Sample records for dust continuum studies

  1. SMA Continuum Survey of Circumstellar Disks in Serpens

    NASA Astrophysics Data System (ADS)

    Law, Charles; Ricci, Luca; Andrews, Sean M.; Wilner, David J.; Qi, Chunhua

    2017-06-01

    The lifetime of disks surrounding pre-main-sequence stars is closely linked to planet formation and provides information on disk dispersal mechanisms and dissipation timescales. The potential for these optically thick, gas-rich disks to form planets is critically dependent on how much dust is available to be converted into terrestrial planets and rocky cores of giant planets. For this reason, an understanding of how dust mass varies with key properties such as stellar mass, age, and environment is critical for understanding planet formation. Millimeter wavelength observations, in which the dust emission is optically thin, are required to study the colder dust residing in the disk’s outer regions and to measure disk dust masses. Hence, we have obtained SMA 1.3 mm continuum observations of 62 Class II sources with suspected circumstellar disks in the Serpens star-forming region (SFR). Relative to the well-studied Taurus SFR, Serpens allows us to probe the distribution of dust masses for disks in a much denser and more clustered environment. Only 13 disks were detected in the continuum with the SMA. We calculate the total dust masses of these disks and compare their masses to those of disks in Taurus, Lupus, and Upper Scorpius. We do not find evidence of diminished dust masses in Serpens disks relative to those in Taurus despite the fact that disks in denser clusters may be expected to contain less dust mass due to stronger and more frequent tidal interactions that can disrupt the outer regions of disks. However, considering the low detection fraction, we likely detected only bright continuum sources and a more sensitive survey of Serpens would help clarify these results.

  2. ALMA REVEALS POTENTIAL LOCALIZED DUST ENRICHMENT FROM MASSIVE STAR CLUSTERS IN II Zw 40

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consiglio, S. Michelle; Turner, Jean L.; Beck, Sara

    2016-12-10

    We present subarcsecond images of submillimeter CO and continuum emission from a local galaxy forming massive star clusters: the blue compact dwarf galaxy II Zw 40. At ∼0.″4 resolution (20 pc), the CO(3-2), CO(1-0), 3 mm, and 870 μ m continuum maps illustrate star formation on the scales of individual molecular clouds. Dust contributes about one-third of the 870 μ m continuum emission, with free–free accounting for the rest. On these scales, there is not a good correspondence between gas, dust, and free–free emission. Dust continuum is enhanced toward the star-forming region as compared to the CO emission. We suggestmore » that an unexpectedly low and spatially variable gas-to-dust ratio is the result of rapid and localized dust enrichment of clouds by the massive clusters of the starburst.« less

  3. ALMA unveils rings and gaps in the protoplanetary system HD 169142: signatures of two giant protoplanets

    NASA Astrophysics Data System (ADS)

    Fedele, D.; Carney, M.; Hogerheijde, M. R.; Walsh, C.; Miotello, A.; Klaassen, P.; Bruderer, S.; Henning, Th.; van Dishoeck, E. F.

    2017-04-01

    The protoplanetary system HD 169142 is one of the few cases where a potential candidate protoplanet has recently been detected by direct imaging in the near-infrared. To study the interaction between the protoplanet and the disk itself, observations of the gas and dust surface density structure are needed. This paper reports new ALMA observations of the dust continuum at 1.3 mm, 12CO, 13CO, and C18O J = 2-1 emission from the system HD 169142 (which is observed almost face-on) at an angular resolution of 0.3 arcsec × 0.2 arcsec ( 35 × 20 au). The dust continuum emission reveals a double-ring structure with an inner ring between 0.17 arcsec{-0.28 arcsec} ( 20-35 au) and an outer ring between 0.48 arcsec{-0.64 arcsec} ( 56-83 au). The size and position of the inner ring is in good agreement with previous polarimetric observations in the near-infrared and is consistent with dust trapping by a massive planet. No dust emission is detected inside the inner dust cavity (R ≲ 20 au) or within the dust gap ( 35-56 au) down to the noise level. In contrast, the channel maps of the J = 2-1 line of the three CO isotopologs reveal gas inside the dust cavity and dust gap. The gaseous disk is also much larger than the compact dust emission; it extends to 1.5 arcsec ( 180 au) in radius. This difference and the sharp drop of the continuum emission at large radii point to radial drift of large dust grains (>μm size). Using the thermo-chemical disk code dali, we modeled the continuum and the CO isotopolog emission to quantitatively measure the gas and dust surface densities. The resulting gas surface density is reduced by a factor of 30-40 inward of the dust gap. The gas and dust distribution indicate that two giant planets shape the disk structure through dynamical clearing (dust cavity and gap) and dust trapping (double-ring dust distribution).

  4. The near-infrared broad emission line region of active galactic nuclei - II. The 1-μm continuum

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Elvis, Martin; Ward, Martin J.; Bentz, Misty C.; Korista, Kirk T.; Karovska, Margarita

    2011-06-01

    We use quasi-simultaneous near-infrared (near-IR) and optical spectroscopy from four observing runs to study the continuum around 1 μm in 23 well-known broad emission line active galactic nuclei (AGN). We show that, after correcting the optical spectra for host galaxy light, the AGN continuum around this wavelength can be approximated by the sum of mainly two emission components, a hot dust blackbody and an accretion disc. The accretion disc spectrum appears to dominate the flux at ˜ 1 μm, which allows us to derive a relation for estimating AGN black hole masses based on the near-IR virial product. This result also means that a near-IR reverberation programme can determine the AGN state independent of simultaneous optical spectroscopy. On average we derive hot dust blackbody temperatures of ˜1400 K, a value close to the sublimation temperature of silicate dust grains, and relatively low hot dust covering factors of ˜7 per cent. Our preliminary variability studies indicate that in most sources, the hot dust emission responds to changes in the accretion disc flux with the expected time lag; however, a few sources show a behaviour that can be attributed to dust destruction.

  5. An ALMA Survey of Protoplanetary Disks in the σ Orionis Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansdell, M.; Williams, J. P.; Marel, N. van der

    2017-05-01

    The σ  Orionis cluster is important for studying protoplanetary disk evolution, as its intermediate age (∼3–5 Myr) is comparable to the median disk lifetime. We use ALMA to conduct a high-sensitivity survey of dust and gas in 92 protoplanetary disks around σ  Orionis members with M {sub *} ≳ 0.1  M {sub ⊙}. Our observations cover the 1.33 mm continuum and several CO J  = 2–1 lines: out of 92 sources, we detect 37 in the millimeter continuum and 6 in {sup 12}CO, 3 in {sup 13}CO, and none in C{sup 18}O. Using the continuum emission to estimate dust mass, we find only 11more » disks with M {sub dust} ≳ 10  M {sub ⊕}, indicating that after only a few Myr of evolution most disks lack sufficient dust to form giant planet cores. Stacking the individually undetected continuum sources limits their average dust mass to 5×  lower than that of the faintest detected disk, supporting theoretical models that indicate rapid dissipation once disk clearing begins. Comparing the protoplanetary disk population in σ  Orionis to those of other star-forming regions supports the steady decline in average dust mass and the steepening of the M {sub dust}– M {sub *} relation with age; studying these evolutionary trends can inform the relative importance of different disk processes during key eras of planet formation. External photoevaporation from the central O9 star is influencing disk evolution throughout the region: dust masses clearly decline with decreasing separation from the photoionizing source, and the handful of CO detections exist at projected separations of >1.5 pc. Collectively, our findings indicate that giant planet formation is inherently rare and/or well underway by a few Myr of age.« less

  6. Cosmic reionization on computers. Ultraviolet continuum slopes and dust opacities in high redshift galaxies

    DOE PAGES

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.

    2016-03-30

    In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less

  7. Cosmic reionization on computers. Ultraviolet continuum slopes and dust opacities in high redshift galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y.

    In this study, we compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting UV and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are notmore » fully sufficient. While the discrepancies with the exiting data are marginal, the future JWST data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less

  8. Gone with the heat: a fundamental constraint on the imaging of dust and molecular gas in the early Universe.

    PubMed

    Zhang, Zhi-Yu; Papadopoulos, Padelis P; Ivison, R J; Galametz, Maud; Smith, M W L; Xilouris, Emmanuel M

    2016-06-01

    Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh-Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB.

  9. A Submillimeter Continuum Survey of Local Dust-obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2016-12-01

    We conduct a 350 μm dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05-0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S 350 μm = 114-650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57-122 K and 22-35 K for the warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3-34 × 107 M ⊙ and 0.03%-2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.

  10. Global Infrared–Radio Spectral Energy Distributions of Galactic Massive Star-Forming Regions

    NASA Astrophysics Data System (ADS)

    Povich, Matthew Samuel; Binder, Breanna Arlene

    2018-01-01

    We present a multiwavelength study of 30 Galactic massive star-forming regions. We fit multicomponent dust, blackbody, and power-law continuum models to 3.6 µm through 10 mm spectral energy distributions obtained from Spitzer, MSX, IRAS, Herschel, and Planck archival survey data. Averaged across our sample, ~20% of Lyman continuum photons emitted by massive stars are absorbed by dust before contributing to the ionization of H II regions, while ~50% of the stellar bolometric luminosity is absorbed and reprocessed by dust in the H II regions and surrounding photodissociation regions. The most luminous, infrared-bright regions that fully sample the upper stellar initial mass function (ionizing photon rates NC ≥ 1050 s–1 and total infrared luminosity LTIR ≥ 106.8 L⊙) have higher percentages of absorbed Lyman continuum photons (~40%) and dust-reprocessed starlight (~80%). The monochromatic 70-µm luminosity L70 is linearly correlated with LTIR, and on average L70/LTIR = 50%, in good agreement with extragalactic studies. Calibrated against the known massive stellar content in our sampled H II regions, we find that star formation rates based on L70 are in reasonably good agreement with extragalactic calibrations, when corrected for the smaller physical sizes of the Galactic regions. We caution that absorption of Lyman continuum photons prior to contributing to the observed ionizing photon rate may reduce the attenuation-corrected Hα emission, systematically biasing extragalactic calibrations toward lower star formation rates when applied to spatially-resolved studies of obscured star formation.This work was supported by the National Science Foundation under award CAREER-1454333.

  11. A Spatially Resolved Study of Cold Dust, Molecular Gas, H II Regions, and Stars in the z = 2.12 Submillimeter Galaxy ALESS67.1

    NASA Astrophysics Data System (ADS)

    Chen, Chian-Chou; Hodge, J. A.; Smail, Ian; Swinbank, A. M.; Walter, Fabian; Simpson, J. M.; Calistro Rivera, Gabriela; Bertoldi, F.; Brandt, W. N.; Chapman, S. C.; da Cunha, Elisabete; Dannerbauer, H.; De Breuck, C.; Harrison, C. M.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Wardlow, J. L.; Weiß, A.; van der Werf, P. P.

    2017-09-01

    We present detailed studies of a z = 2.12 submillimeter galaxy, ALESS67.1, using sub-arcsecond resolution ALMA, adaptive optics-aided VLT/SINFONI, and Hubble Space Telescope (HST)/CANDELS data to investigate the kinematics and spatial distributions of dust emission (870 μm continuum), 12CO(J = 3–2), strong optical emission lines, and visible stars. Dynamical modeling of the optical emission lines suggests that ALESS67.1 is not a pure rotating disk but a merger, consistent with the apparent tidal features revealed in the HST imaging. Our sub-arcsecond resolution data set allows us to measure half-light radii for all the tracers, and we find a factor of 4–6 smaller sizes in dust continuum compared to all the other tracers, including 12CO; also, ultraviolet (UV) and Hα emission are significantly offset from the dust continuum. The spatial mismatch between the UV continuum and the cold dust and gas reservoir supports the explanation that geometrical effects are responsible for the offset of the dusty galaxy on the IRX–β diagram. Using a dynamical method we derive an {α }CO}=1.8+/- 1.0, consistent with other submillimeter galaxies (SMGs) that also have resolved CO and dust measurements. Assuming a single {α }CO} value we also derive resolved gas and star formation rate surface densities, and find that the core region of the galaxy (≲ 5 kpc) follows the trend of mergers on the Schmidt–Kennicutt relationship, whereas the outskirts (≳ 5 kpc) lie on the locus of normal star-forming galaxies, suggesting different star formation efficiencies within one galaxy. Our results caution against using single size or morphology for different tracers of the star formation activity and gas content of galaxies, and therefore argue the need to use spatially resolved, multi-wavelength observations to interpret the properties of SMGs, and perhaps even for z> 1 galaxies in general.

  12. Gone with the heat: a fundamental constraint on the imaging of dust and molecular gas in the early Universe

    PubMed Central

    Zhang, Zhi-Yu; Smith, M. W. L.; Xilouris, Emmanuel M.

    2016-01-01

    Images of dust continuum and carbon monoxide (CO) line emission are powerful tools for deducing structural characteristics of galaxies, such as disc sizes, H2 gas velocity fields and enclosed H2 and dynamical masses. We report on a fundamental constraint set by the cosmic microwave background (CMB) on the observed structural and dynamical characteristics of galaxies, as deduced from dust continuum and CO-line imaging at high redshifts. As the CMB temperature rises in the distant Universe, the ensuing thermal equilibrium between the CMB and the cold dust and H2 gas progressively erases all spatial and spectral contrasts between their brightness distributions and the CMB. For high-redshift galaxies, this strongly biases the recoverable H2 gas and dust mass distributions, scale lengths, gas velocity fields and dynamical mass estimates. This limitation is unique to millimetre/submillimetre wavelengths and unlike its known effect on the global dust continuum and molecular line emission of galaxies, it cannot be addressed simply. We nevertheless identify a unique signature of CMB-affected continuum brightness distributions, namely an increasing rather than diminishing contrast between such brightness distributions and the CMB when the cold dust in distant galaxies is imaged at frequencies beyond the Raleigh–Jeans limit. For the molecular gas tracers, the same effect makes the atomic carbon lines maintain a larger contrast than the CO lines against the CMB. PMID:27429763

  13. Airborne spectrophotometry of SN 1987A from 1.7 to 12.6 microns - Time history of the dust continuum and line emission

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Rank, David M.; Bregman, Jesse D.; Witteborn, Fred C.; Tielens, A. G. G. M.; Cohen, Martin; Pinto, Philip A.; Axelrod, Timothy S.

    1993-01-01

    Spectrophotometric observations of SN 1987A from the Kuiper Airborne Observatory are presented for five epochs at 60, 260, 415, 615, and 775 days after the explosion. The low-resolution (lambda/Delta lambda = 50-100) spectra of SN 1987A are combined with data from other wavelengths to model the continuum, subtract the continuum from the spectra to determine line strengths and reveal molecular bands, separate the atomic continuum radiation from the dust continuum, and derive constraints on the grain temperatures and optical depths. A scenario for the evolution of SN 1987A and that of the ejecta from which it arises is obtained on the basis of the analysis of the continuum emission.

  14. High resolution sub-millimetre mapping of starburst galaxies: Comparison with CO emission

    NASA Technical Reports Server (NTRS)

    Smith, P. A.; Brand, P. W. J. L.; Puxley, Phil J.; Mountain, C. M.; Nakai, Naomasa

    1990-01-01

    Researchers present first results from a program of submillimeter continuum mapping of starburst galaxies, and comparison of their dust and CO emission. This project was prompted by surprising results from the first target, the nearby starburst M82, which shows in the dust continuum a morphology quite unlike that of its CO emission, in contrast to what might be expected if both CO and dust are accurately tracing the molecular hydrogen. Possible explanations for this striking difference are discussed. In the light of these results, the program has been extended to include sub-mm mapping of the nearby, vigorously star forming spirals, M83 and Maffei 2. The latter were also observed extensively in CO, in order to study excitation conditions in its central regions. The James Clerk Maxwell Telescope was used in these studies.

  15. A SUBMILLIMETER CONTINUUM SURVEY OF LOCAL DUST-OBSCURED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho, E-mail: jclee@kasi.re.kr

    We conduct a 350 μ m dust continuum emission survey of 17 dust-obscured galaxies (DOGs) at z = 0.05–0.08 with the Caltech Submillimeter Observatory (CSO). We detect 14 DOGs with S{sub 350μm} = 114–650 mJy and signal-to-noise > 3. By including two additional DOGs with submillimeter data in the literature, we are able to study dust content for a sample of 16 local DOGs, which consist of 12 bump and four power-law types. We determine their physical parameters with a two-component modified blackbody function model. The derived dust temperatures are in the range 57–122 K and 22–35 K for themore » warm and cold dust components, respectively. The total dust mass and the mass fraction of the warm dust component are 3–34 × 10{sup 7} M {sub ⊙} and 0.03%–2.52%, respectively. We compare these results with those of other submillimeter-detected infrared luminous galaxies. The bump DOGs, the majority of the DOG sample, show similar distributions of dust temperatures and total dust mass to the comparison sample. The power-law DOGs show a hint of smaller dust masses than other samples, but need to be tested with a larger sample. These findings support that the reason DOGs show heavy dust obscuration is not an overall amount of dust content, but probably the spatial distribution of dust therein.« less

  16. SPATIALLY RESOLVED HCN J = 4-3 AND CS J = 7-6 EMISSION FROM THE DISK AROUND HD 142527

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van der Plas, G.; Casassus, S.; Perez, S.

    2014-09-10

    The disk around HD 142527 attracts a great amount of attention compared to others because of its resolved (sub-)millimeter dust continuum that is concentrated into the shape of a horseshoe toward the north of the star. In this Letter we present spatially resolved ALMA detections of the HCN J = 4-3 and CS J = 7-6 emission lines. These lines give us a deeper view into the disk compared to the (optically thicker) CO isotopes. This is the first detection of CS J = 7-6 coming from a protoplanetary disk. Both emission lines are azimuthally asymmetric and are suppressed under the horseshoe-shapedmore » continuum emission peak. A possible mechanism for explaining the decrease under the horseshoe-shaped continuum is the increased opacity coming from the higher dust concentration at the continuum peak. Lower dust and/or gas temperatures and an optically thick radio-continuum reduce line emission by freezing out and shielding emission from the far side of the disk.« less

  17. Inferring giant planets from ALMA millimeter continuum and line observations in (transition) disks

    NASA Astrophysics Data System (ADS)

    Facchini, S.; Pinilla, P.; van Dishoeck, E. F.; de Juan Ovelar, M.

    2018-05-01

    Context. Radial gaps or cavities in the continuum emission in the IR-mm wavelength range are potential signatures of protoplanets embedded in their natal protoplanetary disk are. Hitherto, models have relied on the combination of mm continuum observations and near-infrared scattered light images to put constraints on the properties of embedded planets. Atacama Large Millimeter/submillimeter Array (ALMA) observations are now probing spatially resolved rotational line emission of CO and other chemical species. These observations can provide complementary information on the mechanism carving the gaps in dust and additional constraints on the purported planet mass. Aims: We investigate whether the combination of ALMA continuum and CO line observations can constrain the presence and mass of planets embedded in protoplanetary disks. Methods: We post-processed azimuthally averaged 2D hydrodynamical simulations of planet-disk models, in which the dust densities and grain size distributions are computed with a dust evolution code that considers radial drift, fragmentation, and growth. The simulations explored various planet masses (1 MJ ≤ Mp ≤ 15 MJ) and turbulent parameters (10-4 ≤ α ≤ 10-3). The outputs were then post-processed with the thermochemical code DALI, accounting for the radially and vertically varying dust properties. We obtained the gas and dust temperature structures, chemical abundances, and synthetic emission maps of both thermal continuum and CO rotational lines. This is the first study combining hydrodynamical simulations, dust evolution, full radiative transfer, and chemistry to predict gas emission of disks hosting massive planets. Results: All radial intensity profiles of 12CO, 13CO, and C18O show a gap at the planet location. The ratio between the location of the gap as seen in CO and the peak in the mm continuum at the pressure maximum outside the orbit of the planet shows a clear dependence on planet mass and is independent of disk viscosity for the parameters explored in this paper. Because of the low dust density in the gaps, the dust and gas components can become thermally decoupled and the gas becomes colder than the dust. The gaps seen in CO are due to a combination of gas temperature dropping at the location of the planet and of the underlying surface density profile. Both effects need to be taken into account and disentangled when inferring gas surface densities from observed CO intensity profiles; otherwise, the gas surface density drop at the planet location can easily be overestimated. CO line ratios across the gap are able to quantify the gas temperature drop in the gaps in observed systems. Finally, a CO cavity not observed in any of the models, only CO gaps, indicating that one single massive planet is not able to explain the CO cavities observed in transition disks, at least without additional physical or chemical mechanisms.

  18. COMPACT DUST CONCENTRATION IN THE MWC 758 PROTOPLANETARY DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, S.; Casassus, S.; Perez, S.

    2015-11-01

    The formation of planetesimals requires that primordial dust grains grow from micron- to kilometer-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka and Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk, indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensitymore » maximum to the northwest of the central star, which matches the VLA clump position. The compactness of the Ka emission is expected in the context of dust trapping, as big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a nonaxisymmetric parametric model inspired by a steady-state vortex solution with parameters adequately selected to reproduce the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a spiral-like feature seen in scattered light, while the VLA clump is offset from the scattered light maximum. Moreover, the ALMA map shows a decrement that matches a region devoid of scattered polarized emission. Continuum observations at a different wavelength are necessary to conclude whether the VLA-ALMA difference is an opacity or a real dust segregation.« less

  19. Early Science with the Large Millimeter Telescope: observations of dust continuum and CO emission lines of cluster-lensed submillimetre galaxies at z=2.0-4.7

    NASA Astrophysics Data System (ADS)

    Zavala, J. A.; Yun, M. S.; Aretxaga, I.; Hughes, D. H.; Wilson, G. W.; Geach, J. E.; Egami, E.; Gurwell, M. A.; Wilner, D. J.; Smail, Ian; Blain, A. W.; Chapman, S. C.; Coppin, K. E. K.; Dessauges-Zavadsky, M.; Edge, A. C.; Montaña, A.; Nakajima, K.; Rawle, T. D.; Sánchez-Argüelles, D.; Swinbank, A. M.; Webb, T. M. A.; Zeballos, M.

    2015-09-01

    We present Early Science observations with the Large Millimeter Telescope, AzTEC 1.1 mm continuum images and wide bandwidth spectra (73-111 GHz) acquired with the Redshift Search Receiver, towards four bright lensed submillimetre galaxies identified through the Herschel Lensing Survey-snapshot and the Submillimetre Common-User Bolometer Array-2 Cluster Snapshot Survey. This pilot project studies the star formation history and the physical properties of the molecular gas and dust content of the highest redshift galaxies identified through the benefits of gravitational magnification. We robustly detect dust continuum emission for the full sample and CO emission lines for three of the targets. We find that one source shows spectroscopic multiplicity and is a blend of three galaxies at different redshifts (z = 2.040, 3.252, and 4.680), reminiscent of previous high-resolution imaging follow-up of unlensed submillimetre galaxies, but with a completely different search method, that confirm recent theoretical predictions of physically unassociated blended galaxies. Identifying the detected lines as 12CO (Jup = 2-5) we derive spectroscopic redshifts, molecular gas masses, and dust masses from the continuum emission. The mean H2 gas mass of the full sample is (2.0 ± 0.2) × 1011 M⊙/μ, and the mean dust mass is (2.0 ± 0.2) × 109 M⊙/μ, where μ ≈ 2-5 is the expected lens amplification. Using these independent estimations we infer a gas-to-dust ratio of δGDR ≈ 55-75, in agreement with other measurements of submillimetre galaxies. Our magnified high-luminosity galaxies fall on the same locus as other high-redshift submillimetre galaxies, extending the L^' }_CO-LFIR correlation observed for local luminous and ultraluminous infrared galaxies to higher far-infrared and CO luminosities.

  20. Catastrophic Disruption of Comet ISON

    NASA Technical Reports Server (NTRS)

    Keane, Jacqueline V.; Milam, Stefanie N.; Coulson, Iain M.; Kleyna, Jan T.; Sekanina, Zdenek; Kracht, Rainer; Riesen, Timm-Emmanuel; Meech, Karen J.; Charnley, Steven B.

    2016-01-01

    We report submillimeter 450 and 850 microns dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31-0.08 au prior to perihelion on 2013 November 28 (rh?=?0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60? (greater than 10(exp 5) km in the anti-solar direction. Deconvolution of the November 28.04 850 microns image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producing approximately 5.2?×?10(exp 10) kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.

  1. ALMA observation of 158 μm [C II] line and dust continuum of a z = 7 normally star-forming galaxy in the epoch of reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ota, Kazuaki; Walter, Fabian; Da Cunha, Elisabete

    We present ALMA observations of the [C II] line and far-infrared (FIR) continuum of a normally star-forming galaxy in the reionization epoch, the z = 6.96 Lyα emitter (LAE) IOK-1. Probing to sensitivities of σ{sub line} = 240 μJy beam{sup –1} (40 km s{sup –1} channel) and σ{sub cont} = 21 μJy beam{sup –1}, we found the galaxy undetected in both [C II] and continuum. Comparison of ultraviolet (UV)-FIR spectral energy distribution (SED) of IOK-1, including our ALMA limit, with those of several types of local galaxies (including the effects of the cosmic microwave background, CMB, on the FIR continuum)more » suggests that IOK-1 is similar to local dwarf/irregular galaxies in SED shape rather than highly dusty/obscured galaxies. Moreover, our 3σ FIR continuum limit, corrected for CMB effects, implies intrinsic dust mass M {sub dust} < 6.4 × 10{sup 7} M {sub ☉}, FIR luminosity L {sub FIR} < 3.7 × 10{sup 10} L {sub ☉} (42.5-122.5 μm), total IR luminosity L {sub IR} < 5.7 × 10{sup 10} L {sub ☉} (8-1000 μm), and dust-obscured star formation rate (SFR) < 10 M {sub ☉} yr{sup –1}, if we assume that IOK-1 has a dust temperature and emissivity index typical of local dwarf galaxies. This SFR is 2.4 times lower than one estimated from the UV continuum, suggesting that <29% of the star formation is obscured by dust. Meanwhile, our 3σ [C II] flux limit translates into [C II] luminosity, L {sub [C} {sub II]} < 3.4 × 10{sup 7} L {sub ☉}. Locations of IOK-1 and previously observed LAEs on the L {sub [C} {sub II]} versus SFR and L {sub [C} {sub II]}/L {sub FIR} versus L {sub FIR} diagrams imply that LAEs in the reionization epoch have significantly lower gas and dust enrichment than AGN-powered systems and starbursts at similar/lower redshifts, as well as local star-forming galaxies.« less

  2. Mid-infrared Flux Variability in an Awakening AGN

    NASA Astrophysics Data System (ADS)

    Yeh, Sherry

    We propose FORCAST spectroscopic observations between 8 um to 40 um near the nucleus of NGC 660. NGC 660 underwent an AGN outburst 6 years ago, which is an ideal case for studying AGN astrophysics in a rather quiecent system. However, this rare event has not yet been monitored. Our immidiate goal is to verify the MIR spectroscipic variabilitiy in NGC 660, and to study the AGN effects on dust destruction and ISM. We will compare the FORCAST spectra with the Spitzer IRS spectra (taken before the AGN outburst), including dust continuum, PAH emission, and high- and low-ionization emission lines. FORCAST's slit width is a close match to the IRS slit width, allowing a direct comparison of the spectra between FORCAST and IRS. Our single-slit Subaru COMICS spectrum taken after the outburst shows significantly weakened PAH emission and dust continuum, suggesting dust destruction. However, it is difficult to draw robust intepretations due to systematic uncertainties in the Subaru data. If dust destruction is confirmed in the post-outburst FORCAST observaitons, we will evaluate the energy budget using the MIR line ratio diagnostics, with archival X-ray and radio data. We will then propose cadence observations of MGC 660's nucleus to monitor the MIR flux variability, and employ the reverberation mapping technique to study NGC 660's AGN.

  3. Wide-field Imaging Survey of Dust Continuum Emissions at lambda = 1.1 mm toward the Chamaeleon and Lupus Regions with AzTEC on ASTE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, Munetake; Hiramatsu, Masaaki; Tsukagoshi, Takashi

    2009-08-05

    We carried out an imaging survey of dust continuum emissions toward the Chamaeleon and Lupus regions. Observations were made with the 144-element bolometer array camera AzTEC mounted on the 10-meter sub-millimeter telescope ASTE during 2007-2008. The preliminary results of disk search and the cloud structure of Lupus III are presented.

  4. AN APPARENT REDSHIFT DEPENDENCE OF QUASAR CONTINUUM: IMPLICATION FOR COSMIC DUST EXTINCTION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Xiaoyi; Shen, Shiyin; Shao, Zhengyi

    We investigate the luminosity and redshift dependence of the quasar continuum by means of the composite spectrum using a large non-BAL radio-quiet quasar sample drawn from the Sloan Digital Sky Survey. Quasar continuum slopes in the UV-Opt band are measured at two different wavelength ranges, i.e., α{sub ν12} (1000 ∼ 2000 Å) and α{sub ν24} (2000 ∼ 4000 Å) derived from a power-law fitting. Generally, the UV spectra slope becomes harder (higher α{sub ν}) toward higher bolometric luminosity. On the other hand, when quasars are further grouped into luminosity bins, we find that both α{sub ν12} and α{sub ν24} show significant anti-correlationsmore » with redshift (i.e., the quasar continuum becomes redder toward higher redshift). We suggest that the cosmic dust extinction is very likely the cause of this observed α{sub ν} − z relation. We build a simple cosmic dust extinction model to quantify the observed reddening tendency and find an effective dust density nσ{sub v} ∼ 10{sup −5}h Mpc{sup −1} at z < 1.5. The other possibilities that could produce such a reddening effect have also been discussed.« less

  5. CATASTROPHIC DISRUPTION OF COMET ISON

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keane, Jacqueline V.; Kleyna, Jan T.; Riesen, Timm-Emmanuel

    2016-11-10

    We report submillimeter 450 and 850 μ m dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31–0.08 au prior to perihelion on 2013 November 28 ( r {sub h} = 0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60″ (>10{sup 5} km) in the anti-solar direction. Deconvolution of the November 28.04 850 μ m image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producingmore » ∼5.2 × 10{sup 10} kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.« less

  6. A search for precursors of ultracompact H II regions in a sample of luminous IRAS sources. III. Circumstellar dust properties

    NASA Technical Reports Server (NTRS)

    Molinari, S.; Brand, J.; Cesaroni, R.; Palla, F.

    2000-01-01

    The James Clerk Maxwell Telescope has been used to obtain submillimeter and millimeter continuum photometry of a sample of 30 IRAS sources previously studied in molecular lines and centimeter radio continuum. All the sources have IRAS colours typical of very young stellar objects (YSOs) and are associated with dense gas.

  7. IRAS 21391 + 5802 - A study in intermediate mass star formation

    NASA Technical Reports Server (NTRS)

    Wilking, Bruce; Mundy, Lee; Mcmullin, Joseph; Hezel, Thomas; Keene, Jocelyn

    1993-01-01

    We present infrared and millimeter wavelength observations of the cold IRAS source 21391 + 5802 and its associated molecular core. Infrared observations at lambda = 3.5 microns reveal a heavily obscured, central point source which is coincident with a compact lambda = 2.7 mm continuum and C18O emission region. The source radiates about 310 solar luminosities, primarily at FIR wavelengths, suggesting that it is a young stellar object of intermediate mass. The steeply rising spectral energy distribution and the large fraction of the system mass residing in circumstellar material imply that IRAS 21391 + 5802 is in an early stage of evolution. The inferred dust temperature indicates a temperature gradient in the core. A comprehensive model for the surrounding core of dust and gas is devised to match the observed dust continuum emission and multitransition CS emission from this and previous studies. We find a r exp -1.5 +/- 0.2 density gradient consistent with that of a gravitationally evolved core and a total core mass of 380 solar masses. The observed dust emission is most consistent with a lambda exp -1.5 - lambda exp -2 dust emissivity law; for a lambda exp -2 law, the data are best fit by a mass opacity coefficient of 3.6 x 10 exp -3 sq cm/g at lambda = 1.25 mm.

  8. The albedo and scattering phase function of interstellar dust and the diffuse background at far-ultraviolet wavelengths.

    PubMed

    Hurwitz, M; Bowyer, S; Martin, C

    1991-05-01

    We have determined the scattering parameters of dust in the interstellar medium at far-ultraviolet (FUV) wavelengths (1415-1835 angstroms). Our results are based on spectra of the diffuse background taken with the Berkeley UVX spectrometer. The unique design of this instrument makes possible for the first time accurate determination of the background both at high Galactic latitude, where the signal is intrinsically faint, and at low Galactic latitude, where direct starlight has heretofore compromised measurements of the diffuse emission. Because the data are spectroscopic, the continuum can be distinguished from the atomic and molecular transition features which also contribute to the background. We find the continuum intensity to be well correlated with the Galactic neutral hydrogen column density until saturation at about 1200 photons cm-2 s-1 sr-1 angstrom-1 is reached where tau FUV approximately 1. Our measurement of the intensity where tau FUV > or = 1 is crucial to the determination of the scattering properties of the grains. We interpret the data with a detailed radiative transfer model and conclude that the FUV albedo of the grains is low (<25%) and that the grains scatter fairly isotropically. We evaluate models of dust composition and grain-size distribution and compare their predictions with these new results. We present evidence that, as the Galactic neutral hydrogen column density approaches zero, the FUV continuum background arises primarily from scattering by dust, which implies that dust may be present in virtually all view directions. A non-dust-scattering continuum component has also been identified, with an intensity (external to the foreground Galactic dust) of about 115 photons cm-2 s-1 angstrom-1. With about half this intensity accounted for by two-photon emission from Galactic ionized gas, we identify roughly 50 photons cm-2 s-1 sr-1 angstrom-1 as a true extragalactic component.

  9. A Long-Term Space Astrophysics Research Program: The Evolution of the Quasar Continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Oliversen, Ronald K. (Technical Monitor)

    2002-01-01

    Four papers have been written. One reports on the major study funded by this grant: a pan-chromatic study of the quasar continuum at redshift 3. Two others make use of the quasar continuum shapes to find the minimum total accretion luminosity of the Universe, and hence the efficiency and spin of supermassive black holes; the second shows that the reemission of absorbed quasar radiation alleviates a major problem with galaxy formation and the FIR background. The last paper recognizes the role quasars may play in the initial formation of dust in the early Universe.

  10. COSMIC REIONIZATION ON COMPUTERS. ULTRAVIOLET CONTINUUM SLOPES AND DUST OPACITIES IN HIGH REDSHIFT GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khakhaleva-Li, Zimu; Gnedin, Nickolay Y., E-mail: zimu@uchicago.edu, E-mail: gnedin@fnal.gov

    We compare the properties of stellar populations of model galaxies from the Cosmic Reionization On Computers (CROC) project with the exiting ultraviolet (UV) and IR data. Since CROC simulations do not follow cosmic dust directly, we adopt two variants of the dust-follows-metals ansatz to populate model galaxies with dust. Using the dust radiative transfer code Hyperion, we compute synthetic stellar spectra, UV continuum slopes, and IR fluxes for simulated galaxies. We find that the simulation results generally match observational measurements, but, perhaps, not in full detail. The differences seem to indicate that our adopted dust-follows-metals ansatzes are not fully sufficient.more » While the discrepancies with the exiting data are marginal, the future James Webb Space Telescope (JWST) data will be of much higher precision, rendering highly significant any tentative difference between theory and observations. It is, therefore, likely, that in order to fully utilize the precision of JWST observations, fully dynamical modeling of dust formation, evolution, and destruction may be required.« less

  11. Observational Constraints on Submillimeter Dust Opacity

    NASA Astrophysics Data System (ADS)

    Shirley, Yancy L.; Huard, Tracy L.; Pontoppidan, Klaus M.; Wilner, David J.; Stutz, Amelia M.; Bieging, John H.; Evans, Neal J., II

    2011-02-01

    Infrared extinction maps and submillimeter dust continuum maps are powerful probes of the density structure in the envelope of star-forming cores. We make a direct comparison between infrared and submillimeter dust continuum observations of the low-mass Class 0 core, B335, to constrain the ratio of submillimeter to infrared opacity (κsmm/κir) and the submillimeter opacity power-law index (κ vprop λ-β). Using the average value of theoretical dust opacity models at 2.2 μm, we constrain the dust opacity at 850 and 450 μm. Using new dust continuum models based upon the broken power-law density structure derived from interferometric observations of B335 and the infall model derived from molecular line observations of B335, we find that the opacity ratios are \\frac{\\kappa _{850}}{\\kappa _{2.2}} = (3.21{--}4.80)^{+0.44}_{-0.30} \\times 10^{-4} and \\frac{\\kappa _{450}}{\\kappa _{2.2}} = (12.8{--}24.8)^{+2.4}_{-1.3} \\times 10^{-4}with a submillimeter opacity power-law index of βsmm = (2.18-2.58)+0.30 -0.30. The range of quoted values is determined from the uncertainty in the physical model for B335. For an average 2.2 μm opacity of 3800 ± 700 cm2 g-1, we find a dust opacity at 850 and 450 μm of κ850 = (1.18-1.77)+0.36 -0.24 and κ450 = (4.72-9.13)+1.9 -0.98 cm2 g-1 of dust. These opacities are from (0.65-0.97)κOH5 850 of the widely used theoretical opacities of Ossenkopf and Henning for coagulated ice grains with thin mantles at 850 μm.

  12. The Coupled Physical Structure of Gas and Dust in the IM Lup Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.; Huang, Jane; Loomis, Ryan A.; Andrews, Sean M.; Czekala, Ian

    2016-12-01

    The spatial distribution of gas and solids in protoplanetary disks determines the composition and formation efficiency of planetary systems. A number of disks show starkly different distributions for the gas and small grains compared to millimeter-centimeter-sized dust. We present new Atacama Large Millimeter/Submillimeter Array observations of the dust continuum, CO, 13CO, and C18O in the IM Lup protoplanetary disk, one of the first systems where this dust-gas dichotomy was clearly seen. The 12CO is detected out to a radius of 970 au, while the millimeter continuum emission is truncated at just 313 au. Based upon these data, we have built a comprehensive physical and chemical model for the disk structure, which takes into account the complex, coupled nature of the gas and dust and the interplay between the local and external environment. We constrain the distributions of gas and dust, the gas temperatures, the CO abundances, the CO optical depths, and the incident external radiation field. We find that the reduction/removal of dust from the outer disk exposes this region to higher stellar and external radiation and decreases the rate of freeze-out, allowing CO to remain in the gas out to large radial distances. We estimate a gas-phase CO abundance of 5% of the interstellar medium value and a low external radiation field (G 0 ≲ 4). The latter is consistent with that expected from the local stellar population. We additionally find tentative evidence for ring-like continuum substructure, suggestions of isotope-selective photodissociation, and a diffuse gas halo.

  13. AzTEC Survey of the Central Molecular Zone: Modeling Dust SEDs and N-PDF with Hierarchical Bayesian Analysis

    NASA Astrophysics Data System (ADS)

    Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark

    2018-01-01

    We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.

  14. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onić, D.; Urošević, D.; Leahy, D., E-mail: donic@matf.bg.ac.rs

    Recent observations of the microwave sky, by space telescopes such as the Wilkinson Microwave Anisotropy Probe and Planck , have opened a new window into the analysis of continuum emission from supernova remnants (SNRs). In this paper, different emission models that can explain the characteristic shape of currently known integrated radio/microwave continuum spectrum of the Galactic SNR IC 443 are tested and discussed. In particular, the possibility is emphasized that the slight bump in the integrated continuum of this remnant around 20–70 GHz is genuine and that it can be explained by the contribution of an additional emission mechanism suchmore » as spinning dust. We find that adding a spinning dust component to the emission model improves the fit of the integrated spectrum of this SNR while at the same time preserving the physically probable parameter values. Finally, models that include the high-frequency synchrotron bending of the IC 443 radio to microwave continuum are favored.« less

  16. The ALMA-PILS survey: 3D modeling of the envelope, disks and dust filament of IRAS 16293-2422

    NASA Astrophysics Data System (ADS)

    Jacobsen, S. K.; Jørgensen, J. K.; van der Wiel, M. H. D.; Calcutt, H.; Bourke, T. L.; Brinch, C.; Coutens, A.; Drozdovskaya, M. N.; Kristensen, L. E.; Müller, H. S. P.; Wampfler, S. F.

    2018-04-01

    Context. The Class 0 protostellar binary IRAS 16293-2422 is an interesting target for (sub)millimeter observations due to, both, the rich chemistry toward the two main components of the binary and its complex morphology. Its proximity to Earth allows the study of its physical and chemical structure on solar system scales using high angular resolution observations. Such data reveal a complex morphology that cannot be accounted for in traditional, spherical 1D models of the envelope. Aims: The purpose of this paper is to study the environment of the two components of the binary through 3D radiative transfer modeling and to compare with data from the Atacama Large Millimeter/submillimeter Array. Such comparisons can be used to constrain the protoplanetary disk structures, the luminosities of the two components of the binary and the chemistry of simple species. Methods: We present 13CO, C17O and C18O J = 3-2 observations from the ALMA Protostellar Interferometric Line Survey (PILS), together with a qualitative study of the dust and gas density distribution of IRAS 16293-2422. A 3D dust and gas model including disks and a dust filament between the two protostars is constructed which qualitatively reproduces the dust continuum and gas line emission. Results: Radiative transfer modeling in our sampled parameter space suggests that, while the disk around source A could not be constrained, the disk around source B has to be vertically extended. This puffed-up structure can be obtained with both a protoplanetary disk model with an unexpectedly high scale-height and with the density solution from an infalling, rotating collapse. Combined constraints on our 3D model, from observed dust continuum and CO isotopologue emission between the sources, corroborate that source A should be at least six times more luminous than source B. We also demonstrate that the volume of high-temperature regions where complex organic molecules arise is sensitive to whether or not the total luminosity is in a single radiation source or distributed into two sources, affecting the interpretation of earlier chemical modeling efforts of the IRAS 16293-2422 hot corino which used a single-source approximation. Conclusions: Radiative transfer modeling of source A and B, with the density solution of an infalling, rotating collapse or a protoplanetary disk model, can match the constraints for the disk-like emission around source A and B from the observed dust continuum and CO isotopologue gas emission. If a protoplanetary disk model is used around source B, it has to have an unusually high scale-height in order to reach the dust continuum peak emission value, while fulfilling the other observational constraints. Our 3D model requires source A to be much more luminous than source B; LA 18 L⊙ and LB 3 L⊙.

  17. A (12)CO J = 2-1 map of the disk of Centaurus A: Evidence for large scale heating in the dust lane

    NASA Technical Reports Server (NTRS)

    Wild, W.; Cameron, M.; Eckart, A.; Genzel, R.; Rothermel, H.; Rydbeck, G.; Wiklind, T.

    1993-01-01

    Centaurus A (NGC 5128) is a nearby (3 Mpc) elliptical galaxy with a prominent dust lane, extensive radio lobes, and a compact radio continuum source, suggestive of nuclear activity. As a consequence of its peculiar morphology, this merger candidate has been the subject of much attention, particularly at optical wavelengths. Unfortunately the high and patchy extinction in the disk, aggravated by the warped structure of the dust lane, has severely hindered investigations into the properties of the interstellar medium, particularly with regard to the extent of star formation. Here we present a map of the (12)CO J = 2-1 line throughout the dust lane which, when combined with a previously measured (12)CO J = 1-0 map and data on molecular absorption lines observed against the compact non-thermal continuum source, offers insight into the excitation conditions of the molecular gas.

  18. A Submillimeter Survey of Dust Continuum Emission in Local Dust-Obscured Galaxies

    NASA Astrophysics Data System (ADS)

    Lee, Jong Chul; Hwang, Ho Seong; Lee, Gwang-Ho

    2015-08-01

    Dusty star-forming galaxies are responsible for the bulk of cosmic star formation at 1

  19. THE BINARY BLACK HOLE MODEL FOR MRK 231 BITES THE DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leighly, Karen M.; Terndrup, Donald M.; Gallagher, Sarah C.

    2016-09-20

    Mrk 231 is a nearby quasar with an unusually red near-UV-to-optical continuum, generally explained as heavy reddening by dust. Yan et al. proposed that Mrk 231 is a milliparsec black hole binary with little intrinsic reddening. We show that if the observed FUV continuum is intrinsic, as assumed by Yan et al., it fails by a factor of about 100 in powering the observed strength of the near-infrared emission lines and the thermal near and mid-infrared continuum. In contrast, the line and continuum strengths are typical for a reddened AGN spectral energy distribution (SED). We find that the He i*/Pmore » β ratio is sensitive to the SED for a one-zone model. If this sensitivity is maintained in general broadline region models, then this ratio may prove a useful diagnostic for heavily reddened quasars. Analysis of archival Hubble Space Telescope STIS and Faint Object Camera data revealed evidence that the far-UV continuum emission is resolved on size scales of ∼40 pc. The lack of broad absorption lines in the far-UV continuum might be explained if it were not coincident with the central engine. One possibility is that it is the central engine continuum reflected from the receding wind on the far side of the quasar.« less

  20. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less

  1. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    PubMed

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  2. WEAK AND COMPACT RADIO EMISSION IN EARLY HIGH-MASS STAR-FORMING REGIONS. I. VLA OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosero, V.; Hofner, P.; Claussen, M.

    2016-12-01

    We present a high-sensitivity radio continuum survey at 6 and 1.3 cm using the Karl G. Jansky Very Large Array toward a sample of 58 high-mass star-forming regions. Our sample was chosen from dust clumps within infrared dark clouds with and without IR sources (CMC–IRs and CMCs, respectively), and hot molecular cores (HMCs), with no previous, or relatively weak radio continuum detection at the 1 mJy level. Due to the improvement in the continuum sensitivity of the Very Large Array, this survey achieved map rms levels of ∼3–10  μ Jy beam{sup −1} at sub-arcsecond angular resolution. We extracted 70 continuum sourcesmore » associated with 1.2 mm dust clumps. Most sources are weak, compact, and prime candidates for high-mass protostars. Detection rates of radio sources associated with the millimeter dust clumps for CMCs, CMC–IRs, and HMCs are 6%, 53%, and 100%, respectively. This result is consistent with increasing high-mass star formation activity from CMCs to HMCs. The radio sources located within HMCs and CMC–IRs occur close to the dust clump centers, with a median offset from it of 12,000 au and 4000 au, respectively. We calculated 5–25 GHz spectral indices using power-law fits and obtained a median value of 0.5 (i.e., flux increasing with frequency), suggestive of thermal emission from ionized jets. In this paper we describe the sample, observations, and detections. The analysis and discussion will be presented in Paper II.« less

  3. PAHFIT: Properties of PAH Emission

    NASA Astrophysics Data System (ADS)

    Smith, J. D.; Draine, Bruce

    2012-10-01

    PAHFIT is an IDL tool for decomposing Spitzer IRS spectra of PAH emission sources, with a special emphasis on the careful recovery of ambiguous silicate absorption, and weak, blended dust emission features. PAHFIT is primarily designed for use with full 5-35 micron Spitzer low-resolution IRS spectra. PAHFIT is a flexible tool for fitting spectra, and you can add or disable features, compute combined flux bands, change fitting limits, etc., without changing the code. PAHFIT uses a simple, physically-motivated model, consisting of starlight, thermal dust continuum in a small number of fixed temperature bins, resolved dust features and feature blends, prominent emission lines (which themselves can be blended with dust features), as well as simple fully-mixed or screen dust extinction, dominated by the silicate absorption bands at 9.7 and 18 microns. Most model components are held fixed or are tightly constrained. PAHFIT uses Drude profiles to recover the full strength of dust emission features and blends, including the significant power in the wings of the broad emission profiles. This means the resulting feature strengths are larger (by factors of 2-4) than are recovered by methods which estimate the underlying continuum using line segments or spline curves fit through fiducial wavelength anchors.

  4. Spatially Resolved Imaging at 350 Micrometers of Cold Dust in Nearby Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Leeuw, Lerothodi L.; Davidson, Jacqueline; Dowell, C. Darren; Matthews, Henry E.

    2008-01-01

    Continuum observations at 350 micrometers of seven nearby elliptical galaxies for which CO gas disks have recently been resolved with interferometry mapping are presented. These SHARC II mapping results provide the first clearly resolved far-infrared (FIR)-to-submillimeter continuum emission from cold dust (with temperatures 31 K is approximately greater than T approximately greater than 23 K) of any elliptical galaxy at a distance greater than 40 Mpc. The measured FIR excess shows that the most likely and dominant heating source of this dust is not dilute stellar radiation or cooling flows, but rather star formation that could have been triggered by an accretion or merger event and fueled by dust-rich material that has settled in a dense region cospatial with the central CO gas disks. The dust is detected even in two cluster ellipticals that are deficient in H (sub I), showing that, unlike H (sub I), cold dust and CO in ellipticals can survive in the presence of hot X-ray gas, even in galaxy clusters. No dust cooler than 20 K, either distributed outside the CO disks or cospatial with and heated by the entire dilute stellar optical galaxy (or very extended H (sub I)), is currently evident.

  5. The Taurus Boundary of Stellar/Substellar (TBOSS) Survey. II. Disk Masses from ALMA Continuum Observations

    NASA Astrophysics Data System (ADS)

    Ward-Duong, K.; Patience, J.; Bulger, J.; van der Plas, G.; Ménard, F.; Pinte, C.; Jackson, A. P.; Bryden, G.; Turner, N. J.; Harvey, P.; Hales, A.; De Rosa, R. J.

    2018-02-01

    We report 885 μm ALMA continuum flux densities for 24 Taurus members spanning the stellar/substellar boundary with spectral types from M4 to M7.75. Of the 24 systems, 22 are detected at levels ranging from 1.0 to 55.7 mJy. The two nondetections are transition disks, though other transition disks in the sample are detected. Converting ALMA continuum measurements to masses using standard scaling laws and radiative transfer modeling yields dust mass estimates ranging from ∼0.3 to 20 M ⊕. The dust mass shows a declining trend with central object mass when combined with results from submillimeter surveys of more massive Taurus members. The substellar disks appear as part of a continuous sequence and not a distinct population. Compared to older Upper Sco members with similar masses across the substellar limit, the Taurus disks are brighter and more massive. Both Taurus and Upper Sco populations are consistent with an approximately linear relationship in M dust to M star, although derived power-law slopes depend strongly upon choices of stellar evolutionary model and dust temperature relation. The median disk around early-M stars in Taurus contains a comparable amount of mass in small solids as the average amount of heavy elements in Kepler planetary systems on short-period orbits around M-dwarf stars, with an order of magnitude spread in disk dust mass about the median value. Assuming a gas-to-dust ratio of 100:1, only a small number of low-mass stars and brown dwarfs have a total disk mass amenable to giant planet formation, consistent with the low frequency of giant planets orbiting M dwarfs.

  6. THE COUPLED PHYSICAL STRUCTURE OF GAS AND DUST IN THE IM Lup PROTOPLANETARY DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.

    The spatial distribution of gas and solids in protoplanetary disks determines the composition and formation efficiency of planetary systems. A number of disks show starkly different distributions for the gas and small grains compared to millimeter–centimeter-sized dust. We present new Atacama Large Millimeter/Submillimeter Array observations of the dust continuum, CO, {sup 13}CO, and C{sup 18}O in the IM Lup protoplanetary disk, one of the first systems where this dust–gas dichotomy was clearly seen. The {sup 12}CO is detected out to a radius of 970 au, while the millimeter continuum emission is truncated at just 313 au. Based upon these data,more » we have built a comprehensive physical and chemical model for the disk structure, which takes into account the complex, coupled nature of the gas and dust and the interplay between the local and external environment. We constrain the distributions of gas and dust, the gas temperatures, the CO abundances, the CO optical depths, and the incident external radiation field. We find that the reduction/removal of dust from the outer disk exposes this region to higher stellar and external radiation and decreases the rate of freeze-out, allowing CO to remain in the gas out to large radial distances. We estimate a gas-phase CO abundance of 5% of the interstellar medium value and a low external radiation field ( G {sub 0} ≲ 4). The latter is consistent with that expected from the local stellar population. We additionally find tentative evidence for ring-like continuum substructure, suggestions of isotope-selective photodissociation, and a diffuse gas halo.« less

  7. Gas Inside the 97 AU Cavity around the Transition Disk Sz 91

    NASA Astrophysics Data System (ADS)

    Canovas, H.; Schreiber, M. R.; Cáceres, C.; Ménard, F.; Pinte, C.; Mathews, G. S.; Cieza, L.; Casassus, S.; Hales, A.; Williams, J. P.; Román, P.; Hardy, A.

    2015-05-01

    We present ALMA (Cycle 0) band 6 and band 3 observations of the transition disk Sz 91. The disk inclination and position angle are determined to be i = 49.°5 ± 3.°5°and PA = 18.°2 ± 3.°5 and the dusty and gaseous disk are detected up to ˜220 and ˜400 AU from the star, respectively. Most importantly, our continuum observations indicate that the cavity size in the millimeter-sized dust distribution must be ˜97 AU in radius, the largest cavity observed around a T Tauri star. Our data clearly confirm the presence of 12CO (2-1) well inside the dust cavity. Based on these observational constraints we developed a disk model that simultaneously accounts for the 12CO and continuum observations (i.e., gaseous and dusty disk). According to our model, most of the millimeter emission comes from a ring located between 97 and 140 AU. We also find that the dust cavity is divided into an innermost region largely depleted of dust particles ranging from the dust sublimation radius up to 85 AU, and a second, moderately dust-depleted region, extending from 85 to 97 AU. The extremely large size of the dust cavity, the presence of gas and small dust particles within the cavity, and the accretion rate of Sz 91 are consistent with the formation of multiple (giant) planets.

  8. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuente, Asunción; Bachiller, Rafael; Baruteau, Clément

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthalmore » variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.« less

  9. Cold Dust and its Heating Sources in M 33

    NASA Astrophysics Data System (ADS)

    Komugi, Shinya; Tosaki, Tomoka; Kohno, Kotaro; Tsukagoshi, Takashi; Tamura, Yoichi; Miura, Rie; Onodera, Sachiko; Kuno, Nario; Kawabe, Ryohei; Nakanishi, Koichiro; Sawada, Tsuyoshi; Ezawa, Hajime; Wilson, Grant W.; Yun, Min S.; Scott, Kimberly S.; Hughes, David H.; Aretxaga, Itziar; Perera, Thushara A.; Austermann, Jason E.; Tanaka, Kunihiko; Muraoka, Kazuyuki; Egusa, Fumi

    2011-12-01

    We have mapped the nearby face-on spiral galaxy M 33 in the 1.1 mm dust continuum using AzTEC on Atacama Submillimeter Telescope Experiment (ASTE). The preliminary results are presented here. The observed dust has a characteristic temperature of ~ 21 K in the central kpc, radially declining down to ~ 13 K at the edge of the star forming disk. We compare the dust temperatures with KS band flux and star formation tracers. Our results imply that cold dust heating may be driven by long-lived stars even nearby star forming regions.

  10. Reddening and extinction towards H II regions

    NASA Technical Reports Server (NTRS)

    Caplan, James; Deharveng, Lise

    1989-01-01

    The light emitted by the gas in H II regions is attenuated by dust. This extinction can be measured by comparing H alpha, H beta, and radio continuum fluxes, since the intrinsic ratios of the Balmer line and thermal radio continuum emissivities are nearly constant for reasonable conditions in H II regions. In the case of giant extragalactic H II regions, the extinction was found to be considerably greater than expected. The dust between the Earth and the emitting gas may have an optical thickness which varies. The dust may be close enough to the source that scattered light contributes to the flux, or the dust may be actually mixed with the emitting gas. It is difficult to decide which configuration is correct. A rediscussion of this question in light of recent observations, with the Fabry-Perot spectrophotometers, of the large Galactic H II region is presented. The color excesses are compared for stars embedded in these H II regions with those derived (assuming the standard law) from the nebular extinction and reddening.

