe are dominant. However, it seems that the current estimates of the total dust production from AGB stars is insufficient to account for dust present in the ISM. Other dust sources are needed, and supernovae are promising sources. Alternatively the time scale of dust lifetime itself needs some revisions, potentially because they could be unevenly distributed in the ISM or clumps.

  12. The virial balance of clumps and cores in molecular clouds

    NASA Astrophysics Data System (ADS)

    Dib, Sami; Vázquez-Semadeni, Enrique; Kim, Jongsoo; Burkert, Andreas; Shadmehri, Mohsen

    We analyse the virial balance of clumps and cores in a set of three-dimensional, driven, isothermal, magnetohydrodynamical simulations of molecular clouds. We apply a clump finding algorithm based on a density threshold and a friend of friend approach to isolate clumps and cores in the simulation box. For each clump, we calculate all the terms which enter the virial equation in its Eulerian form (EVT): 1/2 ddot I_E=2E_th+E_k-τ_th-τ_k+E_m+τ_m-1/2 dΦ/dt, where the left hand side is the second time derivative of the clump moment of inertia and on the right hand side the terms are (from left to right), the thermal volume energy, volume kinetic energy, surface thermal energy, surface kinetic energy, volume magnetic energy, surface magnetic energy, gravitational term and first time derivative of the flux of moment of inertia through the clump boundary. We also calculate for each clump and core other stability indicators commonly used in both observational and theoretical work such as the Jeans number J[c], mass-to magnetic flux ratio (normalized to the critical value for collapse) μ_[c] and the gravitational parameter α_[vir]. We show that :a) Clumps and cores are dynamical, out of equilibrium structures, b) Surface energy terms are as important as the volume ones in the overall energy balance, c) Not all clumps that have infall like motions are gravitationally bound, d) The near equality of the temporal terms in the EVT enables the usage of the other terms as a stability indicator (gravity versus other energies), and e) We establish the relationships between the classical parameters J[c], μ_[c] and α_[vir] which are used to compare the ratios of gravitational to thermal, magnetic, and kinetic energy in clumps to their counterparts in the EVT (i.e., for example J[c] is compared to IWI /I E[th] -?τ [th] I). Thus, we propose a method to test the clumps stability based on observations of their derived dynamical, thermal and magnetic properties.

  13. Search for starless clumps in the ATLASGAL survey

    NASA Astrophysics Data System (ADS)

    Tackenberg, J.; Beuther, H.; Henning, T.; Schuller, F.; Wienen, M.; Motte, F.; Wyrowski, F.; Bontemps, S.; Bronfman, L.; Menten, K.; Testi, L.; Lefloch, B.

    2012-04-01

    Context. Understanding massive star formation requires comprehensive knowledge about the initial conditions of this process. The cradles of massive stars are believed to be located in dense and massive molecular clumps. Aims: In this study, we present an unbiased sample of the earliest stages of massive star formation across 20 deg2 of the sky. Methods: Within the region 10° < l < 20° and |b| < 1°, we search the ATLASGAL survey at 870 μm for dense gas condensations. These clumps are carefully examined for indications of ongoing star formation using YSOs from the GLIMPSE source catalog as well as sources in the 24 μm MIPSGAL images, to search for starless clumps. We calculate the column densities as well as the kinematic distances and masses for sources where the vlsr is known from spectroscopic observations. Results: Within the given region, we identify 210 starless clumps with peak column densities >1 × 1023 cm-2. In particular, we identify potential starless clumps on the other side of the Galaxy. The sizes of the clumps range between 0.1 pc and 3 pc with masses between a few tens of M⊙ up to several ten thousands of M⊙. Most of them may form massive stars, but in the 20 deg2 area we only find 14 regions massive enough to form stars more massive than 20 M⊙ and 3 regions with the potential to form stars more massive than 40 M⊙. The slope of the high-mass tail of the clump mass function for clumps on the near side of the Galaxy is α = 2.2 and, therefore, Salpeter-like. We estimate the lifetime of the most massive starless clumps to be (6 ± 5) × 104 yr. Conclusions: The sample offers a uniform selection of starless clumps. In the large area surveyed, we only find a few potential precursors of stars in the excess of 40 M⊙. It appears that the lifetime of these clumps is somewhat shorter than their free-fall times, although both values agree within the errors. In addition, these are ideal objects for detailed studies and follow-up observations. The

  14. Properties of massive star-forming clumps with infall motions

    NASA Astrophysics Data System (ADS)

    He, Yu-Xin; Zhou, Jian-Jun; Esimbek, Jarken; Ji, Wei-Guang; Wu, Gang; Tang, Xin-Di; Komesh, Toktarkhan; Yuan, Ye; Li, Da-Lei; Baan, W. A.

    2016-09-01

    In this work, we aim to characterize high-mass clumps with infall motions. We selected 327 clumps from the Millimetre Astronomy Legacy Team 90-GHz survey, and identified 100 infall candidates. Combined with the results of He et al., we obtained a sample of 732 high-mass clumps, including 231 massive infall candidates and 501 clumps where infall is not detected. Objects in our sample were classified as pre-stellar, proto-stellar, H II or photodissociation region (PDR). The detection rates of the infall candidates in the pre-stellar, proto-stellar, H II and PDR stages are 41.2 per cent, 36.6 per cent, 30.6 per cent and 12.7 per cent, respectively. The infall candidates have a higher H2 column density and volume density compared with the clumps where infall is not detected at every stage. For the infall candidates, the median values of the infall rates at the pre-stellar, proto-stellar, H II and PDR stages are 2.6 × 10-3, 7.0 × 10-3, 6.5 × 10-3 and 5.5 × 10-3 M⊙ yr-1, respectively. These values indicate that infall candidates at later evolutionary stages are still accumulating material efficiently. It is interesting to find that both infall candidates and clumps where infall is not detected show a clear trend of increasing mass from the pre-stellar to proto-stellar, and to the H II stages. The power indices of the clump mass function are 2.04 ± 0.16 and 2.17 ± 0.31 for the infall candidates and clumps where infall is not detected, respectively, which agree well with the power index of the stellar initial mass function (2.35) and the cold Planck cores (2.0).

  15. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  16. EVOLUTION AND LIFETIME OF TRANSIENT CLUMPS IN THE TURBULENT INTERSTELLAR MEDIUM

    SciTech Connect

    Falceta-Goncalves, D.; Lazarian, A.

    2011-07-10

    We study the evolution of dense clumps and provide an argument that the existence of the clumps is not limited by their crossing times. We claim that the lifetimes of the clumps are determined by turbulent motions on a larger scale, and we predict the correlation of clump lifetime with column density. We use numerical simulations to successfully test this relation. In addition, we study the morphological asymmetry and the magnetization of the clumps as functions of their masses.

  17. Dust Detector

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.

    2001-01-01

    We discuss a recent sounding rocket experiment which found charged dust in the Earth's tropical mesosphere. The dust detector was designed to measure small (5000 - 10000 amu.) charged dust particles, most likely of meteoric origin. A 5 km thick layer of positively charged dust was found at an altitude of 90 km, in the vicinity of an observed sporadic sodium layer and sporadic E layer. The observed dust was positively charged in the bulk of the dust layer, but was negatively charged near the bottom.

  18. Extinctions and Distances of Dark Clouds from Ugrijhk Photometry of Red Clump Giants: the North America and Pelican Nebulae Complex

    NASA Astrophysics Data System (ADS)

    Straižys, V.; Laugalys, V.

    A possibility of applying 2MASS J, H, Ks, IPHAS r, i and MegaCam u, g photometry of red giants for determining distances to dark clouds is investigated. Red clump giants with a small admixture of G5--K1 and M2--M3 stars of the giant branch can be isolated and used in determining distances to separate clouds or spiral arms. Interstellar extinctions of background red giants can be also used for mapping dust surface density in the cloud.

  19. The Planck Catalogue of Galactic Cold Clumps : Looking at the early stages of star-formation

    NASA Astrophysics Data System (ADS)

    Montier, Ludovic

    2015-08-01

    The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.I will briefly describe the colour detection method used to extract the Galactic cold sources, i.e., the Cold Core Colour Detection Tool (CoCoCoDeT, Montier et al. 2010), and its application to the Planck data. I will discuss the statistical distribution of the properties of the PGCC sources (in terms of dust temperature, distance, mass, density and luminosity), which illustrates that the PGCC catalogue spans a large variety of environments and objects, from molecular clouds to cold cores, and covers various stages of evolution. The Planck catalogue is a very powerful tool to study the formation and the evolution of prestellar objects and star-forming regions.I will finally present an overview of the Herschel Key Program Galactic Cold Cores (PI. M.Juvela), which allowed us to follow-up about 350 Planck Galactic Cold Clumps, in various stages of evolution and environments. With this program, the nature and the composition of the 5' Planck sources have been revealed at a sub-arcmin resolution, showing very different configurations, such as starless cold cores or multiple Young Stellar objects still embedded in their cold envelope.

  20. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    article title:  Massive Dust Storm over Australia     View ... at JPL September 22, 2009 - Massive dust storm over Australia. project:  MISR category:  ... Sep 22, 2009 Images:  Dust Storm location:  Australia and New Zealand ...

  1. Clump formation through colliding stellar winds in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Calderón, Diego

    2016-07-01

    The gas cloud G2 is currently being tidally disrupted by the Galactic Center super-massive black hole, Sgr A*. The region around the black hole is populated by ˜30 Wolf-Rayet stars, which produce strong outflows. Following an analytical approach, we explore the possibility that gas clumps, such as G2, originate from the collision of identical stellar winds via the Non-Linear Thin Shell Instability. We have found that the collision of relatively slow (<750 km s^{-1}) and strong (˜10^{-5} M_{⊙} yr^{-1}) stellar winds from stars at short separations (<2000 AU) is a process that indeed could produce clumps of G2's mass and above. Such short separation encounters of single stars along their orbits are not common in the Galactic Centre, however close binaries, such as IRS 16SW, are promising clump sources (see Calderón et al. 2016). We also present the first results of 2D models of colliding wind systems using the hydrodynamics adaptive mesh refinement code RAMSES, aiming to obtain a clump mass function, and the rate of clump formation and ejection to the ISM. We study the effect of parameters such as wind properties, stellar separation and orbital motion, in order to understand how likely the formation of G2 is in this context.

  2. PARTICLE CLUMPING AND PLANETESIMAL FORMATION DEPEND STRONGLY ON METALLICITY

    SciTech Connect

    Johansen, Anders; Youdin, Andrew; Mac Low, Mordecai-Mark

    2009-10-20

    We present three-dimensional numerical simulations of particle clumping and planetesimal formation in protoplanetary disks with varying amounts of solid material. As centimeter-size pebbles settle to the mid-plane, turbulence develops through vertical shearing and streaming instabilities. We find that when the pebble-to-gas column density ratio is 0.01, corresponding roughly to solar metallicity, clumping is weak, so the pebble density rarely exceeds the gas density. Doubling the column density ratio leads to a dramatic increase in clumping, with characteristic particle densities more than 10 times the gas density and maximum densities reaching several thousand times the gas density. This is consistent with unstratified simulations of the streaming instability that show strong clumping in particle-dominated flows. The clumps readily contract gravitationally into interacting planetesimals on the order of 100 km in radius. Our results suggest that the correlation between host star metallicity and exoplanets may reflect the early stages of planet formation. We further speculate that initially low-metallicity disks can be particle enriched during the gas dispersal phase, leading to a late burst of planetesimal formation.

  3. Dense Molecular Gas in the First Galactic Quadrant: A New Distance Estimation Technique and the Molecular Cloud Clump Mass Function, Physical Properties, and Galactic Distribution from the Bolocam Galactic Plane Survey

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; Ellsworth-Bowers, Timothy; Bolocam Galactic Plane Survey

    2015-01-01

    Large submillimeter and millimeter Galactic dust continuum surveys of the Milky Way, such as the Bolocam Galactic Plane Survey (BGPS), Hi-GAL, ATLAS-GAL, and JCMT-JPS cumulatively have discovered 105 cores, clumps, and other structures in Galactic molecular clouds. Robust distance measurements to these structures are needed to enable the large range of quantitative astrophysics that these surveys promise, such as physical properties of clumps, the clump mass function, and the three-dimensional distribution of dense gas and star formation in the Milky Way. We have developed a technique for deriving distances to continuum-identified molecular cloud clumps employing kinematic distances and a suite of distance estimators for breaking kinematic distance ambiguities. Application to the BGPS has yielded 3,700 distance probability density functions (DPDFs) and 1,800 well-constrained distances (typical σdist ≈ 0.5 kpc). These have been used to determine sizes and masses of molecular cloud clumps, derive the clump mass function, and map the three-dimensional distribution of dense gas in the first Galactic quadrant. Among the interesting results are a mass function intermediate between molecular clouds and the stellar initial mass function and inter-arm star formation. Next, we plan to apply the technique to Hi-GAL, which covers the entire Galactic plane and whose submilllimeter maps provide for temperature and bolometric luminosity measurements of cloud structures.

  4. Quantifying resilience

    USGS Publications Warehouse

    Allen, Craig R.; Angeler, David G.

    2016-01-01

    Several frameworks to operationalize resilience have been proposed. A decade ago, a special feature focused on quantifying resilience was published in the journal Ecosystems (Carpenter, Westley & Turner 2005). The approach there was towards identifying surrogates of resilience, but few of the papers proposed quantifiable metrics. Consequently, many ecological resilience frameworks remain vague and difficult to quantify, a problem that this special feature aims to address. However, considerable progress has been made during the last decade (e.g. Pope, Allen & Angeler 2014). Although some argue that resilience is best kept as an unquantifiable, vague concept (Quinlan et al. 2016), to be useful for managers, there must be concrete guidance regarding how and what to manage and how to measure success (Garmestani, Allen & Benson 2013; Spears et al. 2015). Ideas such as ‘resilience thinking’ have utility in helping stakeholders conceptualize their systems, but provide little guidance on how to make resilience useful for ecosystem management, other than suggesting an ambiguous, Goldilocks approach of being just right (e.g. diverse, but not too diverse; connected, but not too connected). Here, we clarify some prominent resilience terms and concepts, introduce and synthesize the papers in this special feature on quantifying resilience and identify core unanswered questions related to resilience.

  5. Tracking pore-water evolution through clumped isotope analyses of a septarian concretion

    NASA Astrophysics Data System (ADS)

    Miles, B. E.; Loyd, S. J.; Hudson, J.; Dickson, T.; Tripati, A. K.

    2012-12-01

    Septarian concretions have been recognized in many sedimentary units spanning nearly all ages. Although they exhibit a bizarre structure, their widespread occurrence makes septarian concretions more than just simple geologic curiosities. The tapering veins, or "septaria", within these concretions are often filled with complex, relatively late-stage (post-concretion body) isopachous rim and blocky calcite mineral phases, reflecting potentially discrete episodes of successive cementation. Previous studies have used traditional carbonate carbon (δ13C) and oxygen (δ18O) isotope analyses to characterize the diagenetic fluids responsible for vein-filling mineral precipitation. Whereas these studies have provided valuable information concerning mineralization, it is impossible to resolve the individual affects of temperature and pore fluid δ18O on mineral δ18O compositions. Of course as with all diagenetic systems, both temperature and fluid oxygen isotope compositions are integral parameters to quantify in order to characterize carbonate mineral paragenesis. Here, we use the clumped isotope proxy, a paleothermometer that is independent of fluid δ18O values, in order to better constrain the formation environment of a septarian concretion of the Jurassic Ampthill Formation, United Kingdom. This concretion exhibits cements that are typical of many septarian concretions in which distinct vein-filling cementation events can be traced by color differences in carbonate phases. As a result, it is relatively easy to sample subsequent phases along the paragenetic sequence and therefore draw interpretations concerning environmental evolution. The concretion body, isopachous rim and vein-filling calcite exhibit similar clumped isotope temperatures and calculated pore-water δ18O values show a progressive depletion in the respective phases above. The isotopic data along with the crystallographic progression suggest mineral precipitation initially in modified marine fluids with

  6. Methane cycling. Nonequilibrium clumped isotope signals in microbial methane.

    PubMed

    Wang, David T; Gruen, Danielle S; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C; Holden, James F; Hristov, Alexander N; Pohlman, John W; Morrill, Penny L; Könneke, Martin; Delwiche, Kyle B; Reeves, Eoghan P; Sutcliffe, Chelsea N; Ritter, Daniel J; Seewald, Jeffrey S; McIntosh, Jennifer C; Hemond, Harold F; Kubo, Michael D; Cardace, Dawn; Hoehler, Tori M; Ono, Shuhei

    2015-04-24

    Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters. PMID:25745067

  7. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling.

  8. Modeling Asymmetric Forbidden Line Emission Profiles in Supernovae with Clumping

    NASA Astrophysics Data System (ADS)

    Herrington, Jessica; Ignace, R.; Hole, K. T.

    2010-01-01

    There are some supernovae that display emission line profiles that are asymmetric in shape. One cause for asymmetry could be an in-homogeneous density distribution, or "clumps". We explore the effects of clumps on the emission line profiles of forbidden lines. Our model assumes the ejecta shell is spherically symmetric in velocity, with a central cavity. The model assigns density perturbations to conical sections in the ejecta. To model the emission profile for a forbidden line, we use Sobolev theory. Our model gives asymmetric profiles when the clumping is introduced. The amount of asymmetry varies with the range of density perturbations allowed, and the relative asymmetry evolves in time. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs.

  9. Isotope geochemistry. Biological signatures in clumped isotopes of O₂.

    PubMed

    Yeung, Laurence Y; Ash, Jeanine L; Young, Edward D

    2015-04-24

    The abundances of molecules containing more than one rare isotope have been applied broadly to determine formation temperatures of natural materials. These applications of "clumped" isotopes rely on the assumption that isotope-exchange equilibrium is reached, or at least approached, during the formation of those materials. In a closed-system terrarium experiment, we demonstrate that biological oxygen (O2) cycling drives the clumped-isotope composition of O2 away from isotopic equilibrium. Our model of the system suggests that unique biological signatures are present in clumped isotopes of O2—and not formation temperatures. Photosynthetic O2 is depleted in (18)O(18)O and (17)O(18)O relative to a stochastic distribution of isotopes, unlike at equilibrium, where heavy-isotope pairs are enriched. Similar signatures may be widespread in nature, offering new tracers of biological and geochemical cycling. PMID:25908819

  10. Clumping factors of H II, He II and He III

    NASA Astrophysics Data System (ADS)

    Jeeson-Daniel, Akila; Ciardi, Benedetta; Graziani, Luca

    2014-09-01

    Estimating the intergalactic medium ionization level of a region needs proper treatment of the reionization process for a large representative volume of the universe. The clumping factor, a parameter which accounts for the effect of recombinations in unresolved, small-scale structures, aids in achieving the required accuracy for the reionization history even in simulations with low spatial resolution. In this paper, we study for the first time the redshift evolution of clumping factors of different ionized species of H and He in a small but very high resolution simulation of the reionization process. We investigate the dependence of the value and redshift evolution of clumping factors on their definition, the ionization level of the gas, the grid resolution, box size and mean dimensionless density of the simulations.

  11. The Dust and Gas Content of the Crab Nebula

    NASA Astrophysics Data System (ADS)

    Owen, P. J.; Barlow, M. J.

    2015-03-01

    We have constructed mocassin photoionization plus dust radiative transfer models for the Crab Nebula core-collapse supernova (CCSN) remnant, using either smooth or clumped mass distributions, in order to determine the chemical composition and masses of the nebular gas and dust. We computed models for several different geometries suggested for the nebular matter distribution but found that the observed gas and dust spectra are relatively insensitive to these geometries, being determined mainly by the spectrum of the pulsar wind nebula which ionizes and heats the nebula. Smooth distribution models are ruled out since they require 16-49 M ⊙ of gas to fit the integrated optical nebular line fluxes, whereas our clumped models require 7.0 M ⊙ of gas. A global gas-phase C/O ratio of 1.65 by number is derived, along with a He/H number ratio of 1.85, neither of which can be matched by current CCSN yield predictions. A carbonaceous dust composition is favored by the observed gas-phase C/O ratio: amorphous carbon clumped model fits to the Crab’s Herschel and Spitzer infrared spectral energy distribution imply the presence of 0.18-0.27 M ⊙ of dust, corresponding to a gas to dust mass ratio of 26-39. Mixed dust chemistry models can also be accommodated, comprising 0.11-0.13 M ⊙ of amorphous carbon and 0.39-0.47 M ⊙ of silicates. Power-law grain size distributions with mass distributions that are weighted toward the largest grain radii are derived, favoring their longer-term survival when they eventually interact with the interstellar medium. The total mass of gas plus dust in the Crab Nebula is 7.2 ± 0.5 M ⊙ , consistent with a progenitor star mass of ˜9 M ⊙ .

  12. Observational overview of clumping in hot stellar winds

    NASA Astrophysics Data System (ADS)

    Moffat, Anthony F. J.

    2008-04-01

    In the old days (pre ˜1990) hot stellar winds were assumed to be smooth, which made life fairly easy and bothered no one. Then after suspicious behaviour had been revealed, e.g. stochastic temporal variability in broadband polarimetry of single hot stars, it took the emerging CCD technology developed in the preceding decades (˜1970-80’s) to reveal that these winds were far from smooth. It was mainly high-S/N, time-dependent spectroscopy of strong optical recombination emission lines in WR, and also a few OB and other stars with strong hot winds, that indicated all hot stellar winds likely to be pervaded by thousands of multiscale (compressible supersonic turbulent?) structures, whose driver is probably some kind of radiative instability. Quantitative estimates of clumping-independent mass-loss rates came from various fronts, mainly dependent directly on density (e.g. electron-scattering wings of emission lines, UV spectroscopy of weak resonance lines, and binary-star properties including orbital-period changes, electron-scattering, and X-ray fluxes from colliding winds) rather than the more common, easier-to-obtain but clumping-dependent density-squared diagnostics (e.g. free-free emission in the IR/radio and recombination lines, of which the favourite has always been Hα). Many big questions still remain, such as: What do the clumps really look like? Do clumping properties change as one recedes from the mother star? Is clumping universal? Does the relative clumping correction depend on dot{M} itself?

  13. Physical and Chemical Properties of Protocluster Clumps and Massive Young Stellar Objects Associated to Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, Laura

    2012-01-01

    than between these clumps and low-mass pre-stellar cores and protostellar objects. A non-LTE Monte Carlo code was used to model the N_2H^+ (1-0) and (3-2) lines in order to constrain the physical properties of two clumps. Six IRDC complexes have been mapped in the 870 um dust continuum emission with the LABOCA instrument on the APEX 12m telescope. Line observations have been carried out in order to obtain temperature and kinematic distances of selected clumps. Physical properties such as masses, effective radii, and column densities have been obtained. The mass spectrum of these clumps has been fitted with a power-law whose best-fitting index is alpha =-1.60. This value is consistent with the CO clump mass function reported in the literature. A relation between the dust emission at 870 um and the degree of extinction (contrast) at 24 um has been obtained by combining dust emission observations and extinction studies. A study with the Plateau de Bure Interferometer of a core in an archetypal filamentary IRDC at few arcsecond resolution has been carried out to determine its physical and chemical structure. Extended 4.5 um emission, "wings" in the CH_3OH 2_k -> 1_k spectra, and a CH_3OH abundance enhancement provide evidence of an outflow in the East-West direction. In addition, a gradient of ~4 km/s in the same direction has been found, which is interpreted as being produced by an outflow(s)-cloud interaction. Finally, Very Large Array interferometric observations of the 7_0-6_1 A^+ (class I) methanol maser transition at 44 GHz toward three high-mass star-forming regions have been carried out in order to provide accurate maser positions and parameters. For all three sources, the masers were well-separated from the HII region, with projected distances ranging from 0.1 to 0.3 pc.

  14. Clumped-isotope thermometry of magnesium carbonates in ultramafic rocks

    NASA Astrophysics Data System (ADS)

    García del Real, Pablo; Maher, Kate; Kluge, Tobias; Bird, Dennis K.; Brown, Gordon E.; John, Cédric M.

    2016-11-01

    Magnesium carbonate minerals produced by reaction of H2O-CO2 with ultramafic rocks occur in a wide range of paragenetic and tectonic settings and can thus provide insights into a variety of geologic processes, including (1) deposition of ore-grade, massive-vein cryptocrystalline magnesite; (2) formation of hydrous magnesium carbonates in weathering environments; and (3) metamorphic carbonate alteration of ultramafic rocks. However, the application of traditional geochemical and isotopic methods to infer temperatures of mineralization, the nature of mineralizing fluids, and the mechanisms controlling the transformation of dissolved CO2 into magnesium carbonates in these settings is difficult because the fluids are usually not preserved. Clumped-isotope compositions of magnesium carbonates provide a means to determine primary mineralization or (re)equilibration temperature, which permits the reconstruction of geologic processes that govern magnesium carbonate formation. We first provide an evaluation of the acid fractionation correction for magnesium carbonates using synthetic magnesite and hydromagnesite, along with natural metamorphic magnesite and low-temperature hydromagnesite precipitated within a mine adit. We show that the acid fractionation correction for magnesium carbonates is virtually indistinguishable from other carbonate acid fractionation corrections given current mass spectrometer resolution and error. In addition, we employ carbonate clumped-isotope thermometry on natural magnesium carbonates from various geologic environments and tectonic settings. Cryptocrystalline magnesite vein deposits from California (Red Mountain magnesite mine), Austria (Kraubath locality), Turkey (Tutluca mine, Eskişehir district) and Iran (Derakht-Senjed deposit) exhibit broadly uniform Δ47 compositions that yield apparent clumped-isotope temperatures that average 23.7 ± 5.0 °C. Based on oxygen isotope thermometry, these clumped-isotope temperatures suggest

  15. Dust properties from scattering

    NASA Astrophysics Data System (ADS)

    Lefèvre, C.; Pagani, L.; Min, M.; Poteet, C.; Whittet, D.; Cambrésy, L.

    2016-05-01

    Dust grains evolve during the life cycle of the interstellar matter. From their birth places to dense molecular clouds, they grow by coagulation and acquire ice mantles, mainly composed of water. These morphological changes affect their optical properties. However, it remains a highly degenerate issue to determine their composition, size distribution, and shape from observations. In particular, using wavelengths associated to dust emission alone is not sufficient to investigate dense cold cores. Fortunately, scattering has turned out to be a powerful tool to investigate molecular clouds from the outer regions to the core. In particular, it is possible to quantify the amount of dust aggregates needed to reproduce observations from 1.25 to 8 μm.

  16. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, Dániel; Lauretta, Dante S.

    2010-01-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  17. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  18. Intergalactic Dust

    NASA Astrophysics Data System (ADS)

    Li, A.

    2002-12-01

    We study the composition and sizes of intergalactic dust based on the expulsion of interstellar dust from the galactic disk. Interstellar grains in the Galactic disk are modelled as a mixture of amorphous silicate dust and carbonaceous dust consisting of polycyclic aromatic hydrocarbon (PAH) molecules and larger graphitic grains (Li & Draine 2001) with size distributions like those of the Milky Way dust (Weingartner & Draine 2001). We model their dynamic evolution in terms of the collective effects caused by (1) radiative acceleration, (2) gravitational attraction, (3) gas drag, (4) thermal sputtering, and (5) Lorenz force from the galactic magnetic field (Ferrara et al. 1991). Radiation pressure from the stellar disk exerts an upward force on dust grains and may ultimately expel them out of the entire galaxy. Gravitational force from the stellar, dust and gas disk as well as the dark matter halo exerts a downward force. Thermal sputtering erodes all grains to some degree but more efficiently destroys small grains. This, together with the fact that (1) very small grains (with small radiation pressure efficiencies) are not well coupled to starlight; (2) for large grains the radiative force to the gravitational force is approximately inversely proportional to grain size, acts as a size ``filter'' for dust leaking into the intergalactic space. Since the radiation pressure efficiency and the grain destruction rate are sensitive to dust composition, the relative importance of carbon dust compared to silicate dust expelled into the intergalactic space differs from that in the galactic plane. We derive the size distributions of both silicate and carbonaceous dust finally getting into the intergalactic space and obtain an intergalactic extinction curve. The predicted intergalactic infrared emission spectrum is calculated. References: Ferrara, A., Ferrini, F., Franco, J., & Barsella, B. 1991, ApJ, 381, 137 Li, A., & Draine, B.T. 2001, ApJ, 554, 778 Weingartner, J

  19. 3D radiation hydrodynamics: Interacting photo-evaporating clumps

    NASA Astrophysics Data System (ADS)

    Lim, A. J.; Mellema, G.

    2003-07-01

    We present the results of a new radiation hydrodynamics code called Maartje. This code describes the evolution of a flow in three spatial dimensions using an adaptive mesh, and contains a combination of a ray tracer and an atomic physics module to describe the effects of ionizing radiation. The code is parallelized using a custom threadpool library. We present an application in which we follow the ionization of two dense spherical clumps which are exposed to an ionizing radiation field from a 50 000 K black body. We study various configurations in which one of the clumps shields the other from the ionizing photons. We find that relatively long-lived filamentary structures with narrow tails are formed. This raises the possibility that cometary knots (such as are found in the Helix Nebula) may be the result of the interaction of an ionizing radiation field with an ensemble of clumps, as opposed to the identification of a single knot with a single clump. Movies are available at http://www.edpsciences.org

  20. Investigating the origin of discrepancies in clumped isotope calibrations

    NASA Astrophysics Data System (ADS)

    Eagle, R.

    2015-12-01

    The abundance of 13C-18O 'clumps' in calcite or aragonite of corals skeletons are a potentially valuable tool for reconstructing past ocean temperatures. However, corals are known to exhibit significant "vital effects" (i.e., non-equilibrium mineral compositions) in δ18O, which complicates its application in paleoclimate studies, and may also exhibit clumped isotope disequilibrium. Here we determined mass 47 anomalies (Δ47) in CO2 derived from cultured shallow water and live-collected deep-sea coral. In a species of cultured surface water coral, we find disequilibrium Δ47 and δ18O values that are consistent with a pH effect driving disequilibrium isotopic signatures. We go on to show that culturing specimens at elevated CO2 conditions drives changes in both Δ47 and δ18O that follows the same relationship defined for pH effects in inorganic carbonate precipitation experiments. This suggests that dissolved inorganic carbon speciation at the site of calcification and therefore fluid pH can effect the clumped isotope composition of biogenic minerals. In two different live-collected deep-sea coral taxa, we find distinct clumped isotope signatures and Δ47-temperature calibration relationships.

  1. Dynamics of High-Velocity Evanescent Clumps (HVECs) Emitted from Comet C/2011 L4 (Pan-STARRS) as Observed by STEREO

    NASA Astrophysics Data System (ADS)

    Lisse, C. M.; Raouafi, N. E.; Stenborg, G.; Jones, G. H.; Schmidt, C.

    2015-12-01

    We use white-light images from the STEREO/SECCHI/HI-1B to characterize newly discovered high-velocity evanescent clumps (HVECs) expelled from the coma of the C/2011 L4 (Pan-STARRS) comet. The observations were recorded around the comet's perihelion (i.e., ~0.3 AU) during the period 09-16 March 2013. The HVECs are moving near-radially in the anti-sunward direction with bulk speeds at their initial detection ranging from 200-400 km s-1 followed by an appreciable acceleration up to speeds of 450-600 km s-1, which are typical of slow to intermediate solar wind speeds. The HVECs do not show any significant expansion as they propagate. The while-light images do not provide direct insight into the composition of the expelled clumps, which could potentially be composed of fine, sub-micron dust particles, neutral atoms and molecules, and/or ionized atomic/molecular cometary species. Although solar radiation pressure plays a role in accelerating and size sorting of small dust grains, it cannot accelerate them to velocities >200 km s-1 in the observed time interval of a few hours and distance of <106 km. Further, order of magnitude calculations show that ionized single atoms or molecules accelerate too quickly compared to observations, while dust grains micron sized or larger accelerate too slowly. We find that neutral Na, Li, K, or Ca atoms with β > 50 could possibly fit the observations. Just as likely, we find that an interaction with the solar wind and the heliospheric magnetic field (HMF) can cause the observed clump dynamical evolution, accelerating them quickly up to solar wind velocities. We thus speculate that the HVECs are composed of charged particles (dust particles) or atoms accelerated by radiation pressure at β > 50 values. In addition, the data suggest that clump ejecta initially move along near-radial, bright structures, which then separate into HVECs and larger dust grains that steadily bend backwards relative to the comet's orbital motion due to the

  2. Combinatorial effects on clumped isotopes and their significance in biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.

    2016-01-01

    The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial

  3. Quantifying contextuality.

    PubMed

    Grudka, A; Horodecki, K; Horodecki, M; Horodecki, P; Horodecki, R; Joshi, P; Kłobus, W; Wójcik, A

    2014-03-28

    Contextuality is central to both the foundations of quantum theory and to the novel information processing tasks. Despite some recent proposals, it still faces a fundamental problem: how to quantify its presence? In this work, we provide a universal framework for quantifying contextuality. We conduct two complementary approaches: (i) the bottom-up approach, where we introduce a communication game, which grasps the phenomenon of contextuality in a quantitative manner; (ii) the top-down approach, where we just postulate two measures, relative entropy of contextuality and contextuality cost, analogous to existent measures of nonlocality (a special case of contextuality). We then match the two approaches by showing that the measure emerging from the communication scenario turns out to be equal to the relative entropy of contextuality. Our framework allows for the quantitative, resource-type comparison of completely different games. We give analytical formulas for the proposed measures for some contextual systems, showing in particular that the Peres-Mermin game is by order of magnitude more contextual than that of Klyachko et al. Furthermore, we explore properties of these measures such as monotonicity or additivity. PMID:24724629

  4. Effects of Water on Carbonate Clumped Isotope Bond Reordering Kinetics

    NASA Astrophysics Data System (ADS)

    Brenner, D. C.; Passey, B. H.

    2015-12-01

    Carbonate clumped isotope geothermometry is a powerful tool for reconstructing past temperatures, both in surface environments and in the shallow crust. The method is based on heavy isotope "clumps" within single carbonate groups (e.g., 13C18O16O2-2), whose overabundance beyond levels predicted by chance is determined by mineralization temperature. The degree of clumped isotope overabundance can change at elevated temperatures (ca. >100ºC) owing to solid-state diffusion of C and O through the mineral lattice. Understanding the kinetics of this clumped isotope reordering process is a prerequisite for application to geological questions involving samples that have been heated in the subsurface. Thus far, the effect of water on reordering kinetics has not been explored. The presence of water dramatically increases rates of oxygen self-diffusion in calcite, but whether this water-enhanced diffusion is limited to the mineral surface or extends into the bulk crystal lattice is not clear. Here we present experimentally determined Arrhenius parameters for reordering rates in optical calcite heated under aqueous high pressure (100 MPa) conditions. We observe only marginal increases in reordering rates under these wet, high pressure conditions relative to rates observed for the same material reacted under dry, low pressure conditions. The near identical clumped isotope reordering rates for wet and dry conditions contrasts with the orders of magnitude increase in oxygen diffusivity at the mineral surface when water is present. This suggests the latter effect arises from surface reactions that have minimal influence on the diffusivity of C or O in the bulk mineral. Our results also imply that previously published reordering kinetics determined under dry, low pressure experimental conditions are applicable to geological samples that have been heated in the presence of water.

  5. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...

  6. Dust Storm

    Atmospheric Science Data Center

    2013-04-16

    ... April 11, 2004 (top panels) contrast strongly with the dust storm that swept across Iraq and Saudi Arabia on May 13, 2004 (bottom panels). ... Apr 11 and May 13, 2004 Images:  Dust Storm location:  Middle East thumbnail:  ...

  7. Combined 13C-D and D-D clumping in methane: Methods and preliminary results

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Sessions, A. L.; Ferreira, A. A.; Santos Neto, E. V.; Schimmelmann, A.; Shusta, S. S.; Valentine, D. L.; Eiler, J. M.

    2014-02-01

    The stable isotopic composition of methane (e.g., δD and δ13C values) is often used as a tracer for its sources and sinks. Conventional δD and δ13C measurements represent the average isotope ratios of all ten isotopologues of methane, though they are effectively controlled by the relative abundances of the three most abundant species: 12CH4, 13CH4, and 12CH3D. The precise relative abundances of the other seven isotopologues remains largely unexplored because these species contain multiple rare isotopes and are thus rare themselves. These multiply substituted (or 'clumped') isotopologues each have their own distinctive chemical and physical properties, which could provide additional constraints on the geochemistry of methane. This work focuses on quantifying the abundances of two rare isotopologues, 13CH3D and 12CH2D2, of methane in order to assess their utility as a window into methane's geochemistry. Specifically, we seek to assess whether clumped isotope distributions might be useful to quantify the temperature at which methane formed and/or equilibrated. To this end, we report the first highly precise combined measurements of the relative abundances of 13CH3D and 12CH2D2 at natural abundances (i.e., unlabeled) via the high-resolution magnetic-sector mass spectrometry of intact methane. We calibrate the use of these measurements as a geothermometer using both theory and experiment, and apply this geothermometer to representative natural samples. The method yields accurate average (i.e., bulk) isotopic ratios based on comparison with conventional techniques. We demonstrate the accuracy and precision of measurements of 13CH3D and 12CH2D2 through analyses of methane driven to high temperature (>200 °C) equilibrium in the laboratory. Application of this thermometer to natural samples yields apparent temperatures consistent with their known formation environments and appears to distinguish between biogenic and thermogenic methane.

  8. SMOOTH(ER) STELLAR MASS MAPS IN CANDELS: CONSTRAINTS ON THE LONGEVITY OF CLUMPS IN HIGH-REDSHIFT STAR-FORMING GALAXIES

    SciTech Connect

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Genzel, Reinhard; Lutz, Dieter; Guo Yicheng; Giavalisco, Mauro; Barro, Guillermo; Faber, Sandra M.; Kocevski, Dale D.; Koo, David C.; McGrath, Elizabeth; Dekel, Avishai; Ferguson, Henry C.; Grogin, Norman A.; Koekemoer, Anton M.; Lotz, Jennifer; Hathi, Nimish P.; Huang, Kuang-Han; Newman, Jeffrey A.; and others

    2012-07-10

    We perform a detailed analysis of the resolved colors and stellar populations of a complete sample of 323 star-forming galaxies (SFGs) at 0.5 < z < 1.5 and 326 SFGs at 1.5 < z < 2.5 in the ERS and CANDELS-Deep region of GOODS-South. Galaxies were selected to be more massive than 10{sup 10} M{sub Sun} and have specific star formation rates (SFRs) above 1/t{sub H} . We model the seven-band optical ACS + near-IR WFC3 spectral energy distributions of individual bins of pixels, accounting simultaneously for the galaxy-integrated photometric constraints available over a longer wavelength range. We analyze variations in rest-frame color, stellar surface mass density, age, and extinction as a function of galactocentric radius and local surface brightness/density, and measure structural parameters on luminosity and stellar mass maps. We find evidence for redder colors, older stellar ages, and increased dust extinction in the nuclei of galaxies. Big star-forming clumps seen in star formation tracers are less prominent or even invisible in the inferred stellar mass distributions. Off-center clumps contribute up to {approx}20% to the integrated SFR, but only 7% or less to the integrated mass of all massive SFGs at z {approx} 1 and z {approx} 2, with the fractional contributions being a decreasing function of wavelength used to select the clumps. The stellar mass profiles tend to have smaller sizes and M20 coefficients, and higher concentration and Gini coefficients than the light distribution. Our results are consistent with an inside-out disk growth scenario with brief (100-200 Myr) episodic local enhancements in star formation superposed on the underlying disk. Alternatively, the young ages of off-center clumps may signal inward clump migration, provided this happens efficiently on the order of an orbital timescale.

  9. VizieR Online Data Catalog: Young clumps embedded in IRDC (Traficante+, 2015)

    NASA Astrophysics Data System (ADS)

    Traficante, A.; Fuller, G. A.; Peretto, N.; Pineda, J. E.; Molinari, S.

    2015-06-01

    Photometric parameters for 667 starless clumps (sources identified at 160um with a counterpart at 250 and 350um) and 1056 protostellar clumps (sources identified at 160um with a counterpart at 70, 250 and 350um). Photometric parameters obtained with Hyper photometry code (2015A&A...574A.119T). The photometry is corrected for aperture and colour corrections. The parameter list is the standard Hyper output (see description below). SED fit parameters for 650 starless clumps and 1034 protostellar clumps (all clumps with good SED fitting: Chi2<10, Temperature<40K. See the paper for details) (4 data files).

  10. Numerical Simulations of Supernova Dust Destruction. I. Cloud-crushing and Post-processed Grain Sputtering

    NASA Astrophysics Data System (ADS)

    Silvia, Devin W.; Smith, Britton D.; Shull, J. Michael

    2010-06-01

    We investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova (SN) remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We then post-process the simulation output to calculate the grain sputtering for a variety of species and size distributions. We explore the parameter space appropriate for this problem by altering the overdensity of the ejecta clumps and the speed of the reverse shocks. Since radiative cooling could lower the temperature of the medium in which the dust is embedded and potentially protect the dust by slowing or halting grain sputtering, we study the effects of different cooling methods over the timescale of the simulations. In general, our results indicate that grains with radii less than 0.1 μm are sputtered to much smaller radii and often destroyed completely, while larger grains survive their interaction with the reverse shock. We also find that, for high ejecta densities, the percentage of dust that survives is strongly dependent on the relative velocity between the clump and the reverse shock, causing up to 50% more destruction for the highest velocity shocks. The fraction of dust destroyed varies widely across grain species, ranging from total destruction of Al2O3 grains to minimal destruction of Fe grains (only 20% destruction in the most extreme cases). C and SiO2 grains show moderate to strong sputtering as well, with 38% and 80% mass loss. The survival rate of grains formed by early SNe is crucial in determining whether or not they can act as the "dust factories" needed to explain high-redshift dust.

  11. NUMERICAL SIMULATIONS OF SUPERNOVA DUST DESTRUCTION. I. CLOUD-CRUSHING AND POST-PROCESSED GRAIN SPUTTERING

    SciTech Connect

    Silvia, Devin W.; Smith, Britton D.; Michael Shull, J. E-mail: britton.smith@colorado.ed

    2010-06-01

    We investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova (SN) remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We then post-process the simulation output to calculate the grain sputtering for a variety of species and size distributions. We explore the parameter space appropriate for this problem by altering the overdensity of the ejecta clumps and the speed of the reverse shocks. Since radiative cooling could lower the temperature of the medium in which the dust is embedded and potentially protect the dust by slowing or halting grain sputtering, we study the effects of different cooling methods over the timescale of the simulations. In general, our results indicate that grains with radii less than 0.1 {mu}m are sputtered to much smaller radii and often destroyed completely, while larger grains survive their interaction with the reverse shock. We also find that, for high ejecta densities, the percentage of dust that survives is strongly dependent on the relative velocity between the clump and the reverse shock, causing up to 50% more destruction for the highest velocity shocks. The fraction of dust destroyed varies widely across grain species, ranging from total destruction of Al{sub 2}O{sub 3} grains to minimal destruction of Fe grains (only 20% destruction in the most extreme cases). C and SiO{sub 2} grains show moderate to strong sputtering as well, with 38% and 80% mass loss. The survival rate of grains formed by early SNe is crucial in determining whether or not they can act as the 'dust factories' needed to explain high-redshift dust.

  12. Dust destruction by the reverse shock in the Cassiopeia A supernova remnant

    NASA Astrophysics Data System (ADS)

    Micelotta, Elisabetta R.; Dwek, Eli; Slavin, Jonathan D.

    2016-05-01

    Context. Core collapse supernovae (CCSNe) are important sources of interstellar dust, which are potentially capable of producing 1 M⊙ of dust in their explosively expelled ejecta. However, unlike other dust sources, the dust has to survive the passage of the reverse shock, generated by the interaction of the supernova blast wave with its surrounding medium. Knowledge of the net amount of dust produced by CCSNe is crucial for understanding the origin and evolution of dust in the local and high-redshift Universe. Aims: We identify the dust destruction mechanisms in the ejecta and derive the net amount of dust that survives the passage of the reverse shock. Methods: We use analytical models for the evolution of a supernova blast wave and of the reverse shock with special application to the clumpy ejecta of the remnant of Cassiopeia A (Cas A). We assume that the dust resides in cool oxygen-rich clumps, which are uniformly distributed within the remnant and surrounded by a hot X-ray emitting plasma (smooth ejecta), and that the dust consists of silicates (MgSiO3) and amorphous carbon grains. The passage of the reverse shock through the clumps gives rise to a relative gas-grain motion and also destroys the clumps. While residing in the ejecta clouds, dust is processed via kinetic sputtering, which is terminated either when the grains escape the clumps or when the clumps are destroyed by the reverse shock. In either case, grain destruction proceeds thereafter by thermal sputtering in the hot shocked smooth ejecta. Results: We find that 11.8 and 15.9 percent of silicate and carbon dust, respectively, survive the passage of the reverse shock by the time the shock has reached the centre of the remnant. These fractions depend on the morphology of the ejecta and the medium into which the remnant is expanding, as well as the composition and size distribution of the grains that formed in the ejecta. Results will therefore differ for different types of supernovae.

  13. Snow-Dust Storm: Unique case study from Iceland, March 6-7, 2013

    NASA Astrophysics Data System (ADS)

    Dagsson-Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Hladil, Jindrich; Skala, Roman; Navratil, Tomas; Chadimova, Leona; Meinander, Outi

    2015-03-01

    Iceland is an active dust source in the high-latitude cold region. About 50% of the annual dust events in the southern part of Iceland take place at sub-zero temperatures or in winter, when dust may be mixed with snow. We investigated one winter dust event that occurred in March 2013. It resulted in a several mm thick dark layer of dust deposited on snow. Dust was transported over 250 km causing impurities on snow in the capital of Iceland, Reykjavik. Max one-minute PM10 concentration measured in Kirkjubæjarklaustur (20-50 km from the dust source) exceeded 6500 μg m-3 while the mean (median) PM10 concentration during 24-h storm was 1281 (1170) μg m-3. Dust concentrations during the dust deposition in Reykjavik were only about 100 μg m-3, suggesting a rapid removal of the dust particles by snow during the transport. Dust sample taken from the snow top layer in Reykjavik after the storm showed that about 75% of the dust deposit was a volcanic glass with SiO2 ∼45%, FeO ∼14.5%, and TiO2 ∼3.5. A significant proportion of organic matter and diatoms was also found. This case study shows that severe dust storms are related also to meteorological conditions, such as winter snow storms, and moist conditions. Small volcanic dust particles deposited on snow tend to form larger particles ("clumping mechanism") resulting in stronger light absorbance. This is one of the first reports on the "clumping mechanism" observed in natural conditions. The deposition of Icelandic dust on snow, glaciers and sea ice may accelerate the thaw, with the potential to increase the anthropogenic Arctic warming.

  14. High-resolution mapping of dust via extinction in the M31 bulge

    NASA Astrophysics Data System (ADS)

    Dong, Hui; Li, Zhiyuan; Wang, Q. D.; Lauer, Tod R.; Olsen, Knut A. G.; Saha, Abhijit; Dalcanton, Julianne J.; Groves, Brent A.

    2016-06-01

    We map the dust distribution in the central 180 arcsec (˜680 pc) region of the M31 bulge, based on HST WFC3 and ACS observations in ten bands from near-ultraviolet (2700 Å) to near-infrared (1.5 μm). This large wavelength coverage gives us great leverage to detect not only dense dusty clumps, but also diffuse dusty molecular gas. We fit a pixel-by-pixel spectral energy distributions to construct a high-dynamic-range extinction map with unparalleled angular resolution (˜0.5 arcsec, i.e. ˜2 pc) and sensitivity (the extinction uncertainty, δAV ˜ 0.05). In particular, the data allow to directly fit the fractions of starlight obscured by individual dusty clumps, and hence their radial distances in the bulge. Most of these clumps seem to be located in a thin plane, which is tilted with respect to the M31 disc and appears face-on. We convert the extinction map into a dust mass surface density map and compare it with that derived from the dust emission as observed by Herschel. The dust masses in these two maps are consistent with each other, except in the low-extinction regions, where the mass inferred from the extinction tends to be underestimated. Further, we use simulations to show that our method can be used to measure the masses of dusty clumps in Virgo cluster early-type galaxies to an accuracy within a factor of ˜2.

  15. SUBMILLIMETER OBSERVATIONS OF DENSE CLUMPS IN THE INFRARED DARK CLOUD G049.40-00.01

    SciTech Connect

    Kang, Miju; Choi, Minho; Bieging, John H.; Rho, Jeonghee; Tsai, Chao-Wei

    2011-12-20

    We obtained 350 and 850 {mu}m continuum maps of the infrared dark cloud G049.40-00.01. Twenty-one dense clumps were identified within G049.40-00.01 based on the 350 {mu}m continuum map with an angular resolution of about 9.''6. We present submillimeter continuum maps and report physical properties of the clumps. The masses of clumps range from 50 to 600 M{sub Sun }. About 70% of the clumps are associated with bright 24 {mu}m emission sources, and they may contain protostars. The two most massive clumps show extended, enhanced 4.5 {mu}m emission indicating vigorous star-forming activity. The clump-size-mass distribution suggests that many of them are forming high-mass stars. G049.40-00.01 contains numerous objects in various evolutionary stages of star formation, from pre-protostellar clumps to H II regions.

  16. Assessment of Iceland as a dust source

    NASA Astrophysics Data System (ADS)

    Arnalds, Ólafur; Ólafsson, Haraldur; Dagsson-Waldhauserova, Pavla

    2016-04-01

    Iceland has extremely active dust sources that result in large-scale emissions and deposition on land and at sea. The dust has a volcanogenic origin of basaltic composition with about 10% Fe content. We used two independent methods to quantify dust emission from Iceland and dust deposition at sea. Firstly, the aerial extent (map) of deposition on land was extended to ocean areas around Iceland. Secondly, surveys of the number of dust events over the past decades and calculations of emissions and sea deposition for the dust storms were made. The results show that total emissions range from 30.5 (dust-event-based calculation) to 40.1 million t yr

  17. Shock-Clump Interaction Studies in the Laboratory

    NASA Astrophysics Data System (ADS)

    Blue, B. E.; Hund, J. D.; Paguio, R. R.; Hansen, J. F.; Foster, J. M.; Rosen, P. A.; Williams, R. J. R.; Douglas, M.; Wilde, B. H.; Carver, R.; Palmer, J.; Hartigan, P.