  11. DUST CONTINUUM EMISSION AS A TRACER OF GAS MASS IN GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groves, Brent A.; Schinnerer, Eva; Walter, Fabian

    2015-01-20

    We use a sample of 36 galaxies from the KINGFISH (Herschel IR), HERACLES (IRAM CO), and THINGS (Very Large Array H I) surveys to study empirical relations between Herschel infrared (IR) luminosities and the total mass of the interstellar gas (H{sub 2} + H I). Such a comparison provides a simple empirical relationship without introducing the uncertainty of dust model fitting. We find tight correlations, and provide fits to these relations, between Herschel luminosities and the total gas mass integrated over entire galaxies, with the tightest, almost linear, correlation found for the longest wavelength data (SPIRE 500). However, we findmore » that accounting for the gas-phase metallicity (affecting the dust to gas ratio) is crucial when applying these relations to low-mass, and presumably high-redshift, galaxies. The molecular (H{sub 2}) gas mass is found to be better correlated with the peak of the IR emission (e.g., PACS160), driven mostly by the correlation of stellar mass and mean dust temperature. When examining these relations as a function of galactocentric radius, we find the same correlations, albeit with a larger scatter, up to a radius of r ∼ 0.7 r {sub 25} (containing most of a galaxy's baryonic mass). However, beyond that radius, the same correlations no longer hold, with increasing gas (predominantly H I) mass relative to the infrared emission. The tight relations found for the bulk of the galaxy's baryonic content suggest that total gas masses of disk-like (non-merging/ULIRG) galaxies can be inferred from far-infrared continuum measurements in situations where only the latter are available, e.g., in ALMA continuum observations of high-redshift galaxies.« less

  12. Evolution of Cold Circumstellar Dust around Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Carpenter, John M.; Wolf, Sebastian; Schreyer, Katharina; Launhardt, Ralf; Henning, Thomas

    2005-02-01

    We present submillimeter (Caltech Submillimeter Observatory 350 μm) and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, Owens Valley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-type stars from the Formation and Evolution of Planetary Systems Spitzer Legacy program that have masses between ~0.5 and 2.0 Msolar and ages from ~3 Myr to 3 Gyr. Continuum emission was detected toward four stars with a signal-to-noise ratio>=3: the classical T Tauri stars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and the debris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RX J1852.3-3700 are located in projection near the R CrA molecular cloud, with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66 is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup of the Scorpius-Centaurus OB association (Mamajek et al.). The continuum emission toward these three sources is unresolved at the 24" SEST resolution and likely originates from circumstellar accretion disks, each with estimated dust masses of ~5×10-5 Msolar. Analysis of the visibility data toward HD 107146 (age~80-200 Myr) indicates that the 3 mm continuum emission is centered on the star within the astrometric uncertainties and resolved with a Gaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or 185AU×120 AU. The results from our continuum survey are combined with published observations to quantify the evolution of dust mass with time by comparing the mass distributions for samples with different stellar ages. The frequency distribution of circumstellar dust masses around solar-type stars in the Taurus molecular cloud (age~2 Myr) is distinguished from that around 3-10 Myr and 10-30 Myr old stars at a significance level of ~1.5 and ~3 σ, respectively. These results suggest a decrease in the mass of dust contained in small dust grains and/or changes in the grain properties by stellar ages of 10-30 Myr, consistent with previous conclusions. Further observations are needed to determine if the evolution in the amount of cold dust occurs on even shorter timescales.

  13. A comparative study of the continuum and emission characteristics of comet dust. 1: Are the silicates in Comet Halley and Kohoutek amorphous or crystalline

    NASA Technical Reports Server (NTRS)

    Nansheng, Zhao; Greenberg, J. Mayo; Hage, J. I.

    1989-01-01

    A continuum emission was subtracted from the 10 micron emission observed towards comets Halley and Kohoutek. The 10 micron excess emissions were compared with BN absorption and laboratory amorphous silicates. The results show that cometary silicates are predominantly amorphous which is consistent with the interstellar dust model of comets. It is concluded that cometary silicates are predominantly similar to interstellar silicates. For a periodic comet like Comet Halley, it is to be expected that some of the silicate may have been heated enough to convert to crystalline form. But apparently, this is only a small fraction of the total. A comparison of Comet Halley silicates with a combination of the crystalline forms observed in interplanetary dust particles (IPDs) seemed reasonable at first sight (Walker 1988, Brownlee 1988). But, if true, it would imply that the total silicate mass in Comet Halley dust is lower than that given by mass spectrometry data of Kissel and Krueger (1987). They estimated m sub org/m sub sil = 0.5 while using crystalline silicate to produce the 10 micron emission would give m sub org/m sub sil = 5 (Greenberg et al. 1988). This is a factor of 10 too high.

  14. Comet 103P/Hartley 2 at perihelion: gas and dust activity

    NASA Astrophysics Data System (ADS)

    Lara, L. M.; Lin, Z.-Y.; Meech, K.

    2011-08-01

    Context. The comet 103P/Hartley 2, target of the EPOXI mission (NASA), was supposed to be observed for 3 days around its perihelion, from October 27 to 29, 2010, but photometric data were obtained only on October 27 and 29, 2010. On both dates, the comet visibility was not optimal due to its proximity to the Moon, as projected on the plane of the sky, whereas on October 28, the comet could not be observed at all. Aims: The goal of the campaign was to give ground support to the EPOXI mission by establishing a baseline of activity at perihelion to be compared with in situ activity observed by the space mission about 7 days later on Nov. 4, 2010. We aimed to assess gas and dust production rates, to study the gas and dust coma morphology, to investigate the behaviour of the refractory component by analysing the dust colour variations with date and with projected cometocentric distance, ρ, and to determine the slope of the surface brightness profiles, B, as a function of ρ. Methods: Long-slit spectra and optical broad- and narrowband images were acquired with the instrument ACAM mounted on the William Herschel Telescope (WHT) at La Palma Observatory. We investigated the evolution of the dust coma morphology from the images acquired with specific continuum cometary filters (in the blue and red wavelength region) with image-enhancing techniques. We studied (1) the gas and dust production rates; (2) the dust radial brightness profiles; (3) the profiles of the CN, C2, C3 and NH2 column densities, and (4) the CN and C3 coma morphologies. The dust and gas profiles were azimuthally averaged, as well as measured in both the E-W direction (~Sun-antisolar direction) and in a direction defined by the slit orientation at PA 70 to 250 degrees. Results: The morphological analysis of the dust coma reveals only one structure. Aside from the dust tail in the west direction, a bright jet is detected in images acquired on October 27 at 03:00-04:00 UT. This jet turns on and off and it is not clearly detected at any time on the images obtained during October 29. This structure is enhanced by making use of the radial renormalization and the Larson-Sekanina method. It is also confirmed by the distortion of the isophotes at the same position angle (PA). The Afρ parameter, a proxy to the dust production rate, and the gas (CN, C3, C2, and NH2) production rate, Qi, have been measured at perihelion, rh ≈ 1.058 AU. The quotient QC2/QCN ~ 1.3 places 103P/Hartley 2 as a typical comet in terms of long-chain hydrocarbon abundance. The gas-to-dust mass ratio is ~3-6, indicating that 103P/Hartley 2 is a relatively gas-rich comet. At perihelion, Afρ, as measured in a circular aperture of ~4700 km ranges from ~60 cm in the blue to ~110 cm in the red, which indicates an overall change in the optical properties of the dust grains. On the other hand, the Afρ is rather stable in the innermost coma when it is computed from the spectroscopic measurements within several continuum spectral ranges from 482-685 nm. Both 2D dust colour maps and profiles in the directions imposed by the slit indicate that there are variations with ρ with a trend towards bluer dust colour with increasing ρ. This could indicate sublimation of ices as the cameras on board the EPOXI mission have shown. The average dust reddening is ~24%/100 nm. The azimuthally averaged surface brightness profiles of the continuum from the broad band images can be well fitted with m ~ 1 in the tail direction, whereas in the opposite direction the dust profiles are much flatter at ρ ≤ 10 000 km. The azimuthally averaged profiles of the comet images acquired with the blue and red continuum cometary filters show a nominal behaviour of log B ~ - mlog ρ with m ~ 1. Based on observations made with the William Herschel Telescope (WHT) operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  15. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    NASA Astrophysics Data System (ADS)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  16. A multi-wavelength investigation of Seyfert 1.8 and 1.9 galaxies

    NASA Astrophysics Data System (ADS)

    Trippe, Margaret L.

    We focus on determining the underlying physical cause of a Seyfert galaxy's appearance as type a 1.8 or 1.9. Are these "intermediate" Seyfert types typical Seyfert 1 nuclei reddened by central dusty tori or by nuclear dust lanes/spirals in the narrow-line region? Or, are they similar to NGC 2992, objects that have intrinsically weak continua and weak broad emission lines? Our study compares measurements of the reddenings of the narrow and broad-line regions with each other and with the X-ray column derived from XMM Newton 0.5--10 keV spectra to determine the presence and location of dust in the line of sight for a sample of 35 Seyfert 1.8s and 1.9s. From this, we find that Seyfert 1.9s are an almost equal mix of low-flux objects with unreddened broad line regions, and objects with broad line regions reddened by an internal dust source, either the torus or dust structures on the same size scale as the narrow line region. The 1.9s that recieved this designation due to a low continuum flux state showed variable type classifications. All three of the Seyfert 1.8s in our study are probably in low continuum states. Many objects have been misclassified as Seyfert 1.8/1.9s in the past, probably due to improper [N II]/Halpha deconvolution leading to a false detection of weak broad Halpha. INDEX WORDS: Active galaxies, Seyfert galaxies, Optical spectroscopy, X-ray spectroscopy, Astronomical dust

  17. Mid-Infrared Interferometry on Spectral Lines. II. Continuum (Dust) Emission Around IRC +10216 and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Lipman, E. A.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    The University of California Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC +10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time variable, and these new data are used to probe the evolution of the dust shells on a decade timescale, complementing contemporaneous studies at other wavelengths. Self-consistent, spherically symmetric models at maximum and minimum light both show the inner radius of the IRC +10216 dust shell to be much larger (150 mas) than expected from the dust-condensation temperature, implying that dust production has slowed or stopped in recent years. Apparently, dust does not form every pulsational cycle (638 days), and these mid-infrared results are consistent with recent near-infrared imaging, which indicates little or no new dust production in the last 3 yr. Spherically symmetric models failed to fit recent VY CMa data, implying that emission from the inner dust shell is highly asymmetric and/or time variable.

  18. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cécile; Duprat, Jean; Bardin, Noémie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Remusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin

    2016-10-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. Analyses of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko by the dust analyzers on Rosetta orbiter (COSIMA, GIADA, MIDAS) suggest a relationship to interplanetary dust/micrometeorites. A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system.

  19. ALMA continuum observations of the protoplanetary disk AS 209. Evidence of multiple gaps opened by a single planet

    NASA Astrophysics Data System (ADS)

    Fedele, D.; Tazzari, M.; Booth, R.; Testi, L.; Clarke, C. J.; Pascucci, I.; Kospal, A.; Semenov, D.; Bruderer, S.; Henning, Th.; Teague, R.

    2018-02-01

    This paper presents new high angular resolution ALMA 1.3 mm dust continuum observations of the protoplanetary system AS 209 in the Ophiuchus star forming region. The dust continuum emission is characterized by a main central core and two prominent rings at r = 75 au and r = 130 au intervaled by two gaps at r = 62 au and r = 103 au. The two gaps have different widths and depths, with the inner one being narrower and shallower. We determined the surface density of the millimeter dust grains using the 3D radiative transfer disk code DALI. According to our fiducial model the inner gap is partially filled with millimeter grains while the outer gap is largely devoid of dust. The inferred surface density is compared to 3D hydrodynamical simulations (FARGO-3D) of planet-disk interaction. The outer dust gap is consistent with the presence of a giant planet (Mplanet 0.7 MSaturn); the planet is responsible for the gap opening and for the pile-up of dust at the outer edge of the planet orbit. The simulations also show that the same planet could be the origin of the inner gap at r = 62 au. The relative position of the two dust gaps is close to the 2:1 resonance and we have investigated the possibility of a second planet inside the inner gap. The resulting surface density (including location, width and depth of the two dust gaps) are in agreement with the observations. The properties of the inner gap pose a strong constraint to the mass of the inner planet (Mplanet < 0.1 MJ). In both scenarios (single or pair of planets), the hydrodynamical simulations suggest a very low disk viscosity (α < 10‑4). Given the young age of the system (0.5-1 Myr), this result implies that the formation of giant planets occurs on a timescale of ≲1 Myr. The reduced image (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A24

  20. Herschel - PACS Survey Of Protoplanetary Disks In Taurus - Auriga Observations Of [O I] And [C Ii], And Far-Infrared Continuum

    NASA Technical Reports Server (NTRS)

    Howard, Christian; Sandell, Goeran; Vacca, William D.; Duchene, Gaspard; Matthews, Geoffrey; Augereau, Jean-Charles; Barbado, David; Dent, William R. F.; Eiroa, Carlos; Grady, Carol; hide

    2013-01-01

    The Herschel Space Observatory was used to observe approx. 120 pre-main-sequence stars in Taurus as part of the GASPS Open Time Key project. Photodetector Array Camera and Spectrometer was used to measure the continuum as well as several gas tracers such as [O I] 63 micron, [O I] 145 micron, [C II] 158, micron OH, H2O, and CO. The strongest line seen is [O I] at 63 micron. We find a clear correlation between the strength of the [O I] 63 micron line and the 63 micron continuum for disk sources. In outflow sources, the line emission can be up to 20 times stronger than in disk sources, suggesting that the line emission is dominated by the outflow. The tight correlation seen for disk sources suggests that the emission arises from the inner disk (<50 AU) and lower surface layers of the disk where the gas and dust are coupled. The [O I] 63 micron is fainter in transitional stars than in normal Class II disks. Simple spectral energy distribution models indicate that the dust responsible for the continuum emission is colder in these disks, leading to weaker line emission. [C II] 158 micron emission is only detected in strong outflow sources. The observed line ratios of [O I] 63 micron to [O I] 145 micron are in the regime where we are insensitive to the gas-to-dust ratio, neither can we discriminate between shock or photodissociation region emission. We detect no Class III object in [O I] 63 micron and only three in continuum, at least one of which is a candidate debris disk.

  1. The infrared spectrum of M8 E - Evidence for circumstellar CO

    NASA Technical Reports Server (NTRS)

    Larson, H. P.; Fink, U.; Hofmann, R.

    1986-01-01

    High-resolution spectroscopic observations of the compact infrared source M8 E are reported in the region from 3 to 5 microns. Very prominent CO absorption lines are observed in the v = 1-0 band at 4.7 microns. The velocity width and rotational temperature suggest that this CO absorption occurs in a highly excited region. The high background continuum flux level and the prominent appearance of the CO features suggest that the CO line-forming region must be in front of the dust emission region. A blister model for M8 E, which places most of the dust continuum emission behind the source, satisfies this requirement. According to this picture, the observed circumstellar CO spectrum shows a high rotational temperature and a large velocity dispersion because of the combined effects of the strong stellar wind and possible shock heating near the dust zone as the wind encounters the ambient molecular cloud.

  2. Photopolarimetric Observations of CI(1657 Angstroms) and Dust Continuum Emissions from Comet Hale-Bopp with the WISP Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Harris, W. M.; Nordsieck, K. H.; Scherb, F.; Mierkiewicz, E. J.

    1997-07-01

    We report on photopolarimetric observations of resonant emission from Carbon [CI(1657 Angstroms)] and scattered solar continuum from dust at 2800 Angstroms using the Wisconsin Imaging Survey Polarimeter (WISP). The WISP is a wide field (1.5deg x 4.8deg ) sounding rocket telescope originally designed for polarimetric observations of diffuse galactic light at a 1% photometric level. We will describe the initial results of our launch on 8 April, 1997 from the White Sands Missile range, including a discussion of the images obtained, and the results from supporting visible/near-infrared measurements of gas and dust from the Burrell Schmidt telescope, and spectroscopic observations of the CI(9850 Angstroms) metastable line from the McMath Pierce Solar Telescope. This research was supported by NASA grant NAG5-5091 and NSF grant AST-9615625.

  3. Nascent starbursts: a missing link in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Roussel, Helene; Beck, Rainer; Condon, Jim; Helou, George; Smith, John-David

    2005-06-01

    We have identified a rare category of galaxies characterized by an extreme deficiency in synchro- tron radiation, relative to dust emission, and very high dust temperatures. We studied in detail the most extreme such object, and concluded in favor of a starburst just breaking out, less than one megayear old, in a galaxy having undergone no major star formation episode in the last 100 Myr. Such systems offer a perfect setting to study the initial conditions and early dynamics of starbursts and understand better the regulation of the infrared-radio continuum correlation in galaxies. For the prototypical nascent starburst, the mid-infrared spectrum is quite peculiar, suggesting tran- sient dust species and high optical depth; tracers of dust and molecular gas are the only indicators of unusual activity, and the active regions are likely very compact and dust-bounded, suppressing ionization. Only Spitzer data can provide the needed physical diagnostics for such regions. A sample of 25 nascent starbursts was drawn from the cross-correlation of the IRAS Faint Source Catalog and the NVSS VLA radio survey, and carefully selected based on our multi-wavelength VLA maps to span a range of infrared to radio ratios and luminosities. This sample allows a first step beyond studying prototypes toward a statistical analysis addressing systematic physical pro- perties, classification and search for starburst development sequences. We propose imaging and spectroscopic observations from 3 to 160 microns to characterize the state of the interstellar medium and the gas and dust excitation origin. Our aim is to learn from these unique systems how a star formation burst may develop in its very earliest phases, how it affects the fueling material and the host galaxy. Acquired observations of the radio continuum, cold molecular gas and tracers of shocks and HII regions will help us interpret the rich Spitzer data set and extract a coherent picture of the interstellar medium in our targets.

  4. Cosmic Evolution of Accretion Power and Fusion Power: AGN and Starbursts at High Redshifts

    NASA Astrophysics Data System (ADS)

    Arnold Malkan, Matthew

    2009-05-01

    Extragalactic astronomers have been working for decades on obtaining robust measures of the luminosities galaxies produce from stars, and from active galactic nuclei. Our ultimate goal is deriving the cosmic evolution of all radiation produced by fusion and by black hole accretion. The combined effects of dust reddening and redshift make it impossible to achieve this with optical observations alone. Fortunately, infrared thermal continuum and forbidden line emission--from warm dust grains and ionized gas, respectively--can now be measured with excellent sensitivity. However, when measuring entire galaxies, these dust and gas emissions are powered by both active galactic nuclei and starbursts, which may be hard to separate spatially. We must use the fact that the patterns of IR energy output from AGN and SBs differ, with AGN making more ionized gas and hotter dust grains. Low-resolution spectroscopy, or even narrow-band filters can sort out the line emission from both processes when they are mixed in the same galaxy. The hope is that these spectroscopic determinations of star formation rate, and mass accretion rate in relatively small samples of bright galaxies will allow a calibration of broadband continuum measures. The dust continuum emission will then be measured in enormous samples of galaxies spanning their full range of masses, metallicities, environments and redshifts. Along the way, we should learn the astrophysical basis of black hole/galaxy "co-evolution." I will summarize some of the first specific infrared steps of this ambitious agenda, taken with IRAS and ISO to 2MASS, Akari and Spitzer and other telescopes. Time permitting, some of the exciting upcoming observational prospects will be advertised.

  5. ALMA IMAGING OF THE CO (6-5) LINE EMISSION IN NGC 7130

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yinghe; Lu, Nanyao; Xu, C. Kevin

    2016-04-01

    In this paper, we report our high-resolution (0.″20 × 0.″14 or ∼70 × 49 pc) observations of the CO(6-5) line emission, which probes warm and dense molecular gas, and the 434 μm dust continuum in the nuclear region of NGC 7130, obtained with the Atacama Large Millimeter Array (ALMA). The CO line and dust continuum fluxes detected in our ALMA observations are 1230 ± 74 Jy km s{sup −1} and 814 ± 52 mJy, respectively, which account for 100% and 51% of their total fluxes. We find that the CO(6-5) and dust emissions are generally spatially correlated, but their brightest peaks show an offset of ∼70 pc, suggestingmore » that the gas and dust emissions may start decoupling at this physical scale. The brightest peak of the CO(6-5) emission does not spatially correspond to the radio continuum peak, which is likely dominated by an active galactic nucleus (AGN). This, together with our additional quantitative analysis, suggests that the heating contribution of the AGN to the CO(6-5) emission in NGC 7130 is negligible. The CO(6-5) and the extinction-corrected Pa-α maps display striking differences, suggestive of either a breakdown of the correlation between warm dense gas and star formation at linear scales of <100 pc or a large uncertainty in our extinction correction to the observed Pa-α image. Over a larger scale of ∼2.1 kpc, the double-lobed structure found in the CO(6-5) emission agrees well with the dust lanes in the optical/near-infrared images.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieman-Sifry, Jesse; Hughes, A. Meredith; Flaherty, Kevin M.

    We present a CO(2-1) and 1240 μ m continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ∼10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3 σ) CO detections. Twenty disks were detected in the continuum at the >3 σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independentmore » analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.« less

  7. Exploring a Massive Starburst in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Marrone, Daniel; Aravena, M.; Chapman, S.; De Breuck, C.; Gonzalez, A.; Hezavehe, S.; Litke, K.; Ma, J.; Malkan, M.; Spilker, J.; Stalder, B.; Stark, D.; Strandet, M.; Tang, M.; Vieira, J.; Weiss, A.; Welikala, N.

    2016-08-01

    We request deep multi-band imaging of a unique dusty galaxy in the Epoch of Reionization (EoR), selected via its millimeter-wavelength dust emission in the 2500-square-degree South Pole Telescope survey. Spectroscopically confirmed to lie at z=6.900, this galaxy has a large dust mass and is likely one of the most rapidly star-forming objects in the EoR. Using Gemini-S, we have identified z-band emission from this object that could be UV continuum emission at z=6.9 or from a foreground lens. Interpretation of this object, and a complete understanding of its meaning for the census of star formation in the EoR, requires that we establish the presence or absence of gravitational lensing. The dust mass observed in this source is also unexpectedly large for its era, and measurements of the assembled stellar population, through the UV-continuum slope and restframe optical color, will help characterize the stellar mass and dust properties in this very early galaxy, the most spectacular galaxy yet discovered by the SPT.

  8. Starburst to Quiescent from HST/ALMA: Stars and Dust Unveil Minor Mergers in Submillimeter Galaxies at z ∼ 4.5

    NASA Astrophysics Data System (ADS)

    Gómez-Guijarro, C.; Toft, S.; Karim, A.; Magnelli, B.; Magdis, G. E.; Jiménez-Andrade, E. F.; Capak, P. L.; Fraternali, F.; Fujimoto, S.; Riechers, D. A.; Schinnerer, E.; Smolčić, V.; Aravena, M.; Bertoldi, F.; Cortzen, I.; Hasinger, G.; Hu, E. M.; Jones, G. C.; Koekemoer, A. M.; Lee, N.; McCracken, H. J.; Michałowski, M. J.; Navarrete, F.; Pović, M.; Puglisi, A.; Romano-Díaz, E.; Sheth, K.; Silverman, J. D.; Staguhn, J.; Steinhardt, C. L.; Stockmann, M.; Tanaka, M.; Valentino, F.; van Kampen, E.; Zirm, A.

    2018-04-01

    Dust-enshrouded, starbursting, submillimeter galaxies (SMGs) at z ≥ 3 have been proposed as progenitors of z ≥ 2 compact quiescent galaxies (cQGs). To test this connection, we present a detailed spatially resolved study of the stars, dust, and stellar mass in a sample of six submillimeter-bright starburst galaxies at z ∼ 4.5. The stellar UV emission probed by HST is extended and irregular and shows evidence of multiple components. Informed by HST, we deblend Spitzer/IRAC data at rest-frame optical, finding that the systems are undergoing minor mergers with a typical stellar mass ratio of 1:6.5. The FIR dust continuum emission traced by ALMA locates the bulk of star formation in extremely compact regions (median r e = 0.70 ± 0.29 kpc), and it is in all cases associated with the most massive component of the mergers (median {log}({M}* /{M}ȯ )=10.49+/- 0.32). We compare spatially resolved UV slope (β) maps with the FIR dust continuum to study the infrared excess (IRX = L IR/L UV)–β relation. The SMGs display systematically higher IRX values than expected from the nominal trend, demonstrating that the FIR and UV emissions are spatially disconnected. Finally, we show that the SMGs fall on the mass–size plane at smaller stellar masses and sizes than the cQGs at z = 2. Taking into account the expected evolution in stellar mass and size between z = 4.5 and z = 2 due to the ongoing starburst and mergers with minor companions, this is in agreement with a direct evolutionary connection between the two populations.

  9. Spectroscopic limits to an extragalactic far-ultraviolet background.

    PubMed

    Martin, C; Hurwitz, M; Bowyer, S

    1991-10-01

    We use a spectrum of the lowest intensity diffuse far-ultraviolet background obtained from a series of observations in a number of celestial view directions to constrain the properties of the extragalactic FUV background. The mean continuum level, IEG = 280 +/- 35 photons cm-2 s-1 angstrom-1 sr-1, was obtained in a direction with very low H I column density, and this represents a firm upper limit to any extragalactic background in the 1400-1900 angstroms band. Previous work has demonstrated that the far-ultraviolet background includes (depending on a view direction) contributions from dust-scattered Galactic light, high-ionization emission lines, two-photon emission from H II, H2 fluorescence, and the integrated light of spiral galaxies. We find no evidence in the spectrum of line or continuum features that would signify additional extragalactic components. Motivated by the observation of steep BJ and U number count distributions, we have made a detailed comparison of galaxy evolution models to optical and UV data. We find that the observations are difficult to reconcile with a dominant contribution from unclustered, starburst galaxies at low redshifts. Our measurement rules out large ionizing fluxes at z = 0, but cannot strongly constrain the QSO background light, which is expected to be 0.5%-4% of IEG. We present improved limits on radiative lifetimes of massive neutrinos. We demonstrated with a simple model that IGM radiation is unlikely to make a significant contribution to IEG. Since dust scattering could produce a significant part of the continuum in this lowest intensity spectrum, we carried out a series of tests to evaluate this possibility. We find that the spectrum of a nearby target with higher NH I, when corrected for H2 fluorescence, is very similar to the spectrum obtained in the low H I view direction. This is evidence that the majority of the continuum observed at low NH I is also dust reflection, indicating either the existence of a hitherto unidentified dust component, or of a large enhancement in dust scattering efficiency in low-density gas. We also review the effects of an additional dust component on the far-infrared background and on extragalactic FUV observations. We conclude that dust reflection, combined with modest contributions from H II two-photon emission and from the integrated light of late-type galaxies, may account for virtually all of the FUV background in low H I column density directions.

  10. Karl G. Jansky very large array observations of cold dust and molecular gas in starbursting quasar host galaxies at z ∼ 4.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagg, J.; Carilli, C. L.; Lentati, L.

    2014-03-10

    We present Karl G. Jansky Very Large Array (VLA) observations of 44 GHz continuum and CO J = 2-1 line emission in BRI 1202–0725 at z = 4.7 (a starburst galaxy and quasar pair) and BRI 1335–0417 at z = 4.4 (also hosting a quasar). With the full 8 GHz bandwidth capabilities of the upgraded VLA, we study the (rest-frame) 250 GHz thermal dust continuum emission for the first time along with the cold molecular gas traced by the low-J CO line emission. The measured CO J = 2-1 line luminosities of BRI 1202–0725 are L{sub CO}{sup ′}=(8.7±0.8)×10{sup 10} Kmore » km s{sup –1} pc{sup 2} and L{sub CO}{sup ′}=(6.0 ± 0.5)×10{sup 10} K km s{sup –1} pc{sup 2} for the submillimeter galaxy (SMG) and quasar, respectively, which are equal to previous measurements of the CO J = 5-4 line luminosities implying thermalized line emission, and we estimate a combined cold molecular gas mass of ∼9×10{sup 10} M {sub ☉}. In BRI 1335–0417 we measure L{sub CO}{sup ′}=(7.3±0.6)×10{sup 10} K km s{sup –1} pc{sup 2}. We detect continuum emission in the SMG BRI 1202–0725 North (S {sub 44} {sub GHz} = 51 ± 6 μJy), while the quasar is detected with S {sub 44} {sub GHz} = 24 ± 6 μJy and in BRI 1335–0417 we measure S {sub 44} {sub GHz} = 40 ± 7 μJy. Combining our continuum observations with previous data at (rest-frame) far-infrared and centimeter wavelengths, we fit three-component models in order to estimate the star formation rates. This spectral energy distribution fitting suggests that the dominant contribution to the observed 44 GHz continuum is thermal dust emission, while either thermal free-free or synchrotron emission contributes less than 30%.« less

  11. The Dust and [C II] Morphologies of Redshift ∼4.5 Sub-millimeter Galaxies at ∼200 pc Resolution: The Absence of Large Clumps in the Interstellar Medium at High-redshift

    NASA Astrophysics Data System (ADS)

    Gullberg, B.; Swinbank, A. M.; Smail, I.; Biggs, A. D.; Bertoldi, F.; De Breuck, C.; Chapman, S. C.; Chen, C.-C.; Cooke, E. A.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Dunlop, J. S.; Edge, A. C.; Farrah, D.; Geach, J. E.; Greve, T. R.; Hodge, J.; Ibar, E.; Ivison, R. J.; Karim, A.; Schinnerer, E.; Scott, D.; Simpson, J. M.; Stach, S. M.; Thomson, A. P.; van der Werf, P.; Walter, F.; Wardlow, J. L.; Weiss, A.

    2018-05-01

    We present deep, high-resolution (0.″03, 200 pc) ALMA Band 7 observations covering the dust continuum and [C II] λ157.7 μm emission in four z ∼ 4.4–4.8 sub-millimeter galaxies (SMGs) selected from the ALESS and AS2UDS surveys. The data show that the rest-frame 160 μm (observed 345 GHz) dust emission is consistent with smooth morphologies on kpc scales for three of the sources. One source, UDS 47.0, displays apparent substructure, but this is also consistent with a smooth morphology—as indicated by simulations showing that smooth exponential disks can appear clumpy when observed at the high angular resolution (0.″03) and depth of these observations ({σ }345{GHz}∼ 27{--}47 μJy beam‑1). The four SMGs are bright [C II] emitters. We extract [C II] spectra from the high-resolution data, and recover ∼20%–100% of the [C II] flux and ∼40%–80% of the dust continuum emission, compared to the previous lower-resolution observations. When tapered to 0.″2 resolution, our maps recover ∼80%–100% of the continuum emission, indicating that ∼60% of the emission is resolved out on ∼200 pc scales. We find that the [C II] emission in high-redshift galaxies is more spatially extended than the rest-frame 160 μm dust continuum by a factor of 1.6 ± 0.4. By considering the {L}[{{C}{{II}}]}/{L}FIR} ratio as a function of the star formation rate surface density ({{{Σ }}}SFR}), we revisit the [C II] deficit and suggest that the decline in the {L}[{{C}{{II}}]}/{L}FIR} ratio as a function of {{{Σ }}}SFR} is consistent with local processes. We also explore the physical drivers that may be responsible for these trends and can give rise to the properties found in the densest regions of SMGs.

  12. The Envelope Kinematics and a Possible Disk around the Class 0 Protostar within BHR7

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Bos, Steven P.; Dunham, Michael M.; Bourke, Tyler L.; van der Marel, Nienke

    2018-04-01

    We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. We find that this protostar is a Class 0 system, the youngest class of protostars, measuring its bolometric temperature to be 50.5 K, with a bolometric luminosity of 9.3 L ⊙. The near-infrared and Spitzer imaging show a prominent dark lane from dust extinction separating clear bipolar outflow cavities. Observations of 13CO (J=2\\to 1), C18O (J=2\\to 1), and other molecular lines with the Submillimeter Array (SMA) exhibit a clear rotation signature on scales <1300 au. The rotation can be traced to an inner radius of ∼170 au and the rotation curve is consistent with an R ‑1 profile, implying that angular momentum is being conserved. Observations of the 1.3 mm dust continuum with the SMA reveal a resolved continuum source, extended in the direction of the dark lane, orthogonal to the outflow. The deconvolved size of the continuum indicates a radius of ∼100 au for the continuum source at the assumed distance of 400 pc. The visibility amplitude profile of the continuum emission cannot be reproduced by an envelope alone and needs a compact component. Thus, we posit that the resolved continuum source could be tracing a Keplerian disk in this very young system. If we assume that the continuum radius traces a Keplerian disk (R ∼ 120 au) the observed rotation profile is consistent with a protostar mass of 1.0 M ⊙.

  13. Spiral Structure and Differential Dust Size Distribution in the LkH(alpha) 330 Disk

    NASA Technical Reports Server (NTRS)

    Akiyama, Eiji; Hashimoto, Jun; Liu, Hauyu Baobabu; Li, Jennifer I-hsiu; Bonnefoy, Michael; Dong, Ruobing; Hasegawa, Yasuhiro; Henning, Thomas; Sitko, Michael L.; Janson, Markus; hide

    2016-01-01

    Dust trapping accelerates the coagulation of dust particles, and, thus, it represents an initial step toward the formation of planetesimals. We report H-band (1.6 microns) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkH(alpha) 330. As a result, a pair of spiral arms were detected in the H-band emission, and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed spectral energy distribution slope between 0.87 mm from our Submillimeter Array observation and1.3 mm from literature. The results imply that grains are indistinguishable from interstellar medium-like dust in the east side (beta = 2.0 +/- 0.5) but are much smaller in the west side beta = 0.7+0.5 -0.4, indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y-K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.

  14. THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, J.; Wisniewski, J.; Tsukagoshi, T.

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum atmore » 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.« less

  15. The Structure of Pre-Transitional Protoplanetary Disks. II Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.; hide

    2015-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  16. STAR FORMATION AND FEEDBACK: A MOLECULAR OUTFLOW–PRESTELLAR CORE INTERACTION IN L1689N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lis, D. C.; Pagani, L.; Wootten, H. A.

    2016-08-20

    We present Herschel ,{sup 11} ALMA Compact Array (ACA), and Caltech Submillimeter Observatory observations of the prestellar core in L1689N, which has been suggested to be interacting with a molecular outflow driven by the nearby solar-type protostar IRAS 16293-2422. This source is characterized by some of the highest deuteration levels observed in the interstellar medium. The change in the NH{sub 2}D line velocity and width across the core provides clear evidence of an interaction with the outflow, traced by the high-velocity water emission. Quiescent, cold gas characterized by narrow line widths is seen in the NE part of the core,more » while broader, more disturbed line profiles are seen in the W/SW part. Strong N{sub 2}D{sup +} and ND{sub 3} emission is detected with ACA extending S/SW from the peak of the single-dish NH{sub 2}D emission. The ACA data also reveal the presence a compact dust continuum source with a mean size of ∼1100 au, a central density of (1–2) × 10{sup 7} cm{sup −3}, and a mass of 0.2–0.4 M {sub ⊙}. The dust emission peak is displaced ∼5″ to the south with respect to the N{sub 2}D{sup +} and ND{sub 3} emission, as well as the single-dish dust continuum peak, suggesting that the northern, quiescent part of the core is characterized by spatially extended continuum emission, which is resolved out by the interferometer. We see no clear evidence of fragmentation in this quiescent part of the core, which could lead to a second generation of star formation, although a weak dust continuum source is detected in this region in the ACA data.« less

  17. Magnetically aligned dust and SiO maser polarisation in the envelope of the red supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Khouri, T.; Martí-Vidal, I.; Tafoya, D.; Baudry, A.; Etoka, S.; Humphreys, E. M. L.; Jones, T. J.; Kemball, A.; O'Gorman, E.; Pérez-Sánchez, A. F.; Richards, A. M. S.

    2017-07-01

    Aims: Polarisation observations of circumstellar dust and molecular (thermal and maser) lines provide unique information about dust properties and magnetic fields in circumstellar envelopes of evolved stars. Methods: We use Atacama Large Millimeter/submillimeter Array (ALMA) Band 5 science verification observations of the red supergiant VY CMa to study the polarisation of SiO thermal/maser lines and dust continuum at 1.7 mm wavelength. We analyse both linear and circular polarisation and derive the magnetic field strength and structure, assuming the polarisation of the lines originates from the Zeeman effect, and that of the dust originates from aligned dust grains. We also discuss other effects that could give rise to the observed polarisation. Results: We detect, for the first time, significant polarisation ( 3%) of the circumstellar dust emission at millimeter wavelengths. The polarisation is uniform with an electric vector position angle of 8°. Varying levels of linear polarisation are detected for the J = 4 - 328SiO v = 0, 1, 2, and 29SiO v = 0, 1 lines, with the strongest polarisation fraction of 30% found for the 29SiO v = 1 maser. The linear polarisation vectors rotate with velocity, consistent with earlier observations. We also find significant (up to 1%) circular polarisation in several lines, consistent with previous measurements. We conclude that the detection is robust against calibration and regular instrumental errors, although we cannot yet fully rule out non-standard instrumental effects. Conclusions: Emission from magnetically aligned grains is the most likely origin of the observed continuum polarisation. This implies that the dust is embedded in a magnetic field >13 mG. The maser line polarisation traces the magnetic field structure. The magnetic field in the gas and dust is consistent with an approximately toroidal field configuration, but only higher angular resolution observations will be able to reveal more detailed field structure. If the circular polarisation is due to Zeeman splitting, it indicates a magnetic field strength of 1-3 Gauss, consistent with previous maser observations.

  18. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-07-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects (MYSOs), but instead is only detected towards approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near-infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳10-4 M⊙ yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲10-6 M⊙ yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  19. FAR-ULTRAVIOLET OBSERVATIONS OF THE SPICA NEBULA AND THE INTERACTION ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yeon-Ju; Min, Kyoung-Wook; Lim, Tae-Ho

    2013-09-01

    We report the analysis results of far-ultraviolet (FUV) observations, made for a broad region around {alpha} Vir (Spica) including the interaction zone of Loop I and the Local Bubble. The whole region was optically thin and a general correlation was seen between the FUV continuum intensity and the dust extinction, except in the neighborhood of the bright central star, indicating the dust scattering nature of the FUV continuum. We performed Monte Carlo radiative transfer simulations to obtain the optical parameters related to the dust scattering as well as to the geometrical structure of the region. The albedo and asymmetry factormore » were found to be 0.38 {+-} 0.06 and 0.46 {+-} 0.06, respectively, in good agreement with the Milky Way dust grain models. The distance to and the thickness of the interaction zone were estimated to be 70{sup +4}{sub -8} pc and 40{sup +8}{sub -10} pc, respectively. The diffuse FUV continuum in the northern region above Spica was mostly the result of scattering of the starlight from Spica, while that in the southern region was mainly due to the background stars. The C IV {lambda}{lambda}1548, 1551 emission was found throughout the whole region, in contrast to the Si II* {lambda}1532 emission which was bright only within the H II region. This indicates that the C IV line arises mostly at the shell boundaries of the bubbles, with a larger portion likely from the Loop I than from the Local Bubble side, whereas the Si II* line is from the photoionized Spica Nebula.« less

  20. Blinded by the light: on the relationship between CO first overtone emission and mass accretion rate in massive young stellar objects

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Oudmaijer, R. D.; Wheelwright, H. E.; Pomohaci, R.

    2018-04-01

    To date, there is no explanation as to why disc-tracing CO first overtone (or `bandhead') emission is not a ubiquitous feature in low- to medium-resolution spectra of massive young stellar objects, but instead is only detected toward approximately 25 per cent of their spectra. In this paper, we investigate the hypothesis that only certain mass accretion rates result in detectable bandhead emission in the near infrared spectra of MYSOs. Using an analytic disc model combined with an LTE model of the CO emission, we find that high accretion rates (≳ 10-4 M⊙yr-1) result in large dust sublimation radii, a larger contribution to the K-band continuum from hot dust at the dust sublimation radius, and therefore correspondingly lower CO emission with respect to the continuum. On the other hand, low accretion rates (≲ 10-6 M⊙yr-1) result in smaller dust sublimation radii, a correspondingly smaller emitting area of CO, and thus also lower CO emission with respect to the continuum. In general, moderate accretion rates produce the most prominent, and therefore detectable, CO first overtone emission. We compare our findings to a recent near-infrared spectroscopic survey of MYSOs, finding results consistent with our hypothesis. We conclude that the detection rate of CO bandhead emission in the spectra of MYSOs could be the result of MYSOs exhibiting a range of mass accretion rates, perhaps due to the variable accretion suggested by recent multi-epoch observations of these objects.

  1. Molecular Diagnostics of the Internal Motions of Massive Cores

    NASA Astrophysics Data System (ADS)

    Pineda, Jorge; Velusamy, T.; Goldsmith, P.; Li, D.; Peng, R.; Langer, W.

    2009-12-01

    We present models of the internal kinematics of massive cores in the Orion molecular cloud. We use a sample of cores studied by Velusamy et al. (2008) that show red, blue, and no asymmetry in their HCO+ line profiles in equal proportion, and which therefore may represent a sample of cores in different kinematic states. We use the radiative transfer code RATRAN (Hogerheijde & van der Tak 2000) to model several transitions of HCO+ and H13CO+ as well as the dust continuum emission, of a spherical model cloud with radial density, temperature, and velocity gradients. We find that an excitation and velocity gradients are prerequisites to reproduce the observed line profiles. We use the dust continuum emission to constrain the density and temperature gradients. This allows us to narrow down the functional forms of the velocity gradient giving us the opportunity to test several theoretical predictions of velocity gradients produced by the effect of magnetic fields (e.g. Tassis et. al. 2007) and turbulence (e.g. Vasquez-Semanedi et al 2007).

  2. The dust distribution within the inner coma of comet P/Halley 1982i - Encounter by Giotto's impact detectors

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Evans, G. C.; Evans, S. T.; Alexander, W. M.; Burton, W. M.; Firth, J. G.; Bussoletti, E.; Grard, R. J. L.; Hanner, M. S.; Sekanina, Z.

    1987-01-01

    Analyses are presented of Giotto's Dust Impact Detection System experiment measurements of dust grains incident on the Giotto dust shield along its trajectory through the coma of comet P/Halley on March 13 and 14, 1986. Ground-based CCD imagery of the inner coma dust continuum at the time of the encounter are used to derive the area of grains intercepted by Giotto. Data obtained at large masses show clear evidence of a decrease in the mass distribution index at these masses within the coma; it is shown that such a value of the mass index can furnish sufficient mass for consistency with an observed deceleration.

  3. The Infrared Continuum Spectrum of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Harwit, Martin; Malfait, Koen; Decin, Leen; Waelkens, Christoffel; Feuchtgruber, Helmut; Melnick, Gary J.

    2001-08-01

    We combine spectra of VY CMa obtained with the short- and long-wavelength spectrometers, SWS and LWS, on the Infrared Space Observatory3 to provide a first detailed continuum spectrum of this highly luminous star. The circumstellar dust cloud through which the star is observed is partially self-absorbing, which makes for complex computational modeling. We review previous work and comment on the range of uncertainties about the physical traits and mineralogical composition of the modeled disk. We show that these uncertainties significantly affect the modeling of the outflow and the estimated mass loss. In particular, we demonstrate that a variety of quite diverse models can produce good fits to the observed spectrum. If the outflow is steady, and the radiative repulsion on the dust cloud dominates the star's gravitational attraction, we show that the total dust mass loss rate is ~4×10-6 Msolar yr-1, assuming that the star is at a distance of 1.5 kpc. Several indications, however, suggest that the outflow from the star may be spasmodic. We discuss this and other problems facing the construction of a physically coherent model of the dust cloud and a realistic mass-loss analysis.

  4. Complex molecules in Sagittarius B2(N): The importance of grain chemistry

    NASA Technical Reports Server (NTRS)

    Miao, Yanti; Mehringer, David M.; Kuan, Yi-Jheng; Snyder, Lewis E.

    1995-01-01

    The complex molecules vinyl cyanide (CH2CHCN), methyl formate (HCOOCH3), and ethyl cyanide (CH3CH2CN) were observed in the Sgr B2 star-forming region with the BIMA millimeter wavelength array. A region with diameter less than 0.1 pc toward the Sgr B2(N) molecular core is found to be the major source of these molecules. Also, this source is coincident with continuum emission from dust and a center of H2O maser activity. Ultracompact (UC) H 11 regions are located within 0.1 pc. Strikingly, none of these molecules is detected toward Sgr B2(M), a core located 1 minute south of Sgr B2(N). The existence of complex molecules, a large mass of dust, high-velocity H2O masers, and UC H 11 regions strongly suggests that the Sgr B2(N) region has just begun to form stars, while the absence of strong dust emission and large molecules suggests Sgr B2(M) is more evolved. The detection of large molecules coincident with continuum emission from dust supports the idea found in current chemical models that grain chemistry is of crucial importance for the formation of these molecules.

  5. New Constraints on Turbulence and Embedded Planet Mass in the HD 163296 Disk from Planet–Disk Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Liu, Shang-Fei; Jin, Sheng; Li, Shengtai; Isella, Andrea; Li, Hui

    2018-04-01

    Recent Atacama Large Millimeter and Submillimeter Array (ALMA) observations of the protoplanetary disk around the Herbig Ae star HD 163296 revealed three depleted dust gaps at 60, 100, and 160 au in the 1.3 mm continuum as well as CO depletion in the middle and outer dust gaps. However, no CO depletion was found in the inner dust gap. To examine the planet–disk interaction model, we present results of 2D two fluid (gas + dust) hydrodynamic simulations coupled with 3D radiative transfer simulations. To fit the high gas-to-dust ratio of the first gap, we find that the Shakura–Sunyaev viscosity parameter α must be very small (≲ {10}-4) in the inner disk. On the other hand, a relatively large α (∼ 7.5× {10}-3) is required to reproduce the dust surface density in the outer disk. We interpret the variation of α as an indicator of the transition from an inner dead zone to the outer magnetorotational instability (MRI) active zone. Within ∼100 au, the HD 163296 disk’s ionization level is low, and non-ideal magnetohydrodynamic effects could suppress the MRI, so the disk can be largely laminar. The disk’s ionization level gradually increases toward larger radii, and the outermost disk (r> 300 au) becomes turbulent due to MRI. Under this condition, we find that the observed dust continuum and CO gas line emissions can be reasonably fit by three half-Jovian-mass planets (0.46, 0.46, and 0.58 {M}{{J}}) at 59, 105, and 160 au, respectively.

  6. Copious Amounts of Dust and Gas in a z = 7.5 Quasar Host Galaxy

    NASA Astrophysics Data System (ADS)

    Venemans, Bram P.; Walter, Fabian; Decarli, Roberto; Bañados, Eduardo; Carilli, Chris; Winters, Jan Martin; Schuster, Karl; da Cunha, Elisabete; Fan, Xiaohui; Farina, Emanuele Paolo; Mazzucchelli, Chiara; Rix, Hans-Walter; Weiss, Axel

    2017-12-01

    We present IRAM/NOEMA and JVLA observations of the quasar J1342+0928 at z = 7.54 and report detections of copious amounts of dust and [C II] emission in the interstellar medium (ISM) of its host galaxy. At this redshift, the age of the universe is 690 Myr, about 10% younger than the redshift of the previous quasar record holder. Yet, the ISM of this new quasar host galaxy is significantly enriched by metals, as evidenced by the detection of the [C II] 158 μm cooling line and the underlying far-infrared (FIR) dust continuum emission. To the first order, the FIR properties of this quasar host are similar to those found at a slightly lower redshift (z˜ 6), making this source by far the FIR-brightest galaxy known at z≳ 7.5. The [C II] emission is spatially unresolved, with an upper limit on the diameter of 7 kpc. Together with the measured FWHM of the [C II] line, this yields a dynamical mass of the host of < 1.5× {10}11 {M}⊙ . Using standard assumptions about the dust temperature and emissivity, the NOEMA measurements give a dust mass of (0.6{--}4.3)× {10}8 {M}⊙ . The brightness of the [C II] luminosity, together with the high dust mass, imply active ongoing star formation in the quasar host. Using [C II]-SFR scaling relations, we derive star formation rates of 85-545 {M}⊙ yr-1 in the host, consistent with the values derived from the dust continuum. Indeed, an episode of such past high star formation is needed to explain the presence of ˜108 M ⊙ of dust implied by the observations.

  7. The asteroid-comet continuum from laboratory and space analyses of comet samples and micrometeorites

    NASA Astrophysics Data System (ADS)

    Engrand, Cecile; Duprat, Jean; Bardin, Noemie; Dartois, Emmanuel; Leroux, Hugues; Quirico, Eric; Benzerara, Karim; Rémusat, Laurent; Dobrică, Elena; Delauche, Lucie; Bradley, John; Ishii, Hope; Hilchenbach, Martin; COSIMA Team

    2015-08-01

    Comets are probably the best archives of the nascent solar system, 4.5 Gyr ago, and their compositions reveal crucial clues on the structure and dynamics of the early protoplanetary disk. Anhydrous minerals (olivine and pyroxene) have been identified in cometary dust for a few decades. Surprisingly, samples from comet Wild2 returned by the Stardust mission in 2006 also contain high temperature mineral assemblages like chondrules and refractory inclusions, which are typical components of primitive meteorites (carbonaceous chondrites - CCs). A few Stardust samples have also preserved some organic matter of comet Wild 2 that share some similarities with CCs. Interplanetary dust falling on Earth originate from comets and asteroids in proportions to be further constrained. These cosmic dust particles mostly show similarities with CCs, which in turn only represent a few percent of meteorites recovered on Earth. At least two (rare) families of cosmic dust particles have shown strong evidences for a cometary origin: the chondritic porous interplanetary dust particles (CP-IDPs) collected in the terrestrial stratosphere by NASA, and the ultracarbonaceous Antarctic Micrometeorites (UCAMMs) collected from polar snow and ice by French and Japanese teams. The Rosetta mission currently carries dust analyzers capable of measuring dust flux, sizes, physical properties and compositions of dust particles from the Jupiter family comet 67P/Churyumov-Gerasimenko (COSIMA, GIADA, MIDAS), as well as gas analyzers (ROSINA, PTOLEMY, COSAC). A growing number of evidences highlights the existence of a continuum between asteroids and comets, already in the early history of the solar system. We will present the implications of the analyses of samples in the laboratory and in space to a better understanding of the early protoplanetary disk.

  8. Detection of SO towards the transitional disk AB Auriga: the sulfur chemistry in a proto-solar nebula

    NASA Astrophysics Data System (ADS)

    Fuente, A.; Agúndez, M.; Cernicharo, J.; Goicoechea, J. R.; Bachiller, R.

    2017-03-01

    The transitional disk around the Herbig Ae star, AB Auriga, has been imaged in the dust continuum emission at 1mm and in the line using the NOEMA interferometer (IRAM) (beam 1.5”). This is the first image of SO ever in a protoplanetary disk (PPD). Simultaneously, we obtained images of the ^{13}CO 2→1, C^{18}O 2→1 and H_{2}CO 3_{0,3} → 2_{0,2} lines. The dust continuum and C^{18}O emissions present the horseshoe morphology that is characteristic of the existence of a dust trap, proving that this disk is at the stage of forming planets. In contrast, SO presents uniform emission all over the disk. We interpret that the uniform SO emission is the consequence of the SO molecules being rapidly converted to SO_{2} and frozen onto the grain mantles at the high densities close to the disk midplane (> 10^{7} cm^{-3}). SO is the second S-bearing molecule detected in a PPD (the first was CS) and opens the possibility to study the sulphur chemistry in a proto-solar nebula analog. Sulfur is widespread in the Solar System and the comprehension of the sulfur chemistry is of paramount importance to understand the formation of our planetary system.

  9. Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M.; De Gregorio-Monsalvo, Itziar; Manara, Carlo F.; Natta, Antonella; Pérez, Laura M.; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, Neal

    2016-12-01

    We present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the 12CO, 13CO, and C 18O J =2 -1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.

  10. Ringed Structures of the HD 163296 Protoplanetary Disk Revealed by ALMA.

    PubMed

    Isella, Andrea; Guidi, Greta; Testi, Leonardo; Liu, Shangfei; Li, Hui; Li, Shengtai; Weaver, Erik; Boehler, Yann; Carperter, John M; De Gregorio-Monsalvo, Itziar; Manara, Carlo F; Natta, Antonella; Pérez, Laura M; Ricci, Luca; Sargent, Anneila; Tazzari, Marco; Turner, Neal

    2016-12-16

    We present Atacama Large Millimeter and Submillimeter Array observations of the protoplanetary disk around the Herbig Ae star HD 163296 that trace the spatial distribution of millimeter-sized particles and cold molecular gas on spatial scales as small as 25 astronomical units (A.U.). The image of the disk recorded in the 1.3 mm continuum emission reveals three dark concentric rings that indicate the presence of dust depleted gaps at about 60, 100, and 160 A.U. from the central star. The maps of the ^{12}CO, ^{13}CO, and C^{18}O J=2-1 emission do not show such structures but reveal a change in the slope of the radial intensity profile across the positions of the dark rings in the continuum image. By comparing the observations with theoretical models for the disk emission, we find that the density of CO molecules is reduced inside the middle and outer dust gaps. However, in the inner ring there is no evidence of CO depletion. From the measurements of the dust and gas densities, we deduce that the gas-to-dust ratio varies across the disk and, in particular, it increases by at least a factor 5 within the inner dust gap compared to adjacent regions of the disk. The depletion of both dust and gas suggests that the middle and outer rings could be due to the gravitational torque exerted by two Saturn-mass planets orbiting at 100 and 160 A.U. from the star. On the other hand, the inner dust gap could result from dust accumulation at the edge of a magnetorotational instability dead zone, or from dust opacity variations at the edge of the CO frost line. Observations of the dust emission at higher angular resolution and of molecules that probe dense gas are required to establish more precisely the origins of the dark rings observed in the HD 163296 disk.

  11. GASPS—A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics

    NASA Astrophysics Data System (ADS)

    Dent, W. R. F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.; Brittain, S.; Carmona, A.; Ciardi, D.; Danchi, W.; Donaldson, J.; Duchene, G.; Eiroa, C.; Fedele, D.; Grady, C.; de Gregorio-Molsalvo, I.; Howard, C.; Huélamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mathews, G.; Meeus, G.; Mendigutía, I.; Montesinos, B.; Morales-Calderon, M.; Mora, A.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Pinte, C.; Podio, L.; Ramsay, S. K.; Riaz, B.; Riviere-Marichalar, P.; Roberge, A.; Sandell, G.; Solano, E.; Tilling, I.; Torrelles, J. M.; Vandenbusche, B.; Vicente, S.; White, G. J.; Woitke, P.

    2013-05-01

    We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted ~250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 μm the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 μm, [CII] at 157 μm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 μm. Additionally, GASPS included continuum photometry at 70, 100 and 160 μm, around the peak of the dust emission. The targets were SED Class II-III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarise some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 μm was the brightest line seen in almost all objects, by a factor of ~10. Overall [OI]63 μm detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI]63 μm detection of ~10-5 Msolar. Normalising to a distance of 140 pc, 84% of objects with dust masses >=10-5 Msolar can be detected in this line in the present survey; 32% of those of mass 10-6-10-5 Msolar, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centred on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3-4 Myr age range were ~50%. For each association in the 5-20 Myr age range, ~2 stars remain detectable in [OI]63 μm, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that ~18% of stars retain a gas-rich disk of total mass ~1 MJupiter for 1-4 Myr, 1-7% keep such disks for 5-10 Myr, but none are detected beyond 10-20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 μm, [CII]157 μm and CO J = 18 - 17, with detection rates of 20-40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.

  12. Spectrophotometry of seventeen comets. II - The continuum

    NASA Technical Reports Server (NTRS)

    Newburn, R. L., Jr.; Spinrad, H.

    1985-01-01

    One-hundred-twenty IDS scans of the continua in 17 comets are analyzed to determine dust production rates and color as a function of heliocentric distance. Improved theory indicates that the dust loading of gas typically varies between 0.05 and 0.3 by mass (assuming a geometric albedo of 0.05 and oxygen expansion at 1 km/s) except during outbursts, when it rises much higher. P/Encke near perihelion falls much lower yet, to 0.004 or less. Dust loading is not always constant as a function of time in a given comet. Dust color is typically reddish, as has often been noted before.

  13. Spectrophotometry of seventeen comets. II - The continuum

    NASA Astrophysics Data System (ADS)

    Newburn, R. L.; Spinrad, H.

    1985-12-01

    One hundred twenty IDS scans of the continua in 17 comets are analyzed to determine dust production rates and color as a function of heliocentric distance. Improved theory indicates that the dust loading of gas typically varies between 0.05 and 0.3 by mass (assuming a geometric albedo of 0.05 and oxygen expansion at 1 km s-1) except during outbursts, when it rises much higher. P/Encke near perihelion falls much lower yet, to 0.004 or less. Dust loading is not always constant as a function of time in a given comet. Dust color is typically reddish, as has often been noted before.

  14. Infrared emission from isolated dust clouds in the presence of very small dust grains

    NASA Technical Reports Server (NTRS)

    Lis, Dariusz C.; Leung, Chun M.

    1991-01-01

    Models of the effects of small grain-generated temperature fluctuations on the IR spectrum and surface brightness of externally heated interstellar dust clouds are presently constructed on the basis of a continuum radiation transport computer code which encompasses the transient heating of small dust grains. The models assume a constant fractional abundance of large and small grains throughout the given cloud. A comparison of model results with IRAS observations indicates that the observed 12-25 micron band emissions are associated with about 10-A radius grains, while the 60-100 micron emission is primarily due to large grains which are heated under the equilibrium conditions.

  15. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Yinghe; Lu, Nanyao; Xu, C. Kevin

    We present our high-resolution (0.″15 × 0.″13, ∼34 pc) observations of the CO (6−5) line emission, which probes the warm and dense molecular gas, and the 434 μ m dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6−5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the COmore » (6−5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ∼10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa- α equivalent width. Within the nuclear region (radius ∼ 300 pc) and with a resolution of ∼34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s{sup −1} (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel .« less

  16. ALMA REVEALS THE ANATOMY OF THE mm-SIZED DUST AND MOLECULAR GAS IN THE HD 97048 DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walsh, Catherine; Maud, Luke T.; Juhász, Attila

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ∼ mm wavelengths. We present the first spatially resolved ∼ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°–40°. HD 97048more » is another source for which the large (∼ mm-sized) dust grains are more centrally concentrated than the small (∼ μ m-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10–20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.« less

  17. ALMA Reveals the Anatomy of the mm-sized Dust and Molecular Gas in the HD 97048 Disk

    NASA Astrophysics Data System (ADS)

    Walsh, Catherine; Juhász, Attila; Meeus, Gwendolyn; Dent, William R. F.; Maud, Luke T.; Aikawa, Yuri; Millar, Tom J.; Nomura, Hideko

    2016-11-01

    Transitional disks show a lack of excess emission at infrared wavelengths due to a large dust cavity, that is often corroborated by spatially resolved observations at ˜ mm wavelengths. We present the first spatially resolved ˜ mm-wavelength images of the disk around the Herbig Ae/Be star, HD 97048. Scattered light images show that the disk extends to ≈640 au. ALMA data reveal a circular-symmetric dusty disk extending to ≈350 au, and a molecular disk traced in CO J = 3-2 emission, extending to ≈750 au. The CO emission arises from a flared layer with an opening angle ≈30°-40°. HD 97048 is another source for which the large (˜ mm-sized) dust grains are more centrally concentrated than the small (˜μm-sized) grains and molecular gas, likely due to radial drift. The images and visibility data modeling suggest a decrement in continuum emission within ≈50 au, consistent with the cavity size determined from mid-infrared imaging (34 ± 4 au). The extracted continuum intensity profiles show ring-like structures with peaks at ≈50, 150, and 300 au, with associated gaps at ≈100 and 250 au. This structure should be confirmed in higher-resolution images (FWHM ≈ 10-20 au). These data confirm the classification of HD 97048 as a transitional disk that also possesses multiple ring-like structures in the dust continuum emission. Additional data are required at multiple and well-separated frequencies to fully characterize the disk structure, and thereby constrain the mechanism(s) responsible for sculpting the HD 97048 disk.

  18. Spatially resolved star formation and dust attenuation in Mrk 848: Comparison of the integral field spectra and the UV-to-IR SED

    NASA Astrophysics Data System (ADS)

    Yuan, Fang-Ting; Argudo-Fernández, María; Shen, Shiyin; Hao, Lei; Jiang, Chunyan; Yin, Jun; Boquien, Médéric; Lin, Lihwai

    2018-05-01

    We investigate the star formation history and the dust attenuation in the galaxy merger Mrk 848. Thanks to the multiwavelength photometry from the ultraviolet (UV) to the infrared (IR), and MaNGA's integral field spectroscopy, we are able to study this merger in a detailed way. We divide the whole merger into the core and tail regions, and fit both the optical spectrum and the multi-band spectral energy distribution (SED) to models to obtain the star formation properties for each region respectively. We find that the color excess of stars in the galaxy E(B-V)sSED measured with the multi-band SED fitting is consistent with that estimated both from the infrared excess (the ratio of IR to UV flux) and from the slope of the UV continuum. Furthermore, the reliability of the E(B-V)sSED is examined with a set of mock SEDs, showing that the dust attenuation of the stars can be well constrained by the UV-to-IR broadband SED fitting. The dust attenuation obtained from optical continuum E(B-V)sspec is only about half of E(B-V)sSED. The ratio of the E(B-V)sspec to the E(B-V)g obtained from the Balmer decrement is consistent with the local value (around 0.5). The difference between the results from the UV-to-IR data and the optical data is consistent with the picture that younger stellar populations are attenuated by an extra dust component from the birth clouds compared to older stellar populations which are only attenuated by the diffuse dust. Both with the UV-to-IR SED fitting and the spectral fitting, we find that there is a starburst younger than 100 Myr in one of the two core regions, consistent with the scenario that the interaction-induced gas inflow can enhance the star formation in the center of galaxies.

  19. Millimeter imaging of HD 163296: probing the disk structure and kinematics

    NASA Astrophysics Data System (ADS)

    Isella, A.; Testi, L.; Natta, A.; Neri, R.; Wilner, D.; Qi, C.

    2007-07-01

    We present new multi-wavelength millimeter interferometric observations of the Herbig Ae star HD 163296 obtained with the IRAM/PBI, SMA and VLA arrays both in continuum and in the 12CO, 13CO and C18O emission lines. Gas and dust properties have been obtained comparing the observations with self-consistent disk models for the dust and CO emission. The circumstellar disk is resolved both in the continuum and in CO. We find strong evidence that the circumstellar material is in Keplerian rotation around a central star of 2.6 M_⊙. The disk inclination with respect to the line of sight is 46° ± 4° with a position angle of 128° ± 4°. The slope of the dust opacity measured between 0.87 and 7 mm (β = 1) confirms the presence of mm/cm-size grains in the disk midplane. The dust continuum emission is asymmetric and confined inside a radius of 200 AU while the CO emission extends up to 540 AU. The comparison between dust and CO temperature indicates that CO is present only in the disk interior. Finally, we obtain an increasing depletion of CO isotopomers from 12CO to 13CO and C18O. We argue that these results support the idea that the disk of HD 163296 is strongly evolved. In particular, we suggest that there is a strong depletion of dust relative to gas outside 200 AU; this may be due to the inward migration of large bodies that form in the outer disk or to clearing of a large gap in the dust distribution by a low mass companion. Based on observations carried out with IRAM Plateau de Bure Interferometer, Submillimeter Array and NRAO Very Large Array. IRAM Plateau de Bure Interferometer is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. The NRAO is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. Appendix A and Figs. [see full text]- [see full text] are only available in electronic form at http://www.aanda.org

  20. The Dust and Gas Outburst of Comet 67P/C-G on 19 February 2016, as Seen at Millimeter and Submillimeter Wavelengths by the MIRO Instrument

    NASA Astrophysics Data System (ADS)

    Hofstadter, Mark D.; Biver, Nicolas; Lee, Seungwon; von Allmen, Paul; Bockelee-Morvan, Dominique; Schloerb, F. Peter; Davidsson, Bjorn; Gulkis, Samuel; Beaudin, Gerard; Choukroun, Mathieu; Crovisier, Jacques; Encrenaz, Pierre; Encrenaz, Therese A.; Frerking, Margaret; Hartogh, Paul; Ip, Wing-Huen; Janssen, Michael A.; Jarchow, Christopher; Lellouch, Emmanuel; Leyrat, Cedric; Rezac, Ladislav; Spilker, Thomas R.

    2016-10-01

    The Microwave Instrument for the Rosetta Orbiter (MIRO) is a U.S. instrument with French, German, and Taiwanese participation. It is on the European Space Agency's Rosetta spacecraft which, from August 2014 through September 2016, was flying along side comet 67P/Churyumov-Gerasimenko. MIRO is designed to study the nucleus and coma of the comet as a coupled system. It makes broad-band continuum measurements of the thermal emission of the nucleus at 190 and 563 GHz (1.6 and 0.5 mm) which probe the thermal and dielectric properties of the nucleus as a function of depth from ~1 mm to ~10 cm. When looking off the nucleus, continuum emission from dust can be used to constrain the abundance and size distribution of particles. In addition to its continuum channels, MIRO has a high resolution (44 kHz) spectrometer fixed tuned to submillimeter lines of H2O, H217O, H218O, CO, NH3, and three CH3OH transitions, allowing us to determine the abundance, velocity, and temperature of these species in the coma. This presentation will provide an overview of the instrument, and then focus on measurements made during an outburst from the comet on 19 February 2016. At that time, the spacecraft was 35 km from the nucleus. The first indication of the main outburst was a cloud of dust rising from the nucleus, seen by the OSIRIS camera and Alice UV spectrometer (see Alice presentations by Stern et al., Noonan et al., and Steffl et al. at this conference). After several minutes, MIRO observed the rotational temperature of water in the coma near the spacecraft start to rise from about 20 to 50 K. Several minutes after the temperature started to increase, the ROSINA-COPS instrument recorded a sharp rise in gas density at the spacecraft. A possible explanation for this sequence of events is a landslide or collapse on the nucleus which first raises dust. The dust then heats the coma, after which nucleus ices, newly exposed or brought near-surface by the landslide, begin sublimating and increasing coma gas density. This and other interpretations will be discussed.

  1. The mineralogy of newly formed dust in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Srinivasan, Sundar; Kemper, F.; Zhou, Yeyan; Hao, Lei; Gallagher, Sarah C.; Shangguan, Jinyi; Ho, Luis C.; Xie, Yanxia; Scicluna, Peter; Foucaud, Sebastien; Peng, Rita H. T.

    2017-12-01

    The tori around active galactic nuclei (AGN) are potential formation sites for large amounts of dust, and they may help resolve the so-called dust budget crisis at high redshift. We investigate the dust composition in 53 of the 87 Palomar Green (PG) quasars showing the 9.7 μm silicate feature in emission. By simultaneously fitting the mid-infrared spectroscopic features and the underlying continuum, we estimate the mass fraction in various amorphous and crystalline dust species. We find that the dust consists predominantly of alumina and amorphous silicates, with a small fraction in crystalline form. The mean crystallinity is 8 ±6%, with more than half of the crystallinities greater than 5%, well above the upper limit determined for the Galaxy. Higher values of crystallinity are found for higher oxide fractions and for more luminous sources.

  2. The star formation rate cookbook at 1 < z < 3: Extinction-corrected relations for UV and [OII]λ3727 luminosities

    NASA Astrophysics Data System (ADS)

    Talia, M.; Cimatti, A.; Pozzetti, L.; Rodighiero, G.; Gruppioni, C.; Pozzi, F.; Daddi, E.; Maraston, C.; Mignoli, M.; Kurk, J.

    2015-10-01

    Aims: In this paper we use a well-controlled spectroscopic sample of galaxies at 1

  3. Rings and gaps in the disc around Elias 24 revealed by ALMA

    NASA Astrophysics Data System (ADS)

    Dipierro, G.; Ricci, L.; Pérez, L.; Lodato, G.; Alexander, R. D.; Laibe, G.; Andrews, S.; Carpenter, J. M.; Chandler, C. J.; Greaves, J. A.; Hall, C.; Henning, T.; Kwon, W.; Linz, H.; Mundy, L.; Sargent, A.; Tazzari, M.; Testi, L.; Wilner, D.

    2018-04-01

    We present Atacama Large Millimeter/sub-millimeter Array (ALMA) Cycle 2 observations of the 1.3-mm dust continuum emission of the protoplanetary disc surrounding the T Tauri star Elias 24 with an angular resolution of ˜0.2 arcsec (˜28 au). The dust continuum emission map reveals a dark ring at a radial distance of 0.47 arcsec (˜65 au) from the central star, surrounded by a bright ring at 0.58 arcsec (˜81 au). In the outer disc, the radial intensity profile shows two inflection points at 0.71 and 0.87 arcsec (˜99 and 121 au, respectively). We perform global three-dimensional smoothed particle hydrodynamic gas/dust simulations of discs hosting a migrating and accreting planet. Combining the dust density maps of small and large grains with three-dimensional radiative transfer calculations, we produce synthetic ALMA observations of a variety of disc models in order to reproduce the gap- and ring-like features observed in Elias 24. We find that the dust emission across the disc is consistent with the presence of an embedded planet with a mass of ˜0.7 MJ at an orbital radius of ˜ 60 au. Our model suggests that the two inflection points in the radial intensity profile are due to the inward radial motion of large dust grains from the outer disc. The surface brightness map of our disc model provides a reasonable match to the gap- and ring-like structures observed in Elias 24, with an average discrepancy of ˜5 per cent of the observed fluxes around the gap region.

  4. Exocometary gas in the HD 181327 debris ring

    NASA Astrophysics Data System (ADS)

    Marino, S.; Matrà, L.; Stark, C.; Wyatt, M. C.; Casassus, S.; Kennedy, G.; Rodriguez, D.; Zuckerman, B.; Perez, S.; Dent, W. R. F.; Kuchner, M.; Hughes, A. M.; Schneider, G.; Steele, A.; Roberge, A.; Donaldson, J.; Nesvold, E.

    2016-08-01

    An increasing number of observations have shown that gaseous debris discs are not an exception. However, until now, we only knew of cases around A stars. Here we present the first detection of 12CO (2-1) disc emission around an F star, HD 181327, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) observations at 1.3 mm. The continuum and CO emission are resolved into an axisymmetric disc with ring-like morphology. Using a Markov chain Monte Carlo method coupled with radiative transfer calculations, we study the dust and CO mass distribution. We find the dust is distributed in a ring with a radius of 86.0 ± 0.4 au and a radial width of 23.2 ± 1.0 au. At this frequency, the ring radius is smaller than in the optical, revealing grain size segregation expected due to radiation pressure. We also report on the detection of low-level continuum emission beyond the main ring out to ˜200 au. We model the CO emission in the non-local thermodynamic equilibrium regime and we find that the CO is co-located with the dust, with a total CO gas mass ranging between 1.2 × 10-6 M⊕ and 2.9 × 10-6 M⊕, depending on the gas kinetic temperature and collisional partners densities. The CO densities and location suggest a secondary origin, I.e. released from icy planetesimals in the ring. We derive a CO+CO2 cometary composition that is consistent with Solar system comets. Due to the low gas densities, it is unlikely that the gas is shaping the dust distribution.

  5. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the codemore » computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.« less

  6. Planet Formation in AB Aurigae: Imaging of the Inner Gaseous Spirals Observed inside the Dust Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Ya-Wen; Gu, Pin-Gao; Ho, Paul T. P.

    2017-05-01

    We report the results of ALMA observations of a protoplanetary disk surrounding the Herbig Ae star AB Aurigae. We obtained high-resolution (0.″1; 14 au) images in {sup 12}CO J = 2 − 1 emission and in the dust continuum at the wavelength of 1.3 mm. The continuum emission is detected at the center and at the ring with a radius ( r ) of ∼120 au. The CO emission is dominated by two prominent spirals within the dust ring. These spirals are trailing and appear to be about 4 times brighter than their surrounding medium. Their kinematics is consistent withmore » Keplerian rotation at an inclination of 23°. The apparent two-arm-spiral pattern is best explained by tidal disturbances created by an unseen companion located at r of 60–80 au, with dust confined in the pressure bumps created outside this companion orbit. An additional companion at r of 30 au, coinciding with the peak CO brightness and a large pitch angle of the spiral, would help to explain the overall emptiness of the cavity. Alternative mechanisms to excite the spirals are discussed. The origin of the large pitch angle detected here remains puzzling.« less

  7. FAR-ULTRAVIOLET OBSERVATION OF THE AQUILA RIFT WITH FIMS/SPEAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S.-J.; Min, K.-W.; Seon, K.-I.

    2012-07-20

    We present the results of far ultraviolet (FUV) observations of the broad region around the Aquila Rift including the Galactic plane. As compared with various wavelength data sets, dust scattering is found to be the major origin of the diffuse FUV continuum in this region. The FUV intensity clearly correlates with the dust extinction level for E(B - V) < 0.2, while this correlation disappears for E(B - V) > 0.2 due to heavy dust extinction combined with the effect of nonuniform interstellar radiation fields. The FUV intensity also correlates well with H{alpha} intensity, implying that at least some fractionmore » of the observed H{alpha} emission could be the dust-scattered light of H{alpha} photons originating elsewhere in the Galaxy. Most of the Aquila Rift region is seen devoid of diffuse FUV continuum due to heavy extinction while strong emission is observed in the surrounding regions. Molecular hydrogen fluorescent emission lines are clearly seen in the spectrum of 'Aquila-Serpens', while 'Aquila-East' does not show any apparent line features. CO emission intensity is also found to be higher in the 'Aquila-Serpens' region than in the 'Aquila-East' region. In this regard, we note that regions of star formation have been found in 'Aquila-Serpens' but not in 'Aquila-East'.« less

  8. ngVLA Key Science Goal 1: Unveiling the Formation of Solar System Analogues

    NASA Astrophysics Data System (ADS)

    Liu, Shangfei; Ricci, Luca; Isella, Andrea; Li, Hui; Li, Shengtai

    2018-01-01

    The annular gaps and other substructures discovered in several protoplanetary disks by ALMA and optical/NIR telescopes are reminiscent of the interaction between newborn planets and the circumstellar material. The comparison with theoretical models indicates that these structures might indeed result from the gravitational interaction between the circumstellar disk and Saturn-mass planets orbiting at tens of AU from the parent star. The same observations also revealed that the submm-wave dust continuum emission arising within 10-30 AU from the star is optically thick. The large optical depth prevents us from accurately measuring the dust density and, therefore, image planet-driven density perturbations. A natural solution to this problem consists in imaging disks at wavelengths of 3mm and longer, where the dust continuum emission from the innermost disk regions is optically thin, but still bright enough to be detected. These wavelengths are covered by the VLA, which, however, lacks the angular resolution and sensitivity to efficiently search for signatures of planets orbiting in the innermost and densest disk regions. Thanks to its much larger collecting area, resolving power, and image quality the Next Generation VLA (ngVLA) will transform the study of planet formation. we present the results of a recent study aimed at investigating the potential of the ngVLA of discovering disk sub-structures, such as gaps and azimuthal asymmetries, generated by the interaction with low-mass forming planets at < 10 au from the star.

  9. Dust release rates and dust-to-gas mass ratios of eight comets

    NASA Technical Reports Server (NTRS)

    Singh, P. D.; De Almeida, A. A.; Huebner, W. F.

    1992-01-01

    Mass release rates of dust and mass ratios of dust-to-gas release rates of Comets Thiele (1985m), Wilson (1986l), P/Borrelly (1987p), Liller (1988a), Bradfield (1987s), Hartley-Good (1985l), P/Giacobini-Zinner (1984e), and P/Halley (1982i) are estimated from the analysis of continuum flux measurements at optical wavelengths. An attempt is made to estimate the size of each comet nucleus on the basis of water-ice sublimation (vaporization), assuming that the nucleus is spherical and only a fraction of its surface area is active. Where possible, the dust mass release rates are compared with those obtained by other investigators in the optical and IR wavelength regions. Good agreement with results based on IR observations is found.

  10. ALMA Maps of Dust and Warm Dense Gas Emission in the Starburst Galaxy IC 5179

    NASA Astrophysics Data System (ADS)

    Zhao, Yinghe; Lu, Nanyao; Díaz-Santos, Tanio; Xu, C. Kevin; Gao, Yu; Charmandaris, Vassilis; van der Werf, Paul; Zhang, Zhi-Yu; Cao, Chen

    2017-08-01

    We present our high-resolution (0.″15 × 0.″13, ˜34 pc) observations of the CO (6-5) line emission, which probes the warm and dense molecular gas, and the 434 μm dust continuum emission in the nuclear region of the starburst galaxy IC 5179, conducted with the Atacama Large Millimeter Array (ALMA). The CO (6-5) emission is spatially distributed in filamentary structures with many dense cores and shows a velocity field that is characteristic of a circumnuclear rotating gas disk, with 90% of the rotation speed arising within a radius of ≲150 pc. At the scale of our spatial resolution, the CO (6-5) and dust emission peaks do not always coincide, with their surface brightness ratio varying by a factor of ˜10. This result suggests that their excitation mechanisms are likely different, as further evidenced by the southwest to northeast spatial gradient of both CO-to-dust continuum ratio and Pa-α equivalent width. Within the nuclear region (radius ˜ 300 pc) and with a resolution of ˜34 pc, the CO line flux (dust flux density) detected in our ALMA observations is 180 ± 18 Jy km s-1 (71 ± 7 mJy), which accounts for 22% (2.4%) of the total value measured by Herschel. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  11. Ablation of silicate particles in high-speed continuum and transition flow with application to the collection of interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.; Miller, Wayne F.

    1991-01-01

    The ablative deceleration of spheres in the continuum and slip regimes is studied using spherical 7.1-micron-diam soda-lime glass particles launched from vacuum at about 4500 m/sec speed through a 13-micron-thick plastic film into a capture chamber containing Xe at 0.1 or 0.2 atm pressure and 295 K temperature. The results of SEM examinations of the collected ablated particles showed that the ratio of the ablated-particle radius (Rf) to the initial radius (R0) increased with gas pressure (from Rf/R0 about 0.67 at 0.1 atm, to about 0.88 at 0.2 atm). A model was developed to describe the ablation and deceleration of spheres in high-speed continuum and slip flow. The pressure dependence predicted by the model agreed with experimental results.

  12. Interstellar molecules. [detection from Copernicus satellite UV absorption data

    NASA Technical Reports Server (NTRS)

    Drake, J. F.

    1974-01-01

    The Princeton equipment on the Copernicus satellite provides the means to study interstellar molecules between the satellite and stars from 20 to 1000 pc distant. The study is limited to stars relatively unobscured by dust which strongly attenuates the ultraviolet continuum flux used as a source to probe the interstellar medium. Of the 14 molecules searched for only three have been detected including molecular hydrogen, molecular HD, and carbon monoxide.

  13. The continuum slope of Mars - Bidirectional reflectance investigations and applications to Olympus Mons

    NASA Astrophysics Data System (ADS)

    Fischer, E. M.; Pieters, C. M.

    1993-04-01

    Two primary causes of near-IR continuum slope variations have been observed in an investigation of the bidirectional reflectance characteristics of ferric coatings on the continuum slope of Mars. First, the presence of a thin ferric coating on a dark substrate produces a negative continuum slope due to the wavelength-dependent transparency of the ferric coating. Second, wavelength-dependent directional reflectance occurs when the surface particles are tightly packed, particle sizes are on the order of or smaller than the wavelength of light, or the surface is otherwise smooth on the order of the wavelength of light. Based on these results, the annuli on the flanks of Olympus Mons which are defined by reflectance and continuum slope are consistent with spatial variations in surface texture and possibly with spatial variations in the thickness of a ferric dust coating or rind.

  14. THE 1.1 mm CONTINUUM SURVEY OF THE SMALL MAGELLANIC CLOUD: PHYSICAL PROPERTIES AND EVOLUTION OF THE DUST-SELECTED CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Sorai, Kazuo

    The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg{sup 2} of the SMC with 1 σ noise levels of 5–12 mJy beam{sup −1}, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μ m, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500more » μ m). The 1.1 mm objects show dust temperatures of 17–45 K and gas masses of 4 × 10{sup 3}–3 × 10{sup 5} M {sub ⊙}, assuming single-temperature thermal emission from the cold dust with an emissivity index, β , of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μ m and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μ m flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs.« less

  15. The 1.1 mm Continuum Survey of the Small Magellanic Cloud: Physical Properties and Evolution of the Dust-selected Clouds

    NASA Astrophysics Data System (ADS)

    Takekoshi, Tatsuya; Minamidani, Tetsuhiro; Komugi, Shinya; Kohno, Kotaro; Tosaki, Tomoka; Sorai, Kazuo; Muller, Erik; Mizuno, Norikazu; Kawamura, Akiko; Onishi, Toshikazu; Fukui, Yasuo; Ezawa, Hajime; Oshima, Tai; Scott, Kimberly S.; Austermann, Jason E.; Matsuo, Hiroshi; Aretxaga, Itziar; Hughes, David H.; Kawabe, Ryohei; Wilson, Grant W.; Yun, Min S.

    2017-01-01

    The first 1.1 mm continuum survey toward the Small Magellanic Cloud (SMC) was performed using the AzTEC instrument installed on the ASTE 10 m telescope. This survey covered 4.5 deg2 of the SMC with 1σ noise levels of 5-12 mJy beam-1, and 44 extended objects were identified. The 1.1 mm extended emission has good spatial correlation with Herschel 160 μm, indicating that the origin of the 1.1 mm extended emission is thermal emission from a cold dust component. We estimated physical properties using the 1.1 mm and filtered Herschel data (100, 160, 250, 350, and 500 μm). The 1.1 mm objects show dust temperatures of 17-45 K and gas masses of 4 × 103-3 × 105 M⊙, assuming single-temperature thermal emission from the cold dust with an emissivity index, β, of 1.2 and a gas-to-dust ratio of 1000. These physical properties are very similar to those of giant molecular clouds (GMCs) in our galaxy and the Large Magellanic Cloud. The 1.1 mm objects also displayed good spatial correlation with the Spitzer 24 μm and CO emission, suggesting that the 1.1 mm objects trace the dense gas regions as sites of massive star formation. The dust temperature of the 1.1 mm objects also demonstrated good correlation with the 24 μm flux connected to massive star formation. This supports the hypothesis that the heating source of the cold dust is mainly local star-formation activity in the 1.1 mm objects. The classification of the 1.1 mm objects based on the existence of star-formation activity reveals the differences in the dust temperature, gas mass, and radius, which reflects the evolution sequence of GMCs. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  16. RADIO IMAGING OF THE NGC 2024 FIR 5/6 REGION: A HYPERCOMPACT H II REGION CANDIDATE IN ORION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Minho; Kang, Miju; Lee, Jeong-Eun, E-mail: minho@kasi.re.kr

    The NGC 2024 FIR 5/6 region was observed in the 6.9 mm continuum with an angular resolution of about 1.5 arcsec. The 6.9 mm continuum map shows four compact sources, FIR 5w, 5e, 6c, and 6n, as well as an extended structure of the ionization front associated with the optical nebulosity. FIR 6c has a source size of about 0.4 arcsec or 150 AU. The spectral energy distribution (SED) of FIR 6c is peculiar: rising steeply around 6.9 mm and flat around 1 mm. The possibility of a hypercompact H II region is explored. If the millimeter flux of FIRmore » 6c comes from hot ionized gas heated by a single object at the center, the central object may be a B1 star of about 5800 solar luminosities and about 13 solar masses. The 6.9 mm continuum of FIR 6n may be a mixture of free-free emission and dust continuum emission. Archival data show that both FIR 6n and 6c exhibit water maser activity, suggesting the existence of shocked gas around them. The 6.9 mm continuum emission from FIR 5w has a size of about 1.8 arcsec or 760 AU. The SEDs suggest that the 6.9 mm emission of FIR 5w and 5e comes from dust, and the masses of the dense molecular gas are about 0.6 and 0.5 solar masses, respectively.« less

  17. ALMA observations of anisotropic dust mass loss in the inner circumstellar environment of the red supergiant VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    O'Gorman, E.; Vlemmings, W.; Richards, A. M. S.; Baudry, A.; De Beck, E.; Decin, L.; Harper, G. M.; Humphreys, E. M.; Kervella, P.; Khouri, T.; Muller, S.

    2015-01-01

    The processes leading to dust formation and the subsequent role it plays in driving mass loss in cool evolved stars is an area of intense study. Here we present high resolution ALMA Science Verification data of the continuum emission around the highly evolved oxygen-rich red supergiant VY CMa. These data enable us to study the dust in its inner circumstellar environment at a spatial resolution of 129 mas at 321 GHz and 59 mas at 658 GHz, thus allowing us to trace dust on spatial scales down to 11 R⋆ (71 AU). Two prominent dust components are detected and resolved. The brightest dust component, C, is located 334 mas (61 R⋆) southeast of the star and has a dust mass of at least 2.5 × 10-4 M⊙. It has a dust emissivity spectral index of β = -0.1 at its peak, implying that it is optically thick at these frequencies with a cool core of Td ≲ 100 K. Interestingly, not a single molecule in the ALMA data has emission close to the peak of this massive dust clump. The other main dust component, VY, is located at the position of the star and contains a total dust mass of 4.0 × 10-5 M⊙. It also contains a weaker dust feature extending over 60 R⋆ to the north with the total component having a typical dust emissivity spectral index of β = 0.7. We find that at least 17% of the dust mass around VY CMa is located in clumps ejected within a more quiescent roughly spherical stellar wind, with a quiescent dust mass loss rate of 5 × 10-6 M⊙yr-1. The anisotropic morphology of the dust indicates a continuous, directed mass loss over a few decades, suggesting that this mass loss cannot be driven by large convection cells alone. Appendices are available in electronic form at http://www.aanda.org

  18. Circumstellar Structure Properties of Young Stellar Objects: Envelopes, Bipolar Outflows, and Disks

    NASA Astrophysics Data System (ADS)

    Kwon, Woojin

    2009-12-01

    Physical properties of the three main structures in young stellar objects (YSOs), envelopes, bipolar outflows, and circumstellar disks, have been studied using radio interferometers: the Berkeley-Illinois-Maryland Association (BIMA) array and the Combined Array for Research in Millimeter-wave Astronomy (CARMA). (1) Envelopes. Three Class 0 YSOs (L1448 IRS 2, L1448 IRS 3, and L1157) have been observed by CARMA at λ = 1.3 mm and 2.7 mm continuum. Through visibility modeling to fit the two wavelength continuum data simultaneously, we found that the dust opacity spectral index (β) of Class 0 YSOs is around unity, which implies that dust grains have significantly grown already at the earliest stage. In addition, we discussed the radial dependence of β detected in L1448 IRS 3B and also estimated the density distribution of the three targets. (2) Bipolar outflows. Polarimetric observations in the λ = 1.3 mm continuum and CO, as well as spectral line observations in 13CO and C18O have been carried out toward L1448 IRS 3, which has three Class 0 YSOs, using BIMA. We clearly identified two interacting bipolar outflows from the "binary system" of IRS 3A and 3B and estimated the velocity, inclination, and opening angle of the 3B bipolar outflow, using Bayesian inference. Also, we showed that the "binary system" can be bound gravitationally and we estimated the specific angular momentum, which is between those of binary stars and molecular cloud cores. In addition, we marginally detected linear polarizations at the center of IRS 3B (implying a toroidal magnetic field) in continuum and at the bipolar outflow region in CO. (3) Circumstellar disks. We present the results of 6 objects (CI Tau, DL Tau, DO Tau, FT Tau, Haro 6-13, and HL Tau) in our T Tauri disk survey using CARMA. The data consist of λ = 1.3 mm and 2.7 mm continuum with an angular resolution up to 0.13". Through visibility modeling of two disk models (power-law disk with a Gaussian edge and viscous accretion disk) to fit the two wavelength data simultaneously in Bayesian inference, we constrained disk properties. In addition, we detected a dust lane at 100 AU radius of HL Tau, which is gravitationally unstable and can be fragmented. Besides, CI Tau and DL Tau appear to have a spiral pattern. Moreover, we found that more evolved disks have a shallower density gradient and that disks with a smaller β are less massive, which implies "hidden" masses in the cold midplane and/or in large grains. Finally, we found that the accretion disk model is preferred by HL Tau, which has a strong bipolar outflow and accretion, while the power-law disk model is preferred by DL Tau, which has experienced dust settlement and has weak accretion. This implies that the accretion disk model could be applied to disks only in a limited age range.

  19. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets.

    PubMed

    Ishii, Hope A; Bradley, John P; Dai, Zu Rong; Chi, Miaofang; Kearsley, Anton T; Burchell, Mark J; Browning, Nigel D; Molster, Frank

    2008-01-25

    The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.

  20. Weak bump quasars

    NASA Technical Reports Server (NTRS)

    Wilkes, B. J.; Mcdowell, J.

    1994-01-01

    Research into the optical, ultraviolet and infrared continuum emission from quasars and their host galaxies was carried out. The main results were the discovery of quasars with unusually weak infrared emission and the construction of a quantitative estimate of the dispersion in quasar continuum properties. One of the major uncertainties in the measurement of quasar continuum strength is the contribution to the continuum of the quasar host galaxy as a function of wavelength. Continuum templates were constructed for different types of host galaxy and individual estimates made of the decomposed quasar and host continua based on existing observations of the target quasars. The results are that host galaxy contamination is worse than previously suspected, and some apparent weak bump quasars are really normal quasars with strong host galaxies. However, the existence of true weak bump quasars such as PHL 909 was confirmed. The study of the link between the bump strength and other wavebands was continued by comparing with IRAS data. There is evidence that excess far infrared radiation is correlated with weaker ultraviolet bumps. This argues against an orientation effect and implies a probable link with the host galaxy environment, for instance the presence of a luminous starburst. However, the evidence still favors the idea that reddening is not important in those objects with ultraviolet weak bumps. The same work has led to the discovery of a class of infrared weak quasars. Pushing another part of the envelope of quasar continuum parameter space, the IR-weak quasars have implications for understanding the effects of reddening internal to the quasars, the reality of ultraviolet turnovers, and may allow further tests of the Phinney dust model for the IR continuum. They will also be important objects for studying the claimed IR to x-ray continuum correlation.

  1. ALMA sub-mm maser and dust distribution of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Richards, A. M. S.; Impellizzeri, C. M. V.; Humphreys, E. M.; Vlahakis, C.; Vlemmings, W.; Baudry, A.; De Beck, E.; Decin, L.; Etoka, S.; Gray, M. D.; Harper, G. M.; Hunter, T. R.; Kervella, P.; Kerschbaum, F.; McDonald, I.; Melnick, G.; Muller, S.; Neufeld, D.; O'Gorman, E.; Parfenov, S. Yu.; Peck, A. B.; Shinnaga, H.; Sobolev, A. M.; Testi, L.; Uscanga, L.; Wootten, A.; Yates, J. A.; Zijlstra, A.

    2014-12-01

    Aims: Cool, evolved stars have copious, enriched winds. Observations have so far not fully constrained models for the shaping and acceleration of these winds. We need to understand the dynamics better, from the pulsating stellar surface to ~10 stellar radii, where radiation pressure on dust is fully effective. Asymmetric nebulae around some red supergiants imply the action of additional forces. Methods: We retrieved ALMA Science Verification data providing images of sub-mm line and continuum emission from VY CMa. This enables us to locate water masers with milli-arcsec accuracy and to resolve the dusty continuum. Results: The 658, 321, and 325 GHz masers lie in irregular, thick shells at increasing distances from the centre of expansion. For the first time this is confirmed as the stellar position, coinciding with a compact peak offset to the NW of the brightest continuum emission. The maser shells overlap but avoid each other on scales of up to 10 au. Their distribution is broadly consistent with excitation models but the conditions and kinematics are complicated by wind collisions, clumping, and asymmetries. Appendices are available in electronic form at http://www.aanda.org

  2. The Extraordinary Outburst in the Massive Protostellar System NGC 6334I-MM1: Emergence of Strong 6.7 GHz Methanol Masers

    NASA Astrophysics Data System (ADS)

    Hunter, T. R.; Brogan, C. L.; MacLeod, G. C.; Cyganowski, C. J.; Chibueze, J. O.; Friesen, R.; Hirota, T.; Smits, D. P.; Chandler, C. J.; Indebetouw, R.

    2018-02-01

    We report the first sub-arcsecond VLA imaging of 6 GHz continuum, methanol maser, and excited-state hydroxyl maser emission toward the massive protostellar cluster NGC 6334I following the recent 2015 outburst in (sub)millimeter continuum toward MM1, the strongest (sub)millimeter source in the protocluster. In addition to detections toward the previously known 6.7 GHz Class II methanol maser sites in the hot core MM2 and the UCHII region MM3 (NGC 6334F), we find new maser features toward several components of MM1, along with weaker features ∼1″ north, west, and southwest of MM1, and toward the nonthermal radio continuum source CM2. None of these areas have heretofore exhibited Class II methanol maser emission in three decades of observations. The strongest MM1 masers trace a dust cavity, while no masers are seen toward the strongest dust sources MM1A, 1B, and 1D. The locations of the masers are consistent with a combination of increased radiative pumping due to elevated dust grain temperature following the outburst, the presence of infrared photon propagation cavities, and the presence of high methanol column densities as indicated by ALMA images of thermal transitions. The nonthermal radio emission source CM2 (2″ north of MM1) also exhibits new maser emission from the excited 6.035 and 6.030 GHz OH lines. Using the Zeeman effect, we measure a line-of-sight magnetic field of +0.5 to +3.7 mG toward CM2. In agreement with previous studies, we also detect numerous methanol and excited OH maser spots toward the UCHII region MM3, with predominantly negative line-of-sight magnetic field strengths of ‑2 to ‑5 mG and an intriguing south–north field reversal.

  3. Grain growth in Class I protostar Per-emb-50: a dust continuum analysis with NOEMA & SMA .

    NASA Astrophysics Data System (ADS)

    Agurto-Gangas, C.; Pineda, J. E.; Testi, L.; Caselli, P.; Szucs, L.; Tazzari, M.; Dunham, M.; Stephens, I. W.; Miotello, A.

    A good understanding of when dust grains grow from sub-micrometer to millimeter sizes occurs is crucial for models of planet formation. This provides the first step towards the production of pebbles and planetesimals in protoplanetary disks. Thanks to detailed studies of the spectral index in Class II disks, it is well established that Class II objects have already dust grains of millimetres sizes, however, it is not clear when in the star formation process this grain growth occurs. Here, we present interferometric data from NOEMA at 3 mm and SMA at 1.3 mm of the Class I protostar, Per-emb-50, to determine the flux density spectral index at mm-wavelengths of the unresolved disk and the surrounding envelope. We find a spectral index in the unresolved disk 30% smaller than the envelope, alpha env=2.18, comparable to values obtained toward Class 0 sources.

  4. An Azimuthal Asymmetry in the LkHα 330 Disk

    NASA Astrophysics Data System (ADS)

    Isella, Andrea; Pérez, Laura M.; Carpenter, John M.; Ricci, Luca; Andrews, Sean; Rosenfeld, Katherine

    2013-09-01

    Theory predicts that giant planets and low mass stellar companions shape circumstellar disks by opening annular gaps in the gas and dust spatial distribution. For more than a decade it has been debated whether this is the dominant process that leads to the formation of transitional disks. In this paper, we present millimeter-wave interferometric observations of the transitional disk around the young intermediate mass star LkHα 330. These observations reveal a lopsided ring in the 1.3 mm dust thermal emission characterized by a radius of about 100 AU and an azimuthal intensity variation of a factor of two. By comparing the observations with a Gaussian parametric model, we find that the observed asymmetry is consistent with a circular arc, that extends azimuthally by about 90° and emits about 1/3 of the total continuum flux at 1.3 mm. Hydrodynamic simulations show that this structure is similar to the azimuthal asymmetries in the disk surface density that might be produced by the dynamical interaction with unseen low mass companions orbiting within 70 AU from the central star. We argue that such asymmetries might lead to azimuthal variations in the millimeter-wave dust opacity and in the dust temperature, which will also affect the millimeter-wave continuum emission. Alternative explanations for the observed asymmetry that do not require the presence of companions cannot be ruled out with the existing data. Further observations of both the dust and molecular gas emission are required to derive firm conclusions on the origin of the asymmetry observed in the LkHα 330 disk.

  5. A Massive Shell of Supernova-Formed Dust in SNR G54.1+0.3

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Arendt, Richard G.; Borkowski, Kazimiera J.; Reynolds, Stephen P.; Slane, Patrick; Gelfand, Joseph D.; Raymond, John C.

    2017-01-01

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapsesupernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed inSN1987A. We present an analysis of observations from the Spitzer Space Telescope, Herschel SpaceObservatory, Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding thepulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 m to amagnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, whichexhibits the same spectral signature. If this species is responsible for producing the observed spectral feature andaccounts for a significant fraction of the observed infrared continuum, we find that it would be the dominantconstituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such ascarbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3Me. Wediscuss how these results may be affected by varying dust grain properties and self-consistent grain heating models.The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SNformeddust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a clusterin which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 1627Me andimply a high dust condensation efficiency, similar to that found for Cas A and SN1987A. The study providesanother example of significant dust formation in a Type IIP SN explosion and sheds light on the properties ofpristine SN-condensed dust.

  6. QUANTIFYING THE HEATING SOURCES FOR MID-INFRARED DUST EMISSIONS IN GALAXIES: THE CASE OF M 81

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, N.; Zhao, Y.; Bendo, G. J.

    2014-12-20

    With the newly available photometric images at 250 and 500 μm from the Herschel Space Observatory, we study quantitative correlations over a sub-kiloparsec scale among three distinct emission components in the interstellar medium of the nearby spiral galaxy M 81 (NGC 3031): (1) I {sub 8} or I {sub 24}, the surface brightness of the mid-infrared emission observed in the Spitzer Space Telescope 8 or 24 μm band, with I {sub 8} and I {sub 24} being dominated by the emissions from polycyclic aromatic hydrocarbons (PAHs) and very small grains (VSGs) of dust, respectively; (2) I {sub 500}, that of the coldmore » dust continuum emission in the Herschel Space Observatory 500 μm band, dominated by the emission from large dust grains heated by evolved stars; and (3) I {sub Hα}, a nominal surface brightness of the Hα line emission, from gas ionized by newly formed massive stars. The results from our correlation study, free from any assumption on or modeling of dust emissivity law or dust temperatures, present solid evidence for significant heating of PAHs and VSGs by evolved stars. In the case of M 81, about 67% (48%) of the 8 μm (24 μm ) emission derives its heating from evolved stars, with the remainder attributed to radiation heating associated with ionizing stars.« less

  7. Dust Properties of Local Dust-obscured Galaxies with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J.

    2013-11-01

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S ν(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S ν(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 1011(L ⊙) and 4-14 × 107(M ⊙), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.

  8. INFRARED SPECTROSCOPY OF SYMBIOTIC STARS. IX. D-TYPE SYMBIOTIC NOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinkle, Kenneth H.; Joyce, Richard R.; Fekel, Francis C.

    2013-06-10

    Time-series spectra of the near-infrared 1.6 {mu}m region have been obtained for five of the six known D-type symbiotic novae. The spectra map the pulsation kinematics of the Mira component in the Mira-white dwarf binary system and provide the center-of-mass velocity for the Mira. No orbital motion is detected in agreement with previous estimates of orbital periods {approx}>100 yr and semimajor axes {approx}50 AU. The 1-5 {mu}m spectra of the Miras show line weakening during dust obscuration events. This results from scattering and continuum emission by 1000 K dust. In the heavily obscured HM Sge system the 4.6 {mu}m COmore » spectrum formed in 1000 K gas is seen in emission against an optically thick dust continuum. Spectral features that are typically produced in either the cool molecular region or the expanding circumstellar region of late-type stars cannot be detected in the D-symbiotic novae. This is in accord with the colliding wind model for interaction between the white dwarf and Mira. Arguments are presented that the 1000 K gas and dust are not Mira circumstellar material but are in the wind interaction region of the colliding winds. CO is the first molecule detected in this region. We suggest that dust condensing in the intershock region is the origin of the dust obscuration. This model explains variations in the obscuration. Toward the highly obscured Mira in HM Sge the dust zone is estimated to be {approx}0.1 AU thick. The intershock wind interaction zone appears thinnest in the most active systems. Drawing on multiple arguments masses are estimated for the system components. The Miras in most D-symbiotic novae have descended from intermediate mass progenitors. The large amount of mass lost from the Mira combined with the massive white dwarf companion suggests that these systems are supernova candidates. However, timescales and the number of objects make these rare events.« less

  9. GASPS--A Herschel Survey of Gas and Dust in Protoplanetary Disks: Summary and Initial Statistics

    NASA Technical Reports Server (NTRS)

    Dent, W.R.F.; Thi, W. F.; Kamp, I.; Williams, J. P.; Menard, F.; Andrews, S.; Ardila, D.; Aresu, G.; Augereau, J.-C.; Barrado y Navascues, D.; hide

    2013-01-01

    We describe a large-scale far-infrared line and continuum survey of protoplanetary disk through to young debris disk systems carried out using the ACS instrument on the Herschel Space Observatory. This Open Time Key program, known as GASPS (Gas Survey of Protoplanetary Systems), targeted approx. 250 young stars in narrow wavelength regions covering the [OI] fine structure line at 63 micron the brightest far-infrared line in such objects. A subset of the brightest targets were also surveyed in [OI]145 micron, [CII] at 157 µm, as well as several transitions of H2O and high-excitation CO lines at selected wavelengths between 78 and 180 micron. Additionally, GASPS included continuum photometry at 70, 100 and 160 micron, around the peak of the dust emission. The targets were SED Class II– III T Tauri stars and debris disks from seven nearby young associations, along with a comparable sample of isolated Herbig AeBe stars. The aim was to study the global gas and dust content in a wide sample of circumstellar disks, combining the results with models in a systematic way. In this overview paper we review the scientific aims, target selection and observing strategy of the program. We summarize some of the initial results, showing line identifications, listing the detections, and giving a first statistical study of line detectability. The [OI] line at 63 micron was the brightest line seen in almost all objects, by a factor of 10. Overall [OI] 63 micron detection rates were 49%, with 100% of HAeBe stars and 43% of T Tauri stars detected. A comparison with published disk dust masses (derived mainly from sub-mm continuum, assuming standard values of the mm mass opacity) shows a dust mass threshold for [OI] 63 µm detection of approx.10(exp -5) Solar M.. Normalizing to a distance of 140 pc, 84% of objects with dust masses =10 (exp -5) Solar M can be detected in this line in the present survey; 32% of those of mass 10(exp -6) – 10 (exp -5) Solar M, and only a very small number of unusual objects with lower masses can be detected. This is consistent with models with a moderate UV excess and disk flaring. For a given disk mass, [OI] detectability is lower for M stars compared with earlier spectral types. Both the continuum and line emission was, in most systems, spatially and spectrally unresolved and centered on the star, suggesting that emission in most cases was from the disk. Approximately 10 objects showed resolved emission, most likely from outflows. In the GASPS sample, [OI] detection rates in T Tauri associations in the 0.3–4 Myr age range were approx. 50%. For each association in the 5–20 Myr age range, approx. 2 stars remain detectable in [OI] 63 micron, and no systems were detected in associations with age >20 Myr. Comparing with the total number of young stars in each association, and assuming a ISM-like gas/dust ratio, this indicates that approx. 18% of stars retain a gas-rich disk of total mass approx. Jupiter- M for 1–4 Myr, 1–7% keep such disks for 5–10 Myr, but none are detected beyond 10–20 Myr. The brightest [OI] objects from GASPS were also observed in [OI]145 micron, [CII]157 micron and CO J = 18- 17, with detection rates of 20–40%. Detection of the [CII] line was not correlated with disk mass, suggesting it arises more commonly from a compact remnant envelope.

  10. An Explanation of the Very Low Radio Flux of Young Planet-mass Companions

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Lin; Close, Laird M.; Eisner, Josh A.; Sheehan, Patrick D.

    2017-12-01

    We report Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum upper limits for five planetary-mass companions DH Tau B, CT Cha B, GSC 6214-210 B, 1RXS 1609 B, and GQ Lup B. Our survey, together with other ALMA studies, have yielded null results for disks around young planet-mass companions and placed stringent dust mass upper limits, typically less than 0.1 M ⊕, when assuming dust continuum is optically thin. Such low-mass gas/dust content can lead to a disk lifetime estimate (from accretion rates) much shorter than the age of the system. To alleviate this timescale discrepancy, we suggest that disks around wide companions might be very compact and optically thick in order to sustain a few Myr of accretion, yet have very weak (sub)millimeter flux so as to still be elusive to ALMA. Our order-of-magnitude estimate shows that compact optically thick disks might be smaller than 1000 R Jup and only emit ∼μJy of flux in the (sub)millimeter, but their average temperature can be higher than that of circumstellar disks. The high disk temperature could impede satellite formation, but it also suggests that mid- to far-infrared might be more favorable than radio wavelengths to characterize disk properties. Finally, the compact disk size might imply that dynamical encounters between the companion and the star, or any other scatterers in the system, play a role in the formation of planetary-mass companions.

  11. On the Nature of Orion Source I

    NASA Astrophysics Data System (ADS)

    Báez-Rubio, A.; Jiménez-Serra, I.; Martín-Pintado, J.; Zhang, Q.; Curiel, S.

    2018-01-01

    The Kleinmann–Low nebula in Orion, the closest region of massive star formation, harbors Source I, whose nature is under debate. Knowledge of this source may have profound implications for our understanding of the energetics of the hot core in Orion KL since it might be the main heating source in the region. The spectral energy distribution of this source in the radio is characterized by a positive spectral index close to 2, which is consistent with (i) thermal bremsstrahlung emission of ionized hydrogen gas produced by a central massive protostar, or (ii) photospheric bremsstrahlung emission produced by electrons when deflected by the interaction with neutral and molecular hydrogen like Mira-like variable stars. If ionized hydrogen gas were responsible for the observed continuum emission, its modeling would predict detectable emission from hydrogen radio recombination lines (RRLs). However, our SMA observations were obtained with a high enough sensitivity to rule out that the radio continuum emission arises from a dense hypercompact H II region because the H26α line would have been detected, in contrast with our observations. To explain the observational constraints, we investigate further the nature of the radio continuum emission from source I. We have compared available radio continuum data with the predictions from our upgraded non-LTE 3D radiative transfer model, MOdel for REcombination LInes, to show that radio continuum fluxes and sizes can only be reproduced by assuming both dust and bremsstrahlung emission from neutral gas. The dust emission contribution is significant at ν ≥ 43 GHz. In addition, our RRL peak intensity predictions for the ionized metals case are consistent with the nondetection of Na and K RRLs at millimeter and submillimeter wavelengths.

  12. THz Sources for Space

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Ward, John; Maiwald, Frank; Mehdi, Imran

    2007-01-01

    Terahertz is the primary frequency for line and continuum radiation from cool (5-100K) gas (atoms and molecules) and dust. This viewgraph presentation reviews the reasons for the interest in Terahertz Space Applications; the Terahertz Space Missions: in the past, present and planned for the future, Terahertz source requirements and examples of some JPL instruments; and a case study for a flight deliverable: THz Local Oscillators for ESA s Herschel Space Telescope

  13. Enigmatic Extinction: An Investigation of the 2175Å Extinction Bump in M101

    NASA Astrophysics Data System (ADS)

    Danowski, Meredith E.; Cook, Timothy; Gordon, Karl D.; Chakrabarti, Supriya; Lawton, Brandon L.; Misselt, Karl A.

    2014-06-01

    Evidence from studies of starburst galaxies indicates that active formation of high mass stars modifies the UV dust extinction curve as seen by a lack of the characteristic 2175Å bump. For over 45 years, the source of the 2175Å extinction feature has yet to be positively identified. Small aromatic/PAH grains are suggested as a leading contender in dust grain models. The face-on spiral galaxy M101 is an ideal laboratory for the study of dust, with many well-studied HII regions and a steep metallicity and ionization gradient.The Interstellar Medium Absorption Gradient Experiment Rocket (IMAGER) probes the correlation between dust extinction, and the metallicity and radiation environment in M101 at ultraviolet wavelengths. IMAGER simultaneously images M101 in three 400Å-wide bandpasses, measuring the apparent strength of the 2175Å bump and the UV continuum.Combining data from IMAGER with high S/N far- and near- UV observations from the MAMA detectors on the Hubble STIS instrument, we examine the apparent strength of the 2175Å bump in HII regions of M101. With additional infrared data from Spitzer, the DIRTY radiative transfer model, and stellar evolution models, we probe the correlation between the 2175Å feature and the aromatic/PAH features across HII regions of varying metallicity and radiation field hardness. The results of this experiment will directly impact our understanding of the nature of dust and our ability to accurately account for the effects of dust on observations at all redshifts.

  14. Structure and chemistry in the northwestern condensation of the Serpens molecular cloud core

    NASA Technical Reports Server (NTRS)

    Mcmullin, Joseph P.; Mundy, Lee G.; Wilking, Bruce A.; Hezel, T.; Blake, Geoff A.

    1994-01-01

    We present single-dish and interferometric observations of gas and dust in the core of the Serpens molecular cloud, focusing on the northwestern condensation. Single-dish molecular line observations are used to probe the structure and chemistry of the condensation while high-resolution images of CS and CH30H are combined with continuum observations from lambda = 1.3 mm to lambda = 3.5 cm to study the subcondensations and overall distribution of dust. For the northwestern condensation, we derive a characteristic density of 3 x 10(exp 5)/ cu cm and an estimated total mass of approximately 70 solar mass. We find compact molecular emission associated with the far-infrared source S68 FIRS 1, and with a newly detected subcondensation named S68 N. Comparison of the large-and small-scale emission reveals that most of the material in the northwest condensation is not directly associated with these compact sources, suggesting a youthful age for this region. CO J = 1 approaches 0 observations indicate widespread outflow activity. However, no unique association of embedded objects with outflows is possible with our observations. The SiO emission is found to be extended with the overall emission centered about S68 FIRS 1; the offset of the peak emission from all of the known continuum sources and the coincidence between the blueshifted SiO emission and blueshifted high-velocity gas traced by CO and CS is consistent with formation of SiO in shocks. Derived abundances of CO and HCO(+) are consistent with quiescent and other star-forming regions while CS, HCN, and H2CO abundances indicate mild depletions within the condensation. Spectral energy distribution fits to S68 FIRS 1 indicate a modest luminosity (50-60 solar luminosity), implying that it is a low-mass (0.5-3 solar mass) young stellar object. Radio continuum observations of the triple source toward S68 FIRS 1 indicate that the lobe emission is varying on timescales less than or equal to 1 yr while the central component is relatively constant over approximately 14 yr. The nature of a newly detected compact emission region, S68 N, is less certain due to the absence of firm continuum detections; based on its low luminosity (less than 5 solar luminosity) and strong molecular emission, S68 N may be prestellar subcondensation of gas and dust.

  15. Dust Coagulation in Protoplanetary Accretion Disks

    NASA Technical Reports Server (NTRS)

    Schmitt, W.; Henning, Th.; Mucha, R.

    1996-01-01

    The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.