    2009-11-01

    Large-scale directional outflows of supersonic plasma are driven by a wide variety of objects in the universe. Typical models of the outflows assume simplistic geometries; however, images of most outflows show a much more complex structure that consists of multiple clumps and shocks. To bridge the gap between the complex system in space and the simplified models, controlled scaled experiments were performed to elucidate the physics of a shock progressing through a clumpy medium. This talk will present experiments on the Omega Laser in which a shock impacts density discontinuities in order to understand the perturbed shock structure. Two types of discontinuities that had the same average density were tested: one with a uniformly distributed dopant and another with ˜47 randomly distributed high-density clumps. We have obtained high-resolution radiographs that detail the temporal evolution of the shock and density discontinuity.

  18. Herschel Reveals Massive Cold Clump Candidates in NGC 7538

    NASA Astrophysics Data System (ADS)

    Fallscheer, Cassandra; Reid, Mike; Di Francesco, James; Martin, Peter; Hill, Tracey

    2013-07-01

    Observations of the high-mass star formation region NGC 7538 taken with the Herschel Space Observatory were made at 70, 160, 250, 350, and 500 micron as part of the Herschel imaging study of OB Young Stellar objects (HOBYS) Key Programme. Within the one square degree field, we identify 780 dense sources and classify 224 of those. With the intention of investigating the existence of cold massive starless or class 0-like clumps that would have the potential to form intermediate- to high-mass stars, we further isolate 13 clumps as the most likely candidates for follow-up studies. A peculiar feature in the observations is a large, nearly complete ring of material. The evacuated ring is of unknown origin and hosts a number of the detected sources.

  19. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm   ... CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed by NASA's Goddard Space Flight Center, ...

  20. 13CO Molecular Clouds and Clumps in the Galactic Plane

    NASA Astrophysics Data System (ADS)

    Lee, Y.; Stark, A. A.

    2004-12-01

    Using the 13CO Bell Laboratories Survey for one third of galactic plane, (l, b) = (-5° to 117°, -1° to +1°), and our revised cloud identification code, 13CO clouds have been identified and cataloged as a function of threshold temperature; 1,400 of molecular clouds with 1 K threshold temperature and with a 4-threshold number of pixels, 629 clouds with 2 K threshold temperature, and 263 clouds with 3 K. Clouds with the brightest cores (TR*(13CO) > 3 K) are confined to the 5 Kpc Molecular Ring (l<40°) and l=80° region. In addition to cloud identification, dense clump regions can be located using this 13CO survey and then combined with existing UMass-Stony Brook 12CO data for the first quadrant of the Galactic Plane. Numbers of identified clumps are 3,156 with 0.4 threshold 13CO optical depth, 2,134 with 0.6, 1,190 with 0.8, and 662 with 1.0. It is found that the hot clumps are heavily crowded between l = 10° to 20°. Good correlation is found between 13CO integrated intensity and column density. We discuss some statistical characteristics of clouds, cores, and the column density distribution.

  1. Star Formation Triggered by Low-Mass Clump Collisions

    NASA Astrophysics Data System (ADS)

    Kitsionas, Spyridon; Whitworth, Anthony P.

    We investigate by means of high-resolution numerical simulations the phenomenology of star formation triggered by low-velocity collisions between low-mass molecular clumps. The simulations are performed using an SPH code which satisfies the Jeans condition by invoking On-the-Fly Particle Splitting (Kitsionas & Whitworth 2002). The efficiency of star formation appears to increase with increasing clump mass and/or decreasing impact parameter b and/or increasing clump velocity. For b<0.5 the collisions produce shock-compressed layers which fragment into filaments that break up into cores. Protostellar objects then condense out of the cores and accrete from them. The resulting accretion rates are comparable to those of Class 0 objects. The densities in the filaments are sufficient that they could be mapped in ammonia or CS line radiation in nearby star formation regions. The phenomenology of star formation observed in our simulations compares rather well with the observed filamentary distribution of young stars in Taurus (Hartmann 2002).

  2. Dust and gas density evolution at a radial pressure bump in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Taki, Tetsuo; Fujimoto, Masaki; Ida, Shigeru

    2016-06-01

    We investigate the simultaneous evolution of dust and gas density profiles at a radial pressure bump located in a protoplanetary disk. If dust particles are treated as test particles, a radial pressure bump traps dust particles that drift radially inward. As the dust particles become more concentrated at the gas pressure bump, however, the drag force from dust to gas (back-reaction), which is ignored in a test-particle approach, deforms the pressure bump. We find that the pressure bump is completely deformed by the back-reaction when the dust-to-gas mass ratio reaches ~ 1 for a slower bump restoration. The direct gravitational instability of dust particles is inhibited by the bump destruction. In the dust-enriched region, the radial pressure support becomes ~ 10-100 times lower than the global value set initially. Although the pressure bump is a favorable place for streaming instability (SI), the flattened pressure gradient inhibits SI from forming large particle clumps corresponding to 100-1000 km sized bodies, which has been previously proposed. If SI occurs there, the dust clumps formed would be 10-100 times smaller, that is, of about 1-100 km.

  3. Molecules, dust, and protostars in NGC 3503

    NASA Astrophysics Data System (ADS)

    Duronea, N. U.; Vasquez, J.; Romero, G. A.; Cappa, C. E.; Barbá, R.; Bronfman, L.

    2014-05-01

    Aims: We present here a follow-up study of the molecular gas and dust in the environs of the star forming region NGC 3503. This study aims at dealing with the interaction of the Hii region NGC 3503 with its parental molecular cloud, and also with the star formation in the region, that was possibly triggered by the expansion of the ionization front against the parental cloud. Methods: To analyze the molecular gas we use CO(J = 2 → 1), 13CO(J = 2 → 1), C18O(J = 2 → 1), and HCN(J = 3 → 2) line data obtained with the on-the-fly technique from the APEX telescope. To study the distribution of the dust, we make use of unpublished images at 870 μm from the ATLASGAL survey and IRAC-GLIMPSE archival images. We use public 2MASS and WISE data to search for infrared candidate young stellar objects (YSOs) in the region. Results: The new APEX observations allowed the substructure of the molecular gas in the velocity range from ~-28 km s-1 to -23 km s-1 to be imaged in detail. The morphology of the molecular gas close to the nebula, the location of the PDR, and the shape of radio continuum emission suggest that the ionized gas is expanding against its parental cloud, and confirm the champagne flow scenario. We have identified several molecular clumps and determined some of their physical and dynamical properties such as density, excitation temperature, mass, and line width. Clumps adjacent to the ionization front are expected to be affected by the Hii region, unlike those that are distant from it. We have compared the physical properties of the two kinds of clumps to investigate how the molecular gas has been affected by the Hii region. Clumps adjacent to the ionization fronts of NGC 3503 and/or the bright rimmed cloud SFO 62 have been heated and compressed by the ionized gas, but their line width is not different from those that are too distant from the ionization fronts. We identified several candidate YSOs in the region. Their spatial distribution suggests that stellar

  4. COMPACT DUST CONCENTRATION IN THE MWC 758 PROTOPLANETARY DISK

    SciTech Connect

    Marino, S.; Casassus, S.; Perez, S.; Avenhaus, H.; Lyra, W.; Roman, P. E.; Wright, C. M.; Maddison, S. T.

    2015-11-01

    The formation of planetesimals requires that primordial dust grains grow from micron- to kilometer-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka and Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk, indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensity maximum to the northwest of the central star, which matches the VLA clump position. The compactness of the Ka emission is expected in the context of dust trapping, as big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a nonaxisymmetric parametric model inspired by a steady-state vortex solution with parameters adequately selected to reproduce the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a spiral-like feature seen in scattered light, while the VLA clump is offset from the scattered light maximum. Moreover, the ALMA map shows a decrement that matches a region devoid of scattered polarized emission. Continuum observations at a different wavelength are necessary to conclude whether the VLA-ALMA difference is an opacity or a real dust segregation.

  5. Clumped Isotopes in Bahamian Dolomites: A Rosetta Stone?

    NASA Astrophysics Data System (ADS)

    Murray, S.; Swart, P. K.; Arienzo, M. M.

    2014-12-01

    Low temperature dolomite formation continues to be an enigmatic process. However, with the advent of the clumped isotope technique, there is an opportunity to determine the temperature of formation as well as the δ18O of the fluid (δ18Ow) from which it formed. By using samples with a well constrained geologic and thermal history, we have attempted to accurately develop a technique for the application of clumped isotopes to varying dolomite systems. Samples for this study were taken from two cores, one from the island of San Salvador and one on Great Bahama Bank (known as Clino), located on the eastern and western edges respectively of the Bahamian Archipelago. Both cores penetrate through Pleistocene to Miocene aged carbonates. The San Salvador core has a 110m section of pure, near stoichiometric dolomite, while the Clino core is of a mixed carbonate composition with varying abundances (0% - 50%) of calcian dolomite (42-46 mol % MgCO3). The water temperature profile of the Bahamas can be assumed over time due to the stable geology and no influence of higher temperature waters. Because of its location and the present burial depth, the largest influence on dolomite formation has been changes in sea level. As the dolomites from San Salvador are 100% dolomite, the Δ47 was determined directly. The Clino dolomites however were only partially dolomitized and so were treated with buffered acetic acid to remove non-dolomite carbonates. This was carried out in stages, using X-ray diffraction to determine composition, followed by the measurement of Δ47 after each leaching episode. Because the dolomite formation temperature and δ18Ow can be constrained, it becomes possible to evaluate the applicability of the multitude of clumped isotope correction schemes that have been applied to various dolomite samples. Also tested were several different equations which link temperature to the δ18O of the dolomite allowing the δ18O of the water to be calculated. This is a necessary

  6. Dust Transport in Low Voltage Glow Discharges

    NASA Astrophysics Data System (ADS)

    Romero-Talamas, C. A.; Bates, E. M.; Rivera, W. F.; Birmingham, W.

    2014-10-01

    Results from experiments of dust hopping under different electrode configurations are presented. The purpose of these experiments is to investigate conditions that lead to the dust in a low voltage dusty plasma to be transported and clumped on the lower electrode, by hopping throughout the bottom electrode. The setup consists of a pair of parallel electrode plates that can be oriented with respect to gravity and can have their separation changed without breaking vacuum. The electrodes are suspended by insulating rings in the vacuum chamber, away from walls, and both the top and bottom of each conducting plate is exposed. This configuration allows a glow discharge on all faces of the electrodes, with the glow between the plates having a low enough voltage to charge, but not to levitate the dust grains. Several initial conditions are tested, including the amount of dust on the plate, its distribution, and the presence of any obstacles. This research is relevant to the transport and accumulation of dust in high temperature plasma discharge chambers, as well as in airless planetary bodies.

  7. Cometary dust particles fragmentation as observed with Rosetta COSIMA

    NASA Astrophysics Data System (ADS)

    Hilchenbach, Martin; Langevin, Yves; Hornung, Klaus; Merouane, Sihane

    2016-07-01

    The COmetary Secondary Ion Mass Analyser - COSIMA - instrument on board ESA's Rosetta mission has collected dust particles in the inner coma of comet 67P/Churyumov-Gerasimenko since August 2014. Particles and particle agglomerates have been imaged and analyzed in the inner coma at distances between 400 km and 10 km off the cometary nucleus and between 1.3 to 3.4 AU from the Sun. The particles are collected at low impact velocities and constitute a sample of the cometary dust particles in the inner coma. On impact, most dust particles fragment and larger particles tend to stick, spread out or consist of single or a group of clumps, and the flocculent morphology of the fragmented particles is revealed. We discuss the observed particle size distributions and morphologies after collection and their impact on dust particle agglomeration models in the early solar system.

  8. Sampling and analysis method for measuring airborne coal dust mass in mixtures with limestone (rock) dust.

    PubMed

    Barone, T L; Patts, J R; Janisko, S J; Colinet, J F; Patts, L D; Beck, T W; Mischler, S E

    2016-01-01

    Airborne coal dust mass measurements in underground bituminous coal mines can be challenged by the presence of airborne limestone dust, which is an incombustible dust applied to prevent the propagation of dust explosions. To accurately measure the coal portion of this mixed airborne dust, the National Institute for Occupational Safety and Health (NIOSH) developed a sampling and analysis protocol that used a stainless steel cassette adapted with an isokinetic inlet and the low temperature ashing (LTA) analytical method. The Mine Safety and Health Administration (MSHA) routinely utilizes this LTA method to quantify the incombustible content of bulk dust samples collected from the roof, floor, and ribs of mining entries. The use of the stainless steel cassette with isokinetic inlet allowed NIOSH to adopt the LTA method for the analysis of airborne dust samples. Mixtures of known coal and limestone dust masses were prepared in the laboratory, loaded into the stainless steel cassettes, and analyzed to assess the accuracy of this method. Coal dust mass measurements differed from predicted values by an average of 0.5%, 0.2%, and 0.1% for samples containing 20%, 91%, and 95% limestone dust, respectively. The ability of this method to accurately quantify the laboratory samples confirmed the validity of this method and allowed NIOSH to successfully measure the coal fraction of airborne dust samples collected in an underground coal mine.

  9. Carbonate "Clumped" Isotope Determination of Seawater Temperature During the End-Triassic Extinction Event

    NASA Astrophysics Data System (ADS)

    Gammariello, R. T., Jr.; Petryshyn, V. A.; Ibarra, Y.; Greene, S. E.; Corsetti, F. A.; Bottjer, D. J.; Tripati, A.

    2014-12-01

    Stromatolites are laminated sedimentary structures that are commonly thought to be created by cyanobacteria, either through the trapping and binding of sediment, or through metabolically-induced precipitation. However, stromatolite formation is poorly understood. In general, stromatolite abundance was higher in the Proterozoic than the Phanerozoic, but notable increases in stromatolite abundance occur in association with Phanerozoic mass extinction events. Here, we focus on stromatolites from the latest Triassic Cotham Marble (United Kingdom) that are associated with the extinction interval. The end-Triassic mass extinction is coincident with large-scale volcanism in the Central Atlantic Magmatic Province (CAMP) and the associated breakup of Pangea. Some hypothesize that CAMP-associated increases in atmospheric CO2 led to a rise in global temperatures and ocean acidification that caused or enhanced the extinction. In order to quantify the role of climate change with respect to the end-Triassic mass extinction, we applied the carbonate "clumped" isotope paleothermometer to the well-preserved Cotham Marble stromatolites. The stromatolites were deposited in the shallow Tethys Sea, and today occur in several localities across the southwestern UK. The stromatolites alternate on the cm scale between laminated and dendrolitic microstructures and each was microdrilled for clumped isotope analysis. The two microstructures display different temperatures of formation, where the dendrolitic portions apparently grew under cooler conditions than laminated layers, and younger layers grew in cooler conditions than older layers. Our results suggest that temperature fluctuated and potentially trended towards amelioration of the warm temperatures during the deposition of the Cotham Marble.

  10. Interferometric Mapping of Magnetic Fields: The ALMA View of the Massive Star-forming Clump W43-MM1

    NASA Astrophysics Data System (ADS)

    Cortes, Paulo C.; Girart, Josep M.; Hull, Charles L. H.; Sridharan, Tirupati K.; Louvet, Fabien; Plambeck, Richard; Li, Zhi-Yun; Crutcher, Richard M.; Lai, Shih-Ping

    2016-07-01

    Here, we present the first results from ALMA observations of 1 mm polarized dust emission toward the W43-MM1 high-mass star-forming clump. We have detected a highly fragmented filament with source masses ranging from 14 M {}⊙ to 312 M {}⊙ , where the largest fragment, source A, is believed to be one of the most massive in our Galaxy. We found a smooth, ordered, and detailed polarization pattern throughout the filament, which we used to derived magnetic field morphologies and strengths for 12 out of the 15 fragments detected ranging from 0.2 to 9 mG. The dynamical equilibrium of each fragment was evaluated finding that all the fragments are in a super-critical state that is consistent with previously detected infalling motions toward W43-MM1. Moreover, there are indications suggesting that the field is being dragged by gravity as the whole filament is collapsing.

  11. MOLECULAR CLUMPS AND INFRARED CLUSTERS IN THE S247, S252, AND BFS52 REGIONS

    SciTech Connect

    Shimoikura, Tomomi; Dobashi, Kazuhito; Saito, Hiro; Nakamura, Fumitaka; Matsumoto, Tomoaki; Nishimura, Atsushi; Kimura, Kimihiro; Onishi, Toshikazu; Ogawa, Hideo

    2013-05-01

    We present results of the observations carried out toward the S247, S252, and BFS52 H II regions with various molecular lines using the 1.85 m radio telescope and the 45 m telescope at Nobeyama Radio Observatory. There are at least 11 young infrared clusters (IR clusters) within the observed region. We found that there are two velocity components in {sup 12}CO (J = 2-1), and also that their spatial distributions show an anti-correlation. The IR clusters are located at their interfaces, suggesting that two distinct clouds with different velocities are colliding with each other, which may have induced the cluster formation. Based on {sup 13}CO (J = 1-0) and C{sup 18}O (J = 1-0) observations, we identified 16 clumps in and around the three H II regions. Eleven of the clumps are associated with the IR clusters and the other five clumps are not associated with any known young stellar objects. We investigated variations in the velocity dispersions of the 16 clumps as a function of the distance from the center of the clusters or the clumps. Clumps with clusters tend to have velocity dispersions that increase with distance from the cluster center, while clumps without clusters show a flat velocity dispersion over the clump extents. A {sup 12}CO outflow has been found in some of the clumps with IR clusters but not in the other clumps, supporting a strong relation of these clumps to the broader velocity dispersion region. We also estimated a mean star formation efficiency of {approx}30% for the clumps with IR clusters in the three H II regions.

  12. Analysis of Clumps in Saturn’s F Ring from Voyager and Cassini Observations

    NASA Astrophysics Data System (ADS)

    French, Robert S.; Hicks, S. K.; Showalter, M. R.; Antonsen, A. K.; Packard, D. R.

    2013-10-01

    Saturn's F ring is well known for its unique and dynamic features that change on timescales from hours to months. Among these features are clumps, localized bright areas spanning ~3-30 degrees in longitude. 34 clumps tracked in Voyager images (Showalter 2004, Icarus, 171, 356-371) were found to live for several months and have a ~100 km spread in semi-major axis around the F ring core. Several clumps appeared to "split" during their lifetimes. Unfortunately, the poor resolution of the Voyager images and limited temporal and longitudinal coverage prevented a more detailed analysis. In this study, we performed a similar analysis using six years' worth of images from the Cassini Orbiter. We tracked 96 clumps and found similar angular widths, lifetimes, and semi-major axes to those observed by Voyager. However, the number of clumps present at one time appears to have decreased and the clumps are generally less bright; there are also many fewer extremely bright clumps. The better quality images allowed us to investigate five "splitting" clumps and we found that the apparent splits were often caused by the passage of the inner shepherd moon Prometheus. We further found that the birth and death of clumps appears uncorrelated with the position of Prometheus or with other features such as "mini-jets" or "jets" often found in the ring. We speculate on the changes in the population of embedded moonlets that may have resulted in these changes.

  13. A MALT90 study of the chemical properties of massive clumps and filaments of infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Miettinen, O.

    2014-02-01

    Context. Infrared dark clouds (IRDCs) provide a useful testbed in which to investigate the genuine initial conditions and early stages of massive-star formation. Aims: We attempt to characterise the chemical properties of a sample of 35 massive clumps of IRDCs through multi-molecular line observations. We also search for possible evolutionary trends among the derived chemical parameters. Methods: The clumps are studied using the MALT90 (Millimetre Astronomy Legacy Team 90 GHz) line survey data obtained with the Mopra 22 m telescope. The survey covers 16 different transitions near 90 GHz. The spectral-line data are used in concert with our previous LABOCA (Large APEX BOlometer CAmera) 870 μm dust emission data. Results: Eleven MALT90 transitions are detected towards the clumps at least at the 3σ level. Most of the detected species (SiO, C2H, HNCO, HCN, HCO+, HNC, HC3N, and N2H+) show spatially extended emission towards many of the sources. Most of the fractional abundances of the molecules with respect to H2 are found to be comparable to those determined in other recent similar studies of IRDC clumps. We found that the abundances of SiO, HNCO, and HCO+ are higher in IR-bright clumps than in IR-dark sources, reflecting a possible evolutionary trend. A hint of this trend is also seen for HNC and HC3N. An opposite trend is seen for the C2H and N2H+ abundances. Moreover, a positive correlation is found between the abundances of HCO+ and HNC, and between those of HNC and HCN. The HCN and HNC abundances also appear to increase as a function of the N2H+ abundance. The HNC/HCN and N2H+/HNC abundance ratios are derived to be near unity on average, while that of HC3N/HCN is ~10%. The N2H+/HNC ratio appears to increase as the clump evolves, while the HNC/HCO+ ratio shows the opposite behaviour. Conclusions: The detected SiO emission is probably caused by shocks driven by outflows in most cases, although shocks resulting from the cloud formation process could also play a role

  14. Characterization of Settled Atmospheric Dust by the DART Experiment

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Jenkins, Phillip P.; Baraona, Cosmo

    1999-01-01

    The DART ("Dust Accumulation and Removal Test") package is an experiment which will fly as part of the MIP experiment on the Mars-2001 Surveyor Lander. Dust deposition could be a significant problem for photovoltaic array operation for long duration emissions on the surface of Mars. Measurements made by Pathfinder showed 0.3% loss of solar array performance per day due to dust obscuration. The DART experiment is designed to quantify dust deposition from the Mars atmosphere, measure the properties of settled dust, measure the effect of dust deposition on the array performance, and test several methods of mitigating the effect of settled dust on a solar array. Although the purpose of DART (along with its sister experiment, MATE) is to gather information critical to the design of future power systems on the surface of Mars, the dust characterization instrumentation on DART will also provide significant scientific data on the properties of settled atmospheric dust.

  15. PERSPECTIVE: Dust, fertilization and sources

    NASA Astrophysics Data System (ADS)

    Remer, Lorraine A.

    2006-11-01

    Aerosols, tiny suspended particles in the atmosphere, play an important role in modifying the Earth's energy balance and are essential for the formation of cloud droplets. Suspended dust particles lifted from the world's arid regions by strong winds contain essential minerals that can be transported great distances and deposited into the ocean or on other continents where productivity is limited by lack of usable minerals [1]. Dust can transport pathogens as well as minerals great distance, contributing to the spread of human and agricultural diseases, and a portion of dust can be attributed to human activity suggesting that dust radiative effects should be included in estimates of anthropogenic climate forcing. The greenish and brownish tints in figure 1 show the wide extent of monthly mean mineral dust transport, as viewed by the MODerate resolution Imaging Spectroradiometer (MODIS) satellite sensor. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite Figure 1. The monthly mean global aerosol system for February 2006 from the MODIS aboard the Terra satellite. The brighter the color, the greater the aerosol loading. Red and reddish tints indicate aerosol dominated by small particles created primarily from combustion processes. Green and brownish tints indicate larger particles created from wind-driven processes, usually transported desert dust. Note the bright green band at the southern edge of the Saharan desert, the reddish band it must cross if transported to the southwest and the long brownish transport path as it crosses the Atlantic to South America. Image courtesy of the NASA Earth Observatory (http://earthobservatory.nasa.gov). Even though qualitatively we recognize the extent and importance of dust transport and the role that it plays in fertilizing nutrient-limited regions, there is much that is still unknown. We are just now beginning to quantify the amount of dust that exits one continental region and the

  16. Clumped isotope perturbation in tropospheric nitrous oxide from stratospheric photolysis

    NASA Astrophysics Data System (ADS)

    Schmidt, Johan A.; Johnson, Matthew S.

    2015-05-01

    Nitrous oxide (N2O) is potent greenhouse gas and source of ozone depleting NO to the stratosphere. Recent advances in mass spectrometry allow accurate measurement of multiply substituted ("clumped") N2O isotopocules, providing new constraints on the N2O source budget. However, this requires a quantification of the "clumped" N2O fractionation from stratospheric photolysis (main sink). We use time-dependent quantum dynamics and a 1-D atmospheric model to determine the effect of stratospheric photolysis on the abundances of multisubstituted N2O isotopocules in the atmosphere. The ultraviolet absorption cross sections of 557 (i.e., 15N15N17O), 458, 548, 457, and 547 are presented for the first time and used to derive altitude-dependent photolysis rates and fractionation constants. We find that photolysis alters the N2O isotopic composition with multisubstituted mass 47 isotopocules being less abundant than expected from stochastics (Δ47 = -1.7‰ in the troposphere and down to -12‰ in the upper stratosphere).

  17. Condensation of dust in the ejecta of Type II-P supernovae

    NASA Astrophysics Data System (ADS)

    Sarangi, Arkaprabha; Cherchneff, Isabelle

    2015-03-01

    Aims: We study the production of dust in Type II-P supernova ejecta by coupling the gas-phase chemistry to the dust nucleation and condensation phases. We consider two supernova progenitor masses with homogeneous and clumpy ejecta to assess the chemical type and quantity of dust that forms. Grain size distributions are derived for all dust components as a function of post-explosion time. Methods: The chemistry of the gas phase and the simultaneous formation of dust clusters are described by a chemical network that includes all possible processes that are efficient at high gas temperatures and densities. The formation of key bimolecular species (e.g., CO, SiO) and dust clusters of silicates, alumina, silica, metal carbides, metal sulphides, pure metals, and amorphous carbon is considered. A set of stiff, coupled, ordinary, differential equations is solved for the gas conditions pertaining to supernova explosions. These master equations are coupled to a dust condensation formalism based on Brownian coagulation. Results: We find that Type II-P supernovae produce dust grains of various chemical compositions and size distributions as a function of post-explosion time. The grain size distributions gain in complexity with time, are slewed towards large grains, and differ from the usual Mathis, Rumpl, & Nordsieck power-law distribution characterising interstellar dust. Gas density enhancements in the form of ejecta clumps strongly affect the chemical composition of dust and the grain size distributions. Some dust type, such as forsterite and pure metallic grains, are highly dependent on clumpiness. Specifically, a clumpy ejecta produces large grains over 0.1 μm, and the final dust mass for the 19 M⊙ progenitor reaches 0.14 M⊙. Clumps also favour the formation of specific molecules, such as CO2, in the oxygen-rich zones. Conversely, the carbon and alumina dust masses are primarily controlled by the mass yields of alumina and carbon in the ejecta zones where the dust is

  18. ATCA survey of ammonia in the galactic center: The temperatures of dense gas clumps between Sgr A* and Sgr B2

    SciTech Connect

    Ott, Jürgen; Weiß, Axel; Henkel, Christian; Staveley-Smith, Lister; Meier, David S. E-mail: aweiss@mpifr-bonn.mpg.de E-mail: Lister.Staveley-Smith@uwa.edu.au

    2014-04-10

    We present a large-scale, interferometric survey of ammonia (1, 1) and (2, 2) toward the Galactic center observed with the Australia Telescope Compact Array. The survey covers Δℓ ∼ 1° (∼150 pc at an assumed distance of 8.5 kpc) and Δb ∼ 0.°2 (∼30 pc) which spans the region between the supermassive black hole Sgr A* and the massive star forming region Sgr B2. The resolution is ∼20'' (∼0.8 pc) and emission at scales ≳ 2' (≳ 3.2 pc) is filtered out due to missing interferometric short spacings. Consequently, the data represent the denser, compact clouds and disregards the large-scale, diffuse gas. Many of the clumps align with the 100 pc dust ring and mostly anti-correlate with 1.2 cm continuum emission. We present a kinetic temperature map of the dense gas. The temperature distribution peaks at ∼38 K with a width at half maximum between 18 K and 61 K (measurements sensitive within T {sub kin} ∼ 10-80 K). Larger clumps are on average warmer than smaller clumps which suggests internal heating sources. Our observations indicate that the circumnuclear disk ∼1.5 pc around Sgr A* is supplied with gas from the 20 km s{sup –1} molecular cloud. This gas is substantially cooler than gas ∼3-15 pc away from Sgr A*. We find a strong temperature gradient across Sgr B2. Ammonia column densities correlate well with SCUBA 850 μm fluxes, but the relation is shifted from the origin, which may indicate a requirement for a minimum amount of dust to form and shield ammonia. Around the Arches and Quintuplet clusters we find shell morphologies with UV-influenced gas in their centers, followed by ammonia and radio continuum layers.

  19. ATCA Survey of Ammonia in the Galactic Center: The Temperatures of Dense Gas Clumps between Sgr A* and Sgr B2

    NASA Astrophysics Data System (ADS)

    Ott, Jürgen; Weiß, Axel; Staveley-Smith, Lister; Henkel, Christian; Meier, David S.

    2014-04-01

    We present a large-scale, interferometric survey of ammonia (1, 1) and (2, 2) toward the Galactic center observed with the Australia Telescope Compact Array. The survey covers Δl ~ 1° (~150 pc at an assumed distance of 8.5 kpc) and Δb ~ 0.°2 (~30 pc) which spans the region between the supermassive black hole Sgr A* and the massive star forming region Sgr B2. The resolution is ~20'' (~0.8 pc) and emission at scales >~ 2' (gsim 3.2 pc) is filtered out due to missing interferometric short spacings. Consequently, the data represent the denser, compact clouds and disregards the large-scale, diffuse gas. Many of the clumps align with the 100 pc dust ring and mostly anti-correlate with 1.2 cm continuum emission. We present a kinetic temperature map of the dense gas. The temperature distribution peaks at ~38 K with a width at half maximum between 18 K and 61 K (measurements sensitive within T kin ~ 10-80 K). Larger clumps are on average warmer than smaller clumps which suggests internal heating sources. Our observations indicate that the circumnuclear disk ~1.5 pc around Sgr A* is supplied with gas from the 20 km s-1 molecular cloud. This gas is substantially cooler than gas ~3-15 pc away from Sgr A*. We find a strong temperature gradient across Sgr B2. Ammonia column densities correlate well with SCUBA 850 μm fluxes, but the relation is shifted from the origin, which may indicate a requirement for a minimum amount of dust to form and shield ammonia. Around the Arches and Quintuplet clusters we find shell morphologies with UV-influenced gas in their centers, followed by ammonia and radio continuum layers.

  20. NUMERICAL SIMULATIONS OF SUPERNOVA DUST DESTRUCTION. II. METAL-ENRICHED EJECTA KNOTS

    SciTech Connect

    Silvia, Devin W.; Smith, Britton D.; Shull, J. Michael E-mail: michael.shull@colorado.edu

    2012-03-20

    Following our previous work, we investigate through hydrodynamic simulations the destruction of newly formed dust grains by sputtering in the reverse shocks of supernova remnants. Using an idealized setup of a planar shock impacting a dense, spherical clump, we implant a population of Lagrangian particles into the clump to represent a distribution of dust grains in size and composition. We vary the relative velocity between the reverse shock and ejecta clump to explore the effects of shock heating and cloud compression. Because supernova ejecta will be metal-enriched, we consider gas metallicities from Z/Z{sub Sun} = 1 to 100 and their influence on the cooling properties of the cloud and the thermal sputtering rates of embedded dust grains. We post-process the simulation output to calculate grain sputtering for a variety of species and size distributions. In the metallicity regime considered in this paper, the balance between increased radiative cooling and increased grain erosion depends on the impact velocity of the reverse shock. For slow shocks (v{sub shock} {<=} 3000 km s{sup -1}), the amount of dust destruction is comparable across metallicities or in some cases is decreased with increased metallicity. For higher shock velocities (v{sub shock} {>=} 5000 km s{sup -1}), an increase in metallicity from Z/Z{sub Sun} = 10 to 100 can lead to an additional 24% destruction of the initial dust mass. While the total dust destruction varies widely across grain species and simulation parameters, our most extreme cases result in complete destruction for some grain species and only 44% dust mass survival for the most robust species. These survival rates are important in understanding how early supernovae contribute to the observed dust masses in high-redshift galaxies.

  1. MAGNETOHYDRODYNAMIC SHOCK-CLUMP EVOLUTION WITH SELF-CONTAINED MAGNETIC FIELDS

    SciTech Connect

    Li Shule; Frank, Adam; Blackman, Eric G.

    2013-09-10

    We study the interaction of strong shock waves with magnetized clumps. Previous numerical work focused on a simplified scenario in which shocked clumps are immersed in a globally uniform magnetic field that extends through both the clump and the ambient medium. Here, we consider the complementary circumstance in which the field is completely self-contained within the clumps. This situation could arise naturally during clump formation via dynamical or thermal instabilities, for example, as a magnetic field pinches off from the ambient medium. Using our adaptive mesh refinement magnetohydrodynamics code AstroBEAR, we carry out a series of simulations with magnetized clumps that have different self-contained magnetic field configurations. We find that the clump and magnetic evolution are sensitive to the fraction of the magnetic field aligned with, or perpendicular to, the shock normal. The relative strength of magnetic pressure and tension in the different field configurations allows us to analytically understand the different cases of post-shock evolution. We also show how turbulence and the mixing it implies depends of the initial field configuration and suggest ways in which the observed shock-clump morphology may be used as a proxy for identifying internal field topologies a posteriori.

  2. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    PubMed

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  3. Metabolic adaptations of Azospirillum brasilense to oxygen stress by cell-to-cell clumping and flocculation.

    PubMed

    Bible, Amber N; Khalsa-Moyers, Gurusahai K; Mukherjee, Tanmoy; Green, Calvin S; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B; Alexandre, Gladys

    2015-12-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.

  4. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    PubMed Central

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.

    2015-01-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  5. The Keck Aperture Masking Experiment: Dust Enshrouded Red Giants

    NASA Technical Reports Server (NTRS)

    Blasius, T. D.; Monnier, J. D.; Tuthill, P. G.; Danchi, W. C.; Anderson, M.

    2012-01-01

    While the importance of dusty asymptotic giant branch (AGB) stars to galactic chemical enrichment is widely recognised, a sophisticated understanding of the dust formation and wind-driving mechanisms has proven elusive due in part to the difficulty in spatially-resolving the dust formation regions themselves. We have observed twenty dust-enshrouded AGB stars as part of the Keck Aperture Masking Experiment, resolving all of them in multiple near-infrared bands between 1.5 m and 3.1 m. We find 45% of the targets to show measurable elongations that, when correcting for the greater distances of the targets, would correspond to significantly asymmetric dust shells on par with the well-known cases of IRC +10216 or CIT 6. Using radiative transfer models, we find the sublimation temperature of Tsub(silicates) = 1130 90K and Tsub(amorphous carbon) = 1170 60 K, both somewhat lower than expected from laboratory measurements and vastly below temperatures inferred from the inner edge of YSO disks. The fact that O-rich and C-rich dust types showed the same sublimation temperature was surprising as well. For the most optically-thick shells ( 2.2 m > 2), the temperature profile of the inner dust shell is observed to change substantially, an effect we suggest could arise when individual dust clumps become optically-thick at the highest mass-loss rates.

  6. Clumped isotopes’ thermometry in land gastropod carbonate shells

    NASA Astrophysics Data System (ADS)

    Zaarur, S.; Affek, H. P.

    2009-12-01

    The carbonate ‘clumped isotope’ (Δ47) thermometer is based on the dependence of the abundance of 13C-18O bonds in carbonates on the carbonate formation temperature. We repeated at higher analytical precision the original thermometer calibration experiments of Ghosh et al., (2006) using carbonates precipitated synthetically by slow degassing of CO2 from saturated Ca(HCO3)2 solutions at a temperature range of 8°C to 70°C. Our data fall within error of the original calibration and generally confirms it. However, the samples precipitated at lower temperatures are slightly shifted, forming a line with a lower slope, fitting better the theoretical calibration thermometer predicted by Guo et al., (in press). We tested the Δ47 thermometer in land gastropods (snails) by analyzing modern gastropod shells from various geographical locations in comparison to the gastropods’ growing season temperatures. No significant inhomogeneity was observed within an individual shell. Segments growing at different stages in the gastropods’ life (e.g., inner part of the helix reflecting young gastropod growth and outer shell that grew at older gastropod age) revealed no significant variations within a specimen in either Δ47 or δ18O, whereas δ13C varied significantly (0.5 ‰) implying a change in the gastropods’ food source. Inter-species comparison revealed significant δ13C and δ18O variations among specimens collected at the same location (Sphincterochila zonata and Trochoidea simulate, south Israel, and Pleurodonte acuta and Orthalicus undutus, Jamaica) but no significant interspecies variations in Δ47, providing a strong indication for carbonate precipitation in isotopic equilibrium. Gastropod shells do not grow year-round, with most gastropods being dormant during dry cold seasons. ‘Clumped isotopes’ values are therefore expected to record the temperature of the gastropods’ growth season. Hence gastropod ecology and preferred growth conditions has to be taken

  7. The clumped isotope geothermometer in soil and paleosol carbonate

    NASA Astrophysics Data System (ADS)

    Quade, J.; Eiler, J.; Daëron, M.; Achyuthan, H.

    2013-03-01

    We studied both modern soils and buried paleosols in order to understand the relationship of temperature (T°C(47)) estimated from clumped isotope compositions (Δ47) of soil carbonates to actual surface and burial temperatures. Carbonates from modern soils with differing rainfall seasonality were sampled from Arizona, Nevada, Tibet, Pakistan, and India. T°C(47) obtained from these soils shows that soil carbonate forms in the warmest months of the year, in the late morning to afternoon, and probably in response to intense soil dewatering. T°C(47) obtained from modern soil carbonate ranges from 10.8 to 39.5 °C. On average, T°C(47) exceeds mean annual temperature by 10-15 °C due to summertime bias in soil carbonate formation, and to summertime ground heating by incident solar radiation. Secondary controls on T°C(47) are soil depth and shading. Site mean annual air temperature (MAAT) across a broad range (0-30 °C) of site temperatures is highly correlated with T°C(47) from soils, following the equation: MAAT(°C)=1.20(T°C(47)0)-21.72(r2=0.92) where T°C(47)0 is the effective air temperature at the site estimated from T°C(47). The effective air temperature represents the air temperature required to account for the T°C(47) at each site, after consideration of variations in T°C(47) with soil depth and ground heating. The highly correlated relationship in this equation should now permit mean annual temperature in the past to be reconstructed from T°C(47) in paleosol carbonate, assuming one is studying paleosols that formed in environments generally similar in seasonality and ground cover to our calibration sites. T°C(47)0 decreases systematically with elevation gain in the Himalaya, following the equation: elevation(m)=-229(T°C(47)0)+9300(r2=0.95) Assuming that temperature varied similarly with elevation in the past, this equation can be used to reconstruct paleoelevation from clumped isotope analysis of ancient soil carbonates. We also measured T°C(47

  8. Shock-Clump Interaction Studies in the Laboratory

    NASA Astrophysics Data System (ADS)

    Blue, B. E.; Back, C. A.; Hund, J. F.; Foster, J. M.; Rosen, P. A.; Williams, R. J. R.; Wilde, B. H.; Douglas, M.; Carver, R.; Palmer, J.; Hartigan, P.; Hansen, J. F.

    2008-11-01

    Large-scale directional outflows of supersonic plasma are driven by a wide variety of objects in the universe such as young stars, compact binaries, and supernovae. Typical models of the outflows assume simplistic geometries; however, images of most outflows show a much more complex structure that consists of multiple clumps and shocks with a variety of sizes. To bridge the gap between the complex system in space and the simplified models, controlled scaled experiments were performed to elucidate the physics of a shock progressing through a clumpy medium. This talk will present experiments on the Omega Laser in which a shock impacts density discontinuities in order to understand the perturbed shock structure as well as the evolution of the discontinuity in a localized area of a clumpy medium. We have obtained high-resolution radiographs that detail the temporal evolution of the shock and density discontinuity.

  9. Clump detections and limits on moons in Jupiter's ring system.

    PubMed

    Showalter, Mark R; Cheng, Andrew F; Weaver, Harold A; Stern, S Alan; Spencer, John R; Throop, Henry B; Birath, Emma M; Rose, Debi; Moore, Jeffrey M

    2007-10-12

    The dusty jovian ring system must be replenished continuously from embedded source bodies. The New Horizons spacecraft has performed a comprehensive search for kilometer-sized moons within the system, which might have revealed the larger members of this population. No new moons were found, however, indicating a sharp cutoff in the population of jovian bodies smaller than 8-kilometer-radius Adrastea. However, the search revealed two families of clumps in the main ring: one close pair and one cluster of three to five. All orbit within a brighter ringlet just interior to Adrastea. Their properties are very different from those of the few other clumpy rings known; the origin and nonrandom distribution of these features remain unexplained, but resonant confinement by Metis may play a role. PMID:17932287

  10. Massive Cold Clumps in NGC 7538 revealed by Herschel

    NASA Astrophysics Data System (ADS)

    Fallscheer, Cassandra L.; Reid, M.; Di Francesco, J.; Herschel HOBYS Team

    2014-01-01

    Observations of the high-mass star formation region NGC 7538 taken with the Herschel Space Observatory were made at 70, 160, 250, 350, and 500 micron as part of the Herschel imaging study of OB Yound Stellar objects (HOBYS) Key Programme. Within the one square degree field, we identify 780 dense sources and further analyze 224 of those. We fit spectral energy distributions to the subset of sources and classify 17 objects for further investigation as possible instances of cold starless clumps which may be precursors of high mass star formation. A peculiar feature in the observations is a large, nearly complete ring of material. The ring is of unknown origin and hosts a number of the detected sources.

  11. Heat conduction boundary layers of condensed clumps in cooling flows

    NASA Astrophysics Data System (ADS)

    Boehringer, H.; Fabian, A. C.

    1989-04-01

    The structure of heat conduction boundary layers of gaseous condensations embedded in the hot intergalactic gas in clusters of galaxies is investigated by means of steady, one-dimensional, hydrodynamic models. It is assumed that heat conduction is effective only on scales much smaller than the total region of the cooling flow. Models are calculated for an arbitrary scaling factor, accounting for the reduction in heat conduction efficiency compared to the classical Spitzer case. The results imply a lower limit to the size spectrum of the condensations. The enhancement of cooling in the ambient medium due to heat conduction losses is calculated for a range of clump parameters. The luminosity of several observable emission lines, the extreme ultraviolet (EUV) and soft X-ray emission spectrum, and the column density of some important ions are determined for the model boundary layers and compared with observations.

  12. Towards Understanding Artifacts in the Clumped Isotope System

    NASA Astrophysics Data System (ADS)

    Swart, P. K.; Staudigel, P. T.; Murray, S.

    2015-12-01

    The clumped isotope system in carbonates (Δ47) relies on the extraction of CO2 from the carbonate minerals using phosphoric acid. Despite the fact that this method dates back to the original stable isotopic work in the 1950s, there are significant aspects of the fractionation of the 18O/16O (and by inference the ratio of mass 47 to 44) which are not understood. We believe that subtle variations in the isotopic fractionation as a function of temperature, acid density (and acid preparation method), and extraction line design cause variation between the clumped isotope data produced by different laboratories. One of the most obvious of these is difference in reaction temperatures. While most laboratories employ temperatures of between 75 and 90oC, the original method employed a temperature of 25oC. Although various estimate of the difference in fractionation of Δ47 between 25 and 90oC have been made, we have measured significantly different values for dolomites compared to published data. In order to understand this we have performed experiments in sealed Pyrex vessels to measure the exchange between CO2 and 103% phosphoric acid. We have determined there to be significant and measurable changes in the Δ47 of CO2 when exposed to phosphoric acid. This exchange is a function of temperature, time, acid strength, and the surface area of the acid exposed to the CO2. We postulate that, perhaps as a result of the lower reaction rate of dolomite, compared to calcite, that there is greater opportunity for CO2 to exchange with the phosphoric acid as bubbles of CO2 are retained within the acid for longer periods of time. Such a mechanism would predict that well-ordered dolomites will have different fractionation compared to protodolomite. Similar differences might account for different fractionation for other carbonate minerals.

  13. Entropy flattening, gas clumping, and turbulence in galaxy clusters

    SciTech Connect

    Fusco-Femiano, R.; Lapi, A.

    2014-03-10

    Several physical processes and formation events are expected in cluster outskirts, a vast region up to now essentially not covered by observations. The recent Suzaku (X-ray) and Planck (Sunyaev-Zel'dovich (SZ) effect) observations out to the virial radius have highlighted in these peripheral regions a rather sharp decline of the intracluster gas temperature, an entropy flattening in contrast with the theoretically expected power law increase, the break of the hydrostatic equilibrium even in some relaxed clusters, a derived gas mass fraction above the cosmic value measured from several cosmic microwave background experiments, and a total X-ray mass lower than the weak lensing mass determinations. Here we present the analysis of four clusters (A1795, A2029, A2204, and A133) with the SuperModel that includes a nonthermal pressure component due to turbulence to sustain the hydrostatic equilibrium also in the cluster outskirts. In this way, we obtain a correct determination of the total X-ray mass and of the gas mass fraction; this in turn allows us to determine the level of the gas clumping that can affect the shape of the entropy profiles reported by the Suzaku observations. Our conclusion is that the role of the gas clumping is very marginal and that the observed entropy flattening is due to the rapid decrement of the temperature in the cluster outskirts caused by non-gravitational effects. Moreover, we show that the X-ray/SZ joint analysis from ROSAT and Planck data, as performed in some recent investigations, is inadequate for discriminating between a power law increase and a flattening of the entropy.

  14. DENSE CLUMPS AND CANDIDATES FOR MOLECULAR OUTFLOWS IN W40

    SciTech Connect

    Shimoikura, Tomomi; Dobashi, Kazuhito; Nakamura, Fumitaka; Hara, Chihomi; Kawabe, Ryohei; Tanaka, Tomohiro; Shimajiri, Yoshito

    2015-06-20

    We report the results of the {sup 12}CO (J = 3−2) and HCO{sup +} (J = 4−3) observations of the W40 H ii region with the Atacama Submillimeter Telescope Experiment (ASTE) 10 m telescope (HPBW ≃ 22″) to search for molecular outflows and dense clumps. We found that the velocity field in the region is highly complex, consisting of at least four distinct velocity components at V{sub LSR} ≃ 3, 5, 7, and 10 km s{sup −1}. The ∼7 km s{sup −1} component represents the systemic velocity of cold gas surrounding the entire region, and causes heavy absorption in the {sup 12}CO spectra over the velocity range 6 ≲ V{sub LSR} ≲ 9 km s{sup −1}. The ∼5 and ∼10 km s{sup −1} components exhibit high {sup 12}CO temperature (≳40 K) and are found mostly around the H ii region, suggesting that these components are likely to be tracing dense gas interacting with the expanding shell around the H ii region. Based on the {sup 12}CO data, we identified 13 regions of high velocity gas, which we interpret as candidate outflow lobes. Using the HCO{sup +} data, we also identified six clumps and estimated their physical parameters. On the basis of the ASTE data and near-infrared images from 2MASS, we present an updated three-dimensional model of this region. In order to investigate molecular outflows in W40, the SiO (J = 1−0, v = 0) emission line and some other emission lines at 40 GHz were also observed with the 45 m telescope at the Nobeyama Radio Observatory, but they were not detected at the present sensitivity.

  15. Effect of Particle Shape on Mechanical Behaviors of Rocks: A Numerical Study Using Clumped Particle Model

    PubMed Central

    Rong, Guan; Liu, Guang; Zhou, Chuang-bing

    2013-01-01

    Since rocks are aggregates of mineral particles, the effect of mineral microstructure on macroscopic mechanical behaviors of rocks is inneglectable. Rock samples of four different particle shapes are established in this study based on clumped particle model, and a sphericity index is used to quantify particle shape. Model parameters for simulation in PFC are obtained by triaxial compression test of quartz sandstone, and simulation of triaxial compression test is then conducted on four rock samples with different particle shapes. It is seen from the results that stress thresholds of rock samples such as crack initiation stress, crack damage stress, and peak stress decrease with the increasing of the sphericity index. The increase of sphericity leads to a drop of elastic modulus and a rise in Poisson ratio, while the decreasing sphericity usually results in the increase of cohesion and internal friction angle. Based on volume change of rock samples during simulation of triaxial compression test, variation of dilation angle with plastic strain is also studied. PMID:23997677

  16. Rotational support of giant clumps in high-z disc galaxies

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Dekel, Avishai; Mandelker, Nir; Bournaud, Frederic; Burkert, Andreas; Genzel, Reinhard; Primack, Joel

    2012-03-01

    We address the internal support against total free-fall collapse of the giant clumps that form by violent gravitational instability in high-z disc galaxies. Guidance is provided by an analytic model, where the protoclumps are cut from a rotating disc and collapse to equilibrium while preserving angular momentum. This model predicts prograde clump rotation, which dominates the support if the clump has contracted to a surface density contrast ≳10. This is confirmed in hydro adaptive mesh refinement zoom-in simulations of galaxies in a cosmological context. In most high-z clumps, the centrifugal force dominates the support, ?, where Vrot is the rotation velocity and the circular velocity Vcirc measures the potential well. The clump spin indeed tends to be in the sense of the global disc angular momentum, but substantial tilts are frequent, reflecting the highly warped nature of the high-z discs. Most clumps are in Jeans equilibrium, with the rest of the support provided by turbulence, partly driven by the gravitational instability itself. The general agreement between model and simulations indicates that angular momentum loss or gain in most clumps is limited to a factor of 2. Simulations of isolated gas-rich discs that resolve the clump substructure reveal that the cosmological simulations may overestimate ? by ˜30 per cent, but the dominance of rotational support at high z is not a resolution artefact. In turn, isolated gas-poor disc simulations produce at z= 0 smaller gaseous non-rotating transient clouds, indicating that the difference in rotational support is associated with the fraction of cold baryons in the disc. In our current cosmological simulations, the clump rotation velocity is typically more than twice the disc dispersion, Vrot˜ 100 km s-1, but when beam smearing of ≥0.1 arcsec is imposed, the rotation signal is reduced to a small gradient of ≤30 km s-1 kpc-1 across the clump. The velocity dispersion in the simulated clumps is comparable to the

  17. Volcanic loading: The dust veil index

    SciTech Connect

    Lamb, H.H.