  16. Circumbinary, not transitional: on the spiral arms, cavity, shadows, fast radial flows, streamers, and horseshoe in the HD 142527 disc

    NASA Astrophysics Data System (ADS)

    Price, Daniel J.; Cuello, Nicolás; Pinte, Christophe; Mentiplay, Daniel; Casassus, Simon; Christiaens, Valentin; Kennedy, Grant M.; Cuadra, Jorge; Sebastian Perez, M.; Marino, Sebastian; Armitage, Philip J.; Zurlo, Alice; Juhasz, Attila; Ragusa, Enrico; Laibe, Guillaume; Lodato, Giuseppe

    2018-06-01

    We present 3D hydrodynamical models of the HD 142527 protoplanetary disc, a bright and well-studied disc that shows spirals and shadows in scattered light around a 100 au gas cavity, a large horseshoe dust structure in mm continuum emission, together with mysterious fast radial flows and streamers seen in gas kinematics. By considering several possible orbits consistent with the observed arc, we show that all of the main observational features can be explained by one mechanism - the interaction between the disc and the observed binary companion. We find that the spirals, shadows, and horseshoe are only produced in the correct position angles by a companion on an inclined and eccentric orbit approaching periastron - the `red' family from Lacour et al. Dust-gas simulations show radial and azimuthal concentration of dust around the cavity, consistent with the observed horseshoe. The success of this model in the HD 142527 disc suggests other mm-bright transition discs showing cavities, spirals, and dust asymmetries may also be explained by the interaction with central companions.

  17. Spitzer Observations of Dust Destruction in the Puppis A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli,; Blair, William P.; Ghavamian, Parviz; Long, Knox S.

    2010-01-01

    Imaging and spectral observations of the Puppis A supernova remnant (SNR) with the Spitzer Space Telescope confirm that its IR emission is dominated by the thermal continuum emission of swept-up interstellar dust which is collisionally heated by the X-ray emitting gas of the SNR. Line emission is too weak to affect the fluxes measured in broadband observations, and is poorly correlated with the IR or X-ray emission. Modeling of spectra from regions both in the SNR and in the associated ISM show that the ubiquitous polycyclic aromatic hydrocarbons (PAHs) of the ISM are destroyed within the SNR, along with nearly 25% of the mass of graphite and silicate dust grains.

  18. The Galactic Centre Mini-Spiral in the MM-Regime

    NASA Technical Reports Server (NTRS)

    Kunneriath, D.; Eckart, A.; Vogel, S. N.; Teuben, P.; Muzic, I.; Schoedel, R.; Garcia-Marin, M.; Moultaka, J.; Staguhn, J.; Straubmeier, C.; hide

    2012-01-01

    Context: The mini-spiral is a feature of the interstellar medium in the central approx.2 pc of the Galactic center. It is composed of several streamers of dust and ionised and atomic gas with temperatures between a few 100 K to 10(exp 4) K. There is evidence that these streamers are related to the so-called circumnuclear disk of molecular gas and are ionized by photons from massive, hot stars in the central parsec. Aims: We attempt to constrain the emission mechanisms and physical properties of the ionized gas and dust of the mini-spiral region with the help of our multiwavelength data sets. Methods: Our observations were carried out at 1.3 mm and 3 mm with the mm interferometric array CARMA in California in March and April 2009, with the MIR instrument VISIR at ESO's VLT in June 2006, and the NIR Bry with VLT NACO in August 2009. Results: We present high resolution maps of the mini-spiral, and obtain a spectral index of 0.5 +/- 0.25 for Sgr A *, indicating an inverted synchrotron spectrum. We find electron densities within the range 0.8-1.5 x 10(exp 4)/cu cm for the mini-spiral from the radio continuum maps, along with a dust mass contribution of approx. 0.25 Mo from the MIR dust continuum. and extinctions ranging from 1.8-3 at 2.16 microns in the Bry line. Conclusions: We observe a mixture of negative and positive spectral indices in our 1.3 mm and 3 mm observations of the extended emission of the mini-spiral, which we interpret as evidence that there are a range of contributions to the thermal free-free emission by the ionized gas emission and by dust at 1.3 mm.

  19. Dust inflated accretion disc as the origin of the broad line region in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Baskin, Alexei; Laor, Ari

    2018-02-01

    The broad line region (BLR) in active galactic nuclei (AGNs) is composed of dense gas (˜1011 cm-3) on sub-pc scale, which absorbs about 30 per cent of the ionizing continuum. The outer size of the BLR is likely set by dust sublimation, and its density by the incident radiation pressure compression (RPC). But, what is the origin of this gas, and what sets its covering factor (CF)? Czerny & Hryniewicz (2011) suggested that the BLR is a failed dusty wind from the outer accretion disc. We explore the expected dust properties, and the implied BLR structure. We find that graphite grains sublimate only at T ≃ 2000 K at the predicted density of ˜1011 cm-3, and therefore large graphite grains (≥0.3 μm) survive down to the observed size of the BLR, RBLR. The dust opacity in the accretion disc atmosphere is ˜50 times larger than previously assumed, and leads to an inflated torus-like structure, with a predicted peak height at RBLR. The illuminated surface of this torus-like structure is a natural place for the BLR. The BLR CF is mostly set by the gas metallicity, the radiative accretion efficiency, a dynamic configuration and ablation by the incident optical-UV continuum. This model predicts that the BLR should extend inwards of RBLR to the disc radius where the surface temperature is ≃2000 K, which occurs at Rin ≃ 0.18RBLR. The value of Rin can be tested by reverberation mapping of the higher ionization lines, predicted by RPC to peak well inside RBLR. The dust inflated disc scenario can also be tested based on the predicted response of RBLR and the CF to changes in the AGN luminosity and accretion rate.

  20. HST Imaging of Dust Structures and Stars in the Ram Pressure Stripped Virgo Spirals NGC 4402 and NGC 4522: Stripped from the Outside In with Dense Cloud Decoupling

    NASA Astrophysics Data System (ADS)

    Abramson, A.; Kenney, J.; Crowl, H.; Tal, T.

    2016-08-01

    We describe and constrain the origins of interstellar medium (ISM) structures likely created by ongoing intracluster medium (ICM) ram pressure stripping in two Virgo Cluster spirals, NGC 4522 and NGC 4402, using Hubble Space Telescope (HST) BVI images of dust extinction and stars, as well as supplementary H I, Hα, and radio continuum images. With a spatial resolution of ˜10 pc in the HST images, this is the highest-resolution study to date of the physical processes that occur during an ICM-ISM ram pressure stripping interaction, ram pressure stripping's effects on the multi-phase, multi-density ISM, and the formation and evolution of ram-pressure-stripped tails. In dust extinction, we view the leading side of NGC 4402 and the trailing side of NGC 4522, and so we see distinct types of features in both. In both galaxies, we identify some regions where dense clouds are decoupling or have decoupled and others where it appears that kiloparsec-sized sections of the ISM are moving coherently. NGC 4522 has experienced stronger, more recent pressure and has the “jellyfish” morphology characteristic of some ram-pressure-stripped galaxies. Its stripped tail extends up from the disk plane in continuous upturns of dust and stars curving up to ˜2 kpc above the disk plane. On the other side of the galaxy, there is a kinematically and morphologically distinct extraplanar arm of young, blue stars and ISM above a mostly stripped portion of the disk, and between it and the disk plane are decoupled dust clouds that have not been completely stripped. The leading side of NGC 4402 contains two kiloparsec-scale linear dust filaments with complex substructure that have partially decoupled from the surrounding ISM. NGC 4402 also contains long dust ridges, suggesting that large parts of the ISM are being pushed out at once. Both galaxies contain long ridges of polarized radio continuum emission indicating the presence of large-scale, ordered magnetic fields. We propose that magnetic fields could bind together gas of different densities, causing nearby gas of different densities to be stripped at the same rate and creating the large, coherent dust ridges and upturns. A number of factors likely play roles in determining what types of structures form as a result of ram pressure, including ram pressure strength and history, the location within the galaxy relative to the leading side, and pre-existing substructure in the ISM that may be bound together by magnetic fields during stripping.

  1. DUST PROPERTIES OF LOCAL DUST-OBSCURED GALAXIES WITH THE SUBMILLIMETER ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Ho Seong; Andrews, Sean M.; Geller, Margaret J., E-mail: hhwang@cfa.harvard.edu, E-mail: sandrews@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu

    We report Submillimeter Array observations of the 880 μm dust continuum emission for four dust-obscured galaxies (DOGs) in the local universe. Two DOGs are clearly detected with S{sub ν}(880 μm) =10-13 mJy and S/N > 5, but the other two are not detected with 3σ upper limits of S{sub ν}(880 μm) =5-9 mJy. Including an additional two local DOGs with submillimeter data from the literature, we determine the dust masses and temperatures for six local DOGs. The infrared luminosities and dust masses for these DOGs are in the ranges of 1.2-4.9 × 10{sup 11}(L{sub ☉}) and 4-14 × 10{sup 7}(M{submore » ☉}), respectively. The dust temperatures derived from a two-component modified blackbody function are 23-26 K and 60-124 K for the cold and warm dust components, respectively. Comparison of local DOGs with other infrared luminous galaxies with submillimeter detections shows that the dust temperatures and masses do not differ significantly among these objects. Thus, as argued previously, local DOGs are not a distinctive population among dusty galaxies, but simply represent the high-end tail of the dust obscuration distribution.« less

  2. Dust measurements in tokamaks (invited).

    PubMed

    Rudakov, D L; Yu, J H; Boedo, J A; Hollmann, E M; Krasheninnikov, S I; Moyer, R A; Muller, S H; Pigarov, A Yu; Rosenberg, M; Smirnov, R D; West, W P; Boivin, R L; Bray, B D; Brooks, N H; Hyatt, A W; Wong, C P C; Roquemore, A L; Skinner, C H; Solomon, W M; Ratynskaia, S; Fenstermacher, M E; Groth, M; Lasnier, C J; McLean, A G; Stangeby, P C

    2008-10-01

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  3. A Study of Inner Disk Gas around Young Stars in the Lupus Complex

    NASA Astrophysics Data System (ADS)

    Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri

    2018-06-01

    We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudakov, D. L.; Yu, J. H.; Boedo, J. A.

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers,more » visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.« less

  5. First images of a possible CO(+)-tail of comet P/Schwassmann-Wachmann 1 observed against the dust coma background

    NASA Technical Reports Server (NTRS)

    Jockers, Klaus; Bonev, T.; Ivanova, Violeta; Rauer, H.

    1992-01-01

    Comet P/Schwassmann-Wachmann 1 was observed with the 2m-Ritchey-Cretien Telescope of the Bulgarian National Observatory, Rozhen, Bulgaria, using the CCD-camera and focal reducer of the Max-Planck-Institute for Aeronomy. Images were taken in a red continuum window and in the 2-0 A(exp 2)Pi - X(exp 2)Sigma(+) band of CO(+) located in the blue part of the spectrum. The red images reveal an extended dust coma. From a comparison of the red and blue images a dust reddening of 13.2 percent per 1000 A is derived. At 642 nm the magnitude of the comet with a square diaphragm of 4.5 arcsec is 16.6. The blue images, taken in the CO(+) band, show a significantly different brightness distribution which is interpreted as presence of a CO(+) coma and tail superimposed on the continuum. A column density of several 10(exp 10) CO(+) molecules cm(exp -2) is derived. The tail thickness of 10(exp 5) km is unexpectedly small. We estimate the CO(+) production rate to about 6 x 10(exp 26) CO(+) particles s(exp -1). This value does not support the idea that the outbursts of this comet are caused by crystallization of amorphous water ice.

  6. Detection of Dust Condensations in the Orion Bar Photon-dominated Region

    NASA Astrophysics Data System (ADS)

    Qiu, Keping; Xie, Zeqiang; Zhang, Qizhou

    2018-03-01

    We report Submillimeter Array dust continuum and molecular spectral line observations toward the Orion Bar photon-dominated region (PDR). The 1.2 mm continuum map reveals, for the first time, a total of nine compact (r < 0.01 pc) dust condensations located within a distance of ∼0.03 pc from the dissociation front of the PDR. Part of the dust condensations are also seen in spectral line emissions of CS (5–4) and H2CS (71,7–61,6), though the CS map also reveals dense gas further away from the dissociation front. We also detect compact emissions in H2CS (60,6–50,5), (62,4–52,3) and C34S, C33S (4–3) toward bright dust condensations. The line ratio of H2CS (60,6–50,5)/(62,4–52,3) suggests a temperature of 73 ± 58 K. A nonthermal velocity dispersion of ∼0.25–0.50 km s‑1 is derived from the high spectral resolution C34S data and indicates a subsonic to transonic turbulence in the condensations. The masses of the condensations are estimated from the dust emission, and range from 0.03 to 0.3 M ⊙, all significantly lower than any critical mass that is required for self-gravity to play a crucial role. Thus the condensations are not gravitationally bound, and could not collapse to form stars. In cooperating with recent high-resolution observations of the compressed surface layers of the molecular cloud in the Bar, we speculate that the condensations are produced as a high-pressure wave induced by the expansion of the H II region compresses and enters the cloud. A velocity gradient along a direction perpendicular to the major axis of the Bar is seen in H2CS (71,7–61,6), and is consistent with the scenario that the molecular gas behind the dissociation front is being compressed.

  7. Multi-wavelength Radio Continuum Emission Studies of Dust-free Red Giants

    NASA Technical Reports Server (NTRS)

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander; Dranke, Stephen; Richards, Anita M. S.

    2013-01-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (alpha Boo: K2 III) and Aldebaran (alpha Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained a snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for alpha Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of alpha Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For alpha Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of alpha Boo. Finally, we develop a simple analytical wind model for alpha Boo based on our new long-wavelength flux measurements.

  8. MULTI-WAVELENGTH RADIO CONTINUUM EMISSION STUDIES OF DUST-FREE RED GIANTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Gorman, Eamon; Harper, Graham M.; Brown, Alexander

    2013-10-01

    Multi-wavelength centimeter continuum observations of non-dusty, non-pulsating K spectral-type red giants directly sample their chromospheres and wind acceleration zones. Such stars are feeble emitters at these wavelengths, however, and previous observations have provided only a small number of modest signal-to-noise measurements slowly accumulated over three decades. We present multi-wavelength Karl G. Jansky Very Large Array thermal continuum observations of the wind acceleration zones of two dust-free red giants, Arcturus (α Boo: K2 III) and Aldebaran (α Tau: K5 III). Importantly, most of our observations of each star were carried out over just a few days, so that we obtained amore » snapshot of the different stellar atmospheric layers sampled at different wavelengths, independent of any long-term variability. We report the first detections at several wavelengths for each star including a detection at 10 cm (3.0 GHz: S band) for both stars and a 20 cm (1.5 GHz: L band) detection for α Boo. This is the first time single (non-binary) luminosity class III red giants have been detected at these continuum wavelengths. Our long-wavelength data sample the outer layers of α Boo's atmosphere where its wind velocity is approaching (or possibly has reached) its terminal value and the ionization balance is becoming frozen-in. For α Tau, however, our long-wavelength data are still sampling its inner atmosphere, where the wind is still accelerating probably due to its lower mass-loss rate. We compare our data with published semi-empirical models based on ultraviolet data, and the marked deviations highlight the need for new atmospheric models to be developed. Spectral indices are used to discuss the possible properties of the stellar atmospheres, and we find evidence for a rapidly cooling wind in the case of α Boo. Finally, we develop a simple analytical wind model for α Boo based on our new long-wavelength flux measurements.« less

  9. Mid-IR Spectra Herbig Ae/Be Stars

    NASA Technical Reports Server (NTRS)

    Wooden, Diane; Witteborn, Fred C. (Technical Monitor)

    1997-01-01

    Herbig Ae/Be stars are intermediate mass pre-main sequence stars, the higher mass analogues to the T Tauri stars. Because of their higher mass, they are expected form more rapidly than the T Tauri stars. Whether the Herbig Ae/Be stars accrete only from collapsing infalling envelopes or whether accrete through geometrically flattened viscous accretion disks is of current debate. When the Herbig Ae/Be stars reach the main sequence they form a class called Vega-like stars which are known from their IR excesses to have debris disks, such as the famous beta Pictoris. The evolutionary scenario between the pre-main sequence Herbig Ae/Be stars and the main sequence Vega-like stars is not yet revealed and it bears on the possibility of the presence of Habitable Zone planets around the A stars. Photometric studies of Herbig Ae/Be stars have revealed that most are variable in the optical, and a subset of stars show non-periodic drops of about 2 magnitudes. These drops in visible light are accompanied by changes in their colors: at first the starlight becomes reddened, and then it becomes bluer, the polarization goes from less than 0.1 % to roughly 1% during these minima. The theory postulated by V. Grinnin is that large cometary bodies on highly eccentric orbits occult the star on their way to being sublimed, for systems that are viewed edge-on. This theory is one of several controversial theories about the nature of Herbig Ae/Be stars. A 5 year mid-IR spectrophotometric monitoring campaign was begun by Wooden and Butner in 1992 to look for correlations between the variations in visible photometry and mid-IR dust emission features. Generally the approximately 20 stars that have been observed by the NASA Ames HIFOGS spectrometer have been steady at 10 microns. There are a handful, however, that have shown variable mid-IR spectra, with 2 showing variations in both the continuum and features anti-correlated with visual photometry, and 3 showing variations in the emission features only while the continuum level remained unchanged. The first 2 stars mentioned probably have reprocessing envelopes. The other 3 stars gives important clues to the controversy over the geometry of the gas and dust around these pre-main sequence stars: the steady underlying 10 microns continuum and variable features indicates that an optically thick continuum probably arising from an accretion disk is decoupled from the optically thin emission features which may arise in a disk atmosphere. Bernadette Rodgers has joined this monitoring campaign in the near-IR using GRIMII with the goal of detecting variations in the hot dust continuum and the gas density in the dense accretion region close to these stars.

  10. A Massive Shell of Supernova-formed Dust in SNR G54.1+0.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temim, Tea; Dwek, Eli; Arendt, Richard G.

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present an analysis of observations from the Spitzer Space Telescope , Herschel Space Observatory , Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 μ m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, whichmore » exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed infrared continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3 M {sub ⊙}. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16–27 M {sub ⊙} and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN explosion and sheds light on the properties of pristine SN-condensed dust.« less

  11. Lupus disks with faint CO isotopologues: low gas/dust or high carbon depletion?

    NASA Astrophysics Data System (ADS)

    Miotello, A.; van Dishoeck, E. F.; Williams, J. P.; Ansdell, M.; Guidi, G.; Hogerheijde, M.; Manara, C. F.; Tazzari, M.; Testi, L.; van der Marel, N.; van Terwisga, S.

    2017-03-01

    Context. An era has started in which gas and dust can be observed independently in protoplanetary disks, thanks to the recent surveys with the Atacama Large Millimeter/sub-millimeter Array (ALMA). The first near-complete high-resolution disk survey in both dust and gas in a single star-forming region has been carried out in Lupus, finding surprisingly low gas-to-dust ratios. Aims: The goal of this work is to fully exploit CO isotopologue observations in Lupus, comparing them with physical-chemical model results, in order to obtain gas masses for a large number of disks and compare gas and dust properties. Methods: We have employed the grid of physical-chemical models presented previously to analyze continuum and CO isotopologue (13CO J = 3-2 and C18O J = 3-2) observations of Lupus disks, including isotope-selective processes and freeze-out. We also employed the ALMA 13CO-only detections to calculate disk gas masses for a total of 34 sources, which expands the sample of 10 disks reported earlier, where C18O was also detected. Results: We confirm that overall gas-masses are very low, often lower than 1MJ, when volatile carbon is not depleted. Accordingly, global gas-to-dust ratios are much lower than the expected interstellar-medium value of 100, which is predominantly between 1 and 10. Low CO-based gas masses and gas-to-dust ratios may indicate rapid loss of gas, or alternatively chemical evolution, for example, through sequestering of carbon from CO to more complex molecules, or carbon locked up in larger bodies. Conclusions: Current ALMA observations of 13CO and continuum emission cannot distinguish between these two hypotheses. We have simulated both scenarios, but chemical model results do not allow us to rule out one of the two, pointing to the need to calibrate CO-based masses with other tracers. Assuming that all Lupus disks have evolved mainly as a result of viscous processes over the past few Myr, the previously observed correlation between the current mass accretion rate and dust mass implies a constant gas-to-dust ratio, which is close to 100 based on the observed Mdisk/Ṁacc ratio. This in turn points to a scenario in which carbon depletion is responsible for the low luminosities of the CO isotopologue line.

  12. CO and Dust Properties in the TW Hya Disk from High-resolution ALMA Observations

    NASA Astrophysics Data System (ADS)

    Huang, Jane; Andrews, Sean M.; Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.; Bai, Xuening; Birnstiel, Til; Carpenter, John; Hughes, A. Meredith; Isella, Andrea; Pérez, Laura M.; Ricci, Luca; Zhu, Zhaohuan

    2018-01-01

    We analyze high angular resolution ALMA observations of the TW Hya disk to place constraints on the CO and dust properties. We present new, sensitive observations of the 12CO J = 3 ‑ 2 line at a spatial resolution of 8 au (0.″14). The CO emission exhibits a bright inner core, a shoulder at r ≈ 70 au, and a prominent break in slope at r ≈ 90 au. Radiative transfer modeling is used to demonstrate that the emission morphology can be reasonably reproduced with a 12CO column density profile featuring a steep decrease at r ≈ 15 au and a secondary bump peaking at r ≈ 70 au. Similar features have been identified in observations of rarer CO isotopologues, which trace heights closer to the midplane. Substructure in the underlying gas distribution or radially varying CO depletion that affects much of the disk’s vertical extent may explain the shared emission features of the main CO isotopologues. We also combine archival 1.3 mm and 870 μm continuum observations to produce a spectral index map at a spatial resolution of 2 au. The spectral index rises sharply at the continuum emission gaps at radii of 25, 41, and 47 au. This behavior suggests that the grains within the gaps are no larger than a few millimeters. Outside the continuum gaps, the low spectral index values of α ≈ 2 indicate either that grains up to centimeter size are present or that the bright continuum rings are marginally optically thick at millimeter wavelengths.

  13. The End of Protoplanetary Disk Evolution: An ALMA Survey of Upper Scorpius

    NASA Astrophysics Data System (ADS)

    Barenfeld, Scott A.; Carpenter, John M.; Sargent, Anneila I.; Ricci, Luca; Isella, Andrea

    2017-01-01

    The evolution of the mass of solids in circumstellar disks is a key factor in determining how planets form. Infrared observations have established that the dust in primordial disks vanishes around the majority of stars by an age of 5-10 Myr. However, how this disappearance proceeds is poorly constrained. Only with longer wavelength observations, where the dust emission is optically thin, is it possible to measure disk dust mass and how it varies as a function of age. To this end, we have obtained ALMA 0.88 mm observations of over 100 sources with suspected circumstellar disks in the Upper Scorpius OB Association (Upper Sco). The 5-11 Myr age of Upper Sco suggests that any such disks will be quite evolved, making this association an ideal target to compare to systems of younger disks in order to study evolution. With ALMA, we achieve an order of magnitude improvement in sensitivity over previous (sub)millimeter surveys of Upper Sco and detect 58 disks in the continuum. We calculate the total dust masses of these disks and compare their masses to those of younger disks in Taurus, Lupus, and Chamaeleon. We find strong evidence for a decline in disk dust mass between these 1-3 Myr old systems and the 5-11 Myr old Upper Sco. Our results represent the first definitive measurement of a decline in disk dust mass with age.

  14. Constraining the Structure of the Transition Disk HD 135344B (SAO 206462) by Simultaneous Modeling of Multiwavelength Gas and Dust Observations

    NASA Technical Reports Server (NTRS)

    Carmona, A.; Pinte, C.; Thi, W. F.; Benisty, M.; Menard, F.; Grady, C.; Kamp, I.; Woitke, P.; Olofsson, J.; Roberge, A.; hide

    2014-01-01

    Context: Constraining the gas and dust disk structure of transition disks, particularly in the inner dust cavity, is a crucial step toward understanding the link between them and planet formation. HD 135344B is an accreting (pre-)transition disk that displays the CO 4.7 micrometer emission extending tens of AU inside its 30 AU dust cavity. Aims: We constrain HD 135344B's disk structure from multi-instrument gas and dust observations. Methods: We used the dust radiative transfer code MCFOST and the thermochemical code ProDiMo to derive the disk structure from the simultaneous modeling of the spectral energy distribution (SED), VLT/CRIRES CO P(10) 4.75 Micrometers, Herschel/PACS [O(sub I)] 63 Micrometers, Spitzer/IRS, and JCMT CO-12 J = 3-2 spectra, VLTI/PIONIER H-band visibilities, and constraints from (sub-)mm continuum interferometry and near-IR imaging. Results: We found a disk model able to describe the current gas and dust observations simultaneously. This disk has the following structure. (1) To simultaneously reproduce the SED, the near-IR interferometry data, and the CO ro-vibrational emission, refractory grains (we suggest carbon) are present inside the silicate sublimation radius (0.08 is less than R less than 0.2 AU). (2) The dust cavity (R is less than 30 AU) is filled with gas, the surface density of the gas inside the cavity must increase with radius to fit the CO ro-vibrational line profile, a small gap of a few AU in the gas distribution is compatible with current data, and a large gap of tens of AU in the gas does not appear likely. (4) The gas-to-dust ratio inside the cavity is >100 to account for the 870 Micrometers continuum upper limit and the CO P(10) line flux. (5) The gas-to-dust ratio in the outer disk (30 is less than R less than 200 AU) is less than 10 to simultaneously describe the [O(sub I)] 63 Micrometers line flux and the CO P(10) line profile. (6) In the outer disk, most of the gas and dust mass should be located in the midplane, and a significant fraction of the dust should be in large grains. Conclusions: Simultaneous modeling of the gas and dust is required to break the model degeneracies and constrain the disk structure. An increasing gas surface density with radius in the inner cavity echoes the effect of a migrating Jovian planet in the disk structure. The low gas mass (a few Jupiter masses) throughout the HD 135344B disk supports the idea that it is an evolved disk that has already lost a large portion of its mass.

  15. ALMA BAND 8 CONTINUUM EMISSION FROM ORION SOURCE I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirota, Tomoya; Matsumoto, Naoko; Machida, Masahiro N.

    2016-12-20

    We have measured continuum flux densities of a high-mass protostar candidate, a radio source I in the Orion KL region (Orion Source I) using the Atacama Large Millimeter/Submillimeter Array (ALMA) at band 8 with an angular resolution of 0.″1. The continuum emission at 430, 460, and 490 GHz associated with Source I shows an elongated structure along the northwest–southeast direction perpendicular to the so-called low-velocity bipolar outflow. The deconvolved size of the continuum source, 90 au × 20 au, is consistent with those reported previously at other millimeter/submillimeter wavelengths. The flux density can be well fitted to the optically thick blackbody spectral energy distribution, and the brightness temperaturemore » is evaluated to be 700–800 K. It is much lower than that in the case of proton–electron or H{sup −} free–free radiations. Our data are consistent with the latest ALMA results by Plambeck and Wright, in which the continuum emission was proposed to arise from the edge-on circumstellar disk via thermal dust emission, unless the continuum source consists of an unresolved structure with a smaller beam filling factor.« less

  16. Constraining the Dust Opacity Law in Three Small and Isolated Molecular Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, K. A.; Thanjavur, K.; Di Francesco, J.

    Density profiles of isolated cores derived from thermal dust continuum emission rely on models of dust properties, such as mass opacity, that are poorly constrained. With complementary measures from near-infrared extinction maps, we can assess the reliability of commonly used dust models. In this work, we compare Herschel -derived maps of the optical depth with equivalent maps derived from CFHT WIRCAM near-infrared observations for three isolated cores: CB 68, L 429, and L 1552. We assess the dust opacities provided from four models: OH1a, OH5a, Orm1, and Orm4. Although the consistency of the models differs between the three sources, themore » results suggest that the optical properties of dust in the envelopes of the cores are best described by either silicate and bare graphite grains (e.g., Orm1) or carbonaceous grains with some coagulation and either thin or no ice mantles (e.g., OH5a). None of the models, however, individually produced the most consistent optical depth maps for every source. The results suggest that either the dust in the cores is not well-described by any one dust property model, the application of the dust models cannot be extended beyond the very center of the cores, or more complex SED fitting functions are necessary.« less

  17. The radial and azimuthal properties of volatiles and dust in the inner coma of Comet 45P/Honda-Mrkos-Pajdušáková

    NASA Astrophysics Data System (ADS)

    Harris, Walter M.; Ryan, Erin L.; Springmann, Alessondra; Mueller, Beatrice E. A.; Samarasinha, Nalin H.; Kikwaya Elou, Jean-Baptiste; Howell, Ellen S.; Lejoly, Cassandra; Bodnarik, Julia; Fitzpatrick, Ryleigh; Maciel, Ricardo; Mitchell, Adriana; Watson, Zachary Tyler

    2017-10-01

    In February 2017 comet 45P/Honda-Mrkos-Pajdušáková (HMP) passed by the Earth at a perigee distance of 0.08 AU. Such encounters provide an important opportunity for study of the inner coma region where gas and dust production occur. We report here on wide-field (30 x 30 arcminute), high-spatial resolution (35 km/pixel) observations of HMP obtained with the 90Prime One imager on the 2.3m Bok telescope at Kitt Peak. The observations were performed on February 16 and 17, when the comet was 0.1 AU from Earth, using a combination of a wide-band Gunn r’ filter and a subset of the HB filter library (OH, CN, C2, Blue Continuum). In this presentation we will discuss the distribution and color of the dust, the relative production rates of volatiles, and the implied parent-daughter photochemical evolution from radial expansion modeling.

  18. Groundbased investigation of comet 67p/churyumov- gerasimenko, target of the spacecraft Mission Rosetta

    NASA Astrophysics Data System (ADS)

    de Almeida, A. A.; Trevisan Sanzovo, D.; Sanzovo, G. C.; Boczko, R.; Miguel Torres, R.

    In this work, we make a comparative study of Comet 67P/Churyumov-Gerasimenko, target of Mission Rosetta, with Comets 1P/Halley and Hyakutake(C/1996 B2). Water and gas) release rates are derived from visual magnitudes (mv), determined mostly by amateur astronomers, and listed in several issues of International Comet Quarterly(ICQ). We make a systematic and uniform analysis of continuum fluxes obtained at visual wavelengths and, using the framework of photometric theory of Newburn & Spinrad (1985, 1989), we estimate dust release rates, qd (in g/s), effective particle sizes, a (in micron), and dust-to-gas mass ratios, for this important sample of comets. We also determine the color excess of the dust particles, CE, relative to the Sun at wavelength ranges 477.0-524.0 nm in the 1996 return of Comet 67P/Churyumov-Gerasimenko, and 365.0-484.5 nm for Comets 1P/Halley and C/1996 B2.

  19. Properties and evolution of dust in the interstellar medium.

    NASA Astrophysics Data System (ADS)

    Flagey, N.

    2007-10-01

    My thesis is dedicated to the properties and evolution of the dust in the Galactic interstellar medium (ISM), particularly the small sizes end of the dust size distribution. Throughout these three years, new infrared (IR) observations provided by the Spitzer Space Telescope helped me to bring my own contribution to the knowledge of the dust lifecycle. In order to get a view as global as possible, I have studied three different interstellar environments : the diffuse Galactic medium, a molecular cloud and a star forming region. I analyzed one line of sight that points towards the diffuse Galactic ISM, away from bright star forming regions. Combining spectroscopic and photometric data, I have built a mean Galactic near to mid IR spectrum of the dust, that I have afterwards used as a reference. The Polycyclic Aromatic Hydrocarbons (PAHs) bands are present on top of a continuum. In order to interpret the band intensity ratios in terms of PAHs size and ionization state, I have updated our dust model so that it takes into account the size dependent ionization state of the PAHs. The diffuse ISM spectrum is fit for a PAH mean size of about 60 carbon atoms and a cation fraction of about 40%. Molecular size and charged PAHs are thus present within the diffuse medium. A 3-5 μm continuum, first detected in reflection nebulae, is observed to be present in the diffuse ISM emission. This continuum accounts for 70% of the emission in the Spitzer/IRAC 3.6μm filter. Its origin is still unknown. I show that it is neither scattered light nor PAH fluorescence, as this process would require a photon conversion efficiency above 100%. I used Spitzer observations to quantify spatial variations of PAHs properties across the galaxy and on small scales within the Taurus molecular cloud. Analysis of a set of Galactic diffuse ISM sight lines show that the PAHs mean size exhibits significant dispersion, from 40 to 80 carbon atoms, while their ionization fraction stays constant within error bars. I have also analyzed mid and far-IR Spitzer images of the Taurus Molecular Cloud. Each dust component (PAHs, VSGs for Very Small Grains and BGs for Big Grains) can be related to one Spitzer channel (IRAC 8, MIPS 24 and MIPS 160 microns). A first difficulty was to obtain images of the low brightness diffuse emission across the entire cloud. I worked with Spitzer Science Center (SSC) experts to produce the IRAC 8 and MIPS 24 images. For the MIPS 160 I used an inversion algorithm developed to destripe the data. I validated the photometry of each image. The observations show that PAHs are present within a surface layer thinn! er than that penetrated by ultraviolet photons and that of VSGs emission. Such variations cannot be only explained by the extinction and must thus trace real PAH depletion within dense gas where the smallest dust particles may stick on large grains and/or coagulate. During my PhD thesis, I applied for a SSC Visiting Graduate Student grant in order to study the Eagle Nebula (M16), the object that made me decide to do astrophysics, more than ten years ago, when the Hubble Space Telescope imaged the iconic Pillars of Creation. My application was accepted and I spent 6 months within the MIPSGAL Science Team. My aim was to combine IRAC and MIPS data of M16 in order to analyze the properties of the dust within the dusty and gaseous structures, while being involved in the data processing enhancement. The MIPS 24 microns image defines a shell-like structure within the nebula while the pillars are observed at other wavelengths. M16 is a massive star forming region where the dust emission is expected to be powered by the massive stars radiation. However, we show that the UV field is one order of magnitude too small to account for the shell dust temperature. For comparison we analyzed several other Galactic shells. The M16 nebula stands out for having unusually high far-IR color temperature.We considered an alternative interpretation where the dust is heated by gas grain collisions. This interpretation would imply that the shell is a supernova remnant (SNR) about 3000 years old. If confirmed, the Eagle SNR would be the first one detected through dust emission and within a stellar cradle. Moreover, it would illustrate the importance of dust infrared emission within energetics of SNRs. At last, but not at least, the question of the formation and/or destruction of the iconic Pillars of Creation would be (re)opened.

  20. Variability of Disk Emission in Pre-Main Sequence and Related Stars. II. Variability in the Gas and Dust Emission of the Herbig Fe Star SAO 206462

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Day, Amanda N.; Kimes, Robin L.; Beerman, Lori C.; Martus, Cameron; Lynch, David K.; Russell, Ray W.; Grady, Carol A.; Schneider, Glenn; Lisse, Carey M.; hide

    2011-01-01

    We present thirteen epochs of near-infrared (0.8-5 microns) spectroscopic observations of the pre-transitional, "gapped" disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (Br(alpha) , Br(gamma), Pa(beta), Pa(delta), Pa(epsilon), and the 0.8446 microns line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 x 10(exp 8)Solar Mass/yr was derived from the Br(gamma) and Pa(beta) lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only approx.30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 microns was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on time scales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magneto-rotational) would operate there on longer time scales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on time scales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer time scales that have been sampled so far.

  1. DETECTION OF STRONG MILLIMETER EMISSION FROM THE CIRCUMSTELLAR DUST DISK AROUND V1094 SCO: COLD AND MASSIVE DISK AROUND A T TAURI STAR IN A QUIESCENT ACCRETION PHASE?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukagoshi, Takashi; Kohno, Kotaro; Saito, Masao

    2011-01-01

    We present the discovery of a cold massive dust disk around the T Tauri star V1094 Sco in the Lupus molecular cloud from the 1.1 mm continuum observations with AzTEC on ASTE. A compact (r{approx}< 320 AU) continuum emission coincides with the stellar position having a flux density of 272 mJy, which is the largest among T Tauri stars in Lupus. We also present the detection of molecular gas associated with the star in the five-point observations in {sup 12}CO J = 3-2 and {sup 13}CO J = 3-2. Since our {sup 12}CO and {sup 13}CO observations did not showmore » any signature of a large-scale outflow or a massive envelope, the compact dust emission is likely to come from a disk around the star. The observed spectral energy distribution (SED) of V1094 Sco shows no distinct turnover from near-infrared to millimeter wavelengths, can be well described by a flattened disk for the dust component, and no clear dip feature around 10 {mu}m suggestive of the absence of an inner hole in the disk. We fit a simple power-law disk model to the observed SED. The estimated disk mass ranges from 0.03 M{sub sun} to {approx}>0.12 M{sub sun}, which is one or two orders of magnitude larger than the median disk mass of T Tauri stars in Taurus. The resultant temperature is lower than that of a flared disk with well-mixed dust in hydrostatic equilibrium and is probably attributed to the flattened disk geometry for the dust which the central star cannot illuminate efficiently. From these results, together with the fact that there is no signature of an inner hole in the SED, we suggest that the dust grains in the disk around V1094 Sco sank into the midplane with grain growth by coalescence and are in the evolutional stage just prior to or at the formation of planetesimals.« less

  2. Spectroscopic Measurements of the Far-Ultraviolet Dust Attenuation Curve at z ˜ 3

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Steidel, Charles C.; Pettini, Max; Bogosavljević, Milan

    2016-09-01

    We present the first spectroscopic measurements of the shape of the far-ultraviolet (far-UV; λ =950{--}1500 Å) dust attenuation curve at high redshift (z˜ 3). Our analysis employs rest-frame UV spectra of 933 galaxies at z˜ 3, 121 of which have very deep spectroscopic observations (≳ 7 hr) at λ =850{--}1300 \\mathring{{A}} , with the Low Resolution Imaging Spectrograph on the Keck Telescope. By using an iterative approach in which we calculate the ratios of composite spectra in different bins of continuum color excess, E(B-V), we derive a dust curve that implies a lower attenuation in the far-UV for a given E(B-V) than those obtained with standard attenuation curves. We demonstrate that the UV composite spectra of z˜ 3 galaxies can be modeled well by assuming our new attenuation curve, a high covering fraction of H I, and absorption from the Lyman-Werner bands of {{{H}}}2 with a small (≲ 20 % ) covering fraction. The low covering fraction of {{{H}}}2 relative to that of the {{H}} {{I}} and dust suggests that most of the dust in the ISM of typical galaxies at z˜ 3 is unrelated to the catalysis of {{{H}}}2, and is associated with other phases of the ISM (I.e., the ionized and neutral gas). The far-UV dust curve implies a factor of ≈ 2 lower dust attenuation of Lyman continuum (ionizing) photons relative to those inferred from the most commonly assumed attenuation curves for L* galaxies at z˜ 3. Our results may be utilized to assess the degree to which ionizing photons are attenuated in H II regions or, more generally, in the ionized or low column density (N({{H}} {{I}})≲ {10}17.2 cm-2) neutral ISM of high-redshift galaxies. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  3. Gas Heating, Chemistry and Photoevaporation in Protostellar Disks

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    We model the thermal balance, the chemistry, and the radiative transfer in dusty disks orbiting young, low mass stars. These models are motivated by observations of infrared and ultraviolet transitions of H2 from protoplanetary disks, as well as millimeter and submillimeter observations of other molecules such as CO, and infrared continuum observations of the dust. The dust grains are heated primarily by the stellar radiation and the infrared radiation field produced by the dust itself. The gas is heated by collisions with warmer dust grains, X-rays from the region close to the stellar surface, UV pumping of hydrogen molecules, and the grain photoelectric heating mechanism initiated by UV photons from the central star. We treat cases where the gas to dust ratio is high, because the dust has settled to the midplane and coagulated into relatively large objects. We discuss situations in which the infrared emission from H2 can be detected, and how the comparison of the observations with our models can deduce physical parameters such as the mass and the density and temperature distribution of the gas.

  4. Resolved Observations of Transition Disks

    NASA Astrophysics Data System (ADS)

    Casassus, Simon

    2016-04-01

    Resolved observations are bringing new constraints on the origin of radial gaps in protoplanetary disks. The kinematics, sampled in detail in one case-study, are indicative of non-Keplerian flows, corresponding to warped structures and accretion which may both play a role in the development of cavities. Disk asymmetries seen in the radio continuum are being interpreted in the context of dust segregation via aerodynamic trapping. We summarise recent observational progress, and describe prospects for improvements in the near term.

  5. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: The Infrared Excess of UV-Selected z = 2-10 Galaxies as a Function of UV-Continuum Slope and Stellar Mass

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard J.; Aravena, Manuel; Decarli, Roberto; Walter, Fabian; da Cunha, Elisabete; Labbé, Ivo; Bauer, Franz E.; Bertoldi, Frank; Carilli, Chris; Chapman, Scott; Daddi, Emanuele; Hodge, Jacqueline; Ivison, Rob J.; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Ota, Kazuaki; Riechers, Dominik; Smail, Ian R.; van der Werf, Paul; Weiss, Axel; Cox, Pierre; Elbaz, David; Gonzalez-Lopez, Jorge; Infante, Leopoldo; Oesch, Pascal; Wagg, Jeff; Wilkins, Steve

    2016-12-01

    We make use of deep 1.2 mm continuum observations (12.7 μJy beam-1 rms) of a 1 arcmin2 region in the Hubble Ultra Deep Field to probe dust-enshrouded star formation from 330 Lyman-break galaxies spanning the redshift range z = 2-10 (to ˜2-3 M ⊙ yr-1 at 1σ over the entire range). Given the depth and area of ASPECS, we would expect to tentatively detect 35 galaxies, extrapolating the Meurer z ˜ 0 IRX-β relation to z ≥ 2 (assuming dust temperature T d ˜ 35 K). However, only six tentative detections are found at z ≳ 2 in ASPECS, with just three at >3σ. Subdividing our z = 2-10 galaxy samples according to stellar mass, UV luminosity, and UV-continuum slope and stacking the results, we find a significant detection only in the most massive (>109.75 M ⊙) subsample, with an infrared excess (IRX = L IR/L UV) consistent with previous z ˜ 2 results. However, the infrared excess we measure from our large selection of sub-L ∗ (<109.75 M ⊙) galaxies is {0.11}-0.42+0.32 ± 0.34 (bootstrap and formal uncertainties) and {0.14}-0.14+0.15 ± 0.18 at z = 2-3 and z = 4-10, respectively, lying below even an IRX-β relation for the Small Magellanic Cloud (95% confidence). These results demonstrate the relevance of stellar mass for predicting the IR luminosity of z ≳ 2 galaxies. We find that the evolution of the IRX-stellar mass relationship depends on the evolution of the dust temperature. If the dust temperature increases monotonically with redshift (\\propto {(1+z)}0.32) such that T d ˜ 44-50 K at z ≥ 4, current results are suggestive of little evolution in this relationship to z ˜ 6. We use these results to revisit recent estimates of the z ≥ 3 star formation rate density.

  6. Zodiacal light as an indicator of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Weinberg, J. L.; Sparrow, J. G.

    1978-01-01

    The most striking feature of the night sky in the tropics is the zodiacal light, which appears as a cone in the west after sunset and in the east before sunrise. It is caused by sunlight scattered or absorbed by particles in the interplanetary medium. The zodiacal light is the only source of information about the integrated properties of the whole ensemble of interplanetary dust. The brightness and polarization in different directions and at different colors can provide information on the optical properties and spatial distribution of the scattering particles. The zodiacal light arises from two independent physical processes related to the scattering of solar continuum radiation by interplanetary dust and to thermal emission which arises from solar radiation that is absorbed by interplanetary dust and reemitted mainly at infrared wavelengths. Attention is given to observational parameters of zodiacal light, the methods of observation, errors and absolute calibration, and the observed characteristics of zodiacal light.

  7. THE BOLOCAM GALACTIC PLANE SURVEY. VIII. A MID-INFRARED KINEMATIC DISTANCE DISCRIMINATION METHOD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellsworth-Bowers, Timothy P.; Glenn, Jason; Battersby, Cara

    2013-06-10

    We present a new distance estimation method for dust-continuum-identified molecular cloud clumps. Recent (sub-)millimeter Galactic plane surveys have cataloged tens of thousands of these objects, plausible precursors to stellar clusters, but detailed study of their physical properties requires robust distance determinations. We derive Bayesian distance probability density functions (DPDFs) for 770 objects from the Bolocam Galactic Plane Survey in the Galactic longitude range 7. Degree-Sign 5 {<=} l {<=} 65 Degree-Sign . The DPDF formalism is based on kinematic distances, and uses any number of external data sets to place prior distance probabilities to resolve the kinematic distance ambiguity (KDA)more » for objects in the inner Galaxy. We present here priors related to the mid-infrared absorption of dust in dense molecular regions and the distribution of molecular gas in the Galactic disk. By assuming a numerical model of Galactic mid-infrared emission and simple radiative transfer, we match the morphology of (sub-)millimeter thermal dust emission with mid-infrared absorption to compute a prior DPDF for distance discrimination. Selecting objects first from (sub-)millimeter source catalogs avoids a bias towards the darkest infrared dark clouds (IRDCs) and extends the range of heliocentric distance probed by mid-infrared extinction and includes lower-contrast sources. We derive well-constrained KDA resolutions for 618 molecular cloud clumps, with approximately 15% placed at or beyond the tangent distance. Objects with mid-infrared contrast sufficient to be cataloged as IRDCs are generally placed at the near kinematic distance. Distance comparisons with Galactic Ring Survey KDA resolutions yield a 92% agreement. A face-on view of the Milky Way using resolved distances reveals sections of the Sagittarius and Scutum-Centaurus Arms. This KDA-resolution method for large catalogs of sources through the combination of (sub-)millimeter and mid-infrared observations of molecular cloud clumps is generally applicable to other dust-continuum Galactic plane surveys.« less

  8. Gas Modelling in the Disc of HD 163296

    NASA Technical Reports Server (NTRS)

    Tilling, I.; Woitke, P.; Meeus, G.; Mora, A.; Montesinos, B.; Riviere-Marichalar, P.; Eiroa, C.; Thi, W. -F.; Isella, A.; Roberge, A.; hide

    2011-01-01

    We present detailed model fits to observations of the disc around the Herbig Ae star HD 163296. This well-studied object has an age of approx. 4Myr, with evidence of a circumstellar disc extending out to approx. 540AU. We use the radiation thermo-chemical disc code ProDiMo to model the gas and dust in the circumstellar disc of HD 163296, and attempt to determine the disc properties by fitting to observational line and continuum data. These include new Herschel/PACS observations obtained as part of the open-time key program GASPS (Gas in Protoplanetary Systems), consisting of a detection of the [Oi] 63 m line and upper limits for several other far infrared lines. We complement this with continuum data and ground-based observations of the CO-12 3-2, 2-1 and CO-13 J=1-0 line transitions, as well as the H2 S(1) transition. We explore the effects of stellar ultraviolet variability and dust settling on the line emission, and on the derived disc properties. Our fitting efforts lead to derived gas/dust ratios in the range 9-100, depending on the assumptions made. We note that the line fluxes are sensitive in general to the degree of dust settling in the disc, with an increase in line flux for settled models. This is most pronounced in lines which are formed in the warm gas in the inner disc, but the low excitation molecular lines are also affected. This has serious implications for attempts to derive the disc gas mass from line observations. We derive fractional PAH abundances between 0.007 and 0.04 relative to ISM levels. Using a stellar and UV excess input spectrum based on a detailed analysis of observations, we find that the all observations are consistent with the previously assumed disc geometry

  9. Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya. Constraining the disk gas mass

    NASA Astrophysics Data System (ADS)

    Thi, W.-F.; Mathews, G.; Ménard, F.; Woitke, P.; Meeus, G.; Riviere-Marichalar, P.; Pinte, C.; Howard, C. D.; Roberge, A.; Sandell, G.; Pascucci, I.; Riaz, B.; Grady, C. A.; Dent, W. R. F.; Kamp, I.; Duchêne, G.; Augereau, J.-C.; Pantin, E.; Vandenbussche, B.; Tilling, I.; Williams, J. P.; Eiroa, C.; Barrado, D.; Alacid, J. M.; Andrews, S.; Ardila, D. R.; Aresu, G.; Brittain, S.; Ciardi, D. R.; Danchi, W.; Fedele, D.; de Gregorio-Monsalvo, I.; Heras, A.; Huelamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mendigutía, I.; Montesinos, B.; Mora, A.; Morales-Calderon, M.; Nomura, H.; Phillips, N.; Podio, L.; Poelman, D. R.; Ramsay, S.; Rice, K.; Solano, E.; Walker, H.; White, G. J.; Wright, G.

    2010-07-01

    Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [O i] and [C ii] as part of the open-time large program GASPS. We complement this with continuum data and ground-based 12 CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [O i] line at 63 μm. The other lines that were observed, [O i] at 145 μm and [C ii] at 157 μm, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [ 12CO] /[ 13CO] = 69 suggests a dust mass for grains with radius <1 mm of ~1.9 × 10-4 M⊙ (total solid mass of 3 × 10-3 M⊙) and a gas mass of (0.5-5) × 10-3 M⊙. The gas-to-dust mass may be lower than the standard interstellar value of 100. Herschel is an ESA space observatory with science instruments provided by Principal Investigator consortia. It is open for proposals for observing time from the worldwide astronomical community.Appendix is only available in electronic form at http://www.aanda.org

  10. Nature of the Galactic centre NIR-excess sources. I. What can we learn from the continuum observations of the DSO/G2 source?

    NASA Astrophysics Data System (ADS)

    Zajaček, Michal; Britzen, Silke; Eckart, Andreas; Shahzamanian, Banafsheh; Busch, Gerold; Karas, Vladimír; Parsa, Marzieh; Peissker, Florian; Dovčiak, Michal; Subroweit, Matthias; Dinnbier, František; Zensus, J. Anton

    2017-06-01

    Context. The Dusty S-cluster Object (DSO/G2) orbiting the supermassive black hole (Sgr A*) in the Galactic centre has been monitored in both near-infrared continuum and line emission. There has been a dispute about the character and the compactness of the object: it being interpreted as either a gas cloud or a dust-enshrouded star. A recent analysis of polarimetry data in Ks-band (2.2 μm) allows us to put further constraints on the geometry of the DSO. Aims: The purpose of this paper is to constrain the nature and the geometry of the DSO. Methods: We compared 3D radiative transfer models of the DSO with the near-infrared (NIR) continuum data including polarimetry. In the analysis, we used basic dust continuum radiative transfer theory implemented in the 3D Monte Carlo code Hyperion. Moreover, we implemented analytical results of the two-body problem mechanics and the theory of non-thermal processes. Results: We present a composite model of the DSO - a dust-enshrouded star that consists of a stellar source, dusty, optically thick envelope, bipolar cavities, and a bow shock. This scheme can match the NIR total as well as polarized properties of the observed spectral energy distribution (SED). The SED may be also explained in theory by a young pulsar wind nebula that typically exhibits a large linear polarization degree due to magnetospheric synchrotron emission. Conclusions: The analysis of NIR polarimetry data combined with the radiative transfer modelling shows that the DSO is a peculiar source of compact nature in the S cluster (r ≲ 0.04 pc). It is most probably a young stellar object embedded in a non-spherical dusty envelope, whose components include optically thick dusty envelope, bipolar cavities, and a bow shock. Alternatively, the continuum emission could be of a non-thermal origin due to the presence of a young neutron star and its wind nebula. Although there has been so far no detection of X-ray and radio counterparts of the DSO, the analysis of the neutron star model shows that young, energetic neutron stars similar to the Crab pulsar could in principle be detected in the S cluster with current NIR facilities and they appear as apparent reddened, near-infrared-excess sources. The searches for pulsars in the NIR bands can thus complement standard radio searches, which can put further constraints on the unexplored pulsar population in the Galactic centre. Both thermal and non-thermal models are in accordance with the observed compactness, total as well polarized continuum emission of the DSO.

  11. A study of the dust distribution and extinction law in Mon R2

    NASA Technical Reports Server (NTRS)

    Natta, A.; Beckwith, S.; Beck, S. C.; Evans, N. J., II; Moorwood, A. F. M.

    1986-01-01

    Observations were obtained at wavelengths from 1.5 to 7.5 microns with beams varying in diameter from 4 to 28 arcsec of infrared hydrogen recombination lines toward the Mon R2 IRS1 H II region. It is found that the data cannot be fitted with the extinction law which characterizes the interstellar medium unless the obscuring matter is clumped on a small scale of not greater than 0.3 arcsec; in which case considerable fluctuations in the amount of extinction on scales smaller than 1 arcsec are expected. The data of Simon et al. (1983) suggest a dip in the extinction about 5 arcsec from the 2-micron and radio continuum peak, and rule out models with uniform dust and clump distributions.

  12. High-resolution ultraviolet radiation fields of classical T Tauri stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    France, Kevin; Schindhelm, Eric; Bergin, Edwin A.

    2014-04-01

    The far-ultraviolet (FUV; 912-1700 Å) radiation field from accreting central stars in classical T Tauri systems influences the disk chemistry during the period of giant planet formation. The FUV field may also play a critical role in determining the evolution of the inner disk (r < 10 AU), from a gas- and dust-rich primordial disk to a transitional system where the optically thick warm dust distribution has been depleted. Previous efforts to measure the true stellar+accretion-generated FUV luminosity (both hot gas emission lines and continua) have been complicated by a combination of low-sensitivity and/or low-spectral resolution and did not includemore » the contribution from the bright Lyα emission line. In this work, we present a high-resolution spectroscopic study of the FUV radiation fields of 16 T Tauri stars whose dust disks display a range of evolutionary states. We include reconstructed Lyα line profiles and remove atomic and molecular disk emission (from H{sub 2} and CO fluorescence) to provide robust measurements of both the FUV continuum and hot gas lines (e.g., Lyα, N V, C IV, He II) for an appreciable sample of T Tauri stars for the first time. We find that the flux of the typical classical T Tauri star FUV radiation field at 1 AU from the central star is ∼10{sup 7} times the average interstellar radiation field. The Lyα emission line contributes an average of 88% of the total FUV flux, with the FUV continuum accounting for an average of 8%. Both the FUV continuum and Lyα flux are strongly correlated with C IV flux, suggesting that accretion processes dominate the production of both of these components. On average, only ∼0.5% of the total FUV flux is emitted between the Lyman limit (912 Å) and the H{sub 2} (0-0) absorption band at 1110 Å. The total and component-level high-resolution radiation fields are made publicly available in machine-readable format.« less

  13. Warm gas towards young stellar objects in Corona Australis. Herschel/PACS observations from the DIGIT key programme

    NASA Astrophysics Data System (ADS)

    Lindberg, Johan E.; Jørgensen, Jes K.; Green, Joel D.; Herczeg, Gregory J.; Dionatos, Odysseas; Evans, Neal J.; Karska, Agata; Wampfler, Susanne F.