    1985-09-01

    Dust ejected into the high atmosphere during explosive volcanic eruptions has been considered as a possible cause for climatic change. Dust veils created by volcanic eruptions can reduce the amount of light reaching the Earth`s surface and can cause reductions in surface temperatures. These climatic effects can be seen for several years following some eruptions and the magnitude and duration of the effects depend largely on the density or amount of tephra (i.e. dust) ejected, the latitude of injection, and atmospheric circulation patterns. Lamb (1970) formulated the Dust Veil Index (DVI) in an attempt to quantify the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact on the Earth`s energy balance of changes in atmospheric composition due to explosive volcanic eruptions. The DVI is a numerical index that quantifies the impact of a particular volcanic eruptions release of dust and aerosols over the years following the event. The DVI for any volcanic eruptions are available and have been used in estimating Lamb`s dust veil indices.

  18. Global potential of dust devil occurrence

    NASA Astrophysics Data System (ADS)

    Jemmett-Smith, Bradley; Marsham, John; Knippertz, Peter; Gilkeson, Carl

    2014-05-01

    Mineral dust is a key constituent in the climate system. Airborne mineral dust forms the largest component of the global aerosol budget by mass and subsequently affects climate, weather and biogeochemical processes. There remains large uncertainty in the quantitative estimates of the dust cycle. Dry boundary-layer convection serves as an effective mechanism for dust uplift, typically through a combination of rotating dust devils and non-rotating larger and longer-lived convective plumes. These microscale dry-convective processes occur over length scales of several hundred metres or less. They are difficult to observe and model, and therefore their contribution to the global dust budget is highly uncertain. Using an analytical approach to extrapolate limited observations, Koch and Renno (2006) suggest that dust devils and plumes could contribute as much as 35%. Here, we use a new method for quantifying the potential of dust devil occurrence to provide an alternative perspective on this estimate. Observations have shown that dust devil and convective plume occurrence is favoured in hot arid regions under relatively weak background winds, large ground-to-air temperature gradients and deep dry convection. By applying such known constraints to operational analyses from the European Centre for Medium Range Weather Forecasts (ECMWF), we provide, to the best of the authors' knowledge, the first hourly estimates of dust devil occurrence including an analysis of sensitivity to chosen threshold uplift. The results show the expected diurnal variation and allow an examination of the seasonal cycle and day-to-day variations in the conditions required for dust devil formation. They confirm that desert regions are expected to have by far the highest frequency of dry convective vortices, with winds capable of dust uplift. This approach is used to test the findings of Koch and Renno (2006). Koch J., Renno N. (2006). The role of convective plumes and vortices on the global aerosol

  19. Canyon Dust

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03682 Canyon Dust

    These dust slides are located on the wall of Thithonium Chasma.

    Image information: VIS instrument. Latitude -4.1N, Longitude 275.7E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  20. Dust Slides

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA03677 Linear Clouds

    Dust slides are common in the dust covered region called Lycus Sulci. A large fracture is also visible in this image.

    Image information: VIS instrument. Latitude 28.1N, Longitude 226.3E. 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  1. An extremely young massive clump forming by gravitational collapse in a primordial galaxy

    NASA Astrophysics Data System (ADS)

    Zanella, A.; Daddi, E.; Le Floc'h, E.; Bournaud, F.; Gobat, R.; Valentino, F.; Strazzullo, V.; Cibinel, A.; Onodera, M.; Perret, V.; Renaud, F.; Vignali, C.

    2015-05-01

    When cosmic star formation history reaches a peak (at about redshift z ~ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies.

  2. An extremely young massive clump forming by gravitational collapse in a primordial galaxy.

    PubMed

    Zanella, A; Daddi, E; Le Floc'h, E; Bournaud, F; Gobat, R; Valentino, F; Strazzullo, V; Cibinel, A; Onodera, M; Perret, V; Renaud, F; Vignali, C

    2015-05-01

    When cosmic star formation history reaches a peak (at about redshift z ≈ 2), galaxies vigorously fed by cosmic reservoirs are dominated by gas and contain massive star-forming clumps, which are thought to form by violent gravitational instabilities in highly turbulent gas-rich disks. However, a clump formation event has not yet been observed, and it is debated whether clumps can survive energetic feedback from young stars, and afterwards migrate inwards to form galaxy bulges. Here we report the spatially resolved spectroscopy of a bright off-nuclear emission line region in a galaxy at z = 1.987. Although this region dominates star formation in the galaxy disk, its stellar continuum remains undetected in deep imaging, revealing an extremely young (less than ten million years old) massive clump, forming through the gravitational collapse of more than one billion solar masses of gas. Gas consumption in this young clump is more than tenfold faster than in the host galaxy, displaying high star-formation efficiency during this phase, in agreement with our hydrodynamic simulations. The frequency of older clumps with similar masses, coupled with our initial estimate of their formation rate (about 2.5 per billion years), supports long lifetimes (about 500 million years), favouring models in which clumps survive feedback and grow the bulges of present-day galaxies. PMID:25951282

  3. Improving dust emission characterization in dust models using dynamic high-resolution geomorphic erodibility map

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z.; Kocurek, G.

    2013-12-01

    Dust is known to affect the earth radiation budget, biogeochemical cycle, precipitation, human health and visibility. Despite the increased research effort, dust emission modeling remains challenging because dust emission is affected by complex geomorphological processes. Existing dust models overestimate dust emission and rely on tuning and a static erodibility factor in order to make simulated results comparable to remote sensing and ground-based observations. In most of current models, dust emission is expressed in terms of threshold friction speed, which ultimately depends mainly upon the percentage clay content and soil moisture. Unfortunately, due to the unavailability of accurate and high resolution input data of the clay content and soil moisture, estimated threshold friction speed commonly does not represent the variability in field condition. In this work, we attempt to improve dust emission characterization by developing a high resolution geomorphic map of the Middle East and North Africa (MENA), which is responsible for more than 50% of global dust emission. We develop this geomorphic map by visually examining high resolution satellite images obtained from Google Earth Pro and ESRI base map. Albeit subjective, our technique is more reliable compared to automatic image classification technique because we incorporate knowledge of geological/geographical setting in identifying dust sources. We hypothesize that the erodibility is unique for different geomorphic landforms and that it can be quantified by the correlation between observed wind speed and satellite retrieved aerosol optical depth (AOD). We classify the study area into several key geomorphological categories with respect to their dust emission potential. Then we quantify their dust emission potential using the correlation between observed wind speed and satellite retrieved AOD. The dynamic, high-resolution geomorphic erodibility map thus prepared will help to reduce the uncertainty in current

  4. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  5. Clumped isotope composition of cold-water corals: A role for vital effects?

    NASA Astrophysics Data System (ADS)

    Spooner, Peter T.; Guo, Weifu; Robinson, Laura F.; Thiagarajan, Nivedita; Hendry, Katharine R.; Rosenheim, Brad E.; Leng, Melanie J.

    2016-04-01

    The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes 'clumping' into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-water and warm-water corals suggest clumped isotope 'vital effects' are negligible in cold-water corals but may be significant in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some cold-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9 °C) similar to previous findings for some warm-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both warm- and cold-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals' calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.

  6. ATLASGAL - properties of compact H II regions and their natal clumps

    NASA Astrophysics Data System (ADS)

    Urquhart, J. S.; Thompson, M. A.; Moore, T. J. T.; Purcell, C. R.; Hoare, M. G.; Schuller, F.; Wyrowski, F.; Csengeri, T.; Menten, K. M.; Lumsden, S. L.; Kurtz, S.; Walmsley, C. M.; Bronfman, L.; Morgan, L. K.; Eden, D. J.; Russeil, D.

    2013-10-01

    We present a complete sample of molecular clumps containing compact and ultracompact H II (UC H II) regions between ℓ = 10° and 60° and |b| < 1°, identified by combining the APEX Telescope Large Area Survey of the Galaxy submm and CORNISH radio continuum surveys with visual examination of archival infrared data. Our sample is complete to optically thin, compact and UC H II regions driven by a zero-age main-sequence star of spectral type B0 or earlier embedded within a 1000 M⊙ clump. In total we identify 213 compact and UC H II regions, associated with 170 clumps. Unambiguous kinematic distances are derived for these clumps and used to estimate their masses and physical sizes, as well as the Lyman continuum fluxes and sizes of their embedded H II regions. We find a clear lower envelope for the surface density of molecular clumps hosting massive star formation of 0.05 g cm-2, which is consistent with a similar sample of clumps associated with 6.7 GHz masers. The mass of the most massive embedded stars is closely correlated with the mass of their natal clump. Young B stars appear to be significantly more luminous in the ultraviolet than predicted by current stellar atmosphere models. The properties of clumps associated with compact and UC H II regions are very similar to those associated with 6.7 GHz methanol masers and we speculate that there is little evolution in the structure of the molecular clumps between these two phases. Finally, we identify a significant peak in the surface density of compact and UC H II-regions associated with the W49A star-forming complex, noting that this complex is truly one of the most massive and intense regions of star formation in the Galaxy.

  7. THE LIFE AND DEATH OF DENSE MOLECULAR CLUMPS IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Seale, Jonathan P.; Looney, Leslie W.; Wong, Tony; Ott, Juergen; Klein, Uli; Pineda, Jorge L.

    2012-05-20

    We report the results of a high spatial (parsec) resolution HCO{sup +} (J = 1 {yields} 0) and HCN (J = 1 {yields} 0) emission survey toward the giant molecular clouds of the star formation regions N 105, N 113, N 159, and N 44 in the Large Magellanic Cloud (LMC). The HCO{sup +} and HCN observations at 89.2 and 88.6 GHz, respectively, were conducted in the compact configuration of the Australia Telescope Compact Array. The emission is imaged into individual clumps with masses between 10{sup 2} and 10{sup 4} M{sub Sun} and radii of <1 pc to {approx}2 pc. Many of the clumps are coincident with indicators of current massive star formation, indicating that many of the clumps are associated with deeply embedded forming stars and star clusters. We find that massive young stellar object (YSO) bearing clumps tend to be larger ({approx}>1 pc), more massive (M {approx}> 10{sup 3} M{sub Sun }), and have higher surface densities ({approx}1 g cm{sup -2}), while clumps without signs of star formation are smaller ({approx}<1 pc), less massive (M {approx}< 10{sup 3} M{sub Sun }), and have lower surface densities ({approx}0.1 g cm{sup -2}). The dearth of massive (M > 10{sup 3} M{sub Sun }) clumps not bearing massive YSOs suggests that the onset of star formation occurs rapidly once the clump has attained physical properties favorable to massive star formation. Using a large sample of LMC massive YSO mid-IR spectra, we estimate that {approx}2/3 of the massive YSOs for which there are Spitzer mid-IR spectra are no longer located in molecular clumps; we estimate that these young stars/clusters have destroyed their natal clumps on a timescale of at least {approx}3 Multiplication-Sign 10{sup 5} yr.

  8. Assessment and mitigation of combustible dust hazards in the plastics industry

    NASA Astrophysics Data System (ADS)

    Stern, Michael C.; Ibarreta, Alfonso; Myers, Timothy J.

    2015-05-01

    A number of recent industrial combustible dust fires and explosions, some involving powders used in the plastics industry, have led to heightened awareness of combustible dust hazards, increased regulatory enforcement, and changes to the current standards and regulations. This paper provides a summary of the fundamentals of combustible dust explosion hazards, comparing and contrasting combustible dust to flammable gases and vapors. The types of tests used to quantify and evaluate the potential hazard posed by plastic dusts are explored. Recent changes in NFPA 654, a standard applicable to combustible dust in the plastics industry, are also discussed. Finally, guidance on the primary methods for prevention and mitigation of combustible dust hazards are provided.

  9. THE TRANSIT LIGHT CURVE OF AN EXOZODIACAL DUST CLOUD

    SciTech Connect

    Stark, Christopher C.

    2011-10-15

    Planets embedded within debris disks gravitationally perturb nearby dust and can create clumpy, azimuthally asymmetric circumstellar ring structures that rotate in lock with the planet. The Earth creates one such structure in the solar zodiacal dust cloud. In an edge-on system, the dust 'clumps' periodically pass in front of the star as the planet orbits, occulting and forward-scattering starlight. In this paper, we predict the shape and magnitude of the corresponding transit signal. To do so, we model the dust distributions of collisional, steady-state exozodiacal clouds perturbed by planetary companions. We examine disks with dusty ring structures formed by the planet's resonant trapping of in-spiraling dust for a range of planet masses and semi-major axes, dust properties, and disk masses. We synthesize edge-on images of these models and calculate the transit signatures of the resonant ring structures. The transit light curves created by dusty resonant ring structures typically exhibit two broad transit minima that lead and trail the planetary transit. We find that Jupiter-mass planets embedded within disks hundreds of times denser than our zodiacal cloud can create resonant ring structures with transit depths up to {approx}10{sup -4}, possibly detectable with Kepler. Resonant rings produced by planets more or less massive than Jupiter produce smaller transit depths. Observations of these transit signals may provide upper limits on the degree of asymmetry in exozodiacal clouds.

  10. Vertical velocities from proper motions of red clump giants

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Abedi, H.; Garzón, F.; Figueras, F.

    2014-12-01

    Aims: We derive the vertical velocities of disk stars in the range of Galactocentric radii of R = 5 - 16 kpc within 2 kpc in height from the Galactic plane. This kinematic information is connected to dynamical aspects in the formation and evolution of the Milky Way, such as the passage of satellites and vertical resonance and determines whether the warp is a long-lived or a transient feature. Methods: We used the PPMXL survey, which contains the USNO-B1 proper motions catalog cross-correlated with the astrometry and near-infrared photometry of the 2MASS point source catalog. To improve the accuracy of the proper motions, the systematic shifts from zero were calculated by using the average proper motions of quasars in this PPMXL survey, and we applied the corresponding correction to the proper motions of the whole survey, which reduces the systematic error. From the color-magnitude diagram K versus (J - K) we selected the standard candles corresponding to red clump giants and used the information of their proper motions to build a map of the vertical motions of our Galaxy. We derived the kinematics of the warp both analytically and through a particle simulation to fit these data. Complementarily, we also carried out the same analysis with red clump giants spectroscopically selected with APOGEE data, and we predict the improvements in accuracy that will be reached with future Gaia data. Results: A simple model of warp with the height of the disk zw(R,φ) = γ(R - R⊙)sin(φ - φw) fits the vertical motions if dot {γ }/γ = -34±17 Gyr-1; the contribution to dot {γ } comes from the southern warp and is negligible in the north. If we assume this 2σ detection to be real, the period of this oscillation is shorter than 0.43 Gyr at 68.3% C.L. and shorter than 4.64 Gyr at 95.4% C.L., which excludes with high confidence the slow variations (periods longer than 5 Gyr) that correspond to long-lived features. Our particle simulation also indicates a probable abrupt decrease

  11. The segregation of starless and protostellar clumps in the Hi-GAL ℓ = 224° region

    NASA Astrophysics Data System (ADS)

    Olmi, L.; Cunningham, M.; Elia, D.; Jones, P.

    2016-10-01

    Context. Stars form in dense, dusty structures, which are embedded in larger clumps of molecular clouds often showing a clear filamentary structure on large scales (≳1 pc). The origin (e.g., turbulence or gravitational instabilities) and evolution of these filaments, as well as their relation to clump and core formation, are not yet fully understood. A large sample of both starless and protostellar clumps can now be found in the Herschel Infrared GALactic Plane Survey (Hi-GAL) key project, which also provides striking images of the filamentary structure of the parent molecular clouds. Recent results indicate that populations of clumps on and off filaments may differ. Aims: One of the best-studied regions in the Hi-GAL survey can be observed toward the ℓ = 224° field. Here, a filamentary region has been studied and it has been found that protostellar clumps are mostly located along the main filament, whereas starless clumps are detected off this filament and are instead found on secondary, less prominent filaments. We want to investigate this segregation effect and how it may affect the clumps properties. Methods: We mapped the 12CO (1-0) line and its main three isotopologues toward the two most prominent filaments observed toward the ℓ = 224° field using the Mopra radio telescope, in order to set observational constraints on the dynamics of these structures and the associated starless and protostellar clumps. Results: Compared to the starless clumps, the protostellar clumps are more luminous, more turbulent and lie in regions where the filamentary ambient gas shows larger linewidths. We see evidence of gas flowing along the main filament, but we do not find any signs of accretion flow from the filament onto the Hi-GAL clumps. We analyze the radial column density profile of the filaments and their gravitational stability. Conclusions: The more massive and highly fragmented main filament appears to be thermally supercritical and gravitationally bound

  12. A lower fragmentation mass scale for clumps in high redshift galaxies: a systematic numerical study

    NASA Astrophysics Data System (ADS)

    Tamburello, Valentina; Mayer, Lucio; Shen, Sijing; Wadsley, James

    2015-08-01

    We perform a systematic study of the effect of sub-grid physics, resolution and structural parameters on the fragmentation of gas-rich galaxy discs into massive star forming clumps due to gravitational instability. We use the state-of-the-art zoom-in cosmological hydrodynamical simulation ARGO (Fiacconi et al. 2015) to set up the initial conditions of our models, and then carry out 26 high resolution controlled simulations of high-z galaxies using the GASOLINE2 code, which includes a modern, numerically robust SPH implementation.We find that when blast-wave feedback is included, the formation of long-lived, gravitationally bound clumps requires disc gas fractions of at least 50% and massive discs, which should have Vmax > 200 km/s at z ˜ 2, more massive than the typical galaxies expected at those redshifts.Less than 50 Myr after formation, clumps have stellar masses in the range 4 × 106 - 5 × 107 M⊙.Formation of clumps with mass exceeding ˜108 M⊙ is a rare occurrence, since it requires mergers between multiple massive clumps, as we verified by tracing back in time the particles belonging to such clumps. Such mergers happen after a few orbital times (˜200-300 Myr), but normally clumps migrate inward and are tidally disrupted on shorter timescales.Clump sizes are in the range 100-500 pc. We argue that giant clumps identified in observations (˜109 M⊙ and 1 kpc in size) might either have a different origin, such as minor mergers and clumpy gas accretion, or their sizes and masses may be overestimated due to resolution issues.Using an analytical model, already developed to explain the fragmentation scale in gravitationally unstable 3D protoplanetary discs, we can predict fairly accurately the characteristic gaseous masses of clumps soon after fragmentation, when standard Toome analysis becomes invalid.Due to their modest size, clumps have little effect on bulge growth as they migrate to the center. In our unstable discs a small bulge can form irrespective of

  13. The Exozodiacal Dust Problem for Direct Observations of ExoEarths

    NASA Technical Reports Server (NTRS)

    Roberge, Aki; Chen, Christine H.; Millan-Gabet, Rafael; Weinberger, Alycia J.; Hinz, Philip M.; Stapelfeldt, Karl R.; Absil, Olivier; Kuchner, Marc J.; Bryden, Geoffrey

    2012-01-01

    Debris dust in the habitable zones of stars otherwise known as exozodiacal dust comes from extrasolar asteroids and comets and is thus an expected part of a planetary system. Background flux from the Solar Systems zodiacal dust and the exozodiacal dust in the target system is likely to be the largest source of astrophysical noise in direct observations of terrestrial planets in the habitable zones of nearby stars. Furthermore, dust structures like clumps, thought to be produced by dynamical interactions with exoplanets, are a possible source of confusion. In this paper, we qualitatively assess the primary impact of exozodical dust on high-contrast direct imaging at optical wavelengths, such as would be performed with a coronagraph. Then we present the sensitivity of previous, current, and near-term facilities to thermal emission from debris dust at all distances from nearby solar-type stars, as well as our current knowledge of dust levels from recent surveys. Finally, we address the other method of detecting debris dust, through high-contrast imaging in scattered light. This method is currently far less sensitive than thermal emission observations, but provides high spatial resolution for studying dust structures. This paper represents the first report of NASA's Exoplanet Exploration Program Analysis Group (ExoPAG).

  14. Molecule and dust reprocessing by the reverse shock in the supernova remnant Cas A

    NASA Astrophysics Data System (ADS)

    Biscaro, C.; Cherchneff, I.

    Dust and molecules are observed in various supernovae (SNe) and their remnants, but their formation and evolution in these hostile, shocked environments are still unclear. In some remnants, such as the 330 years-old SN remnant Cas A, the reverse shock (RS) is currently reprocessing the material formed after the SN explosion. Recently, transitions of warm CO have been detected with the Spitzer, AKARI and Herschel telescopes in Cas A ([9], [12]). In particular, CO lines were detected with Herschel in a small O-rich clump, and a high CO column density and temperature, compatible with shocked gas, were derived from line modelling ([12]). These observations thus show that a fair quantity of CO reforms after the passage of the RS. The Cas A remnant results from the explosion of a 19 M star as a Type IIb supernova ([6]), characterised by a lowdensity ejecta. We first model the SN ejecta chemistry to identify the molecules and dust clusters that form after the explosion and are reprocessed by the RS. We find that Cas A progenitor could have formed large quantities of molecules and dust only in a dense ejecta involving clumps. We then model the impact of the RS on an oxygen-rich ejecta clump, considering various RS speeds and investigating the post-shock chemistry. We consider the destruction of molecules and dust clusters by the shock and their reformation using a chemical kinetic model. The impact of UV photons coming from the hot post-shock region on the ionization fraction of the post-shock gas is included. We also model the sputtering (thermal and non-thermal) of the dust by the RS. We found that the reverse shock destroys the molecules and clusters present in the O-rich clump. CO reforms in the post shock gas with abundances that concur with the latest Herschel observations, confirming a post-shock origin for the submm CO lines. We then derive a dust size distribution for the ejecta of the Cas A progenitor, and investigate the effect of different RS velocities on this

  15. The clumped isotopic record of Neoproterozoic carbonates, Sultanate of Oman

    NASA Astrophysics Data System (ADS)

    Bergmann, K. D.; Eiler, J. M.; Fischer, W. W.; Osburn, M. R.; Grotzinger, J. P.

    2011-12-01

    The Huqf Supergroup of the Sultanate of Oman records several important events in latest Precambrian time, including two glaciations in the Abu Mahara Group (ca. 725 - <645 Ma), the enigmatic Shuram carbon isotope excursion in the Nafun Group (ca. <645-547 Ma), and the Precambrian-Cambrian boundary in the Ara Group (ca. 547-540 Ma). This interval contains several extreme isotopic excursions, hypothesized to record perturbations of the surficial Earth carbon cycle or post-depositional diagenetic processes. Rigorous interpretation of these records requires a more thorough assessment of diagenetic processes. To better understand the significance and cause of these large amplitude isotopic excursions, we employed carbonate clumped isotope thermometry. This method allows us to estimate the absolute temperature of carbonate precipitation, including recrystallization, based on the temperature dependent abundance of carbonate ions containing both 13C and 18O. These estimates are accompanied by a measurement of carbonate δ18O, which in conjunction with temperature, can be used to calculate the oxygen isotopic composition of the fluid from which the carbonate precipitated. We analyzed stratigraphically constrained samples from a range of paleoenvironments with differing burial histories (1 - >10km maximum burial depth) to constrain the temperature and fluid composition of recrystallization. Clumped isotope temperatures from Huqf Supergroup samples range from 35-175°C. The isotopic composition of the fluid these rocks equilibrated with ranges from -3.7 to 15.7% VSMOW. This large range in temperature and fluid composition separates into distinct populations that differ systematically with independent constraints on petrography, stratigraphy and burial history. The data indicate the Abu Mahara, Nafun and Ara groups have unique diagenetic histories. In central Oman, the post-glacial Abu Mahara cap dolostone shows high temperature, rock buffered diagenesis (Tavg = 176°C; δ18

  16. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  17. Metal dusting

    SciTech Connect

    Edited by K. Natesan

    2004-01-01

    This workshop was held soon after the September 11th incident under a climate of sorrow and uncertainty among the people of the world, in particular the Workshop participants and their host organizations. With considerable help from the partiicpants, the Workshop was conducted as planed and we had excellent participation in spite of the circumstances. A good fraction of the attendees in the Workshop were from abroad and from several industries, indicating the importance and relevance of the subject for the chemical process industry. Degradation of structural metallic alloys by metal dusting has been an issue for over 40 years in the chemical, petrochemical, syngas, and iron ore reduction plants. However, the fundamental scientific reasons for the degradation of complex alloys in high carbon activity environments are not clear. one of the major parameters of importance is the variation in gas chemistry in both the laboratory experiments and in the plant-service environments. the industry has questioned the applicability of the laboratory test data, obtained in low steam environments, in assessment and life prediction for the materials in plant service where the environments contain 25-35% steam. Several other variables such as system pressure, gas flow velocity, incubation time, alloy chemistry, surface finish, and weldments, were also identified in the literature as to having an effect on the initiatino and propagation of metal dusting attack. It is the purpose of this Workshop to establish a forum in which the researchers from scientific and industrial laboratories, alloy manufacturers, end users, and research and development sponsors can exchange information, discuss different points of view, prioritize the issues, and to elaborate on the trends in industry for the future. We believe that we accomplished these goals successfully and sincerely thank the participants for their contributions.

  18. Extinction and dust properties in a clumpy medium

    NASA Astrophysics Data System (ADS)

    Scicluna, P.; Siebenmorgen, R.

    2015-12-01

    The dust content of the universe is primarily explored via its interaction with stellar photons, which are absorbed or scattered by the dust, producing the effect known as interstellar extinction. However, owing to the physical extension of the observing beam, real observations may detect a significant number of dust-scattered photons. This may result in a change in the observed (or effective) extinction with a dependence on the spatial distribution of the dust and the spatial resolution of the instrument. We investigate the influence of clumpy dust distributions on the effective extinction toward both embedded sources and those seen through the diffuse interstellar medium (ISM). We use a Monte Carlo radiative transfer code to examine the effective extinction for various geometries. By varying the number, optical depth and volume-filling factor of clumps inside the model for spherical shells and the diffuse interstellar medium (ISM), we explore the evolution of the extinction curve and effective optical depth. Depending on the number of scattering events in the beam, the extinction curve is observed to steepen in homogeneous media and flatten in clumpy media. As a result, clumpy dust distributions are able to reproduce extinction curves with arbitrary RV,eff, the effective ratio of total-to-selective extinction. The flattening is also able to "wash out" the 2175 Å bump and results in a shift of the peak to shorter wavelengths. The mean RV,eff of a shell is shown to correlate with the optical depth of an individual clump and the wavelength at which a clump becomes optically thick. Similar behaviour is seen for edge-on discs or tori. However, at grazing inclinations the combination of extinction and strong forward scattering results in chaotic behaviour. Caution is therefore advised when attempting to measure extinction in AGN tori for example or toward SNIa or GRB afterglows. In face-on discs, the shape of the scattered continuum is observed to change significantly

  19. Clumps and streams in the local dark matter distribution.

    PubMed

    Diemand, J; Kuhlen, M; Madau, P; Zemp, M; Moore, B; Potter, D; Stadel, J

    2008-08-01

    In cold dark matter cosmological models, structures form and grow through the merging of smaller units. Numerical simulations have shown that such merging is incomplete; the inner cores of haloes survive and orbit as 'subhaloes' within their hosts. Here we report a simulation that resolves such substructure even in the very inner regions of the Galactic halo. We find hundreds of very concentrated dark matter clumps surviving near the solar circle, as well as numerous cold streams. The simulation also reveals the fractal nature of dark matter clustering: isolated haloes and subhaloes contain the same relative amount of substructure and both have cusped inner density profiles. The inner mass and phase-space densities of subhaloes match those of recently discovered faint, dark-matter-dominated dwarf satellite galaxies, and the overall amount of substructure can explain the anomalous flux ratios seen in strong gravitational lenses. Subhaloes boost gamma-ray production from dark matter annihilation by factors of 4 to 15 relative to smooth galactic models. Local cosmic ray production is also enhanced, typically by a factor of 1.4 but by a factor of more than 10 in one per cent of locations lying sufficiently close to a large subhalo. (These estimates assume that the gravitational effects of baryons on dark matter substructure are small.).

  20. Clumped isotope calibration data for lacustrine carbonates: A progress report

    NASA Astrophysics Data System (ADS)

    Tripati, A.

    2015-12-01

    Our capacity to understand Earth's environmental history is highly dependent on the accuracy of reconstructions of past climates. Lake sediments provide important archives of terrestrial climate change, and represent an important tool for reconstructing paleohydrology, paleoclimate, paleoenvironment, and paleoaltimetry. Unfortunately, while multiple methods for constraining marine temperature exist, quantitative terrestrial proxies are scarcer - tree rings, speleothems, and leaf margin analyses have all been used with varying degrees of accuracy. Clumped isotope thermometry has the potential to be a useful instrument for determining terrestrial climates: multiple studies have shown the fraction of 13C—18O bonds in carbonates is inversely related to the temperature at which the rocks formed. We have been measuring the abundance of 13C18O16O in the CO2 produced by the dissolution of carbonate minerals in phosphoric acid in modern lake samples and comparing results to independently known estimates of lake water temperature. Here we discuss an extensive calibration dataset comprised of 132 analyses of 97 samples from 44 localities, including microbialites, tufas, and micrites endogenic carbonates, freshwater gastropods, bivalves, microbialites, and ooids.

  1. Formation of cold clumps and filaments around superbubbles

    NASA Astrophysics Data System (ADS)

    Ntormousi, Evangelia; Dawson, Joanne; Del Sordo, Fabio; Hennebelle, Patrick

    2015-08-01

    The combined feedback of supernova explosions and stellar winds from associations of massive stars has a dramatic impact on their environment: Large amounts of energy coming from the ejecta create dense shocks around the associations, compressing the surrounding ISM and triggering the formation of molecular clouds and new stars. In this work we employ high-resolution, three-dimensional simulations of this process with the MHD code RAMSES to explore the effects of self-gravity and magnetic fields on the structure of the shells. Two superbubbles expand and collide in a turbulent diffuse medium. In the expansion phase rich dense structure appears on the surface of the shocks due to hydrodynamic and hydromagnetic instabilities. Although gravity seems to play a minor role in the formation and evolution of these dense clumps, magnetic fields completely alter both the expansion of the superbubble and the morphology of the dense gas, slowing the expansion down and causing the appearance of large-scale filaments. The collision does not help increase the amount of cold gas, but rather destroys a lot of the pre-existing dense structures. Finally, we compare clouds formed in these simulations with observations of a molecular cloud crushed between two superbubbles.

  2. Red clump stars from the LAMOST data I: identification and distance

    NASA Astrophysics Data System (ADS)

    Wan, Jun-Chen; Liu, Chao; Deng, Li-Cai; Cui, Wen-Yuan; Zhang, Yong; Hou, Yong-Hui; Yang, Ming; Wu, Yue

    2015-08-01

    We present a sample of about 120 000 red clump candidates selected from the LAMOST DR2 catalog based on the empirical distribution model in the effective temperature vs. surface gravity plane. Although, in general, red clump stars are considered as standard candles, they do not exactly stay in a narrow range of absolute magnitude, but may have a range of more than one magnitude depending on their initial mass. Consequently, conventional oversimplified distance estimations with the assumption of a fixed luminosity may lead to systematic bias related to the initial mass or age, which can potentially affect the study of the evolution of the Galaxy with red clump stars. We therefore employ an isochrone-based method to estimate the absolute magnitude of red clump stars from their observed surface gravities, effective temperatures and metallicities. We verify that the estimation removes the systematics well and provides initial mass/age estimates that are independent of distance with accuracy better than 10%.

  3. The effect of clumped population structure on the variability of spreading dynamics.

    PubMed

    Black, Andrew J; House, Thomas; Keeling, Matt J; Ross, Joshua V

    2014-10-21

    Processes that spread through local contact, including outbreaks of infectious diseases, are inherently noisy, and are frequently observed to be far noisier than predicted by standard stochastic models that assume homogeneous mixing. One way to reproduce the observed levels of noise is to introduce significant individual-level heterogeneity with respect to infection processes, such that some individuals are expected to generate more secondary cases than others. Here we consider a population where individuals can be naturally aggregated into clumps (subpopulations) with stronger interaction within clumps than between them. This clumped structure induces significant increases in the noisiness of a spreading process, such as the transmission of infection, despite complete homogeneity at the individual level. Given the ubiquity of such clumped aggregations (such as homes, schools and workplaces for humans or farms for livestock) we suggest this as a plausible explanation for noisiness of many epidemic time series. PMID:24911778

  4. Dust feed mechanism

    DOEpatents

    Milliman, Edward M.

    1984-01-01

    The invention is a dust feed device for delivery of a uniform supply of dust for long periods of time to an aerosolizing means for production of a dust suspension. The device utilizes at least two tandem containers having spiral brushes within the containers which transport the dust from a supply to the aerosolizer means.

  5. Outflow Feedback Regulated Massive Star Formation in Parsec-Scale Cluster Forming Clumps

    SciTech Connect

    Wang, Peng; Li, Zhi-Yun; Abel, Tom; Nakamura, Fumitaka; /Niigata U.

    2010-02-15

    We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using three dimensional numerical simulations of effective resolution 2048{sup 3}. The calculations are carried out using a block structured adaptive mesh refinement code that solves the ideal MHD equations including self-gravity and implements accreting sink particles. We find that, in the absence of regulation by magnetic fields and outflow feedback, massive stars form readily in a turbulent, moderately condensed clump of {approx} 1,600 M{sub {circle_dot}} (containing {approx} 10{sup 2} initial Jeans masses), along with a cluster of hundreds of lower mass stars. The massive stars are fed at high rates by (1) transient dense filaments produced by large-scale turbulent compression at early times, and (2) by the clump-wide global collapse resulting from turbulence decay at late times. In both cases, the bulk of the massive star's mass is supplied from outside a 0.1 pc-sized 'core' that surrounds the star. In our simulation, the massive star is clump-fed rather than core-fed. The need for large-scale feeding makes the massive star formation prone to regulation by outflow feedback, which directly opposes the feeding processes. The outflows reduce the mass accretion rates onto the massive stars by breaking up the dense filaments that feed the massive star formation at early times, and by collectively slowing down the global collapse that fuel the massive star formation at late times. The latter is aided by a moderate magnetic field of strength in the observed range (corresponding to a dimensionless clump mass-to-flux ratio {lambda} {approx} a few); the field allows the outflow momenta to be deposited more efficiently inside the clump. We conclude that the massive star formation in our simulated turbulent, magnetized, parsec-scale clump is outflow-regulated and clump-fed (ORCF for short). An important implication is that the

  6. From Dust Grains to Planetesimals: The Importance of the Streaming Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Armitage, Philip J.; Youdin, Andrew N.; Li, Rixin

    2016-01-01

    Planetesimals are the precursors to planets, and understanding their formation is an essential step towards developing a complete theory of planet formation. For small solid particles (e.g., dust grains) to coagulate into planetesimals, however, requires that these particles grow beyond centimeter sizes; with traditional coagulation physics, this is very difficult. The streaming instability, which is a clumping process akin to the pile-up of cars in a traffic jam, generates sufficiently high solid densities that the mutual gravity between the clumped particles eventually causes their collapse towards planetesimal mass and size scales. Exploring this transition from dust grains to planetesimals is still in its infancy but is extremely important if we want to understand the basics of planet formation. Here, I present a series of high resolution, first principles numerical simulations of protoplanetary disk gas and dust to study the clumping of particles via the streaming instability and the subsequent collapse towards planetesimals. These simulations have been employed to characterize the planetesimal population as a function of radius in protoplanetary disks. The results of these simulations will be crucial for planet formation models to correctly explain the formation and configuration of solar systems.

  7. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    SciTech Connect

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.; Alexandre, Gladys

    2015-09-25

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacteriumAzospirillum brasilensenavigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motileA. brasilensecells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Finally, cell-to-cell clumping may thus license diazotrophy to microaerophilicA. brasilensecells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.

  8. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    DOE PAGES

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.; Alexandre, Gladys

    2015-09-25

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacteriumAzospirillum brasilensenavigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motileA. brasilensecells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities,more » we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Finally, cell-to-cell clumping may thus license diazotrophy to microaerophilicA. brasilensecells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists.« less

  9. The fundamentally different dynamics of dust and gas in molecular clouds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Lee, Hyunseok

    2016-03-01

    We study the behaviour of large dust grains in turbulent molecular clouds (MCs). In primarily neutral regions, dust grains move as aerodynamic particles, not necessarily with the gas. We therefore directly simulate, for the first time, the behaviour of aerodynamic grains in highly supersonic, magnetohydrodynamic turbulence typical of MCs. We show that, under these conditions, grains with sizes a ≳ 0.01 micron exhibit dramatic (exceeding factor ˜1000) fluctuations in the local dust-to-gas ratio (implying large small-scale variations in abundances, dust cooling rates, and dynamics). The dust can form highly filamentary structures (which would be observed in both dust emission and extinction), which can be much thinner than the characteristic width of gas filaments. Sometimes, the dust and gas filaments are not even in the same location. The `clumping factor' < n_dust2 > / < n_dust > 2 of the dust (critical for dust growth/coagulation/shattering) can reach ˜100, for grains in the ideal size range. The dust clustering is maximized around scales ˜ 0.2 pc (a/μm) (ngas/100 cm- 3)- 1, and is `averaged out' on larger scales. However, because the density varies widely in supersonic turbulence, the dynamic range of scales (and interesting grain sizes) for these fluctuations is much broader than in the subsonic case. Our results are applicable to MCs of essentially all sizes and densities, but we note how Lorentz forces and other physics (neglected here) may change them in some regimes. We discuss the potentially dramatic consequences for star formation, dust growth and destruction, and dust-based observations of MCs.

  10. Natures of Clump-Origin Bulges: Similarities to the Milky Way Bulge

    NASA Astrophysics Data System (ADS)

    Inoue, S.

    2012-08-01

    Bulges in spiral galaxies have been supposed to be classified into two types: classical bulges or pseudobulges. Classical bulges are thought to form by galactic merger with bursty star formation, whereas pseudobulges are suggested to form by secular evolution. Noguchi (1998, 1999) suggested another bulge formation scenario, 'clump-origin bulge'. He demonstrated using a numerical simulation that a galactic disc forms clumpy structures in the early stage of disc formation, then the clumps merge into a single bulge at the centre. I perform a high-resolution N-body/SPH simulation for the formation of the clump-origin bulge in an isolated galaxy model. I find that the clump-origin bulge resembles pseudobulges in dynamical properties, but this bulge consists of old and metal-rich stars. These natures, old metal-rich population but pseudobulge-like structures, mean that the clump-origin bulge can not be simply classified into classical bulges nor pseudobulges. From these results, I discuss similarities of the clump-origin bulge to the Milky Way (MW) bulge.

  11. Clumped isotope thermometry of carbonatites as an indicator of diagenetic alteration

    NASA Astrophysics Data System (ADS)

    Dennis, Kate J.; Schrag, Daniel P.

    2010-07-01

    We measure the clumped isotopic signature of carbonatites to assess the integrity of the clumped isotope paleothermometer over long timescales (10 7-10 9 years) and the susceptibility of the proxy to closed system re-equilibration of isotopes during burial diagenesis. We find pristine carbonatites that have primary oxygen isotope signatures, along with a Carrara marble standard, do not record clumped isotope signatures lighter than 0.31‰ suggesting atoms of carbon and oxygen freely exchange within the carbonate lattice at temperatures above 250-300 °C. There is no systematic trend in the clumped isotope signature of pristine carbonatites with age, although partial re-equilibration to lower temperatures can occur if a carbonatite has been exposed to burial temperatures for long periods of time. We conclude that the solid-state re-ordering of carbon and oxygen atoms is sufficiently slow to enable the use of clumped isotope paleothermometry on timescales of 10 8 years, but that diagenetic resetting can still occur, even without bulk recrystallization. In addition to the carbonatite data, an inorganic calibration of the clumped isotope paleothermometer for low temperature carbonates (7.5-77 °C) is presented and highlights the need for further inter-lab standardization.

  12. Isolation of dihydrocurcuminoids from cell clumps and their distribution in various parts of turmeric (Curcuma longa).

    PubMed

    Kita, Tomoko; Imai, Shinsuke; Sawada, Hiroshi; Seto, Haruo

    2009-05-01

    In addition to well-known curcuminoids, three colored metabolites were isolated from cultured cell clumps that had been induced from buds on turmeric rhizomes. The isolated compounds were identified as dihydro derivatives of curcuminoids, dihydrocurcumin (dihydroCurc), dihydrodesmethoxycurcumin-a (dihydroDMC-a), and dihydrobisdesmethoxycurcumin (dihydroBDMC). The cell clumps did not contain dihydroDMC-b, an isomer of dihydroDMC-a. A comparison of the distribution profiles of curcuminoids and dihydrocurcuminoids in the cell clumps with those in the rhizomes, leaves, and roots revealed the following differences: Unlike rhizomes, the cell clumps, leaves, and roots contained dihydrocurcuminoids as the major colored constituents. Whereas dimethoxy compounds, curcumin and dihydrocurcumin, respectively, were most abundant in the rhizomes and leaves, one of the monomethoxy derivatives, dihydroDMC-a, was found most abundantly in the cell clumps and roots. While both dihydroDMC-a and b were detected in the rhizomes, dihydroDMC-b was not detectable in the cell clumps, leaves, or roots. The occurrence of only one of the two possible isomers of dihydroDMC suggests biosynthetic formation of dihydrocurcuminoids in turmeric.

  13. Formation and evolution of magnetised filaments in wind-swept turbulent clumps

    NASA Astrophysics Data System (ADS)

    Banda-Barragan, Wladimir Eduardo; Federrath, Christoph; Crocker, Roland M.; Bicknell, Geoffrey Vincent; Parkin, Elliot Ross

    2015-08-01

    Using high-resolution three-dimensional simulations, we examine the formation and evolution of filamentary structures arising from magnetohydrodynamic interactions between supersonic winds and turbulent clumps in the interstellar medium. Previous numerical studies assumed homogenous density profiles, null velocity fields, and uniformly distributed magnetic fields as the initial conditions for interstellar clumps. Here, we have, for the first time, incorporated fractal clumps with log-normal density distributions, random velocity fields and turbulent magnetic fields (superimposed on top of a uniform background field). Disruptive processes, instigated by dynamical instabilities and akin to those observed in simulations with uniform media, lead to stripping of clump material and the subsequent formation of filamentary tails. The evolution of filaments in uniform and turbulent models is, however, radically different as evidenced by comparisons of global quantities in both scenarios. We show, for example, that turbulent clumps produce tails with higher velocity dispersions, increased gas mixing, greater kinetic energy, and lower plasma beta than their uniform counterparts. We attribute the observed differences to: 1) the turbulence-driven enhanced growth of dynamical instabilities (e.g. Kelvin-Helmholtz and Rayleigh-Taylor instabilities) at fluid interfaces, and 2) the localised amplification of magnetic fields caused by the stretching of field lines trapped in the numerous surface deformations of fractal clumps. We briefly discuss the implications of this work to the physics of the optical filaments observed in the starburst galaxy M82.

  14. Modeling active galactic nucleus feedback in cool-core clusters: The formation of cold clumps

    SciTech Connect

    Li, Yuan; Bryan, Greg L.

    2014-07-10

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t{sub TI}/t{sub ff} < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s{sup –1}. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  15. Modeling Active Galactic Nucleus Feedback in Cool-core Clusters: The Formation of Cold Clumps

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Bryan, Greg L.

    2014-07-01

    We perform high-resolution (15-30 pc) adaptive mesh simulations to study the impact of momentum-driven active galactic nucleus (AGN) feedback in cool-core clusters, focusing in this paper on the formation of cold clumps. The feedback is jet-driven with an energy determined by the amount of cold gas within 500 pc of the super-massive black hole. When the intracluster medium in the core of the cluster becomes marginally stable to radiative cooling, with the thermal instability to the free-fall timescale ratio t TI/t ff < 3-10, cold clumps of gas start to form along the propagation direction of the AGN jets. By tracing the particles in the simulations, we find that these cold clumps originate from low entropy (but still hot) gas that is accelerated by the jet to outward radial velocities of a few hundred km s-1. This gas is out of hydrostatic equilibrium and so can cool. The clumps then grow larger as they decelerate and fall toward the center of the cluster, eventually being accreted onto the super-massive black hole. The general morphology, spatial distribution, and estimated Hα morphology of the clumps are in reasonable agreement with observations, although we do not fully replicate the filamentary morphology of the clumps seen in the observations, probably due to missing physics.

  16. Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Crater wall dust avalanches in southern Arabia Terra.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 10.3, Longitude 24.5 East (335.5 West). 19 meter/pixel resolution.

  17. Dust particle dynamics in atmospheric dust devils

    NASA Astrophysics Data System (ADS)

    Izvekova, Yulia; Popel, Sergey

    2016-04-01

    Dust particle dynamics is modeled in the Dust Devils (DDs). DD is a strong, well-formed, and relatively long-lived whirlwind, ranging from small (half a meter wide and a few meters tall) to large (more than 100 meters wide and more than 1000 meters tall) in Earth's atmosphere. We develop methods for the description of dust particle charging in DDs, discuss the ionization processes in DDs, and model charged dust particle motion. Our conclusions are consistent with the fact that DD can lift a big amount of dust from the surface of a planet into its atmosphere. On the basis of the model we perform calculations and show that DDs are important mechanism for dust uplift in the atmospheres of Earth and Mars. Influence of DD electric field on dynamics of dust particles is investigated. It is shown that influence of the electric field on dust particles trajectories is significant near the ground. At some altitude (more then a quarter of the height of DD) influence of the electric field on dust particles trajectories is negligible. For the calculation of the dynamics of dust electric field can be approximated by effective dipole located at a half of the height of DD. This work was supported by the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  18. The Exozodiacal Dust Problem for Direct Observations of Exo-Earths

    NASA Astrophysics Data System (ADS)

    Roberge, Aki; Chen, Christine H.; Millan-Gabet, Rafael; Weinberger, Alycia J.; Hinz, Philip M.; Stapelfeldt, Karl R.; Absil, Olivier; Kuchner, Marc J.; Bryden, Geoffrey

    2012-08-01

    Debris dust in the habitable zones of stars—otherwise known as exozodiacal dust—comes from extrasolar asteroids and comets and is thus an expected part of a planetary system. Background flux from the solar system's zodiacal dust and the exozodiacal dust in the target system is likely to be the largest source of astrophysical noise in direct observations of terrestrial planets in the habitable zones of nearby stars. Furthermore, dust structures like clumps, thought to be produced by dynamical interactions with exoplanets, are a possible source of confusion. In this article, we qualitatively assess the primary impact of exozodiacal dust on high-contrast direct imaging at optical wavelengths, such as would be performed with a coronagraph. Then we present the sensitivity of previous, current, and near-term facilities to thermal emission from debris dust at all distances from nearby solar-type stars, as well as our current knowledge of dust levels from recent surveys. Finally, we address the other method of detecting debris dust, through high-contrast imaging in scattered light. This method is currently far less sensitive than thermal emission observations, but provides high spatial resolution for studying dust structures. This article represents the first report of NASA's Exoplanet Exploration Program Analysis Group (ExoPAG).

  19. Mineral dust deposition in Western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Vincent, Julie; Laurent, Benoit; Bergmatti, Gilles; Losno, Rémi; Bon Nguyen, Elisabeth; Chevaillier, Servanne; Roulet, Pierre; Sauvage, Stéphane; Coddeville, Patrice; Ouboulmane, Noura; Siour, Guillaume; Tovar Sanchez, Antonio; Massanet, Ana; Morales Baquero, Rafael; Di Sarra, Giogio; Sferlazzo, Damiano; Dulac, François; Fornier, Michel; Coursier, Cyril

    2014-05-01

    North African deserts are the world's largest sources of atmospheric mineral dust produced by aeolian erosion. Saharan dust is frequently transported toward Europe over the Mediterranean basin. When deposited in oceanic areas, mineral dust can constitute a key input of nutrients bioavailable for the oceanic biosphere. For instance, Saharan dust deposited in the in the Mediterranean Sea can be a significant source of nutrient like Fe, P and N during summer and autumn. Our objective is to study the deposition Saharan mineral dust in the western Mediterranean basin and to improve how deposition processes are parameterized in 3D regional models. To quantify the deposition flux of Saharan dust in the western Mediterranean region a specific collector (CARAGA) to sample automatically the insoluble atmospheric particle deposition was developed (LISA-ICARE) and a network of CARAGA collectors have been set up. Since 2011, eight CARAGA are then deployed in Frioul, Casset, Montandon and Ersa in France, Mallorca and Granada in Spain, Lampedusa in Italia, and Medenine in Tunisia, along a South-North gradient of almost 2000km from the North African coast to the South of Europe. We observe 10 well identified dust Saharan deposition events at Lampedusa and 6 at Mallorca for a 1-yr sampling period. These dust events are sporadic and the South-North gradient of deposition intensity and frequency is observed (the highest dust mass sampled at the stations are : 2,66 g.m-2 at Lampedusa ; 0,54 g.m-2 at Majorque ; 0,33 g.m-2 at Frioul ; 0,16 g.m-2 at Casset). The ability of the CHIMERE model to reproduce the deposition measurements is tested. The mineral dust plumes simulated over the western Mediterranean basin are also compared to satellite observations (OMI, MODIS) and in-situ measurements performed during the ChArMEx campaign and in the AERONET stations.

  20. High Latitude Dust in the Earth System

    NASA Technical Reports Server (NTRS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gasso, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-01-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (> or = 50degN and > or = 40degS) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 sq km and contribute at least 80-100 Tg/yr1 of dust to the Earth system (approx. 5% of the global dust budget); both are projected to increase under future climate change scenarios.

  1. Clumped isotope paleothermometry of the Mio-Pliocene freshwater Lake Mohave. Lower ancestral Colorado River, USA

    NASA Astrophysics Data System (ADS)

    Lang, K. A.; Huntington, K. W.

    2015-12-01

    The fluvio-lacustrine deposits of the Bouse Formation are an archive of ancestral Colorado River integration in the Late Miocene and Early Pliocene. In Mohave Valley along the California-Arizona-Nevada border, exposures of the Bouse Formation are observed ~400 m above the modern river elevation, which has been interpreted as evidence of tectonic uplift following a regionally extensive marine incursion and integration of the ancestral Colorado River by capture. However, recent investigations instead favor a "top-down" process of river integration by sequential infilling of freshwater lakes that does not require subsequent tectonic uplift. Accurate interpretation of the Bouse Formation's depositional environment is needed to test these models and ultimately, constrain the timing and mechanism of southwestern Colorado Plateau uplift. To further constrain interpretations of depositional environment, we present new clumped isotope analyses with major and trace element geochemistry and scanning electron microscopy of carbonate samples from the Bouse Formation in Mohave Valley. Here the Bouse Formation contains three distinct facies: basal marl and limestone overlain by thick beds of calcareous claystone interbedded with siltstone and sandstone and locally overlain by tufa. Bulk geochemistry of all facies is consistent with a similar freshwater source yet each facies is isotopically distinct, potentially indicating a strong influence of facies-specific fractionation processes. Carbonate formation temperatures measured in tufa samples are variable, suggesting multiple generations of calcite precipitation. Formation temperatures from basal marl and claystone samples are generally consistent with near-surface lake temperatures, broadly supporting a lacustrine depositional environment and "top-down" process of ancestral Colorado River integration. More broadly, our results quantify the variability in carbonate formation temperatures with different lacustrine facies and

  2. Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry

    NASA Astrophysics Data System (ADS)

    Huntington, K. W.; Wernicke, B. P.; Eiler, J. M.

    2010-06-01

    The elevation history of Earth's surface is key to understanding the geodynamic processes responsible for the rise of plateaus. We investigate the timing of Colorado Plateau uplift by estimating depositional temperatures of Tertiary lake sediments that blanket the plateau interior and adjacent lowlands using carbonate clumped isotope paleothermometry (a measure of the temperature-dependent enrichment of 13C-18O bonds in carbonates). Comparison of modern and ancient samples deposited near sea level provides an opportunity to quantify the influence of climate and therefore assess the contribution of changes in elevation to the variations of surface temperature on the plateau. Analysis of modern lake calcite from 350 to 3300 m elevation in the southwestern United States reveals a lake water carbonate temperature (LCT) lapse rate of 4.2 ± 0.6°C/km. Analysis of Miocene deposits from 88 to 1900 m elevation in the Colorado River drainage suggests that the ancient LCT lapse rate was 4.1 ± 0.7°C/km, and temperatures were 7.7 ± 2.0°C warmer at any one elevation than predicted by the modern trend. The inferred cooling is plausible in light of Pliocene temperature estimates off the coast of California, and the consistency of lapse rates through time supports the interpretation that there has been little or no elevation change for any of the samples since 6 Ma. Together with previous paleorelief estimates from apatite (U-Th)/He data from the Grand Canyon, our results suggest most or all of the plateau's lithospheric buoyancy was acquired ˜80-60 Ma and do not support explanations that ascribe most plateau uplift to Oligocene or younger disposal of either the Farallon or North American mantle lithosphere.

  3. Kinematics of Tycho-2 red giant clump stars

    NASA Astrophysics Data System (ADS)

    Bobylev, V. V.; Stepanishchev, A. S.; Bajkova, A. T.; Gontcharov, G. A.

    2009-12-01

    Based on the Ogorodnikov-Milne model, we analyze the proper motions of 95,633 red giant clump (RGC) stars from the Tycho-2 Catalogue. The following Oort constants have been found: A = 15.9 ± 0.2 km s-1 kpc-1 and B = -12.0±0.2 km s-1 kpc-1. Using 3632 RGC stars with known proper motions, radial velocities, and photometric distances, we show that, apart from the star centroid velocity components relative to the Sun, only the model parameters that describe the stellar motions in the XY plane differ significantly from zero. We have studied the contraction (a negative K effect) of the system of RGC stars as a function of their heliocentric distance and elevation above the Galactic plane. For a sample of distant (500-1000 pc) RGC stars located near the Galactic plane (|z| < 200 pc) with an average distance of d = 0.7 kpc, the contraction velocity is shown to be Kd = -3.5 ±0.9 km s-1; a noticeable vertex deviation, lxy = 9.1° ± 0.5°, is also observed for them. For stars located well above the Galactic plane (|z| ≥200 pc), these effects are less pronounced, Kd = -1.7 ± 0.5 km s-1 and lxy = 4.9° ± 0.6°. Using RGC stars, we have found a rotation around the Galactic X axis directed toward the Galactic center with an angular velocity of -2.5 ± 0.3 km s-1 kpc-1, which we associate with the warp of the Galactic stellar-gaseous disk.

  4. CLUMPED CHLOROPLASTS 1 is required for plastid separation in Arabidopsis.

    PubMed

    Yang, Yue; Sage, Tammy L; Liu, Yi; Ahmad, Tiara R; Marshall, Wallace F; Shiu, Shin-Han; Froehlich, John E; Imre, Kathleen M; Osteryoung, Katherine W

    2011-11-01

    We identified an Arabidopsis thaliana mutant, clumped chloroplasts 1 (clmp1), in which disruption of a gene of unknown function causes chloroplasts to cluster instead of being distributed throughout the cytoplasm. The phenotype affects chloroplasts and nongreen plastids in multiple organs and cell types, but is detectable only at certain developmental stages. In young leaf petioles of clmp1, where clustering is prevalent, cells lacking chloroplasts are detected, suggesting impaired chloroplast partitioning during mitosis. Although organelle distribution and partitioning are actin-dependent in plants, the actin cytoskeleton in clmp1 is indistinguishable from that in WT, and peroxisomes and mitochondria are distributed normally. A CLMP1-YFP fusion protein that complements clmp1 localizes to discrete foci in the cytoplasm, most of which colocalize with the cell periphery or with chloroplasts. Ultrastructural analysis revealed that chloroplasts within clmp1 clusters are held together by membranous connections, including thin isthmi characteristic of late-stage chloroplast division. This finding suggests that constriction of dividing chloroplasts proceeds normally in clmp1, but separation is impaired. Consistently, chloroplast size and number, as well as positioning of the plastid division proteins FtsZ and ARC5/DRP5B, are unaffected in clmp1, indicating that loss of CLMP1-mediated chloroplast separation does not prevent otherwise normal division. CLMP1-like sequences are unique to green algae and land plants, and the CLMP1 sequence suggests that it functions through protein-protein interactions. Our studies identify a unique class of proteins required for plastid separation after the constriction stage of plastid division and indicate that CLMP1 activity is also required for plastid distribution and partitioning during cell division.

  5. Shear heating and clumped isotope reordering in carbonate faults

    NASA Astrophysics Data System (ADS)

    Siman-Tov, Shalev; Affek, Hagit P.; Matthews, Alan; Aharonov, Einat; Reches, Ze'ev

    2016-07-01

    Natural faults are expected to heat rapidly during seismic slip and to cool quite quickly after the slip event. Here we examine clumped isotope thermometry for its ability to identify such short duration elevated temperature events along frictionally heated carbonate faults. Our approach is based on measured Δ47 values that reflect the distribution of oxygen and carbon isotopes in the calcite lattice, measuring the abundance of 13Csbnd 18O bonds, which is affected by temperature. We examine three types of calcite rock samples: (1) crushed limestone grains that were rapidly heated and then cooled in static laboratory experiments, simulating the temperature cycle experienced by fault rock during an earthquake slip; (2) limestone samples that were experimentally sheared to simulate earthquake slip events; and (3) samples from Fault Mirrors (FMs) collected from principle slip surfaces of three natural carbonate faults. Extensive FM surfaces are believed to form during earthquake slip. Our experimental results show that Δ47 values decrease rapidly (in the course of seconds) with increasing temperature and shear velocity. On the other hand, carbonate shear zones from natural faults do not show such Δ47 decrease. We suggest that the Δ47 response may be controlled by nano-size grains, the high abundance of defects, and highly stressed/strained grain boundaries within the carbonate fault zone that can reduce the activation energy for diffusion, and thus lead to an increased rate of isotopic disordering during shear experiments. In our laboratory experiments the high stress and strain on grain contacts and the presence of nanograins thus allows for rapid disordering so that a change in Δ47 occurs in a very short and relatively low intensity heating events. In natural faults it may also lead to isotopic ordering after the cessation of frictional heating thus erasing the high temperature signature of Δ47.

  6. Clumped isotopes in near-surface atmospheric CO2 over land, coast and ocean in Taiwan and its vicinity

    NASA Astrophysics Data System (ADS)

    Hussain Laskar, Amzad; Liang, Mao-Chang

    2016-09-01

    Molecules containing two rare isotopes (e.g., 13C18O16O in CO2), called clumped isotopes, in atmospheric CO2 are powerful tools to provide an alternative way to independently constrain the sources of CO2 in the atmosphere because of their unique physical and chemical properties. We presented clumped isotope data (Δ47) in near-surface atmospheric CO2 from urban, suburban, ocean, coast, high mountain ( ˜ 3.2 km a.s.l.) and forest in Taiwan and its vicinity. The primary goal of the study was to use the unique Δ47 signature in atmospheric CO2 to show the extents of its deviations from thermodynamic equilibrium due to different processes such as photosynthesis, respiration and local anthropogenic emissions, which the commonly used tracers such as δ13C and δ18O cannot provide. We also explored the potential of Δ47 to identify/quantify the contribution of CO2 from various sources. Atmospheric CO2 over ocean was found to be in thermodynamic equilibrium with the surrounding surface sea water. Respired CO2 was also in close thermodynamic equilibrium at ambient air temperature. In contrast, photosynthetic activity result in significant deviation in Δ47 values from that expected thermodynamically. The disequilibrium could be a consequence of kinetic effects associated with the diffusion of CO2 in and out of the leaf stomata. We observed that δ18O and Δ47 do not vary similarly when photosynthesis was involved unlike simple water-CO2 exchange. Additionally we obtained Δ47 values of car exhaust CO2 that were significantly lower than the atmospheric CO2 but higher than that expected at the combustion temperature. In urban and suburban regions, the Δ47 values were found to be lower than the thermodynamic equilibrium values at the ambient temperature, suggesting contributions from local combustion emission.

  7. Stagnation and Infall of Dense Clumps in the Stellar Wind of τ Scorpii

    NASA Astrophysics Data System (ADS)

    Howk, J. Christopher; Cassinelli, Joseph P.; Bjorkman, Jon E.; Lamers, Henny J. G. L. M.

    2000-05-01

    Observations of the B0.2 V star τ Scorpii have revealed unusual stellar wind characteristics: redshifted absorption in the far-ultraviolet O VI resonance doublet up to ~+250 km s-1 and extremely hard X-ray emission implying gas at temperatures in excess of 107 K. We describe a phenomenological model to explain these properties. We assume the wind of τ Sco consists of two components: ambient gas in which denser clumps are embedded. The clumps are optically thick in the UV resonance lines primarily responsible for accelerating the ambient wind. The reduced acceleration causes the clumps to slow and even infall, all the while being confined by the ram pressure of the outflowing ambient wind. We calculate detailed trajectories of the clumps in the ambient stellar wind, accounting for a line radiation driving force and the momentum deposited by the ambient wind in the form of drag. We show that these clumps will fall back toward the star with velocities of several hundred km s-1 for a broad range of initial conditions. The velocities of the clumps relative to the ambient stellar wind can approach 2000 km s-1, producing X-ray-emitting plasmas with temperatures in excess of (1-6)×107 K in bow shocks at their leading edge. The infalling material explains the peculiar redshifted absorption wings seen in the O VI doublet. Of order 103 clumps with individual masses mc~1019-1020 g are needed to explain the observed X-ray luminosity and also to explain the strength of the O VI absorption lines. These values correspond to a mass-loss rate in clumps of Mc~10-9 to 10-8 Msolar yr-1, a small fraction of the total mass-loss rate (M~3×10-8 Msolar yr-1). We discuss the position of τ Sco in the H-R diagram, concluding that τ Sco is in a crucial position on the main sequence. Hotter stars near the spectral type of τ Sco have too powerful winds for clumps to fall back to the stars, and cooler stars have too low mass-loss rates to produce observable effects. The model developed here

  8. Giant Clumps in Simulated High-z Galaxies: Properties, Evolution and Dependence on Feedback

    NASA Astrophysics Data System (ADS)

    Mandelker, Nir; Dekel, Avishai; Ceverino, Daniel; DeGraf, Colin; Guo, Yicheng; Primack, Joel

    2016-09-01

    We study the evolution and properties of giant clumps in high-z disc galaxies using AMR cosmological simulations at redshifts z ˜ 6 - 1. Our sample consists of 34 galaxies, of halo masses 1011 - 1012M⊙ at z = 2, run with and without radiation pressure (RP) feedback from young stars. While RP has little effect on the sizes and global stability of discs, it reduces the amount of star-forming gas by a factor of ˜2, leading to a similar decrease in stellar mass by z ˜ 2. Both samples undergo extended periods of violent disc instability (VDI) continuously forming giant clumps of masses 107 - 109M⊙ at a similar rate, though RP significantly reduces the number of long-lived clumps (LLCs). When RP is (not) included, clumps with circular velocity ≲ 40(20) km s^{-1}, baryonic surface density ≲ 200(100) M_⊙ pc^{-2} and baryonic mass ≲ 10^{8.2}(10^{7.3}) M_⊙ are short-lived, disrupted in a few free-fall times. More massive and dense clumps survive and migrate toward the disc centre over a few disc orbital times. In the RP simulations, the distribution of clump masses and star-formation rates (SFRs) normalized to their host disc is similar at all redshifts, exhibiting a truncated power-law with a slope slightly shallower than -2. The specific SFR (sSFR) of the LLCs declines with age as they migrate towards the disc centre, producing gradients in mass, stellar age, gas fraction, sSFR and metallicity that distinguish them from the short-lived clumps which tend to populate the outer disc. Ex situ mergers comprise ˜37% of the mass in clumps and ˜29% of the SFR. They are more massive and with older stellar ages than the in situ clumps, especially near the disc edge. Roughly half the galaxies at redshifts z = 4 - 1 are clumpy, with ˜3 - 30% of their SFR and ˜0.1 - 3% of their stellar mass in clumps.

  9. Clumped Isotope Composition of Cold-Water Corals: A Role for Vital Effects?

    NASA Astrophysics Data System (ADS)

    Spooner, P.; Guo, W.; Robinson, L. F.

    2014-12-01

    Measurements on a set of cold-water corals (mainly Desmophyllum dianthus) have suggested that their clumped isotope composition could serve as a promising proxy for reconstructing paleocean temperatures. Such measurements have also offered support for certain isotope models of coral calcification. However, there are differences in the clumped isotope compositions between warm-water and cold-water corals, suggesting that different kinds of corals could have differences in their biocalcification processes. In order to understand the systematics of clumped isotope variations in cold-water corals more fully, we present clumped isotope data from a range of cold-water coral species from the tropical Atlantic and the Southern Ocean.Our samples were either collected live or recently dead (14C ages < 1,000 yrs) with associated temperature data. They include a total of 11 solitary corals and 1 colonial coral from the Atlantic, and 8 solitary corals from the Southern Ocean. The data indicate that coral clumped isotope systematics may be more complicated than previously thought. For example, for the genus Caryophyllia we observe significant variations in clumped isotope compositions for corals which grew at the same temperature with an apparent negative correlation between Δ47 and δ18O, different to patterns previously observed in Desmophyllum. These results indicate that existing isotope models of biocalcification may not apply equally well to all corals. Clumped isotope vital effects may be present in certain cold-water corals as they are in warm-water corals, complicating the use of this paleoclimate proxy.

  10. Dense molecular clumps associated with the Large Magellanic Cloud supergiant shells LMC 4 and LMC 5

    SciTech Connect

    Fujii, Kosuke; Mizuno, Norikazu; Minamidani, Tetsuhiro; Onishi, Toshikazu; Muraoka, Kazuyuki; Kawamura, Akiko; Muller, Erik; Tatematsu, Ken'ichi; Hasegawa, Tetsuo; Miura, Rie E.; Ezawa, Hajime; Dawson, Joanne; Tosaki, Tomoka; Sakai, Takeshi; Tsukagoshi, Takashi; Tanaka, Kunihiko; Fukui, Yasuo

    2014-12-01

    We investigate the effects of supergiant shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star-forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. {sup 12}CO (J = 3-2, 1-0) and {sup 13}CO(J = 1-0) observations with the ASTE and Mopra telescopes have been carried out toward these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities (n(H{sub 2})) of the clumps are distributed from low to high density (10{sup 3}-10{sup 5} cm{sup –3}) and their kinetic temperatures (T {sub kin}) are typically high (greater than 50 K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of Hα, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density H I envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high n(H{sub 2}) and T {sub kin}, which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.

  11. X-RAY EMISSION LINE PROFILES FROM WIND CLUMP BOW SHOCKS IN MASSIVE STARS

    SciTech Connect

    Ignace, R.; Waldron, W. L.; Cassinelli, J. P.; Burke, A. E. E-mail: wwaldron@satx.rr.com E-mail: burke.alexander@gmail.com

    2012-05-01

    The consequences of structured flows continue to be a pressing topic in relating spectral data to physical processes occurring in massive star winds. In a preceding paper, our group reported on hydrodynamic simulations of hypersonic flow past a rigid spherical clump to explore the structure of bow shocks that can form around wind clumps. Here we report on profiles of emission lines that arise from such bow shock morphologies. To compute emission line profiles, we adopt a two-component flow structure of wind and clumps using two 'beta' velocity laws. While individual bow shocks tend to generate double-horned emission line profiles, a group of bow shocks can lead to line profiles with a range of shapes with blueshifted peak emission that depends on the degree of X-ray photoabsorption by the interclump wind medium, the number of clump structures in the flow, and the radial distribution of the clumps. Using the two beta law prescription, the theoretical emission measure and temperature distribution throughout the wind can be derived. The emission measure tends to be power law, and the temperature distribution is broad in terms of wind velocity. Although restricted to the case of adiabatic cooling, our models highlight the influence of bow shock effects for hot plasma temperature and emission measure distributions in stellar winds and their impact on X-ray line profile shapes. Previous models have focused on geometrical considerations of the clumps and their distribution in the wind. Our results represent the first time that the temperature distribution of wind clump structures are explicitly and self-consistently accounted for in modeling X-ray line profile shapes for massive stars.

  12. Applying clumped isotopes of O2 to atmospheric and biogeochemical problems

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence

    2016-04-01

    I will describe recent measurements of isotopic "clumps" in diatomic molecules, e.g., 18O18O in O2, which are being utilized to constrain atmospheric circulation on glacial-interglacial timescales and biogeochemical cycling in the oceans. While our understanding of these tracers is still evolving, several features of their geochemistry are apparent: (1) the proportional abundance of these isotopic "clumps" is governed by traditional chemical effects as well as combinatorial effects unique to clumped isotopes, and (2) when isotopic exchange reactions are disfavoured, chemical-kinetic and/or reservoir effects, rather than thermodynamic equilibrium, determine their clumped-isotope composition. Combinatorial clumped-isotope signatures imparted during photosynthesis are being developed as endmember signatures of gross primary productivity in the oceans. In addition, clumped-isotope measurements of O2 in the atmosphere (i.e., Δ36 values) suggest that isotopic clumping in O2 is continuously being altered by ozone photochemistry in the troposphere and stratosphere. Yet, the contrast in isotope-exchange rates between the stratosphere (where exchange is fast) and the troposphere (where exchange is slow) results in a gradient in Δ36 values with altitude, wherein stratospheric intrusions are detectable as elevated Δ36 values. Moreover, global chemical-transport model simulations suggest that ozone photochemistry in the troposphere re-orders the O2 reservoir in the troposphere on annual timescales. The Δ36 value at the surface is therefore sensitive to the tropospheric residence time of O2 with respect to stratosphere-troposphere exchange. Consequently, Δ36 values at the surface likely respond to changes in the strength of the global overturning circulation.

  13. Dense Molecular Clumps Associated with the Large Magellanic Cloud Supergiant Shells LMC 4 and LMC 5

    NASA Astrophysics Data System (ADS)

    Fujii, Kosuke; Minamidani, Tetsuhiro; Mizuno, Norikazu; Onishi, Toshikazu; Kawamura, Akiko; Muller, Erik; Dawson, Joanne; Tatematsu, Ken'ichi; Hasegawa, Tetsuo; Tosaki, Tomoka; Miura, Rie E.; Muraoka, Kazuyuki; Sakai, Takeshi; Tsukagoshi, Takashi; Tanaka, Kunihiko; Ezawa, Hajime; Fukui, Yasuo

    2014-12-01

    We investigate the effects of supergiant shells (SGSs) and their interaction on dense molecular clumps by observing the Large Magellanic Cloud (LMC) star-forming regions N48 and N49, which are located between two SGSs, LMC 4 and LMC 5. 12CO (J = 3-2, 1-0) and 13CO(J = 1-0) observations with the ASTE and Mopra telescopes have been carried out toward these regions. A clumpy distribution of dense molecular clumps is revealed with 7 pc spatial resolution. Large velocity gradient analysis shows that the molecular hydrogen densities (n(H2)) of the clumps are distributed from low to high density (103-105 cm-3) and their kinetic temperatures (T kin) are typically high (greater than 50 K). These clumps seem to be in the early stages of star formation, as also indicated from the distribution of Hα, young stellar object candidates, and IR emission. We found that the N48 region is located in the high column density H I envelope at the interface of the two SGSs and the star formation is relatively evolved, whereas the N49 region is associated with LMC 5 alone and the star formation is quiet. The clumps in the N48 region typically show high n(H2) and T kin, which are as dense and warm as the clumps in LMC massive cluster-forming areas (30 Dor, N159). These results suggest that the large-scale structure of the SGSs, especially the interaction of two SGSs, works efficiently on the formation of dense molecular clumps and stars.

  14. Chemistry in Infrared Dark Cloud Clumps: A Molecular Line Survey at 3 mm

    NASA Astrophysics Data System (ADS)

    Sanhueza, Patricio; Jackson, James M.; Foster, Jonathan B.; Garay, Guido; Silva, Andrea; Finn, Susanna C.

    2012-09-01

    We have observed 37 Infrared Dark Clouds (IRDCs), containing a total of 159 clumps, in high-density molecular tracers at 3 mm using the 22 m ATNF Mopra Telescope located in Australia. After determining kinematic distances, we eliminated clumps that are not located in IRDCs and clumps with a separation between them of less than one Mopra beam. Our final sample consists of 92 IRDC clumps. The most commonly detected molecular lines are (detection rates higher than 8%) N2H+, HNC, HN13C, HCO+, H13CO+, HCN, C2H, HC3N, HNCO, and SiO. We investigate the behavior of the different molecular tracers and look for chemical variations as a function of an evolutionary sequence based on Spitzer IRAC and MIPS emission. We find that the molecular tracers behave differently through the evolutionary sequence and some of them can be used to yield useful relative age information. The presence of HNC and N2H+ lines does not depend on the star formation activity. On the other hand, HC3N, HNCO, and SiO are predominantly detected in later stages of evolution. Optical depth calculations show that in IRDC clumps the N2H+ line is optically thin, the C2H line is moderately optically thick, and HNC and HCO+ are optically thick. The HCN hyperfine transitions are blended, and, in addition, show self-absorbed line profiles and extended wing emission. These factors combined prevent the use of HCN hyperfine transitions for the calculation of physical parameters. Total column densities of the different molecules, except C2H, increase with the evolutionary stage of the clumps. Molecular abundances increase with the evolutionary stage for N2H+ and HCO+. The N2H+/HCO+ and N2H+/HNC abundance ratios act as chemical clocks, increasing with the evolution of the clumps.

  15. Field Measurements of Terrestrial and Martian Dust Devils

    NASA Astrophysics Data System (ADS)

    Murphy, Jim; Steakley, Kathryn; Balme, Matt; Deprez, Gregoire; Esposito, Francesca; Kahanpää, Henrik; Lemmon, Mark; Lorenz, Ralph; Murdoch, Naomi; Neakrase, Lynn; Patel, Manish; Whelley, Patrick

    2016-09-01

    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types.

  16. Interactions Between Mineral Dust, Climate, and Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Grassian, Vicki H.; Miller, Ron L.

    2010-01-01

    Over the past decade, technological improvements in the chemical and physical characterization of dust have provided insights into a number of phenomena that were previously unknown or poorly understood. In addition, models are now incorporating a wider range of physical processes, which will allow us to better quantify the climatic and ecological impacts of dust. For example, some models include the effect of dust on oceanic photosynthesis and thus on atmospheric CO 2 (Friedlingstein et al. 2006). The impact of long-range dust transport, with its multiple forcings and feedbacks, is a relatively new and complex area of research, where input from several disciplines is needed. So far, many of these effects have only been parameterized in models in very simple terms. For example, the representation of dust sources remains a major uncertainty in dust modeling and estimates of the global mass of airborne dust. This is a problem where Earth scientists could make an important contribution, by working with climate scientists to determine the type of environments in which easily erodible soil particles might have accumulated over time. Geologists could also help to identify the predominant mineralogical composition of dust sources, which is crucial for calculating the radiative and chemical effects of dust but is currently known for only a few regions. Understanding how climate and geological processes control source extent and characterizing the mineral content of airborne dust are two of the fascinating challenges in future dust research.

  17. Inverse modeling analysis of soil dust emissions over East Asia

    NASA Astrophysics Data System (ADS)

    Ku, B.; Park, R.

    2009-12-01

    Soil dust is the most important aerosol by mass concentrations in the troposphere and has considerable effects on air quality and climate. East Asia including southern Mongolia and northern China is one of important source regions. Accurate simulations of dust storm outbreak would be thus crucial for protecting human health as well as for better assessing its climatic impacts. However, huge uncertainties in soil dust simulations especially for dust sources in East Asia are still present in the state-of-the-art aerosol models. We here attempt to reduce uncertainty with simulated dust sources by applying inverse modeling technique and gain better understanding on physical processes determining dust mobilization over East Asia. We used a 3-D global chemical transport model (GEOS-Chem) with DEAD dust mobilization scheme in 2001. In addition we implemented in the model a Shao dust emission scheme which uses different threshold friction velocity as a function of particle sizes. We first evaluated the model by comparing simulated aerosol concentrations against observations in China, Korea, and Japan. The model with the DEAD scheme overestimated PM10 mass concentrations close to dust source regions in China but underestimated observed PM10 in downwind regions such as Korea and Japan during dust storm breaks. These simulated discrepancies, however, were much reduced in the model with Shao scheme resulting from spatial changes in dust sources. To examine determining parameters of dust sources in those two schemes and underlying physical processes we conduct an inverse modeling analysis of dust emissions from 4 source regions (Inner Mongolia, Gobi, Taklamakan desert, Mongolian plateau). Our analysis yields optimized dust sources over East Aisa, which enable us to better quantify spatial and temporal distributions of dust aerosol concentrations and their contributions to both air quality and climate over East Asia.

  18. Imaging the outward motions of clumpy dust clouds around the red supergiant Antares with VLT/VISIR

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.

    2014-08-01

    Aims: We present a 0."5-resolution 17.7 μm image of the red supergiant Antares. Our aim is to study the structure of the circumstellar envelope in detail. Methods: Antares was observed at 17.7 μm with the VLT mid-infrared instrument VISIR. Taking advantage of the BURST mode, in which a large number of short exposure frames are taken, we obtained a diffraction-limited image with a spatial resolution of 0."5. Results: The VISIR image shows six clumpy dust clouds located at 0."8-1."8 (43-96 R⋆ = 136-306 AU) away from the star. We also detected compact emission within a radius of 0."5 around the star. Comparison of our VISIR image taken in 2010 and the 20.8 μm image taken in 1998 with the Keck Telescope reveals the outward motions of four dust clumps. The proper motions of these dust clumps (with respect to the central star) amount to 0."2-0."6 in 12 years. This translates into expansion velocities (projected onto the plane of the sky) of 13-40 km s-1 with an uncertainty of ± 7 km s-1. The inner compact emission seen in the 2010 VISIR image is presumably newly formed dust, because it is not detected in the image taken in 1998. If we assume that the dust is ejected in 1998, the expansion velocity is estimated to be 34 km s-1, in agreement with the velocity of the outward motions of the clumpy dust clouds. The mass of the dust clouds is estimated to be (3-6) × 10-9 M⊙. These values are lower by a factor of 3-7 than the amount of dust ejected in one year estimated from the (gas+dust) mass-loss rate of 2 × 10-6 M⊙ yr-1, suggesting that the continuous mass loss is superimposed on the clumpy dust cloud ejection. Conclusions: The clumpy dust envelope detected in the 17.7 μm diffraction-limited image is similar to the clumpy or asymmetric circumstellar environment of other red supergiants. The velocities of the dust clumps cannot be explained by a simple accelerating outflow, implying the possible random nature of the dust cloud ejection mechanism. Based on VISIR

  19. Dust settling in magnetorotationally driven turbulent discs - I. Numerical methods and evidence for a vigorous streaming instability

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Tilley, David A.; Rettig, Terrence; Brittain, Sean D.

    2009-07-01

    In this paper, we have used the RIEMANN code for computational astrophysics to study the interaction of a realistic distribution of dust grains with gas at specific radial locations in a vertically stratified protostellar accretion disc. The disc was modelled to have the density and temperature of a minimum mass solar nebula, and shearing box simulations at radii of 0.3 and 10 au are reported here. The disc was driven to a fully developed turbulence via the magnetorotational instability (MRI). The simulations span three gas scaleheights about the disc's midplane. We find that the inclusion of standard dust-to-gas ratios does not have any significant effect on the MRI even when the dust sediments to the midplane of the accretion disc. The density distribution of the dust of all sizes reached a Gaussian profile within two scaleheights of the disc's midplane. The vertical scaleheights of these Gaussian profiles are shown to be proportional to the reciprocal of the square root of the dust radius when large spherical dust grains are considered. This result is consistent with theoretical expectation. The largest two families of dust in one of our simulations show a strong tendency to settle to the midplane of the accretion disc. The large dust tends to organize itself into elongated clumps of high density. The dynamics of these clumps is shown to be consistent with a streaming instability. The streaming instability is seen to be very vigorous and persistent once it forms. Each stream of high-density dust displays a reduced rms velocity dispersion. The velocity directions within the streams are also aligned relative to the mean shear, providing further evidence that we are witnessing a streaming instability. The densest clumpings of large dust are shown to form where the streams intersect. We have also shown that the mean free path and collision time for dust that participates in the streaming instability are reduced by almost two orders of magnitude relative to the

  20. THE SINS SURVEY OF z {approx} 2 GALAXY KINEMATICS: PROPERTIES OF THE GIANT STAR-FORMING CLUMPS

    SciTech Connect

    Genzel, R.; Foerster Schreiber, N. M.; Genel, S.; Tacconi, L. J.; Buschkamp, P.; Davies, R.; Eisenhauer, F.; Kurk, J.; Newman, S.; Jones, T.; Shapiro, K.; Lilly, S. J.; Carollo, C. M.; Renzini, A.; Bouche, N.; Burkert, A.; Cresci, G.; Ceverino, D.; Dekel, A.; Hicks, E.

    2011-06-01

    We have studied the properties of giant star-forming clumps in five z {approx} 2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H{alpha}/[N II] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km s{sup -1} kpc{sup -1}, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.

  1. The global chemical properties of high-mass star forming clumps at different evolutionary stages

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Jun; Zhou, Jian-Jun; Esimbek, Jarken; He, Yu-Xin; Li, Da-Lei; Tang, Xin-Di; Ji, Wei-Guang; Yuan, Ye; Guo, Wei-Hua

    2016-06-01

    A total of 197 relatively isolated high-mass star-forming clumps were selected from the Millimeter Astronomy Legacy Team 90 GHz (MALT90) survey data and their global chemical evolution investigated using four molecular lines, N2H+ (1--0), HCO+ (1--0), HCN (1-0), and HNC (1-0). The results suggest that the global averaged integrated intensity ratios I(HCO+)/I(HNC), I(HCN)/I(HNC), I(N2H+)/I(HCO+), and I(N2H+)/ I(HCN) are promising tracers for evolution of high-mass star-forming clumps. The global averaged column densities and abundances of N2H+, HCO+, HCN, and HNC increase as clumps evolve. The global averaged abundance ratios X(HCN)/X(HNC) could be used to trace evolution of high-mass star forming clumps, X(HCO+)/X(HNC) is more suitable for distinguishing high-mass star-forming clumps in prestellar (stage A) from those in protostellar (stage B) and HII/PDR region (stage C). These results suggest that the global averaged integrated intensity ratios between HCN (1-0), HNC (1-0), HCO+ (1--0) and N2H+ (1--0) are more suitable for tracing the evolution of high-mass star forming clumps. We also studied the chemical properties of the target high-mass star-forming clumps in each spiral arm of the Galaxy, and got results very different from those above. This is probably due to the relatively small sample in each spiral arm. For high-mass star-forming clumps in Sagittarius arm and Norma-Outer arm, comparing two groups located on one arm with different Galactocentric distances, the clumps near the Galactic Center appear to be younger than those far from the Galactic center, which may be due to more dense gas concentrated near the Galactic Center, and hence more massive stars being formed there.

  2. Allergies, asthma, and dust

    MedlinePlus

    ... much dust. Dust particles collect in fabrics and carpets. If you can, get rid of fabric or ... are covered in cloth. Replace wall-to-wall carpet with wood or other hard flooring. Since mattresses, ...

  3. Siderite 'clumped' isotope thermometry: A new paleoclimate proxy for humid continental environments

    NASA Astrophysics Data System (ADS)

    Fernandez, Alvaro; Tang, Jianwu; Rosenheim, Brad E.

    2014-02-01

    Clumped isotope measurements can be used to exploit the paleoclimatic potential of pedogenic siderite (FeCO3); however, the applicability of this method is held back by the lack of clumped isotope calibrations of mineralogies other than calcite and aragonite. Here we present an inorganic calibration of siderites grown in the laboratory between 21 and 51 °C. Linear regression of Δ47 values and temperature (106/T2, K) yields the following relationship (r2 = 0.997): Δ={(0.0356±0.0018)×106}/{T}+(0.172±0.019) We demonstrate that this calibration is indistinguishable from calcite at current levels of analytical precision. Our observations suggest that there is likely no large systematic bias in the clumped isotope acid fractionation factors between the two different carbonate minerals. We also present clumped isotope measurements of a natural siderite collected from Holocene sediments of the Mississippi River Delta. We find that siderites record warm season marsh water temperatures instead of mean annual temperatures as it has long been presumed. This finding has important implications for the accuracy of siderite stable isotope and clumped isotope based climate reconstructions.

  4. A SPITZER-MIPS SEARCH FOR DUST IN COMPACT HIGH-VELOCITY H I CLOUDS

    SciTech Connect

    Williams, Rik J.; Mathur, Smita; Poindexter, Shawn; Elvis, Martin; Nicastro, Fabrizio

    2012-04-15

    We employ three-band Spitzer-MIPS observations to search for cold dust emission in three neutral hydrogen compact high-velocity clouds (CHVCs) in the vicinity of the Milky Way. Far-infrared emission correlated with H I column density was previously reported in HVC Complex C, indicating that this object contains dust heated by the Galactic radiation field at its distance of {approx}10 kpc. Assuming published Spitzer, IRAS, and Planck, IR-H I correlations for Complex C, our Spitzer observations are of sufficient depth to directly detect 160 {mu}m dust emission in the CHVCs if it is present at the same level as in Complex C, but no emission is detected in any of the targets. For one of the targets (CHVC289) which has well-localized H I clumps, we therefore conclude that it is fundamentally different from Complex C, with either a lower dust-to-gas ratio or a greater distance from the Galactic disk (and consequently cooler dust temperature). Firm conclusions cannot be drawn for the other two Spitzer-observed CHVCs since their small-scale H I structures are not sufficiently well known; nonetheless, no extended dust emission is apparent despite their relatively high H I column densities. The lack of dust emission in CHVC289 suggests that at least some compact high-velocity clouds objects may exhibit very low dust-to-gas ratios and/or greater Galactocentric distances than large HVC complexes.

  5. Modeling the Extended Dust Shell Around AFGL 618

    NASA Astrophysics Data System (ADS)

    Hosmer, Laura; Speck, A.; Meixner, M.; Lis, D. C.; Nenkova, M. M.; Elitzur, M.

    2013-06-01

    ISO observations of the carbon-rich post-AGB object AFGL 618 have found an extremely extended (r >1 pc) circumstellar dust shell. This shell contains a fossil record of mass loss that occurred during the ascent of the asymptotic giant branch. We analyze previous far-infrared observations of AFGL 618 to estimate the mass of the dust shell, and thus place a lower limit on the mass of the progenitor star. We present a new sub-millimeter (350 m) map of AFGL 618, and place limits on the temperature and crystal structure of the dust grains. The analysis incorporates radiative transfer (RT) modeling of AFGL 618 using the 1-d code DUSTY. The models suggest that previous estimates of the inner radius of the dust shell were too small by a factor of 5-10. This discrepancy may be due to clumping in the HII region close to the central star. Our models show that the dust within » 10000 of the central star is dominated by crystalline material, while the far-infrared and sub-millimetre observations suggest that the dust at larger distances is amorphous, implying that the properties of the dust grains change with the evolution of the star. Finally, we show that the existing data do not lead to a unique model: good models have been achieved by assuming either constant or increasing mass-loss rate for the last few hundred years of AGB evolution. Increased mass loss at the end of the AGB requires the overall optical depth to be increased. The increasing mass-loss phase cannot have a duration longer than »500 yrs.

  6. Niamey Dust Observations

    DOE Data Explorer

    Flynn, Connor

    2008-10-01

    Niamey aerosol are composed of two main components: dust due to the proximity of the Sahara Desert, and soot from local and regional biomass burning. The purpose of this data product is to identify when the local conditions are dominated by the dust component so that the properties of the dust events can be further studied.

  7. Middle East Dust

    Atmospheric Science Data Center

    2013-04-16

    ... (nadir) camera. Here only some of the dust over eastern Syria and southeastern Turkey can be discerned. The dust is much more obvious ... October 18, 2002 - A large dust plume extends across Syria and Turkey. project:  MISR category:  ...

  8. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Dust and Sand Sweep Over Northeast China     View Larger Image ... these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the height of the dust and an ...

  9. Dust in the Universe

    ERIC Educational Resources Information Center

    Hemenway, Mary Kay; Armosky, Brad J.

    2004-01-01

    Space is seeming less and less like empty space as new discoveries and reexaminations fill in the gaps. And, ingenuity and technology, like the Spitzer Space Telescope, is allowing examination of the far reaches of the Milky Way and beyond. Even dust is getting its due, but not the dust everyone is familiar with. People seldom consider the dust in…

  10. Galactic cold cores. V. Dust opacity

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Ristorcelli, I.; Marshall, D. J.; Montillaud, J.; Pelkonen, V.-M.; Ysard, N.; McGehee, P.; Paladini, R.; Pagani, L.; Malinen, J.; Rivera-Ingraham, A.; Lefèvre, C.; Tóth, L. V.; Montier, L. A.; Bernard, J.-P.; Martin, P.

    2015-12-01

    Context. The project Galactic Cold Cores has carried out Herschel photometric observations of interstellar clouds where the Planck satellite survey has located cold and compact clumps. The sources represent different stages of cloud evolution from starless clumps to protostellar cores and are located in different Galactic environments. Aims: We examine this sample of 116 Herschel fields to estimate the submillimetre dust opacity and to search for variations that might be attributed to the evolutionary stage of the sources or to environmental factors, including the location within the Galaxy. Methods: The submillimetre dust opacity was derived from Herschel data, and near-infrared observations of the reddening of background stars are converted into near-infrared optical depth. We investigated the systematic errors affecting these parameters and used modelling to correct for the expected biases. The ratio of 250 μm and J band opacities is correlated with the Galactic location and the star formation activity. We searched for local variations in the ratio τ(250 μm)/τ(J) using the correlation plots and opacity ratio maps. Results: We find a median ratio of τ(250 μm) /τ(J) = (1.6 ± 0.2) × 10-3, which is more than three times the mean value reported for the diffuse medium. Assuming an opacity spectral index β = 1.8 instead of β = 2.0, the value would be lower by ~ 30%. No significant systematic variation is detected with Galactocentric distance or with Galactic height. Examination of the τ(250 μm) /τ(J) maps reveals six fields with clear indications of a local increase of submillimetre opacity of up to τ(250 μm) /τ(J) ~ 4 × 10-3 towards the densest clumps. These are all nearby fields with spatially resolved clumps of high column density. Conclusions: We interpret the increase in the far-infrared opacity as a sign of grain growth in the densest and coldest regions of interstellar clouds. Planck (http://www.esa.int/Planck) is a project of the European

  11. The most unusual dust event cases from Iceland

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Arnalds, Olafur; Olafsson, Haraldur; Meinander, Outi; Gritsevich, Maria

    2016-04-01

    . Dust was transported over 250 km causing impurities on snow in the capital of Iceland, Reykjavik. This has been the first observation of clumping mechanism of particles on snow in natural conditions. Maximum one-minute PM10 concentration was measured as 6500 μg m-3 while the mean (median) PM10 concentration during 24-hour storm was 1,281 (1,170) μg m-3. Dust can be also suspended during rainy period as a result of surface heating. We measured particle number concentration (PM~0.3-10 μm) up to 149,954 particles cm-3 min-1 during wet and low wind/windless conditions in August 2013. The particles were mainly of the close-to-ultrafine size. Wet dust particles were mobilized within < 4 hours.

  12. The population of giant clumps in simulated high-z galaxies: in situ and ex situ migration and survival

    NASA Astrophysics Data System (ADS)

    Mandelker, Nir; Dekel, Avishai; Ceverino, Daniel; Tweed, Dylan; Moody, Christopher E.; Primack, Joel

    2014-10-01

    We study the properties of giant clumps and their radial gradients in high-z disc galaxies using AMR cosmological simulations. Our sample consists of 770 snapshots in the redshift range z = 4-1 from 29 galaxies that at z = 2 span the stellar mass range (0.2-3) × 1011 M⊙. Extended gas discs exist in 83 per cent of the snapshots. Clumps are identified by gas density in 3D and their stellar and dark matter components are considered thereafter. While most of the overdensities are diffuse and elongated, 91 per cent of their mass and 83 per cent of their star formation rate (SFR) are in compact round clumps. Nearly all galaxies have a central, massive bulge clump, while 70 per cent of the discs show off-centre clumps, 3-4 per galaxy. The fraction of clumpy discs peaks at intermediate disc masses. Clumps are divided based on dark matter content into in situ and ex situ originating from violent disc instability (VDI) and minor mergers, respectively. 60 per cent of the discs are in a VDI phase showing off-centre in situ clumps, which contribute 1-7 per cent of the disc mass and 5-45 per cent of its SFR. The in situ clumps constitute 75 per cent of the off-centre clumps in terms of number and SFR but only half the mass, each clump containing on average 1 per cent of the disc mass and 6 per cent of its SFR. They have young stellar ages, 100-400 Myr, and high specific SFR (sSFR), 1-10 Gyr-1. They exhibit gradients resulting from inward clump migration, where the inner clumps are somewhat more massive and older, with lower gas fraction and sSFR and higher metallicity. Similar observed gradients indicate that clumps survive outflows. The ex situ clumps have stellar ages 0.5-3 Gyr and sSFR ˜0.1-2 Gyr-1, and they exhibit weaker gradients. Massive clumps of old stars at large radii are likely ex situ mergers, though half of them share the disc rotation.

  13. Record of seasonal body fluid composition in Black Clam (Bivalve) using clumped isotope thermometric approach

    NASA Astrophysics Data System (ADS)

    Rahman, H.; Naidu, P. K.; Ghosh, P.

    2012-12-01

    Application of clumped isotope thermometry (Ghosh et al., 2006) is highly debated while resolving the issue of kinetic effect during biogenic carbonate precipitation. Mollusks are particularly attractive target to study the kinetic effect (Eiler, 2011) in the biological system owing to its incremental growth ring patterns. This allows understanding the role of environmental parameters other than temperature driving the distribution of heavier isotopologues. Guo et al., (2010) indicated role of pH in driving the distribution of heavier isotopolgues in the carbonates. We investigated here clumped isotopic composition of Black Calm (bivalve shell) caught live from a location in Southern Indian Estuary. The region experiences large change in seasonal condition. The physical environmental parameters at that location were monitored for last 3 years at monthly interval. The salinity, temperature, pH information are available for all the months when mollusc growth bands are deposited. The bottom water of estuary, where bivalve thrives experience maximum temperature of 32°C during November and December, while temperature during Monsoon months (July, August) drops lows to 26°C. Initial results on clumped isotope thermometry on the growth bands precipitated suggests that during the time in a year when pH level is alkaline i.e. 8.0±0.2 there is large consistency between actual temperature and estimated temperature using clumped isotope based thermometry. While the pH drops towards acidic i.e. 6.8±0.1 lower temperature estimates compared to actual was recorded. The effect of metabolic rate and body temperature variability is not been investigated as suggested in case of land snails based clumped isotope thermometry (Zaarur et al., 2011). Mollusc shell can be used to trace the composition of environmental water while pH variation is minimal. In this presentation analyses of more shell specimen and explore the role of pH and osmo-regulation in mollusc determining the clumped

  14. Carbonate clumped isotope compositions of modern marine mollusk and brachiopod shells

    NASA Astrophysics Data System (ADS)

    Henkes, Gregory A.; Passey, Benjamin H.; Wanamaker, Alan D.; Grossman, Ethan L.; Ambrose, William G.; Carroll, Michael L.

    2013-04-01

    We present an empirical calibration of the carbonate clumped isotope thermometer based on mollusk and brachiopod shells from natural and controlled environments spanning water temperatures of -1.0 to 29.5 °C. The clumped isotope data (Δ47) are normalized to CO2 gases with equilibrium distributions of clumped isotopologues at high temperature (1000 °C) and low temperature (27 or 30 °C), and thus the calibration is unique in being directly referenced to a carbon dioxide equilibrium reference frame (Dennis et al., 2011, Defining an absolute reference frame for clumped isotope studies of CO2, Geochimica et Cosmochimica Acta, 75, 7117-7131). The shell clumped isotope data define the following relation as a function of temperature (in kelvin): Δ47=0.0327×106/T2+0.3286(r2=0.84). The temperature sensitivity (slope) of this relation is lower than those based on corals, fish otoliths, foraminifera, and coccoliths, but is similar to theoretical predictions for calcite based on lattice dynamics calculations. We find no convincing methodological or biological explanations for the difference in temperature sensitivity between this calibration and the previous calibrations, and suggest that the discrepancy might represent real but unknown differences in mineral-DIC clumped isotope fractionation between mollusks/brachiopods and other taxa. Nevertheless, revised analytical methods similar to those used in this study are now in wide use, and it will be important to develop calibrations for other taxonomic groups using these updated methods, with analyses directly referenced to the carbon dioxide equilibrium reference frame.

  15. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  16. Effects of Brine Salinity on Clumped Isotopes and Implications for Applications to Carbonate Diagenesis

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.; Jourdan, A.

    2012-12-01

    Carbonate clumped isotope thermometry relies on the overabundance of 13C-18O bonds in the crystal lattice compared to a stochastic distribution and was calibrated in laboratory experiments using carbonates precipitated from (mainly) de-ionized water that was supersaturated with calcium carbonate (Ghosh et al., 2006). However, the clumped isotope method has also been applied to carbonates that precipitated in the marine and subsurface environments from fluids with significant salt concentrations. These saline fluids differ markedly from the solution used for laboratory calibration. Variations in the electro-chemical potential due to changes in the ion composition and concentration of the solution could influence the physical properties of the clumped isotope bonding and lead to deviations from the commonly used temperature calibration. Consequently, calibrations at high salinities and high temperatures are needed to confidently extend the application of clumped isotopes to diagenetic processes. We investigated the effect of salinity on clumping by precipitating carbonates (mainly calcite) in the laboratory between 23 and 90 °C using a setup analogous to the experiments of Ghosh et al. (2006). A first subset of experiments was performed at low salinities, while during a second subset of experiments we saturated the solution with NaCl (about 35 g/100 ml) in order to mimic a highly saline brine. Since the same experimental procedures were used for both sub-sets (same temperatures of precipitation and rates of nitrogen gas bubbling), we can directly compare clumped isotope values in highly saline versus low-salinity solutions. The initial clumped isotope results obtained from the brine solution agree within uncertainty with results from carbonates precipitated from a NaCl-free solution at the same temperatures. This suggests that clumped isotopes can be applied to carbonates precipitated under highly saline conditions. We acknowledge the financial support of QCCSRC

  17. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    SciTech Connect

    Bot, Caroline; Helou, George; Puget, Jeremie; Latter, William B.; Schneider, Stephen; Terzian, Yervant

    2009-08-15

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 {mu}m and a marginal detection at 24 {mu}m associated with the highest H I column densities in the cloud. At 70 and 160 {mu}m, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  18. Constraints on the circumstellar dust around KIC 8462852

    NASA Astrophysics Data System (ADS)

    Thompson, M. A.; Scicluna, P.; Kemper, F.; Geach, J. E.; Dunham, M. M.; Morata, O.; Ertel, S.; Ho, P. T. P.; Dempsey, J.; Coulson, I.; Petitpas, G.; Kristensen, L. E.

    2016-05-01

    We present millimetre (Submillimeter Array) and submillimetre (SCUBA-2) continuum observations of the peculiar star KIC 8462852 which displayed several deep and aperiodic dips in brightness during the Kepler mission. Our observations are approximately confusion-limited at 850 μm and are the deepest millimetre and submillimetre photometry of the star that has yet been carried out. No significant emission is detected towards KIC 8462852. We determine upper limits for dust between a few 10-6 M⊕ and 10-3 M⊕ for regions identified as the most likely to host occluding dust clumps and a total overall dust budget of <7.7 M⊕ within a radius of 200 au. Such low limits for the inner system make the catastrophic planetary disruption hypothesis unlikely. Integrating over the Kepler light curve we determine that at least 10-9 M⊕ of dust is required to cause the observed Q16 dip. This is consistent with the currently most favoured cometary breakup hypothesis, but nevertheless implies the complete breakup of ˜30 Comet 1/P Halley type objects. Finally, in the wide SCUBA-2 field of view we identify another candidate debris disc system that is potentially the largest yet discovered.