    2014-05-01

    Context. The effects of external irradiation on the chemistry and physics in the protostellar envelope around low-mass young stellar objects are poorly understood. The Corona Australis star-forming region contains the R CrA dark cloud, comprising several low-mass protostellar cores irradiated by an intermediate-mass young star. Aims: We study the effects of the irradiation coming from the young luminous Herbig Be star R CrA on the warm gas and dust in a group of low-mass young stellar objects. Methods: Herschel/PACS far-infrared datacubes of two low-mass star-forming regions in the R CrA dark cloud are presented. The distributions of CO, OH, H2O, [C ii], [O i], and continuum emission are investigated. We have developed a deconvolution algorithm which we use to deconvolve the maps, separating the point-source emission from the extended emission. We also construct rotational diagrams of the molecular species. Results: By deconvolution of the Herschel data, we find large-scale (several thousand AU) dust continuum and spectral line emission not associated with the point sources. Similar rotational temperatures are found for the warm CO (282 ± 4 K), hot CO (890 ± 84 K), OH (79 ± 4 K), and H2O (197 ± 7 K) emission in the point sources and the extended emission. The rotational temperatures are also similar to those found in other more isolated cores. The extended dust continuum emission is found in two ridges similar in extent and temperature to molecular millimetre emission, indicative of external heating from the Herbig Be star R CrA. Conclusions: Our results show that nearby luminous stars do not increase the molecular excitation temperatures of the warm gas around young stellar objects (YSOs). However, the emission from photodissociation products of H2O, such as OH and O, is enhanced in the warm gas associated with these protostars and their surroundings compared to similar objects not subjected to external irradiation. Table 9 and appendices are available in electronic form at http://www.aanda.org

  14. New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region

    NASA Astrophysics Data System (ADS)

    van der Marel, Nienke; Williams, Jonathan P.; Ansdell, M.; Manara, Carlo F.; Miotello, Anna; Tazzari, Marco; Testi, Leonardo; Hogerheijde, Michiel; Bruderer, Simon; van Terwisga, Sierk E.; van Dishoeck, Ewine F.

    2018-02-01

    Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities, hinting at recently formed, giant planets. However, many of these studies are biased toward the brightest disks in the nearby star-forming regions, and it is not possible to derive reliable statistics that can be compared with exoplanet populations. We present the analysis of 11 transition disks with large cavities (≥20 au radius) from a complete disk survey of the Lupus star-forming region, using ALMA Band 7 observations at 0.″3 (22–30 au radius) resolution of the 345 GHz continuum, 13CO and C18O 3–2 observations, and the spectral energy distribution of each source. Gas and dust surface density profiles are derived using the physical–chemical modeling code DALI. This is the first study of transition disks of large cavities within a complete disk survey within a star-forming region. The dust cavity sizes range from 20 to 90 au radius, and in three cases, a gas cavity is resolved as well. The deep drops in gas density and large dust cavity sizes are consistent with clearing by giant planets. The fraction of transition disks with large cavities in Lupus is ≳ 11 % , which is inconsistent with exoplanet population studies of giant planets at wide orbits. Furthermore, we present a hypothesis of an evolutionary path for large massive disks evolving into transition disks with large cavities.

  15. The ISO View of Star Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Helou, George

    1999-01-01

    ISO studies of normal galaxies in the local Universe have revealed basic new properties whose significant implications for the star formation process and cosmology are only starting to be understood. This review will touch on the general results of a statistical nature, and provide a quick summary of the profusion of exciting results on individual objects. In the mid-infrared, PHT-S has established that the spectra of star forming galaxies between 6 and-13microns are dominated by the Aromatic Features in Emission (AFE), and show little variation as a function of the heating intensity. The Carriers of the AFE (CAFE) are thus a universal component of dust with standard properties, and contribute between 10 and 25% of the total dust luminosity. In addition to AFE, the spectra show a low-level continuum detectable at wavelengths longer than 3.5microns whose origin is still under investigation. The mid-infrared colors formed as the ratio of flux densities in the 6.75micron and the 15micron bands of ISO-CAM remain essentially constant and near unity for quiescent and mildly active galaxies. As dust heating increases further, the 15micron flux increases steeply compared to 6.75microns, indicating that dust heated to 100K

  16. GTC/CanariCam Mid-IR Imaging of the Fullerene-rich Planetary Nebula IC 418: Searching for the Spatial Distribution of Fullerene-like Molecules

    NASA Astrophysics Data System (ADS)

    Díaz-Luis, J. J.; García-Hernández, D. A.; Manchado, A.; García-Lario, P.; Villaver, E.; García-Segura, G.

    2018-03-01

    We present seeing-limited narrow-band mid-IR GTC/CanariCam images of the spatially extended fullerene-containing planetary nebula (PN) IC 418. The narrow-band images cover the C60 fullerene band at 17.4 μm, the polycyclic aromatic hydrocarbon like (PAH-like) feature at 11.3 μm, the broad 9–13 μm feature, and their adjacent continua at 9.8 and 20.5 μm. We study the relative spatial distribution of these complex species, all detected in the Spitzer and Infrared Space Observatory spectra of IC 418, with the aim of getting observational constraints to the formation process of fullerenes in H-rich circumstellar environments. A similar ring-like extended structure is seen in all narrow-band filters, except in the dust continuum emission at 9.8 μm, which peaks closer to the central star. The continuum-subtracted images display a clear ring-like extended structure for the carrier of the broad 9–13 μm emission, while the spatial distribution of the (PAH-like) 11.3 μm emission is not so well defined. Interestingly, a residual C60 17.4 μm emission (at about 4σ from the sky background) is seen when subtracting the dust continuum emission at 20.5 μm. This residual C60 emission, if real, might have several interpretations, the most exciting being perhaps that other fullerene-based species like hydrogenated fullerenes with very low H-content may contribute to the observed 17.4 μm emission. We conclude that higher sensitivity mid-IR images and spatially resolved spectroscopic observations (especially in the Q-band) are necessary to get some clues about fullerene formation in PNe.

  17. A Long-Term Space Astrophysics Research Program: The Evolution of the Quasar Continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.; Oliversen, Ronald K. (Technical Monitor)

    2001-01-01

    Four papers have been written. One reports on the major study funded by this grant: a pan-chromatic study of the quasar continuum at redshift 3. Two others make use of the quasar continuum shapes to find the minimum total accretion luminosity of the Universe, and hence the efficiency and spin of supermassive black holes; the second shows that the reemission of absorbed quasar radiation alleviates a major problem with galaxy formation and the FIR background. The last paper recognizes the role quasars may play in the initial formation of dust in the early Universe. The major study of a sample of z=3 and its comparison with a sample of z=0.l quasars across the whole X-ray to radio spectrum was completed and accepted for publication in ApJ Supplements. This study comprises the thesis work of Olga Kuhn. The two samples are matched in evolved luminosity, and so should be sampling the same black hole population at different z, and in different accretion states. Despite this no strong differences were found between the samples, except in the 'small bump' region of the optical/UV. This region is dominated by FeII emission, and may indicate abundance evolution in quasars. The lack of overall spectral changes argues strongly against a single population of quasars fading over cosmic time, and for a multiple generation, or multiple outburst model for quasars. A study of the total luminosity absorbed from quasars and re-emitted in the infrared produced two results (reported in two papers): The minimum intrinsic luminosity/Gpc(3) from AGN compared with the measured mass density in supermassive black holes [Gpc(-3)] requires a conversion efficiency of accreted mass into luminosity of greater than 15%. Non-rotating black holes cannot exceed 5% efficiency, while rapidly rotating black holes can reach 47%. Hence our result requires that most supermassive black holes must be rapidly rotating. The second result comes from considering the contribution that the re-radiated quasar radiation makes to the far infrared background (FIRB). The effective temperature of the re radiation is tightly constrained, but the detailed shape (e.g. line emission, range of temperature) is only of second order importance. At least 15perhaps 20-25% of the FIR background must come from AGN. This contribution significantly relieves problems in galaxy evolution that come from trying to use only starlight to make the FIRB. The third paper addresses the origin of the dust obscuration that is so widespread in AGN. The standard assumption is that the dust comes from the normal star-formation processes in galaxies and is drawn close to the nucleus along with the gas that powers the accretion. In complete contrast, using a wind outflow model for the broad emission line (BEL) region (Elvis 2000) as a basis, we show that BEL clouds will expand, cool and form dust as they flow outward, in strict analogy to the stellar winds of red supergiants.

  18. Studying Lyman-alpha escape and reionization in Green Pea galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Gronke, Max; Leitherer, Claus; Wofford, Aida; Dijkstra, Mark

    2017-01-01

    Green Pea galaxies are low-redshift galaxies with extreme [OIII]5007 emission line. We built the first statistical sample of Green Peas observed by HST/COS and used them as analogs of high-z Lyman-alpha emitters to study Ly-alpha escape and Ly-alpha sizes. Using the HST/COS 2D spectra, we found that Ly-alpha sizes of Green Peas are larger than the UV continuum sizes. We found many correlations between Ly-alpha escape fraction and galactic properties -- dust extinction, Ly-alpha kinematic features, [OIII]/[OII] ratio, and gas outflow velocities. We fit an empirical relation to predict Ly-alpha escape fraction from dust extinction and Ly-alpha red-peak velocity. In the JWST era, we can use this relation to derive the IGM HI column density along the line of sight of each high-z Ly-alpha emitter and probe the reionization process.

  19. HST IMAGING OF DUST STRUCTURES AND STARS IN THE RAM PRESSURE STRIPPED VIRGO SPIRALS NGC 4402 AND NGC 4522: STRIPPED FROM THE OUTSIDE IN WITH DENSE CLOUD DECOUPLING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramson, A.; Kenney, J.; Crowl, H.

    We describe and constrain the origins of interstellar medium (ISM) structures likely created by ongoing intracluster medium (ICM) ram pressure stripping in two Virgo Cluster spirals, NGC 4522 and NGC 4402, using Hubble Space Telescope (HST) BVI images of dust extinction and stars, as well as supplementary H i, H α , and radio continuum images. With a spatial resolution of ∼10 pc in the HST images, this is the highest-resolution study to date of the physical processes that occur during an ICM–ISM ram pressure stripping interaction, ram pressure stripping's effects on the multi-phase, multi-density ISM, and the formation andmore » evolution of ram-pressure-stripped tails. In dust extinction, we view the leading side of NGC 4402 and the trailing side of NGC 4522, and so we see distinct types of features in both. In both galaxies, we identify some regions where dense clouds are decoupling or have decoupled and others where it appears that kiloparsec-sized sections of the ISM are moving coherently. NGC 4522 has experienced stronger, more recent pressure and has the “jellyfish” morphology characteristic of some ram-pressure-stripped galaxies. Its stripped tail extends up from the disk plane in continuous upturns of dust and stars curving up to ∼2 kpc above the disk plane. On the other side of the galaxy, there is a kinematically and morphologically distinct extraplanar arm of young, blue stars and ISM above a mostly stripped portion of the disk, and between it and the disk plane are decoupled dust clouds that have not been completely stripped. The leading side of NGC 4402 contains two kiloparsec-scale linear dust filaments with complex substructure that have partially decoupled from the surrounding ISM. NGC 4402 also contains long dust ridges, suggesting that large parts of the ISM are being pushed out at once. Both galaxies contain long ridges of polarized radio continuum emission indicating the presence of large-scale, ordered magnetic fields. We propose that magnetic fields could bind together gas of different densities, causing nearby gas of different densities to be stripped at the same rate and creating the large, coherent dust ridges and upturns. A number of factors likely play roles in determining what types of structures form as a result of ram pressure, including ram pressure strength and history, the location within the galaxy relative to the leading side, and pre-existing substructure in the ISM that may be bound together by magnetic fields during stripping.« less

  20. Galaxy Formation through Filamentary Accretion at z = 6.1

    NASA Astrophysics Data System (ADS)

    Jones, G. C.; Willott, C. J.; Carilli, C. L.; Ferrara, A.; Wang, R.; Wagg, J.

    2017-08-01

    We present Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [C II] 158 μm line emission from the z = 6.0695 Lyman-Break Galaxy (LBG) WMH5. These observations at 0.″3 spatial resolution show a compact (˜3 kpc) main galaxy in dust and [C II] emission, with a “tail” of emission extending to the east by about 5 kpc (in projection). The [C II] tail is comprised predominantly of two distinct sub-components in velocity, separated from the core by ˜100 and 250 km s-1, with narrow intrinsic widths of about 80 km s-1, which we call “sub-galaxies.” The sub-galaxies themselves are extended east-west by about 3 kpc in individual channel images. The [C II] tail joins smoothly into the main galaxy velocity field. The [C II] line to continuum ratios are comparable for the main and sub-galaxy positions, within a factor two. In addition, these ratios are comparable to z˜ 5.5 LBGs. We conjecture that the WMH5 system represents the early formation of a galaxy through the accretion of smaller satellite galaxies, embedded in a smoother gas distribution, along a possibly filamentary structure. The results are consistent with current cosmological simulations of early galaxy formation and support the idea of very early enrichment with dust and heavy elements of the accreting material.

  1. VizieR Online Data Catalog: BAL QSOs from SDSS DR3 (Trump+, 2006)

    NASA Astrophysics Data System (ADS)

    Trump, J. R.; Hall, P. B.; Reichard, T. A.; Richards, G. T.; Schneider, D. P.; vanden Berk, D. E.; Knapp, G. R.; Anderson, S. F.; Fan, X.; Brinkman, J.; Kleinman, S. J.; Nitta, A.

    2007-11-01

    We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release (Cat. ). An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000km/s in the CIV and MgII absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional balnicity index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. (1 data file).

  2. The influence of continuum radiation fields on hydrogen radio recombination lines

    NASA Astrophysics Data System (ADS)

    Prozesky, Andri; Smits, Derck P.

    2018-05-01

    Calculations of hydrogen departure coefficients using a model with the angular momentum quantum levels resolved that includes the effects of external radiation fields are presented. The stimulating processes are important at radio frequencies and can influence level populations. New numerical techniques with a solid mathematical basis have been incorporated into the model to ensure convergence of the solution. Our results differ from previous results by up to 20 per cent. A direct solver with a similar accuracy but more efficient than the iterative method is used to evaluate the influence of continuum radiation on the hydrogen population structure. The effects on departure coefficients of continuum radiation from dust, the cosmic microwave background, the stellar ionising radiation, and free-free radiation are quantified. Tables of emission and absorption coefficients for interpreting observed radio recombination lines are provided.

  3. DIRECT IMAGING OF THE WATER SNOW LINE AT THE TIME OF PLANET FORMATION USING TWO ALMA CONTINUUM BANDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banzatti, A.; Pontoppidan, K. M.; Pinilla, P.

    2015-12-10

    Molecular snow lines in protoplanetary disks have been studied theoretically for decades because of their importance in shaping planetary architectures and compositions. The water snow line lies in the planet formation region at ≲10 AU, and so far its location has been estimated only indirectly from spatially unresolved spectroscopy. This work presents a proof-of-concept method to directly image the water snow line in protoplanetary disks through its physical and chemical imprint on the local dust properties. We adopt a physical disk model that includes dust coagulation, fragmentation, drift, and a change in fragmentation velocities of a factor of 10 betweenmore » dry silicates and icy grains as found by laboratory work. We find that the presence of a water snow line leads to a sharp discontinuity in the radial profile of the dust emission spectral index α{sub mm} due to replenishment of small grains through fragmentation. We use the ALMA simulator to demonstrate that this effect can be observed in protoplanetary disks using spatially resolved ALMA images in two continuum bands. We explore the model dependence on the disk viscosity and find that the spectral index reveals the water snow line for a wide range of conditions, with opposite trends when the emission is optically thin rather than thick. If the disk viscosity is low (α{sub visc} < 10{sup −3}), the snow line produces a ringlike structure with a minimum at α{sub mm} ∼ 2 in the optically thick regime, possibly similar to what has been measured with ALMA in the innermost region of the HL Tau disk.« less

  4. The mass distribution of clumps within infrared dark clouds. A Large APEX Bolometer Camera study

    NASA Astrophysics Data System (ADS)

    Gómez, L.; Wyrowski, F.; Schuller, F.; Menten, K. M.; Ballesteros-Paredes, J.

    2014-01-01

    Aims: We present an analysis of the dust continuum emission at 870 μm in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). Methods: We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of σrms = 28-44 mJy beam-1. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N2H+ (3-2) line toward selected positions to obtain kinematic information. Results: The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 M⊙ (Gaussclumps) and 7-4254 M⊙ (Clumpfind), and the ranges in effective radius are ~0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition method used, is fitted by a power law, dN/dM ∝ Mα, with an index (α) of -1.60 ± 0.06, consistent with the CO mass distribution and other high-mass star-forming regions. Based on data acquired with the Atacama Pathfinder Experiment (APEX). APEX is a collaboration between the Max-Planck-Institut für Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory.Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/561/A148

  5. Formation and Destruction Processes of Interstellar Dust: From Organic Molecules to carbonaceous Grains

    NASA Technical Reports Server (NTRS)

    Salama, F.; Biennier, L.

    2004-01-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic molecules.

  6. CSM interaction and dust formation in SN 2010jl .

    NASA Astrophysics Data System (ADS)

    Krafton, K.; Clayton, G. C.

    The origin of dust in galaxies >1 Gyr old has remained an unsolved mystery for over a decade. One proposed solution is dust produced by core collapse supernovae (CCSNe). Theorists have shown that 0.1-1 M⊙ of dust must be produced per supernova for this to work as an explanation for the dust in young galaxies. SN 1987A has produced ˜1 M⊙ of dust since its detonation. However, most supernovae have been found to only produce 10-4 - 10-2 M⊙ of dust. The energetic type IIn SN 2010jl is located in UGC 5189, in a dense shell of CSM. As dust condenses in the SN ejecta, we see, (1) a sudden decrease in continuum brightness in the visible due to increased dust extinction, (2) the development of an infrared excess in the SN light curve arising from dust grains absorbing high-energy photons and re-emitting them in the infrared, and (3) the development of asymmetric, blue-shifted emission-line profiles, caused by dust forming in the ejecta, and preferentially extinguishing redshifted emission. A dense circumstellar material (CSM) may increase the dust production by supernovae. We observe signs of strong interaction between the SN ejecta and a dense CSM in SN 2010jl. SN 2010jl has been a source of much debate in the CCSN community, particularly over when and how much dust it formed. The light curve shows strong signs of dust formation after 260 days. Arguments over these subjects have been based on the evolution of the light curve and spectra. We present new optical and IR photometry, as well as optical spectroscopy, of SN 2010jl over 2000 days. We estimate dust masses using the DAMOCLES and MOCASSIN radiative transfer codes.

  7. ON THE ORIGINS OF THE DIFFUSE H{alpha} EMISSION: IONIZED GAS OR DUST-SCATTERED H{alpha} HALOS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seon, Kwang-Il; Witt, Adolf N., E-mail: kiseon@kasi.re.kr

    2012-10-20

    It is known that the diffuse H{alpha} emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] {lambda}6716/H{alpha} and [N II] {lambda}6583/H{alpha} observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse H{alpha} emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse H{alpha} emission. In thismore » paper, we reexamine the arguments against dust scattering and find that the dust-scattering origin of the diffuse H{alpha} emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered H{alpha} halos surrounding H II regions are, in fact, in good agreement with the observed H{alpha} morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/H{alpha}, [N II]/H{alpha}, and He I {lambda}5876/H{alpha} in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the H{alpha} absorption feature in the underlying continuum from the dust-scattered starlight ({sup d}iffuse galactic light{sup )} and unresolved stars is able to substantially increase the [S II]/H{alpha} and [N II]/H{alpha} line ratios in the diffuse ISM.« less

  8. Optical and infrared spectrophotometry of 18 Markarian galaxies

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Neugebauer, G.; Oke, J. B.; Searle, L.

    1975-01-01

    Slit spectra, spectrophotometric scans and infrared broad band observations are presented. Eight of the program galaxies can be classified as Seyfert galaxies. Arguments are given that thermal, nonthermal and stellar radiation components were present. One group of Seyfert galaxies was characterized both by the presence of a high density region of gas and by a continuum dominated by nonthermal radiation. The continua of the remaining program Seyferts, which did not have a high density region of gas, were dominated by thermal radiation from dust and a stellar continuum. Ten of the galaxies, which are not Seyfert galaxies, are shown to be examples of extragalactic H 2 regions.

  9. Analyze and predict VLTI observations: the Role of 2D/3D dust continuum radiative transfer codes

    NASA Astrophysics Data System (ADS)

    Pascucci, I.; Henning, Th; Steinacker, J.; Wolf, S.

    2003-10-01

    Radiative Transfer (RT) codes with image capability are a fundamental tool for preparing interferometric observations and for interpreting visibility data. In view of the upcoming VLTI facilities, we present the first comparison of images/visibilities coming from two 3D codes that use completely different techniques to solve the problem of self-consistent continuum RT. In addition, we focus on the astrophysical case of a disk distorted by tidal interaction with by-passing stars or internal planets and investigate for which parameters the distortion can be best detected in the mid-infrared using the mid-infrared interferometric device MIDI.

  10. 2D/3D Dust Continuum Radiative Transfer Codes to Analyze and Predict VLTI Observations

    NASA Astrophysics Data System (ADS)

    Pascucci, I.; Henning, Th.; Steinacker, J.; Wolf, S.

    Radiative Transfer (RT) codes with image capability are a fundamental tool for preparing interferometric observations and for interpreting visibility data. In view of the upcoming VLTI facilities, we present the first comparison of images/visibilities coming from two 3D codes that use completely different techniques to solve the problem of self-consistent continuum RT. In addition, we focus on the astrophysical case of a disk distorted by tidal interaction with by-passing stars or internal planets and investigate for which parameters the distortion can be best detected in the mid-infrared using the mid-infrared interferometric device MIDI.

  11. Properties and Spatial Distribution of Dust Emission in the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Sonneborn, G.; Temim, T.; Dwek, E.; Arendt, R.; Gehrz, R.; Slane, P.

    2011-01-01

    The nature and quantity of dust produced in supernovae (SNe) is still poorly understood. Recent IR observations of freshly-formed dust in supernova remnants (SNRs) have yielded significantly lower dust masses than predicted by theoretical models and observations high-redshift galaxies. The Crab Nebula's pulsar wind is thought to be sweeping up freshly-formed SN dust along with the SN ejecta. The evidence for this dust was found in the form of an IR bump in the integrated spectrum of the Crab and in extinction against the synchrotron nebula that revealed the presence of dust in the filament cores. We present the first spatially-resolved emission spectra of dust in the Crab Nebula acquired with the Spitzer Space Telescope. The IR spectra are dominated by synchrotron emission and show forbidden line emission from both sides of the expanding nebula, including emission from [S III], [Si II], [Ne II], [Ne III], [Ne V], [Ar III], [Ar V], [Fe II], and [Ni II]. We extrapolated a synchrotron spectral data cube from the Spitzer 3.6 and 4.5 micron images, and subtracted this contribution from our 15-40 micron spectral data to produce a map of the residual continuum emission from dust. The emission appears to be concentrated along the ejecta filaments and is well described by astronomical silicates at an average temperature of 65 K. The estimated mass of dust in the Crab Nebula is 0.008 solar masses.

  12. Modelling massive star feedback with Monte Carlo radiation hydrodynamics: photoionization and radiation pressure in a turbulent cloud

    NASA Astrophysics Data System (ADS)

    Ali, Ahmad; Harries, Tim J.; Douglas, Thomas A.

    2018-07-01

    We simulate a self-gravitating, turbulent cloud of 1000 M⊙ with photoionization and radiation pressure feedback from a 34 M⊙ star. We use a detailed Monte Carlo radiative transfer scheme alongside the hydrodynamics to compute photoionization and thermal equilibrium with dust grains and multiple atomic species. Using these gas temperatures, dust temperatures, and ionization fractions, we produce self-consistent synthetic observations of line and continuum emission. We find that all material is dispersed from the (15.5 pc)3 grid within 1.6 Myr or 0.74 free-fall times. Mass exits with a peak flux of 2 × 10-3 M⊙ yr-1, showing efficient gas dispersal. The model without radiation pressure has a slight delay in the breakthrough of ionization, but overall its effects are negligible. 85 per cent of the volume, and 40 per cent of the mass, become ionized - dense filaments resist ionization and are swept up into spherical cores with pillars that point radially away from the ionizing star. We use free-free emission at 20 cm to estimate the production rate of ionizing photons. This is almost always underestimated: by a factor of a few at early stages, then by orders of magnitude as mass leaves the volume. We also test the ratio of dust continuum surface brightnesses at 450 and 850 µm to probe dust temperatures. This underestimates the actual temperature by more than a factor of 2 in areas of low column density or high line-of-sight temperature dispersion; the H II region cavity is particularly prone to this discrepancy. However, the probe is accurate in dense locations such as filaments.

  13. Multiple Disk Gaps and Rings Generated by a Single Super-Earth

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Li, Shengtai; Chiang, Eugene; Li, Hui

    2017-07-01

    We investigate the observational signatures of super-Earths (i.e., planets with Earth-to-Neptune mass), which are the most common type of exoplanet discovered to date, in their natal disks of gas and dust. Combining two-fluid global hydrodynamics simulations with a radiative transfer code, we calculate the distributions of gas and of submillimeter-sized dust in a disk perturbed by a super-Earth, synthesizing images in near-infrared scattered light and the millimeter-wave thermal continuum for direct comparison with observations. In low-viscosity gas (α ≲ {10}-4), a super-Earth opens two annular gaps to either side of its orbit by the action of Lindblad torques. This double gap and its associated gas pressure gradients cause dust particles to be dragged by gas into three rings: one ring sandwiched between the two gaps, and two rings located at the gap edges farthest from the planet. Depending on the system parameters, additional rings may manifest for a single planet. A double gap located at tens of au from a host star in Taurus can be detected in the dust continuum by the Atacama Large Millimeter Array (ALMA) at an angular resolution of ∼0\\buildrel{\\prime\\prime}\\over{.} 03 after two hours of integration. Ring and gap features persist in a variety of background disk profiles, last for thousands of orbits, and change their relative positions and dimensions depending on the speed and direction of planet migration. Candidate double gaps have been observed by ALMA in systems such as HL Tau (D5 and D6) and TW Hya (at 37 and 43 au); we submit that each double gap is carved by one super-Earth in nearly inviscid gas.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pérez, Laura M.; Chandler, Claire J.; Isella, Andrea

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations in the dust continuum (690 GHz, 0.45 mm) and {sup 12}CO J = 6-5 spectral line emission of the transitional disks surrounding the stars SAO 206462 and SR 21. These ALMA observations resolve the dust-depleted disk cavities and extended gaseous disks, revealing large-scale asymmetries in the dust emission of both disks. We modeled these disk structures with a ring and an azimuthal Gaussian, where the azimuthal Gaussian is motivated by the steady-state vortex solution from Lyra and Lin. Compared to recent observations of HD 142527, Oph IRS 48, and LkHα 330, these are low-contrastmore » (≲ 2) asymmetries. Nevertheless, a ring alone is not a good fit, and the addition of a vortex prescription describes these data much better. The asymmetric component encompasses 15% and 28% of the total disk emission in SAO 206462 and SR 21, respectively, which corresponds to a lower limit of 2 M {sub Jup} of material within the asymmetry for both disks. Although the contrast in the dust asymmetry is low, we find that the turbulent velocity inside it must be large (∼20% of the sound speed) in order to drive these azimuthally wide and radially narrow vortex-like structures. We obtain residuals from the ring and vortex fitting that are still significant, tracing non-axisymmetric emission in both disks. We compared these submillimeter observations with recently published H-band scattered light observations. For SR 21 the scattered light emission is distributed quite differently from the submillimeter continuum emission, while for SAO 206462 the submillimeter residuals are suggestive of spiral-like structure similar to the near-IR emission.« less

  15. Modelling massive-star feedback with Monte Carlo radiation hydrodynamics: photoionization and radiation pressure in a turbulent cloud

    NASA Astrophysics Data System (ADS)

    Ali, Ahmad; Harries, Tim J.; Douglas, Thomas A.

    2018-04-01

    We simulate a self-gravitating, turbulent cloud of 1000M⊙ with photoionization and radiation pressure feedback from a 34M⊙ star. We use a detailed Monte Carlo radiative transfer scheme alongside the hydrodynamics to compute photoionization and thermal equilibrium with dust grains and multiple atomic species. Using these gas temperatures, dust temperatures, and ionization fractions, we produce self-consistent synthetic observations of line and continuum emission. We find that all material is dispersed from the (15.5pc)3 grid within 1.6Myr or 0.74 free-fall times. Mass exits with a peak flux of 2× 10-3M⊙yr-1, showing efficient gas dispersal. The model without radiation pressure has a slight delay in the breakthrough of ionization, but overall its effects are negligible. 85 per cent of the volume, and 40 per cent of the mass, become ionized - dense filaments resist ionization and are swept up into spherical cores with pillars that point radially away from the ionizing star. We use free-free emission at 20cm to estimate the production rate of ionizing photons. This is almost always underestimated: by a factor of a few at early stages, then by orders of magnitude as mass leaves the volume. We also test the ratio of dust continuum surface brightnesses at 450 and 850μ to probe dust temperatures. This underestimates the actual temperature by more than a factor of 2 in areas of low column density or high line-of-sight temperature dispersion; the HII region cavity is particularly prone to this discrepancy. However, the probe is accurate in dense locations such as filaments.

  16. On planetary nebulae as sources of carbon dust: Infrared emission from planetary nebulae of the galactic halo

    NASA Technical Reports Server (NTRS)

    Dinerstein, Harriet L.; Lester, Daniel F.

    1990-01-01

    Planetary nebulae of the galactic disk are generally seen to emit a thermal continuum due to dust grains heated by stellar and nebular photons. This continuum typically peaks between 25 and 60 micron m, so that the total power emitted by the dust is sampled well by the broad-band measurements made by IRAS. Researchers examine here the characteristics of the infrared emission from the four planetary nebulae which are believed on the basis of their low overall metallicities to belong to the halo population. These nebulae are of particular interest because they are the most metal-poor ionized nebulae known in our Galaxy, and offer the opportunity to probe possible dependences of the dust properties on nebular composition. Researchers present fluxes extracted from co-addition of the IRAS data, as well as ground-based near infrared measurements. Each of the four halo objects, including the planetary nebula in the globular cluster M15, is detected in at least one infrared band. Researchers compare the estimated infrared excesses of these nebulae (IRE, the ratio of measured infrared power to the power available in the form of resonantly-trapped Lyman alpha photons) to those of disk planetary nebulae with similar densities but more normal abundances. Three of the halo planetaries have IRE values similar to those of the disk nebulae, despite the fact that their Fe- and Si-peak gas phase abundances are factors of 10 to 100 lower. However, these halo nebulae have normal or elevated C/H ratios, due to nuclear processing and mixing in their red giant progenitors. Unlike the other halo planetaries, DDDM1 is deficient in carbon as well as in the other light metals. This nebula has a substantially lower IRE than the other halo planetaries, and may be truly dust efficient. Researchers suggest that the deficiency is due to a lack of the raw material for producing carbon-based grains, and that the main bulk constituent of the dust in these planetary nebulae is carbon.

  17. A dust and water disk in AFGL 2591

    NASA Astrophysics Data System (ADS)

    van der Tak, Floris; Walmsley, Malcolm; Herpin, Fabrice; Ceccarelli, Cecilia

    High-mass stars may form by disk accretion like low-mass stars, but observational evidence for massive circumstellar disks remains sparse even after intense searches. We present Plateau de Bure observations of dust continuum and H218O line emission at 1.3 mm wavelength which show a rotating disk around the nearby (d=1 kpc) high-mass (L = 2 × 104 Lsol) protostar AFGL 2591. The 205 GHz map shows three sources. Comparison with OVRO 86 GHz images in- dicates that the strongest source is due to dust, while the other two are dominated by ionized gas. The dust source is compact (? ≍ 800 AU) and somewhat elongated (axis ratio ≍ 0.8). Its flux density indicates a mass of ≍ 0.8 Msol which is ≍ 5% of the mass of the central star. The dust opacity index β ≍ 1, suggesting grain growth. These observations suggest a disk at an inclination of ≍ 32◦ (almost face-on), but spectral line data are needed to test this idea. H218O line emission is only detected toward the dust source. The size and shape of the emission are very similar to that of the continuum. All of the single-dish line flux is recovered, so that there is probably little extended flux missing. Radiative transfer models indicate a H2O abundance of ~10-4, similar to the H2O ice abundance measured in the mid-infrared. The origin of the H2O thus seems to be evaporation of grain mantles. The position of the H218O emission peak shows a systematic shift with velocity. Such a gradient could arise in a bipolar outflow, but the high column densities (N(H2O) ~ 3 × 1019 cm-2; N(H2) ~ 2 × 1024 cm-2) argue against this. Moreover, the velocity gradient is not oriented East-West like the large-scale outflow from AFGL 2591. Thus the H218O velocity gradient probably traces a rotating disk. The magnitude of the velocity gradient is consistent with Keplerian rotation around the central star. In the near future, we plan to use more extended array configurations to resolve the velocity field.

  18. ALMA [N ii] 205 μ m Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Nanyao; Xu, C. Kevin; Zhu, Lei

    We present the results from Atacama Large Millimeter/submillimeter Array imaging in the [N ii] 205 μ m fine-structure line (hereafter [N ii]) and the underlying continuum of BRI 1202-0725, an interacting galaxy system at z = 4.7, consisting of a quasi-stellar object (QSO), a submillimeter galaxy (SMG), and two Ly α emitters, all within ∼25 kpc of the QSO. We detect the QSO and SMG in both [N ii] and continuum. At the ∼1″ (or 6.6 kpc) resolution, both the QSO and SMG are resolved in [N ii], with the de-convolved major axes of ∼9 and ∼14 kpc, respectively. Inmore » contrast, their continuum emissions are much more compact and unresolved even at an enhanced resolution of ∼0.″7. The ratio of the [N ii] flux to the existing CO(7−6) flux is used to constrain the dust temperature ( T {sub dust}) for a more accurate determination of the FIR luminosity L {sub FIR}. Our best estimated T {sub dust} equals 43 (±2) K for both galaxies (assuming an emissivity index β = 1.8). The resulting L {sub CO(7−6)}/ L {sub FIR} ratios are statistically consistent with that of local luminous infrared galaxies, confirming that L {sub CO(7−6)} traces the star formation (SF) rate (SFR) in these galaxies. We estimate that the ongoing SF of the QSO (SMG) has an SFR of 5.1 (6.9) × 10{sup 3} M {sub ⊙} yr{sup −1} (±30%) assuming Chabrier initial mass function, takes place within a diameter (at half maximum) of 1.3 (1.5) kpc, and will consume the existing 5 (5) × 10{sup 11} M {sub ⊙} of molecular gas in 10 (7) × 10{sup 7} years.« less

  19. ALMA Reveals Metals yet No Dust within Multiple Components in CR7

    NASA Astrophysics Data System (ADS)

    Matthee, J.; Sobral, D.; Boone, F.; Röttgering, H.; Schaerer, D.; Girard, M.; Pallottini, A.; Vallini, L.; Ferrara, A.; Darvish, B.; Mobasher, B.

    2017-12-01

    We present spectroscopic follow-up observations of CR7 with ALMA, targeted at constraining the infrared (IR) continuum and [C II]{}158μ {{m}} line-emission at high spatial resolution matched to the HST/WFC3 imaging. CR7 is a luminous Lyα emitting galaxy at z = 6.6 that consists of three separated UV-continuum components. Our observations reveal several well-separated components of [C II] emission. The two most luminous components in [C II] coincide with the brightest UV components (A and B), blueshifted by ≈ 150 km s‑1 with respect to the peak of Lyα emission. Other [C II] components are observed close to UV clumps B and C and are blueshifted by ≈ 300 and ≈80 km s‑1 with respect to the systemic redshift. We do not detect FIR continuum emission due to dust with a 3σ limiting luminosity {L}{IR}({T}d=35 {{K}})< 3.1× {10}10 {L}ȯ . This allows us to mitigate uncertainties in the dust-corrected SFR and derive SFRs for the three UV clumps A, B, and C of 28, 5, and 7 {M}ȯ yr‑1. All clumps have [C II] luminosities consistent within the scatter observed in the local relation between SFR and {L}[{{C}{{II}}]}, implying that strong Lyα emission does not necessarily anti-correlate with [C II] luminosity. Combining our measurements with the literature, we show that galaxies with blue UV slopes have weaker [C II] emission at fixed SFR, potentially due to their lower metallicities and/or higher photoionization. Comparison with hydrodynamical simulations suggests that CR7's clumps have metallicities of 0.1< {{Z}}/{{{Z}}}ȯ < 0.2. The observed ISM structure of CR7 indicates that we are likely witnessing the build up of a central galaxy in the early universe through complex accretion of satellites.

  20. Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium

    NASA Astrophysics Data System (ADS)

    Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.

    2017-12-01

    A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.

  1. IR Fine-Structure Line Signatures of Central Dust-Bounded Nebulae in Luminous Infrared Galaxies

    NASA Technical Reports Server (NTRS)

    Fischer, J.; Allen, R.; Dudley, C. C.; Satyapal, S.; Luhman, M.; Wolfire, M.; Smith, H. A.

    2004-01-01

    To date, the only far-infrared spectroscopic observations of ultraluminous infrared galaxies have been obtained with the European Space Agency s Infrared Space Observatory Long Wavelength Spectrometer. The spectra of these galaxies are characterized by molecular absorption lines and weak emission lines from photodissociation regions (PDRs), but no far-infrared (greater than 40 microns) lines from ionized regions have been detected. ESA s Herschel Space Observatory, slated for launch in 2007, will likely be able to detect these lines in samples of local and moderate redshift ultra luminous galaxies and to enable measurement of the ionization parameters, the slope of the ionizing continuum, and densities present in the ionized regions of these galaxies. The higher spatial resolution of proposed observatories discussed in this workshop will enable isolation of the central regions of local galaxies and detection of these lines in high-redshift galaxies for study of the evolution of galaxies. Here we discuss evidence for the e.ects of absorption by dust within ionized regions and present the spectroscopic signatures predicted by photoionization modeling of dust-bounded regions.

  2. Simulations of dust in interacting galaxies

    NASA Astrophysics Data System (ADS)

    Jonsson, Patrik

    This dissertation studies the effects of dust in N-body simulations of interacting galaxies. A new Monte-Carlo radiative-transfer code, Sunrise , is used in conjunction with hydrodynamic simulations. Results from radiative- transfer calculations in over 20 SPH simulations of disk-galaxy major mergers (Cox, 2004) are presented. Dust has a profound effect on the appearance of these simulations. At peak luminosities, 90% of the bolometric luminosity is absorbed by dust. The dust obscuration increases with luminosity in such a way that the brightness at UV/ visual wavelengths remains roughly constant. A general relationship between the fraction of energy absorbed and the ratio of bolometric luminosity to baryonic mass is found to hold in galaxies with metallicities >0.7 [Special characters omitted.] over a factor of 50 in mass. The accuracy to which the simulations describe observed starburst galaxies is evaluated by comparing them to observations by Meurer et al. (1999) and Heckman et al. (1998). The simulations are found to follow a relation similar to the IRX-b relation found by Meurer et al. (1999) when similar luminosity objects are considered. The highest-luminosity simulated galaxies depart from this relation and occupy the region where local LIRGs/ULIRGs are found. Comparing to the Heckman et al. (1998) sample, the simulations are found to obey the same relations between UV luminosity, UV color, IR luminosity, absolute blue magnitude and metallicity as the observations. This agreement is contingent on the presence of a realistic mass-metallicity relation, and Milky-Way-like dust. SMC-like dust results in far too red a UV continuum slope. On the whole, the agreement between the simulated and observed galaxies is impressive considering that the simulations have not been fit to agree with the observations, and we conclude that the simulations provide a realistic replication of the real universe. The simulations are used to study the performance of star-formation indicators in the presence of dust. The far-infrared luminosity is found to be reliable. In contrast, the Ha and far-ultraviolet luminosities suffer severely from dust attenuation, and dust corrections can only partially remedy the situation.

  3. VARIABILITY OF DISK EMISSION IN PRE-MAIN SEQUENCE AND RELATED STARS. II. VARIABILITY IN THE GAS AND DUST EMISSION OF THE HERBIG Fe STAR SAO 206462

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitko, Michael L.; Day, Amanda N.; Kimes, Robin L.

    2012-01-20

    We present 13 epochs of near-infrared (0.8-5 {mu}m) spectroscopic observations of the pre-transitional, 'gapped' disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (Br{alpha}, Br{gamma}, Pa{beta}, Pa{gamma}, Pa{delta}, Pa{epsilon}, and the 0.8446 {mu}m line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1} was derived from the Br{gamma} and Pa{beta} lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months.more » The continuum also varied, but by only {approx}30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 {mu}m was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on timescales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magnetorotational) would operate there on longer timescales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on timescales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer timescales that have been sampled so far.« less

  4. Differences in the Gas and Dust Distribution in the Transitional Disk of a Sun-like Young Star, PDS 70

    NASA Astrophysics Data System (ADS)

    Long, Zachary C.; Akiyama, Eiji; Sitko, Michael; Fernandes, Rachel B.; Assani, Korash; Grady, Carol A.; Cure, Michel; Danchi, William C.; Dong, Ruobing; Fukagawa, Misato; Hasegawa, Yasuhiro; Hashimoto, Jun; Henning, Thomas; Inutsuka, Shu-Ichiro; Kraus, Stefan; Kwon, Jungmi; Lisse, Carey M.; Baobabu Liu, Hauyu; Mayama, Satoshi; Muto, Takayuki; Nakagawa, Takao; Takami, Michihiro; Tamura, Motohide; Currie, Thayne; Wisniewski, John P.; Yang, Yi

    2018-05-01

    We present ALMA 0.87 mm continuum, HCO+ J = 4–3 emission line, and CO J = 3–2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.″42 ± 0.″05, an azimuthal gap in the HCO+ J = 4–3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We find that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work.

  5. Exploring the early dust-obscured phase of galaxy formation with blind mid-/far-infrared spectroscopic surveys

    NASA Astrophysics Data System (ADS)

    Bonato, M.; Negrello, M.; Cai, Z.-Y.; De Zotti, G.; Bressan, A.; Lapi, A.; Gruppioni, C.; Spinoglio, L.; Danese, L.

    2014-03-01

    While continuum imaging data at far-infrared to submillimetre wavelengths have provided tight constraints on the population properties of dusty star-forming galaxies up to high redshifts, future space missions like the Space Infrared Telescope for Cosmology and Astrophysics (SPICA) and ground-based facilities like the Cerro Chajnantor Atacama Telescope (CCAT) will allow detailed investigations of their physical properties via their mid-/far-infrared line emission. We present updated predictions for the number counts and the redshift distributions of star-forming galaxies spectroscopically detectable by these future missions. These predictions exploit a recent upgrade of evolutionary models, that include the effect of strong gravitational lensing, in the light of the most recent Herschel and South Pole Telescope data. Moreover the relations between line and continuum infrared luminosity are re-assessed, considering also differences among source populations, with the support of extensive simulations that take into account dust obscuration. The derived line luminosity functions are found to be highly sensitive to the spread of the line to continuum luminosity ratios. Estimates of the expected numbers of detections per spectral line by SPICA/SpicA FAR-infrared Instrument (SAFARI) and by CCAT surveys for different integration times per field of view at fixed total observing time are presented. Comparing with the earlier estimates by Spinoglio et al. we find, in the case of SPICA/SAFARI, differences within a factor of 2 in most cases, but occasionally much larger. More substantial differences are found for CCAT.

  6. Outflow and Infall in Star-forming Region L1221

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Ho, Paul T. P.

    2005-10-01

    We have mapped the 3.3 mm continuum, CO, HCO+, N2H+, and CS emission around a nearby Class I source, IRAS 22266+6845, in the L1221 cometary dark cloud. L1221 is a complicated star-forming region. It hosts three infrared sources: a close binary consisting of an east source and a west source around the IRAS source position and a southeast source ~45" to the southeast (T. Bourke 2004, private communication). The east source is identified as the IRAS source. Continuum emission is seen around the east and southeast sources, probably tracing the dust around them. No continuum emission is seen toward the west source, probably indicating that there is not much dust there. An east-west molecular outflow is seen in CO, HCO+, and CS originated from around the binary. It is bipolar with an east lobe and a west lobe, both appearing as a wide-opening outflow shell originated from around the binary. It is likely powered by the east source, which shows a southeast extension along the outflow axis in the K' image. A ringlike envelope is seen in N2H+ around the binary surrounding the outflow waist. It is tilted with the major axis perpendicular to the outflow axis. The kinematics is well reproduced by a thin-disk model with both infall and rotation, and a column density peak in a ring. The ringlike envelope is not rotationally supported, as the rotation velocity is smaller than the infall velocity.

  7. Dynamical Timescale of Pre-collapse Evolution Inferred from Chemical Distribution in the Taurus Molecular Cloud-1 (TMC-1) Filament

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yunhee; Lee, Jeong-Eun; Bourke, Tyler L.

    We present observations and analyses of the low-mass star-forming region, Taurus Molecular Cloud-1 (TMC-1). CS ( J = 2–1)/N{sub 2}H{sup +} ( J = 1–0) and C{sup 17}O ( J = 2–1)/C{sup 18}O ( J = 2–1) were observed with the Five College Radio Astronomy Observatory and the Seoul Radio Astronomy Observatory, respectively. In addition, Spitzer infrared data and 1.2 mm continuum data observed with Max-Planck Millimetre Bolometer are used. We also perform chemical modeling to investigate the relative molecular distributions of the TMC-1 filament. Based on Spitzer observations, there is no young stellar object along the TMC-1 filament, while five Classmore » II and one Class I young stellar objects are identified outside the filament. The comparison between column densities calculated from dust continuum and C{sup 17}O 2–1 line emission shows that CO is depleted much more significantly in the ammonia peak than in the cyanopolyyne peak, while the column densities calculated from the dust continuum are similar at the two peaks. N{sub 2}H{sup +} is not depleted much in either peak. According to our chemical calculation, the differential chemical distribution in the two peaks can be explained by different timescales required to reach the same density, i.e., by different dynamical processes.« less

  8. Gravitational instabilities in a protosolar-like disc - II. Continuum emission and mass estimates

    NASA Astrophysics Data System (ADS)

    Evans, M. G.; Ilee, J. D.; Hartquist, T. W.; Caselli, P.; Szűcs, L.; Purser, S. J. D.; Boley, A. C.; Durisen, R. H.; Rawlings, J. M. C.

    2017-09-01

    Gravitational instabilities (GIs) are most likely a fundamental process during the early stages of protoplanetary disc formation. Recently, there have been detections of spiral features in young, embedded objects that appear consistent with GI-driven structure. It is crucial to perform hydrodynamic and radiative transfer simulations of gravitationally unstable discs in order to assess the validity of GIs in such objects, and constrain optimal targets for future observations. We utilize the radiative transfer code lime (Line modelling Engine) to produce continuum emission maps of a 0.17 M⊙ self-gravitating protosolar-like disc. We note the limitations of using lime as is and explore methods to improve upon the default gridding. We use casa to produce synthetic observations of 270 continuum emission maps generated across different frequencies, inclinations and dust opacities. We find that the spiral structure of our protosolar-like disc model is distinguishable across the majority of our parameter space after 1 h of observation, and is especially prominent at 230 GHz due to the favourable combination of angular resolution and sensitivity. Disc mass derived from the observations is sensitive to the assumed dust opacities and temperatures, and therefore can be underestimated by a factor of at least 30 at 850 GHz and 2.5 at 90 GHz. As a result, this effect could retrospectively validate GIs in discs previously thought not massive enough to be gravitationally unstable, which could have a significant impact on the understanding of the formation and evolution of protoplanetary discs.

  9. BARNARD 59: NO EVIDENCE FOR FURTHER FRAGMENTATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roman-Zuniga, C. G.; Frau, P.; Girart, J. M.

    2012-03-10

    The dense molecular clump at the center of the Barnard 59 (B59) complex is the only region in the Pipe Nebula that has formed a small, stellar cluster. The previous analysis of a high-resolution near-IR dust extinction map revealed that the nuclear region in B59 is a massive, mostly quiescent clump of 18.9 M{sub Sun }. The clump shows a monolithic profile, possibly indicating that the clump is on the way to collapse, with no evident fragmentation that could lead to another group of star systems. In this paper, we present new analysis that compares the dust extinction map withmore » a new dust emission radio-continuum map of higher spatial resolution. We confirm that the clump does not show any significant evidence for prestellar fragmentation at scales smaller than those probed previously.« less

  10. H2O(+) structures in the inner plasma tail of comet Austin

    NASA Technical Reports Server (NTRS)

    Jockers, Klaus; Bonev, T.; Geyer, E. H.

    1992-01-01

    We present images of comet Austin 1989c1 in the light of H2O(+) from which the contribution of the dust continuum and the gas coma was completely removed. We describe the behavior of the H2O(+) plasma in the inner coma where it is reliably observed for the first time.

  11. VizieR Online Data Catalog: FIR bright sources of M83 (Foyle+, 2013)

    NASA Astrophysics Data System (ADS)

    Foyle, K.; Natale, G.; Wilson, C. D.; Popescu, C. C.; Baes, M.; Bendo, G. J.; Boquien, M.; Boselli, A.; Cooray, A.; Cormier, D.; de Looze, I.; Fischera, J.; Karczewski, O. L.; Lebouteiller, V.; Madden, S.; Pereira-Santaella, M.; Smith, M. W. L.; Spinoglio, L.; Tuffs, R. J.

    2015-07-01

    We use FIR images from the Herschel Space Observatory to trace cold dust emission. We use 70 and 160um maps taken with the PACS and 250 and 350um maps taken with the SPIRE. We trace the warm dust and PAH emission using MIR maps taken from the Spitzer Local Volume Legacy Survey (Dale et al., 2009ApJ...703..517D, Cat. J/ApJ/703/517). We use continuum-subtracted Hα maps from the Survey for Ionization in Neutral Gas Galaxies (SINGG; Meurer et al., 2006ApJS..165..307M, Cat. J/ApJS/165/307). (4 data files).

  12. Molecular gas associated with IRAS 10361-5830

    NASA Astrophysics Data System (ADS)

    Vazzano, M. M.; Cappa, C. E.; Vasquez, J.; Rubio, M.; Romero, G. A.

    2014-10-01

    Aims: We analyze the distribution of the molecular gas and dust in the molecular clump linked to IRAS 10361-5830, located in the environs of the bubble-shaped Hii region Gum 31 in the Carina region, with the aim of determining the main parameters of the associated material and of investigating the evolutionary state of the young stellar objects identified there. Methods: Using the APEX telescope, we mapped the molecular emission in the J = 3-2 transition of three CO isotopologues, 12CO, 13CO and C18O, over a 1.´5 × 1.´5 region around the IRAS position. We also observed the high-density tracers CS and HCO+ toward the source. The cold- dust distribution was analyzed using submillimeter continuum data at 870 μm obtained with the APEX telescope. Complementary IR and radio data at different wavelengths were used to complete the study of the interstellar medium. Results: The molecular gas distribution reveals a cavity and a shell-like structure of ~0.32 pc in radius centered at the position of the IRAS source, with some young stellar objects projected onto the cavity. The total molecular mass in the shell and the mean H2volume density are ~40 M⊙ and ~(1-2) × 103 cm-3. The cold-dust counterpart of the molecular shell has been detected in the far-IR at 870 μm and in Herschel data at 350 μm. Weak extended emission at 24 μm from warm dust is projected onto the cavity, as well as weak radio continuum emission. Conclusions: A comparison of the distribution of cold and warm dust, and molecular and ionized gas allows us to conclude that a compact Hii region has developed in the molecular clump, indicating that this is an area of recent massive star formation. Probable exciting sources capable of creating the compact Hii region are investigated. The 2MASS source 10380461-5846233 (MSX G286.3773-00.2563) seems to be responsible for the formation of the Hii region. FITS files with datacubes corresponding to 12CO, 13CO, C180 maps are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/570/A109

  13. The near-infrared radius-luminosity relationship for active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Bentz, Misty C.; Peterson, Bradley M.; Elvis, Martin; Ward, Martin J.; Korista, Kirk T.; Karovska, Margarita

    2011-05-01

    Black hole masses for samples of active galactic nuclei (AGNs) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ultraviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R∝Lα, we obtain for a sample of 14 reverberation-mapped AGN a best-fitting slope of α= 0.5 ± 0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naïvely expected from photoionization theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Paα or Paβ).

  14. The invisible AGN catalogue: a mid-infrared-radio selection method for optically faint active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Truebenbach, Alexandra E.; Darling, Jeremy

    2017-06-01

    A large fraction of active galactic nuclei (AGN) are 'invisible' in extant optical surveys due to either distance or dust-obscuration. The existence of this large population of dust-obscured, infrared (IR)-bright AGN is predicted by models of galaxy-supermassive black hole coevolution and is required to explain the observed X-ray and IR backgrounds. Recently, IR colour cuts with Wide-field Infrared Survey Explorer have identified a portion of this missing population. However, as the host galaxy brightness relative to that of the AGN increases, it becomes increasingly difficult to differentiate between IR emission originating from the AGN and from its host galaxy. As a solution, we have developed a new method to select obscured AGN using their 20-cm continuum emission to identify the objects as AGN. We created the resulting invisible AGN catalogue by selecting objects that are detected in AllWISE (mid-IR) and FIRST (20 cm), but are not detected in SDSS (optical) or 2MASS (near-IR), producing a final catalogue of 46 258 objects. 30 per cent of the objects are selected by existing selection methods, while the remaining 70 per cent represent a potential previously unidentified population of candidate AGN that are missed by mid-IR colour cuts. Additionally, by relying on a radio continuum detection, this technique is efficient at detecting radio-loud AGN at z ≥ 0.29, regardless of their level of dust obscuration or their host galaxy's relative brightness.

  15. THE LYMAN ALPHA REFERENCE SAMPLE: EXTENDED LYMAN ALPHA HALOS PRODUCED AT LOW DUST CONTENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Matthew; Oestlin, Goeran; Duval, Florent

    2013-03-10

    We report on new imaging observations of the Lyman alpha emission line (Ly{alpha}), performed with the Hubble Space Telescope, that comprise the backbone of the Lyman alpha Reference Sample. We present images of 14 starburst galaxies at redshifts 0.028 < z < 0.18 in continuum-subtracted Ly{alpha}, H{alpha}, and the far ultraviolet continuum. We show that Ly{alpha} is emitted on scales that systematically exceed those of the massive stellar population and recombination nebulae: as measured by the Petrosian 20% radius, R{sub P20}, Ly{alpha} radii are larger than those of H{alpha} by factors ranging from 1 to 3.6, with an average ofmore » 2.4. The average ratio of Ly{alpha}-to-FUV radii is 2.9. This suggests that much of the Ly{alpha} light is pushed to large radii by resonance scattering. Defining the Relative Petrosian Extension of Ly{alpha} compared to H{alpha}, {xi}{sub Ly{alpha}} = R {sup Ly{alpha}}{sub P20}/R {sup H{alpha}}{sub P20}, we find {xi}{sub Ly{alpha}} to be uncorrelated with total Ly{alpha} luminosity. However, {xi}{sub Ly{alpha}} is strongly correlated with quantities that scale with dust content, in the sense that a low dust abundance is a necessary requirement (although not the only one) in order to spread Ly{alpha} photons throughout the interstellar medium and drive a large extended Ly{alpha} halo.« less

  16. High-contrast imaging of HD 163296 with the Keck/NIRC2 L΄-band vortex coronograph

    NASA Astrophysics Data System (ADS)

    Guidi, G.; Ruane, G.; Williams, J. P.; Mawet, D.; Testi, L.; Zurlo, A.; Absil, O.; Bottom, M.; Choquet, É.; Christiaens, V.; Castellá, B. Femenía; Huby, E.; Isella, A.; Kastner, J.; Meshkat, T.; Reggiani, M.; Riggs, A.; Serabyn, E.; Wallack, N.

    2018-06-01

    We present observations of the nearby (D˜100 pc) Herbig star HD 163296 taken with the vortex coronograph at Keck/NIRC2 in the L' band (3.7 μm), to search for planetary mass companions in the ringed disc surrounding this pre-main sequence star. The images reveal an arc-like region of scattered light from the disc surface layers that is likely associated with the first bright ring detected with ALMA in the λ=1.3mm dust continuum at ˜65 au. We also detect a point-like source at ˜0{^''.}5 projected separation in the North-East direction, close to the inner edge of the second gap in the millimetre images. Comparing the point source photometry with the atmospheric emission models of non-accreting giant planets, we obtain a mass of 6-7 MJ for a putative protoplanet, assuming a system age of 5 Myr. Based on the contrast at a 95% level of completeness calculated on the emission-free regions of our images, we set upper limits for the masses of giant planets of 8-15 MJ, 4.5-6.5 MJ and 2.5-4.0 MJ at the locations of the first, second and third gap in the millimetre dust continuum, respectively. Further deep, high resolution thermal IR imaging of the HD 163296 system are warranted, to confirm the presence and nature of the point source and to better understand the structure of the dust disc.

  17. Resolving Molecular Clouds in the Nearby Galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Lada, Charles J.; Forbrich, Jan

    2015-01-01

    We present results from our ongoing Submillimeter Array (SMA) survey in which we resolve Giant Molecular Clouds (GMCs) for the first time in the nearby (D = 1.9 Mpc) spiral galaxy NGC 300. We have conducted CO(2-1) and 1.3 mm dust continuum observations of several massive star-forming regions in NGC 300, following up on the Atacama Pathfinder Experiment (APEX) survey of Faesi et al. (2014). We find that the unresolved CO sources detected with APEX at ~250 pc resolution typically resolve into one dominant GMC in our SMA observations, which have a resolution of ~3.5' (30 pc). The majority of sources are significantly detected in CO, but only one exhibits dust continuum emission. Comparing with archival H-alpha, GALEX far-ultraviolet, and Spitzer 24 micron images, we note physical offsets between the young star clusters, warm dust, and ionized and molecular gas components in these regions. We recover a widely varying fraction -- between 30% and almost 100% -- of the full APEX single dish flux with our interferometric observations. This implies that the fraction of CO-emitting molecular gas that is in a diffuse state (i.e. with characteristic spatial scales > 100 pc) differs greatly amongst star forming regions in NGC 300. We investigate potential trends in the implied diffuse molecular gas fraction with GMC properties and star formation activity. We compute virial masses and analyze the velocity structure of these resolved extragalactic GMCs and compare to results from surveys of the Milky Way and other nearby galaxies.

  18. A conceptual framework for dryland aeolian sediment transport along the grassland–forest continuum: Effects of woody plant canopy cover and disturbance

    USGS Publications Warehouse

    Breshears, D.D.; Whicker, J.J.; Zou, C.B.; Field, J.P.; Allen, Craig D.

    2009-01-01

    Aeolian processes are of particular importance in dryland ecosystems where ground cover is inherently sparse because of limited precipitation. Dryland ecosystems include grassland, shrubland, savanna, woodland, and forest, and can be viewed collectively as a continuum of woody plant cover spanning from grasslands with no woody plant cover up to forests with nearly complete woody plant cover. Along this continuum, the spacing and shape of woody plants determine the spatial density of roughness elements, which directly affects aeolian sediment transport. Despite the extensiveness of dryland ecosystems, studies of aeolian sediment transport have generally focused on agricultural fields, deserts, or highly disturbed sites where rates of transport are likely to be greatest. Until recently, few measurements have been made of aeolian sediment transport over multiple wind events and across a variety of types of dryland ecosystems. To evaluate potential trends in aeolian sediment transport as a function of woody plant cover, estimates of aeolian sediment transport from recently published studies, in concert with rates from four additional locations (two grassland and two woodland sites), are reported here. The synthesis of these reports leads to the development of a new conceptual framework for aeolian sediment transport in dryland ecosystems along the grassland–forest continuum.The findings suggest that: (1) for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport because of wake interference flow associated with intermediate levels of density and spacing of woody plants; and (2) for disturbed ecosystems, the upper bound for aeolian sediment transport decreases as a function of increasing amounts of woody plant cover because of the effects of the height and density of the canopy on airflow patterns and ground cover associated with woody plant cover. Consequently, aeolian sediment transport following disturbance spans the largest range of rates in grasslands and associated systems with no woody plants (e.g., agricultural fields), an intermediate range in shrublands, and a relatively small range in woodlands and forests. These trends are consistent with previous observations relating large rates of wind erosion to intermediate values for spatial density of roughness elements. The framework for aeolian sediment transport, which is also relevant to dust fluxes, wind erosion, and related aeolian processes, is applicable to a diverse suite of environmental challenges, including land degradation and desertification, dust storms, contaminant transport, and alterations of the hydrological cycle.

  19. A conceptual framework for dryland aeolian sediment transport along the grassland-forest continuum: Effects of woody plant canopy cover and disturbance

    NASA Astrophysics Data System (ADS)

    Breshears, David D.; Whicker, Jeffrey J.; Zou, Chris B.; Field, Jason P.; Allen, Craig D.

    2009-04-01

    Aeolian processes are of particular importance in dryland ecosystems where ground cover is inherently sparse because of limited precipitation. Dryland ecosystems include grassland, shrubland, savanna, woodland, and forest, and can be viewed collectively as a continuum of woody plant cover spanning from grasslands with no woody plant cover up to forests with nearly complete woody plant cover. Along this continuum, the spacing and shape of woody plants determine the spatial density of roughness elements, which directly affects aeolian sediment transport. Despite the extensiveness of dryland ecosystems, studies of aeolian sediment transport have generally focused on agricultural fields, deserts, or highly disturbed sites where rates of transport are likely to be greatest. Until recently, few measurements have been made of aeolian sediment transport over multiple wind events and across a variety of types of dryland ecosystems. To evaluate potential trends in aeolian sediment transport as a function of woody plant cover, estimates of aeolian sediment transport from recently published studies, in concert with rates from four additional locations (two grassland and two woodland sites), are reported here. The synthesis of these reports leads to the development of a new conceptual framework for aeolian sediment transport in dryland ecosystems along the grassland-forest continuum. The findings suggest that: (1) for relatively undisturbed ecosystems, shrublands have inherently greater aeolian sediment transport because of wake interference flow associated with intermediate levels of density and spacing of woody plants; and (2) for disturbed ecosystems, the upper bound for aeolian sediment transport decreases as a function of increasing amounts of woody plant cover because of the effects of the height and density of the canopy on airflow patterns and ground cover associated with woody plant cover. Consequently, aeolian sediment transport following disturbance spans the largest range of rates in grasslands and associated systems with no woody plants (e.g., agricultural fields), an intermediate range in shrublands, and a relatively small range in woodlands and forests. These trends are consistent with previous observations relating large rates of wind erosion to intermediate values for spatial density of roughness elements. The framework for aeolian sediment transport, which is also relevant to dust fluxes, wind erosion, and related aeolian processes, is applicable to a diverse suite of environmental challenges, including land degradation and desertification, dust storms, contaminant transport, and alterations of the hydrological cycle.

  20. Do Lyman-alpha photons escape from star-forming galaxies through dust-holes?

    NASA Astrophysics Data System (ADS)

    Wofford, Aida

    2012-10-01

    The hydrogen Lyman-alpha line is arguably the most important signature of galaxies undergoing their first violent burst of star formation. Although Lya photons are easily destroyed by dust, candidate Lya emitters have been detected at z>5. Thus the line can potentially be used to probe galaxy formation and evolution, as long as the astrophysical processes that regulate the escape of Lya photons from star-forming galaxies are well understood.We request 15 orbits for imaging in Lya and the FUV continuum with ACS/SBC, and in the H-beta/H-alpha ratio {proxy for dust extinction} with WFC3/UVIS, a sample of isolated non-AGN face-on spirals for which our team previously obtained and analyzed COS FUV spectroscopy of the central regions. Each target shows a different Lya profile, i.e., pure absorption, P-Cygni like, and multiple-emission. From the COS data, we already know the starburst phase and H I gas velocity. The images would greatly increase the impact of our spectroscopic study by enabling us to 1} conclusively determine if Lya photons escape through dust-holes, 2} assess the relative importance of dust extinction, ISM kinematics, and starburst phase in regulating the Lya escape, 3} clarify what we can really learn from the Lya equivalent width, and 4} provide constraints on the dust extinction to Lya 3D radiative transfer models. Ultimately this program will inform our understanding of the Lya escape at high redshift by providing spatially resolved views of the local conditions within star-forming galaxies that favor escape.

  1. A SIMPLE CONNECTION BETWEEN THE NEAR- AND MID-INFRARED EMISSION OF GALAXIES AND THEIR STAR FORMATION RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mentuch, Erin; Abraham, Roberto G.; Zibetti, Stefano

    2010-12-20

    We have measured the near-infrared colors and the fluxes of individual pixels in 68 galaxies common to the Spitzer Infrared Nearby Galaxies Survey and the Large Galaxy Atlas Survey. Pixels from each galaxy are grouped into regions of increasingly red near-infrared colors. As expected, the majority of pixels are shown to have relatively constant NIR flux ratios (log{sub 10} I{sub 3.6}/I{sub 1.25} = -0.30 {+-} 0.07 and log{sub 10} I{sub 4.5}/I{sub 3.6} = -0.19 {+-} 0.02), representing the blackbody continuum emission of main sequence stars. However, pixels with red NIR colors correspond to pixels with higher H{sub {alpha}} emission andmore » dust extinction. We show that the NIR colors are correlated to both quantities, with the strongest correlation to the intrinsic H{sub {alpha}} emission. In addition, in regions of high star formation, the average intensity of pixels in red-excess regions (at 1.25 {mu}m, 3.6 {mu}m, 4.5 {mu}m, 5.6 {mu}m, 8.0 {mu}m and 24 {mu}m) scales linearly with the intrinsic intensity of H{alpha} emission, and thus with the star formation rate (SFR) within the pixel. This suggests that most NIR-excess regions are not red because their light is being depleted by absorption. Instead, they are red because additional infrared light is being contributed by a process linked to star formation. This is surprising because the shorter wavelength bands in our study (1.25 {mu}m-5.6 {mu}m) do not probe emission from cold (10-20 K) and warm (50-100 K) dust associated with star formation in molecular clouds. However, emission from hot dust (700-1000 K) and/or polycyclic aromatic hydrocarbon (PAH) molecules can explain the additional emission seen at the shorter wavelengths in our study. The contribution from hot dust and/or PAH emission at 2 {mu}m-5 {mu}m and PAH emission at 5.6 {mu}m and 8.0 {mu}m scales linearly with warm dust emission at 24 {mu}m and the intrinsic H{alpha} emission. Since both are tied to the SFR, our analysis shows that the NIR excess continuum emission and PAH emission at {approx}1-8 {mu}m can be added to spectral energy distribution models in a very straightforward way, by simply adding an additional component to the models that scales linearly with SFR.« less

  2. MIR imaging of the transitional disk source Oph IRS48

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko

    2015-06-01

    We propose to make 25 mum mid-infrared imaging of the transitional disk around the young star Oph IRS 48 to derive the temperature of the emitting dust in this disk. Recently, ALMA observation revealed the apparent difference of the infrared (18.7 mum) and radio (440 mum) dust continuum of this system and implied that the large mm-sized grains are trapped and accumulated to the local pressure maximum, which may eventually form planetesimals/planets. However, there can be other explanations to such apparent difference in the different wavelengths. To verify such interpretation, new 25 mum imaging can provide some clues, since it is the wavelength between the previous 18.7 mum and the 440 mum observations. Furthermore, multi-wavelength study of the disk is a natural step towards detailed understanding of disk structure, and new 25 mum image can be complemental to forthecoming ALMA and NIR polarimetric data.

  3. MIR imaging of the transitional disk source Oph IRS48

    NASA Astrophysics Data System (ADS)

    Honda, Mitsuhiko

    2014-01-01

    We propose to make 25 micron mid-infrared imaging of the transitional disk around the young star Oph IRS 48 to derive the temperature of the emitting dust in this disk. Recently, ALMA observation revealed the apparent difference of the infrared (18.7 micron) and radio (440 micron) dust continuum of this system and implied that the large mm-sized grains are trapped and accumulated to the local pressure maximum, which may eventually form planetesimals/planets. However, there can be other explanations to such apparent difference in the different wavelengths. To verify such interpretation, new 25 micron imaging can provide some clues, since it is the wavelength between previous 18.7 micron and 440 micron observations. Furthermore, multi-wavelength study of the disk is a natural step towards detailed understanding of disk structure, and new 25 micron image can be complemental to forthecoming ALMA and NIR polarimetric data.

  4. DECONVOLUTION OF IMAGES FROM BLAST 2005: INSIGHT INTO THE K3-50 AND IC 5146 STAR-FORMING REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Arabindo; Netterfield, Calvin B.; Ade, Peter A. R.

    2011-04-01

    We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Compared to the direct Fourier transform method of deconvolution, the L-R operation restores images with better-controlled background noise and increases source detectability. Intermediate iterated images are useful for studying extended diffuse structures, while the later iterations truly enhance point sources to near the designed diffraction limit of the telescope. The L-R method of deconvolution is efficient in resolving compact sources in crowded regions while simultaneously conserving their respective flux densities. We have analyzed itsmore » performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available high-resolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4.'5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the spectral energy distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21 cm radio continuum and {sup 12}CO molecular line emission. The restored extended large-scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high-resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below {approx} 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power young stellar objects. Further evidence for starless clumps has also been found in the IC 5146 region.« less

  5. Two extreme young objects in Barnard 1-b

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Naomi; Liu, Fang-chun, E-mail: hirano@asiaa.sinica.edu.tw

    2014-07-01

    Two submillimeter/millimeter sources in the Barnard 1b (B1-b) core, B1-bN and B1-bS, have been studied in dust continuum, H{sup 13}CO{sup +} J = 1-0, CO J = 2-1, {sup 13}CO J = 2-1, and C{sup 18}O J = 2-1. The spectral energy distributions of these sources from the mid-IR to 7 mm are characterized by very cold temperatures of T {sub dust} < 20 K and low bolometric luminosities of 0.15-0.31 L {sub ☉}. The internal luminosities of B1-bN and B1-bS are estimated to be <0.01-0.03 L {sub ☉} and ∼0.1-0.2 L {sub ☉}, respectively. Millimeter interferometric observations have shownmore » that these sources have already formed central compact objects of ∼100 AU sizes. Both B1-bN and B1-bS are driving the CO outflows with low characteristic velocities of ∼2-4 km s{sup –1}. The fractional abundance of H{sup 13}CO{sup +} at the positions of B1-bN and B1-bS is lower than the canonical value by a factor of four to eight. This implies that a significant fraction of CO is depleted onto dust grains in the dense gas surrounding these sources. The observed physical and chemical properties suggest that B1-bN and B1-bS are in an earlier evolutionary stage than most of the known class 0 protostars. In particular, the properties of B1-bN agree with those of the first hydrostatic core predicted by the MHD simulations. The CO outflow was also detected in the mid-IR source located at ∼15'' from B1-bS. Since the dust continuum emission was not detected in this source, the circumstellar material surrounding this source is less than 0.01 M {sub ☉}. It is likely that the envelope of this source was dissipated by the outflow from the protostar that is located to the southwest of B1-b.« less

  6. Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-forming Regions

    NASA Astrophysics Data System (ADS)

    Roy, Arabindo; Ade, Peter A. R.; Bock, James J.; Brunt, Christopher M.; Chapin, Edward L.; Devlin, Mark J.; Dicker, Simon R.; France, Kevin; Gibb, Andrew G.; Griffin, Matthew; Gundersen, Joshua O.; Halpern, Mark; Hargrave, Peter C.; Hughes, David H.; Klein, Jeff; Marsden, Gaelen; Martin, Peter G.; Mauskopf, Philip; Netterfield, Calvin B.; Olmi, Luca; Patanchon, Guillaume; Rex, Marie; Scott, Douglas; Semisch, Christopher; Truch, Matthew D. P.; Tucker, Carole; Tucker, Gregory S.; Viero, Marco P.; Wiebe, Donald V.

    2011-04-01

    We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). Compared to the direct Fourier transform method of deconvolution, the L-R operation restores images with better-controlled background noise and increases source detectability. Intermediate iterated images are useful for studying extended diffuse structures, while the later iterations truly enhance point sources to near the designed diffraction limit of the telescope. The L-R method of deconvolution is efficient in resolving compact sources in crowded regions while simultaneously conserving their respective flux densities. We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available high-resolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4farcm5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the spectral energy distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21 cm radio continuum and 12CO molecular line emission. The restored extended large-scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high-resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power young stellar objects. Further evidence for starless clumps has also been found in the IC 5146 region.

  7. X-ray Reverberation Mapping of Ci Cam

    NASA Astrophysics Data System (ADS)

    Bartlett, Elizabeth; Garcia, M.

    2009-01-01

    We have analyzed the X-ray lightcurve of the star CI Cam, the optical counterpart of the X-ray transient XTE J0421+56 using data from XMM-Newton. Our motivation is based on evidence from ground based optical interferometry from the Keck and IOTA observatories which suggests that the dust surrounding CI CAM has a taurus morphology rather than a spherical distribution as previously hypothesized. By using a technique known as reverberation mapping we have constrained the time delay between the continuum of CI Cam and the Fe-K fluorescence line, corresponding to the reflection of the continuum off the dusty taurus. The time delay yields information on the size of the taurus.

  8. Dust modeling of the combined ALMA and SPHERE datasets of HD 163296. Is HD 163296 really a Meeus group II disk?

    NASA Astrophysics Data System (ADS)

    Muro-Arena, G. A.; Dominik, C.; Waters, L. B. F. M.; Min, M.; Klarmann, L.; Ginski, C.; Isella, A.; Benisty, M.; Pohl, A.; Garufi, A.; Hagelberg, J.; Langlois, M.; Menard, F.; Pinte, C.; Sezestre, E.; van der Plas, G.; Villenave, M.; Delboulbé, A.; Magnard, Y.; Möller-Nilsson, O.; Pragt, J.; Rabou, P.; Roelfsema, R.

    2018-06-01

    Context. Multiwavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims: We aim to construct a three-dimensional model of HD 163296 that is capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the spectral energy distribution of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods: The disk was modeled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modeled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results: While three rings are observed in the disk midplane in millimeter thermal emission at 80, 124, and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models that are capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and near-infrared wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.

  9. Lupus Disks with Faint CO Isotopologues: Low Gas/Dust or High Carbon Depletion?

    NASA Astrophysics Data System (ADS)

    Miotello, Anna

    2017-11-01

    With the advent of ALMA, complete surveys of gas and dust in protoplanetary disks are being carried out in different star forming regions. In particular, continuum emission is used to trace the large (mm-sized) dust grains and CO isotopologues are observed in order to trace the bulk of the gas. The attempt is to simultaneously constrain the gas and dust disk mass as well as the gas/dust mass ratio. In this presentation I will present the Lupus disk survey observations, analyzed with thermo-chemical disk models, including radiative transfer, CO isotope-selective processes and freeze-out. The main result is that CO-based gas masses are very low, often smaller than Jupiter Mass. Moreover, gas/dust mass ratios are much lower than value of 100 found in the ISM, being mainly between 1 and 10. This result can be interpreted either as rapid loss of gas, or as a chemical effect removing carbon from CO and locking it into more complex molecules or in larger bodies. Previous data cannot distinguish between the two scenarios (except for sources with detected HD lines), but new Cycle 4 observations of hydrocarbon lines will be presented and they can help to calibrate CO-based gas masses and to constrain disk gas masses.

  10. Polarization due to dust scattering in the planetary nebula Cn1-1

    NASA Technical Reports Server (NTRS)

    Bhatt, Harish C.

    1989-01-01

    The peculiar emission-line object Cn1-1 (=HDE330036=PK330+4 degrees 1), classified both as a symbiotic star and as a planetary nebula, was detected by the Infrared Astronomical Satellite (IRAS) as a strong source of far-infrared dust in the system. Bhatt and Mallik (1986) discussed the nature of the dust in Cn1-1 and argued that the object is a Type I protoplanetary nebula in a binary system. The argument presented here is that the polarization is intrinsic to Cn1-1 and is due to scattering by large (compared to interstellar) dust grains in the protoplanetary nebula that are asymmetrically distributed around the central star. The large degree of polarization (approximately 3 percent for the Cn1-1 distance of approximately 450 pc) with a large lambda(sub max) is naturally explained if it is caused by scattering by large dust grains in the Cn1-1 nebula. Since the H(sub alpha) line is also polarized at the same level and position angle as the continuum, the dust must be asymmetrically distributed around the central star. The morphology of the protoplanetary nebula in Cn1-1 may be bipolar. Thus, the polarization observations support the suggestion that Cn1-1 is a bipolar Type I planetary nebula.

  11. The 617 MHz-λ 850 μm correlation (cosmic rays and cold dust) in NGC 3044 and NGC 4157

    NASA Astrophysics Data System (ADS)

    Irwin, J. A.; Brar, R. S.; Saikia, D. J.; Henriksen, R. N.

    2013-08-01

    We present the first maps of NGC 3044 and NGC 4157 at λ 450 μm and λ 850 μm from the James Clerk Maxwell Telescope as well as the first maps at 617 MHz from the Giant Metrewave Radio Telescope. High-latitude emission has been detected in both the radio continuum and sub-mm for NGC 3044 and in the radio continuum for NGC 4157, including several new features. For NGC 3044, in addition, we find 617 MHz emission extending to the north of the major axis, beginning at the far ends of the major axis. One of these low-intensity features, more than 10 kpc from the major axis, has apparently associated emission at λ 20 cm and may be a result of in-disc activity related to star formation. The dust spectrum at long wavelengths required fitting with a two-temperature model for both galaxies, implying the presence of cold dust (Tc = 9.5 K for NGC 3044 and Tc = 15.3 K for NGC 4157). Dust masses are Md = 1.6 × 108 M⊙ and Md = 2.1 × 107 M⊙ for NGC 3044 and NGC 4157, respectively, and are dominated by the cold component. There is a clear correlation between the 617 MHz and λ 850 μm emission in the two galaxies. In the case of NGC 3044 for which the λ 850 μm data are strongly dominated by cold dust, this implies a relation between the non-thermal synchrotron emission and cold dust. The 617 MHz component represents an integration of massive star formation over the past 107-8 yr and the λ 850 μm emission represents heating from the diffuse interstellar radiation field (ISRF). The 617 MHz-λ 850 μm correlation improves when a smoothing kernel is applied to the λ 850 μm data to account for differences between the cosmic ray (CR) electron diffusion scale and the mean free path of an ISRF photon to dust. The best-fitting relation is L_{617_MHz} ∝ {L_{850μ m}}^{2.1 ± 0.2} for NGC 3044. If variations in the cold dust emissivity are dominated by variations in dust density, and the synchrotron emission depends on magnetic field strength (a function of gas density) as well as CR electron generation (a function of massive star formation rate and therefore density via the Schmidt law) then the expected correlation for NGC 3044 is L_{617_MHz} ∝ {L_{850μ m}}^{2.2}, in agreement with the observed correlation.

  12. Peering Through the Dust. II. XMM-Newton Observations of Two Additional FIRST-2MASS Red Quasars

    NASA Astrophysics Data System (ADS)

    Glikman, Eilat; LaMassa, Stephanie; Piconcelli, Enrico; Urry, Meg; Lacy, Mark

    2017-10-01

    We obtained XMM-Newton observations of two highly luminous dust-reddened quasars, F2M1113+1244 and F2M1656+3821, that appear to be in the early, transitional phase predicted by merger-driven models of quasar/galaxy co-evolution. These sources have been well studied at optical through mid-infrared wavelengths and are growing relatively rapidly, with Eddington ratios > 30 % . Their black hole masses are relatively small compared to their host galaxies, placing them below the {M}{BH}{--}{L}{bulge} relation. We find that for both sources, an absorbed power-law model with 1%-3% of the intrinsic continuum scattered or leaked back into the line of sight best fits their X-ray spectra. We measure the absorbing column density (N H ) and constrain the dust-to-gas ratios in these systems, finding that they lie well below the Galactic value. This, combined with the presence of broad emission lines in their optical and near-infrared spectra, suggests that the dust absorption occurs far from the nucleus and in the host galaxy, while the X-rays are mostly absorbed in the nuclear, dust-free region within the sublimation radius. We also compare the quasars’ absorption-corrected, rest-frame X-ray luminosities (2-10 keV) to their rest-frame infrared luminosities (6 μm) and find that red quasars, similar to other populations of luminous obscured quasars, are either underluminous in X-rays or overluminous in the infrared.

  13. Dust Emission at 8 and 24 μm as Diagnostics of H II Region Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Oey, M. S.; López-Hernández, J.; Kellar, J. A.; Pellegrini, E. W.; Gordon, K. D.; Jameson, K. E.; Li, A.; Madden, S. C.; Meixner, M.; Roman-Duval, J.; Bot, C.; Rubio, M.; Tielens, A. G. G. M.

    2017-07-01

    We use the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) survey of the Magellanic Clouds to evaluate the relationship between the 8 μm polycyclic aromatic hydrocarbon (PAH) emission, 24 μm hot dust emission, and H II region radiative transfer. We confirm that in the higher-metallicity Large Magellanic Cloud, PAH destruction is sensitive to optically thin conditions in the nebular Lyman continuum: objects identified as optically thin candidates based on nebular ionization structure show six times lower median 8 μm surface brightness (0.18 mJy arcsec-2) than their optically thick counterparts (1.2 mJy arcsec-2). The 24 μm surface brightness also shows a factor of three offset between the two classes of objects (0.13 versus 0.44 mJy arcsec-2, respectively), which is driven by the association between the very small dust grains and higher density gas found at higher nebular optical depths. In contrast, PAH and dust formation in the low-metallicity Small Magellanic Cloud is strongly inhibited such that we find no variation in either 8 μm or 24 μm emission between our optically thick and thin samples. This is attributable to extremely low PAH and dust production together with high, corrosive UV photon fluxes in this low-metallicity environment. The dust mass surface densities and gas-to-dust ratios determined from dust maps using Herschel HERITAGE survey data support this interpretation.

  14. ISM Properties of a Massive Dusty Star-forming Galaxy Discovered at z ˜ 7

    NASA Astrophysics Data System (ADS)

    Strandet, M. L.; Weiss, A.; De Breuck, C.; Marrone, D. P.; Vieira, J. D.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bothwell, M. S.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Cunningham, D. J. M.; Chen, Chian-Chou; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hayward, C. C.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Menten, K. M.; Miller, T.; Murphy, E. J.; Narayanan, D.; Phadke, K. A.; Rotermund, K. M.; Spilker, J. S.; Sreevani, J.

    2017-06-01

    We report the discovery and constrain the physical conditions of the interstellar medium of the highest-redshift millimeter-selected dusty star-forming galaxy to date, SPT-S J031132-5823.4 (hereafter SPT0311-58), at z=6.900+/- 0.002. SPT0311-58 was discovered via its 1.4 mm thermal dust continuum emission in the South Pole Telescope (SPT)-SZ survey. The spectroscopic redshift was determined through an Atacama Large Millimeter/submillimeter Array 3 mm frequency scan that detected CO(6-5), CO(7-6), and [{{C}} {{I}}](2-1), and subsequently was confirmed by detections of CO(3-2) with the Australia Telescope Compact Array and [{{C}} {{II}}] with APEX. We constrain the properties of the ISM in SPT0311-58 with a radiative transfer analysis of the dust continuum photometry and the CO and [{{C}} {{I}}] line emission. This allows us to determine the gas content without ad hoc assumptions about gas mass scaling factors. SPT0311-58 is extremely massive, with an intrinsic gas mass of {M}{gas}=3.3+/- 1.9× {10}11 {M}⊙ . Its large mass and intense star formation is very rare for a source well into the epoch of reionization.

  15. Do Lyman-alpha photons escape from star-forming galaxies through dust holes?

    NASA Astrophysics Data System (ADS)

    France, Kevin; Wofford, A.; Leitherer, C.; Fleming, B.; McCandliss, S. R.; Nell, N.

    2014-01-01

    H I Lyman-alpha (LyA) is commonly used as a signpost for the entire galaxy at redshifts z>2, and yet spatially and kinematically resolved views of the local conditions within galaxies that determine the integrated properties of this line are scarce. We obtained Hubble Space Telescope (HST) images in continuum-subtracted LyA, H-alpha, H-beta, and far-UV continuum of three low-inclination spiral star-forming galaxies located at redshifts z=0.02, 0.03, and 0.05. This was accomplished using the UVIS and SBC channels of the Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS), respectively. Previous HST spectroscopy obtained by our team with the Cosmic Origins Spectrograph (COS) showed that the galaxies display different integrated LyA profiles within their central few kiloparsecs, i.e., pure absorption, single emission, and double emission, which are representative of what is observed between redshifts 0-3. This data is useful for establishing the relative importance of starburst phase, dust content, and gas kinematics in determining the LyA escape. We present preliminary results that combine our spectroscopic and imaging observations.

  16. High speed spectral measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Gordon, J. Motos; Spidell, Matthew T.; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Several homemade explosives (HMEs) were manufactured and detonated at a desert test facility. Visible and infrared signatures were collected using two Fourier transformspectrometers, two thermal imaging cameras, a radiometer, and a commercial digital video camera. Spectral emissions from the post-detonation combustion fireball were dominated by continuum radiation. The events were short-lived, decaying in total intensity by an order of magnitude within approximately 300ms after detonation. The HME detonation produced a dust cloud in the immediate area that surrounded and attenuated the emitted radiation from the fireball. Visible imagery revealed a dark particulate (soot) cloud within the larger surrounding dust cloud. The ejected dust clouds attenuated much of the radiation from the post-detonation combustion fireballs, thereby reducing the signal-to-noise ratio. The poor SNR at later times made it difficult to detect selective radiation from by-product gases on the time scale (~500ms) in which they have been observed in other HME detonations.

  17. Dust Evolution in Nova Cassiopeia 1993

    NASA Astrophysics Data System (ADS)

    Eyres, S. P. S.; Evans, A.; Geballe, T. R.; Davies, J. K.; Rawlings, J. M. C.

    1997-07-01

    We present UKIRT spectroscopy of Nova Cassiopeia 1993 (= V705 Cas) in KLNQ bands, taken in 1994 and 1995. Fitting the continuum indicates a dust temperature T ˜ 740 750 K in the latter part of 1994; this is similar to earlier measurements, and consistent with the “isothermal” behaviour observed in novae with optically thick dust shells. The β-index drops from 0.8 to 0.4 over the same period. This suggests grain growth; grain diameter increases from < 0.54 µm around day 256, to > 0.57 µm by day 342. The UIR features differ from those in other Galactic sources, and are similar to those in V842 Cen. This suggests fundamental differences between the UIR carriers, or environments, in novae and other Galactic sources. The silicate feature is consistent with an amorphous structure, in contrast to previous novae. We believe that grains in V705 Cas form two populations: silicates, and hydrocarbons.

  18. Lurking systematics in dust-based estimates of galaxy ISM masses

    NASA Astrophysics Data System (ADS)

    Janowiecki, Steven; Cortese, Luca; Catinella, Barbara; Goodwin, Adelle

    2018-01-01

    We use galaxies from the Herschel Reference Survey to evaluate commonly used indirect predictors of cold gas masses. With observations of cold neutral atomic and molecular gas, we calibrate predictive relationships using infrared dust emission and gas depletion time methods. We derive a set of self-consistent predictions of cold gas masses with ~20% scatter, and the greatest accuracy for total cold gas mass. However, significant systematic residuals are found in all calibrations which depend strongly on the molecular-to-atomic hydrogen mass ratio, and they can over/under-predict gas masses by >0.5 dex. Extending these types of indirect predictions to high-z galaxies (e.g., using ALMA observations of dust continuum to determine gas masses) requires implicit assumptions about the conditions in their interstellar medium. Any scaling relations derived using predicted gas masses may be more closely related to the calibrations used than to the actual galaxies observed.

  19. Gas dynamics in the inner few AU around the Herbig B[e] star MWC297. Indications of a disk wind from kinematic modeling and velocity-resolved interferometric imaging

    NASA Astrophysics Data System (ADS)

    Hone, Edward; Kraus, Stefan; Kreplin, Alexander; Hofmann, Karl-Heinz; Weigelt, Gerd; Harries, Tim; Kluska, Jacques

    2017-10-01

    Aims: Circumstellar accretion disks and outflows play an important role in star formation. By studying the continuum and Brγ-emitting region of the Herbig B[e] star MWC297 with high-spectral and high-spatial resolution we aim to gain insight into the wind-launching mechanisms in young stars. Methods: We present near-infrared AMBER (R = 12 000) and CRIRES (R = 100 000) observations of the Herbig B[e] star MWC297 in the hydrogen Brγ-line. Using the VLTI unit telescopes, we obtained a uv-coverage suitable for aperture synthesis imaging. We interpret our velocity-resolved images as well as the derived two-dimensional photocenter displacement vectors, and fit kinematic models to our visibility and phase data in order to constrain the gas velocity field on sub-AU scales. Results: The measured continuum visibilities constrain the orientation of the near-infrared-emitting dust disk, where we determine that the disk major axis is oriented along a position angle of 99.6 ± 4.8°. The near-infrared continuum emission is 3.6 × more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps and moment maps reveal the motion of the Brγ-emitting gas in six velocity channels, marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged. We find a rotation-dominated velocity field, where the blue- and red-shifted emissions are displaced along a position angle of 24° ± 3° and the approaching part of the disk is offset west of the star. The visibility drop in the line as well as the strong non-zero phase signals can be modeled reasonably well assuming a Keplerian velocity field, although this model is not able to explain the 3σ difference that we measure between the position angle of the line photocenters and the position angle of the dust disk. We find that the fit can be improved by adding an outflowing component to the velocity field, as inspired by a magneto-centrifugal disk-wind scenario. Conclusions: This study combines spectroscopy, spectroastrometry, and high-spectral dispersion interferometric, providing yet the tightest constraints on the distribution and kinematics of Brγ-emitting gas in the inner few AU around a young star. All observables can be modeled assuming a disk wind scenario. Our simulations show that adding a poloidal velocity component causes the perceived system axis to shift, offering a powerful new diagnostic for detecting non-Keplerian velocity components in other systems. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 081.D-0230, 083.C-0590, 089.C-0959, and 089.C-0563.

  20. Multi-transition study of the peculiar merger Arp 299

    NASA Astrophysics Data System (ADS)

    Jiao, Qian; Zhu, Ming

    2017-08-01

    We present a multi-transition study to investigate the physical properties of dust and molecular gas in the archetypical merger Arp 299 by using data including James Clerk Maxwell Telescope (JCMT) 850 and 450 μm observations, Herschel 500, 350, 250, 160 and 70 μm continuum maps, as well as the CO(3-2), CO(4-3) low-J CO lines and CO(11-10), CO(13-12), CO(14-13) high-J CO lines. The CO(3-2) and CO(4-3) lines are observed by JCMT, and the CO(11-10), CO(13-12), CO(14-13) lines are available on the Herschel Science Archive. The resolution of the Herschel Spectral and Photometric Imaging Receiver (SPIRE) Fourier transform spectrometer (FTS) CO(11-10) data is similar to that of the JCMT CO(3-2) line, while the resolution of the SPIRE/FTS CO(13-12) and Photodetector Array Camera and Spectrometer (PACS) CO(14-13) data is similar to that of JCMT CO(4-3), allowing us to obtain accurate line ratios of {I}{{CO}({{11-10}})}/{I}{{CO}({{3-2}})}, {I}{{CO}({{13-12}})}/{I}{{CO}({{4-3}})} and {I}{{CO}({{14-13}})}/{I}{{CO}({{4-3}})}. By modeling the spectral energy distribution of the continuum data, we conclude that two components (cold and warm) exist in the dust, with the warm component occupying a small percent of the total dust mass. We further use a radiative transfer analysis code, RADEX, to calculate the density, temperature and column density of warm gas in the central region, which shows that the kinetic temperature {T}{{kin}} is in the range 110 to 150 K and hydrogen density n({{{H}}}{{2}}) is in the range {10}4.7-{10}5.5{{{cm}}}{{-3}}. We show that the hot dust is located in the central region of IC 694 with a radius of ˜ 4″ and estimate that the warm gas mass is in the range 3.8× {10}7{M}⊙ to 7.7× {10}7{M}⊙ , which contains 5.0%-15.0% of the total H2 mass for the region of IC 694. We also calculate the star formation rate of the galaxy in particular, which is much higher than that of the Milky Way.

  1. OBSERVATIONS OF THE OPTICAL TRANSIENT IN NGC 300 WITH AKARI/IRC: POSSIBILITIES OF ASYMMETRIC DUST FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohsawa, R.; Sakon, I.; Onaka, T.

    2010-08-01

    We present the results of near-infrared (NIR) multi-epoch observations of the optical transient in the nearby galaxy NGC 300 (NGC 300-OT) at 398 and 582 days after the discovery with the Infrared Camera (IRC) on board AKARI. NIR spectra (2-5 {mu}m) of NGC 300-OT were obtained for the first time. They show no prominent emission nor absorption features, but are dominated by continuum thermal emission from the dust around NGC 300-OT. NIR images were taken in the 2.4, 3.2, and 4.1 {mu}m bands. The spectral energy distributions (SEDs) of NGC 300-OT indicate the dust temperature of 810 {+-} 14 Kmore » at 398 days and 670 {+-} 12 K at 582 days. We attribute the observed NIR emission to the thermal emission from dust grains formed in the ejecta of NGC 300-OT. The multi-epoch observations enable us to estimate the dust optical depth as {approx}>12 at 398 days and {approx}>6 at 582 days at 2.4 {mu}m by assuming an isothermal dust cloud. The observed NIR emission must be optically thick, unless the amount of dust grains increases with time. Little extinction at visible wavelengths reported in earlier observations suggests that the dust cloud around NGC 300-OT should be distributed inhomogeneously so as to not screen the radiation from the ejecta gas and the central star. The present results suggest the dust grains are not formed in a spherically symmetric geometry, but rather in a torus, a bipolar outflow, or clumpy cloudlets.« less

  2. Modeling Protostar Envelopes and Disks Seen With ALMA: A Focus on L1527 Kinematics

    NASA Astrophysics Data System (ADS)

    Terebey, Susan; Flores Rivera, Lizxandra; Willacy, Karen

    2018-06-01

    ALMA probes continuum and spectral line emission from protostars that comes from both the envelope and circumstellar disk. The dust and gas emit on a variety of spatial scales, ranging from sub-arcseconds for disks to roughly 10 arcseconds for envelopes for nearby protostars. We present models of what ALMA should detect that incorporate a self-consistent collapse solution, radiative transfer, and realistic dust properties. Molecular abundances are also calculated; we present results for CO and isotopologues for the Class 0 source L1527. Results for the outer disk show that there can be significant differences from standard assumptions due to the effect of CO freeze out and non-Keplerian dynamics.

  3. Comet C2012 S1 (ISON)s Carbon-rich and Micron-size-dominated Coma Dust

    NASA Technical Reports Server (NTRS)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; hide

    2014-01-01

    Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (rh approx.1.15 AU, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a narrow size distribution dominated by approx. micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 microns and by a silicate feature strength of approx.1.1 and an 8-13microns continuum greybody color temperature of approx. 275-280 K (using Tbb ? r-0.5 h and Tbb approx. 260-265 K from Subaru COMICS, 2013-Oct-19 UT)[1,2]. N-band spectra of comet ISON with the BASS instrument on the NASA IRTF (2013-Nov-11-12 UT) show a silicate feature strength of approx. 1.1 and an 11.2microns forsterite peak.[3] Our thermal models yield constraints the dust composition as well as grain size distribution parameters: slope, peak grain size, porosity. Specifically, ISON's dust has a low silicate-to- amorphous carbon ratio (approx. 1:9), and the coma size distribution has a steep slope (N4.5) such that the coma is dominated by micron-sized, moderately porous, carbon-rich dust grains. The N-band continuum color temperature implies submicronto micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the size distribution to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A proxy for the dust production rate is f? approx.1500 cm, akin to Af?. ISON has a moderate-to-low dust-to-gas ratio. Comet ISON's dust grain size distribution does not appear similar to the few well-studied long-period Nearly Isotropic Comets (NICs), namely C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) that had smaller and/or more highly porous grains and larger sizes, or C/2007 N4 (Lulin) and C/2006 P1 (McNaught) that had large and/or compact grains. Radial transport to comet-forming disk distances (= 20 AU) is easier for smaller grains (=1 micron) than for larger grains (approx. 20 microns like Stardust terminal particles). The presence of predominantly micron-sized and smaller grains suggests comet ISON may have formed either earlier in disk evolution whereby larger grains did not have the time to be transported to distances beyond Neptune, or the comet formed so far out in the disk that larger grains did not traverse such large radial distances. The high carbon-content of ISON's refractory dust appears to be complimented by the presence of limitedlifetime organic (CHON-like) grain materials: preliminary analyses of near-IR and high-resolution optical spectra indicate that gas-phase daughter molecules C2, CN, and CH were more abundant than their parent molecules (C2H2, C2H6, measured in the near- IR). Dust composition as well as grain size distribution parameters (slope, peak grain size, and porosity) give clues to comet origins.

  4. A Deuteration Survey of Starless Clumps in GemOB1 and the First Quadrant

    NASA Astrophysics Data System (ADS)

    Henrici, Andrew; Shirley, Yancy L.; Svoboda, Brian

    2018-01-01

    One very strong chemical process in star-forming regions is the fractionation of deuterium in molecules, which results in an increase in the deuterium ratio many orders of magnitude over the ISM [D]/[H] ratio and provides a chemical probe of cold, dense regions. Recent maps of dust continuum emission at (sub)millimeter wavelengths have identified tens of thousands of dense clumps of gas and dust. By comparing these regions to infrared and radio surveys, we have identified starless clump candidates which have no evidence for embedded star formation. These objects represent the earliest phase of star formation throughout the Milky Way. One benefit of the Milky Way surveys is that it is also possible to study the chemistry of entire core and clump populations within a single cloud. We used the 10m Heinrich Hertz Submillimeter Telescope to survey starless clump candidates in the First Quadrant identified from the Bolocam Galactic Plane Survey 1.1 mm continuum in the deuterated molecular transitions of DCO+ 3-2 and N2D+ 3-2. We also survey the entire clump population of the Gemini OB1 molecular cloud. In both surveys, we compared detection statistics and compare deuteration fraction to physical properties of the clumps and their evolutionary stage. High resolution ALMA observations of 9 starless clump candidates of the same lines are used to analyze how the cold deuterated gas is spatially distributed in these clumps.

  5. a Question of Mass : Accounting for all the Dust in the Crab Nebula with the Deepest Far Infrared Maps

    NASA Astrophysics Data System (ADS)

    Matar, J.; Nehmé, C.; Sauvage, M.

    2017-12-01

    Supernovae represent significant sources of dust in the interstellar medium. In this work, deep far-infrared (FIR) observations of the Crab Nebula are studied to provide a new and reliable constraint on the amount of dust present in this supernova remnant. Deep exposures between 70 and 500 μm taken by PACS and SPIRE instruments on-board the Herschel Space Telescope, compiling all observations of the nebula including PACS observing mode calibration, are refined using advanced processing techniques, thus providing the most accurate data ever generated by Herschel on the object. We carefully find the intrinsic flux of each image by masking the source and creating a 2D polynomial fit to deduce the background emission. After subtracting the estimated non-thermal synchrotron component, two modified blackbodies were found to best fit the remaining infrared continuum, the cold component with T_c = 8.3 ± 3.0 K and M_d = 0.27 ± 0.05 M_{⊙} and the warmer component with T_w = 27.2 ± 1.3 K and M_d = (1.3 ± 0.4) ×10^{-3} M_{⊙}.

  6. Multiwavelength studies of the gas and dust disc of IRAS 04158+2805

    NASA Astrophysics Data System (ADS)

    Glauser, A. M.; Ménard, F.; Pinte, C.; Duchêne, G.; Güdel, M.; Monin, J.-L.; Padgett, D. L.

    2008-07-01

    We present a study of the circumstellar environment of IRAS 04158+2805 based on multi-wavelength observations and models. Images in the optical and near-infrared, a polarisation map in the optical, and mid-infrared spectra were obtained with VLT-FORS1, CFHT-IR, and Spitzer-IRS. Additionally we used an X-ray spectrum observed with Chandra. We interpret the observations in terms of a central star surrounded by an axisymmetric circumstellar disc, but without an envelope, to test the validity of this simple geometry. We estimate the structural properties of the disc and its gas and dust content. We modelled the dust disc with a 3D continuum radiative transfer code, MCFOST, based on a Monte-Carlo method that provides synthetic scattered light images and polarisation maps, as well as spectral energy distributions. We find that the disc images and spectral energy distribution narrowly constrain many of the disc model parameters, such as a total dust mass of 1.0-1.75×10-4 M_⊙ and an inclination of 62°-63°. The maximum grain size required to fit all available data is of the order of 1.6-2.8 μm although the upper end of this range is loosely constrained. The observed optical polarisation map is reproduced well by the same disc model, suggesting that the geometry we find is adequate and the optical properties are representative of the visible dust content. We compare the inferred dust column density to the gas column density derived from the X-ray spectrum and find a gas-to-dust ratio along the line of sight that is consistent with the ISM value. To our knowledge, this measurement is the first to directly compare dust and gas column densities in a protoplanetary disc. Based on observations obtained at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. Based also on data collected at ESO/VLT during observation program 68-C.0171.

  7. ALMA observations of the η Corvi debris disc: inward scattering of CO-rich exocomets by a chain of 3-30 M⊕ planets?

    NASA Astrophysics Data System (ADS)

    Marino, S.; Wyatt, M. C.; Panić, O.; Matrà, L.; Kennedy, G. M.; Bonsor, A.; Kral, Q.; Dent, W. R. F.; Duchene, G.; Wilner, D.; Lisse, C. M.; Lestrade, J.-F.; Matthews, B.

    2017-03-01

    While most of the known debris discs present cold dust at tens of astronomical unit (au), a few young systems exhibit hot dust analogous to the Zodiacal dust. η Corvi is particularly interesting as it is old and it has both, with its hot dust significantly exceeding the maximum luminosity of an in situ collisional cascade. Previous work suggested that this system could be undergoing an event similar to the Late Heavy Bombardment (LHB) soon after or during a dynamical instability. Here, we present ALMA observations of η Corvi with a resolution of 1.2 arcsec (∼22 au) to study its outer belt. The continuum emission is consistent with an axisymmetric belt, with a mean radius of 152 au and radial full width at half-maximum of 46 au, which is too narrow compared to models of inward scattering of an LHB-like scenario. Instead, the hot dust could be explained as material passed inwards in a rather stable planetary configuration. We also report a 4σ detection of CO at ∼20 au. CO could be released in situ from icy planetesimals being passed in when crossing the H2O or CO2 ice lines. Finally, we place constraints on hidden planets in the disc. If a planet is sculpting the disc's inner edge, this should be orbiting at 75-100 au, with a mass of 3-30 M⊕ and an eccentricity <0.08. Such a planet would be able to clear its chaotic zone on a time-scale shorter than the age of the system and scatter material inwards from the outer belt to the inner regions, thus feeding the hot dust.

  8. Photoevaporation of Dusty Clouds near Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Pier, Edward A.; Voit, G. Mark

    1995-09-01

    We investigate the hydrodynamic and line-emitting properties of dusty clouds exposed to an active galactic nucleus (AGN) continuum. Such clouds may be found on the inner edges of the tori commonly implicated in AGN unification schemes. An X-ray-heated wind will be driven off the surface of such a cloud, eventually destroying it. Dust grains are carried along with the flow and are destroyed by sputtering as the wind heats. In smaller clouds, sputtering regulates the outflow by reducing the radiation force opposing the flow. Cloud evaporation may be fast enough to determine the location of the inner edge of the torus. However, since the evaporation time is much longer than the orbital time, clouds on eccentric orbits can penetrate well inside the inner edge of the torus. Therefore, the ionization structure of the cloud is determined only by the incipient continuum shape. The inner faces of exposed clouds are pressurized primarily by the incident radiation. Radiation pressure on dust grains regulates how gas pressure increases with optical depth. Ionization levels decrease inward, and the bulk of the cloud is molecular and neutral. The effects of dust extinction and high density suppress the hydrogen recombination lines and the forbidden lines from C, N, and 0 ions below observed levels despite the high covering factor expected for the torus. However, the inner edge of the torus is a natural place for producing the iron coronal lines often seen in the spectra of AGNs (i.e., [Fe VII] λ6087, [Fe X] λ6375, [Fe XI] λ7892, and [Fe XIV] λ5303).

  9. SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Akimasa; Dullemond, Cornelis P.; Pohl, Adriana

    We present the polarization observations toward the circumstellar disk around HD 142527 by using Atacama Large Millimeter/submillimeter Array at the frequency of 343 GHz. The beam size is 0.″51 × 0.″44, which corresponds to the spatial resolution of ∼71 × 62 au. The polarized intensity displays a ring-like structure with a peak located on the east side with a polarization fraction of P = 3.26 ± 0.02%, which is different from the peak of the continuum emission from the northeast region. The polarized intensity is significantly weaker at the peak of the continuum where P = 0.220 ± 0.010%. Themore » polarization vectors are in the radial direction in the main ring of the polarized intensity, while there are two regions outside at the northwest and northeast areas where the vectors are in the azimuthal direction. If the polarization vectors represent the magnetic field morphology, the polarization vectors indicate the toroidal magnetic field configuration on the main ring and the poloidal fields outside. On the other hand, the flip of the polarization vectors is predicted by the self-scattering of thermal dust emission due to the change of the direction of thermal radiation flux. Therefore, we conclude that self-scattering of thermal dust emission plays a major role in producing polarization at millimeter wavelengths in this protoplanetary disk. Also, this puts a constraint on the maximum grain size to be approximately 150 μ m if we assume compact spherical dust grains.« less

  10. Quiescent Giant Molecular Cloud Cores in the Galactic Center

    NASA Technical Reports Server (NTRS)

    Lis, D. C.; Serabyn, E.; Zylka, R.; Li, Y.

    2000-01-01

    We have used the Long Wavelength Spectrometer (LWS) aboard the Infrared Space Observatory (ISO) to map the far-infrared continuum emission (45-175 micrometer) toward several massive Giant Molecular Cloud (GMC) cores located near the Galactic center. The observed far-infrared and submillimeter spectral energy distributions imply low temperatures (approx. 15 - 22 K) for the bulk of the dust in all the sources, consistent with external heating by the diffuse ISRF and suggest that these GMCs do not harbor high- mass star-formation sites, in spite of their large molecular mass. Observations of FIR atomic fine structure lines of C(sub II) and O(sub I) indicate an ISRF enhancement of approx. 10(exp 3) in the region. Through continuum radiative transfer modeling we show that this radiation field strength is in agreement with the observed FIR and submillimeter spectral energy distributions, assuming primarily external heating of the dust with only limited internal luminosity (approx. 2 x 10(exp 5) solar luminosity). Spectroscopic observations of millimeter-wave transitions of H2CO, CS, and C-34S carried out with the Caltech Submillimeter Observatory (CSO) and the Institut de Radio Astronomie Millimetrique (IRAM) 30-meter telescope indicate a gas temperature of approx. 80 K, significantly higher than the dust temperatures, and density of approx. 1 x 10(exp 5)/cc in GCM0.25 + 0.01, the brightest submillimeter source in the region. We suggest that shocks caused by cloud collisions in the turbulent interstellar medium in the Galactic center region are responsible for heating the molecular gas. This conclusion is supported by the presence of wide-spread emission from molecules such as SiO, SO, and CH3OH, which are considered good shock tracers. We also suggest that the GMCs studied here are representative of the "typical", pre-starforming cloud population in the Galactic center.

  11. Agricultural Spraying

    NASA Technical Reports Server (NTRS)

    1986-01-01

    AGDISP, a computer code written for Langley by Continuum Dynamics, Inc., aids crop dusting airplanes in targeting pesticides. The code is commercially available and can be run on a personal computer by an inexperienced operator. Called SWA+H, it is used by the Forest Service, FAA, DuPont, etc. DuPont uses the code to "test" equipment on the computer using a laser system to measure particle characteristics of various spray compounds.

  12. Rapid variation in the circumstellar 10 micron emission of Alpha Orionis

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danchi, W. C.; Townes, C. H.

    1985-01-01

    The spatial distribution of 10 micron continuum flux around the supergiant star Alpha Orionis was measured on two occasions separated by an interval of 1 yr. A significant change in the infrared radiation pattern on the subarcsecond scale was observed. This change cannot be explained plausibly by macroscopic motion but may be due to a change in the physical properties of the circumstellar dust.

  13. Efficient radiative transfer methods for continuum and line transfer in large three-dimensional models

    NASA Astrophysics Data System (ADS)

    Juvela, Mika J.

    The relationship between physical conditions of an interstellar cloud and the observed radiation is defined by the radiative transfer problem. Radiative transfer calculations are needed if, e.g., one wants to disentangle abundance variations from excitation effects or wants to model variations of dust properties inside an interstellar cloud. New observational facilities (e.g., ALMA and Herschel) will bring improved accuracy both in terms of intensity and spatial resolution. This will enable detailed studies of the densest sub-structures of interstellar clouds and star forming regions. Such observations must be interpreted with accurate radiative transfer methods and realistic source models. In many cases this will mean modelling in three dimensions. High optical depths and observed wide range of linear scales are, however, challenging for radiative transfer modelling. A large range of linear scales can be accessed only with hierarchical models. Figure 1 shows an example of the use of a hierarchical grid for radiative transfer calculations when the original model cloud (L=10 pc, =500 cm-3) was based a MHD simulation carried out on a regular grid (Juvela & Padoan, 2005). For computed line intensities an accuracy of 10% was still reached when the number of individual cells (and the run time) was reduced by a factor of ten. This illustrates how, as long as cloud is not extremely optically thick, most of the emission comes from a small sub-volume. It is also worth noting that while errors are ~10% for any given point they are much smaller when compared with intensity variations. In particular, calculations on hierarchical grid recovered the spatial power spectrum of line emission with very good accuracy. Monte Carlo codes are used widely in both continuum and line transfer calculations. Like any lambda iteration schemes these suffer from slow convergence when models are optically thick. In line transfer Accelerated Monte Carlo methods (AMC) present a partial solution to this problem (Juvela & Padoan, 2000; Hogerheijde & van der Tak, 2000). AMC methods can be used similarly in continuum calculations to speed up the computation of dust temperatures (Juvela, 2005). The sampling problems associated with high optical depths can be solved with weighted sampling and the handling of models with τV ~ 1000 is perfectly feasible. Transiently heated small dust grains pose another problem because the calculation of their temperature distribution is very time consuming. However, a 3D model will contain thousands of cells at very similar conditions. If dust temperature distributions are calculated only once for such a set an approximate solution can be found in a much shorter time time. (Juvela & Padoan, 2003; see Figure 2a). MHD simulations with Automatic Mesh Refinement (AMR) techniques present an exciting development for the modelling of interstellar clouds. Cloud models consist of a hierarchy of grids with different grid steps and the ratio between the cloud size and the smallest resolution elements can be 106 or even larger. We are currently working on radiative transfer codes (line and continuum) that could be used efficiently on such grids (see Figure 2b). The radiative transfer problem can be solved relatively independently on each of the sub-grids. This means that the use of convergence acceleration methods can be limited to those sub-grids where they are needed and, on the other hand, parallelization of the code is straightforward.

  14. What the UV SED Tells us About Stellar Populations and Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.

    2011-01-01

    The UV SED parameter b as in f(sub 1) 1(sup b), is commonly used to estimate fundamental properties of high-redshift galaxies including age and metallicity. However, sources and processes other than age and metallicity can influence the value of b. We use the local starforming dwarf galaxy, I Zw 18, in a case study to investigate uncertainties in age and metallicity inferred from b due errors or uncertainties in: mode of star formation (instantaneous starburst vs. continuous SF), dust extinction, nebular continuous emission (2-photon emission, Balmer continuum flux), and presence of older stars.