  19. Wireless quantified reflex device

    NASA Astrophysics Data System (ADS)

    Lemoyne, Robert Charles

    The deep tendon reflex is a fundamental aspect of a neurological examination. The two major parameters of the tendon reflex are response and latency, which are presently evaluated qualitatively during a neurological examination. The reflex loop is capable of providing insight for the status and therapy response of both upper and lower motor neuron syndromes. Attempts have been made to ascertain reflex response and latency, however these systems are relatively complex, resource intensive, with issues of consistent and reliable accuracy. The solution presented is a wireless quantified reflex device using tandem three dimensional wireless accelerometers to obtain response based on acceleration waveform amplitude and latency derived from temporal acceleration waveform disparity. Three specific aims have been established for the proposed wireless quantified reflex device: 1. Demonstrate the wireless quantified reflex device is reliably capable of ascertaining quantified reflex response and latency using a quantified input. 2. Evaluate the precision of the device using an artificial reflex system. 3.Conduct a longitudinal study respective of subjects with healthy patellar tendon reflexes, using the wireless quantified reflex evaluation device to obtain quantified reflex response and latency. Aim 1 has led to the steady evolution of the wireless quantified reflex device from a singular two dimensional wireless accelerometer capable of measuring reflex response to a tandem three dimensional wireless accelerometer capable of reliably measuring reflex response and latency. The hypothesis for aim 1 is that a reflex quantification device can be established for reliably measuring reflex response and latency for the patellar tendon reflex, comprised of an integrated system of wireless three dimensional MEMS accelerometers. Aim 2 further emphasized the reliability of the wireless quantified reflex device by evaluating an artificial reflex system. The hypothesis for aim 2 is that

  20. DENSE, PARSEC-SCALE CLUMPS NEAR THE GREAT ANNIHILATOR

    SciTech Connect

    Hodges-Kluck, Edmund; Pound, Marc W.; Harris, Andrew I.; Lamb, James W.; Hodges, Mark

    2009-05-10

    We report on Combined Array for Research in Millimeter-Wave Astronomy and James Clerk Maxwell Telescope observations toward the Einstein source 1E 1740.7-2942, a low-mass X-ray binary commonly known as the 'Great Annihilator'. The Great Annihilator is known to be near a small, bright molecular cloud in a region largely devoid of emission in {sup 12}CO surveys of the Galactic center. This region is of interest because it is interior to the dust lanes which may be the shock zones where atomic gas from the HI nuclear disk is converted into molecular gas. We find that the region is populated with a large number of dense (n {approx} 10{sup 5} cm{sup -3}) regions of excited gas with small filling factors. The gas appears to have turbulent support and may be the result of sprays of material from collisions in the shock zone. We estimate that {approx}(1-3) x 10{sup 5} M {sub sun} of shocked gas resides in our r {approx} 3', {delta}v {sub LSR} = 100 km s{sup -1} field. If this gas has recently shocked and is interior to the inner Lindblad resonance of the dominant bar, it is in transit to the x {sub 2} disk, suggesting that a significant amount of mass may be transported to the disk by a low filling factor population of molecular clouds with low surface brightness in larger surveys.

  1. Sensitivity of regional dust modelling to the wind speed and the emissions schemes: Impact on the hourly dust previsibility

    NASA Astrophysics Data System (ADS)

    Menut, L.

    2008-12-01

    The mineral dust emissions are highly sensitive to the surface characteristics and the wind speed. For global and climatological studies, the associated potential uncertainty may lead to large errors in the dust amount budget. The wind speed having really an hourly variability, this study first quantify the impact of using two meteorological datasets to model hourly dust emissions, over several months. Coupled to a sensitivity analysis on the emissions schemes themselves, quantification of the variabitily due to meteorological and emissions input parameters is quantified. The same modelling system was used for daily forecast in the framework of the AMMA experiment. Each day, the model CHIMERE-DUST forecasted dust concentrations over the whole North-Atlantic, Europe and northern Africa. First , an evaluation of the model is performed in analysis mode: hourly comparisons are done between surface AERONET optical thickness measurements, OMI satellite (aerosol index) measurements and concentrations and modelled optical thicknesses with CHIMERE-DUST. The accuracy and spread between measurements and model are quantified and discussed in term of the most important dust events observed during the first short observation period of the AMMA experiment, over the western Africa. Using the same comparisons criteria, the second step consist in the same type of calculations but with the 'forecasted' meteorological and dust concentrations fields. The model skill is evaluate in term of capability to forecast (i) the surface wind speed (the key process for dust emissions), (ii) the dust emissions (depending on the wind speed as well as numerous others uncertain parameters, including threshold values on the friction velocity) and (iii) the transport of aerosols from source to remote areas (depending of horizontal transport, convection etc.).

  2. Deposition Rates and Characterization of Arabian Mineral Dust

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Stenchikov, G. L.; Engelbrecht, J. P.

    2015-12-01

    Airborne mineral dust directly and indirectly impacts on global climate, continental and marine biochemistry, human and animal health, agriculture, equipment, and visibility. Annual global dust emissions are poorly known with estimates differing by a factor of at least two. Local dust emission and deposition rates are even less quantified. Dust deposition rate is a key parameter, which helps to constrain the modeled dust budget of the atmosphere. However, dust deposition remains poorly known, due to the limited number of reliable measurements. Simulations and satellite observations suggest that coastal dusts contribute substantially to the total deposition flux into the Red Sea. Starting December 2014, deposition samplers, both the "frisbee" type, and passive samplers for individual particle scanning electron microscopy were deployed at King Abdullah University of Science and Technology (KAUST), along the Red Sea in Saudi Arabia. Sampling periods of one month were adopted. The deposition rates range from 3 g m-2 month-1 for fair weather conditions to 23 g m-2 month-1 for high dust events. The X-ray diffraction (XRD) analyses of deposited dust samples show mineralogical compositions different from any of the parent soils, the former consisting mainly of gypsum, calcite, and smaller amounts of albite, montmorillonite, chlorite, quartz and biotite. The deposited dust samples on the other hand contain more gypsum and less quartz than the previously collected soil samples. This presentation discusses the results from XRD, chemical analysis and SEM-based individual particle analysis of the soils and the deposited dust samples. The monthly dust accumulation rates and their seasonal and spatial variability are compared with the regional model predictions. Data from this study provide an observational basis for validating the regional dust mass balance along the Arabian Red Sea coastal plain.

  3. Reinforcing the link between the double red clump and the X-shaped bulge of the Milky Way

    NASA Astrophysics Data System (ADS)

    Gonzalez, O. A.; Zoccali, M.; Debattista, V. P.; Alonso-García, J.; Valenti, E.; Minniti, D.

    2015-11-01

    The finding of a double red clump in the luminosity function of the Milky Way bulge has been interpreted as evidence for an X-shaped structure. Recently, an alternative explanation has been suggested, where the double red clump is an effect of multiple stellar populations in a classical spheroid. In this Letter we provide an observational assessment of this scenario and show that it is not consistent with the behaviour of the red clump across different lines of sight, particularly at high distances from the Galactic plane. Instead, we confirm that the shape of the red clump magnitude distribution closely follows the distance distribution expected for an X-shaped bulge at critical Galactic latitudes. We also emphasize some key observational properties of the bulge red clump that should not be neglected in the search for alternative scenarios. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002.

  4. Haul road dust control

    SciTech Connect

    Reed, W.R.; Organiscak, J.A.

    2007-10-15

    A field study was conducted to measure dust from haul trucks at a limestone quarry and a coal preparation plant waste hauling operation. The study found that primarily wind, distance and road treatment conditions notably affected the dust concentrations at locations next to, 50 ft from, and 100 ft away from the unpaved haulage road. Airborne dust measured along the unpaved haul road showed that high concentrations of fugitive dust can be generated with these concentrations rapidly decreasing to nearly background levels within 100 ft of the road. Instantaneous respirable dust measurements illustrated that the trucks generate a real-time dust cloud that has a peak concentration with a time-related decay rate as the dust moves past the sampling locations. The respirable dust concentrations and peak levels were notably diminished as the dust cloud was transported, diluted, and diffused by the wind over the 100 ft distance from the road. Individual truck concentrations and peak levels measured next to the dry road surface test section were quite variable and dependent on wind conditions, particularly wind direction, with respect to reaching the sampling location. The vast majority of the fugitive airborne dust generated from unpaved and untreated haulage roads was non-respirable. 6 figs.

  5. The dust scattering halo of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; Paerels, F.

    2015-10-01

    Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.

  6. MLAOS: A Multi-Point Linear Array of Optical Sensors for Coniferous Foliage Clumping Index Measurement

    PubMed Central

    Qu, Yonghua; Fu, Lizhe; Han, Wenchao; Zhu, Yeqing; Wang, Jindi

    2014-01-01

    The canopy foliage clumping effect is primarily caused by the non-random distribution of canopy foliage. Currently, measurements of clumping index (CI) by handheld instruments is typically time- and labor-intensive. We propose a low-cost and low-power automatic measurement system called Multi-point Linear Array of Optical Sensors (MLAOS), which consists of three above-canopy and nine below-canopy optical sensors that capture plant transmittance at different times of the day. Data communication between the MLAOS node is facilitated by using a ZigBee network, and the data are transmitted from the field MLAOS to a remote data server using the Internet. The choice of the electronic element and design of the MLAOS software is aimed at reducing costs and power consumption. A power consumption test showed that, when a 4000 mAH Li-ion battery is used, a maximum of 8–10 months of work can be achieved. A field experiment on a coniferous forest revealed that the CI of MLAOS may reveal a clumping effect that occurs within the canopy. In further work, measurement of the multi-scale clumping effect can be achieved by utilizing a greater number of MLAOS devices to capture the heterogeneity of the plant canopy. PMID:24859029

  7. Using red clump stars to decompose the galactic magnetic field with distance

    SciTech Connect

    Pavel, Michael D.

    2014-09-01

    A new method for measuring the large-scale structure of the Galactic magnetic field is presented. The Galactic magnetic field has been probed through the Galactic disk with near-infrared starlight polarimetry; however, the distance to each background star is unknown. Using red clump stars as near-infrared standard candles, this work presents the first attempt to decompose the line-of-sight structure of the sky-projected Galactic magnetic field. Two example lines of sight are decomposed: toward a field with many red clump stars and toward a field with few red clump stars. A continuous estimate of magnetic field orientation over several kiloparsecs of distance is possible in the field with many red clump stars, while only discrete estimates are possible in the sparse example. Toward the outer Galaxy, there is a continuous field orientation with distance that shows evidence of perturbation by the Galactic warp. Toward the inner Galaxy, evidence for a large-scale change in the magnetic field geometry is consistent with models of magnetic field reversals, independently derived from Faraday rotation studies. A photo-polarimetric method for identifying candidate intrinsically polarized stars is also presented. The future application of this method to large regions of the sky will begin the process of mapping the Galactic magnetic field in a way never before possible.

  8. Electronic Libraries and Collaboration in the UK: The eLib Clump Projects.

    ERIC Educational Resources Information Center

    Brack, Verity; Stubley, Peter

    The eLib (Electronic Libraries) Program in United Kingdom higher education began in the spring of 1995, as a result of the Follett Report (Joint Funding Councils' Libraries Review Group, 1993) that emphasized the need for higher education libraries to be involved in the development of information and communication technologies. A "clump" is a term…

  9. Swimming motility plays a key role in the stochastic dynamics of cell clumping

    NASA Astrophysics Data System (ADS)

    Qi, Xianghong; Nellas, Ricky B.; Byrn, Matthew W.; Russell, Matthew H.; Bible, Amber N.; Alexandre, Gladys; Shen, Tongye

    2013-04-01

    Dynamic cell-to-cell interactions are a prerequisite to many biological processes, including development and biofilm formation. Flagellum induced motility has been shown to modulate the initial cell-cell or cell-surface interaction and to contribute to the emergence of macroscopic patterns. While the role of swimming motility in surface colonization has been analyzed in some detail, a quantitative physical analysis of transient interactions between motile cells is lacking. We examined the Brownian dynamics of swimming cells in a crowded environment using a model of motorized adhesive tandem particles. Focusing on the motility and geometry of an exemplary motile bacterium Azospirillum brasilense, which is capable of transient cell-cell association (clumping), we constructed a physical model with proper parameters for the computer simulation of the clumping dynamics. By modulating mechanical interaction (‘stickiness’) between cells and swimming speed, we investigated how equilibrium and active features affect the clumping dynamics. We found that the modulation of active motion is required for the initial aggregation of cells to occur at a realistic time scale. Slowing down the rotation of flagellar motors (and thus swimming speeds) is correlated to the degree of clumping, which is consistent with the experimental results obtained for A. brasilense.

  10. Clumping-corrected mass-loss rates of Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Nugis, T.; Crowther, P. A.; Willis, A. J.

    1998-05-01

    Mass-loss rates of Galactic Wolf-Rayet stars have been determined from their radio emission power and spectral index (alpha = dln {f_ν} / dln ν), accounting for the clumped structure and (potential) variable ionization in their outer winds. The average spectral index between mm- and cm- wavelengths is ~ 0.77 for WN stars and ~ 0.75 for WC stars, in contrast with ~ 0.58 expected for smooth winds. The observed wavelength dependence of alpha can be explained using clumped wind models in some cases, with shocks (at 30-100 stellar radii) producing a higher ionization zone in the outer wind. We obtain an empirical formula relating mass-loss with observed optical emission line equivalent widths, with application to stars without measured radio fluxes. Clumping-corrected mass-loss rates are generally lower than those obtained by current smooth wind models. Specifically we find log \\mdot(clumpy)-log \\mdot(smooth)=-0.19 (sigma=0.28) for WN stars, and log \\mdot(clumpy)-log \\mdot(smooth)=-0.62 (sigma=0.19) for WC stars. New mass-loss rate estimates agree very well with (clumping independent) determinations of WR components in binary systems.

  11. SEPARATING THE CONJOINED RED CLUMP IN THE GALACTIC BULGE: KINEMATICS AND ABUNDANCES

    SciTech Connect

    De Propris, Roberto; Kunder, Andrea; Rich, R. Michael; Johnson, Christian I.; Koch, Andreas; Brough, Sarah; Conselice, Christopher J.; Gunawardhana, Madusha; Wijesinghe, Dinuka; Palamara, David; Pimbblet, Kevin

    2011-05-10

    We have used the AAOMEGA spectrograph to obtain R {approx} 1500 spectra of 714 stars that are members of two red clumps in the Plaut Window Galactic bulge field (l, b) = (0{sup 0}, - 8{sup 0}). We discern no difference between the clump populations based on radial velocities or abundances measured from the Mgb index. The velocity dispersion has a strong trend with Mgb-index metallicity, in the sense of a declining velocity dispersion at higher metallicity. We also find a strong trend in mean radial velocity with abundance. Our red clump sample shows distinctly different kinematics for stars with [Fe/H] <-1, which may plausibly be attributable to a minority classical bulge or inner halo population. The transition between the two groups is smooth. The chemo-dynamical properties of our sample are reminiscent of those of the Milky Way globular cluster system. If correct, this argues for no bulge/halo dichotomy and a relatively rapid star formation history. Large surveys of the composition and kinematics of the bulge clump and red giant branch are needed to further define these trends.

  12. A predator-prey model for moon-triggered clumping in Saturn's rings

    NASA Astrophysics Data System (ADS)

    Esposito, Larry W.; Albers, Nicole; Meinke, Bonnie K.; Sremčević, Miodrag; Madhusudhanan, Prasanna; Colwell, Joshua E.; Jerousek, Richard G.

    2012-01-01

    UVIS occultation data show clumping in Saturn's F ring and at the B ring outer edge, indicating aggregation and disaggregation at these locations that are perturbed by Prometheus and by Mimas. The inferred timescales range from hours to months. Occultation profiles of the edge show wide variability, indicating perturbations by local mass aggregations. Structure near the B ring edge is seen in power spectral analysis at scales 200-2000 m. Similar structure is also seen at the strongest density waves, with significance increasing with resonance strength. For the B ring outer edge, the strongest structure is seen at longitudes 90° and 270° relative to Mimas. This indicates a direct relation between the moon and the ring clumping. We propose that the collective behavior of the ring particles resembles a predator-prey system: the mean aggregate size is the prey, which feeds the velocity dispersion; conversely, increasing dispersion breaks up the aggregates. Moons may trigger clumping by streamline crowding, which reduces the relative velocity, leading to more aggregation and more clumping. Disaggregation may follow from disruptive collisions or tidal shedding as the clumps stir the relative velocity. For realistic values of the parameters this yields a limit cycle behavior, as for the ecology of foxes and hares or the "boom-bust" economic cycle. Solving for the long-term behavior of this forced system gives a periodic response at the perturbing frequency, with a phase lag roughly consistent with the UVIS occultation measurements. We conclude that the agitation by the moons in the F ring and at the B ring outer edge drives aggregation and disaggregation in the forcing frame. This agitation of the ring material may also allow fortuitous formation of solid objects from the temporary clumps, via stochastic processes like compaction, adhesion, sintering or reorganization that drives the denser parts of the aggregate to the center or ejects the lighter elements. Any of

  13. CHEMISTRY IN INFRARED DARK CLOUD CLUMPS: A MOLECULAR LINE SURVEY AT 3 mm

    SciTech Connect

    Sanhueza, Patricio; Jackson, James M.; Foster, Jonathan B.; Finn, Susanna C.; Garay, Guido; Silva, Andrea

    2012-09-01

    We have observed 37 Infrared Dark Clouds (IRDCs), containing a total of 159 clumps, in high-density molecular tracers at 3 mm using the 22 m ATNF Mopra Telescope located in Australia. After determining kinematic distances, we eliminated clumps that are not located in IRDCs and clumps with a separation between them of less than one Mopra beam. Our final sample consists of 92 IRDC clumps. The most commonly detected molecular lines are (detection rates higher than 8%) N{sub 2}H{sup +}, HNC, HN{sup 13}C, HCO{sup +}, H{sup 13}CO{sup +}, HCN, C{sub 2}H, HC{sub 3}N, HNCO, and SiO. We investigate the behavior of the different molecular tracers and look for chemical variations as a function of an evolutionary sequence based on Spitzer IRAC and MIPS emission. We find that the molecular tracers behave differently through the evolutionary sequence and some of them can be used to yield useful relative age information. The presence of HNC and N{sub 2}H{sup +} lines does not depend on the star formation activity. On the other hand, HC{sub 3}N, HNCO, and SiO are predominantly detected in later stages of evolution. Optical depth calculations show that in IRDC clumps the N{sub 2}H{sup +} line is optically thin, the C{sub 2}H line is moderately optically thick, and HNC and HCO{sup +} are optically thick. The HCN hyperfine transitions are blended, and, in addition, show self-absorbed line profiles and extended wing emission. These factors combined prevent the use of HCN hyperfine transitions for the calculation of physical parameters. Total column densities of the different molecules, except C{sub 2}H, increase with the evolutionary stage of the clumps. Molecular abundances increase with the evolutionary stage for N{sub 2}H{sup +} and HCO{sup +}. The N{sub 2}H{sup +}/HCO{sup +} and N{sub 2}H{sup +}/HNC abundance ratios act as chemical clocks, increasing with the evolution of the clumps.

  14. The kinetics of clumped-isotope reactions in calcite and apatite from natural and experimental samples

    NASA Astrophysics Data System (ADS)

    Stolper, D. A.; Eiler, J. M.

    2014-12-01

    Measurements of clumped isotopes of carbonate-bearing minerals are a powerful tool for reconstructing past surface temperatures and thermal histories of shallow crustal rocks. Because the clumped-isotope thermometer is based on homogenous-phase equilibrium, a sample's clumped-isotope temperature is susceptible to resetting through, for example, intracrystalline diffusion and redistribution of C and O isotopes during (re)heating or slow cooling. Quantitative knowledge of the kinetics of this resetting have received increasing attention (1-3) and is critical for understanding the meaning of clumped-isotope temperatures of samples with complex burial histories. To better constrain these kinetics and complement previous work (1-3) we performed heating experiments (400-700°C) on optical calcites and carbonate-bearing apatites. As previously observed (2-3), calcites exhibit non-first-order kinetics. The data were fit using a model that incorporates both diffusion and isotope-exchange reactions (4). The kinetics derived with this model using the optical-calcite heating experiments of (2) and those measured here are indistinguishable. The model predicts that subtle changes (>10°C) in measured calcite clumped-isotope temperatures can occur at burial temperatures between 60-100°C on million-year timescales. Though small, such changes may have an impact on clumped-isotope-based reconstructions of past surface temperatures and thermal histories. The derived kinetics were compared to clumped-isotope measurements of cogenetic calcites and apatites from slowly cooled carbonatite intrusions. Apparent temperatures are 70-140°C for apatites and 120-190°C for calcites. Measured temperatures for calcites match modeled temperatures using reasonable geological cooling rates. Natural apatite samples yield lower apparent temperatures than predicted based on the model. We propose that this difference is the result of annealment of structural damage in apatites (e.g., generated by

  15. The Spherically Symmetric Gravitational Collapse of a Clump of Solids in a Gas

    NASA Astrophysics Data System (ADS)

    Shariff, Karim; Cuzzi, Jeffrey N.

    2015-05-01

    In the subject of planetesimal formation, several mechanisms have been identified that create dense particle clumps in the solar nebula. The present work is concerned with the gravitational collapse of such clumps, idealized as being spherically symmetric. Fully nonlinear simulations using the two-fluid model are carried out (almost) up to the time when a central density singularity forms. We refer to this as the collapse time. The end result of the study is a parametrization of the collapse time, in order that it may be compared with timescales for various disruptive effects to which clumps may be subject in a particular situation. An important effect that determines the collapse time is that as the clump compresses, it also compresses the gas due to drag. This increases gas pressure, which retards particle collapse and can lead to oscillation in the size and density of the clump. In the limit of particles perfectly coupled to the gas, the characteristic ratio of gravitational force to gas pressure becomes relevant and defines a two-phase Jeans parameter, {{J}t}, which is the classical Jeans parameter with the speed of sound replaced by an effective wave speed in the coupled two-fluid medium. The parameter {{J}t} remains useful even away from the perfect coupling limit because it makes the simulation results insensitive to the initial density ratio of particles to gas (Φ0) as a separate parameter. A simple ordinary differential equation model is developed. It takes the form of two coupled non-linear oscillators and reproduces key features of the simulations. Finally, a parametric study of the time to collapse is performed and a formula (fit to the simulations) is developed. In the incompressible limit {{J}t}\\to 0, collapse time equals the self-sedimentation time, which is inversely proportional to the Stokes number. As {{J}t} increases, the collapse time decreases with {{J}t} and eventually becomes approximately equal to the dynamical time. Values of collapse

  16. Grain size dependency in clumped isotope ratios in high temperature calcites

    NASA Astrophysics Data System (ADS)

    Banerjee, Y.; Ghosh, P.; Misra, S.

    2013-12-01

    Here we have extended the application of clumped isotope thermometry for understanding the geospeedometers using calcite produced at high temperature and pressure. Static recrystallization experiments were conducted on cylindrical discs of AR grade carbonate with three different grain sizes (40μm, 200μm and 400μm) at constant pressure (170×5 MPa) and two different temperatures (6000×10°C and 8000×10°C) for 24 hours. The rate of temperature ramps for heating and cooling were set at 20°C/min and 60°C/min, respectively, mimicking a laboratory scale metamorphic condition of sudden burial and exhumation. The carbonate rocks, with prominent calcite mineral composition were prepared in a cylindrical capsule and were investigated for grain size distribution using Mastersizer, a laser technology to measure grain size. We identified three categories of crystals with grain size varying between 40μm, 200μm and 400μm. 15mg carbonate powder drilled from the periphery of the cylindrical discs were analysed for Clumped isotope ratio (Ghosh et al., 2006). Calcite formation experiment allowed re-crystallization of original powder produced at ambient temperature by subjecting the experimental setup to the temperatures of 800 and 600°C (Pressure was maintained constant at 170×5 MPa). We found broadly three different grain size fractions measured using in-situ laser probe. The present experiments were performed in dry environment unlike the wet high pressure experiment presented in the Passey and Henkes (2012). The present experimental value for Δ 47 was translated into absolute temperature using thermometry equation proposed by Ghosh et al., (2006). We observed a strong relationship of clumped isotopic composition with grain sizes of carbonates, which was rather inconsistent with the earlier presumption (Passey and Henkes 2012). The clumped temperature value was found matching with the true temperature in cases where grain size attained 400 micron, while finer fraction

  17. Imaging-based dust sensors: equipment and methods

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Greco, Sonia

    2004-05-01

    Dust detection and control in real time, represent one of the most challenging problem in all those environments where fine and ultrafine airborne particulate solids products are present. The presence of such products can be linked to several factors, often directly related and influenced by the working-production actions performed. Independently from the causes generating dust, airborne contaminants are an occupational problem of increasing interest as they are related to a wide number of diseases. In particular, airborne dusts are well known to be associated with several classical occupational lung diseases, such as the pneumoconiosis, especially at high levels of exposure. Nowadays there is also an increasing interest in other dust related diseases, from the most serious as cancer and asthma, to those related with allergies or irritation and other illnesses, also occurring at lower levels of exposure. Among the different critical factors influencing health risk for airborne dust exposure, mainly four have to be considered, that is: i) nature of the dust resulting from working in terms of presence of specific poisoning material, i.e. free silica, and morphological and morphometrical attributes of particulates constituting airborne dust; ii) size of the particles, iii) duration of exposure time and, finally, iv) airborne dust concentration in the breathing zone where the worker performs his activity. A correct dust detection is not easy, especially if some of the previous mentioned factors, have to be detected and quantified in real time in order to define specific "on-line" control actions aimed to reduce the level of the exposure to dust of the workers, as for example: i) modification of aspirating devices operating condition, change of filtering cleaning sequence, etc. . The more severe are the environmental conditions, in terms of dust presence (in quantity and quality) more difficult is to utilize efficient sampling devices. Detection devices, in fact, tend

  18. DUST FORMATION IN MACRONOVAE

    SciTech Connect

    Takami, Hajime; Ioka, Kunihito; Nozawa, Takaya E-mail: kunihito.ioka@kek.jp

    2014-07-01

    We examine dust formation in macronovae (as known as kilonovae), which are the bright ejecta of neutron star binary mergers and one of the leading sites of r-process nucleosynthesis. In light of information about the first macronova candidate associated with GRB 130603B, we find that dust grains of r-process elements have difficulty forming because of the low number density of the r-process atoms, while carbon or elements lighter than iron can condense into dust if they are abundant. Dust grains absorb emission from ejecta with an opacity even greater than that of the r-process elements, and re-emit photons at infrared wavelengths. Such dust emission can potentially account for macronovae without r-process nucleosynthesis as an alternative model. This dust scenario predicts a spectrum with fewer features than the r-process model and day-scale optical-to-ultraviolet emission.

  19. Technologies for laboratory generation of dust from geological materials.

    PubMed

    Gill, Thomas E; Zobeck, Ted M; Stout, John E

    2006-04-30

    Dusts generated in the laboratory from soils and sediments are used to evaluate the emission intensities, composition, and environmental and health impacts of mineral aerosols. Laboratory dust generation is also utilized in other disciplines including process control and occupational hygiene in manufacturing, inhalation toxicology, environmental health and epidemiology, and pharmaceutics. Many widely available and/or easily obtainable laboratory or commercial appliances can be used to generate mineral aerosols, and several distinct classes of dust generators (fluidization devices, dustfall chambers, rotating drums/tubes) are used for geological particulate studies. Dozens of different devices designed to create dust from soils and sediments under controlled laboratory conditions are documented and described in this paper. When choosing a specific instrument, investigators must consider some important caveats: different classes of dust generators characterize different properties (complete collection of a small puff of aerosol versus sampling of a representative portion of a large aerosol cloud) and physical processes (resuspension of deposited dust versus in situ production of dust). The quantity "dustiness" has been used in industrial and environmental health research; though it has been quantified in different ways by different investigators, it should also be applicable to studies of geological aerosol production. Using standardized dust-production devices and definitions of dustiness will improve comparisons between laboratories and instruments: lessons learned from other disciplines can be used to improve laboratory research on the generation of atmospheric dusts from geological sources.

  20. Interstellar Dust Models

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2004-01-01

    A viable interstellar dust model - characterized by the composition, morphology, and size distribution of the dust grains and by the abundance of the different elements locked up in the dust - should fit all observational constraints arising primarily from the interactions of the dust with incident radiation or the ambient gas. As a minimum, these should include the average interstellar extinction, the infrared emission from the diffuse interstellar medium (ISM), and the observed interstellar abundances of the various refractory elements. The last constraint has been largely ignored, resulting in dust models that require more elements to be in the dust phase than available in the ISM. In this talk I will describe the most recent advances towards the construction of a comprehensive dust model made by Zubko, Dwek, and Arendt, who, for the first time, included the interstellar abundances as explicit constraints in the construction of interstellar dust models. The results showed the existence of many distinct models that satisfy the basic set of observational constraints, including bare spherical silicate and graphite particles, PAHs, as well as spherical composite particles containing silicate, organic refractories, water ice, and voids. Recently, a new interstellar dust constituent has emerged, consisting of metallic needles. These needles constitute a very small fraction of the interstellar dust abundance, and their existence is primarily manifested in the 4 to 8 micron wavelength region, where they dominate the interstellar extinction. Preliminary studies show that these models may be distinguished by their X-ray halos, which are produced primarily by small angle scattering off large dust particles along the line of sight to bright X-ray sources, and probe dust properties largely inaccessible at other wavelengths.

  1. Empirical High-Temperature Calibration for the Carbonate Clumped Isotopes Paleothermometer

    NASA Astrophysics Data System (ADS)

    Kluge, T.; John, C. M.; Jourdan, A.; Davis, S.; Crawshaw, J.

    2013-12-01

    The clumped isotope paleothermometer is being used in a wide range of applications related to carbonate mineral formation, focusing on temperature and fluid δ18O reconstruction. Whereas the range of typical Earth surface temperatures has been the focus of several studies based on laboratory experiments and biogenic carbonates of known growth temperatures, the clumped isotope-temperature relationship above 70 °C has not been assessed by direct precipitation of carbonates. We investigated the clumped isotope-temperature relationship by precipitating carbonates between 20 and 200°C in the laboratory. The setup consists of a pressurized vessel in which carbonate minerals are precipitated from the mixture of two solutions (CaCl2, NaHCO3). Both solutions are thermally and isotopically equilibrated before injection in the pressure vessel. Minerals precipitated in this setup generally consist of calcite. Samples were reacted with 105% orthophosphoric acid for 10 min at 90°C. The evolved CO2 was continuously collected and subsequently purified with a Porapak trap held at -35°C. Measurements were performed on a MAT 253 using the protocol of Huntington et al. (2009) and Dennis et al. (2011). Clumped isotope values from 20-90°C are consistent with carbonates that were precipitated from a CaCO3 super-saturated solution using the method of McCrea (1950). This demonstrates that the experimental setup does not induce any kinetic fractionation, and can be used for high-temperature carbonate precipitation. The new clumped isotope calibration at high temperature follows the theoretical calculations of Schauble et al. (2006) adjusted for phosphoric acid digestion at 90°C. We gratefully acknowledge funding from Qatar Petroleum, Shell and the Qatar Science and Technology Park.

  2. Cores and revived cusps of dark matter haloes in disc galaxy formation through clump clusters

    NASA Astrophysics Data System (ADS)

    Inoue, Shigeki; Saitoh, Takayuki R.

    2011-12-01

    The cusp-core problem is a controversial problem in galactic dark matter haloes. Cosmological N-body simulations have demonstrated that galactic dark matter haloes have a cuspy density profile at the centre. However, baryonic physics may affect the dark matter density profile. For example, it was suggested that adiabatic contraction of baryonic gas makes the dark matter cusp steeper. However, it is still an open question as to whether the gas falls into the galactic centre in a smooth adiabatic manner. Recent numerical studies suggested that disc galaxies might experience a clumpy phase in the early stage of disc formation, which could also explain the clump clusters and chain galaxies observed in the high-redshift Universe. In this paper, using numerical simulations with an isolated model, we study how the dark matter halo responds to the clumpy nature of baryon components in disc galaxy formation through the clump-cluster phase. Our simulation demonstrates that such a clumpy phase leads to a shallower density profile of the dark matter halo in the central region while clumps fall into the centre due to dynamical friction. This mechanism helps to make the central dark matter density profile shallower in galaxies with virial mass as large as 5.0 × 1011 M⊙. The halo draws the clumps into the galactic centre, while it is kinematically heated by the clumps. We additionally run a dark-matter-only simulation excluding baryonic components and confirm that the resultant shallower density profile is not due to a numerical artefact in the simulation, such as two-body relaxation.

  3. The Robustness of Clumped Isotope Temperatures to Bond Reordering: Evidence from Deeply Buried Carbonate Reservoirs

    NASA Astrophysics Data System (ADS)

    MacDonald, J.; John, C. M.; Girard, J. P.

    2014-12-01

    Numerous studies have shown that clumped isotope thermometry records the temperature of precipitation for carbonate minerals in surface and near-surface environments. However, the ability of a mineral to retain its clumped isotope signature at deeper, hotter burial conditions is still debated. Dolomite has been shown to be more robust to clumped isotope bond reordering than calcite. In this contribution we measure clumped isotopes in calcite veins from Southern Europe that have been buried to up to 7 km to test the robustness of calcite and dolomite to bond reordering. First, we analysed finely crystalline dolostone matrix samples collected in industry wells from Southwest France and buried to between 2 and 5.5 km, Results indicated a temperatures of ~40-60 °C, interpreted to represent formation in an early burial environment. By contrast, coarser dolomite crystals that are petrographically distinct from the fine-grained dolomite record higher temperatures and are interpreted to reflect a deeper, hotter phase of dolomite formation. Preliminary analysis of a calcite vein from a Cretaceous dolostone in Southern Europe buried to 6.3 km records a temperature of 41±3 °C; the calcite matrix around this records a similarly low temperature. This is well below the present-day well temperature of 130-140 °C. Our results indicate that both calcite and dolomite are not affected by bond reordering at the range of depths and temperatures investigated here. Furthermore, this suggests that clumped isotope thermometry can be applied to deeply-buried samples (i.e. >5km).

  4. Operational Dust Prediction

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; Jones, Luke; Lu, Sarah; Menut, Laurent; Morcrette, Jean-Jacques; Mulcahy, Jane; Nickovic, Slobodan; Garcia-Pando, Carlos P.; Reid, Jeffrey S.; Sekiyama, Thomas T.; Tanaka, Taichu Y.; Terradellas, Enric; Westphal, Douglas L.; Zhang, Xiao-Ye; Zhou, Chun-Hong

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  5. Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  6. Temperature of cometary dust

    NASA Astrophysics Data System (ADS)

    Henning, Th.; Weidlich, U.

    1988-05-01

    The variation of dust temperature with heliocentric distance for a comet is calculated using the optical constants of an astronomically important silicate. The silicate, described by Drane (1985), is assumed to be similar to cometary dust. The temperatures of cometary dust grains are determined by the energy balance between the absorbed sunlight and emitted thermal radiation, and equilibrium temperatures of dust grains for different radii and heliocentric distances are compared. Deviations between computed and observed temperatures are attributed to variations in the chemical composition of the ablated grains.

  7. Cold dust in hot regions

    SciTech Connect

    Sreenilayam, Gopika; Fich, Michel; Ade, Peter; Bintley, Dan; Chapin, Ed; Chrysostomou, Antonio; Jenness, Tim; Dunlop, James S.; Holland, Wayne S.; Ivison, Rob; Gibb, Andy; Halpern, Mark; Scott, Douglas; Greaves, Jane S.; Robson, Ian

    2014-03-01

    We mapped five massive star-forming regions with the SCUBA-2 camera on the James Clerk Maxwell Telescope. Temperature and column density maps are obtained from the SCUBA-2 450 and 850 μm images. Most of the dense clumps we find have central temperatures below 20 K, with some as cold as 8 K, suggesting that they have no internal heating due to the presence of embedded protostars. This is surprising, because at the high densities inferred from these images and at these low temperatures such clumps should be unstable, collapsing to form stars and generating internal heating. The column densities at the clump centers exceed 10{sup 23} cm{sup –2}, and the derived peak visual extinction values are from 25 to 500 mag for β = 1.5-2.5, indicating highly opaque centers. The observed cloud gas masses range from ∼10 to 10{sup 3} M {sub ☉}. The outer regions of the clumps follow an r {sup –2.36±0.35} density distribution, and this power-law structure is observed outside of typically 10{sup 4} AU. All these findings suggest that these clumps are high-mass starless clumps and most likely contain high-mass starless cores.

  8. Cold Dust in Hot Regions

    NASA Astrophysics Data System (ADS)

    Sreenilayam, Gopika; Fich, Michel; Ade, Peter; Bintley, Dan; Chapin, Ed; Chrysostomou, Antonio; Dunlop, James S.; Gibb, Andy; Greaves, Jane S.; Halpern, Mark; Holland, Wayne S.; Ivison, Rob; Jenness, Tim; Robson, Ian; Scott, Douglas

    2014-03-01

    We mapped five massive star-forming regions with the SCUBA-2 camera on the James Clerk Maxwell Telescope. Temperature and column density maps are obtained from the SCUBA-2 450 and 850 μm images. Most of the dense clumps we find have central temperatures below 20 K, with some as cold as 8 K, suggesting that they have no internal heating due to the presence of embedded protostars. This is surprising, because at the high densities inferred from these images and at these low temperatures such clumps should be unstable, collapsing to form stars and generating internal heating. The column densities at the clump centers exceed 1023 cm-2, and the derived peak visual extinction values are from 25 to 500 mag for β = 1.5-2.5, indicating highly opaque centers. The observed cloud gas masses range from ~10 to 103 M ⊙. The outer regions of the clumps follow an r -2.36 ± 0.35 density distribution, and this power-law structure is observed outside of typically 104 AU. All these findings suggest that these clumps are high-mass starless clumps and most likely contain high-mass starless cores.

  9. The Influence of Climate Change and Uplift on Colorado Plateau Paleotemperatures From Clumped Isotope (Δ47) Carbonate Thermometry

    NASA Astrophysics Data System (ADS)

    Huntington, K. W.; Wernicke, B. P.; Eiler, J. M.

    2008-12-01

    The elevation history of Earth's surface is key to understanding the geodynamic processes responsible for the rise of continental plateaus and orogens, and topography's influence on the circulation of the atmosphere and global climate in the past. Yet few available tools can provide quantitative paleoelevation constraints independently of climatic conditions. 'Clumped isotope' carbonate paleothermometry - a new technique based on measurement of the 13C-18O bond enrichment in carbonates - independently constrains both the temperature and isotopic composition of ancient surface waters, offering a potentially powerful approach to reconstruct past elevations and climate. We investigate the timing of Colorado Plateau uplift by comparing measurements of both modern and ancient depositional temperatures of lake sediments that blanket the plateau interior and adjacent lowlands. In particular, we find that comparison of modern and ancient samples deposited near sea level provides an opportunity to quantify the influence of climate on changes in temperature, and therefore more accurately assess the contribution from changes in elevation. Clumped isotope thermometry of modern lake calcite from 350-3300 m elevation in the southwestern United States reveals a lapse rate of 4.2°C/km, consistent with modern climatic data for the region. Lacustrine carbonates of the Late Miocene Bidahochi Formation (ca. 1900 m above sea level) record temperatures of 22-25°C, 8°C warmer than the temperature predicted by the modern trend. Temperature estimates for the low elevation (88-125 m above sea level) Late Miocene Bouse Formation suggest that a warmer Late Miocene climate can explain 2.6 to 5.8°C of the observed 8°C Bidahochi temperature anomaly, leaving approximately 2.2 to 5.4°C of the anomaly that can be attributed to elevation gain. Using our best- fit carbonate temperature-elevation slope of 4.2°C/km, the data suggest that this cooling was accompanied by 520 to 1300 m of uplift of

  10. The apogee red-clump catalog: Precise distances, velocities, and high-resolution elemental abundances over a large area of the Milky Way's disk

    SciTech Connect

    Bovy, Jo; Nidever, David L.; Rix, Hans-Walter; Girardi, Léo; Rodrigues, Thaíse S.; Zasowski, Gail; Chojnowski, S. Drew; Majewski, Steven R.; Holtzman, Jon; Hayden, Michael R.; Epstein, Courtney; Johnson, Jennifer A.; Pinsonneault, Marc H.; Andrews, Brett; Frinchaboy, Peter M.; Stello, Dennis; Allende Prieto, Carlos; Basu, Sarbani; Beers, Timothy C.; Bizyaev, Dmitry; and others

    2014-08-01

    The Sloan Digital Sky Survey III's Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution near-infrared spectroscopic survey covering all of the major components of the Galaxy, including the dust-obscured regions of the inner Milky Way disk and bulge. Here we present a sample of 10,341 likely red-clump stars (RC) from the first two years of APOGEE operations, selected based on their position in color-metallicity-surface-gravity-effective-temperature space using a new method calibrated using stellar evolution models and high-quality asteroseismology data. The narrowness of the RC locus in color-metallicity-luminosity space allows us to assign distances to the stars with an accuracy of 5%-10%. The sample extends to typical distances of about 3 kpc from the Sun, with some stars out to 8 kpc, and spans a volume of approximately 100 kpc{sup 3} over 5 kpc ≲ R ≲ 14 kpc, |Z| ≲ 2 kpc, and –15° ≲ Galactocentric azimuth ≲ 30°. The APOGEE red-clump (APOGEE-RC) catalog contains photometry from the Two Micron All Sky Survey, reddening estimates, distances, line-of-sight velocities, stellar parameters and elemental abundances determined from the high-resolution APOGEE spectra, and matches to major proper motion catalogs. We determine the survey selection function for this data set and discuss how the RC selection samples the underlying stellar populations. We use this sample to limit any azimuthal variations in the median metallicity within the ≈45° azimuthal region covered by the current sample to be ≤0.02 dex, which is more than an order of magnitude smaller than the radial metallicity gradient. This result constrains coherent non-axisymmetric flows within a few kiloparsecs from the Sun.

  11. Catalysis: Quantifying charge transfer

    NASA Astrophysics Data System (ADS)

    James, Trevor E.; Campbell, Charles T.

    2016-02-01

    Improving the design of catalytic materials for clean energy production requires a better understanding of their electronic properties, which remains experimentally challenging. Researchers now quantify the number of electrons transferred from metal nanoparticles to an oxide support as a function of particle size.

  12. Quantifying Faculty Workloads.

    ERIC Educational Resources Information Center

    Archer, J. Andrew

    Teaching load depends on many variables, however most colleges define it strictly in terms of contact or credit hours. The failure to give weight to variables such as number of preparations, number of students served, committee and other noninstructional assignments is usually due to the lack of a formula that will quantify the effects of these…

  13. Detecting Exoplanets with the New Worlds Observer: The Problem of Exozodiacal Dust

    NASA Technical Reports Server (NTRS)

    Roberge, A.; Noecker, M. C.; Glassman, T. M.; Oakley, P.; Turnbull, M. C.

    2009-01-01

    Dust coming from asteroids and comets will strongly affect direct imaging and characterization of terrestrial planets in the Habitable Zones of nearby stars. Such dust in the Solar System is called the zodiacal dust (or 'zodi' for short). Higher levels of similar dust are seen around many nearby stars, confined in disks called debris disks. Future high-contrast images of an Earth-like exoplanet will very likely be background-limited by light scattered of both the local Solar System zodi and the circumstellar dust in the extrasolar system (the exozodiacal dust). Clumps in the exozodiacal dust, which are expected in planet-hosting systems, may also be a source of confusion. Here we discuss the problems associated with imaging an Earth-like planet in the presence of unknown levels of exozodiacal dust. Basic formulae for the exoplanet imaging exposure time as function of star, exoplanet, zodi, exozodi, and telescope parameters will be presented. To examine the behavior of these formulae, we apply them to the New Worlds Observer (NWO) mission. NWO is a proposed 4-meter UV/optical/near-IR telescope, with a free flying starshade to suppress the light from a nearby star and achieve the high contrast needed for detection and characterization of a terrestrial planet in the star's Habitable Zone. We find that NWO can accomplish its science goals even if exozodiacal dust levels are typically much higher than the Solar System zodi level. Finally, we highlight a few additional problems relating to exozodiacal dust that have yet to be solved.

  14. Quasar Dust Factories.

    NASA Astrophysics Data System (ADS)

    Marengo, Massimo; Elvis, Martin; Karovska, Margarita

    We show that quasars are naturally copious producers of dust, assuming only that the quasar broad emission lines (BELs) are produced by gas clouds that are part of an outflowing wind. These BEL clouds have large initial densities (ne ˜109 - 1011 cm-3) so that as they expand quasi-adiabatically they cool from an initial T = 104 K to a dust-capable T = 103 K, and reduce their pressures from ˜0.1 dyn cm-2 to ˜ 10-3 -10-5 dyn cm-2.. This places the expanded BEL clouds in the (T,P) dust forming regime of late-type giants extended atmospheres, both static and pulsing. The result applies whether the clouds have C/O abundance ratio greater or lower than 1. Photo-destruction of the grains by the quasar UV/X-ray continuum is not important, as the BEL clouds reach these conditions several parsecs from the quasar nucleus, well below the dust evaporation temperature. This result offers a new insight for the strong link between quasars and dust, and for the heavy obscuration around many quasars. It also introduces a new means of forming dust at early cosmological times, and a direct mechanism for the injection of such dust in the intergalactic medium. Since dust at high z is found only by observing quasars, our result allows far less dust to be present at early epochs, since dust only need be present where a quasar is, rather than the quasar illuminating pre-existing dust which would then need to be present in all galaxies at high z. See astro-ph/0202002 or ApJ 576, L107 (2002).

  15. Recruitment of shore crabs Carcinus maenas on tidal flats: Mussel clumps as an important refuge for juveniles

    NASA Astrophysics Data System (ADS)

    Thiel, M.; Dernedde, T.

    1994-06-01

    During the late summer and early fall, juvenile shore crabs ( Carcinus maenas L.) occurred in high abundances in mussel clumps scattered on tidal flats of the Wadden Sea. Abundances were much lower on bare tidal flats without mussel clumps and decreased substantially from July to November, whereas numbers in mussel clumps remained high. Large crabs left the tidal flats in early fall, whereas juveniles undertook tidal migrations only in the late fall. In March very few shore crabs were found in the intertidal area. The size of juvenile shore crabs living between mussels did not increase significantly during fall. On the bare tidal flats surrounding the mussels, a size increase was observed. Mussel beds and mussel clumps serve as a spatial refuge for the early benthic phases of juvenile shore crabs. Between mussels they can hide effectively from their epibenthic predators. Juvenile shore crabs do not leave the intertidal area and the mussel habitats before their major predators have left the area. Mussel clumps scattered over the tidal flats may be a critical refuge for juvenile shore crabs settling on tidal flats. Intensified efforts in mussel culturing in the European Wadden Sea during recent decades may have caused an increased abundance of mussel clumps on tidal flats, thus enhancing habitat availability for some mussel-clump inhabitants.

  16. Effects of cutting time, stump height, parent tree characteristics, and harvest variables on development of bigleaf maple sprout clumps

    USGS Publications Warehouse

    Tappeiner, J. C.; Zasada, J.; Maxwell, B.

    1996-01-01

    In order to determine the effects of stump height, year of cutting, parent-tree size, logging damage, and deer browsing on bigleaf maple (Acer macrophyllum) sprout clump development, maple trees were cut to two stump heights at three different times. Stump height had the greatest impact on sprout clump size. Two years after clearcutting, the sprout clump volume for short stumps was significantly less than that for tall stumps. The sprout clump volume, area, and number of sprouts were significantly less for trees cut 1 and 2 yr before harvest than for trees cut at harvest. Sprout clump size was positively correlated with parent tree stem diameter and stump volume, and negatively correlated with the percentage of bark removed during logging. Browsing had no significant impact on average clump size. Uncut trees produced sprout clumps at their base and epicormic branches along the length of their stems; thus their crown volume averaged four to five times that of cut trees. Cutting maple in clearcuts to low stumps may reduce maple competition with Douglas-fir regeneration and still maintain maple in the next stand.

  17. The long lives of giant clumps and the birth of outflows in gas-rich galaxies at high redshift

    SciTech Connect

    Bournaud, Frédéric; Renaud, Florent; Daddi, Emanuele; Duc, Pierre-Alain; Elbaz, David; Gabor, Jared M.; Juneau, Stéphanie; Kraljic, Katarina; Le Floch', Emeric; Dekel, Avishai; Elmegreen, Bruce G.; Elmegreen, Debra M.; Teyssier, Romain

    2014-01-01

    Star-forming disk galaxies at high redshift are often subject to violent disk instability, characterized by giant clumps whose fate is yet to be understood. The main question is whether the clumps disrupt within their dynamical timescale (≤50 Myr), like the molecular clouds in today's galaxies, or whether they survive stellar feedback for more than a disk orbital time (≈300 Myr) in which case they can migrate inward and help building the central bulge. We present 3.5-7 pc resolution adaptive mesh refinement simulations of high-redshift disks including photoionization, radiation pressure, and supernovae feedback. Our modeling of radiation pressure determines the mass loading and initial velocity of winds from basic physical principles. We find that the giant clumps produce steady outflow rates comparable to and sometimes somewhat larger than their star formation rate, with velocities largely sufficient to escape the galaxy. The clumps also lose mass, especially old stars, by tidal stripping, and the stellar populations contained in the clumps hence remain relatively young (≤200 Myr), as observed. The clumps survive gaseous outflows and stellar loss, because they are wandering in gas-rich turbulent disks from which they can reaccrete gas at high rates compensating for outflows and tidal stripping, overall keeping realistic and self-regulated gaseous and stellar masses. The outflow and accretion rates have specific timescales of a few 10{sup 8} yr, as opposed to rapid and repeated dispersion and reformation of clumps. Our simulations produce gaseous outflows with velocities, densities, and mass loading consistent with observations, and at the same time suggest that the giant clumps survive for hundreds of Myr and complete their migration to the center of high-redshift galaxies. These long-lived clumps are gas-dominated and contain a moderate mass fraction of stars; they drive inside-out disk evolution, thickening, spheroid growth, and fueling of the central

  18. The Azospirillum brasilense Che1 chemotaxis pathway controls swimming velocity, which affects transient cell-to-cell clumping.