  15. A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casassus, Simon; Marino, Sebastian; Pérez, Sebastian

    2015-10-20

    A pathway to the formation of planetesimals, and eventually giant planets, may occur in concentrations of dust grains trapped in pressure maxima. Dramatic crescent-shaped dust concentrations have been seen in recent radio images at submillimeter wavelengths. These disk asymmetries could represent the initial phases of planet formation in the dust trap scenario, provided that grain sizes are spatially segregated. A testable prediction of azimuthal dust trapping is that progressively larger grains should be more sharply confined and should follow a distribution that is markedly different from the gas. However, gas tracers such as {sup 12}CO and the infrared emission frommore » small grains are both very optically thick where the submillimeter continuum originates, so previous observations have been unable to test the trapping predictions or to identify compact concentrations of larger grains required for planet formation by core accretion. Here we report multifrequency observations of HD 142527, from 34 to 700 GHz, that reveal a compact concentration of grains approaching centimeter sizes, with a few Earth masses, embedded in a large-scale crescent of smaller, submillimeter-sized particles. The emission peaks at wavelengths shorter than ∼1 mm are optically thick and trace the temperature structure resulting from shadows cast by the inner regions. Given this temperature structure, we infer that the largest dust grains are concentrated in the 34 GHz clump. We conclude that dust trapping is efficient enough for grains observable at centimeter wavelengths to lead to compact concentrations.« less

  16. Emission from small dust particles in diffuse and molecular cloud medium

    NASA Technical Reports Server (NTRS)

    Bernard, J. P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances.

  17. A dusty, normal galaxy in the epoch of reionization.

    PubMed

    Watson, Darach; Christensen, Lise; Knudsen, Kirsten Kraiberg; Richard, Johan; Gallazzi, Anna; Michałowski, Michał Jerzy

    2015-03-19

    Candidates for the modest galaxies that formed most of the stars in the early Universe, at redshifts z > 7, have been found in large numbers with extremely deep restframe-ultraviolet imaging. But it has proved difficult for existing spectrographs to characterize them using their ultraviolet light. The detailed properties of these galaxies could be measured from dust and cool gas emission at far-infrared wavelengths if the galaxies have become sufficiently enriched in dust and metals. So far, however, the most distant galaxy discovered via its ultraviolet emission and subsequently detected in dust emission is only at z = 3.2 (ref. 5), and recent results have cast doubt on whether dust and molecules can be found in typical galaxies at z ≥ 7. Here we report thermal dust emission from an archetypal early Universe star-forming galaxy, A1689-zD1. We detect its stellar continuum in spectroscopy and determine its redshift to be z = 7.5 ± 0.2 from a spectroscopic detection of the Lyman-α break. A1689-zD1 is representative of the star-forming population during the epoch of reionization, with a total star-formation rate of about 12 solar masses per year. The galaxy is highly evolved: it has a large stellar mass and is heavily enriched in dust, with a dust-to-gas ratio close to that of the Milky Way. Dusty, evolved galaxies are thus present among the fainter star-forming population at z > 7.

  18. On the Outer Edges of Protoplanetary Dust Disks

    NASA Astrophysics Data System (ADS)

    Birnstiel, Tilman; Andrews, Sean M.

    2014-01-01

    The expectation that aerodynamic drag will force the solids in a gas-rich protoplanetary disk to spiral in toward the host star on short timescales is one of the fundamental problems in planet formation theory. The nominal efficiency of this radial drift process is in conflict with observations, suggesting that an empirical calibration of solid transport mechanisms in a disk is highly desirable. However, the fact that both radial drift and grain growth produce a similar particle size segregation in a disk (such that larger particles are preferentially concentrated closer to the star) makes it difficult to disentangle a clear signature of drift alone. We highlight a new approach, by showing that radial drift leaves a distinctive "fingerprint" in the dust surface density profile that is directly accessible to current observational facilities. Using an analytical framework for dust evolution, we demonstrate that the combined effects of drift and (viscous) gas drag naturally produce a sharp outer edge in the dust distribution (or, equivalently, a sharp decrease in the dust-to-gas mass ratio). This edge feature forms during the earliest phase in the evolution of disk solids, before grain growth in the outer disk has made much progress, and is preserved over longer timescales when both growth and transport effects are more substantial. The key features of these analytical models are reproduced in detailed numerical simulations, and are qualitatively consistent with recent millimeter-wave observations that find gas/dust size discrepancies and steep declines in dust continuum emission in the outer regions of protoplanetary disks.

  19. Gas lines from the 5-Myr old optically thin disk around HD 141569A . Herschel observations and modeling

    NASA Astrophysics Data System (ADS)

    Thi, W.-F.; Pinte, C.; Pantin, E.; Augereau, J. C.; Meeus, G.; Ménard, F.; Martin-Zaïdi, C.; Woitke, P.; Riviere-Marichalar, P.; Kamp, I.; Carmona, A.; Sandell, G.; Eiroa, C.; Dent, W.; Montesinos, B.; Aresu, G.; Meijerink, R.; Spaans, M.; White, G.; Ardila, D.; Lebreton, J.; Mendigutía, I.; Brittain, S.

    2014-01-01

    Context. The gas- and dust dissipation processes in disks around young stars remain uncertain despite numerous studies. At the distance of ~99-116 pc, HD 141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disk, probably in transition between a massive primordial disk and a debris disk. Atomic and molecular gases have been found in the structured 5-Myr old HD 141569A disk, making HD 141569A the perfect object within which to directly study the gaseous atomic and molecular component. Aims: We wish to constrain the gas and dust mass in the disk around HD 141569A. Methods: We observed the fine-structure lines of O i at 63 and 145 μm and the C ii line at 157 μm with the PACS instrument onboard the Herschel Space Telescope as part of the open-time large program GASPS. We complemented the atomic line observations with archival Spitzer spectroscopic and photometric continuum data, a ground-based VLT-VISIR image at 8.6 μm, and 12CO fundamental ro-vibrational and pure rotational J = 3-2 observations. We simultaneously modeled the continuum emission and the line fluxes with the Monte Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disk gas- and dust properties assuming no dust settling. Results: The models suggest that the oxygen lines are emitted from the inner disk around HD 141569A, whereas the [C ii] line emission is more extended. The CO submillimeter flux is emitted mostly by the outer disk. Simultaneous modeling of the photometric and line data using a realistic disk structure suggests a dust mass derived from grains with a radius smaller than 1 mm of ~2.1 × 10-7M⊙ and from grains with a radius of up to 1 cm of 4.9 × 10-6M⊙. We constrained the polycyclic aromatic hydrocarbons (PAH) mass to be between 2 × 10-11 and 1.4 × 10-10M⊙ assuming circumcircumcoronene (C150H30) as the representative PAH. The associated PAH abundance relative to hydrogen is lower than those found in the interstellar medium (3 × 10-7) by two to three orders of magnitude. The disk around HD 141569A is less massive in gas (2.5 to 4.9 × 10-4M⊙ or 67 to 164 M⊕) and has a flat opening angle (<10%). Conclusions: We constrained simultaneously the silicate dust grain, PAH, and gas mass in a ~5-Myr old Herbig Ae disk. The disk-averaged gas-to-dust-mass is most likely around 100, which is the assumed value at the disk formation despite the uncertainties due to disagreements between the different gas tracers. If the disk was originally massive, the gas and the dust would have dissipated at the same rate. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 079.C-0602(A).Appendix A is available in electronic form at http://www.aanda.orgHerschel is an ESA space observatory with science instruments provided by Principal Investigator consortia. It is open for proposals for observing time from the worldwide astronomical community.

  20. FRAGMENTATION AND EVOLUTION OF MOLECULAR CLOUDS. II. THE EFFECT OF DUST HEATING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urban, Andrea; Evans, Neal J.; Martel, Hugo

    2010-02-20

    We investigate the effect of heating by luminosity sources in a simulation of clustered star formation. Our heating method involves a simplified continuum radiative transfer method that calculates the dust temperature. The gas temperature is set by the dust temperature. We present the results of four simulations; two simulations assume an isothermal equation of state and the two other simulations include dust heating. We investigate two mass regimes, i.e., 84 M{sub sun} and 671 M{sub sun}, using these two different energetics algorithms. The mass functions for the isothermal simulations and simulations that include dust heating are drastically different. In themore » isothermal simulation, we do not form any objects with masses above 1 M{sub sun}. However, the simulation with dust heating, while missing some of the low-mass objects, forms high-mass objects ({approx}20 M{sub sun}) which have a distribution similar to the Salpeter initial mass function. The envelope density profiles around the stars formed in our simulation match observed values around isolated, low-mass star-forming cores. We find the accretion rates to be highly variable and, on average, increasing with final stellar mass. By including radiative feedback from stars in a cluster-scale simulation, we have determined that it is a very important effect which drastically affects the mass function and yields important insights into the formation of massive stars.« less

  1. Dust Emission at 8 and 24 μ m as Diagnostics of H ii Region Radiative Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oey, M. S.; López-Hernández, J.; Kellar, J. A.

    We use the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) survey of the Magellanic Clouds to evaluate the relationship between the 8 μ m polycyclic aromatic hydrocarbon (PAH) emission, 24 μ m hot dust emission, and H ii region radiative transfer. We confirm that in the higher-metallicity Large Magellanic Cloud, PAH destruction is sensitive to optically thin conditions in the nebular Lyman continuum: objects identified as optically thin candidates based on nebular ionization structure show six times lower median 8 μ m surface brightness (0.18 mJy arcsec{sup −2}) than their optically thick counterparts (1.2 mJy arcsec{sup −2}). The 24more » μ m surface brightness also shows a factor of three offset between the two classes of objects (0.13 versus 0.44 mJy arcsec{sup −2}, respectively), which is driven by the association between the very small dust grains and higher density gas found at higher nebular optical depths. In contrast, PAH and dust formation in the low-metallicity Small Magellanic Cloud is strongly inhibited such that we find no variation in either 8 μ m or 24 μ m emission between our optically thick and thin samples. This is attributable to extremely low PAH and dust production together with high, corrosive UV photon fluxes in this low-metallicity environment. The dust mass surface densities and gas-to-dust ratios determined from dust maps using Herschel HERITAGE survey data support this interpretation.« less

  2. The detection and study of pre-planetary disks

    NASA Technical Reports Server (NTRS)

    Sargent, A. I.; Beckwith, S. V. W.

    1994-01-01

    A variety of evidence suggests that at least 50% of low-mass stars are surrounded by disks of the gas and dust similar to the nebula that surrounded the Sun before the formation of the planets. The properties of these disks may bear strongly on the way in which planetary systems form and evolve. As a result of major instrumental developments over the last decade, it is now possible to detect and study the circumstellar environments of the very young, solar-type stars in some detail, and to compare the results with theoretical models of the early solar system. For example, millimeter-wave aperture synthesis imaging provides a direct means of studying in detail the morphology, temperature and density distributions, velocity field and chemical constituents in the outer disks, while high resolution, near infrared spectroscopy probes the inner, warmer parts; the emergence of gaps in the disks, possibly reflecting the formation of planets, may be reflected in the variation of their dust continuum emission with wavelength. We review progress to date and discuss likely directions for future research.

  3. The Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert?

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Benisty, M.; Pinilla, P.; Ginski, C.; de Boer, J.; Avenhaus, H.; Henning, Th.; Zurlo, A.; Boccaletti, A.; Augereau, J.-C.; Birnstiel, T.; Dominik, C.; Facchini, S.; Fedele, D.; Janson, M.; Keppler, M.; Kral, Q.; Langlois, M.; Ligi, R.; Maire, A.-L.; Ménard, F.; Meyer, M.; Pinte, C.; Quanz, S. P.; Sauvage, J.-F.; Sezestre, É.; Stolker, T.; Szulágyi, J.; van Boekel, R.; van der Plas, G.; Villenave, M.; Baruffolo, A.; Baudoz, P.; Le Mignant, D.; Maurel, D.; Ramos, J.; Weber, L.

    2017-11-01

    HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (˜1.2 μm) polarized intensity imaging of HD 169142 with VLT/SPHERE. We observe polarized scattered light down to 0.″16 (˜19 au) and find an inner gap with a significantly reduced scattered-light flux. We confirm the previously detected double-ring structure peaking at 0.″18 (˜21 au) and 0.″56 (˜66 au) and marginally detect a faint third gap at 0.″70-0.″73 (˜82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity but fails to reproduce their depths. However, it gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pileup of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO program 095.C-0273.

  4. THE SUBARCSECOND MID-INFRARED VIEW OF LOCAL ACTIVE GALACTIC NUCLEI. III. POLAR DUST EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asmus, D.; Hönig, S. F.; Gandhi, P., E-mail: dasmus@eso.org

    2016-05-10

    Recent mid-infrared (MIR) interferometric observations have shown that in a few active galactic nuclei (AGNs) the bulk of the infrared emission originates from the polar region above the putative torus, where only a little dust should be present. Here, we investigate whether such strong polar dust emission is common in AGNs. Out of 149 Seyferts in the MIR atlas of local AGNs, 21 show extended MIR emission on single-dish images. In 18 objects, the extended MIR emission aligns with the position angle (PA) of the system axis, established by [O iii], radio, polarization, and maser-based PA measurements. The relative amountmore » of resolved MIR emission is at least 40% and scales with the [O iv] fluxes, implying a strong connection between the extended continuum and [O iv] emitters. These results together with the radio-quiet nature of the Seyferts support the scenario that the bulk of MIR emission is emitted by dust in the polar region and not by the torus, which would demand a new paradigm for the infrared emission structure in AGNs. The current low detection rate of polar dust in the AGNs of the MIR atlas is explained by the lack of sufficient high-quality MIR data and the requirements on the orientation, strength of narrow-line region, and distance of the AGNs. The James Webb Space Telescope will enable much deeper nuclear MIR studies with comparable angular resolution, allowing us to resolve the polar emission and surroundings in most of the nearby AGNs.« less

  5. Continuum Foreground Polarization and Na I Absorption in Type Ia SNe

    NASA Astrophysics Data System (ADS)

    Zelaya, P.; Clocchiatti, A.; Baade, D.; Höflich, P.; Maund, J.; Patat, F.; Quinn, J. R.; Reilly, E.; Wang, L.; Wheeler, J. C.; Förster, F.; González-Gaitán, S.

    2017-02-01

    We present a study of the continuum polarization over the 400-600 nm range of 19 SNe Ia obtained with FORS at the VLT. We separate them into those that show Na I D lines at the velocity of their hosts and those that do not. Continuum polarization of the sodium sample near maximum light displays a broad range of values, from extremely polarized cases like SN 2006X to almost unpolarized ones like SN 2011ae. The non-sodium sample shows, typically, smaller polarization values. The continuum polarization of the sodium sample in the 400-600 nm range is linear with wavelength and can be characterized by the mean polarization ({P}{mean}). Its values span a wide range and show a linear correlation with color, color excess, and extinction in the visual band. Larger dispersion correlations were found with the equivalent width of the Na I D and Ca II H and K lines, and also a noisy relation between {P}{mean} and R V , the ratio of total to selective extinction. Redder SNe show stronger continuum polarization, with larger color excesses and extinctions. We also confirm that high continuum polarization is associated with small values of R V . The correlation between extinction and polarization—and polarization angles—suggest that the dominant fraction of dust polarization is imprinted in interstellar regions of the host galaxies. We show that Na I D lines from foreground matter in the SN host are usually associated with non-galactic ISM, challenging the typical assumptions in foreground interstellar polarization models. Based on observations made with ESO Telescopes at the Paranal Observatory under programs 068.D-0571(A), 069.D-0438(A), 070.D-0111(A), 076.D-0178(A), 079.D-0090(A), 080.D-0108(A), 081.D-0558(A), 085.D-0731(A), and 086.D-0262(A). Also based on observations collected at the German-Spanish Astronomical Center, Calar Alto (Spain).

  6. Silicate Dust in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Xie, Yanxia; Li, Aigen; Hao, Lei

    2017-01-01

    The unification theory of active galactic nuclei (AGNs) hypothesizes that all AGNs are surrounded by an anisotropic dust torus and are essentially the same objects but viewed from different angles. However, little is known about the dust that plays a central role in the unification theory. There are suggestions that the AGN dust extinction law appreciably differs from that of the Galaxy. Also, the silicate emission features observed in type 1 AGNs appear anomalous (I.e., their peak wavelengths and widths differ considerably from that of the Galaxy). In this work, we explore the dust properties of 147 AGNs of various types at redshifts z≲ 0.5, with special attention paid to 93 AGNs that exhibit the 9.7 and 18 μm silicate emission features. We model their silicate emission spectra obtained with the Infrared Spectrograph aboard the Spitzer Space Telescope. We find that 60/93 of the observed spectra can be well explained with “astronomical silicate,” while the remaining sources favor amorphous olivine or pyroxene. Most notably, all sources require the dust to be micron-sized (with a typical size of ˜1.5 ± 0.1 μm), much larger than submicron-sized Galactic interstellar grains, implying a flat or “gray” extinction law for AGNs. We also find that, while the 9.7 μm emission feature arises predominantly from warm silicate dust of temperature T ˜ 270 K, the ˜5-8 μm continuum emission is mostly from carbon dust of T ˜ 640 K. Finally, the correlations between the dust properties (e.g., mass, temperature) and the AGN properties (e.g., luminosity, black hole mass) have also been investigated.

  7. Analysis of Polarimetric, Photometric, and Spectroscopic Observations of Comet C/1996 Q1 (Tabur)

    NASA Astrophysics Data System (ADS)

    Kiselev, N. N.; Jockers, K.; Rosenbush, V. K.; Korsun, P. P.

    2001-11-01

    We present the imaging polarimetry and photometry of Comet C/1996 Q1 (Tabur) obtained on October 10, 1996, with a two-channel focal reducer attached to the 2-m Pik Terskol Observatory telescope through blue (λ4430/44 Å) and red (λ6420/26 Å) continuum filters and through a λ6620/59 Å filter that isolated the NH_2(0.7.0) band. We analyze the λ3600-9300 Å long-slit spectrograms of the comet taken on October 5-6, 1996, with the 2.6-m Crimean Astrophysical Observatory telescope. The NH_2(0.8.0) λ6408 Å emission and an unidentified λ6428 Å emission were found to fall within the pass band of the red filter. The blue filter transmits weak unidentified emissions at λ4424-4444 Å and partially C_2(λ4360 Å). Correction for the depolarizing effect of molecular emissions resulted in an increase of the dust polarization by 2-4% in the near-nucleus region and by almost a factor of 2 in the outer coma regions. However, the polarization and color differences between different coma regions remained even after correction for the contribution of emissions. We found no dust polarization difference between the gas comet Tabur and the dust comet C/1988 A1 (Liller), which are believed to be fragments of a common parent comet. The NH_2coma was found to be elongated perpendicular to the comet radius vector. The causes of the spatial asymmetry in the NH_2molecular distribution are yet to be established. We study the evolution of activity and the spatial distribution of dust brightness, polarization, and color in the comet. We consider a taxonomic classification of gas and dust comets according to dust polarization properties. The polarization differences between dust and gas comets at large phase angles are most likely related both to the actual differences in dust and to the effect of molecular emissions, nuclear gas- and dust-production rates and to the evolution of grain properties with distance from the nucleus.

  8. Submillimeter wave survey of the galactic plane. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Cheung, L. H.

    1980-01-01

    The survey measured, over virtually the entire galactic plane, the distribution and basic physical conditions of the coolest dust component of the interstellar medium. The instrument designed for observations of extended, low surface brightness continuum emission consisted of a balloon borne, gyro stablized, 1.2 m Cassegrain telescope and a liquid cooled photometer. The design, integration, tests, and flight operation of the survey are presented.

  9. The close circumstellar environment of Betelgeuse. V. Rotation velocity and molecular envelope properties from ALMA

    NASA Astrophysics Data System (ADS)

    Kervella, Pierre; Decin, Leen; Richards, Anita M. S.; Harper, Graham M.; McDonald, Iain; O'Gorman, Eamon; Montargès, Miguel; Homan, Ward; Ohnaka, Keiichi

    2018-01-01

    We observed Betelgeuse using ALMA's extended configuration in band 7 (f ≈ 340 GHz, λ ≈ 0.88 mm), resulting in a very high angular resolution of 18 mas. Using a solid body rotation model of the 28SiO(ν= 2, J = 8-7) line emission, we show that the supergiant is rotating with a projected equatorial velocity of νeqsini = 5.47 ± 0.25 km s-1 at the equivalent continuum angular radius Rstar = 29.50 ± 0.14 mas. This corresponds to an angular rotation velocity of ω sini = (5.6 ± 1.3) × 10-9 rad s-1. The position angle of its north pole is PA = 48.0 ± 3.5°. The rotation period of Betelgeuse is estimated to P/ sini = 36 ± 8 years. The combination of our velocity measurement with previous observations in the ultraviolet shows that the chromosphere is co-rotating with the star up to a radius of ≈ 10 au (45 mas or 1.5 × the ALMA continuum radius). The coincidence of the position angle of the polar axis of Betelgeuse with that of the major ALMA continuum hot spot, a molecular plume, and a partial dust shell (from previous observations) suggests that focused mass loss is currently taking place in the polar region of the star. We propose that this hot spot corresponds to the location of a particularly strong "rogue" convection cell, which emits a focused molecular plume that subsequently condenses into dust at a few stellar radii. Rogue convection cells therefore appear to be an important factor shaping the anisotropic mass loss of red supergiants.

  10. The HETDEX pilot survey. V. The physical origin of Lyα emitters probed by near-infrared spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Mimi; Finkelstein, Steven L.; Gebhardt, Karl

    2014-08-10

    We present the results from a Very Large Telescope/SINFONI and Keck/NIRSPEC near-infrared spectroscopic survey of 16 Lyα emitters (LAEs) at z = 2.1-2.5 in the COSMOS and GOODS-N fields discovered from the Hobby Eberly Telescope Dark Energy Experiment Pilot Survey. We detect rest-frame optical nebular lines (Hα and/or [O III] λ5007) for 10 of the LAEs and measure physical properties, including the star formation rate (SFR), gas-phase metallicity, gas mass fraction, and Lyα velocity offset. We find that LAEs may lie below the mass-metallicity relation for continuum-selected star-forming galaxies at the same redshift. The LAEs all show velocity shifts ofmore » Lyα relative to the systemic redshift ranging between +85 and +296 km s{sup –1} with a mean of +180 km s{sup –1}. This value is smaller than measured for continuum-selected star-forming galaxies at similar redshifts. The Lyα velocity offsets show a moderate correlation with the measured SFR (2.5σ), but no significant correlations are seen with the SFR surface density, specific SFR, stellar mass, or dynamical mass (≲1.5σ). Exploring the role of dust, kinematics of the interstellar medium (ISM), and geometry on the escape of Lyα photons, we find no signature of selective quenching of resonantly scattered Lyα photons. However, we also find no evidence that a clumpy ISM is enhancing the Lyα equivalent width. Our results suggest that the low metallicity in LAEs may be responsible for yielding an environment with a low neutral hydrogen column density and less dust, easing the escape of Lyα photons over that in continuum-selected star-forming galaxies.« less

  11. The velocity characteristics of dusty filaments in the JCMT GBS clouds

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Salji, C.; Richer, J. S.

    2013-07-01

    Large scale, high resolution spectral and continuum imaging maps have revealed, to an unprecedented extent, the characteristics of filamentary structure in star-forming molecular clouds, and their close association with star-forming cores. The filaments are associated with the formation of dense molecular cores where star formation occurs, and recent models highlight the important relationship between filaments and star-forming clusters. Velocity-coherent filaments have been proposed as the parent structures of star forming cores in Taurus. In Serpens, accretion flows along filaments have been proposed as the continuous source of mass for the star forming cluster. An evolutionary scenario for filaments based on velocity dispersion and column density measurements has recently been proposed, which we test with large scale molecular line and dust continuum maps. The JCMT Gould Belt Survey with SCUBA-2 and HARP provides dust continuum observations at 850 and 450 micron, and 12CO/13CO/C18O J=3-2 spectral line mapping of several nearby molecular clouds, covering large angular scales at high resolution. Velocities and linewidths of optically thin species, such as C18O which traces the warm, dense gas associated with star formation, are critical for an estimate of the virial stability of filamentary structures. The data and analyses that we present provide robust statistics over a large range of starless and protostellar evolutionary states. We present the velocity characteristics of dusty filaments in Orion, probing the physics at the boundary of filamentary structure and star formation. Using C18O, we investigate the internal structure of filaments, based on fragmentation and velocity coherence in the molecular line data. Through velocity dispersion measurements, we determine whether the filamentary structures are bound, and compare results between clouds of different star formation characteristics.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, T. R.; Brogan, C. L.; Indebetouw, R.

    Based on sub-arcsecond Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array (SMA) 1.3 mm continuum images of the massive protocluster NGC 6334I obtained in 2015 and 2008, we find that the dust emission from MM1 has increased by a factor of 4.0 ± 0.3 during the intervening years, and undergone a significant change in morphology. The continuum emission from the other cluster members (MM2, MM4, and the UCH ii region MM3 = NGC 6334F) has remained constant. Long-term single-dish maser monitoring at HartRAO finds that multiple maser species toward NGC 6334I flared beginning in early 2015, a few months beforemore » our ALMA observation, and some persist in that state. New ALMA images obtained in 2016 July–August at 1.1 and 0.87 mm confirm the changes with respect to SMA 0.87 mm images from 2008, and indicate that the (sub)millimeter flaring has continued for at least a year. The excess continuum emission, centered on the hypercompact H ii region MM1B, is extended and elongated (1.″6 × 1.″0 ≈ 2100 × 1300 au) with multiple peaks, suggestive of general heating of the surrounding subcomponents of MM1, some of which may trace clumps in a fragmented disk rather than separate protostars. In either case, these remarkable increases in maser and dust emission provide direct observational evidence of a sudden accretion event in the growth of a massive protostar yielding a sustained luminosity surge by a factor of 70 ± 20, analogous to the largest events in simulations by Meyer et al. This target provides an excellent opportunity to assess the impact of such a rare event on a protocluster over many years.« less

  13. A Multi-ringed, Modestly Inclined Protoplanetary Disk around AA Tau

    NASA Astrophysics Data System (ADS)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; MacGregor, Meredith A.

    2017-05-01

    AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution (˜0.″2) ALMA observations of the 0.87 and 1.3 mm dust continuum emission from the disk around AA Tau. These data reveal an evenly spaced three-ringed emission structure, with distinct peaks at 0.″34, 0.″66, and 0.″99, all viewed at a modest inclination of 59.°1 ± 0.°3 (decidedly not edge-on). In addition to this ringed substructure, we find non-axisymmetric features, including a “bridge” of emission that connects opposite sides of the innermost ring. We speculate on the nature of this “bridge” in light of accompanying observations of HCO+ and 13CO (J = 3-2) line emission. The HCO+ emission is bright interior to the innermost dust ring, with a projected velocity field that appears rotated with respect to the resolved disk geometry, indicating the presence of a warp or inward radial flow. We suggest that the continuum bridge and HCO+ line kinematics could originate from gap-crossing accretion streams, which may be responsible for the long-duration dimming of optical light from AA Tau.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.

    AA Tau is the archetype for a class of stars with a peculiar periodic photometric variability thought to be related to a warped inner disk structure with a nearly edge-on viewing geometry. We present high resolution (∼0.″2) ALMA observations of the 0.87 and 1.3 mm dust continuum emission from the disk around AA Tau. These data reveal an evenly spaced three-ringed emission structure, with distinct peaks at 0.″34, 0.″66, and 0.″99, all viewed at a modest inclination of 59.°1 ± 0.°3 (decidedly not edge-on). In addition to this ringed substructure, we find non-axisymmetric features, including a “bridge” of emission thatmore » connects opposite sides of the innermost ring. We speculate on the nature of this “bridge” in light of accompanying observations of HCO{sup +} and {sup 13}CO ( J = 3–2) line emission. The HCO{sup +} emission is bright interior to the innermost dust ring, with a projected velocity field that appears rotated with respect to the resolved disk geometry, indicating the presence of a warp or inward radial flow. We suggest that the continuum bridge and HCO{sup +} line kinematics could originate from gap-crossing accretion streams, which may be responsible for the long-duration dimming of optical light from AA Tau.« less

  15. Far-infrared spectrophotometry of SN 1987A - Days 265 and 267

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Dwek, E.; Silverberg, R. F.; Glaccum, W.; Graham, J. R.; Loewenstein, R. F.

    1989-01-01

    The paper presents 16-66-micron spectra of SN 1987A taken on days 266 and 268 after core collapse. The spectrum consists of a nearly flat continuum, strong emission lines of hydrogen, and fine-structure lines of Fe II, Fe III, Co II, S I, and possibly Fe I, Ni II, and S III. From the relative strength of three lines which arise from transitions within the ground and excited states of Fe II, the temperature and a lower limit on the density of the line-emitting region are derived. From the line strengths, the abundances of Fe and S I, the end products of explosive nucleosynthesis in the supernova are estimated. An upper limit is also set to the amount of Co II remaining in the mantle. The low measured mass of Fe suggests that the ejecta are clumpy. The flat continuum is most likely free-free emission from the expanding supernova ejecta. About 35 percent of this emission arises from the ionized metals in the mantle; the rest arises from ionized hydrogen. At the time of these observations, there is no evidence for any emission from dust that may have formed in the supernova ejecta or from preexisting dust in the surrounding medium.

  16. ZINGRS: Understanding Hot DOGs via the resolved radio continuum of W2246-0526

    NASA Astrophysics Data System (ADS)

    Hershey, Deborah; Ferkinhoff, Carl; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Brisbin, Drew; Lamarche, Cody; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.

    2018-06-01

    We present new high-resolution (~0.5”) radio-continuum images of the high-redshift galaxy W2246-0526 obtained with the Jansky Very Large Array. W2246 at z~4.6 is a hot dust obscured galaxy (Hot DOG) that have extreme luminosities, LIR > 1014 L⊙ produced by hot T~450 K dust. It hosts both an active galactic nucleus and significant star formation. Having observed the [OIII] 88 micron line from W2246 with our ZEUS spectrometer, the source is part of our ZEUS INvestigate Galaxy Reference Sample (ZINGRS). The radio images are initial observations from the ZINGRS Radio Survey where we observe the free-free and non-thermal emissions of high-z galaxies. Combining the radio emission with ALMA and ZEUS observations of the [CII] 158 micron, [OIII] 88 micron and [NII] 122 micron lines we probe the metallicity, age of stellar population, and ionization parameter. For W2246 we pay special attention to gradients of the stellar age and metallicity to determine the impact of the AGN on the host galaxy. Our work here is our initial analysis. When complete for all of ZINGRS ours findings will improve our understanding of early galaxies, including helping to explain Hot DOGs like W2246.

  17. The dust attenuation of star-forming galaxies at z ˜ 3 and beyond: New insights from ALMA observations

    NASA Astrophysics Data System (ADS)

    Fudamoto, Y.; Oesch, P. A.; Schinnerer, E.; Groves, B.; Karim, A.; Magnelli, B.; Sargent, M. T.; Cassata, P.; Lang, P.; Liu, D.; Le Fèvre, O.; Leslie, S.; Smolčić, V.; Tasca, L.

    2017-11-01

    We present results on the dust attenuation of galaxies at redshift ∼3-6 by studying the relationship between the UV spectral slope (βUV) and the infrared excess (IRX; LIR/LUV) using Atacama Large Millimeter/submillimeter Array (ALMA) far-infrared continuum observations. Our study is based on a sample of 67 massive, star-forming galaxies with a median mass of M* ∼ 1010.7 M⊙ spanning a redshift range z = 2.6-3.7 (median z = 3.2) that were observed with ALMA at λ _{rest}=300 {μ m}. Both the individual ALMA detections (41 sources) and stacks including all galaxies show the IRX-βUV relationship at z ∼ 3 is mostly consistent with that of local starburst galaxies on average. However, we find evidence for a large dispersion around the mean relationship by up to ±0.5 dex. Nevertheless, the locally calibrated dust correction factors based on the IRX-βUV relation are on average applicable to main-sequence z ∼ 3 galaxies. This does not appear to be the case at even higher redshifts, however. Using public ALMA observations of z ∼ 4-6 galaxies we find evidence for a significant evolution in the IRX-βUV and the IRX-M* relations beyond z ∼ 3 towards lower IRX values. We discuss several caveats that could affect these results, including the assumed dust temperature. ALMA observations of larger z > 3 galaxy sample spanning a wide range of physical parameters (e.g. lower stellar mass) will be important to investigate this intriguing redshift evolution further.

  18. High-Resolution Submillimeter and Near-Infrared Studies of the Transition Disk around Sz 91

    NASA Technical Reports Server (NTRS)

    Tsukagoshi, Takashi; Momose, Munetake; Hashimoto, Jun; Kudo, Tomoyuki; Andrews, Sean; Saito, Masao; Kitamura, Yoshimi; Ohashi, Nagayoshi; Wilner, David; Kawabe, Ryohei; hide

    2014-01-01

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91, we have performed aperture synthesis 345 GHz continuum and CO(32) observations with the Submillimeter Array ( 13 resolution), and high-resolution imaging of polarized intensity at the Ks-band by using the Hi-CIAO instrument on the Subaru Telescope (0.25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H2 mass of 2.4 103 M in the cold (T 30 K) outer part at 65 r 170 AU by assuming a canonical gas-to-dust mass ratio of 100, although a small amount ( 3109 M) of hot (T 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(32) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  19. When Bad Masks Turn Good

    NASA Astrophysics Data System (ADS)

    Abraham, Roberto G.

    In keeping with the spirit of a meeting on ‘masks,' this talk presents two short stories on the theme of dust. In the first, dust plays the familiar role of the evil obscurer, the enemy to bedefeated by the cunning observer in order to allow a key future technology (adaptive optics) to be exploited fully by heroic astronomers. In the second story, dust itself emerges as the improbable hero, in the form of a circumstellar debris disks. I will present evidence of a puzzling near-infrared excess in the continuum of high-redshift galaxies and will argue that the seemingly improbable origin of this IR excess is a population of young circumstellar disks formed around high-mass stars in distant galaxies. Assuming circumstellar disks extend down to lower masses,as they do in our own Galaxy, the excess emission presents us with an exciting opportunity to measure the formation rate of planetary systems in distant galaxies at cosmic epochs before our own solar system formed.

  20. Far infrared maps of the ridge between OMC-1 and OMC-2

    NASA Technical Reports Server (NTRS)

    Keene, J.; Smith, J.; Harper, D. A.; Hildebrand, R. H.; Whitcomb, S. E.

    1979-01-01

    Dust continuum emission from a 6 ft x 20 ft region surrounding OMC-1 and OMC-2 were mapped at 55 and 125 microns with 4 ft resolution. The dominant features of the maps are a strong peak at OMC-1 and a ridge of lower surface brightness between OMC-1 and OMC-2. Along the ridge the infrared flux densities and the color temperature decreases smoothly from OMC-1 to OMC-2. OMC-1 is heated primarily by several optical and infrared stars situated within or just at the boundary of the cloud. At the region of minimum column density between OMC-1 and OMC-2 the nearby B0.5 V star NU Ori may contribute significantly to the dust heating. Near OMC-2 dust column densities are large enough so that, in addition to the OMC-2 infrared cluster, the nonlocal infrared sources associated with OMC-1 and NU Ori can contribute to the heating.

  1. The Complex Soft X-ray Spectral Structure of MCG-6-30-15 and Mrk 766

    NASA Astrophysics Data System (ADS)

    Kahn, S. M.; Sako, M.; Behar, E.; Paerels, F.; Kinkhabwala, A.; Branduardi-Raymont, G.; Page, M. J.; Kaastra, J. S.; Brinkman, A. C.; den Herder, J. S.; Liedahl, D. A.

    The interpretation of the soft X-ray spectra of the Seyfert 1 galaxies, MCG-6-30-15 and Mrk 766, has remained controversial since high resolution data were first obtained with the grating instruments on Chandra and XMM-Newton, roughly one year ago. In an initial paper, Branduardi-Raymont et al. (2001), we argued that the RGS spectra of these two sources are inconsistent with simple warm absorber models, as has been invoked for Seyfert 1s in the past, but instead suggest the additional presence of relativistically broadened disk line features associated with the Lyα transitions of carbon, nitrogen, and oxygen. This conclusion was subsequently questioned by Lee et al. (2001), who contended that the Chandra HETG spectrum of MCG-6-30-15 is indeed well-described by the conventional warm absorber model, if one allows for the presence of dust in the warm absorbing medium. Here we reexamine the original RGS spectra in light of the Lee et al. (2001) criticisms. We first show that the explicit model presented by Lee et al. (2001) for MCG-6-30-15 is incompatible with the RGS data on this source, even if we allow both the continuum parameters and all of the absorbing column densities to be free parameters. That model over-predicts the ion{O}{VII} absorption line equivalent widths, and yields significant systematic residuals to the fits, especially at longer wavelengths, beyond the band covered by the HETG. We next show that the column densities of the oxygen ions (ion{O}{IV} through ion{O}{VIII}) are very well-constrained by the absorption line structure in the RGS data, and that, contrary to the assertion by Lee et al. (2001), the derived values are much too low to provide any significant contribution (either from line or continuum absorption) to the observed discrete jump in the spectra near 17.5 Å. Further, we show that the RGS spectra are also incompatible with the dust model presented by Lee et al. (2001). Specifically, the derived upper limit on the neutral oxygen column density is nearly a factor of 35 lower than predicted by their model if the dust is in the form of simple iron oxides. If dust is indeed present in the warm absorber, it would have to be essentially in the form of pure iron to be compatible with the soft X-ray spectrum. In contrast, a model that includes the presence of relativistically broadened CNO Lyα lines, provides an excellent description of the data, correctly accounting for all of the discrete warm absorber lines plus the overall continuum shape for both sources. We suggest that these emission lines are produced via recombination in a photoionized layer on the surface of an irradiated accretion disk. The derived equivalent widths are roughly compatible with what we expect for this layer if one takes proper account of the modification to the disk structure due to the irradiation, and of continuum and line opacity in the ionized surface layer.

  2. The Effect of Molecular Contamination on the Emissivity Spectral Index in Orion A

    NASA Astrophysics Data System (ADS)

    Coudé, Simon; Bastien, Pierre; Drabek, Emily; Johnstone, Doug; Hatchell, Jennifer

    2013-07-01

    The emissivity spectral index is a critical component in the study of the physical properties of dust grains in cold and optically thin interstellar star forming regions. Since submillimeter astronomy is an ideal tool to measure the thermal emission of those dust grains, it can be used to characterize this important parameter. We present the SCUBA-2 shared risks observations at 450 μm and 850 μm of the Orion A molecular cloud obtained at the James-Clerk-Maxwell telescope. Previous studies showed that molecular emission lines can also contribute significantly to the measured fluxes in those continuum bands. We use HARP 12CO 3-2 maps to evaluate the total molecular line contamination in the SCUBA-2 maps and its effect on the determination of the spectral index in highly contaminated areas. With the corrected fluxes, we have obtained new spectral index maps for different regions of the well-known integral-shaped filament. This work is part of an ongoing effort to characterize the properties of star forming regions in the Gould belt with the new instruments available at the JCMT.

  3. MEASUREMENTS OF CO REDSHIFTS WITH Z-SPEC FOR LENSED SUBMILLIMETER GALAXIES DISCOVERED IN THE H-ATLAS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lupu, R. E.; Scott, K. S.; Aguirre, J. E.

    2012-10-01

    We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z {approx} 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts andmore » a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10{sup 2-3} M{sub Sun} yr{sup -1}. Lower limits for the dust masses ({approx} a few 10{sup 8} M{sub Sun }) and spatial extents ({approx}1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures ({approx}< 100 K) and optical depths ({tau} {approx}< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 {yields} 3 to 10 {yields} 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.« less

  4. High-resolution dust emission and the resolved star formation law in the z~4 submillimeter galaxy GN20

    NASA Astrophysics Data System (ADS)

    Hodge, Jacqueline; Riechers, Dominik A.; Decarli, Roberto; Walter, Fabian; Carilli, Chris Luke; Daddi, Emanuele; Dannerbauer, Helmut

    2015-01-01

    We present high-resolution observations of the 880μm (rest-frame far-infrared) continuum emission in the z=4.05 submillimeter galaxy GN20. These data, taken with the IRAM Plateau de Bure Interferometer (PdBI), allow us to resolve the obscured star formation on scales of 0.3'×0.2' (~2.1×1.3 kpc). The observations reveal a bright (16±1 mJy) dusty starburst centered on the cold molecular gas reservoir as traced by previous high-fidelity CO(2-1) imaging and showing a bar-like extension along the galaxy's major axis. The striking anti-correlation with the HST/WFC3 imaging suggests that the copious dust surrounding the starburst heavily obscures the rest-frame UV/optical light in all but one small region several kpc from the nucleus. A comparison with 1.2 mm PdBI data reveals no evidence for variations in the dust continuum slope across the source. A detailed star formation rate surface density map reveals values that peak at 119±8 M⊙ yr-1 kpc-2 in the galaxy's center, showing that the star formation in GN20 remains sub-Eddington on scales down to 3 kpc2. Lastly, we examine the resolved star formation law on the same scales, deriving a power law slope of ΣSFR ~ ΣH_22.1±1.0 and a mean depletion time of 130 Myr. Despite its disk-like morphology and the use of custom-derived CO-to-H2 conversion factors, GN20 lies roughly in-line with the other existing resolved starbursts and above the sequence of star forming disks, implying that the offset is not due solely to choice of conversion factor.

  5. The Circumstellar Disk and Asymmetric Outflow of the EX Lup Outburst System

    NASA Astrophysics Data System (ADS)

    Hales, A. S.; Pérez, S.; Saito, M.; Pinte, C.; Knee, L. B. G.; de Gregorio-Monsalvo, I.; Dent, B.; López, C.; Plunkett, A.; Cortés, P.; Corder, S.; Cieza, L.

    2018-06-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations at 0.″3 resolution of EX Lup, the prototype of the EXor class of outbursting pre-main-sequence stars. The circumstellar disk of EX Lup is resolved for the first time in 1.3 mm continuum emission and in the J = 2–1 spectral line of three isotopologues of CO. At the spatial resolution and sensitivity achieved, the compact dust continuum disk shows no indications of clumps, fragments, or asymmetries above the 5σ level. Radiative transfer modeling constrains the characteristic radius of the dust disk to 23 au and the total dust mass to 1.0 × 10‑4 M ⊙ (33 M ⊕), similar to other EXor sources. The 13CO and C18O line emissions trace the disk rotation and are used to constrain the disk geometry, kinematics, and a total gas disk mass of 5.1 × 10‑4 M ⊙. The 12CO emission extends out to a radius of 200 au and is asymmetric, with one side deviating from Keplerian rotation. We detect blueshifted, 12CO arc-like emission located 0.″8 to the northwest and spatially disconnected from the disk emission. We interpret this extended structure as the brightened walls of a cavity excavated by an outflow, which are more commonly seen in FUor sources. Such outflows have also been seen in the borderline FU/EXor object V1647 Ori, but not toward EXor objects. Our detection provides evidence that the outflow phenomenon persists into the EXor phase, suggesting that FUor and EXor objects are a continuous population in which outflow activity declines with age, with transitional objects such as EX Lup and V1647 Ori.

  6. Observations of CO isotopic emission and the far-infrared continuum of Centaurus A

    NASA Technical Reports Server (NTRS)

    Eckart, A.; Cameron, M.; Rothermel, H.; Wild, W.; Zinnecker, H.; Olberg, M.; Rydbeck, G.; Wiklind, T.

    1990-01-01

    Researchers present maps of the CO-12(1=0) line and the 100 micron and 50 micron far-infrared emission of Centaurus A, as well as measurements of the CO-12(2-1), CO-13(1-0), and the C-18O(1-0) lines at selected positions. The observations were taken with the Swedish-ESO Submillimeter Telescope (SEST) and the CPC instrument on board the Infrared Astronomy Satellite (IRAS). The millimeter data show that the bulk molecular material is closely associated with the dust lane and contained in a disk of about 180 seconds diameter and a total molecular mass of about 2 x 10 to the 8th power solar mass. The total molecular mass of the disk and bulge is of the order of 3 x 10 to the 8th power solar mass. The molecular gas in the nucleus is warm with a kinetic temperature of the order of 15 K and a number density of 10 to the 3rd power to 3 x 10 to the 4th power cm(-3). Absorption features in the CO-12 and CO-13 lines against the nuclear continuum emission indicate that the properties of giant molecular clouds are comparable to those of the Galaxy. The far-infrared data show that to a good approximation the dust temperature is constant across the dust lane at a value of about 42 K. The ratio between the far-infrared luminosity and the total molecular mass is 18 solar luminosity/solar mass and close to the mean value obtained for isolated galaxies. A comparison of the CO-12(1-0) and the far-infrared data indicates that a considerable amount of the far-infrared emission is not intimately associated with massive star formation.

  7. ALMA OBSERVATIONS OF THE DEBRIS DISK AROUND THE YOUNG SOLAR ANALOG HD 107146

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricci, L.; Carpenter, J. M.; Fu, B.

    We present the Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at a wavelength of 1.25 mm of the debris disk surrounding the ∼100 Myr old solar analog HD 107146. The continuum emission extends from about 30 to 150 AU from the central star with a decrease in the surface brightness at intermediate radii. We analyze the ALMA interferometric visibilities using debris disk models with radial profiles for the dust surface density parameterized as (1) a single power law, (2) a single power law with a gap, and (3) a double power law. We find that models with a gap of radial widthmore » ∼8 AU at a distance of ∼80 AU from the central star, as well as double power-law models with a dip in the dust surface density at ∼70 AU provide significantly better fits to the ALMA data than single power-law models. We discuss possible scenarios for the origin of the HD 107146 debris disk using models of planetesimal belts in which the formation of Pluto-sized objects trigger disruptive collisions of large bodies, as well as models that consider the interaction of a planetary system with a planetesimal belt and spatial variation of the dust opacity across the disk. If future observations with higher angular resolution and sensitivity confirm the fully depleted gap structure discussed here, a planet with a mass of approximately a few Earth masses in a nearly circular orbit at ∼80 AU from the central star would be a possible explanation for the presence of the gap.« less

  8. Gas and dust spectra of the D' type symbiotic star HD 330036

    NASA Astrophysics Data System (ADS)

    Angeloni, R.; Contini, M.; Ciroi, S.; Rafanelli, P.

    2007-09-01

    Aims:We present a comprehensive and self-consistent modelling of the D' type symbiotic star (SS) HD 330036 from radio to UV. Methods: Within a colliding-wind scenario, we analyse the continuum, line, and dust spectra by means of SUMA, a code that simulates the physical conditions of an emitting gaseous cloud under the coupled effect of ionisation from an external radiation source and shocks. Results: We find that the UV lines are emitted from high-density gas between thestars downstream of the reverse shock, while the optical lines are emitted downstream of the shock propagating outwards from the system. As regards the continuum SED, three shells are identified in the IR, at 850 K, 320 K, and 200 K with radii r = 2.8 × 1013 cm, 4 × 1014 cm, and 1015 cm, respectively, after adopting a distance to Earth of d=2.3 kpc. Interestingly, all these shells appear to be circumbinary. Analysis of the unexploited ISO-SWS spectrum reveals that both PAHs and crystalline silicates coexist in HD 330036, with PAHs associated to the internal shell at 850 K, and crystalline silicates stored in the cool shells at 320 K and 200 K. Strong evidence that crystalline silicates are shaped in a disk-like structure is derived on the basis of the relative band strengths. Finally, we suggest that shocks can be a reliable mechanism for activating the annealing and the consequent crystallisation processes. Conclusions: We show that a consistent interpretation of gas and dust spectra emitted by SS can be obtained by models that account for the coupled effect of the photoionising flux and of shocks. The VLTI/MIDI proposal recently accepted by ESO aims to verify and better constrain some of our results by means of IR interferometric observations.

  9. Protoplanetary Disk Properties in the Orion Nebula Cluster: Initial Results from Deep, High-resolution ALMA Observations

    NASA Astrophysics Data System (ADS)

    Eisner, J. A.; Arce, H. G.; Ballering, N. P.; Bally, J.; Andrews, S. M.; Boyden, R. D.; Di Francesco, J.; Fang, M.; Johnstone, D.; Kim, J. S.; Mann, R. K.; Matthews, B.; Pascucci, I.; Ricci, L.; Sheehan, P. D.; Williams, J. P.

    2018-06-01

    We present Atacama Large Millimeter Array 850 μm continuum observations of the Orion Nebula Cluster that provide the highest angular resolution (∼0.″1 ≈ 40 au) and deepest sensitivity (∼0.1 mJy) of the region to date. We mosaicked a field containing ∼225 optical or near-IR-identified young stars, ∼60 of which are also optically identified “proplyds.” We detect continuum emission at 850 μm toward ∼80% of the proplyd sample, and ∼50% of the larger sample of previously identified cluster members. Detected objects have fluxes of ∼0.5–80 mJy. We remove submillimeter flux due to free–free emission in some objects, leaving a sample of sources detected in dust emission. Under standard assumptions of isothermal, optically thin disks, submillimeter fluxes correspond to dust masses of ∼0.5–80 Earth masses. We measure the distribution of disk sizes, and find that disks in this region are particularly compact. Such compact disks are likely to be significantly optically thick. The distributions of submillimeter flux and inferred disk size indicate smaller, lower-flux disks than in lower-density star-forming regions of similar age. Measured disk flux is correlated weakly with stellar mass, contrary to studies in other star-forming regions that found steeper correlations. We find a correlation between disk flux and distance from the massive star θ 1 Ori C, suggesting that disk properties in this region are influenced strongly by the rich cluster environment.

  10. Wide-field SCUBA-2 observations of NGC 2264: submillimetre clumps and filaments

    NASA Astrophysics Data System (ADS)

    Buckle, J. V.; Richer, J. S.

    2015-10-01

    We present wide-field observations of the NGC 2264 molecular cloud in the dust continuum at 850 and 450 μm using SCUBA-2 on the James Clerk Maxwell Telescope. Using 12CO 3 → 2 molecular line data, we determine that emission from CO contaminates the 850 μm emission at levels ˜30 per cent in localized regions associated with high-velocity molecular outflows. Much higher contamination levels of 60 per cent are seen in shocked regions near the massive star S Mon. If not removed, the levels of CO contamination would contribute an extra 13 per cent to the dust mass in NGC 2264. We use the FELLWALKER routine to decompose the dust into clumpy structures, and a Hessian-based routine to decompose the dust into filamentary structures. The filaments can be described as a hub-filament structure, with lower column density filaments radiating from the NGC 2264 C protocluster hub. Above mean filament column densities of 2.4 × 1022 cm-2, star formation proceeds with the formation of two or more protostars. Below these column densities, filaments are starless, or contain only a single protostar.

  11. Interstellar silicate dust in the z = 0.685 absorber toward TXS 0218+357

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aller, Monique C.; Kulkarni, Varsha P.; Liger, Nicholas

    2014-04-10

    We report the detection of interstellar silicate dust in the z {sub abs} = 0.685 absorber along the sightline toward the gravitationally lensed blazar TXS 0218+357. Using Spitzer Space Telescope Infrared Spectrograph data, we detect the 10 μm silicate absorption feature with a detection significance of 10.7σ. We fit laboratory-derived silicate dust profile templates obtained from the literature to the observed 10 μm absorption feature and find that the best single-mineral fit is obtained using an amorphous olivine template with a measured peak optical depth of τ{sub 10} = 0.49 ± 0.02, which rises to τ{sub 10} ∼ 0.67 ±more » 0.04 if the covering factor is taken into account. We also detected the 18 μm silicate absorption feature in our data with a >3σ significance. Due to the proximity of the 18 μm absorption feature to the edge of our covered spectral range, and associated uncertainty about the shape of the quasar continuum normalization near 18 μm, we do not independently fit this feature. We find, however, that the shape and depth of the 18 μm silicate absorption are well matched to the amorphous olivine template prediction, given the optical depth inferred for the 10 μm feature. The measured 10 μm peak optical depth in this absorber is significantly higher than those found in previously studied quasar absorption systems. However, the reddening, 21 cm absorption, and velocity spread of Mg II are not outliers relative to other studied absorption systems. This high optical depth may be evidence for variations in dust grain properties in the interstellar medium between this and the previously studied high redshift galaxies.« less

  12. ATLASGAL-selected massive clumps in the inner Galaxy. III. Dust continuum characterization of an evolutionary sample

    NASA Astrophysics Data System (ADS)

    König, C.; Urquhart, J. S.; Csengeri, T.; Leurini, S.; Wyrowski, F.; Giannetti, A.; Wienen, M.; Pillai, T.; Kauffmann, J.; Menten, K. M.; Schuller, F.

    2017-03-01

    Context. Massive-star formation and the processes involved are still poorly understood. The ATLASGAL survey provides an ideal basis for detailed studies of large numbers of massive-star forming clumps covering the whole range of evolutionary stages. The ATLASGAL Top100 is a sample of clumps selected by their infrared and radio properties to be representative for the whole range of evolutionary stages. Aims: The ATLASGAL Top100 sources are the focus of a number of detailed follow-up studies that will be presented in a series of papers. In the present work we use the dust continuum emission to constrain the physical properties of this sample and identify trends as a function of source evolution. Methods: We determine flux densities from mid-infrared to submillimeter wavelength (8-870 μm) images and use these values to fit their spectral energy distributions and determine their dust temperature and flux. Combining these with recent distances from the literature including maser parallax measurements we determine clump masses, luminosities and column densities. Results: We define four distinct source classes from the available continuum data and arrange these into an evolutionary sequence. This begins with sources found to be dark at 70 μm, followed by 24 μm weak sources with an embedded 70 μm source, continues through mid-infrared bright sources and ends with infrared bright sources associated with radio emission (I.e., H II regions). We find trends for increasing temperature, luminosity, and column density with the proposed evolution sequence, confirming that this sample is representative of different evolutionary stages of massive star formation. Our sources span temperatures from approximately 11 to 41 K, with bolometric luminosities in the range 57 L⊙-3.8 × 106L⊙. The highest masses reach 4.3 × 104M⊙ and peak column densities up to 1.1 × 1024 cm-1, and therefore have the potential to form the most massive O-type stars. We show that at least 93 sources (85%) of this sample have the ability to form massive stars and that most are gravitationally unstable and hence likely to be collapsing. Conclusions: The highest column density ATLASGAL sources cover the whole range of evolutionary stages from the youngest to the most evolved high-mass-star forming clumps. Study of these clumps provides a unique starting point for more in-depth research on massive-star formation in four distinct evolutionary stages whose well defined physical parameters afford more detailed studies. As most of the sample is closer than 5 kpc, these sources are also ideal for follow-up observations with high spatial resolution. Full Table 1, including fluxes, is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A139

  13. The CO-12 and CO-13 J=2-1 and J=1-0 observations of hot and cold galaxies

    NASA Technical Reports Server (NTRS)

    Xie, Shuding; Schloerb, F. Peter; Young, Judith

    1990-01-01

    Researchers observed the nuclear regions of the galaxies NGC 2146 and IC 342 in CO-12 and CO-13 J=1-0 and J=2-1 lines using the Five College Radio Astronomy Observatory (FCRAO) 14m telescope. NGC 2146 is a peculiar Sab spiral galaxy. Its complex optical morphology and strong nuclear radio continuum emission suggest that it is experiencing a phase of violent activity and could have a polar ring which may have resulted from an interaction. IC 342 is a nearby luminous Scd spiral galaxy. Strong CO, infrared and radio continuum emission from the nuclear region of IC 342 indicate enhanced star-forming activity, and interferometric CO-12 J=1-0 observations reveal a bar-like structure centered on the nucleus, along the dark lane in the NS direction. These two galaxies are selected based on their different dust temperatures and star formation efficiencies (SFE) as derived from the Infrared Astronomy Satellite (IRAS) S sub 60 mu/S sub 100 mu flux density ratio and L sub IR/M(H2), respectively, with a relatively high SFE and dust temperature of 45 K in NGC 2146 and a relatively low SFE and dust temperature of 35 K in IC 342. The data from the different CO-12 and CO-13 lines are used to study the physical conditions in the molecular clouds in the galaxies. Researchers also consider the radiative transfer to determine whether a warm and optically thin gas component exists in these galaxies, as has been suggested in the case of M82 (Knapp et al. 1980), and whether the warm gas is related to the dust properties. Since optically thin CO-12 gas is rarely detected in our own Galaxy (except in outflow sources), to confirm its existence in external galaxies is very important in understanding the molecular content of external galaxies and its relationship to star formation activity. The present CO-12 J=2-1 and CO-13 J=2-1 and J=1-0 data for NGC 2146 are the first detections of this galaxy to our knowledge. The CO-12 J=1-0 distribution in NGC 2146 has been measured as part of the FCRAO Extragalactic Survey. For the well-studied IC 342, the data are compared with 30m observations and other available data. Researchers present the observed results.