    PubMed

    Bible, Amber; Russell, Matthew H; Alexandre, Gladys

    2012-07-01

    The Che1 chemotaxis-like pathway of Azospirillum brasilense contributes to chemotaxis and aerotaxis, and it has also been found to contribute to regulating changes in cell surface adhesive properties that affect the propensity of cells to clump and to flocculate. The exact contribution of Che1 to the control of chemotaxis and flocculation in A. brasilense remains poorly understood. Here, we show that Che1 affects reversible cell-to-cell clumping, a cellular behavior in which motile cells transiently interact by adhering to one another at their nonflagellated poles before swimming apart. Clumping precedes and is required for flocculation, and both processes appear to be independently regulated. The phenotypes of a ΔaerC receptor mutant and of mutant strains lacking cheA1, cheY1, cheB1, or cheR1 (alone or in combination) or with che1 deleted show that Che1 directly mediates changes in the flagellar swimming velocity and that this behavior directly modulates the transient nature of clumping. Our results also suggest that an additional receptor(s) and signaling pathway(s) are implicated in mediating other Che1-independent changes in clumping identified in the present study. Transient clumping precedes the transition to stable clump formation, which involves the production of specific extracellular polysaccharides (EPS); however, production of these clumping-specific EPS is not directly controlled by Che1 activity. Che1-dependent clumping may antagonize motility and prevent chemotaxis, thereby maintaining cells in a metabolically favorable niche.

  19. The Nature of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Huss, G. R.

    2003-01-01

    The STARDUST mission is designed to collect dust the coma of comet Wild 2 and to collect interstellar dust on a second set of collectors. We have a reasonable idea of what to expect from the comet dust collection because the research community has been studying interplanetary dust particles for many years. It is less clear what we should expect from the interstellar dust. This presentation discusses what we might expect to find on the STARDUST interstellar dust collector.

  20. Dust devils on Mars.

    PubMed

    Thomas, P; Gierasch, P J

    1985-10-11

    Columnar, cone-shaped, and funnel-shaped clouds rising 1 to 6 kilometers above the surface of Mars have been identified in Viking Orbiter images. They are interpreted as dust devils, confirming predictions of their occurrence on Mars and giving evidence of a specific form of dust entrainment.

  1. Pathfinder Spies Dust Devils

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This set of images from NASA's 1997 Pathfinder mission highlight the dust devils that gust across the surface of Mars. The right image shows the dusty martian sky as our eye would see it. The left image has been enhanced to expose the dust devils that lurk in the hazy sky.

  2. Dust resuspension without saltation.

    PubMed

    Loosmore, Gwen A; Hunt, James R

    2000-01-01

    Wind resuspension (or entrainment) provides a source of dust and contaminants for the atmosphere. Conventional wind erosion models parameterize dust resuspension flux with a threshold velocity or with a horizontal abrasion flux; in the absence of abrasion the models assume dust flux is transient only. Our experiments with an uncrusted, fine material at relative humidities exceeding 40% show a long-term steady dust flux in the absence of abrasion, which fits the approximate form: F(d) = 3.6(u*)(3), where F(d) is the dust flux (in mug/m(2) s), and u* is the friction velocity (in m/s). These fluxes are generally too small to be significant sources of dust in most models of dust emission. However, they provide a potential route to transport contaminants into the atmosphere. In addition, dust release is substantial during the initial transient phase. Comparison with field data suggests that the particle friction Reynolds number may prove a better parameter than u* for correlating fluxes and understanding the potential for abrasion.

  3. Dust resuspension without saltation

    PubMed Central

    Loosmore, Gwen A.; Hunt, James R.

    2010-01-01

    Wind resuspension (or entrainment) provides a source of dust and contaminants for the atmosphere. Conventional wind erosion models parameterize dust resuspension flux with a threshold velocity or with a horizontal abrasion flux; in the absence of abrasion the models assume dust flux is transient only. Our experiments with an uncrusted, fine material at relative humidities exceeding 40% show a long-term steady dust flux in the absence of abrasion, which fits the approximate form: Fd = 3.6(u*)3, where Fd is the dust flux (in μg/m2 s), and u* is the friction velocity (in m/s). These fluxes are generally too small to be significant sources of dust in most models of dust emission. However, they provide a potential route to transport contaminants into the atmosphere. In addition, dust release is substantial during the initial transient phase. Comparison with field data suggests that the particle friction Reynolds number may prove a better parameter than u* for correlating fluxes and understanding the potential for abrasion. PMID:20336175

  4. Laboratory and Natural Constraints on the Temperature Limit for Preservation of the Dolomite Clumped Isotope Thermometer

    NASA Astrophysics Data System (ADS)

    Lloyd, M. K.; Eiler, J. M.

    2014-12-01

    Kinetic barriers generally inhibit intercrystalline equilibration of cations and isotopic compositions at temperatures below ~350˚C, greatly limiting the geothermometers available to study the upper 10-15 km of the crust. Calcite 'clumped' isotopes commonly appear to record homogeneous equilibrium during crystallization at surface temperatures, but kinetic models predict that reordering due to solid-state exchange among nearby carbonate groups modifies primary compositions at temperatures above ~115˚C on timescales of 10^6 - 10^8 years and fully re-equilibrates above 200˚C in most geological environments1. Slowly cooled dolomitic marbles commonly preserve apparent temperatures of ~300˚C, indicating that dolomite may have slower reordering kinetics and thus greater preservation of primary crystallization temperatures. If so, dolomite clumped isotope thermometry may be a useful geothermometer in much of the the shallow crust. We measured the kinetics of clumped isotope reordering in dolomite with heating experiments at 400-800˚C in a TZM cold seal apparatus pressurized with CO2. Results predict that no detectable reordering occurs in dolomite held at temperatures less than ~250˚C over timescales of up to 10^8 years, demonstrating the viability of the system as a shallow crustal geothermometer. The non-first order behavior observed in calcite1,2,3is exhibited by dolomite as well, albeit at higher temperatures. To test these predictions, we measured the clumped isotopic compositions of coexisting calcite and dolomite in marbles from the Notch Peak aureole, UT. Dolomite clumped isotope temperatures in the outer aureole match peak conditions predicted by thermal models up to ~275˚C, indicating that the system resisted reordering below this grade. Calcite clumped isotope temperatures are never greater than ~150˚C at all grades in the aureole; this is consistent with the ambient burial temperature in the section and indicates that all metamorphic calcite was fully

  5. C-H and C-C clumping in ethane by high-resolution mass spectrometry

    NASA Astrophysics Data System (ADS)

    Clog, M. D.; Eiler, J. M.

    2014-12-01

    Ethane (C2H6) is an important natural compound, and its geochemistry can be studied through 13C-13C, 13C-D and/or D-D clumping. Such measurements are potentially important both as a stepping stone towards the study of more complex organic molecules and, in its own regard, to understand processes controlling the generation, migration and destruction of natural gas. Isotopic clumping on C-C and C-H bonds could be influenced by thermodynamics, chemical kinetics, diffusion or gas mixing. Previous work showed that 13C-D clumping in methane generally reflects equilibrium and provides a measure of formation temperature (Stolper et al 2014a), whereas 13C-13C clumping in ethane is likely most controlled by chemical-kinetic processes and/or inheritance from the isotopic structure of source organic compounds (Clog et al 2014). 13C-D clumping in ethane has the potential to provide a thermometer for its synthesis, as it does for methane. However, the difference in C-H bond dissociation energy for these two compounds may suggest a lower 'blocking temperature' for this phenomenon in ethane (the blocking temperature for methane is ≥~250 C in geological conditions). We present analytical techniques to measure both 13C-13C and 13C-D clumping in ethane, using a novel two-instrument technique, including both the Thermo 253-Ultra and the Thermo DFS. In this method, the Ultra is used to measure the relative abundances of combinations nearly isobaric isotopologues: (13C12CH6 + 12C2DH5)/12C2H6 and (13C2H6 + 12C13CDH5)/12C2H6, free of other isobaric interferences like O2. The DFS, a very high resolution single-collector instrument, is then used to measure the ratios of isotopologues of ethane at a single cardinal mass: 12C2DH5/13C12CH6, and 12C13CDH5/13C2H6, with precisions of ~1 permil. Those 4 measurements allow us to calculate the bulk isotopic composition (D and 13C) as well as the abundance of 13C2H6 and 13C12CDH5. We also present progress on the development of software tools

  6. Organic dust in galaxies

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi

    2016-07-01

    Recent space infrared telescopes, Infrared Space Observatory, Spitzer Space Telescope, and AKARI have made significant progress in our understanding of organic dust in the Universe. In this review, we discuss recent observations with these space telescopes of the unidentified infrared emission (UIE) features in the near to mid-infrared, which come from very small organic dust, and the absorption features from 3 to 7 µm, which characterize large organic dust. They provide us with a new view of organic dust in galaxies. We also briefly discuss latest AKARI observations of H2O and CO2 ices in 2.5-5 µm in the Large Magellanic Cloud in comparison with observations in our Galaxy, which suggests the importance of dust surface chemistry in the formation of organic matters in the Universe.

  7. Interstellar Dust Scattering Properties

    NASA Astrophysics Data System (ADS)

    Gordon, K. D.

    2004-05-01

    Studies of dust scattering properties in astrophysical objects with Milky Way interstellar dust are reviewed. Such objects are reflection nebulae, dark clouds, and the Diffuse Galactic Light (DGL). To ensure their basic quality, studies had to satisfy four basic criteria to be included in this review. These four criteria significantly reduced the scatter in dust properties measurements, especially in the case of the DGL. Determinations of dust scattering properties were found to be internally consistent for each object type as well as consistent between object types. The 2175 Å bump is seen as an absorption feature. Comparisons with dust grain models find general agreement with significant disagreements at particular wavelengths (especially in the far-ultraviolet). Finally, unanswered questions and future directions are enumerated.

  8. Lunar Dust Mitigation Screens

    NASA Astrophysics Data System (ADS)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  9. Quantifying Ubiquitin Signaling

    PubMed Central

    Ordureau, Alban; Münch, Christian; Harper, J. Wade

    2015-01-01

    Ubiquitin (UB)-driven signaling systems permeate biology, and are often integrated with other types of post-translational modifications (PTMs), most notably phosphorylation. Flux through such pathways is typically dictated by the fractional stoichiometry of distinct regulatory modifications and protein assemblies as well as the spatial organization of pathway components. Yet, we rarely understand the dynamics and stoichiometry of rate-limiting intermediates along a reaction trajectory. Here, we review how quantitative proteomic tools and enrichment strategies are being used to quantify UB-dependent signaling systems, and to integrate UB signaling with regulatory phosphorylation events. A key regulatory feature of ubiquitylation is that the identity of UB chain linkage types can control downstream processes. We also describe how proteomic and enzymological tools can be used to identify and quantify UB chain synthesis and linkage preferences. The emergence of sophisticated quantitative proteomic approaches will set a new standard for elucidating biochemical mechanisms of UB-driven signaling systems. PMID:26000850

  10. Dust Formation in the Wolf-Rayet Star WR137: NICMOS Follow-up

    NASA Astrophysics Data System (ADS)

    Moffat, Anthony

    1997-07-01

    We propose to use NICMOS on HST to take a second image of the dust formation region in the 13-year elliptical-orbit wind-interacting binary WR 137 = HD 192641 {WC7+OB}, within a few months after periastron passage, which occured around July-September 1997. Ground-based IR photometry shows that copious amounts of carbon- rich dust are forming around current periastron passage, when wind- wind collision compression is at its peak. Recently we obtained {GO # 7369, September 1997} direct images of HD 192641 with NIC-2 through the F165M, F237M filters. We have resolved, for the first time, IR-emitting dust in the close environment of HD 192641. As expected on the basis of groundbased, spatially unresolved IR spectrosocopy, we saw the dust emission only in the K-band, not in the H-band. We found that the dust emission occured in a few strong clumps within about 0.5" from the star. In order to study the dynamics of the dust formation, we request a follow-up NICMOS orbit.

  11. Comet 67P/Churyumov-Gerasimenko: Close-up on Dust Particle Fragments

    NASA Astrophysics Data System (ADS)

    Hilchenbach, M.; Kissel, J.; Langevin, Y.; Briois, C.; von Hoerner, H.; Koch, A.; Schulz, R.; Silén, J.; Altwegg, K.; Colangeli, L.; Cottin, H.; Engrand, C.; Fischer, H.; Glasmachers, A.; Grün, E.; Haerendel, G.; Henkel, H.; Höfner, H.; Hornung, K.; Jessberger, E. K.; Lehto, H.; Lehto, K.; Raulin, F.; Le Roy, L.; Rynö, J.; Steiger, W.; Stephan, T.; Thirkell, L.; Thomas, R.; Torkar, K.; Varmuza, K.; Wanczek, K.-P.; Altobelli, N.; Baklouti, D.; Bardyn, A.; Fray, N.; Krüger, H.; Ligier, N.; Lin, Z.; Martin, P.; Merouane, S.; Orthous-Daunay, F. R.; Paquette, J.; Revillet, C.; Siljeström, S.; Stenzel, O.; Zaprudin, B.

    2016-01-01

    The COmetary Secondary Ion Mass Analyser instrument on board ESA's Rosetta mission has collected dust particles in the coma of comet 67P/Churyumov-Gerasimenko. During the early-orbit phase of the Rosetta mission, particles and particle agglomerates have been imaged and analyzed in the inner coma at distances between 100 km and 10 km off the cometary nucleus and at more than 3 AU from the Sun. We identified 585 particles of more than 14 μm in size. The particles are collected at low impact speeds and constitute a sample of the dust particles in the inner coma impacting and fragmenting on the targets. The sizes of the particles range from 14 μm up to sub-millimeter sizes and the differential dust flux size distribution is fitted with a power law exponent of -3.1. After impact, the larger particles tend to stick together, spread out or consist of single or a group of clumps, and the flocculent morphology of the fragmented particles is revealed. The elemental composition of the dust particles is heterogeneous and the particles could contain typical silicates like olivine and pyroxenes, as well as iron sulfides. The sodium to iron elemental ratio is enriched with regard to abundances in CI carbonaceous chondrites by a factor from ˜1.5 to ˜15. No clear evidence for organic matter has been identified. The composition and morphology of the collected dust particles appear to be similar to that of interplanetary dust particles.

  12. A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP

    SciTech Connect

    Casassus, Simon; Marino, Sebastian; Pérez, Sebastian; Christiaens, Valentin; Plas, Gerrit van der; Wright, Chris M.; Maddison, Sarah T.; Wootten, Al; Roman, Pablo; Moral, Victor; Pinilla, Paola; Wyatt, Mark; Ménard, Francois

    2015-10-20

    A pathway to the formation of planetesimals, and eventually giant planets, may occur in concentrations of dust grains trapped in pressure maxima. Dramatic crescent-shaped dust concentrations have been seen in recent radio images at submillimeter wavelengths. These disk asymmetries could represent the initial phases of planet formation in the dust trap scenario, provided that grain sizes are spatially segregated. A testable prediction of azimuthal dust trapping is that progressively larger grains should be more sharply confined and should follow a distribution that is markedly different from the gas. However, gas tracers such as {sup 12}CO and the infrared emission from small grains are both very optically thick where the submillimeter continuum originates, so previous observations have been unable to test the trapping predictions or to identify compact concentrations of larger grains required for planet formation by core accretion. Here we report multifrequency observations of HD 142527, from 34 to 700 GHz, that reveal a compact concentration of grains approaching centimeter sizes, with a few Earth masses, embedded in a large-scale crescent of smaller, submillimeter-sized particles. The emission peaks at wavelengths shorter than ∼1 mm are optically thick and trace the temperature structure resulting from shadows cast by the inner regions. Given this temperature structure, we infer that the largest dust grains are concentrated in the 34 GHz clump. We conclude that dust trapping is efficient enough for grains observable at centimeter wavelengths to lead to compact concentrations.

  13. Quantification of Spore-forming Bacteria Carried by Dust Particles

    NASA Technical Reports Server (NTRS)

    Lin, Ying; Cholakian, Tanya; Gao, Wenming; Osman, Shariff; Barengoltz, Jack

    2006-01-01

    In order to establish a biological contamination transport model for predicting the cross contamination risk during spacecraft assembly and upon landing on Mars, it is important to understand the relationship between spore-forming bacteria and their carrier particles. We conducted air and surface sampling in indoor, outdoor, and cleanroom environments to determine the ratio of spore forming bacteria to their dust particle carriers of different sizes. The number of spore forming bacteria was determined from various size groups of particles in a given environment. Our data also confirms the existence of multiple spores on a single particle and spore clumps. This study will help in developing a better bio-contamination transport model, which in turn will help in determining forward contamination risks for future missions.

  14. Potential dust emissions from the southern Kalahari's dunelands

    NASA Astrophysics Data System (ADS)

    Bhattachan, Abinash; D'Odorico, Paolo; Okin, Gregory S.; Dintwe, Kebonyethata

    2013-03-01

    The Southern Hemisphere shows relatively low levels of atmospheric dust concentrations. Dust concentrations could, however, increase as a result of losses of vegetation cover in the southern Kalahari. There is some evidence of an ongoing remobilization of stabilized dunefields in the southern Kalahari where dune crests with sparse vegetation cover are reactivated during dry and windy periods, a phenomenon that is predicted to intensify with increased land degradation, overgrazing, and droughts. Despite the potentially important climatic and biogeochemical implications of dust emissions from the Kalahari, it is still unclear whether the predicted remobilization of the Kalahari dunes could be associated with increased dust emissions from this region. The dependence of sediment fluxes and dust emissions on vegetation cover in the Kalahari dunelands remains poorly understood, which prevents a quantitative assessment of possible changes in aeolian activity in this region under different land use and land cover scenarios. In this study, we report the results of an aeolian sediment sampling campaign over a variety of land covers in the southern Kalahari. We use these results to quantify the potential rate of dust emissions and its dependence on vegetation cover and to make an estimate of dust fluxes from a portion of the southern Kalahari. The results show that the loss of vegetation could lead to substantial increases in dust emission and nutrient loss.

  15. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    PubMed Central

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-01-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings. PMID:27447820

  16. THE EDGE OF THE MILKY WAY STELLAR DISK REVEALED USING CLUMP GIANT STARS AS DISTANCE INDICATORS

    SciTech Connect

    Minniti, D.; Saito, R. K.; Alonso-Garcia, J.; Hempel, M.; Lucas, P. W.

    2011-06-01

    We use the clump giants of the disk as standard candles calibrated from Hipparcos parallaxes in order to map their distribution with two new near-infrared surveys of the Galactic plane: UKIDSS-GPS and VISTA Variables in the VIa Lactea (VVV). We explore different selection cuts of clump giants. We conclude that there is an edge of the stellar disk of the Milky Way at R = 13.9 {+-} 0.5 kpc along various lines of sight across the Galaxy. The effect of the warp is considered, taking fields at different longitudes and above and below the plane. We demonstrate that the edge of the stellar disk of the Milky Way can now be mapped in the near-infrared in order to test different models, and to establish our own place within the Galaxy.

  17. Extra-nuclear starbursts: young luminous Hinge clumps in interacting galaxies

    SciTech Connect

    Smith, Beverly J.; Giroux, Mark L.; Soria, Roberto; Struck, Curtis; Swartz, Douglas A.; Yukita, Mihoko E-mail: girouxm@etsu.edu E-mail: curt@iastate.edu

    2014-03-01

    Hinge clumps are luminous knots of star formation near the base of tidal features in some interacting galaxies. We use archival Hubble Space Telescope (HST) UV/optical/IR images and Chandra X-ray maps along with Galaxy Evolution Explorer UV, Spitzer IR, and ground-based optical/near-IR images to investigate the star forming properties in a sample of 12 hinge clumps in five interacting galaxies. The most extreme of these hinge clumps have star formation rates of 1-9 M {sub ☉} yr{sup –1}, comparable to or larger than the 'overlap' region of intense star formation between the two disks of the colliding galaxy system the Antennae. In the HST images, we have found remarkably large and luminous sources at the centers of these hinge clumps. These objects are much larger and more luminous than typical 'super star clusters' in interacting galaxies, and are sometimes embedded in a linear ridge of fainter star clusters, consistent with star formation along a narrow caustic. These central sources have FWHM diameters of ∼70 pc, compared to ∼3 pc in 'ordinary' super star clusters. Their absolute I magnitudes range from M{sub I} ∼ – 12.2 to –16.5; thus, if they are individual star clusters they would lie near the top of the 'super star cluster' luminosity function of star clusters. These sources may not be individual star clusters, but instead may be tightly packed groups of clusters that are blended together in the HST images. Comparison to population synthesis modeling indicates that the hinge clumps contain a range of stellar ages. This is consistent with expectations based on models of galaxy interactions, which suggest that star formation may be prolonged in these regions. In the Chandra images, we have found strong X-ray emission from several of these hinge clumps. In most cases, this emission is well-resolved with Chandra and has a thermal X-ray spectrum, thus it is likely due to hot gas associated with the star formation. The ratio of the extinction

  18. Molecular gas clumps from the destruction of icy bodies in the β Pictoris debris disk.

    PubMed

    Dent, W R F; Wyatt, M C; Roberge, A; Augereau, J-C; Casassus, S; Corder, S; Greaves, J S; de Gregorio-Monsalvo, I; Hales, A; Jackson, A P; Hughes, A Meredith; Lagrange, A-M; Matthews, B; Wilner, D

    2014-03-28

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets, and dwarf planets, but is gas also released in such events? Observations at submillimeter wavelengths of the archetypal debris disk around β Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 astronomical units from the star, in a plane closely aligned with the orbit of the inner planet, β Pictoris b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet or from the remnants of a collision of Mars-mass planets. PMID:24603151

  19. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    NASA Astrophysics Data System (ADS)

    Loyd, S. J.; Sample, J.; Tripati, R. E.; Defliese, W. F.; Brooks, K.; Hovland, M.; Torres, M.; Marlow, J.; Hancock, L. G.; Martin, R.; Lyons, T.; Tripati, A. E.

    2016-07-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.

  20. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures.

    PubMed

    Loyd, S J; Sample, J; Tripati, R E; Defliese, W F; Brooks, K; Hovland, M; Torres, M; Marlow, J; Hancock, L G; Martin, R; Lyons, T; Tripati, A E

    2016-01-01

    Methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ∼0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixing of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings. PMID:27447820

  1. KIC 8263801: A clump star in the Kepler open cluster NGC 6866 field?

    NASA Astrophysics Data System (ADS)

    Abedigamba, O. P.

    2016-07-01

    In this paper we study the field of Kepler open cluster NGC 6866 using the data obtained from Kepler mission collected for a period of 4 years. We search for the red clump (RC) stars amongst the red giant (RG) stars showing solar-like oscillations using median gravity-mode period spacings (ΔP). We find a RG star KIC 8263801 having median gravity-mode period spacing 173.7 ± 6.4 s. We claim based on the median gravity-mode period spacing that KIC 8263801 is a secondary red clump (SRC) star which is massive enough to have ignited Helium burning in a non degenerate core. In the literature, no classification for KIC 8263801 has been provided. This is the first time that a star located in the field of NGC 6866 is classified in this manner.

  2. Dense Molecular Clumps Associated with the LMC Supergiant Shell LMC 4 & LMC 5

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Minamidani, T.; Mizuno, N.; Onishi, T.; Kawamura, A.; Muller, E.; Dawson, J.; Fukui, Y.

    2015-12-01

    The 12CO(J=3-2/1-0) and 13CO(J=3-2/1-0) observations with ASTE and Mopra telescopes have been carried out toward the giant molecular clouds (GMCs) in the N48/N49 regions in the Large Magellanic Cloud (LMC), which are located at the boundary of two kpc-scale Supergiant Shell (SGS) LMC 4 & LMC 5. The star formation is relatively evolved in the N48 region, which is just located at the boundary of SGSs, than in the N49 region. The clumps in the N48 show higher n(H2) and Tkin than those in the N49, but their densities are not so high as the LMC cluster forming clumps. The collision of two SGSs actually enhances the star formation but further evolution seem to be necessary for subsequent cluster formation.

  3. Predator-prey interactions between blue crabs and ribbed mussels living in clumps

    NASA Astrophysics Data System (ADS)

    Lin, Junda

    1991-01-01

    Predator-prey interactions between blue crabs ( Callinectes sapidus) and ribbed mussels ( Geukensia demissa) were studied by manipulating different components of mussel clump structure in the laboratory to test their effects on the mussels' susceptibility to crab predation. Mussels with stronger attachment strength or those buried deeper in the sediment suffered lower mortality. Blue crabs showed no significant size selectivity when two size classes of mussles (30-40 and 50-60 mm in shell heights) were offered. When juvenile mussels were attached to adult conspecifics and completely buried in the centres of clumps as in the field, blue crabs did not actively search for them. The crabs, however, did consume juveniles as by-products when they preyed upon the adult mussels to which the juveniles were attached.

  4. Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk

    NASA Astrophysics Data System (ADS)

    Dent, W. R. F.; Wyatt, M. C.; Roberge, A.; Augereau, J.-C.; Casassus, S.; Corder, S.; Greaves, J. S.; de Gregorio-Monsalvo, I.; Hales, A.; Jackson, A. P.; Hughes, A. Meredith; Lagrange, A.-M.; Matthews, B.; Wilner, D.

    2014-03-01

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets, and dwarf planets, but is gas also released in such events? Observations at submillimeter wavelengths of the archetypal debris disk around β Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 astronomical units from the star, in a plane closely aligned with the orbit of the inner planet, β Pictoris b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet or from the remnants of a collision of Mars-mass planets.

  5. Molecular Gas Clumps from the Destruction of Icy Bodies in the beta Pictoris Debris Disk

    NASA Technical Reports Server (NTRS)

    Dent, W. R. F.; Wyatt, M. C.; Roberge, A.; Augereau, J. -C.; Casassus, S.; Corder, S.; Greaves, J. S.; DeGregorio-Monsalvo, I.; Hales, A.; Jackson, A. P.; Hughes, A. Meredith; Lagrange, A. -M.; Matthews, B.; Wilner, D.

    2014-01-01

    Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at sub-mm wavelengths of the archetypal debris disk around ß Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85 AU from the star, in a plane closely aligned with the orbit of the inner planet, beta Pic b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet, or from the remnants of a collision of Mars-mass planets.

  6. Galactic cold cores. VI. Dust opacity spectral index

    NASA Astrophysics Data System (ADS)

    Juvela, M.; Demyk, K.; Doi, Y.; Hughes, A.; Lefèvre, C.; Marshall, D. J.; Meny, C.; Montillaud, J.; Pagani, L.; Paradis, D.; Ristorcelli, I.; Malinen, J.; Montier, L. A.; Paladini, R.; Pelkonen, V.-M.; Rivera-Ingraham, A.

    2015-12-01

    Context. The Galactic Cold Cores project has carried out Herschel photometric observations of 116 fields where the Planck survey has found signs of cold dust emission. The fields contain sources in different environments and different phases of star formation. Previous studies have revealed variations in their dust submillimetre opacity. Aims: The aim is to measure the value of dust opacity spectral index and to understand its variations spatially and with respect to other parameters, such as temperature, column density, and Galactic location. Methods: The dust opacity spectral index β and the dust colour temperature T are derived using Herschel and Planck data. The relation between β and T is examined for the whole sample and inside individual fields. Results: Based on IRAS and Planck data, the fields are characterised by a median colour temperature of 16.1 K and a median opacity spectral index of β = 1.84. The values are not correlated with Galactic longitude. We observe a clear T-β anti-correlation. In Herschel observations, constrained at lower resolution by Planck data, the variations follow the column density structure and βFIR can rise to ~2.2 in individual clumps. The highest values are found in starless clumps. The Planck 217 GHz band shows a systematic excess that is not restricted to cold clumps and is thus consistent with a general flattening of the dust emission spectrum at millimetre wavelengths. When fitted separately below and above 700 μm, the median spectral index values are βFIR ~ 1.91 and β(mm) ~ 1.66. Conclusions: The spectral index changes as a function of column density and wavelength. The comparison of different data sets and the examination of possible error sources show that our results are robust. However, β variations are partly masked by temperature gradients and the changes in the intrinsic grain properties may be even greater. Planck http://www.esa.int/Planck is a project of the European Space Agency - ESA - with instruments

  7. Clump Giant Distance to the Magellanic Clouds and Anomalous Colors in the Galactic Bulge.

    PubMed

    Popowski

    2000-01-01

    I demonstrate that the two unexpected results in the local universe-(1) anomalous intrinsic (V-I&parr0;0 colors of the clump giants and RR Lyrae stars in the Galactic center, and (2) very short distances to the Magellanic Clouds (LMC, SMC) as inferred from clump giants-are connected with each other. The (V-I&parr0;0 anomaly is partially resolved by using the photometry from phase II of the Optical Gravitational Lensing Experiment (OGLE) rather than phase I. The need for V- or I-magnitude-based change in the bulge (V-I&parr0;0 is one option to explain the remaining color discrepancy. Such a change may originate in a coefficient of selective extinction AV&solm0;E&parl0;V-I&parr0; smaller than typically assumed. Application of the (V-I&parr0;0 correction (independent of its source) doubles the slope of the absolute magnitude-metallicity relation for clump giants, so that MI&parl0;RC&parr0;=-0.23+0.19 [Fe/H]. Consequently, the estimates of the clump distances to the LMC and SMC are affected. Udalski's distance modulus of µLMC=18.18+/-0.06 increases to 18.27+/-0.07. The distance modulus to the SMC increases by 0.12 to µSMC=18.77+/-0.08. I argue that a more comprehensive assessment of the metallicity effect on MI&parl0;RC&parr0; is needed.

  8. DYNAMO survey: An upclose view of turbulent disks with massive starforming clumps

    NASA Astrophysics Data System (ADS)

    Fisher, David B.

    2015-08-01

    In this talk I will discuss properties of extremely gas rich, turbulent disk galaxies in the DYNAMO survey, an IFU survey of Halpha in ~100 galaxies at z~0.1. DYNAMO galaxies are selected to have the highest Halpha luminosity at their redshift, yet are not AGNs. Follow up results from HST, and kinematic maps from Keck and Gemini show that many DYNAMO galaxies are clumpy, rotating disks, with large internal velocity dispersion, similar to galaxies at z=1-2. In this talk I will show that gas fractions in DYNAMO galaxies are 20-40%, much higher than typical local Universe galaxies (1-8%). The gas fraction of DYNAMO galaxies is similar to that of z=1-2 disks (eg. PHIBBS survey). The DYNAMO galaxies offer a sample of galaxies gas rich, clumpy, turbulent disks at z~0.1. Using DYNAMO galaxies we can therefore constrain the properties of individual clumps with much higher precision than in z=2 galaxies. Unlike high redshift observations in our data the Jeans length is resolved, and we can therefore measure the size of star forming regions with much greater security. I will therefore show how effects from resolution are likely to affect the measurement of clump propoerties, and present an analysis of the sizes and luminosities of star forming regions of massive star forming clumps using HST maps of ionized gas. I will show that in gas rich disk galaxies the sizes of clumps is directly linked to the gas fraction and velocity dispersion of the disk, both predictions of the theory that instabilities lead to clumpy disks.

  9. The Effects of Clumps in Explaining X-Ray Emission Lines from Hot Stars

    SciTech Connect

    Cassinelli, J. P.; Ignace, R.; Waldron, W. L.; Cho, J.; Murphy, N. A.; Lazarian, A.

    2008-08-20

    It is now well established that stellar winds of hot stars are fragmentary and that the X-ray emission from stellar winds has a strong contribution from shocks in winds. Chandra high spectral resolution observations of line profiles of O and B stars have shown numerous properties that had not been expected. Here we suggest explanations by considering the X-rays as arising from bow shocks that occur where the stellar wind impacts on spherical clumps in the winds. We use an accurate and stable numerical hydrodynamic code to obtain steady state physical conditions for the temperature and density structure in a bow shock. We use these solutions plus analytic approximations to interpret some major X-ray features: the simple power-law distribution of the observed emission measure derived from many hot star X-ray spectra and the wide range of ionization stages that appear to be present in X-ray sources throughout the winds. Also associated with the adiabatic cooling of the gas around a clump is a significant transverse velocity for the hot plasma flow around the clumps, and this can help to understand anomalies associated with observed line widths, and the differences in widths seen in stars with high and low mass-loss rates. The differences between bow shocks and the planar shocks that are often used for hot stars are discussed. We introduce an "on the shock" approximation that is useful for interpreting the X-rays and the consequences of clumps in hot star winds and elsewhere in astronomy.

  10. Microlensing Optical Depth towards the Galactic Bulge Using Clump Giants from the MACHO Survey

    SciTech Connect

    Popowski, P; Griest, K; Thomas, C L; Cook, K H; Bennett, D P; Becker, A C; Alves, D R; Minniti, D; Drake, A J; Alcock, C; Allsman, R A; Axelrod, T S; Freeman, K C; Geha, M; Lehner, M J; Marshall, S L; Nelson, C A; Peterson, B A; Quinn, P J; Stubbs, C W; Sutherland, W; Vandehei, T; Welch, D

    2005-07-14

    Using 7 years of MACHO survey data, we present a new determination of the optical depth to microlensing towards the Galactic bulge. We select the sample of 62 microlensing events (60 unique) on clump giant sources and perform a detailed efficiency analysis. We use only the clump giant sources because these are bright bulge stars and are not as strongly affected by blending as other events. Using a subsample of 42 clump events concentrated in an area of 4.5 deg{sup 2} with 739000 clump giant stars, we find {tau} = 2.17{sub -0.38}{sup +0.47} x 10{sup -6} at (l,b) = (1{sup o}.50, -2{sup o}.68), somewhat smaller than found in most previous MACHO studies, but in excellent agreement with recent theoretical predictions. We also present the optical depth in each of the 19 fields in which we detected events, and find limits on optical depth for fields with no events. The errors in optical depth in individual fields are dominated by Poisson noise. We measure optical depth gradients of (1.06 {+-} 0.71) x 10{sup -6}deg{sup -1} and (0.29 {+-} 0.43) x 10{sup -6}deg{sup -1} in the galactic latitude b and longitude l directions, respectively. Finally, we discuss the possibility of anomalous duration distribution of events in the field 104 centered on (l,b) = (3{sup o}.11, -3{sup o}.01) as well as investigate spatial clustering of events in all fields.

  11. Utilizing Pyrosequencing and Quantitative pCR to Characterize Fungal Populations among House Dust Samples

    EPA Science Inventory

    Molecular techniques are an alternative to culturing and counting methods in quantifying indoor fungal contamination. Pyrosequencing offers the possibility of identifying unexpected indoor fungi. In this study, 50 house dust samples were collected from homes in the Yakima Valley,...

  12. Clumping Effects on Non-Thermal Particle Spectra in Massive Star Systems

    SciTech Connect

    Reimer, A.; /Stanford U., HEPL /KIPAC, Menlo Park

    2007-11-09

    Observational evidence exists that winds of massive stars are clumped. Many massive star systems are known as non-thermal particle production sites, as indicated by their synchrotron emission in the radio band. As a consequence they are also considered as candidate sites for non-thermal high-energy photon production up to gamma-ray energies. The present work considers the effects of wind clumpiness expected on the emitting relativistic particle spectrum in colliding wind systems, built up from the pool of thermal wind particles through diffusive particle acceleration, and taking into account inverse Compton and synchrotron losses. In comparison to a homogeneous wind, a clumpy wind causes flux variations of the emitting particle spectrum when the clump enters the wind collision region. It is found that the spectral features associated with this variability moves temporally from low to high energy bands with the time shift between any two spectral bands being dependent on clump size, filling factor, and the energy-dependence of particle energy gains and losses.

  13. Molecular emission in dense massive clumps from the star-forming regions S231-S235

    NASA Astrophysics Data System (ADS)

    Ladeyschikov, D. A.; Kirsanova, M. S.; Tsivilev, A. P.; Sobolev, A. M.

    2016-04-01

    The paper is concerned with the study of the star-forming regions S231-S235 in radio lines of molecules of the interstellar medium—carbon monoxide (CO), ammonia (NH3), cyanoacetylene (HC3N), in maser lines—methanol (CH3OH) and water vapor (H2O). The regions S231-S235 belong to the giant molecular cloudG174+2.5. The goal of this paper is to search for new sources of emission toward molecular clumps and to estimate their physical parameters from CO and NH3 molecular lines. We obtained new detections ofNH3 andHC3Nlines in the sources WB89673 and WB89 668 which indicates the presence of high-density gas. From the CO line, we derived sizes, column densities, and masses of molecular clumps. From the NH3 line, we derived gas kinetic temperatures and number densities in molecular clumps. We determined that kinetic temperatures and number densities of molecular gas are within the limits 16-30 K and 2.8-7.2 × 103 cm-3 respectively. The shock-tracing line of CH3OH molecule at a frequency of 36.2 GHz was detected in WB89 673 for the first time.

  14. Radiation Pressure on Bacterial Clumps in the Solar Vicinity and Their Survival Between Interstellar Transits

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, N. C.; Wickramasinghe, J. T.

    Radiation pressure cross-sections for clumps of hollow bacterial grains with thin coatings of graphite are calculated using rigorous Guttler formulae. The carbonized skins are expected to form through exposure to solar ultraviolet radiation, but a limiting thickness of about 0.03 μm is determined by opacity effects. The ratios of radiation pressure to gravity P/G are calculated for varying sizes of the clumps and for varying thickness of the graphite coatings. Bacterial clumps and individual desiccated bacteria without coatings of radii in the range 0.3-8 μm have P/G ratios less than unity, whereas particles with coatings of 0.02 μm thickness have ratios in excess of unity. Such coatings also provide protection from damaging ultraviolet radiation. Putative cometary bacteria, such as have been recently collected in the stratosphere, are thus not gravitationally bound in the solar system provided they possess carbonised exterior coatings. They are rapidly expelled from the solar system reaching nearby protosolar nebulae in timescales of a few million years. Even with the most pessimistic assumptions galactic cosmic rays are unable to diminish viability to an extent that vitiates the continuity of panspermia.

  15. Characterizing Dust Inputs to the Caribbean Region Using Radiogenic Isotopes

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Derry, L. A.

    2007-12-01

    The long-range transport of mineral aerosols (dust) in the atmosphere influences radiative transfer in the atmosphere and affects ocean productivity via Fe fertilization. Dust transport also affects terrestrial systems by contributing to geochemical fluxes of both sediments and solutes, adding nutrients and nutrient-holding capacity to ecosystems, and neutralizing acidic components of atmospheric deposition. The largest atmospheric dust source is the Sahara-Sahel region of Northern Africa. Of the dust derived from the Sahara-Sahel region, 50 million tons are transported west each year on the trade winds into the Caribbean atmosphere1. Ratios of relatively immobile trace elements provide geochemical evidence that confirms the expected presence of African dust in soils of the Caribbean region. However, estimates of dust deposition fluxes to land in the Caribbean are lacking2. A promising approach for calculating deposition fluxes is to quantify the streamwater Sr flux for a small monolithologic catchment, and then quantify contributions from local substrate, sea salt aerosols, volcanic ash, and long-range transported dust using their unique isotopic signatures. This approach has the advantage of giving a spatially and temporally integrated estimate of the dust deposition flux, which is necessary for assessing the importance of dust to geochemical fluxes and biogeochemical cycling. Many factors will control the importance of dust inputs for a given site. Local soil characteristics will determine the rate at which dust weathers once it enters the soil, and the extent to which dust may contribute to the nutrient budget of the ecosystem. The amount and style of rainfall will affect the rate at which dust particles are scrubbed from the atmosphere. Further, local erosion rates will determine the extent of dust accumulation over time. 87Sr/86Sr ratios are used to calculate the deposition flux of African dust into the small montane Rio Icacos watershed in Puerto Rico of 13

  16. Quantifying light pollution

    NASA Astrophysics Data System (ADS)

    Cinzano, P.; Falchi, F.

    2014-05-01

    In this paper we review new available indicators useful to quantify and monitor light pollution, defined as the alteration of the natural quantity of light in the night environment due to introduction of manmade light. With the introduction of recent radiative transfer methods for the computation of light pollution propagation, several new indicators become available. These indicators represent a primary step in light pollution quantification, beyond the bare evaluation of the night sky brightness, which is an observational effect integrated along the line of sight and thus lacking the three-dimensional information.

  17. Spirit Feels Dust Gust

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On sol 1149 (March 28, 2007) of its mission, NASA's Mars Exploration Rover Spirit caught a wind gust with its navigation camera. A series of navigation camera images were strung together to create this movie. The front of the gust is observable because it was strong enough to lift up dust. From assessing the trajectory of this gust, the atmospheric science team concludes that it is possible that it passed over the rover. There was, however, no noticeable increase in power associated with this gust. In the past, dust devils and gusts have wiped the solar panels of dust, making it easier for the solar panels to absorb sunlight.

  18. Electrostatic dust detector

    DOEpatents

    Skinner, Charles H.

    2006-05-02

    An apparatus for detecting dust in a variety of environments which can include radioactive and other hostile environments both in a vacuum and in a pressurized system. The apparatus consists of a grid coupled to a selected bias voltage. The signal generated when dust impacts and shorts out the grid is electrically filtered, and then analyzed by a signal analyzer which is then sent to a counter. For fine grids a correlation can be developed to relate the number of counts observed to the amount of dust which impacts the grid.

  19. Dust control for Enabler

    NASA Technical Reports Server (NTRS)

    Hilton, Kevin; Karl, Chad; Litherland, Mark; Ritchie, David; Sun, Nancy

    1992-01-01

    The dust control group designed a system to restrict dust that is disturbed by the Enabler during its operation from interfering with astronaut or camera visibility. This design also considers the many different wheel positions made possible through the use of artinuation joints that provide the steering and wheel pitching for the Enabler. The system uses a combination of brushes and fenders to restrict the dust when the vehicle is moving in either direction and in a turn. This design also allows for each of maintenance as well as accessibility of the remainder of the vehicle.

  20. Dust control for Enabler

    NASA Technical Reports Server (NTRS)

    Hilton, Kevin; Karl, Chad; Litherland, Mark; Ritchie, David; Sun, Nancy

    1992-01-01

    The dust control group designed a system to restrict dust that is disturbed by the Enabler during its operation from interfering with astronaut or camera visibility. This design also considers the many different wheel positions made possible through the use of artinuation joints that provide the steering and wheel pitching for the Enabler. The system uses a combination of brushes and fenders to restrict the dust when the vehicle is moving in either direction and in a turn. This design also allows for ease of maintenance as well as accessibility of the remainder of the vehicle.

  1. Dust storms: recent developments.

    PubMed

    Goudie, Andrew S

    2009-01-01

    Dust storms have a number of impacts upon the environment including radiative forcing, and biogeochemical cycling. They transport material over many thousands of kilometres. They also have a range of impacts on humans, not least on human health. In recent years the identification of source areas for dust storms has been an important area or research, with the Sahara (especially Bodélé) and western China being recognised as the strongest sources globally. Another major development has been the recognition of the degree to which dust storm activity has varied at a range of time scales, millennial, century, decadal, annual and seasonal.

  2. Dust in the Mediterranean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    On July 24, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), acquired this true-color image of a large cloud of dust blowing from northern Africa across the Mediterranean Sea. The dust storm has persisted in the region for at least a week. In this image, the brownish dust plume appears to originate about 260 miles (400 km) east of Algiers, Algeria, and is blowing toward the northwest coast of Sardinia, Italy. SeaWiFS flies aboard the OrbView-2 Satellite. Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center and ORBIMAGE

  3. Characterization, Validation and Intercomparison of Clumping Index Maps from POLDER, MODIS, and MISR Satellite Data Over Reference Sites

    NASA Astrophysics Data System (ADS)

    Pisek, J.; He, L.; Chen, J. M.; Govind, A.; Sprintsin, M.; Ryu, Y.; Arndt, S. K.; Hocking, D.; Wardlaw, T.; Kuusk, J.; Oliphant, A. J.; Korhonen, L.; Fang, H.; Matteucci, G.; Longdoz, B.; Raabe, K.

    2015-12-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m resolution in

  4. Characterization, validation and intercomparison of clumping index maps from POLDER, MODIS, and MISR satellite data over reference sites

    NASA Astrophysics Data System (ADS)

    Pisek, Jan; He, Liming; Chen, Jing; Govind, Ajit; Sprintsin, Michael; Ryu, Youngryel; Arndt, Stefan; Hocking, Darren; Wardlaw, Timothy; Kuusk, Joel; Oliphant, Andrew; Korhonen, Lauri; Fang, Hongliang; Matteucci, Giorgio; Longdoz, Bernard; Raabe, Kairi

    2015-04-01

    Vegetation foliage clumping significantly alters its radiation environment and therefore affects vegetation growth as well as water and carbon cycles. The clumping index is useful in ecological and meteorological models because it provides new structural information in addition to the effective leaf area index (LAI) retrieved from mono-angle remote sensing and allows accurate separation of sunlit and shaded leaves in the canopy. Not accounting for the foliage clumping in LAI retrieval algorithms leads to substantial underestimation of actual LAI, especially for needleleaf forests. Normalized Difference between Hotspot and Darkspot (NDHD) index has been previously used to retrieve global clumping index maps from POLarization and Directionality of the Earth's Reflectances (POLDER) data at ~6 km resolution, from Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) product at 500 m resolution. Most recently the algorithm was applied with Multi-angle Imaging SpectroRadiometer (MISR) data at 275 m resolution over selected areas. In this presentation we characterize and intercompare the three products over a set of sites representing diverse biomes and different canopy structures. The products are also directly validated with both in-situ vertical profiles and seasonal trajectories of clumping index. We illustrate that the vertical distribution of foliage and especially the effect of understory needs to be taken into account while validating foliage clumping products from remote sensing products with values measured in the field. Satellite measurements respond to the structural effects near the top of canopies, while ground measurements may be biased by the lower vegetation layers. Additionally, caution should be taken regarding the misclassification in land cover maps as their errors can be propagated into the foliage clumping maps. Our results indicate that MODIS data and MISR data with 275 m in particular can

  5. THE BOLOCAM GALACTIC PLANE SURVEY. V. HCO{sup +} AND N{sub 2}H{sup +} SPECTROSCOPY OF 1.1 mm DUST CONTINUUM SOURCES

    SciTech Connect

    Schlingman, Wayne M.; Shirley, Yancy L.; Schenk, David E. E-mail: yshirley@as.arizona.edu

    2011-08-01

    We present the results of observations of 1882 sources in the Bolocam Galactic Plane Survey (BGPS) at 1.1 mm with the 10 m Henrich Hertz Telescope simultaneously in HCO{sup +} J = 3-2 and N{sub 2}H{sup +} J = 3-2. We detect 77% of these sources in HCO{sup +} and 51% in N{sub 2}H{sup +} at greater than 3{sigma}. We find a strong correlation between the integrated intensity of both dense gas tracers and the 1.1 mm dust emission of BGPS sources. We determine kinematic distances for 529 sources (440 in the first quadrant breaking the distance ambiguity and 89 in the second quadrant). We derive the size, mass, and average density for this subset of clumps. The median size of BGPS clumps is 0.75 pc with a median mass of 330 M{sub sun} (assuming T{sub Dust} = 20 K). The median HCO{sup +} linewidth is 2.9 km s{sup -1} indicating that BGPS clumps are dominated by supersonic turbulence or unresolved kinematic motions. We find no evidence for a size-linewidth relationship for BGPS clumps. We analyze the effects of the assumed dust temperature on the derived clump properties with a Monte Carlo simulation and find that changing the temperature distribution will change the median source properties (mass, volume-averaged number density, surface density) by factors of a few. The observed differential mass distribution has a power-law slope that is intermediate between that observed for diffuse CO clouds and the stellar initial mass function. BGPS clumps represent a wide range of objects (from dense cores to more diffuse clumps) and are typically characterized by larger sizes and lower densities than previously published surveys of high-mass star-forming regions. This collection of objects is a less-biased sample of star-forming regions in the Milky Way that likely span a wide range of evolutionary states.

  6. Photoevaporation of Disks and Clumps by Nearby Massive Stars: Application to Disk Destruction in the Orion Nebula

    NASA Astrophysics Data System (ADS)

    Johnstone, Doug; Hollenbach, David; Bally, John

    1998-05-01

    We present a model for the photoevaporation of circumstellar disks or dense clumps of gas by an external source of ultraviolet radiation. Our model includes the thermal and dynamic effects of 6-13.6 eV far-ultraviolet (FUV) photons and Lyman continuum EUV photons incident upon disks or clumps idealized as spheres of radius rd and enclosed mass M*. For sufficiently large values of rd/M*, the radiation field evaporates the surface gas and dust. Analytical and numerical approximations to the resulting flows are presented; the model depends on rd, M*, the flux of FUV and EUV photons, and the column density of neutral gas heated by FUV photons to high temperatures. Application of this model shows that the circumstellar disks (rd ~ 1014-1015 cm) in the Orion Nebula (``proplyds'') are rapidly destroyed by the external UV radiation field. Close (d <~ 1017 cm) to θ1 Ori C, the ionizing EUV photon flux controls the mass-loss rate, and the ionization front (IF) is approximately coincident with the disk surface. Gas evaporated from the cold disk moves subsonically through a relatively thin photodissociation region (PDR) dominated by FUV photons and heated to ~1000 K. As the distance from θ1 Ori C increases, the Lyman continuum flux declines, the PDR thickens, and the IF moves away from the disk surface. At d ~ 3 × 1017 cm, the thickness of the PDR becomes comparable to the disk radius. Between 3 × 1017 cm <~ d <~ 1018 cm, spherical divergence and the resultant pressure gradient in the 103 K PDR forms a mildly supersonic (~3-6 km s-1) but neutral Parker wind. This wind flows outward until it passes through a shock, beyond which gas moves subsonically through a stationary D-type IF. The IF is moved away from the disk surface to a standoff distance rIF >~ 2.5rd. In this regime, the mass-loss rate is determined by the incident FUV photon flux and not the ionizing flux. However, at very large distances, d >~ 1018 cm, the FUV photon flux drops to values that cannot maintain the

  7. Calibration of the carbonate `clumped isotope' paleotemperature proxy using mollusc shells and benthic foraminiferal tests

    NASA Astrophysics Data System (ADS)

    Came, R. E.; Curry, W. B.; Weidman, C. R.; Eiler, J. M.

    2007-12-01

    It has recently been shown that the carbonate `clumped isotope' thermometer can provide temperature constraints that depend only on the isotopic composition of carbonate (in particular, on the proportion of 13C and 18O that form bonds with each other), and that do not require assumptions about the isotopic composition of the water in which the carbonate formed (Ghosh et al., 2006). Furthermore, this novel method permits the calculation of seawater δ18O based on the clumped isotope temperature estimates and the simultaneously obtained δ18O of carbonate, thereby enabling the extraction of global ice volume estimates for both the recent and distant geologic past. Here we present clumped isotope analyses of several naturally occurring marine carbonates that calcified at known temperatures in the modern ocean. First, we analyzed benthic foraminiferal tests from six high-quality multicore tops collected in the Florida Strait, spanning a temperature range of 9.3-20.2 degrees C. Second, we analyzed shallow-water mollusc shells from a variety of different climate regimes, spanning a temperature range of 2.5-26.0 degrees C. We find that the calcitic foraminiferal species Cibicidoides spp. agrees well with the inorganic calcite precipitation experiments of Ghosh et al. (2006), while the aragonitic species Hoeglundina elegans is significantly offset. Similarly, clumped isotope results obtained from aragonitic mollusc shells also reveal an offset from the Ghosh et al. (2006) trend, although the offset observed in mollusc aragonite is quite different in nature from that observed in foraminiferal aragonite. Assuming our estimates of the growth temperatures of these naturally occurring organisms are correct, these results suggest that there are vital effects associated with the stable isotope compositions of the aragonite-precipitating organisms examined in this study; further work will be required to determine their cause. Nevertheless, the internal coherence of trends for

  8. Clumped isotope geochemistry of mid-Cretaceous (Barremian-Aptian) rudist shells: paleoclimatic and paleoenvironmental implications

    NASA Astrophysics Data System (ADS)

    Huck, S.; Steuber, T.; Bernasconi, S.; Weissert, H.

    2012-04-01

    The Cretaceous period is generally considered to have been a time of climate warmth, but there is an ongoing dispute about the existence of Cretaceous cool episodes - including the short-termed installation of polar ice caps. The Late Barremian-Early Aptian represents a Cretaceous key interval in terms of paleoclimate and paleoceanography, as it provides evidence for (i) a cooler climate (Pucéat et al., 2003) and (ii) a considerable seasonality of sea surface temperatures (SSTs) at low latitudes (Steuber et al., 2005). The timing and significance of these cool episodes, however, are not well constrained. Recently published TEX86 data, in contrast to oxygen isotope paleotemperature estimates, now are in support of a climate scenario with equable hot (~30° C) tropical SSTs from the Early Cretaceous onwards. The aim of this project is to reconstruct the evolution of Barremian-Aptian sea-surface temperatures (SSTs) in the tropical Tethyan realm by use of a combined geochemical approach including oxygen isotope analysis and carbonate clumped-isotope thermometry. Paleotemperature proxies are based on the isotope geochemistry of low-Mg calcite of pristine rudist bivalve shells (Toucasia, Requienia) collected from different carbonate platform settings, including the Provence platform in SE France and the Adriatic Carbonate platform in Croatia. Carbonate clumped-isotope geochemistry deals with the state of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes (13C-18O) rather than with the most abundant ones. Carbonate clumped-isotope thermometry has been shown to allow for reconstructing (i) the temperature of carbonate mineral formation and calculating (ii) the isotopic composition of the water from which carbonate minerals were formed (by using the δ18O of the analysed carbonate sample). Our approach seeks to provide insights into possible biases in temperature estimates of different paleothermometers

  9. Carbonate clumped isotope constraints on Silurian ocean temperature and seawater δ18O

    NASA Astrophysics Data System (ADS)

    Cummins, Renata C.; Finnegan, Seth; Fike, David A.; Eiler, John M.; Fischer, Woodward W.

    2014-09-01

    Much of what we know about the history of Earth’s climate derives from the chemistry of carbonate minerals in the sedimentary record. The oxygen isotopic compositions (δ18O) of calcitic marine fossils and cements have been widely used as a proxy for past seawater temperatures, but application of this proxy to deep geologic time is complicated by diagenetic alteration and uncertainties in the δ18O of seawater in the past. Carbonate clumped isotope thermometry provides an independent estimate of the temperature of the water from which a calcite phase precipitated, and allows direct calculation of the δ18O of the water. The clumped isotope composition of calcites is also highly sensitive to recrystallization and can help diagnose different modes of diagenetic alteration, enabling evaluation of preservation states and identification of the most pristine materials from within a sample set-critical information for assessing the quality of paleoproxy data generated from carbonates. We measured the clumped isotope composition of a large suite of calcitic fossils (primarily brachiopods and corals), sedimentary grains, and cements from Silurian (ca. 433 Ma) stratigraphic sections on the island of Gotland, Sweden. Substantial variability in clumped isotope temperatures suggests differential preservation with alteration largely tied to rock-buffered diagenesis, complicating the generation of a stratigraphically resolved climate history through these sections. Despite the generally high preservation quality of samples from these sections, micro-scale observations of calcite fabric and trace metal composition using electron backscatter diffraction and electron microprobe analysis suggest that only a subset of relatively pristine samples retain primary clumped isotope signatures. These samples indicate that Silurian tropical oceans were likely warm (33 ± 7 °C) and similar in oxygen isotopic composition to that estimated for a “modern” ice-free world (δ18OVSMOW of -1

  10. Understanding and constraining global controls on dust emissions from playas

    NASA Astrophysics Data System (ADS)

    Bryant, Robert; Eckardt, Frank; Vickery, Kate; Wiggs, Giles; Hipondoka, Martin; Murray, Jon; Baddock, Matt; Brindley, Helen; King, James; Nield, Jo; Thomas, Dave; Washington, Richard; Haustein, Karsten

    2016-04-01

    and transport capacity limiting factors either seasonally or on an inter-annual basis. Using a range of examples drawn from ongoing and past research [e.g. the DO4Models project] to provide an overview of key controls on critical thresholds and feedbacks (climate, geochemistry, groundwater regime) for dust emission on playas. Pathways to understanding and quantifying the global emission potential of ephemeral lakes will be presented. Implications for dust emission modelling and future dust scenarios will also be outlined.

  11. Far-Reaching Impacts of African Dust- A Calipso Perspective

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Yuan, Tianle; Bian, Huisheng; Prospero, Joseph; Omar, Ali; Remer, Lorraine; Winker, David; Yang, Yuekui; Zhang, Yan; Zhang, Zhibo

    2014-01-01

    African dust can transport across the tropical Atlantic and reach the Amazon basin, exerting far-reaching impacts on climate in downwind regions. The transported dust influences the surface-atmosphere interactions and cloud and precipitation processes through perturbing the surface radiative budget and atmospheric radiative heating and acting as cloud condensation nuclei and ice nuclei. Dust also influences biogeochemical cycle and climate through providing nutrients vital to the productivity of ocean biomass and Amazon forests. Assessing these climate impacts relies on an accurate quantification of dust transport and deposition. Currently model simulations show extremely large diversity, which calls for a need of observational constraints. Kaufman et al. (2005) estimated from MODIS aerosol measurements that about 144 Tg of dust is deposited into the tropical Atlantic and 50 Tg of dust into the Amazon in 2001. This estimated dust import to Amazon is a factor of 3-4 higher than other observations and models. However, several studies have argued that the oversimplified characterization of dust vertical profile in the study would have introduced large uncertainty and very likely a high bias. In this study we quantify the trans-Atlantic dust transport and deposition by using 7 years (2007-2013) observations from CALIPSO lidar. CALIPSO acquires high-resolution aerosol extinction and depolarization profiles in both cloud-free and above-cloud conditions. The unique CALIPSO capability of profiling aerosols above clouds offers an unprecedented opportunity of examining uncertainties associated with the use of MODIS clear-sky data. Dust is separated from other types of aerosols using the depolarization measurements. We estimated that on the basis of 7-year average, 118142 Tg of dust is deposited into the tropical Atlantic and 3860 Tg of dust into the Amazon basin. Substantial interannual variations are observed during the period, with the maximum to minimum ratio of about 1

  12. Probing the formation of intermediate- to high-mass stars in protoclusters. A detailed millimeter study of the NGC 2264 clumps

    NASA Astrophysics Data System (ADS)

    Peretto, N.; André, Ph.; Belloche, A.

    2006-01-01

    We present the results of dust continuum and molecular line observations of two massive cluster-forming clumps, NGC 2264-C and NGC 2264-D, including extensive mapping performed with the MAMBO bolometer array and the HERA heterodyne array on the IRAM 30 m telescope. Both NGC 2264 clumps are located in the Mon OB1 giant molecular cloud complex, adjacent to one another. Twelve and fifteen compact millimeter continuum sources (i.e. MMSs) were identified in clumps C and D, respectively. These MMSs have larger sizes and masses than the millimeter continuum condensations detected in well-known nearby protoclusters such as ρ Ophiuchi. The MMSs of NGC 2264 are closer in size to the DCO+ "cores" of ρ Oph, although they are somewhat denser and exhibit broader linewidths. Most of the MMSs of NGC 2264-C harbor candidate Class 0 protostars associated with shocked molecular hydrogen jets. Evidence of widespread infall motions was found in, e.g., HCO^+(3-2) or CS(3-2) in both NGC 2264-C and NGC 2264-D. A sharp velocity discontinuity 2 km s-1 in amplitude was observed in N2H^+(1-0) and H13CO^+(1-0) in the central, innermost part of NGC 2264-C, which we interpreted as the signature of a strong dynamical interaction between two MMSs and their possible merging with the central MMS C-MM3. Radiative transfer modelling supports the idea that NGC 2264-C is a highly unstable prolate clump in the process of collapsing along its long axis on a near free-fall dynamical timescale 1.7 × 10 5 yr. Our model fit of this large-scale collapse suggests a maximum mass inflow rate 3× 10-3 M⊙ yr-1 toward the central protostellar object C-MM3. In NGC 2264-D, we estimated a mass infall rate dot{M}_DMM1 ˜ 1.1 × 10 -4 M⊙ yr-1 toward the rotating Class 0 object D-MM1, also based on radiative transfer modelling of the observations. Such infall rates are sufficiently high to overcome radiation pressure and allow the formation of 20 M⊙ stars by accretion in 1.7× 105 yr, i.e., a time that is similar

  13. 1983 Transatlantic Dust Event

    NASA Video Gallery

    This visualization (prepared in 2001) shows dust being blown westward over the Atlantic from northern Africa in early 1983, from aerosol measurements taken by Nimbus 7's TOMS instrument. Saharan du...

  14. The ISPM dust experiment

    NASA Technical Reports Server (NTRS)

    Gruen, E.; Fechtig, H.; Giese, R. H.; Kissel, J.; Linkert, L. D.; Mcdonnell, J. A. M.; Morfill, G. E.; Schwehm, G.; Zook, H. A.

    1983-01-01

    The ISPM Dust Experiment observes particulate matter with masses between 10 to the minus 19th power and 10 to the minus 10th power kg in the solar system; investigates its physical and dynamical properties as a function of ecliptic latitude and heliocentric distance; and studies its interaction with solar radiation, the solar wind, and the interplanetary magnetic field. Measurement of the three dimensional spatial distribution of cosmic dust particles and their dynamics allows the relative significance of their probable sources (comets, asteroids and interstellar dust) to be determined. An instrument that measures the mass, speed, flight direction and electric charge of individual dust particles is used. It is a multicoincidence detector with a sensitivity 100,000 times higher than that of previous experiments. The instrument weighs 3.750 kg, consumes 2.0 W, and has a normal data transmission rate of 8 bit/sec in spacecraft tracking mode.

  15. Dusts and Molds

    MedlinePlus

    ... of dust can result in sensitization. Symptoms include chills, fever, cough, chest congestion, fatigue, and shortness of ... grain and forage products. Symptoms include cough, fever, chills, body aches, and fatigue. These symptoms appear from ...

  16. Dust mite (image)

    MedlinePlus

    ... is a magnified photograph of a dust mite. Mites are carriers (vectors) of many important diseases including typhus (scrub and murine) and rickettsialpox. (Image courtesy of the Centers for Disease Control and ...

  17. Composite circumstellar dust grains

    NASA Astrophysics Data System (ADS)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  18. Dust and Smoke

    Atmospheric Science Data Center

    2014-05-15

    ... dust, the most common non-spherical aerosol type, from pollution and forest fire particles. Determining aerosol characteristics is a ... higher, indicating the relative abundance of small pollution particles, especially over the Atlantic where the aerosol optical ...

  19. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  20. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  1. Estimation of leaf area index and foliage clumping in deciduous forests using digital photography

    NASA Astrophysics Data System (ADS)

    Chianucci, Francesco; Cutini, Andrea

    2013-04-01

    Rapid, reliable and meaningful estimates of leaf area index (LAI) are essential to the characterization of forest ecosystems. In this contribution the accuracy of both fisheye and non-fisheye digital photography for the estimation of forest leaf area in deciduous stands was evaluated. We compared digital hemispherical photography (DHP), the most widely used technique that measures the gap fraction at multiple zenith angles, with methods that measure the gap fraction at a single zenith angle, namely 57.5 degree photography and cover photography (DCP). Comparison with other different gap fraction methods used to calculate LAI such as canopy transmittance measurements from AccuPAR ceptometer and LAI- 2000 Plant Canopy Analyzer (PCA) were also performed. LAI estimated from all these indirect methods were compared with direct measurements obtained by litter traps (LAILT). We applied these methods in 10 deciduous stands of Quercus cerris, Castanea sativa and Fagus sylvatica, the most common deciduous species in Italy, where LAILT ranged from 3.9 to 7.3. DHP and DCP provided good indirect estimates of LAILT, and outperformed the other indirect methods. The DCP method provided estimates of crown porosity, crown cover, foliage cover and the clumping index at the zenith, but required assumptions about the light extinction coefficient at the zenith (k), to accurately estimate LAI. Cover photography provided good indirect estimates of LAI assuming a spherical leaf angle distribution, even though k appeared to decrease as LAI increased, thus affecting the accuracy of LAI estimates in DCP. In contrast, the accuracy of LAI estimates in DHP appeared insensitive to LAILT values, but the method was sensitive to photographic exposure, gamma-correction and was more time-consuming than DCP. Foliage clumping was estimated from all the photographic methods by analyzing either gap size distribution (DCP) or gap fraction distribution (DHP). Foliage clumping was also calculated from PCA and

  2. Carbonate "clumped" isotope signatures in aragonitic scleractinian and calcitic gorgonian deep-sea corals

    NASA Astrophysics Data System (ADS)

    Kimball, J.; Tripati, R. E.; Dunbar, R.

    2015-12-01

    Deep-sea corals are a potentially valuable archive of the temperature and ocean chemistry of intermediate and deep waters. Living in near constant temperature, salinity and pH, and having amongst the slowest calcification rates observed in carbonate-precipitating biological organisms, deep-sea corals can provide valuable constraints on processes driving mineral equilibrium and disequilibrium isotope signatures. Here we report new data to further develop "clumped" isotopes as a paleothermometer in deep-sea corals as well as to investigate mineral-specific, taxon-specific, and growth-rate related effects. Carbonate clumped isotope thermometry is based on measurements of the abundance of the doubly-substituted isotopologue 13C18O16O2 in carbonate minerals, analyzed in CO2 gas liberated on phosphoric acid digestion of carbonates and reported as Δ47 values. We analyzed Δ47 in live-collected aragonitic scleractinian (Enallopsammia sp.) and calcitic gorgonian (Isididae and Coralliidae) deep-sea corals, and compared results to published data for other aragonitic scleractinian taxa. Measured Δ47 values were compared to in situ temperatures and the relationship between Δ47 and temperature was determined for each group to investigate taxon-specific effects. We find that aragonitic scleractinian deep-sea corals exhibit higher values than calcitic gorgonian corals and the two groups of coral produce statistically different relationship between Δ47-temperature calibrations. These data are significant in the interpretation of all carbonate "clumped" isotope calibration data as they show that distinct Δ47-temperature calibrations can be observed in different materials recovered from the same environment and analyzed using the same instrumentation, phosphoric acid composition, digestion temperature and technique, CO2 gas purification apparatus, and data handling. There are three possible explanations for the origin of these different calibrations. The offset between the

  3. Using Clumped Isotopes to Investigate the Causes of Pluvial Conditions in the Southeastern Basin and Range during the Last Deglaciation

    NASA Astrophysics Data System (ADS)

    Kowler, A.; Lora, J. M.; Mitchell, J.; Risi, C.; Lee, H. I.; Tripati, A.

    2015-12-01

    The last deglacial interval (~19-11 ka) was marked by major perturbations to Earth's climate coupled with rising atmospheric temperatures and CO2 concentrations, reaching near-modern levels by the early Holocene. Several discharges of freshwater into the North Atlantic caused by melting and collapse of continental ice sheets affected ocean circulation and sea-surface temperatures, triggering abrupt changes in terrestrial climate worldwide. While the timing and amount of associated temperature changes have been quantified from ice core records at high latitudes, corresponding information from lower latitudes is comparatively low and concentrated along coastlines, at high elevations, and in tropical and mesic regions. This is problematic for efforts to improve the reliability of long-term climate forecasts, reliant on models lacking sufficient validation from paleoclimate reconstructions for interior drylands that comprise nearly half of Earth's land surface. Evidence for past hydrologic changes in arid regions comes from ancient lake-shoreline deposits in internally drained basins, allowing quantitative comparison of the recorded effective moisture increases. However, the utility of these records depends on our relatively limited ability to deconvolve the contributions of temperature and precipitation to these changes. Here we explore the possible role of the summer monsoon in causing deglacial-age highstands in the southern Basin and Range. We employ clumped isotope analysis to generate paleotemperature and surface-water d18O estimates from carbonates in fossil shoreline and wetland deposits for comparison to output from PMIP3 coupled climate models and the model ensemble. Additionally, we present higher resolution output from LMDZ, the atmosphere-only component of the IPSL coupled model, employing LGM boundary conditions along with a hosing experiment designed to simulate Heinrich 1. For all simulations, we present analysis of changes in moisture transport

  4. Ares Vallis Dust Devil

    NASA Technical Reports Server (NTRS)

    2004-01-01

    12 May 2004 When it was operating in the Ares/Tiu Valles region of Chryse Planitia, Mars, in 1997, Mars Pathfinder detected dust devils that passed over and near the lander. From orbit, no images of dust devils at the Mars Pathfinder site have yet been acquired, but this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a summertime dust devil near the rim of a 610-meter (670 yards)-diameter impact crater in the same general region as the Mars Pathfinder site. This scene is near 19.6oN, 32.9oW, in part of the Ares Vallis system. The dust devil in this case is not making a streak, as dust devils tend to do in some regions of Mars. The dark feature to the right (east) of the dust devil is its shadow. This picture covers an area approximately 3 km (1.9 mi) across and is illuminated by sunlight from the left/upper left.

  5. Hebes Chasma Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in Hebes Chasma.

    Image information: VIS instrument. Latitude -1.4, Longitude 286.6 East (73.4 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Pallene dust torus

    NASA Astrophysics Data System (ADS)

    Seiss, M.; Srama, R.; Kempf, S.; Sun, K. L.; Seiler, M.; Sachse, M.; Moragas-Klostermeyer, G.; Spahn, F.

    2014-12-01

    The tiny moon Pallene (diameter < 5 km, semi-major axis 212,000 km) orbits between Saturn's moons Mimas and Enceladus. The ISS cameras on board the Cassini spacecraft have detected a faint dust torus along its inclined orbit (Hedman, 2009). The source of the torus is believed to be the moon itself, where dust particles are ejected from the surface by micrometeoroid bombardment. Here we present in-situ dust measurements of the Cosmic Dust Analyser (CDA) on-board the spacecraft Cassini which confirm a dust torus of micrometer-sized particles along the orbit of Pallene. The cross-section of the torus has been modeled with a double-Gaussian distribution, resulting in a radial and vertical full width at half maximum of 2300 km and 270 km and a maximum particle density of n = 2.7 10-3 m-3. Additionally, the data show an enhancement of larger particle in the torus in comparison to the background E-ring size distribution. The radial mean position of the torus is radially shifted outwards by around 1200 km in all flybys. This could point to a systematic larger semi-major axes of the dust particles (in comparison to Pallene) or a possible heliotropic appearance of the torus (all flybys in anti-solar direction).

  7. Comet 'Bites the Dust' Around Dead Star

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Infrared Spectrometer Graph

    This artist's concept illustrates a comet being torn to shreds around a dead star, or white dwarf, called G29-38. NASA's Spitzer Space Telescope observed a cloud of dust around this white dwarf that may have been generated from this type of comet disruption. The findings suggest that a host of other comet survivors may still orbit in this long-dead solar system.

    The white dwarf G29-38 began life as a star that was about three times as massive as our sun. Its death involved the same steps that the sun will ultimately undergo billions of years from now. According to theory, the G29-38 star became brighter and brighter as it aged, until it bloated up into a dying star called a red giant. This red giant was large enough to engulf and evaporate any terrestrial planets like Earth that happened to be in its way. Later, the red giant shed its outer atmosphere, leaving behind a shrunken skeleton of star, called a white dwarf. If the star did host a planetary system, outer planets akin to Jupiter and Neptune and a remote ring of icy comets would remain.

    The Spitzer observations provide observational evidence for this orbiting outpost of comet survivors. Astronomers speculate that one such comet was knocked into the inner regions of G29-38, possibly by an outer planet. As the comet approached very close to the white dwarf, it may have been torn apart by the star's tidal forces. Eventually, all that would be left of the comet is a disk of dust.

    This illustration shows a comet in the process of being pulverized: part of it still exists as a chain of small clumps, while the rest has already spread out into a dusty disk. Comet Shoemaker-Levy 9 broke apart in a similar fashion when it plunged into Jupiter in 1994. Evidence for Comets Found in Dead Star's Dust The graph of data, or spectrum, from NASA's Spitzer Space Telescope indicates that a dead star, or white dwarf, called G29

  8. On quantifying insect movements

    SciTech Connect

    Wiens, J.A.; Crist, T.O. ); Milne, B.T. )

    1993-08-01

    We elaborate on methods described by Turchin, Odendaal Rausher for quantifying insect movement pathways. We note the need to scale measurement resolution to the study insects and the questions being asked, and we discuss the use of surveying instrumentation for recording sequential positions of individuals on pathways. We itemize several measures that may be used to characterize movement pathways and illustrate these by comparisons among several Eleodes beetles occurring in shortgrass steppe. The fractal dimension of pathways may provide insights not available from absolute measures of pathway configuration. Finally, we describe a renormalization procedure that may be used to remove sequential interdependence among locations of moving individuals while preserving the basic attributes of the pathway.

  9. Newton to Einstein — dust to dust

    SciTech Connect

    Kopp, Michael; Uhlemann, Cora; Haugg, Thomas E-mail: cora.uhlemann@physik.lmu.de

    2014-03-01

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show that this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.

  10. High-latitude dust in the Earth system

    NASA Astrophysics Data System (ADS)

    Bullard, Joanna E.; Baddock, Matthew; Bradwell, Tom; Crusius, John; Darlington, Eleanor; Gaiero, Diego; Gassó, Santiago; Gisladottir, Gudrun; Hodgkins, Richard; McCulloch, Robert; McKenna-Neuman, Cheryl; Mockford, Tom; Stewart, Helena; Thorsteinsson, Throstur

    2016-06-01

    Natural dust is often associated with hot, subtropical deserts, but significant dust events have been reported from cold, high latitudes. This review synthesizes current understanding of high-latitude (≥50°N and ≥40°S) dust source geography and dynamics and provides a prospectus for future research on the topic. Although the fundamental processes controlling aeolian dust emissions in high latitudes are essentially the same as in temperate regions, there are additional processes specific to or enhanced in cold regions. These include low temperatures, humidity, strong winds, permafrost and niveo-aeolian processes all of which can affect the efficiency of dust emission and distribution of sediments. Dust deposition at high latitudes can provide nutrients to the marine system, specifically by contributing iron to high-nutrient, low-chlorophyll oceans; it also affects ice albedo and melt rates. There have been no attempts to quantify systematically the expanse, characteristics, or dynamics of high-latitude dust sources. To address this, we identify and compare the main sources and drivers of dust emissions in the Northern (Alaska, Canada, Greenland, and Iceland) and Southern (Antarctica, New Zealand, and Patagonia) Hemispheres. The scarcity of year-round observations and limitations of satellite remote sensing data at high latitudes are discussed. It is estimated that under contemporary conditions high-latitude sources cover >500,000 km2 and contribute at least 80-100 Tg yr-1 of dust to the Earth system (~5% of the global dust budget); both are projected to increase under future climate change scenarios.

  11. Simulation of the Radiative Impact of High Dust Loading during a Dust Storm in March 2012

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Kalenderski, S.; Stenchikov, G. L.

    2013-12-01

    We investigated a severe dust storm that developed over vast areas of the Middle East on 18-19 March 2012 and affected Saudi Arabia, Sudan, Egypt, Jordan, United Arab Emirates, Bahrain, Qatar, Oman, Kuwait, Iraq, Iran, Israel, and Pakistan. The visible aerosol optical depth recorded by the AERONET station on the KAUST campus (22.30o N 39.10o E) during the storm reached 4.5, exceeding the average level by an order of magnitude. To quantify the effects of the dust on atmospheric radiation and dynamics, we analyzed available ground-based and satellite observations and conducted numerical simulations using a fully coupled meteorology-chemistry-aerosol model (WRF-Chem). The model was able to reproduce the spatial and temporal patterns of the aerosol optical depths (AOD) observed by airborne and ground-based instruments. The major dust sources included river valleys of lower Tigris and Euphrates in Iraq, desert areas in Kuwait, Iran, United Arab Emirates, central Arabia including Rub' al Khali, An Nafud, and Ad Dahna, as well as the Red Sea coast of the Arabian Peninsula. The total amount of dust generated across the entire domain during the period of the simulation reached 93.76 Mt; 73.04 Mt of dust was deposited within the domain; 6.56 Mt of dust sunk in the adjacent sea waters, including 1.20 Mt that sedimented into the Red Sea. The model predicted a well-mixed boundary layer expanding up to 3.5 km in the afternoon. Some dust plumes were seen above the Planetary Boundary layer. In our simulations, mineral dust heated the lower atmosphere with a maximum heating rate of 9 K/day. The dust storm reduced the downwelling shortwave radiation at the surface to a maximum daily average value of -134 Wm-2 and the daily averaged long-wave forcing at the surface increased to 43 Wm-2. The combined short-wave cooling and long-wave warming effects of dust aerosols caused significant reduction in the surface air temperature -6.7 K at 1200 UTC on 19 March 2013.

  12. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral

  13. Interstellar and Cometary Dust

    NASA Astrophysics Data System (ADS)

    Mathis, John S.

    1997-12-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral

  14. Large and small-scale structures and the dust energy balance problem in spiral galaxies

    NASA Astrophysics Data System (ADS)

    Saftly, W.; Baes, M.; De Geyter, G.; Camps, P.; Renaud, F.; Guedes, J.; De Looze, I.

    2015-04-01

    The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on spiral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a Sérsic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.

  15. NGC 4370: a case study for testing our ability to infer dust distribution and mass in nearby galaxies

    NASA Astrophysics Data System (ADS)

    Viaene, S.; De Geyter, G.; Baes, M.; Fritz, J.; Bendo, G. J.; Boquien, M.; Boselli, A.; Bianchi, S.; Cortese, L.; Côté, P.; Cuillandre, J.-C.; De Looze, I.; di Serego Alighieri, S.; Ferrarese, L.; Gwyn, S. D. J.; Hughes, T. M.; Pappalardo, C.

    2015-07-01

    Context. A segment of the early-type galaxy population hosts a prominent dust lane, often decoupled from its stellar body. Methods of quantifying the dust content of these systems based on optical imaging data usually yield dust masses that are an order of magnitude lower than dust masses derived from the observed far-IR (FIR) emission. The discrepancy is often explained by invoking a diffuse dust component that is hard to trace in the UV or optical. Aims: High-quality optical data from the Next Generation Virgo cluster Survey (NGVS) and FIR/sub-mm observations from the Herschel Virgo Cluster Survey (HeViCS) allow us to revisit previous methods of determining the dust content in galaxies and explore new ones. NGC 4370 is an edge-on, early-type galaxy with a conspicuous dust lane and regular morphology, making it suitable for several (semi-)analytical modelling techniques. We aim to derive the dust mass from both optical and FIR data and to investigate the need to invoke a putative diffuse dust component. Methods: We used different methods to determine the total dust mass in the dust lane. We used our exquisite optical data to create colour and attenuation maps, which are converted to approximate dust mass maps based on simple dust geometries. Dust masses were also derived from SED fits to FIR to sub-mm observations. Finally, inverse radiative transfer fitting was performed to investigate more complex dust geometries, such as an exponential dust disc and a dust ring and to treat the dust-starlight interaction in a self-consistent way. Results: We find that the empirical methods applied to the optical data yield lower limits of 3.4 × 105 M⊙, an order of magnitude below the total dust masses derived from SED fitting. In contrast, radiative transfer models yield dust masses that are slightly lower, but fully consistent with the FIR-derived mass. We find that the effect of a nuclear stellar disc on the derivation of the total dust mass is minor. Conclusions: Dust is

  16. Dust Formation in the Hot Massive Binary HD 192641 = WR 137 (WC7 + OB)

    NASA Astrophysics Data System (ADS)

    Marchenko, Sergey V.; Moffat, Anthony F. J.; Grosdidier, Yves

    1999-09-01

    Medium band (H' and K') images of the episodic dust-forming, long-period (~13 yr) WC7 + OB binary WR 137 were obtained with the Near-Infrared Camera and Multiobject Spectrometer 2 camera of the Hubble Space Telescope during periastron passage in 1997-1998. We have resolved IR-emitting dust in the close environment of this system. The dust emission occurs in a few clumps within about 0.5" of the star, as well as in a jetlike structure with a total extension of ~0.25". The dust is likely either created or enhanced in the zone of gas shocked by wind-wind collision. We estimate the total mass of the resolved dust features during the 1997-1998 outburst to be ~2×10-7 Msolar (~0.1M⊕) within a factor of 3. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555.

  17. Dust measurements in the coma of comet 67P/Churyumov-Gerasimenko inbound to the Sun

    NASA Astrophysics Data System (ADS)

    Rotundi, Alessandra; Sierks, Holger; Della Corte, Vincenzo; Fulle, Marco; Gutierrez, Pedro J.; Lara, Luisa; Barbieri, Cesare; Lamy, Philippe L.; Rodrigo, Rafael; Koschny, Detlef; Rickman, Hans; Keller, Horst Uwe; López-Moreno, José J.; Accolla, Mario; Agarwal, Jessica; A'Hearn, Michael F.; Altobelli, Nicolas; Angrilli, Francesco; Barucci, M. Antonietta; Bertaux, Jean-Loup; Bertini, Ivano; Bodewits, Dennis; Bussoletti, Ezio; Colangeli, Luigi; Cosi, Massimo; Cremonese, Gabriele; Crifo, Jean-Francois; Da Deppo, Vania; Davidsson, Björn; Debei, Stefano; De Cecco, Mariolino; Esposito, Francesca; Ferrari, Marco; Fornasier, Sonia; Giovane, Frank; Gustafson, Bo; Green, Simon F.; Groussin, Olivier; Grün, Eberhard; Güttler, Carsten; Herranz, Miguel L.; Hviid, Stubbe F.; Ip, Wing; Ivanovski, Stavro; Jerónimo, José M.; Jorda, Laurent; Knollenberg, Joerg; Kramm, Rainer; Kührt, Ekkehard; Küppers, Michael; Lazzarin, Monica; Leese, Mark R.; López-Jiménez, Antonio C.; Lucarelli, Francesca; Lowry, Stephen C.; Marzari, Francesco; Epifani, Elena Mazzotta; McDonnell, J. Anthony M.; Mennella, Vito; Michalik, Harald; Molina, Antonio; Morales, Rafael; Moreno, Fernando; Mottola, Stefano; Naletto, Giampiero; Oklay, Nilda; Ortiz, José L.; Palomba, Ernesto; Palumbo, Pasquale; Perrin, Jean-Marie; Rodríguez, Julio; Sabau, Lola; Snodgrass, Colin; Sordini, Roberto; Thomas, Nicolas; Tubiana, Cecilia; Vincent, Jean-Baptiste; Weissman, Paul; Wenzel, Klaus-Peter; Zakharov, Vladimir; Zarnecki, John C.

    2015-01-01

    Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency’s Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10-10 to 10-7 kilograms, and 48 grains of mass 10-5 to 10-2 kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.

  18. Potential health benefits of controlling dust emissions in Beijing.

    PubMed

    Meng, Jing; Liu, Junfeng; Fan, Songmiao; Kang, Chuyun; Yi, Kan; Cheng, Yanli; Shen, Xing; Tao, Shu

    2016-06-01

    Although the adverse impact of fine particulate matter (i.e., PM2.5) on human health has been well acknowledged, little is known of the health effects of its specific constituents. Over the past decade, the annual average dust concentrations in Beijing were approximately ∼14 μg m(-3), a value that poses a great threat to the city's 20 million residents. In this study, we quantify the potential long-term health damages in Beijing resulting from the dust exposure that occurred from 2000 to 2011. Each year in Beijing, nearly 4000 (95% CI: 1000-7000) premature deaths may be associated with long-term dust exposure, and ∼20% of these deaths are attributed to lung cancer. A decomposition analysis of the inter-annual variability of premature deaths in Beijing indicates that dust concentrations determine the year-to-year tendency, whereas population growth and lung cancer mortality rates drive the increasing tendency of premature death. We suggest that if Beijing takes effective measures towards reducing dust concentrations (e.g., controlling the resuspension of road dust and the fugitive dust from construction sites) to a level comparable to that of New York City's, the associated premature deaths will be significantly reduced. This recommendation offers "low-hanging fruit" suggestions for pollution control that would greatly benefit the public health in Beijing. PMID:27038572

  19. Potential health benefits of controlling dust emissions in Beijing.

    PubMed

    Meng, Jing; Liu, Junfeng; Fan, Songmiao; Kang, Chuyun; Yi, Kan; Cheng, Yanli; Shen, Xing; Tao, Shu

    2016-06-01

    Although the adverse impact of fine particulate matter (i.e., PM2.5) on human health has been well acknowledged, little is known of the health effects of its specific constituents. Over the past decade, the annual average dust concentrations in Beijing were approximately ∼14 μg m(-3), a value that poses a great threat to the city's 20 million residents. In this study, we quantify the potential long-term health damages in Beijing resulting from the dust exposure that occurred from 2000 to 2011. Each year in Beijing, nearly 4000 (95% CI: 1000-7000) premature deaths may be associated with long-term dust exposure, and ∼20% of these deaths are attributed to lung cancer. A decomposition analysis of the inter-annual variability of premature deaths in Beijing indicates that dust concentrations determine the year-to-year tendency, whereas population growth and lung cancer mortality rates drive the increasing tendency of premature death. We suggest that if Beijing takes effective measures towards reducing dust concentrations (e.g., controlling the resuspension of road dust and the fugitive dust from construction sites) to a level comparable to that of New York City's, the associated premature deaths will be significantly reduced. This recommendation offers "low-hanging fruit" suggestions for pollution control that would greatly benefit the public health in Beijing.

  20. Expanding shell and star formation in the infrared dust bubble N6

    SciTech Connect

    Yuan, Jing-Hua; Li, Jin Zeng; Liu, Hongli; Wu, Yuefang E-mail: ywu@pku.edu.cn

    2014-12-10

    We have carried out a multiwavelength study of the infrared dust bubble N6 to extensively investigate the molecular environs and star-forming activities therein. Mapping observations in {sup 12}CO J = 1-0 and {sup 13}CO J = 1-0 performed with the Purple Mountain Observatory 13.7 m telescope have revealed four velocity components. Comparison between distributions of each component and the infrared emission suggests that three components are correlated with N6. There are 10 molecular clumps detected. Among them, five have reliable detections in both {sup 12}CO and {sup 13}CO and have similar LTE and non-LTE masses ranging from 200 to higher than 5000 M {sub ☉}. With larger gas masses than virial masses, these five clumps are gravitationally unstable and have the potential to collapse to form new stars. The other five clumps are only reliably detected in {sup 12}CO and have relatively small masses. Five clumps are located on the border of the ring structure, and four of them are elongated along the shell. This is well in agreement with the collect-and-collapse scenario. The detected velocity gradient reveals that the ring structure is still under expansion owing to stellar winds from the exciting star(s). Furthermore, 99 young stellar objects (YSOs) have been identified based on their infrared colors. A group of YSOs reside inside the ring, indicating active star formation in N6. Although no confirmative features of triggered star formation are detected, the bubble and the enclosed H II region have profoundly reconstructed the natal cloud and altered the dynamics therein.

  1. The Influence of Dust on the Absorptivity of Radiant Barriers

    NASA Astrophysics Data System (ADS)

    Noboa, Homero Luis

    1993-01-01

    The purpose of this project was to model and quantify the increase of the absorptivity of radiant barriers caused by the accumulation of dust on the surface of radiant barriers. This research was the continuation of a previous work by the author at Texas A&M University in which a radiation energy balance inside the attic enclosure was developed. The particles were considered as flat, circular planes, all having the same radii. That early model showed that there was a linear relationship between the fraction of area of the foil covered by dust and the mean absorptivity of the dusty radiant barrier. In the present work, it was found that the assumption of treating the dust particles as plane circles, underestimated the effective area of the particles by about 20%. Experimental measurements indicated that dust particles achieved the same temperature as the radiant barrier. The new model used the linear relationship just described, and simulated the dust particles as flat circular planes having random radii and laying in random locations within the radiant barrier surface. The new model calculated the fraction of radiant barrier area covered by particles using a digital array in which the clean barrier was represented as zeroes and the dust particles were represented as a set of ones appropriately dimensioned inside the array. The experimentation used natural dust and Arizona Road Test Dust. Using an infrared emissometer, the emissivities (absorptivities) of the clean and dusty barriers were measured and using an electronic scale, the dust loading was measured. An electron microscope was used to experimentally find the fraction of radiant barrier covered by the dust particles to correlate the experimentally found absorptivity with the experimentally found fraction of dust coverage. The limited experimental data available were also used to correlate the absorptivity of the dusty radiant barrier with the time of dust accumulation and the location of the barrier inside

  2. Fractal dust grains in plasma

    SciTech Connect

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-09-15

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  3. Quantifier Comprehension in Corticobasal Degeneration

    ERIC Educational Resources Information Center

    McMillan, Corey T.; Clark, Robin; Moore, Peachie; Grossman, Murray

    2006-01-01

    In this study, we investigated patients with focal neurodegenerative diseases to examine a formal linguistic distinction between classes of generalized quantifiers, like "some X" and "less than half of X." Our model of quantifier comprehension proposes that number knowledge is required to understand both first-order and higher-order quantifiers.…

  4. Clumped isotope thermometry in deeply buried sedimentary carbonates: The effects of C-O bond reordering and recrystallization

    NASA Astrophysics Data System (ADS)

    Passey, B. H.; Shenton, B.; Grossman, E. L.; Henkes, G. A.; Laya, J. C.; Perez-Huerta, A.

    2014-12-01

    Constraining the thermal histories of sedimentary basins is fundamental to a range of geologic applications including tectonics, petroleum system analysis, and the genesis of ore deposits. Carbonate rocks can serve as archives of basin thermal histories through solid-state reordering of their 13C-18O, or 'clumped isotope', bonds at elevated burial temperatures. Here we present one of the first applied studies of carbonate clumped isotope reordering to explore the diagenetic and thermal histories of exhumed brachiopods, crinoids, cements, and host rock in the Permian Palmarito Formation, Venezuela and the Carboniferous Bird Spring Formation, Nevada, USA. Carbonate components in the Palmarito Formation, buried to ~4 km depth, yield statistically indistinguishable clumped isotope temperatures (T(∆47)) ranging from 86 to 122 °C. Clumped isotope temperatures of components in the more deeply buried Bird Spring Formation (>5 km), range from ~100 to 165 °C and differ by component type, with brachiopods and pore-filling cements yielding the highest T(∆47) (mean = 153 and 141 °C, respectively) and crinoids and host rock yielding significantly cooler T(∆47) (mean = 103 and 114 °C). New high-resolution thermal histories are coupled with kinetic models to predict the extent of solid-state C-O bond reordering during burial and exhumation for both sites. Application of these models suggests that brachiopods in the Palmarito Formation experienced partial bond reordering without complete equilibration of clumped isotopes at maximum burial temperature. In contrast, clumped isotope bonds of brachiopods from the Bird Spring Formation appear to have completely equilibrated at maximum burial temperature, and now reflect blocking temperatures 'locked-in' during cooling. The 40-50 °C cooler clumped isotope temperatures measured in Bird Spring Formation crinoids and host rock can be explained by both recrystallization and cementation during shallow burial and a greater inherent

  5. Dust measurements in tokamaks (invited)

    SciTech Connect

    Rudakov, D. L.; Yu, J. H.; Boedo, J. A.; Hollmann, E. M.; Krasheninnikov, S. I.; Moyer, R. A.; Muller, S. H.; Pigarov, A. Yu.; Rosenberg, M.; Smirnov, R. D.; West, W. P.; Boivin, R. L.; Bray, B. D.; Brooks, N. H.; Hyatt, A. W.; Wong, C. P. C.; Roquemore, A. L.; Skinner, C. H.; Solomon, W. M.; Ratynskaia, S.

    2008-10-15

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  6. Determining inert content in coal dust/rock dust mixture

    DOEpatents

    Sapko, Michael J.; Ward, Jr., Jack A.

    1989-01-01

    A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

  7. Quantifying the Adaptive Cycle.

    PubMed

    Angeler, David G; Allen, Craig R; Garmestani, Ahjond S; Gunderson, Lance H; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994-2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems. PMID:26716453

  8. Uncertainty quantified trait predictions

    NASA Astrophysics Data System (ADS)

    Fazayeli, Farideh; Kattge, Jens; Banerjee, Arindam; Schrodt, Franziska; Reich, Peter

    2015-04-01

    Functional traits of organisms are key to understanding and predicting biodiversity and ecological change, which motivates continuous collection of traits and their integration into global databases. Such composite trait matrices are inherently sparse, severely limiting their usefulness for further analyses. On the other hand, traits are characterized by the phylogenetic trait signal, trait-trait correlations and environmental constraints, all of which provide information that could be used to statistically fill gaps. We propose the application of probabilistic models which, for the first time, utilize all three characteristics to fill gaps in trait databases and predict trait values at larger spatial scales. For this purpose we introduce BHPMF, a hierarchical Bayesian extension of Probabilistic Matrix Factorization (PMF). PMF is a machine learning technique which exploits the correlation structure of sparse matrices to impute missing entries. BHPMF additionally utilizes the taxonomic hierarchy for trait prediction. Implemented in the context of a Gibbs Sampler MCMC approach BHPMF provides uncertainty estimates for each trait prediction. We present comprehensive experimental results on the problem of plant trait prediction using the largest database of plant traits, where BHPMF shows strong empirical performance in uncertainty quantified trait prediction, outperforming the state-of-the-art based on point estimates. Further, we show that BHPMF is more accurate when it is confident, whereas the error is high when the uncertainty is high.

  9. Quantifying the adaptive cycle

    USGS Publications Warehouse

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems.

  10. Quantifying solvated electrons' delocalization.

    PubMed

    Janesko, Benjamin G; Scalmani, Giovanni; Frisch, Michael J

    2015-07-28

    Delocalized, solvated electrons are a topic of much recent interest. We apply the electron delocalization range EDR(r;u) (J. Chem. Phys., 2014, 141, 144104) to quantify the extent to which a solvated electron at point r in a calculated wavefunction delocalizes over distance u. Calculations on electrons in one-dimensional model cavities illustrate fundamental properties of the EDR. Mean-field calculations on hydrated electrons (H2O)n(-) show that the density-matrix-based EDR reproduces existing molecular-orbital-based measures of delocalization. Correlated calculations on hydrated electrons and electrons in lithium-ammonia clusters illustrates how electron correlation tends to move surface- and cavity-bound electrons onto the cluster or cavity surface. Applications to multiple solvated electrons in lithium-ammonia clusters provide a novel perspective on the interplay of delocalization and strong correlation central to lithium-ammonia solutions' concentration-dependent insulator-to-metal transition. The results motivate continued application of the EDR to simulations of delocalized electrons.

  11. Quantifying the Adaptive Cycle

    PubMed Central

    Angeler, David G.; Allen, Craig R.; Garmestani, Ahjond S.; Gunderson, Lance H.; Hjerne, Olle; Winder, Monika

    2015-01-01

    The adaptive cycle was proposed as a conceptual model to portray patterns of change in complex systems. Despite the model having potential for elucidating change across systems, it has been used mainly as a metaphor, describing system dynamics qualitatively. We use a quantitative approach for testing premises (reorganisation, conservatism, adaptation) in the adaptive cycle, using Baltic Sea phytoplankton communities as an example of such complex system dynamics. Phytoplankton organizes in recurring spring and summer blooms, a well-established paradigm in planktology and succession theory, with characteristic temporal trajectories during blooms that may be consistent with adaptive cycle phases. We used long-term (1994–2011) data and multivariate analysis of community structure to assess key components of the adaptive cycle. Specifically, we tested predictions about: reorganisation: spring and summer blooms comprise distinct community states; conservatism: community trajectories during individual adaptive cycles are conservative; and adaptation: phytoplankton species during blooms change in the long term. All predictions were supported by our analyses. Results suggest that traditional ecological paradigms such as phytoplankton successional models have potential for moving the adaptive cycle from a metaphor to a framework that can improve our understanding how complex systems organize and reorganize following collapse. Quantifying reorganization, conservatism and adaptation provides opportunities to cope with the intricacies and uncertainties associated with fast ecological change, driven by shifting system controls. Ultimately, combining traditional ecological paradigms with heuristics of complex system dynamics using quantitative approaches may help refine ecological theory and improve our understanding of the resilience of ecosystems. PMID:26716453

  12. Electrodynamic Dust Shield Demonstrator

    NASA Technical Reports Server (NTRS)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  13. Conveyor dust control

    SciTech Connect

    Goldbeck, L.

    1999-11-01

    In the past, three different approaches have been used to control dust arising at conveyor load zones. They are: Dust Containment consists of those mechanical systems employed to keep material inside the transfer point with the main material body. Dust Suppression systems increase the mass of suspended dust particles, allowing them to fall from the air stream. Dust Collection is the mechanical capture and return of airborne material after it becomes airborne from the main material body. Previously, these three approaches have always been seen as separate entities. They were offered by separate organizations competing in the marketplace. The three technologies vied for their individual piece of the rock, at the expense of the other technologies (and often at the expense of overall success). There have been considerable amounts of I`m better selling, as well as finger pointing at the other systems when problems arose. Each system claimed its own technology was the best, providing the most effective, most cost-efficient, most maintenance-free solution to fugitive material.

  14. Dust cluster explosion

    SciTech Connect

    Saxena, Vikrant; Avinash, K.; Sen, A.

    2012-09-15

    A model for the dust cluster explosion where micron/sub-micron sized particles are accelerated at the expense of plasma thermal energy, in the afterglow phase of a complex plasma discharge is proposed. The model is tested by molecular dynamics simulations of dust particles in a confining potential. The nature of the explosion (caused by switching off the discharge) and the concomitant dust acceleration is found to depend critically on the pressure of the background neutral gas. At low gas pressure, the explosion is due to unshielded Coulomb repulsion between dust particles and yields maximum acceleration, while in the high pressure regime it is due to shielded Yukawa repulsion and yields much feebler acceleration. These results are in agreement with experimental findings. Our simulations also confirm a recently proposed electrostatic (ES) isothermal scaling relation, P{sub E}{proportional_to}V{sub d}{sup -2} (where P{sub E} is the ES pressure of the dust particles and V{sub d} is the confining volume).

  15. Dust Growth by RF Sputtering

    SciTech Connect

    Churton, B.; Samarian, A. A.; Coueedel, L.

    2008-09-07

    The effect of the dust particle growth by RF sputtering on glow discharge has been investigated. It has been found that the growth of dust particles modifies the electrical characteristics of the discharge. In particularly, the absolute value of the self-bias voltage decreases during the particle growth due to the electron losses on the dust particles. To find the correlation between the dust growth and the self bias evolution, dust particles have been collected at different times. The dust particle growth rate is found to be linear.

  16. Saharan dust deposition in the Carpathian Basin and its possible effects on interglacial soil formation

    NASA Astrophysics Data System (ADS)

    Varga, György; Cserháti, Csaba; Kovács, János; Szalai, Zoltán

    2016-09-01

    Several hundred tons of windblown dust material are lifted into the atmosphere and are transported every year from Saharan dust source areas towards Europe having an important climatic and other environmental effect also on distant areas. According to the systematic observations of modern Saharan dust events, it can be stated that dust deflated from North African source areas is a significant constituent of the atmosphere of the Carpathian Basin and Saharan dust deposition events are identifiable several times in a year. Dust episodes are connected to distinct meteorological situations, which are also the determining factors of the different kinds of depositional mechanisms. By using the adjusted values of dust deposition simulations of numerical models, the annual Saharan dust flux can be set into the range of 3.2-5.4 g/m2/y. Based on the results of past mass accumulation rates calculated from stratigraphic and sedimentary data of loess-paleosol sequences, the relative contribution of Saharan dust to interglacial paleosol material was quantified. According to these calculations, North African exotic dust material can represent 20-30% of clay and fine silt-sized soil components of interglacial paleosols in the Carpathian Basin. The syngenetic contribution of external aeolian dust material is capable to modify physicochemical properties of soils and hereby the paleoclimatic interpretation of these pedogene stratigraphic units.

  17. Derivation of an observation-based map of North African dust emission

    SciTech Connect

    Evan, Amato T.; Fiedler, Stephanie; Zhao, Chun; Menut, Laurent; Schepanski, Kerstin; Flamant, C.; Doherty, Owen

    2015-03-01

    Changes in the emission, transport and deposition of aeolian dust have profound effects on regional climate, so that characterizing the lifecycle of dust in observations and improving the representation of dust in global climate models is necessary. A fundamental aspect of characterizing the dust cycle is quantifying surface dust fluxes, yet no spatially explicit estimates of this flux exist for the World’s major source regions. Here we present a novel technique for creating a map of the annual mean emitted dust flux for North Africa based on retrievals of dust storm frequency from the Meteosat Second Generation Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the relationship between dust storm frequency and emitted mass flux derived from the output of five models that simulate dust. Our results suggest that 64 (±16)% of all dust emitted from North Africa is from the Bodélé depression, and that 13 (±3)% of the North African dust flux is from a depression lying in the lee of the Aïr and Hoggar Mountains, making this area the second most important region of emission within North Africa.

  18. Reconstruction of limnology and microbialite formation conditions from carbonate clumped isotope thermometry.

    PubMed

    Petryshyn, V A; Lim, D; Laval, B L; Brady, A; Slater, G; Tripati, A K

    2015-01-01

    Quantitative tools for deciphering the environment of microbialite formation are relatively limited. For example, the oxygen isotope carbonate-water geothermometer requires assumptions about the isotopic composition of the water of formation. We explored the utility of using 'clumped' isotope thermometry as a tool to study the temperatures of microbialite formation. We studied microbialites recovered from water depths of 10-55 m in Pavilion Lake, and 10-25 m in Kelly Lake, spanning the thermocline in both lakes. We determined the temperature of carbonate growth and the (18)O/(16)O ratio of the waters that microbialites grew in. Results were then compared to current limnological data from the lakes to reconstruct the history of microbialite formation. Modern microbialites collected at shallow depths (11.7 m) in both lakes yield clumped isotope-based temperatures of formation that are within error of summer water temperatures, suggesting that clumped isotope analyses may be used to reconstruct past climates and to probe the environments in which microbialites formed. The deepest microbialites (21.7-55 m) were recovered from below the present-day thermoclines in both lakes and yield radioisotope ages indicating they primarily formed earlier in the Holocene. During this time, pollen data and our reconstructed water (18)O/(16)O ratios indicate a period of aridity, with lower lake levels. At present, there is a close association between both photosynthetic and heterotrophic communities, and carbonate precipitation/microbialite formation, with biosignatures of photosynthetic influences on carbonate detected in microbialites from the photic zone and above the thermocline (i.e., depths of generally <20 m). Given the deeper microbialites are receiving <1% of photosynthetically active radiation (PAR), it is likely these microbialites primarily formed when lower lake levels resulted in microbialites being located higher in the photic zone, in warm surface waters.

  19. A super lithium-rich red-clump star in the open cluster Trumpler 5

    NASA Astrophysics Data System (ADS)

    Monaco, L.; Boffin, H. M. J.; Bonifacio, P.; Villanova, S.; Carraro, G.; Caffau, E.; Steffen, M.; Ahumada, J. A.; Beletsky, Y.; Beccari, G.

    2014-04-01

    Context. The existence of lithium-rich low-mass red giant stars still represents a challenge for stellar evolution models. Stellar clusters are privileged environments for this kind of investigation. Aims: To investigate the chemical abundance pattern of the old open cluster Trumpler 5, we observed a sample of four red-clump stars with high-resolution optical spectrographs. One of them (#3416) reveals extremely strong lithium lines in its spectrum. Methods: One-dimensional, local thermodynamic equilibrium analysis was performed on the spectra of the observed stars. A 3D-NLTE analysis was performed to derive the lithium abundance of star #3416. Results: Star #3416 is super Li-rich with A(Li) = 3.75 dex. The lack of 6Li enrichment (6Li/7Li < 2%), the low carbon isotopic ratio (12C/13C = 14 ± 3), and the lack of evidence for radial velocity variation or enhanced rotational velocity (vsini = 2.8 km s-1) all suggest that lithium production has occurred in this star through the Cameron & Fowler mechanism. Conclusions: We identified a super Li-rich core helium-burning, red-clump star in an open cluster. Internal production is the most likely cause of the observed enrichment. Given the expected short duration of a star's Li-rich phase, enrichment is likely to have occurred at the red clump or in the immediately preceding phases, namely during the He-flash at the tip of the red giant branch (RGB) or while ascending the brightest portion of the RGB. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 088.D-0045(A).Appendix A is available in electronic form at http://www.aanda.org

  20. A new calibration curve for carbonate clumped isotope thermometer of land snail shells (aragonite)

    NASA Astrophysics Data System (ADS)

    Zhang, N.; Yamada, K.; Yoshida, N.

    2013-12-01

    Clumped isotope data (Δ47) of carbonate is considered as a useful tool to reflect both the temperature and oxygen isotopic composition of water where the carbonate grew [1]. Zarrur et al. reported the relationship between snail shell calcification temperatures and the mean annual/ activity season ambient temperatures based on a calibration curve established by Ghosh et al. [2]. However, the clumped isotope temperature is always higher than the environment temperature. For better understanding this phenomenon, we present a new empirical calibration curve based on land snail shells (aragonite) cultured in the controlled temperature environment. In 2012, we cultured the land snails ';Euhadra' which were collected from Yokohama, Japan. They were cultured from eggs to adults around 6-8 months under the temperature of 20°, 25° and 30°, respectively. Each temperature group contains 15-20 snails. All of them were fed by cabbages during their life span. To study the effect of ingested carbonate, some of them were fed by Ca3(PO4)2 powder while others were fed by CaCO3 powder. Clumped isotope data for all samples were analyzed by a Thermo Finnigan MAT 253 Mass Spectrometer and calibrated by an ';absolute reference frame' [3]. We found an empirical linear relationship between Δ47 and controlled ambient temperature, which is slightly deviated from the published theoretical and experimental calibration curves based on both inorganic and biogenic materials. We will discuss the potential controlling factors caused this kind of deviation combine with the land snail growth environment. [1] Ghosh et al., 2006, Geochimica et Cosmochimica Acta. 70, 1439-1456 [2] Zaarur et al. 2011. Geochimica et Cosmochimica Acta, 75, 6859-6869 [3] Dennis et al., 2011. Geochimica et Cosmochimica Acta 75, 7117-7131

  1. A method for quantitative analysis of clump thickness in cervical cytology slides.

    PubMed

    Fan, Yilun; Bradley, Andrew P

    2016-01-01

    Knowledge of the spatial distribution and thickness of cytology specimens is critical to the development of digital slide acquisition techniques that minimise both scan times and image file size. In this paper, we evaluate a novel method to achieve this goal utilising an exhaustive high-resolution scan, an over-complete wavelet transform across multi-focal planes and a clump segmentation of all cellular materials on the slide. The method is demonstrated with a quantitative analysis of ten normal, but difficult to scan Pap stained, Thin-prep, cervical cytology slides. We show that with this method the top and bottom of the specimen can be estimated to an accuracy of 1 μm in 88% and 97% of the fields of view respectively. Overall, cellular material can be over 30 μm thick and the distribution of cells is skewed towards the cover-slip (top of the slide). However, the median clump thickness is 10 μm and only 31% of clumps contain more than three nuclei. Therefore, by finding a focal map of the specimen the number of 1 μm spaced focal planes that are required to be scanned to acquire 95% of the in-focus material can be reduced from 25.4 to 21.4 on average. In addition, we show that by considering the thickness of the specimen, an improved focal map can be produced which further reduces the required number of 1 μm spaced focal planes to 18.6. This has the potential to reduce scan times and raw image data by over 25%. PMID:26477005

  2. A method for quantitative analysis of clump thickness in cervical cytology slides.

    PubMed

    Fan, Yilun; Bradley, Andrew P

    2016-01-01

    Knowledge of the spatial distribution and thickness of cytology specimens is critical to the development of digital slide acquisition techniques that minimise both scan times and image file size. In this paper, we evaluate a novel method to achieve this goal utilising an exhaustive high-resolution scan, an over-complete wavelet transform across multi-focal planes and a clump segmentation of all cellular materials on the slide. The method is demonstrated with a quantitative analysis of ten normal, but difficult to scan Pap stained, Thin-prep, cervical cytology slides. We show that with this method the top and bottom of the specimen can be estimated to an accuracy of 1 μm in 88% and 97% of the fields of view respectively. Overall, cellular material can be over 30 μm thick and the distribution of cells is skewed towards the cover-slip (top of the slide). However, the median clump thickness is 10 μm and only 31% of clumps contain more than three nuclei. Therefore, by finding a focal map of the specimen the number of 1 μm spaced focal planes that are required to be scanned to acquire 95% of the in-focus material can be reduced from 25.4 to 21.4 on average. In addition, we show that by considering the thickness of the specimen, an improved focal map can be produced which further reduces the required number of 1 μm spaced focal planes to 18.6. This has the potential to reduce scan times and raw image data by over 25%.

  3. Clumping in the Cassini Division and C Ring: Constraints from Stellar Occultations

    NASA Astrophysics Data System (ADS)

    Colwell, J. E.; Jerousek, R. G.; Esposito, L. W.

    2014-12-01

    Particles in Saturn's rings are engaged in a constant tug-of-war between interparticle gravitational and adhesive forces that lead to clumping, on the one hand, and Keplerian shear that inhibits accretion on the other. Depending on the surface mass density of the rings and the local orbital velocity, ephemeral clumps or self-gravity wakes can form, giving the rings granularity on the scale of the most-unstable length scale against gravitational collapse. The A ring and many regions of the B ring are dominated by self-gravity wakes with a typical radial wavelength of ~50-100 m. A characteristic of self-gravity wakes is that they can effectively shadow the relatively empty spaces in between them, depending on viewing geometry. This leads to geometry-dependent measurements of optical depth in occultations of the rings. The C ring and Cassini Division have significantly lower surface mass densities than the A and B ring such that in most of these regions the most-unstable wavelength is comparable to the size of the ring particles (~1 m) so that self-gravity wake formation is not expected nor have its characteristics in various measurements been observed. Here we present measurements of the optical depth of the C ring and Cassini Division with the Cassini Ultraviolet Imaging Spectrograph (UVIS) showing variations with viewing geometry in the "ramp" regions and the Cassini Division "triple band". These variations are characteristic of self-gravity wakes. We place limits on clumping in other regions of the C ring and Cassini Division.

  4. "Anticlumping" and Other Combinatorial Effects on Clumped Isotopes: Implications for Tracing Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Yeung, L.

    2015-12-01

    I present a mode of isotopic ordering that has purely combinatorial origins. It can be important when identical rare isotopes are paired by coincidence (e.g., they are neighbors on the same molecule), or when extrinsic factors govern the isotopic composition of the two atoms that share a chemical bond. By itself, combinatorial isotope pairing yields products with isotopes either randomly distributed or with a deficit relative to a random distribution of isotopes. These systematics arise because of an unconventional coupling between the formation of singly- and multiply-substituted isotopic moieties. In a random distribution, rare isotopes are symmetrically distributed: Single isotopic substitutions (e.g., H‒D and D‒H in H2) occur with equal probability, and double isotopic substitutions (e.g., D2) occur according to random chance. The absence of symmetry in a bond-making complex can yield unequal numbers of singly-substituted molecules (e.g., more H‒D than D‒H in H2), which is recorded in the product molecule as a deficit in doubly-substituted moieties and an "anticlumped" isotope distribution (i.e., Δn < 0). Enzymatic isotope pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect. Chemical-kinetic isotope effects, which are related to the bond-forming transition state, arise independently and express second-order combinatorial effects. In general, both combinatorial and chemical factors are important for calculating and interpreting clumped-isotope signatures of individual reactions. In many reactions relevant to geochemical oxygen, carbon, and nitrogen cycling, combinatorial isotope pairing likely plays a strong role in the clumped isotope distribution of the products. These isotopic signatures, manifest as either directly bound isotope clumps or as features of a molecule's isotopic anatomy, could be exploited as tracers of biogeochemistry that can

  5. A molecular line study towards massive extended green object clumps in the southern sky: chemical properties

    NASA Astrophysics Data System (ADS)

    Yu, Naiping; Wang, Jun-Jie

    2015-08-01

    We present a molecular line study towards 31 extended green object (EGO) clumps in the southern sky using data from MALT90 (Millimetre Astronomy Legacy Team 90 GHz). According to previous multiwavelength observations, we divide our sample into two groups: massive young stellar objects (MYSOs) and H II regions. The most detected lines are N2H+ (J = 1 - 0), HCO+ (J = 1 - 0), HNC (J = 1 - 0), HCN (J = 1 - 0), HC3N (J = 10 - 9), H13CO+ (J = 1 - 0), C2H (N = 1 - 0) and SiO (J = 2 - 1), indicating that most EGOs are indeed associated with dense clumps and recent outflow activities. The velocity widths of the N2H+ (J = 1 - 0), H13CO+ (J = 1 - 0), C2H (N = 1 - 0) and HC3N (J = 10 - 9) lines are comparable to each other in MYSOs. However, in H II regions the velocity widths of the N2H+ (J = 1 - 0) and C2H (N = 1 - 0) lines tend to be narrower than those of H13CO+ (J = 1 - 0) and HC3N (J = 10 - 9). Our results seem to support that N2H+ and C2H emissions mainly come from the gas inside quiescent clumps. In addition, we also find that the [N2H+]/[H13CO+] and [C2H]/[H13CO+] relative abundance ratios decrease from MYSOs to H II regions. These results suggest depletion of N2H+ and C2H in the late stages of massive-star formation, probably caused by the formation of H II regions inside. N2H+ and C2H might be used as chemical clocks for massive-star formation by comparing with other molecules such as H13CO+ and HC3N.

  6. EVIDENCE FOR INFLOW IN HIGH-MASS STAR-FORMING CLUMPS

    SciTech Connect

    Reiter, Megan; Shirley, Yancy L.; Wu Jingwen; Brogan, Crystal; Wootten, Alwyn; Tatematsu, Ken'ichi E-mail: yshirley@as.arizona.edu E-mail: cbrogan@nrao.edu E-mail: k.tatematsu@nao.ac.jp

    2011-10-10

    We analyze the HCO{sup +} 3-2 and H{sup 13}CO{sup +} 3-2 line profiles of 27 high-mass star-forming regions to identify asymmetries that are suggestive of mass inflow. Three quantitative measures of line asymmetry are used to indicate whether a line profile is blue, red, or neither-the ratio of the temperature of the blue and red peaks, the line skew, and the dimensionless parameter {delta}v. We find nine HCO{sup +} 3-2 line profiles with a significant blue asymmetry and four with significant red asymmetric profiles. Comparing our HCO{sup +} 3-2 results to HCN 3-2 observations from Wu et al., we find that eight of the blue and three of the red have profiles with the same asymmetry in HCN. The eight sources with blue asymmetries in both tracers are considered strong candidates for inflow. Quantitative measures of the asymmetry (e.g., {delta}v) tend to be larger for HCN. This, combined with possible HCO{sup +} abundance enhancements in outflows, suggests that HCN may be a better tracer of inflow. Understanding the behavior of common molecular tracers like HCO{sup +} in clumps of different masses is important for properly analyzing the line profiles seen in a sample of sources representing a broad range of clump masses. Such studies will soon be possible with the large number of sources with possible self-absorption seen in spectroscopic follow-up observations of clumps identified in the Bolocam Galactic Plane Survey.

  7. The Kinematic and Chemical Properties of a Potential Core-forming Clump: Perseus B1-E

    NASA Astrophysics Data System (ADS)

    Sadavoy, S. I.; Shirley, Y.; Di Francesco, J.; Henning, Th.; Currie, M. J.; André, Ph.; Pezzuto, S.

    2015-06-01

    We present 13CO and {{C}18}O (1-0), (2-1), and (3-2) maps toward the core-forming Perseus B1-E clump using observations from the James Clerk Maxwell Telescope, the Submillimeter Telescope of the Arizona Radio Observatory, and the IRAM 30 m telescope. We find that the 13CO and {{C}18}O line emission both have very complex velocity structures, indicative of multiple velocity components within the ambient gas. The (1-0) transitions reveal a radial velocity gradient across B1-E of ˜ 1 km {{s}-1} p{{c}-1} that increases from northwest to southeast, whereas the majority of the Perseus cloud has a radial velocity gradient increasing from southwest to northeast. In contrast, we see no evidence of a velocity gradient associated with the denser Herschel-identified substructures in B1-E. Additionally, the denser substructures have much lower systemic motions than the ambient clump material, which indicates that they are likely decoupled from the large-scale gas. Nevertheless, these substructures themselves have broad line widths (˜0.4 km {{s}-1}) similar to that of the {{C}18}O gas in the clump, which suggests they inherited their kinematic properties from the larger-scale, moderately dense gas. Finally, we find evidence of {{C}18}O depletion only toward one substructure, B1-E2, which is also the only object with narrow (transonic) line widths. We suggest that as prestellar cores form, their chemical and kinematic properties are linked in evolution, such that these objects must first dissipate their turbulence before they deplete in CO.

  8. Insights into Methane Formation Temperatures, Biogenic Methanogenesis, and Natural Methane Emissions from Clumped Isotopes

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Stolper, D. A.; Walter Anthony, K. M.; Dallimore, S.; Paull, C. K.; Wik, M.; Crill, P. M.; Winterdahl, M.; Smith, D. A.; Luhmann, A. J.; Ding, K.; Seyfried, W. E., Jr.; Eiler, J. M.; Ponton, C.; Sessions, A. L.

    2015-12-01

    Multiply substituted isotopologues of methane are a valuable new tool for characterizing and understanding the source of methane in different Earth environments. Here we present methane clumped isotope results from natural gas wells, hydrothermal vents, marine and lacustrine methane seeps, and culture experiments. We observe a wide range of formation temperatures for thermogenic methane. Methane samples from low-maturity reservoirs indicate formation temperatures between 102-144° C, high-maturity conventional and shale gasses indicate temperatures between 158-246 °C, and thermogenic coal gases indicate temperatures between 174-267 °C. Methane formation temperatures generally correlate positively with δ13C, and negatively with gas wetness indices. Methane samples from a set of marine hydrothermal vents indicate a formation temperature of 290-350 °C. Methane sampled from subsurface and marine biogenic sources typically indicate temperatures consistent with the formation environment (0-64° C). In contrast, freshwater biogenic methane samples, and cultures of hydrogenotrophic and methylotrophic methanogens, express low levels of isotopic clumping inconsistent with their formation temperature. These data and complementary models suggest that kinetic isotope effects, likely modulated by rates and pathways of methanogenesis, affect biogenic methane in cultures and freshwater environments. Alternatively, non-equilibrium signatures may result from mixing of methane with widely differing δD and δ13C values. Analyses of biogenic methane emissions from lakes indicate a correlation between methane flux and non-equilibrium clumped isotope fractionations in a given lake. Results from large methane seeps in Alaskan lakes confirm that some seeps emit thermogenic methane, but also indicate that other seeps emit subsurface biogenic methane or variable mixtures of biogenic and thermogenic methane. These results point to diverse sources for large Arctic methane seeps.

  9. The Life Cycle of Dust in the Magellanic Clouds: Insights from Spitzer and Herschel

    NASA Astrophysics Data System (ADS)

    Meixner, Margaret

    2014-06-01

    The life cycle of dust in a galaxy involves the exchange of material between the interstellar medium (ISM) and stars. Dust is formed in the winds of dying stars, such as asymptotic giant branch (AGB) and red supergiant (RSG) stars, and the explosion of supernovae. In the ISM, the dust may be shattered and vaporized by supernova blast waves or accreted onto seed grains in the denser ISM. Dust is consumed in the star formation process and appears in the circumstellar environments of newly forming stars. By tracing the lifecycle of dust, we gain insights into the dust evolution processes and the origin of galactic dust. The Spitzer Space Telescope and Herschel Space Observatory provide a sensitive probe of circumstellar and interstellar dust. The Spitzer Surveying the Agents of Galaxy Evolution (SAGE; the ISM and stars) and the Herschel Inventory of the Agents of Galaxy Evolution (HERITAGE) surveys of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) focus on the lifecycle of dust. The LMC and SMC are ideal astrophysical laboratories for this study because their proximity to us permits detailed studies of the stars and their relation to the ISM from local to galaxy wide scales. For example, the masses of the circumstellar dust shells of stars and ISM dust clouds can be determined producing a more precise dust budget than possible for our own Milky Way galaxy. I will present key results from the SAGE and HERITAGE projects that quantify the stellar origin of dust, its evolution in the ISM and its consumption by star formation. Our measurements of dust mass-loss rates from entire populations of AGB and RSG stars and the discovery of ~0.5 solar masses of dust in the ejecta of supernova, SN1987A, provide the dust production rates by the stars. The maps of dust masses and gas-to-dust ratios of the ISM reveal how dust is destroyed and possibly created in the ISM. Our discovery of thousands of young stellar object candidates shows us locations of active star

  10. STAR FORMATION AND DISTRIBUTIONS OF GAS AND DUST IN THE CIRCINUS CLOUD

    SciTech Connect

    Shimoikura, Tomomi; Dobashi, Kazuhito

    2011-04-10

    We present results of a study on the Circinus cloud based on {sup 13}CO (J = 1 - 0) data as well as visual to near-infrared (JHK{sub S}) extinction maps, to investigate the distributions of gas and dust around the cloud. The global {sup 13}CO distribution of the Circinus cloud is revealed for the first time, and the total molecular mass of the cloud is estimated to be 2.5 x 10{sup 4} M{sub sun} for the assumed distance 700 pc. Two massive clumps in the cloud, called Circinus-W and Circinus-E, have a mass of {approx}5 x 10{sup 3} M{sub sun}. These clumps are associated with a number of young stellar objects (YSOs) searched for in the literature, indicating that they are the most active star-forming sites in Circinus. All of the extinction maps show good agreement with the {sup 13}CO distribution. We derived the average N({sup 13}CO)/A{sub V} ratio in the Circinus cloud to be 1.25 x 10{sup 15} cm{sup -2} mag{sup -1} by comparing the extinction maps with the {sup 13}CO data. The extinction maps also allowed us to probe into the reddening law over the Circinus cloud. We found that there is a clear change in dust properties in the densest regions of Circinus-W and Circinus-E, possibly due to grain growth in the dense cloud interior. Among the YSOs found in the literature, we attempted to infer the ages and masses of the H{alpha} emission-line stars forming in the two clumps, and found that they are likely to be younger than 1 Myr, having a relatively small mass of {approx}<2 M{sub sun} at the zero-age main sequence.

  11. The calibration of clumped-isotope thermometry on modern marine mollusk

    NASA Astrophysics Data System (ADS)

    Canavan, R. R.; Affek, H. P.; Zaarur, S.; Douglas, P. M.; Wang, Z.

    2013-12-01

    Clumped-isotope (Δ47) thermometry is a novel method to reconstruct paleotemperatures that can be applied to studying past coastal and marine environments using marine mollusk shells. Macrofossil mollusk shells are common in the fossil record and provide enough material to satisfy the relatively large-sample requirement for Δ47 analysis, making them ideal for clumped-isotope paleothermometry. If consistent with the clumped isotope thermometer, mollusk Δ47 derived temperatures should record local water temperatures during shell growth season. Recent studies, however, show strong deviations from the empirical Δ47-T calibration derived from synthetic calcite in some modern mollusk shells (cephalopods, gastropods and bivalves; Dennis et al., 2013; Henkes et al., 2013; Eagle et al., 2013) but not in others (bivalves; Douglas et al., submitted; Came et al., 2007). The source of these discrepancies has been hypothesized to be related to 1) different laboratory techniques (including sample preparation and instrument standardization), 2) growth of CaCO3 polymorphs (calcite, aragonite or vaterite) in shells, and 3) variable environmental growth conditions such as salinity and pH. We test the effect of CaCO3 polymorph, taxonomy, and mollusk growth conditions by comparing among Δ47 values of calcitic shells from eastern oysters (Crassostrea virginica), those of clam shells that are mostly aragonitic (collected along the United States' Atlantic coast), and published calibrations of the clumped isotope thermometer. Atlantic oysters were collected from 37°N to 43°N latitude, with temperatures ranging between ~ 10-25°C, and brackish to marine salinities ranging from 14.5 - 34 PSU. Clam genera were similarly collected along the coast between Florida up north to Maine with growth temperatures ranging from ~ 10-22 °C. We further examine whether the deviation from the calibration is related to the relatively low reproducibility observed in modern mollusk Δ47 measurements, and

  12. Assessment of the clumped isotope composition of fossil bone carbonate as a recorder of subsurface temperatures

    NASA Astrophysics Data System (ADS)

    Suarez, Marina B.; Passey, Benjamin H.

    2014-09-01

    Bone is susceptible to early diagenesis, and its carbon and oxygen isotopic compositions have been suggested to reflect conditions in the soil environment and shallow subsurface during fossilization. This implies open-system recrystallization involving mass exchange of carbon and oxygen among bioapatite, soil water, and DIC. Such recrystallization would also redistribute isotopic clumping (including 13C-18O bonds), leading to the possibility that the carbonate clumped isotope compositions of fossil bone record ground temperature during early diagenesis. We assess this possibility by studying Quaternary mammalian fossil bone from subtropical to polar latitudes: if recrystallization is early and pervasive, clumped isotope derived temperatures, T(Δ47), should closely mirror latitudinal gradients in ground temperature. Excluding results from a mummified specimen yielding T(Δ47) = 38 °C (that is, indistinguishable from mammalian body temperature), we find that T(Δ47) values are intermediate between mammalian body temperature and ground temperature, suggesting partial recrystallization of bone carbonate. XRD analyses show that the nature and extent of diagenesis varies among the samples and does not relate in a straightforward manner to T(Δ47). No clear correlation exists between T(Δ47) and mean annual temperature or mean warm season temperature. Furthermore, bone tends to retain the 18O-enriched signature of body water, suggesting incomplete oxygen isotope exchange with meteoric waters. Incomplete carbon and oxygen isotope exchange between bone carbonate and soil waters is also indicated for a set of late Miocene bone-enamel pairs from a sequence of stacked paleosols in northern China. Analysis of bone as old as Early Cretaceous shows that bone carbonate is susceptible to later diagenesis at elevated burial temperatures, although T(Δ47) does not closely conform to maximum burial temperature, again suggesting partial recrystallization, or recrystallization during

  13. Characterization of a humanized monoclonal antibody recognizing clumping factor A expressed by Staphylococcus aureus.

    PubMed

    Domanski, Paul J; Patel, Pratiksha R; Bayer, Arnold S; Zhang, Li; Hall, Andrea E; Syribeys, Peter J; Gorovits, Elena L; Bryant, Dawn; Vernachio, John H; Hutchins, Jeff T; Patti, Joseph M

    2005-08-01

    We report the humanization and characterization of monoclonal antibody (MAb) T1-2 or tefibazumab, a monoclonal antibody that recognizes clumping factor A expressed on the surface of Staphylococcus aureus. We demonstrate that the binding kinetics of MAb T1-2 is indistinguishable compared to that of its murine parent. Furthermore, MAb T1-2 is shown to enhance the opsonophagocytic uptake of ClfA-coated latex beads, protect against an intravenous challenge in a prophylactic model of rabbit infective endocarditis, and enhance the efficacy of vancomycin therapy in a therapeutic model of established infective endocarditis. PMID:16041045

  14. Dust density measurements in 3D dust clouds by tomography

    NASA Astrophysics Data System (ADS)

    Melzer, Andre

    2014-10-01

    Dusty plasmas usually consist of (micron-sized) dust particles trapped in a gaseous discharge plasma. Volume-filling dust clouds can be generated in the laboratory by thermophoretic levitation of the particles against gravity or under the microgravity conditions of parabolic flights. In these discharges, the dust density is typically so high that together with the high charge on the particles, the dust charge density can compete with the ion and electron (charge) density indicating a regime of charge depletion. Here, we present a technique that allows to measure the spatially resolved 3D dust density in such dusty discharges. For that purpose, the dust cloud is transilluminated by a homogeneous light source and the transilluminated cloud is measured under different angles in a tomographic-like manner. This allows to reconstruct the full 3D dust density within the discharge volume and further to deduce the force balance for the dust component. Supported by DLR 50 WM 1138.

  15. Quantifying Anderson's fault types

    USGS Publications Warehouse

    Simpson, R.W.

    1997-01-01

    Anderson [1905] explained three basic types of faulting (normal, strike-slip, and reverse) in terms of the shape of the causative stress tensor and its orientation relative to the Earth's surface. Quantitative parameters can be defined which contain information about both shape and orientation [Ce??le??rier, 1995], thereby offering a way to distinguish fault-type domains on plots of regional stress fields and to quantify, for example, the degree of normal-faulting tendencies within strike-slip domains. This paper offers a geometrically motivated generalization of Angelier's [1979, 1984, 1990] shape parameters ?? and ?? to new quantities named A?? and A??. In their simple forms, A?? varies from 0 to 1 for normal, 1 to 2 for strike-slip, and 2 to 3 for reverse faulting, and A?? ranges from 0?? to 60??, 60?? to 120??, and 120?? to 180??, respectively. After scaling, A?? and A?? agree to within 2% (or 1??), a difference of little practical significance, although A?? has smoother analytical properties. A formulation distinguishing horizontal axes as well as the vertical axis is also possible, yielding an A?? ranging from -3 to +3 and A?? from -180?? to +180??. The geometrically motivated derivation in three-dimensional stress space presented here may aid intuition and offers a natural link with traditional ways of plotting yield and failure criteria. Examples are given, based on models of Bird [1996] and Bird and Kong [1994], of the use of Anderson fault parameters A?? and A?? for visualizing tectonic regimes defined by regional stress fields. Copyright 1997 by the American Geophysical Union.

  16. Mid-infrared Extinction Mapping of Infrared Dark Clouds. II. The Structure of Massive Starless Cores and Clumps

    NASA Astrophysics Data System (ADS)

    Butler, Michael J.; Tan, Jonathan C.

    2012-07-01

    We develop the mid-infrared extinction (MIREX) mapping technique of Butler & Tan (Paper I), presenting a new method to correct for the Galactic foreground emission based on observed saturation in independent cores. Using Spitzer GLIMPSE 8 μm images, this allows us to accurately probe mass surface densities, Σ, up to ~= 0.5 g cm-2 with 2'' resolution and mitigate one of the main sources of uncertainty associated with Galactic MIREX mapping. We then characterize the structure of 42 massive starless and early-stage cores and their surrounding clumps, selected from 10 infrared dark clouds, measuring Σcl(r) from the core/clump centers. We first assess the properties of the core/clump at a scale where the total enclosed mass as projected on the sky is M cl = 60 M ⊙. We find that these objects have a mean radius of R cl ~= 0.1 pc, mean \\bar{\\Sigma }_cl = 0.3\\:g\\:cm^{-2} and, if fitted by a power-law (PL) density profile \\rho _cl\\propto r^{-k_\\rho ,cl}, a mean value of k ρ, cl = 1.1. If we assume a core is embedded in each clump and subtract the surrounding clump envelope to derive the core properties, then we find a mean core density PL index of k ρ, c = 1.6. We repeat this analysis as a function of radius and derive the best-fitting PL plus uniform clump envelope model for each of the 42 core/clumps. The cores have typical masses of Mc ~ 100 M ⊙ and \\bar{\\Sigma }_c\\sim 0.1\\:g\\:cm^{-2}, and are embedded in clumps with comparable mass surface densities. We also consider Bonnor-Ebert density models, but these do not fit the observed Σ profiles as well as PLs. We conclude that massive starless cores exist and are well described by singular polytropic spheres. Their relatively low values of Σ and the fact that they are IR dark may imply that their fragmentation is inhibited by magnetic fields rather than radiative heating. Comparing to massive star-forming cores and clumps, there is tentative evidence for an evolution toward higher densities and steeper

  17. Dust exposure in Finnish foundries.

    PubMed

    Siltanen, E; Koponen, M; Kokko, A; Engström, B; Reponen, J

    1976-01-01

    Dust measurements were made in 51 iron, 9 steel, and 8 nonferrous foundries, at which 4,316 foundrymen were working. The sampling lasted at least two entire shifts or work days continuously during various operations in each foundry. The dust samples were collected at fixed sites or in the breathing zones of the workers. The mass concentration was determined by weighing and the respirable dust fraction was separated by liquid sedimentation. The free silica content was determined by X-ray diffraction. In the study a total of 3,188 samples were collected in the foundries and 6,505 determinations were made in the laboratory. The results indicated a definite difference in the dust exposure during various operations. The highest dust exposures were found during furnace, cupola, and pouring ladle repair. During cleaning work, sand mixing, and shake-out operations excessive silica dust concentrations were also measured. The lowest dust concentrations were measured during melting and pouring operations. Moderate dust concentrations were measured during coremaking and molding operations. The results obtained during the same operations of iron and steel foundries were similar. The distribution of the workers into various exposure categories, the content of respirable dust and quartz, the correlation between respirable dust and total dust, and the correlation between respirable silica and total dust concentrations are discussed. Observations concerning dust suppression and control methods are briefly considered.

  18. Big Dust Devils

    NASA Technical Reports Server (NTRS)

    2005-01-01

    28 January 2004 Northern Amazonis Planitia is famous for its frequent, large (> 1 km high) dust devils. They occur throughout the spring and summer seasons, and can be detected from orbit, even at the 240 meters (278 yards) per pixel resolution of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle instruments. This red wide angle image shows a plethora of large dust devils. The arrow points to an example. Shadows cast by the towering columns of swirling dust point away from the direction of sunlight illumination (sun is coming from the left/lower left). This December 2004 scene covers an area more than 125 km (> 78 mi) across and is located near 37oN, 154oW.

  19. Saharan Dust over Senegal

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Airborne African dust regularly reaches northeastern South America and the Caribbean. Westward dust transport from the Sahara across the central Atlantic has been a common occurrence this spring, with major events visible in both satellite images and photographs. Cap Vert, the westernmost point of Senegal, is dimly visible beneath the dust mass (center); the Arquipelago dos Bijagos in Guinea Bissau lies opposite the mouth of the sediment-laden Rio Corubal. This photo (ISS004-E-12080) was taken by the crew of the International Space Station on May 18, 2002, using a digital camera with a 35-mm lens. Image provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  20. Dust control for draglines

    SciTech Connect

    Grad, P.

    2009-09-15

    Monitoring dust levels inside draglines reveals room for improvement in how filtration systems are used and maintained. The Australian firm BMT conducted a field test program to measure airflow parameters, dust fallout rates and dust concentrations, inside and outside the machine house, on four draglines and one shovel. The study involved computational fluid dynamics (CFD) simulations. The article describes how the tests were made and gives results. It was not possible to say which of the two main filtration systems currently used on Australian draglines - Dynavane or Floseps - performs better. It would appear that more frequent maintenance and cleaning would increase the overall filtration performance and systems could be susceptible to repeat clogging in a short time. 2 figs., 1 photos.

  1. Evidence from carbonate clumped isotope (Δ47) thermometry for the Late Cretaceous `Nevadaplano' in the northern Basin and Range Province

    NASA Astrophysics Data System (ADS)

    Snell, K. E.; Koch, P. L.; Eiler, J.

    2010-12-01

    From the middle Mesozoic to the present, the topography of the Basin and Range province (BRP) of the western Cordillera of North America has evolved in response to diverse tectonic forces, though the details are unclear for most of this period over most of this area. Much of the research on this region has focused on the Cenozoic record of paleoelevation during extension in the BRP. Some geodynamic models of this episode require high elevation prior to extension, but few studies have quantified the elevation of the pre-existing topography that developed during the Mesozoic in response to sustained convergence along the western coast of North America. Some workers have argued that the region was a high elevation plateau, the ‘Nevadaplano,’ analogous to the South American Altiplano. We tested this hypothesis using carbonate clumped isotope (Δ47) temperature estimates from Late Cretaceous lacustrine and paleosol carbonates. These samples come from the Sheep Pass Formation in east-central Nevada (presumed from geologic indications to be atop the plateau), and the North Horn Formation in central Utah on the eastern edge of the Sevier fold and thrust belt (presumably lower elevation). The textural characteristics, stable isotope compositions and carbonate clumped isotope temperature estimates from secondary carbonates in these units suggest that, despite moderate burial, primary carbonate samples have undergone little diagenetic alteration. Average temperatures from these two sites (23°C for the NV suite and 38°C for the UT suite) suggest that during the late Cretaceous (~66.5 Ma for the NV suite and 72 Ma for the UT suite), the NV site was ~15°C cooler than the UT site. This thermal gradient implies an elevation difference between the two sites of ~2.5 km, given certain assumptions: 1) there was little global or regional climate change during the ~5 million years between formation of these samples, 2) precipitation of both the lacustrine and paleosol carbonates

  2. THE MYSTERIOUS SICKLE OBJECT IN THE CARINA NEBULA: A STELLAR WIND INDUCED BOW SHOCK GRAZING A CLUMP?

    SciTech Connect

    Ngoumou, Judith; Preibisch, Thomas; Ratzka, Thorsten; Burkert, Andreas

    2013-06-01

    Optical and near-infrared images of the Carina Nebula show a peculiar arc-shaped feature, which we call the ''Sickle'', next to the B-type star Trumpler 14 MJ 218. We use multi-wavelength observations to explore and constrain the nature and origin of the nebulosity. Using submillimeter data from APEX/LABOCA as well as Herschel far-infrared maps, we discovered a dense, compact clump with a mass of {approx}40 M{sub Sun} located close to the apex of the Sickle. We investigate how the B star MJ 218, the Sickle, and the clump are related. Our numerical simulations show that, in principle, a B-type star located near the edge of a clump can produce a crescent-shaped wind shock front, similar to the observed morphology. However, the observed proper motion of MJ 218 suggests that the star moves with high velocity ({approx}100 km s{sup -1}) through the ambient interstellar gas. We argue that the star is just about to graze along the surface of the clump, and the Sickle is a bow shock induced by the stellar wind, as the object moves supersonically through the density gradient in the envelope of the clump.

  3. Tikhonravov Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located within a small crater inside Tikhonravov Crater.

    Image information: VIS instrument. Latitude 12.6, Longitude 37.1 East (322.9 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in a small canyon within a crater rim northeast of Naktong Vallis.

    Image information: VIS instrument. Latitude 7.1, Longitude 34.7 East (325.3 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Lycus Sulci Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches occur on the slopes of Lycus Sulci near Olympus Mons.

    Image information: VIS instrument. Latitude 28.1, Longitude 220.4 East (139.6 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  6. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    This region of dust avalanches is located in and around a crater to the west of yesterday's image.

    Image information: VIS instrument. Latitude 14.7, Longitude 32.7 East (327.3 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  7. Combustibility determination for cotton gin dust and almond huller dust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar (OSHA, 2009), can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, OSHA initiated action to develop a mandatory standard to comprehen...

  8. Dust Devils Together

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer in November 2004, shows a group of three large afternoon dust devils occurring within several kilometers of each other in northwestern Amazonis. The image covers an area 3 km (1.9 mi) wide and was obtained with a spatial resolution of 12 meters (13 yards) per pixel. This scene is located near 36.2oN, 157.6oW. Sunlight illuminates the dust devils from the left.

  9. Dust clouds of Sagittarius

    NASA Astrophysics Data System (ADS)

    Malin, D. F.

    1982-03-01

    The development of knowledge of the exact nature of the dust clouds in the southern Milky Way galaxy is traced. First observation of the clouds were made by Herschel in 1784, and identification came with Barnard in 1916. The region around Barnard 86 is reviewed, noting the presence of the cluster NGC 6520 and NGC 6523, which is an area of a wide and dark dust lane backed by a blue nebulosity. Further attention is given to the blue objects NGC 6589, and NGC 6590, the Trifid nebula M20, the H II region NGC 6559 and IC 1274-5, and the six hot stars in the Sagittarius constellation.

  10. Dust input from AGB stars in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Zhukovska, S.; Henning, T.

    2013-07-01

    Aims: The dust-forming population of AGB stars and their input to the interstellar dust budget of the Large Magellanic Cloud (LMC) are studied with evolutionary dust models with the main goals (1) to investigate how the amount and composition of dust from AGB stars vary over the galactic history; (2) to characterise the mass and metallicity distribution of the present population of AGB stars; (3) to quantify the contribution of AGB stars of different mass and metallicity to the present stardust population in the interstellar medium (ISM). Methods: We used models of the stardust lifecycle in the ISM developed and tested for the solar neighbourhood. The first global spatially resolved reconstruction of the star formation history of the LMC from the Magellanic Clouds Photometric Survey was employed to calculate the stellar populations in the LMC. Results: The dust input from AGB stars is dominated by carbon grains from stars with masses ≲4 M⊙ almost during the entire history of the LMC. The production of silicate, silicon carbide, and iron dust is delayed until the ISM is enriched to about half the present metallicity in the LMC. For the first time, theoretically calculated dust production rates of AGB stars are compared with those derived from infrared observations of AGB stars for the entire galaxy. We find good agreement within scatter of various observational estimates. We show that the majority of silicate and iron grains in the present stardust population originate from a small population of intermediate-mass stars consisting of only ≲4% of the total number of stars, whereas in the solar neighbourhood they originate from low-mass stars. With models of the lifecycle of stardust grains in the ISM we confirm the strong discrepancy between dust input from stars and the existing interstellar dust mass in the LMC reported previously.

  11. Dust Devils : How many, how big, and how deadly ?

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.

    2015-12-01

    Dust devils are significant agents of dust-lifting on Mars, but their importance on Earth has been debated. Accurate quantification of the amount of dust-lifting by devils on Earth requires an understanding of the population of devils (i.e. the formation rate of devils of different diameters as a function of meteorological conditions, their longevity and their dust-lifting intensity). Correlation among these parameters (e.g. large devils last longer) means great care must be taken in evaluating the population integral - the contribution of 'average' devils may be dwarfed by the few largest ones, but large area-time surveys are needed to detect the rare giants. Significant progress has been made in quantifying the vortex population in the field using new pressure-logging instrumentation to generate robust statistics which appear also consistent with Large Eddy Simulations, and the vortex population can be reconciled with visual dust devil counts using Monte Carlo modeling, where core pressure drop is a useful intensity metric, and a threshold of about 0.3 hPa corresponds to visible dust lifting. Further field measurements are exploring the parameter correlation, and vortex model-fitting is being use to estimate diameter and core pressure drop by combining pressure and wind speed/direction data at a single station, a technique that may be useful in the upcoming InSight mission at Mars, where dust devils may be a useful seismic source to probe the near-surface regolith structure. Array measurements with multiple stations are also yielding powerful results. The core pressure drop can also be related to the weight-loading of structures for the quantification of dust devils as a hazard. In fact, dust devils are responsible for a number of deaths on the ground (in addition to aircraft and parachuting accidents) which will be briefly reviewed.

  12. Day 640 infrared line and continuum measurements: Dust formation in SN 1987A

    NASA Technical Reports Server (NTRS)

    Colgan, Sean W. J.; Haas, Michael R.; Erickson, Edwin F.; Lord, Steven D.; Hollenbach, David J.

    1994-01-01

    We have measured day 640-645 line and continuum spectra of (Ni II) 6.6 micrometer (Ne II) 12.8 micrometer (line emission was not detected), and (Fe II) 17.9 and 26.0 micrometer from SN 1987A. The high velocity feature at v(sub HVF) approximately 3900 km/sec found in both of our day 410 (Fe II) spectra is again detected in the day 640 (Ni II) spectrum, although the signal-to-noise of the day 640 (Fe II) spectra is insufficient to show this feature. The continuum fluxes provide clear evidence for the formation of dust between day 410 and day 640 and are best fitted by a graybody spectrum with a temperature of 342 +/- 17 K at day 640 and a surface area corresponding to a minimum dust velocity v(sub dust) = 1910 +/- 170 km/sec. Optically thin dust emissivity laws proportional to lambda(exp -1) or lambda(exp -2) are inconsistent with the data. Either the dust grains are large (radius a much greater than 4 micrometer and radiate like individual blackbodies, or else they are located in clumps optically thick in the 6-26 micrometer range. The (Ni II) 6.6 micrometer line flux yields a minimum Ni(+) mass of 5.8 +/- 1.6 x 10(exp -4) solar mass and a Ni/Fe abundance ratio of 0.06 +/- 0.02, equal to the solar value. The ratio of the two (Fe II) line profiles implies a gas temperature 2600 +/- 700 K, a drop of 1800 +/- 800 K from our day 410 measurement. The (Fe II) 26.0 micrometer line flux has decreased by a factor of 2 and the day 640 (Ni II) profile is blueshifted by -440 +/- 270 km/sec, relative to observations before day 500. We show that the decrease in the (Fe II) flux and the blueshift are not produced by a decrease in electron scattering optical depth, electron density, or temperature, but rather are probably due to obscuration by the same dust which produces the infrared continuum. This supports the interpretation that the dust spectrum is produced by optically thick clumps. We discuss possible explanations for the discrepancy between the mass of Fe(+) detected and

  13. Dust Devils Whip by Spirit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On sol 1120 (February 26, 2007), the navigation camera aboard NASA's Mars Exploration Rover Spirit captured one of the best dust devils it's seen in its three-plus year mission. The series of navigation camera images were put together to make a dust devil movie.

    The dust devil column is clearly defined and is clearly bent in the down wind direction. Near the end of the movie, the base of the dust devil becomes much wider. The atmospheric science team thinks that this is because the dust devil encountered some sand and therefore produced a 'saltation skirt,' an apron of material that is thrown out of the dust devil because it is too large to be carried up into suspension.

    Also near the end of the movie the dust devil seems to move faster across the surface. This is because Spirit began taking pictures less frequently, and not because the dust devil sped up.

  14. Natural variability versus human impact: Hydroclimate variability and the role of agriculture in changing dust emissions from Australia.

    NASA Astrophysics Data System (ADS)

    Marx, Samuel; Kamber, Balz; McGowan, Hamish; Hooper, James; Zawadzki, Atun

    2016-04-01

    Broad-scale dust emissions play an important role in Earth systems, for example influencing oceanic productivity via phytoplankton fertilisation. Existing palaeo dust records show that dust emissions vary significantly in time, implying its impact is similarly variable. There remains, however, a paucity of records which quantify variability in dust emissions. This study presents continuous, Holocene-aged, records of dust emissions from Australia, an important global dust source. Records demonstrate that rates of dust export have varied by 8-30 times over the mid to late Holocene. This variability is largely attributed to hydroclimate variability and its associated feedbacks within dust source areas. Significantly, however, a major disruption of dust emission rates is recorded in the past 200 years when dust emissions increased by between 2-10 times rates of natural variability in dust export. This change is concomitant with the arrival of Europeans in Australia and is primarily attributed to the development of agriculture which resulted in unprecedented environmental change in Australia's arid interior. This result broadly accords with the few other existing empirical dust records which both pre-date and post-date the onset of agriculture in various arid and semi-arid regions. Collectively, these records imply the impact of dust in Earth systems has changed as a result of agricultural development.

  15. THE BOLOCAM GALACTIC PLANE SURVEY: {lambda} = 1.1 AND 0.35 mm DUST CONTINUUM EMISSION IN THE GALACTIC CENTER REGION

    SciTech Connect

    Bally, John; Battersby, Cara; Ginsburg, Adam; Glenn, Jason; Harvey, Paul; Stringfellow, Guy S. E-mail: Cara.Battersby@colorado.ed E-mail: pmh@astro.as.utexas.ed

    2010-09-20

    The Bolocam Galactic Plane Survey (BGPS) data for a 6 deg{sup 2} region of the Galactic plane containing the Galactic center are analyzed and compared to infrared and radio continuum data. The BGPS 1.1 mm emission consists of clumps interconnected by a network of fainter filaments surrounding cavities, a few of which are filled with diffuse near-IR emission indicating the presence of warm dust or with radio continuum characteristic of H II regions or supernova remnants. New 350 {mu}m images of the environments of the two brightest regions, Sgr A and B, are presented. Sgr B2 is the brightest millimeter-emitting clump in the Central Molecular Zone (CMZ) and may be forming the closest analog to a super star cluster in the Galaxy. The CMZ contains the highest concentration of millimeter- and submillimeter-emitting dense clumps in the Galaxy. Most 1.1 mm features at positive longitudes are seen in silhouette against the 3.6-24 {mu}m background observed by the Spitzer Space Telescope. However, only a few clumps at negative longitudes are seen in absorption, confirming the hypothesis that positive longitude clumps in the CMZ tend to be on the near side of the Galactic center, consistent with the suspected orientation of the central bar in our Galaxy. Some 1.1 mm cloud surfaces are seen in emission at 8 {mu}m, presumably due to polycyclic aromatic hydrocarbons. A {approx}0.{sup 0}2 ({approx}30 pc) diameter cavity and infrared bubble between l{approx} 0.{sup 0}0 and 0.{sup 0}2 surround the Arches and Quintuplet clusters and Sgr A. The bubble contains several clumpy dust filaments that point toward Sgr A*; its potential role in their formation is explored. Bania's Clump 2, a feature near l = 3{sup 0}-3.{sup 0}5 which exhibits extremely broad molecular emission lines ({Delta}V> 150 km s{sup -1}), contains dozens of 1.1 mm clumps. These clumps are deficient in near- and mid-infrared emission in the Spitzer images when compared to both the inner Galactic plane and the CMZ. Thus

  16. GAMMA-RAY EMISSION FROM SUPERNOVA REMNANT INTERACTIONS WITH MOLECULAR CLUMPS

    SciTech Connect

    Tang, Xiaping; Chevalier, Roger A. E-mail: rac5x@virginia.edu

    2014-04-01

    Observations of the middle-aged supernova remnants IC 443, W28, and W51C indicate that the brightnesses at GeV and TeV energies are correlated with each other and with regions of molecular clump interaction, but not with the radio synchrotron brightness. We suggest that the radio emission is primarily associated with a radiative shell in the interclump medium of a molecular cloud, while the γ-ray emission is primarily associated with the interaction of the radiative shell with molecular clumps. The shell interaction produces a high pressure region, so that the γ-ray luminosity can be approximately reproduced even if shock acceleration of particles is not efficient, provided that energetic particles are trapped in the cooling region. In this model, the spectral shape ≳ 2 GeV is determined by the spectrum of cosmic ray protons. Models in which diffusive shock acceleration determines the spectrum tend to underproduce TeV emission because of the limiting particle energy that is attained.

  17. The Cusp/Core problem: supernovae feedback versus the baryonic clumps and dynamical friction model

    NASA Astrophysics Data System (ADS)

    Del Popolo, A.; Pace, F.

    2016-05-01

    In the present paper, we compare the predictions of two well known mechanisms considered able to solve the cusp/core problem (a. supernova feedback; b. baryonic clumps-DM interaction) by comparing their theoretical predictions to recent observations of the inner slopes of galaxies with masses ranging from dSphs to normal spirals. We compare the α-V_{rot} and the α-M_{ast} relationships, predicted by the two models with high resolution data coming from Adams et al. (Astrophys. J. 789, 63, 2014), Simon et al. (Astrophys. J. 621, 757, 2005), LITTLE THINGS (Oh et al. in Astron. J. 149, 180, 2015), THINGS dwarves (Oh et al. in Astron. J. 141, 193, 2011a; Oh et al. in Astron. J. 142, 224, 2011b), THINGS spirals (Oh et al. in Astron