  14. An ALMA Survey of Planet Forming Disks in Rho Ophiuchus

    NASA Astrophysics Data System (ADS)

    Cox, Erin Guilfoil; Looney, Leslie; Harris, Robert J.; Dong, Jiayin; Segura-Cox, Dominique; Tobin, John J.; Sadavoy, Sarah; Li, Zhi-Yun; Dunham, Michael; Perez, Laura M.; Chandler, Claire J.; Kratter, Kaitlin M.; Melis, Carl; Chiang, Hsin-Fang

    2017-01-01

    Relatively evolved (~ 1 Myr old) protostars with little residual natal envelope, but massive disks, are commonly assumed to be the sites of ongoing planet formation. Critical to our study of these objects is information about the available mass reservior and dust structure, as they directly tie in to how much mass is available for planets as well as the modes of planet formation that occur (i.e., core-accretion vs. gravitational instability). Millimeter-wave observations provide this critical information as continuum emission is relatively optically thin, allowing for mass estimates, and the availability of high-resolution interferometry, allowing structure constraints. We present high-resolution observations of the population of Class II protostars in the Rho-Ophiuchus cloud (d ~ 130 pc). Our survey observed ~50 of these older protostars at 870µm, using the Atacama Large Millimeter/submillimeter Array (ALMA). Out of these sources, there are ~10 transition disks, where we see a ring of dust emission surrounding the central protostar -- indicative of ongoing planet formation -- as well as many binary systems. Both of these stages have implications for star and planet formation. We present results from both 1-D and 2-D disk modeling, where we try to understand disk substructure that might indicate on-going planet formation, in particular, transition disk cavities, disk gaps, and asymmetries in the dust emission.

  15. The Far-Infrared Emission of Radio Loud and Radio Quiet Quasars

    NASA Technical Reports Server (NTRS)

    Polletta, M.; Courvoisier, T. J.-L.; Wilkes, B. J.; Hooper, E. J.

    2000-01-01

    Continuum observations at radio, millimeter, infrared and soft X-ray energies are presented for a sample of 22 quasars, consisting of flat and steep spectrum radio loud, radio intermediate and radio quiet objects. The primary observational distinctions, among the different kinds of quasars in the radio and IR energy domains are studied using large observational datasets provided by ISOPHOT on board the Infrared Space Observatory, by the IRAM interferometer, by the sub-millimetre array SCUBA on JCMT, and by the European Southern Observatory (ESO) facilities IRAC1 on the 2.2 m telescope and SEST. The spectral energy distributions of all quasars from radio to IR energies are analyzed and modeled with non-thermal and thermal spectral components. The dominant mechanism emitting in the far/mid-IR is thermal dust emission in all quasars, with the exception of flat spectrum radio loud quasars for which the presence of thermal IR emission remains rather uncertain, since it is difficult to separate it from the bright non-thermal component. The dust is predominantly heated by the optical/ultraviolet radiation emitted from the external components of the AGN. A starburst contributes to the IR emission at different levels, but always less than the AGN (<= 27%). The distribution of temperatures, sizes, masses, and luminosities of the emitting dust are independent of the quasar type.

  16. Dust extinction of the stellar continua in starburst galaxies: The ultraviolet and optical extinction law

    NASA Technical Reports Server (NTRS)

    Calzetti, Daniela; Kinney, Anne L.; Storchi-Bergmann, Thaisa

    1994-01-01

    We analyze the International Ultraviolet Explorer (IUE) UV and the optical spectra of 39 starburst and blue compact galaxies in order to study the average properties of dust extinction in extended regions of galaxies. The optical spectra have been obtained using an aperture which matches that of IUE, so comparable regions within each galaxy are sampled. The data from the 39 galaxies are compared with five models for the geometrical distribution of dust, adopting as extinction laws both the Milky Way and the Large Magellanic Cloud laws. The commonly used uniform dust screen is included among the models. We find that none of the five models is in satisfactory agreement with the data. In order to understand the discrepancy between the data and the models, we have derived an extinction law directly from the data in the UV and optical wavelength range. The resulting curve is characterized by an overall slope which is more gray than the Milky Way extinction law's slope, and by the absence of the 2175 A dust feature. Remarkably, the difference in optical depth between the Balmer emission lines H(sub alpha) and H(sub beta) is about a factor of 2 larger than the difference in the optical depth between the continuum underlying the two Balmer lines. We interpret this discrepancy as a consequence of the fact that the hot ionizing stars are associated with dustier regions than the cold stellar population is. The absence of the 2175 A dust feature can be due either to the effects of the scattering and clumpiness of the dust or to a chemical composition different from that of the Milky Way dust grains. Disentangling the two interpretations is not easy because of the complexity of the spatial distribution of the emitting regions. The extinction law of the UV and optical spectral continua of extended regions can be applied to the spectra of medium- and high-redshift galaxies, where extended regions of a galaxy are, by necessity, sampled.

  17. What makes red quasars red?. Observational evidence for dust extinction from line ratio analysis

    NASA Astrophysics Data System (ADS)

    Kim, Dohyeong; Im, Myungshin

    2018-02-01

    Red quasars are very red in the optical through near-infrared (NIR) wavelengths, which is possibly due to dust extinction in their host galaxies as expected in a scenario in which red quasars are an intermediate population between merger-driven star-forming galaxies and unobscured type 1 quasars. However, alternative mechanisms also exist to explain their red colors: (i) an intrinsically red continuum; (ii) an unusual high covering factor of the hot dust component, that is, CFHD = LHD/Lbol, where the LHD is the luminosity from the hot dust component and the Lbol is the bolometric luminosity; and (iii) a moderate viewing angle. In order to investigate why red quasars are red, we studied optical and NIR spectra of 20 red quasars at z 0.3 and 0.7, where the usage of the NIR spectra allowed us to look into red quasar properties in ways that are little affected by dust extinction. The Paschen to Balmer line ratios were derived for 13 red quasars and the values were found to be 10 times higher than unobscured type 1 quasars, suggesting a heavy dust extinction with AV > 2.5 mag. Furthermore, the Paschen to Balmer line ratios of red quasars are difficult to explain with plausible physical conditions without adopting the concept of the dust extinction. The CFHD of red quasars are similar to, or marginally higher than, those of unobscured type 1 quasars. The Eddington ratios, computed for 19 out of 20 red quasars, are higher than those of unobscured type 1 quasars (by factors of 3-5), and hence the moderate viewing angle scenario is disfavored. Consequently, these results strongly suggest the dust extinction that is connected to an enhanced nuclear activity as the origin of the red color of red quasars, which is consistent with the merger-driven quasar evolution scenario. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A31

  18. First mm-VLBI Observations between the TRAO 14-m and the NRO 45-m Telescopes: Observations of 86 GHz SiO Masers in VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Shibata, Katsunori M.; Chung, Hyung-Soo; Kameno, Seiji; Roh, Duk-Gyoo; Umemoto, Tomofumi; Kim, Kwang-Dong; Asada, Keiichi; Han, Seog-Tae; Mochizuki, Nanako; Cho, Se-Hyung; Sawada-Satoh, Satoko; Kim, Hyun-Goo; Bushimata, Takeshi; Minh, Young Chol; Miyaji, Takeshi; Kuno, Nario; Mikoshiba, Hiroshi; Sunada, Kazuyoshi; Inoue, Makoto; Kobayashi, Hideyuki

    2004-06-01

    We have made VLBI observations at 86GHz using a 1000-km baseline between Korea and Japan with successful detections of SiO v = 1, J = 2 - 1 maser emissions from VY CMa and Orion KL in 2001 June. This was the first VLBI result for this baseline and the first astronomical VLBI observation for the Korean telescope. Since then, we observed SiO v = 1, J = 2 - 1 maser emission in VY CMa in 2002 January and 2003 February and derived the distributions of the maser emissions. Our results show that the maser emissions extend over 2-4 stellar radii, and were within the inner radius of the dust shell. We observed other SiO maser sources and continuum sources, and 86-GHz continuum emissions were detected from three continuum sources. It was verified that this baseline has a performance comparable to the most sensitive baseline in the VLBA and the CMVA, and is capable of investigating the proper motions of maser features in circumstellar envelopes using monitoring observations.

  19. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission

    NASA Astrophysics Data System (ADS)

    Capak, P. L.; Carilli, C.; Jones, G.; Casey, C. M.; Riechers, D.; Sheth, K.; Carollo, C. M.; Ilbert, O.; Karim, A.; Lefevre, O.; Lilly, S.; Scoville, N.; Smolcic, V.; Yan, L.

    2015-06-01

    The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C II emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ~ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems.

  20. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission.

    PubMed

    Capak, P L; Carilli, C; Jones, G; Casey, C M; Riechers, D; Sheth, K; Carollo, C M; Ilbert, O; Karim, A; LeFevre, O; Lilly, S; Scoville, N; Smolcic, V; Yan, L

    2015-06-25

    The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C ii emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ≈ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems.

  1. The spectral evolution of the first galaxies. III. Simulated James Webb Space Telescope spectra of reionization-epoch galaxies with Lyman-continuum leakage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zackrisson, Erik; Binggeli, Christian; Finlator, Kristian

    In this study, using four different suites of cosmological simulations, we generate synthetic spectra for galaxies with different Lyman-continuum escape fractions (f (esc)) at redshiftsmore » $$z\\approx 7$$–9, in the rest-frame wavelength range relevant for the James Webb Space Telescope ( JWST) NIRSpec instrument. By investigating the effects of realistic star formation histories and metallicity distributions on the EW(Hβ)–β diagram (previously proposed as a tool for identifying galaxies with very high f (esc)), we find that neither of these effects are likely to jeopardize the identification of galaxies with extreme Lyman-continuum leakage. Based on our models, we expect that essentially all $$z\\approx 7\\mbox{–}9$$ galaxies that exhibit rest-frame $$\\mathrm{EW}({\\rm{H}}\\beta )\\lesssim 30$$ Å to have $${f}_{\\mathrm{esc}}\\gt 0.5$$. Incorrect assumptions concerning the ionizing fluxes of stellar populations or the dust properties of $$z\\gt 6$$ galaxies can in principle bias the selection, but substantial model deficiencies of this type should at the same time be evident from offsets in the observed distribution of $$z\\gt 6$$ galaxies in the EW(Hβ)–β diagram compared to the simulated distribution. Such offsets would thereby allow JWST/NIRSpec measurements of these observables to serve as input for further model refinement.« less

  2. The spectral evolution of the first galaxies. III. Simulated James Webb Space Telescope spectra of reionization-epoch galaxies with Lyman-continuum leakage

    DOE PAGES

    Zackrisson, Erik; Binggeli, Christian; Finlator, Kristian; ...

    2017-02-09

    In this study, using four different suites of cosmological simulations, we generate synthetic spectra for galaxies with different Lyman-continuum escape fractions (f (esc)) at redshiftsmore » $$z\\approx 7$$–9, in the rest-frame wavelength range relevant for the James Webb Space Telescope ( JWST) NIRSpec instrument. By investigating the effects of realistic star formation histories and metallicity distributions on the EW(Hβ)–β diagram (previously proposed as a tool for identifying galaxies with very high f (esc)), we find that neither of these effects are likely to jeopardize the identification of galaxies with extreme Lyman-continuum leakage. Based on our models, we expect that essentially all $$z\\approx 7\\mbox{–}9$$ galaxies that exhibit rest-frame $$\\mathrm{EW}({\\rm{H}}\\beta )\\lesssim 30$$ Å to have $${f}_{\\mathrm{esc}}\\gt 0.5$$. Incorrect assumptions concerning the ionizing fluxes of stellar populations or the dust properties of $$z\\gt 6$$ galaxies can in principle bias the selection, but substantial model deficiencies of this type should at the same time be evident from offsets in the observed distribution of $$z\\gt 6$$ galaxies in the EW(Hβ)–β diagram compared to the simulated distribution. Such offsets would thereby allow JWST/NIRSpec measurements of these observables to serve as input for further model refinement.« less

  3. Gaps, rings, and non-axisymmetric structures in protoplanetary disks. From simulations to ALMA observations

    NASA Astrophysics Data System (ADS)

    Flock, M.; Ruge, J. P.; Dzyurkevich, N.; Henning, Th.; Klahr, H.; Wolf, S.

    2015-02-01

    Aims: Recent observations by the Atacama Large Millimeter/submillimeter Array (ALMA) of disks around young stars revealed distinct asymmetries in the dust continuum emission. In this work we wish to study axisymmetric and non-axisymmetric structures that are generated by the magneto-rotational instability in the outer regions of protoplanetary disks. We combine the results of state-of-the-art numerical simulations with post-processing radiative transfer (RT) to generate synthetic maps and predictions for ALMA. Methods: We performed non-ideal global 3D magneto-hydrodynamic (MHD) stratified simulations of the dead-zone outer edge using the FARGO MHD code PLUTO. The stellar and disk parameters were taken from a parameterized disk model applied for fitting high-angular resolution multi-wavelength observations of various circumstellar disks. We considered a stellar mass of M∗ = 0.5 M⊙ and a total disk mass of about 0.085 M∗. The 2D initial temperature and density profiles were calculated consistently from a given surface density profile and Monte Carlo radiative transfer. The 2D Ohmic resistivity profile was calculated using a dust chemistry model. We considered two values for the dust-to-gas mass ratio, 10-2 and 10-4, which resulted in two different levels of magnetic coupling. The initial magnetic field was a vertical net flux field. The radiative transfer simulations were performed with the Monte Carlo-based 3D continuum RT code MC3D. The resulting dust reemission provided the basis for the simulation of observations with ALMA. Results: All models quickly turned into a turbulent state. The fiducial model with a dust-to-gas mass ratio of 10-2 developed a large gap followed by a jump in surface density located at the dead-zone outer edge. The jump in density and pressure was strong enough to stop the radial drift of particles at this location. In addition, we observed the generation of vortices by the Rossby wave instability at the jump location close to 60 AU. The vortices were steadily generated and destroyed at a cycle of 40 local orbits. The RT results and simulated ALMA observations predict that it is feasible to observe these large-scale structures that appear in magnetized disks without planets. Neither the turbulent fluctuations in the disk nor specific times of the model can be distinguished on the basis of high-angular resolution submillimeter observations alone. The same applies to the distinction between gaps at the dead-zone edges and planetary gaps, to the distinction between turbulent and simple unperturbed disks, and to the asymmetry created by the vortex.

  4. The LCO/Gemini-South campaign for Deep Impact target Comet 9P/Tempel 1: Temporally resolved wide-field narrowband imaging results

    NASA Astrophysics Data System (ADS)

    Lederer, S. M.; Osip, D. J.; Thomas-Osip, J. E.; DeBuizer, J. M.; Mondragon, L. A.; Schweiger, D. L.; Viehweg, J.; SB Collaboration

    2005-08-01

    An extensive observing campaign to monitor Comet 9P/Tempel 1 will be conducted from 20 June to 19 July, 2005 at Las Campanas Observatory, Chile. These observations will precede and follow the impact of the Deep Impact projectile, which is likely to create a crater on the nucleus that will act as a fresh active area on the surface of the comet. Discreet nucleus active areas, believed to be the source of coma gas and dust jets, will likely result in changing morphology in the coma. We present the initial results of the wide-field narrowband visible imaging of the comet. Data will be taken with the 2.5m DuPont telescope from 27 June - 9 July, following the comet from 4 rotations prior to impact, to 4 rotations after impact using the narrowband Hale-Bopp filters, including CN, C2, and two continuum filters. These data will allow an accurate determination of the rotation state of the embedded nucleus immediately preceding the impact event as well as a measure of any changes to the rotation state due to the impact. In addition, modeling of these data will provide the total dust and gas production rates from the unaltered nucleus compared to the enhanced dust and gas emission from the newly created active region and freely sublimating pieces of mantle material ejected into the coma by the impactor. We will monitor temporal changes (on hours and days time-scales) in the morphology of both the gas and refractory components. We will use coma morphology studies to estimate the dust and gas outflow velocities and infer the presence of discreet nucleus source regions (pre- and post-impact). Of particular interest is the study of the gas-to-dust ratio and the ratio of the minor carbon species emitted from the newly created active region relative to the pre-impact coma environment.

  5. Reverberation Mapping the Dusty Torus in Active Galactic Nuclei: the Influence of Torus Geometry and Structure on the Measured Reverberation Radius

    NASA Astrophysics Data System (ADS)

    Almeyda, Triana

    2018-01-01

    The obscuring circumnuclear dusty torus is a cornerstone of AGN unification, yet its shape, composition, and structure have not been well constrained. Infrared (IR) interferometry can partially resolve the dust structures in nearby AGN. However, the size and structure of the torus can also be investigated at all redshifts by reverberation mapping, that is, analyzing the temporal variability of the torus dust emission in response to changes in the AGN luminosity. In simple models, the lag between the AGN optical continuum variations and the torus IR response is directly related to the effective size of the emitting region. However, the IR response is sensitive to many poorly constrained variables including the geometry and illumination of the torus, which complicates the interpretation of measured reverberation lags. I will present results from the first comprehensive analysis of the multi-wavelength IR torus response, showing how various structural and geometrical torus parameters influence the measured lag. A library of torus response functions has been computed using a new code, TORMAC, which simulates the temporal response of the IR emission of a 3D ensemble of dust clouds given an input optical light curve. TORMAC accounts for anisotropic emission from the dust clouds, inter-cloud and AGN-cloud shadowing, and anisotropic illumination of the torus by the AGN continuum source. We can use the model grid to quantify the relationship between the lag and the effective size of the torus for various torus parameters at any selected wavelength. Although the shapes of the response functions vary widely over our grid parameter range, the reverberation lag provides an estimate of the effective torus radius that is always within a factor of 2.5. TORMAC can also be used to model observed IR light curves; we present preliminary simulations for the “changing-look” Seyfert galaxy, NGC 6418, which exhibited large IR variability during a recent Spitzer monitoring campaign. This work will aid in the interpretation of reverberation mapping measurements, especially for the new VEILS wide field near-IR extragalactic time domain survey, whose aim is to use AGN IR reverberation mapping lags as cosmological standard candles.

  6. High-Resolution Submillimeter and Near-Infrared Studies of the Transition Disk Around Sz 91

    NASA Technical Reports Server (NTRS)

    Tsukagoshi, Takashi; Momose, Munetake; Abe, Lyu; Akiyama, Eiji; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E.; Goto, Miwa; hide

    2014-01-01

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91, we have performed aperture synthesis 345 GHz continuum and CO(3--2) observations with the Submillimeter Array (approximately 1" - 3" resolution), and high-resolution imaging of polarized intensity at the K(sub s) -band by using the HiCIAO instrument on the Subaru Telescope (0.25" resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 AU and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H 2 mass of 2.4×10(exp -3) M(solar mass) in the cold (T less than 30 K) outer part at 65 less than r less than 170 AU by assuming a canonical gas-to-dust mass ratio of 100, although a small amount (greater than 3×10(exp -9) M(solar mass)) of hot (T approximately 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3--2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  7. Probing changes of dust properties along a chain of solar-type prestellar and protostellar cores in Taurus with NIKA

    NASA Astrophysics Data System (ADS)

    Bracco, A.; Palmeirim, P.; André, Ph.; Adam, R.; Ade, P.; Bacmann, A.; Beelen, A.; Benoît, A.; Bideaud, A.; Billot, N.; Bourrion, O.; Calvo, M.; Catalano, A.; Coiffard, G.; Comis, B.; D'Addabbo, A.; Désert, F.-X.; Didelon, P.; Doyle, S.; Goupy, J.; Könyves, V.; Kramer, C.; Lagache, G.; Leclercq, S.; Macías-Pérez, J. F.; Maury, A.; Mauskopf, P.; Mayet, F.; Monfardini, A.; Motte, F.; Pajot, F.; Pascale, E.; Peretto, N.; Perotto, L.; Pisano, G.; Ponthieu, N.; Revéret, V.; Rigby, A.; Ritacco, A.; Rodriguez, L.; Romero, C.; Roy, A.; Ruppin, F.; Schuster, K.; Sievers, A.; Triqueneaux, S.; Tucker, C.; Zylka, R.

    2017-08-01

    The characterization of dust properties in the interstellar medium is key for understanding the physics and chemistry of star formation. Mass estimates are crucial to determine gravitational collapse conditions for the birth of new stellar objects in molecular clouds. However, most of these estimates rely on dust models that need further observational constraints to capture the relevant parameter variations depending on the local environment: from clouds to prestellar and protostellar cores. We present results of a new study of dust emissivity changes based on millimeter continuum data obtained with the NIKA camera at the IRAM-30 m telescope. Observing dust emission at 1.15 mm and 2 mm allows us to constrain the dust emissivity index, β, in the Rayleigh-Jeans tail of the dust spectral energy distribution far from its peak emission, where the contribution of other parameters (I.e. dust temperature) is more important. Focusing on the Taurus molecular cloud, one of the most famous low-mass star-forming regions in the Gould Belt, we analyze the emission properties of several distinct objects in the B213 filament. This subparsec-sized region is of particular interest since it is characterized by a collection ofevolutionary stages of early star formation: three prestellar cores, two Class 0/I protostellar cores and one Class II object. We are therefore able to compare dust properties among a sequence of sources that likely derive from the same parent filament. By means of the ratio of the two NIKA channel maps, we show that in the Rayleigh-Jeans approximation, βRJ varies among the objects: it decreases from prestellar cores (βRJ 2) to protostellar cores (βRJ 1) and the Class II object (βRJ 0). For one prestellar and two protostellar cores, we produce a robust study using available Herschel data to constrain the dust temperature of the sources. By using the Abel transform inversion technique we derive accurate radial temperature profiles that allow us to obtain radial β profiles. We find systematic spatial variations of β in the protostellar cores that are not observed in the prestellar core. While in the former case β decreases toward the center (with β varying between 1 and 2), in the latter it remains constant (β = 2.4 ± 0.3). Moreover, the dust emissivity index appears anticorrelated with the dust temperature. We discuss the implication of these results in terms of dust grain evolution between pre- and protostellar cores. Based on observations carried out under project number 146-13 with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).The FITS file of the published maps is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A52

  8. An analysis of infrared emission spectra from the regions near the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Contini, Marcella

    2009-11-01

    We present consistent modelling of line and continuum infrared (IR) spectra in the region close to the Galactic Centre. The models account for the coupled effect of shocks and photoionization from an external source. The results show that the shock velocities range between ~65 and 80kms-1 and the pre-shock densities between 1cm-3 in the interstellar medium (ISM) to 200cm-3 in the filamentary structures. The pre-shock magnetic field increases from 5 × 10-6G in the surrounding ISM to ~8 × 10-5G in the arched filaments. The stellar temperatures are ~38000K in the Quintuplet cluster and ~27000K in the Arches Cluster. The ionization parameter is relatively low (<0.01) with the highest values near the clusters, reaching a maximum >0.01 near the Arches Cluster. Depletion from the gaseous phase of Si is found throughout the whole observed region, indicating the presence of silicate dust. Grains including iron are concentrated throughout the arched filaments. The modelling of the continuum spectral energy distribution in the IR range indicates that a component of dust at temperatures of ~100-200K is present in the central region of the Galaxy. Radio emission appears to be thermal bremsstrahlung in the E2-W1 filaments crossing strip; however, a synchrotron component is not excluded. More data are necessary to resolve these questions.

  9. An Icy Kuiper-Belt Around the Young Solar-Type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J.; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Mathews, G. S.; hide

    2011-01-01

    HD 181327 is a young Main Sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx 12 Myr). It harbors an optically thin belt of circumstellar material at approx90 AU, presumed to result from collisions in a populat.ion of unseen planetesimals. Aims. We aim to study the dust properties in the belt in great details, and to constrain the gas-to-dust ratio. Methods. We obtained far-IR photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 nun observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST /NICMOS scattered light images that break the degeneracy between the disk geometry and the dust properties. We then use the radiative transfer code GRaTer to compute a large grid of dust models, and we apply a Bayesian inference method to identify the grain models that best reproduce the SED. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes. We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an import.ant layer of ice for a total dust mass of approx 0.05 stellar Mass. We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx 17 Stellar Mass Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper Belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.

  10. Interstellar matter in Shapley-Ames elliptical galaxies. II. The distribution of dust and ionized gas

    NASA Astrophysics Data System (ADS)

    Goudfrooij, P.; Hansen, L.; Jorgensen, H. E.; Norgaard-Nielsen, H. U.

    1994-06-01

    We present results of deep optical CCD imaging for a complete, optical magnitude-limited sample of 56 elliptical galaxies from the RSA catalog. For each galaxy we have obtained broad-band images (in B, V, and I) and narrow-band images using interference filters isolating the Hα+[NII] emission lines to derive the amount and morphology of dust and ionized gas. Detailed consideration of systematic errors due to effects of sky background subtraction and removal of stellar continuum light from the narrow-band images is described. The flux calibration of the narrow-band images is performed by deconvolving actually measured spectral energy distributions with the filter transmission curves. We also present optical long-slit spectroscopy to determine the [NII]/Hα intensity ratio of the ionized gas. Dust lanes and/or patches have been detected in 23 galaxies (41%) from this sample using both colour-index images and division by purely elliptical model images. We achieved a detection limit for dust absorption of A_B_~0.02. Accounting for selection effects, the true fraction of elliptical galaxies containing dust is estimated to be of order 80%. This detection rate is comparable to that of the IRAS satellite, and significantly larger than results of previous optical studies. Ionized gas has been detected in 32 galaxies (57%). The spectroscopic data confirm the presence and distribution of ionized gas as seen in the direct imaging. All elliptical galaxies in our sample in which a number of emission lines is detected show very similar emission-line intensity ratios, which are typical of LINER nuclei. The amounts of detectable dust and ionized gas are generally small--of order 10^4^-10^5^Msun_ of dust and 10^3^-10^4^Msun_ of ionized gas. The dust and ionized gas show a wide variety of distributions-extended along either the apparent major axis, or the minor axis, or a skewed axis, indicating that triaxiality is in general required as a galaxy figure. In some cases (NGC 1275, NGC 2325, NGC 3136, NGC 3962, NGC 4696, NGC 5018, NGC 5044, NGC 5813, IC 1459) the interstellar matter has a patchy or filamentary distribution, suggestive of a recent interaction event. The distributions of dust and ionized gas are consistent with being physically associated with each other.

  11. Characterizing the Dust-Correlated Anomalous Emission in LDN 1622

    NASA Astrophysics Data System (ADS)

    Cleary, Kieran; Casassus, Simon; Dickinson, Clive; Lawrence, Charles; Sakon, Itsuki

    2008-03-01

    The search for 'dust-correlated microwave emission' was started by the surprising excess correlation of COBE-DMR maps, at 31.5, 53 and 91GHz, with DIRBE dust emission at 140 microns. It was first thought to be Galactic free-free emission from the Warm Ionized Medium (WIM). However, Leitch et al. (1997) ruled out a link with free-free by comparing with Halpha templates and first confirmed the anomalous nature of this emission. Since then, this emission has been detected by a number of experiments in the frequency range 5-60 GHz. The most popular explanation is emission from ultra-small spinning dust grains (first postulated by Erickson, 1957), which is expected to have a spectrum that is highly peaked at about 20 GHz. Spinning dust models appear to be broadly consistent with microwave data at high latitudes, but the data have not been conclusive, mainly due to the difficulty of foreground separation in CMB data. LDN 1622 is a dark cloud that lies within the Orion East molecular cloud at a distance of 120 pc. Recent cm-wave observations, in combination with WMAP data, have verified the detection of anomalous dust-correlated emission in LDN 1622. This mid-IR-cm correlation in LDN 1622 is currently the only observational evidence that very small grains VSG emit at GHz frequencies. We propose a programme of spectroscopic observations of LDN 1622 with Spitzer IRS to address the following questions: (i) Are the IRAS 12 and 25 microns bands tracing VSG emission in LDN 1622? (ii) What Mid-IR features and continuum bands best correlate with the cm-wave emission? and (iii) How do the dust properties vary with the cm-wave emission? These questions have important implications for high-sensitivity CMB experiments.

  12. SPITZER SEARCH FOR DUST DISKS AROUND CENTRAL STARS OF PLANETARY NEBULAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilikova, Jana; Chu Youhua; Gruendl, Robert A.

    2012-05-01

    Two types of dust disks have been discovered around white dwarfs (WDs): small dust disks within the Roche limits of their WDs and large dust disks around hot WDs extending to radial distances of 10-10{sup 2} AU. The majority of the latter WDs are central stars of planetary nebulae (CSPNs). We have therefore used archival Spitzer Infrared Array Camera (IRAC) and Multiband Imaging Photometer for Spitzer (MIPS) observations of PNs to search for CSPNs with IR excesses and to make a comparative investigation of dust disks around stars at different evolutionary stages. We have examined available images of 72 resolvedmore » PNs in the Spitzer archive and found 56 of them large enough for the CSPN to be resolved from the PN. Among these, only 42 CSPNs are visible in IRAC and/or MIPS images and selected for photometric measurements. From the spectral energy distributions (SEDs) of these CSPNs, we find 19 cases with clear IR excess. Of these, seven are [WC]-type stars, two have apparent visual companions that account for the observed excess emission, two are symbiotic CSPNs, and in eight cases the IR excess originates from an extended emitter, likely a dust disk. For some of these CSPNs, we have acquired follow-up Spitzer MIPS images, Infrared Spectrograph spectra, and Gemini NIRI and Michelle spectroscopic observations. The SEDs and spectra show a great diversity in the emission characteristics of the IR excesses, which may imply different mechanisms responsible for the excess emission. For CSPNs whose IR excesses originate from dust continuum, the most likely dust production mechanisms are (1) breakup of bodies in planetesimal belts through collisions and (2) formation of circumstellar dust disks through binary interactions. A better understanding of post-asymptotic giant branch binary evolution as well as debris disk evolution along with its parent star is needed to distinguish between these different origins. Future observations to better establish the physical parameters of the dust disks and the presence of companions are needed for models to discern between the possible dust production mechanisms.« less

  13. Radial Surface Density Profiles of Gas and Dust in the Debris Disk Around 49 Ceti

    NASA Technical Reports Server (NTRS)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.; Daley, Cail M.; Roberge, Aki; Kospal, Agnes; Moor, Attila; Kamp, Inga; Wilner, David J.; Andrews, Sean M.; hide

    2017-01-01

    We present approximately 0".4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between approximately 100 and 310 au, with a marginally significant enhancement of surface density at a radius of approximately 110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While approximately 80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at approximately 20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (approx. 220 au) is smaller than that of the dust disk (approx. 300 au), consistent with recent observations of other gasbearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.

  14. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations.

    PubMed

    Rosotti, Giovanni P; Juhasz, Attila; Booth, Richard A; Clarke, Cathie J

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ∼15 M ⊕ : this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ∼20 M ⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  15. ASSOCIATIONS BETWEEN SMALL-SCALE STRUCTURE IN LOCAL GALACTIC NEUTRAL HYDROGEN AND IN THE COSMIC MICROWAVE BACKGROUND OBSERVED BY PLANCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verschuur, Gerrit L., E-mail: gverschu@naic.edu

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While severalmore » attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.« less

  16. The Molecular Gas Environment in the 20 km s{sup −1} Cloud in the Central Molecular Zone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xing; Gu, Qiusheng; Zhang, Qizhou

    We recently reported a population of protostellar candidates in the 20 km s{sup −1} cloud in the Central Molecular Zone of the Milky Way, traced by H{sub 2}O masers in gravitationally bound dense cores. In this paper, we report molecular line studies with high angular resolution (∼3″) of the environment of star formation in this cloud. Maps of various molecular line transitions as well as the continuum at 1.3 mm are obtained using the Submillimeter Array. Five NH{sub 3} inversion lines and the 1.3 cm continuum are observed with the Karl G. Jansky Very Large Array. The interferometric observations aremore » complemented with single-dish data. We find that the CH{sub 3}OH, SO, and HNCO lines, which are usually shock tracers, are better correlated spatially with the compact dust emission from dense cores among the detected lines. These lines also show enhancement in intensities with respect to SiO intensities toward the compact dust emission, suggesting the presence of slow shocks or hot cores in these regions. We find gas temperatures of ≳100 K at 0.1 pc scales based on RADEX modeling of the H{sub 2}CO and NH{sub 3} lines. Although no strong correlations between temperatures and linewidths/H{sub 2}O maser luminosities are found, in high-angular-resolution maps we note several candidate shock-heated regions offset from any dense cores, as well as signatures of localized heating by protostars in several dense cores. Our findings suggest that at 0.1 pc scales in this cloud star formation and strong turbulence may together affect the chemistry and temperature of the molecular gas.« less

  17. Plume Impingement to the Lunar Surface: A Challenging Problem for DSMC

    NASA Technical Reports Server (NTRS)

    Lumpkin, Forrest; Marichalar, Jermiah; Piplica, Anthony

    2007-01-01

    The President's Vision for Space Exploration calls for the return of human exploration of the Moon. The plans are ambitious and call for the creation of a lunar outpost. Lunar Landers will therefore be required to land near predeployed hardware, and the dust storm created by the Lunar Lander's plume impingement to the lunar surface presents a hazard. Knowledge of the number density, size distribution, and velocity of the grains in the dust cloud entrained into the flow is needing to develop mitigation strategies. An initial step to acquire such knowledge is simulating the associated plume impingement flow field. The following paper presents results from a loosely coupled continuum flow solver/Direct Simulation Monte Carlo (DSMC) technique for simulating the plume impingement of the Apollo Lunar module on the lunar surface. These cases were chosen for initial study to allow for comparison with available Apollo video. The relatively high engine thrust and the desire to simulate interesting cases near touchdown result in flow that is nearly entirely continuum. The DSMC region of the flow field was simulated using NASA's DSMC Analysis Code (DAC) and must begin upstream of the impingement shock for the loosely coupled technique to succeed. It was therefore impossible to achieve mean free path resolution with a reasonable number of molecules (say 100 million) as is shown. In order to mitigate accuracy and performance issues when using such large cells, advanced techniques such as collision limiting and nearest neighbor collisions were employed. The final paper will assess the benefits and shortcomings of such techniques. In addition, the effects of plume orientation, plume altitude, and lunar topography, such as craters, on the flow field, the surface pressure distribution, and the surface shear stress distribution are presented.

  18. HCO+ Detection of Dust-depleted Gas in the Inner Hole of the LkCa 15 Pre-transitional Disk

    NASA Astrophysics Data System (ADS)

    Drabek-Maunder, E.; Mohanty, S.; Greaves, J.; Kamp, I.; Meijerink, R.; Spaans, M.; Thi, W.-F.; Woitke, P.

    2016-12-01

    LkCa 15 is an extensively studied star in the Taurus region, known for its pre-transitional disk with a large inner cavity in the dust continuum and normal gas accretion rate. The most popular hypothesis to explain the LkCa 15 data invokes one or more planets to carve out the inner cavity, while gas continues to flow across the gap from the outer disk onto the central star. We present spatially unresolved HCO+ J=4\\to 3 observations of the LkCa 15 disk from the James Clerk Maxwell telescope (JCMT) and model the data with the ProDiMo code. We find that: (1) HCO+ line-wings are clearly detected, certifying the presence of gas in the cavity within ≲50 au of the star. (2) Reproducing the observed line-wing flux requires both a significant suppression of cavity dust (by a factor ≳104 compared to the interstellar medium (ISM)) and a substantial increase in the gas scale-height within the cavity (H 0/R 0 ˜ 0.6). An ISM dust-to-gas ratio (d:g = 10-2) yields too little line-wing flux, regardless of the scale-height or cavity gas geometry, while a smaller scale-height also under-predicts the flux even with a reduced d:g. (3) The cavity gas mass is consistent with the surface density profile of the outer disk extended inwards to the sublimation radius (corresponding to mass M d ˜ 0.03 M ⊙), and masses lower by a factor ≳10 appear to be ruled out.

  19. NEW DEBRIS DISKS IN NEARBY YOUNG MOVING GROUPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moór, A.; Kóspál, Á.; Ábrahám, P.

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μ m observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory . None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data formore » one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70 μ m Photodetector Array Camera and Spectrograph images, the estimated radius of these disks is ∼90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.« less

  20. Physics of Intact Capture of Cometary Coma Dust Samples

    NASA Astrophysics Data System (ADS)

    Anderson, William

    2011-06-01

    In 1986, Tom Ahrens and I developed a simple model for hypervelocity capture in low density foams, aimed in particular at the suggestion that such techniques could be used to capture dust during flyby of an active comet nucleus. While the model was never published in printed form, it became known to many in the cometary dust sampling community. More sophisticated models have been developed since, but our original model still retains superiority for some applications and elucidates the physics of the capture process in a more intuitive way than the more recent models. The model makes use of the small value of the Hugoniot intercept typical of highly distended media to invoke analytic expressions with functional forms common to fluid dynamics. The model successfully describes the deceleration and ablation of a particle that is large enough to see the foam as a low density continuum. I will present that model, updated with improved calculations of the temperature in the shocked foam, and show its continued utility in elucidating the phenomena of hypervelocity penetration of low-density foams.

  1. Submillimetre flux as a probe of molecular ISM mass in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Liang, Lichen; Feldmann, Robert; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Hayward, Christopher C.; Quataert, Eliot; Scoville, Nick Z.

    2018-07-01

    Recent long-wavelength observations on the thermal dust continuum suggest that the Rayleigh-Jeans tail can be used as a time-efficient quantitative probe of the dust and interstellar medium (ISM) mass in high-z galaxies. We use high-resolution cosmological simulations from the Feedback in Realistic Environment (FIRE) project to analyse the dust emission of M* ≳ 1010 M⊙ galaxies at z= 2-4. Our simulations (MASSIVEFIRE) explicitly include various forms of stellar feedback, and they produce the stellar masses and star formation rates of high-z galaxies in agreement with observations. Using radiative transfer modelling, we show that sub-millimetre (sub-mm) luminosity and molecular ISM mass are tightly correlated and that the overall normalization is in quantitative agreement with observations. Notably, sub-mm luminosity traces molecular ISM mass even during starburst episodes as dust mass and mass-weighted temperature evolve only moderately between z = 4 and z = 2, including during starbursts. Our finding supports the empirical approach of using broadband sub-mm flux as a proxy for molecular gas content in high-z galaxies. We thus expect single-band sub-mm observations with ALMA to dramatically increase the sample size of high-z galaxies with reliable ISM masses in the near future.

  2. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    NASA Astrophysics Data System (ADS)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-06-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations (50 to 1000 au). The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disc size in B335.

  3. Submillimeter flux as a probe of molecular ISM mass in high-z galaxies

    NASA Astrophysics Data System (ADS)

    Liang, Lichen; Feldmann, Robert; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Hayward, Christopher C.; Quataert, Eliot; Scoville, Nick Z.

    2018-04-01

    Recent long wavelength observations on the thermal dust continuum suggest that the Rayleigh-Jeans (RJ) tail can be used as a time-efficient quantitative probe of the dust and ISM mass in high-z galaxies. We use high-resolution cosmological simulations from the Feedback in Realistic Environment (FIRE) project to analyze the dust emission of M* ≳ 1010M⊙ galaxies at z = 2 - 4. Our simulations (MassiveFIRE) explicitly include various forms of stellar feedback, and they produce the stellar masses and star formation rates of high-z galaxies in agreement with observations. Using radiative transfer modelling, we show that sub-millimeter (sub-mm) luminosity and molecular ISM mass are tightly correlated and that the overall normalization is in quantitative agreement with observations. Notably, sub-mm luminosity traces molecular ISM mass even during starburst episodes as dust mass and mass-weighted temperature evolve only moderately between z = 4 and z = 2, including during starbursts. Our finding supports the empirical approach of using broadband sub-mm flux as a proxy for molecular gas content in high-z galaxies. We thus expect single-band sub-mm observations with ALMA to dramatically increase the sample size of high-z galaxies with reliable ISM masses in the near future.

  4. Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255

    NASA Technical Reports Server (NTRS)

    Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Menard, Francois; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; hide

    2017-01-01

    We present H-band (1.6 micron) scattered light observations of the transitional disk RX J1615.3-3255, located in the approx. 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.

  5. Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255

    NASA Astrophysics Data System (ADS)

    Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Ménard, François; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian E.; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide; Currie, Thayne; Akiyama, Eiji; Mayama, Satoshi; Follette, Katherine B.; Nakagawa, Takao

    2017-01-01

    We present H-band (1.6 μm) scattered light observations of the transitional disk RX J1615.3-3255, located in the 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 ± 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 μm continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.

  6. The Interstellar Medium in External Galaxies: Summaries of contributed papers

    NASA Technical Reports Server (NTRS)

    Hollenbach, David J. (Editor); Thronson, Harley A., Jr. (Editor)

    1990-01-01

    The Second Wyoming Conference entitled, The Interstellar Medium in External Galaxies, was held on July 3 to 7, 1989, to discuss the current understanding of the interstellar medium in external galaxies and to analyze the basic physical processes underlying interstellar phenomena. The papers covered a broad range of research on the gas and dust in external galaxies and focused on such topics as the distribution and morphology of the atomic, molecular, and dust components; the dynamics of the gas and the role of the magnetic field in the dynamics; elemental abundances and gas depletions in the atomic and ionized components; cooling flows; star formation; the correlation of the nonthermal radio continuum with the cool component of the interstellar medium; the origin and effect of hot galactic halos; the absorption line systems seen in distant quasars; and the effect of galactic collisions.

  7. Physical properties of Southern infrared dark clouds

    NASA Astrophysics Data System (ADS)

    Vasyunina, T.; Linz, H.; Henning, Th.; Stecklum, B.; Klose, S.; Nyman, L.-Å.

    2009-05-01

    Context: What are the mechanisms by which massive stars form? What are the initial conditions for these processes? It is commonly assumed that cold and dense Infrared Dark Clouds (IRDCs) represent the birth-sites of massive stars. Therefore, these clouds have been receiving an increasing amount of attention, and their analysis offers the opportunity to tackle the afore mentioned questions. Aims: To enlarge the sample of well-characterised IRDCs in the southern hemisphere, where ALMA will play a major role in the near future, we have developed a program to study the gas and dust of southern infrared dark clouds. The present paper attempts to characterize the continuum properties of this sample of IRDCs. Methods: We cross-correlated 1.2 mm continuum data from SIMBA bolometer array mounted on SEST telescope with Spitzer/GLIMPSE images to establish the connection between emission sources at millimeter wavelengths and the IRDCs that we observe at 8 μm in absorption against the bright PAH background. Analysing the dust emission and extinction enables us to determine the masses and column densities, which are important quantities in characterizing the initial conditions of massive star formation. We also evaluated the limitations of the emission and extinction methods. Results: The morphology of the 1.2 mm continuum emission is in all cases in close agreement with the mid-infrared extinction. The total masses of the IRDCs were found to range from 150 to 1150 M_⊙ (emission data) and from 300 to 1750 M_⊙ (extinction data). We derived peak column densities of between 0.9 and 4.6 × 1022 cm-2 (emission data) and 2.1 and 5.4 × 1022 cm-2 (extinction data). We demonstrate that the extinction method is unreliable at very high extinction values (and column densities) beyond AV values of roughly 75 mag according to the Weingartner & Draine (2001) extinction relation RV = 5.5 model B (around 200 mag when following the common Mathis (1990, ApJ, 548, 296) extinction calibration). By taking the spatial resolution effects into account and restoring the column densities derived from the dust emission to a linear resolution of 0.01 pc, peak column densities of 3-19 × 1023 cm-2 are obtained, which are much higher than typical values for low-mass cores. Conclusions: Taking into account the spatial resolution effects, the derived column densities are beyond the column density threshold of 3.0 × 1023 cm-2 required by theoretical considerations for massive star formation. We conclude that the values of column densities derived for the selected IRDC sample imply that these objects are excellent candidates for objects in the earliest stages of massive star formation.

  8. Unbiased Large Spectroscopic Surveys of Galaxies Selected by SPICA Using Dust Bands

    NASA Astrophysics Data System (ADS)

    Kaneda, H.; Ishihara, D.; Oyabu, S.; Yamagishi, M.; Wada, T.; Armus, L.; Baes, M.; Charmandaris, V.; Czerny, B.; Efstathiou, A.; Fernández-Ontiveros, J. A.; Ferrara, A.; González-Alfonso, E.; Griffin, M.; Gruppioni, C.; Hatziminaoglou, E.; Imanishi, M.; Kohno, K.; Kwon, J.; Nakagawa, T.; Onaka, T.; Pozzi, F.; Scott, D.; Smith, J.-D. T.; Spinoglio, L.; Suzuki, T.; van der Tak, F.; Vaccari, M.; Vignali, C.; Wang, L.

    2017-11-01

    The mid-infrared range contains many spectral features associated with large molecules and dust grains such as polycyclic aromatic hydrocarbons and silicates. These are usually very strong compared to fine-structure gas lines, and thus valuable in studying the spectral properties of faint distant galaxies. In this paper, we evaluate the capability of low-resolution mid-infrared spectroscopic surveys of galaxies that could be performed by SPICA. The surveys are designed to address the question how star formation and black hole accretion activities evolved over cosmic time through spectral diagnostics of the physical conditions of the interstellar/circumnuclear media in galaxies. On the basis of results obtained with Herschel far-infrared photometric surveys of distant galaxies and Spitzer and AKARI near- to mid-infrared spectroscopic observations of nearby galaxies, we estimate the numbers of the galaxies at redshift z > 0.5, which are expected to be detected in the polycyclic aromatic hydrocarbon features or dust continuum by a wide (10 deg2) or deep (1 deg2) blind survey, both for a given observation time of 600 h. As by-products of the wide blind survey, we also expect to detect debris disks, through the mid-infrared excess above the photospheric emission of nearby main-sequence stars, and we estimate their number. We demonstrate that the SPICA mid-infrared surveys will efficiently provide us with unprecedentedly large spectral samples, which can be studied further in the far-infrared with SPICA.

  9. The dust mass in Cassiopeia A

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Barlow, Mike; Marcowith, Alexandre; Tatischef, Vincent

    2016-06-01

    Theoretical models predict that core-collapse supernovae (CCSNe) can be efficient dust producers (0.1-1 Msun) and potentially responsible for most of the dust production in the early Universe. Observational evidence for this dust production efficiency has remained limited. Herschel observations from 70-500 microns of the 335-year old Cassiopeia A have indicated the presence of ˜0.1 Msun of cool (T˜35 K) dust interior to the reverse shock (Barlow et al. 2010), while Dunne et al. (2009) have claimed a detection of ˜1 Msun of cold (˜20 K) dust, based on SCUBA 850-micron polarimetric data. At sub-millimeter wavelengths, the supernova dust emission is heavily contaminated by interstellar dust emission and by the synchrotron radiation from the SNR. We present the first spatially resolved analysis of the infrared and submillimeter emission of Cas, A at better than 1 parsec resolution, based on our Herschel PACS and SPIRE 70-500um images. We used our PACS IFU and SPIRE FTS spectra to remove the contaminating emission from bright lines (e.g. [OIII]88, [CII]158). We updated the spectral index of the synchrotron emission based on recent Planck data, and extrapolated this synchrotron spectrum from a 3.7 mm VLA image to infrared/submillimeter wavelengths. We modeled the interstellar dust emission using a Galactic dust emission template from Jones et al. (2013), while the ISM dust mass is scaled to reproduce the continuum emission in the SPIRE FTS spectra at wavelengths > 650 micron (after subtraction of synchrotron emission). The UV radiation field that illuminates the ISM dust was constrained through PDR modelling of the [CI] 1-0, 2-1 and CO 4-3 lines observed in the SPIRE FTS spectra, and was found to range between 0.3 G0 and 1.0 G0 in units of the Draine IS radiation field. Within the uncertainties of the radiation field that illuminates the ISM material and the observational errors, we detect a dust mass of up to 0.8 Msun in Cas, A, with an average temperature of 30 K, in the region interior to the reverse shock. Our SN dust mass map has a rather smooth appearance, which suggests that dust formed uniformly throughout the ejecta. A Cas A dust mass of up to 0.8 Msun is in the same range as the ˜0.7 Msun of dust found in SN 1987A (Matsuura et al. 2015) and the ˜0.2 Msun of dust found in the Crab Nebula (Gomez et al. 2012; Owen & Barlow 2015). With these dust masses core-collapse supernovae can potentially account for the very large large masses of dust that have been observed in some high redshift galaxies.

  10. Dusty Donuts: Modeling the Reverberation Response of the Circumnuclear Dusty Torus Emission in AGN

    NASA Astrophysics Data System (ADS)

    Almeyda, Triana R.

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of AGN (active galactic nuclei), yet its size, composition, and structure are not well understood. These properties can be studied by analyzing the temporal variations of the infrared (IR) dust emission from the torus in response to variations in the AGN continuum luminosity; a technique known as reverberation mapping. In a recent international campaign 12 AGN were monitored using the Spitzer Space Telescope and several ground-based telescopes, providing a unique set of well-sampled mid-IR and optical light curves which are required in order to determine the approximate sizes of the tori in these AGN. To help extract structural information contained in the data a computer model, TORMAC, has been developed that simulates the reverberation response of the clumpy torus emission. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. A large library of torus reverberation response simulations has been constructed, to investigate the effects of various geometrical and structural properties such as inclination, cloud distribution, disk half-opening angle, and radial depth. The effects of dust cloud orientation, cloud optical depth, anisotropy of the illuminating AGN radiation field, dust cloud shadowing, and cloud occultation are also explored in detail. TORMAC was also used to generate synthetic IR light curves for the Seyfert 1 galaxy, NGC 6418, using the observed optical light curve as the input, to investigate how the torus and dust cloud properties incorporated in the code affect the results obtained from reverberation mapping. This dissertation presents the most comprehensive investigation to date showing that radiative transfer effects within the torus and anisotropic illumination of the torus can strongly influence the torus IR response at different wavelengths, and should be accounted for when interpreting reverberation mapping data. TORMAC provides a powerful modeling tool that can generate simulated IR light curves for direct comparison to observations. As many types of astronomical sources are both variable and embedded in, or surrounded, by dust, TORMAC also has applications for dust reverberation studies well beyond the AGN observed in the Spitzer monitoring campaign.

  11. The ISO View of Star Forming Galaxies

    NASA Technical Reports Server (NTRS)

    Helou, George

    1999-01-01

    ISO studies of normal galaxies in the local Universe have revealed basic new properties whose significant implications for the star formation process and cosmology are only starting to be understood. This review will touch on the general results of a statistical nature, and provide a quick summary of the profusion of exciting results on individual objects. In the mid-infrared, PHT-S has established that the spectra of star forming galaxies between 6 and-13microns are dominated by the Aromatic Features in Emission (AFE), and show little variation as a function of the heating intensity. The Carriers of the AFE (CAFE) are thus a universal component of dust with standard properties, and contribute between 10 and 25% of the total dust luminosity. In addition to AFE, the spectra show a low-level continuum detectable at wavelengths longer than 3.5microns whose origin is still under investigation. The mid-infrared colors formed as the ratio of flux densities in the 6.75micron and the 15micron bands of ISO-CAM remain essentially constant and near unity for quiescent and mildly active galaxies. As dust heating increases further, the 15micron flux increases steeply compared to 6.75microns, indicating that dust heated to 100K

  12. ISM Parameters in the Normal Galaxy NGC 5713

    NASA Technical Reports Server (NTRS)

    Lord, S. D.; Malhotra, S.; Lim, T.; Helou, G.; Beichman, C. A.; Dinerstein, H.; Hollenbach, D. J.; Hunter, D. A.; Lo, K. Y.; Lu, N. Y.; hide

    1996-01-01

    We report ISO Long Wavelength Spectrometer (LWS) observations fo the Sbc(s) pec galaxy NGC 5713. We have obtained strong detections of the fine-structure forbidden transitions [C(sub ii)] 158(micro)m, [O(sub i)]63(micro)m, and [O(sub iii)] 88(micro)m, and significant upper limits for[N(sub ii)]122(micro)m, [O(sub iii)] 52(micro)m, and [N(sub iii)] 57(micro)m. We also detect the galaxy's dust continuum emission between 43 and 197 microns.

  13. 8- to 13-μm Spectra of Saturn's A and B Rings

    NASA Astrophysics Data System (ADS)

    Lynch, David K.; Mazuk, Ann L.; Russell, Ray W.; Hackwell, John A.; Hanner, Martha S.

    2000-07-01

    Thermal IR spectroscopy of Saturn's A and B rings in the 8- to 13-μm range reveals a smooth, Planck-like continuum with no spectral structure that could be attributed to optically thin water ice or silicate dust. The brightness temperatures of the A and B rings obtained by fitting a Planck function to the spectra were 90.3±0.9 and 90.5±0.6 K, respectively, in good agreement with and extending earlier photometric measurements.

  14. A possible mechanism to detect super-earth formation in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Chiang, Eugene; Li, Hui; Li, Shengtai

    2017-06-01

    Using combined gas+dust global hydrodynamics and radiative transfer simulations, we calculate the distribution of gas and sub-mm-sized dust in protoplanetary disks with a super-Earth at tens of AU, and examine observational signatures of such systems in resolved observations. We confirm previous results that in a typical disk with a low viscosity ($\\alpha\\lesssim10^{-4}$), a super-Earth is able to open two gaps at $\\sim$scale-height away around its orbit in $\\sim$mm-sized dust (St$\\sim$0.01), due to differential dust drift in a perturbed gas background. Additional rings and gaps may also be produced under certain conditions. These features, particularly a signature ``double-gap'' feature, can be detected in a Taurus target by ALMA in dust continuum under an angular resolution of $\\sim0\\arcsec.025$ with two hours of integration. The features are robust --- it can survive in a variety of background disk profiles, withstand modest planetary radial migration ($|r/\\dot{r}|\\sim$ a few Myr), and last for thousands of orbits. Multiple ring/gap systems observed by ALMA were typically modeled using multiple (Saturn-to-Jupiter sized) planets. Here, we argue that a single super-Earth in a low viscosity disk could produce multiple rings and gaps as well. By examining the prevalence of such features in nearby disks, upcoming high angular resolution ALMA surveys may infer how common super-Earth formation events are at tens of au.

  15. GOODS-Herschel: dust attenuation properties of UV selected high redshift galaxies

    NASA Astrophysics Data System (ADS)

    Buat, V.; Noll, S.; Burgarella, D.; Giovannoli, E.; Charmandaris, V.; Pannella, M.; Hwang, H. S.; Elbaz, D.; Dickinson, M.; Magdis, G.; Reddy, N.; Murphy, E. J.

    2012-09-01

    Context. Dust attenuation in galaxies is poorly known, especially at high redshift. And yet the amount of dust attenuation is a key parameter to deduce accurate star formation rates from ultraviolet (UV) rest-frame measurements. The wavelength dependence of the dust attenuation is also of fundamental importance to interpret the observed spectral energy distributions (SEDs) and to derive photometric redshifts or physical properties of galaxies. Aims: We want to study dust attenuation at UV wavelengths at high redshift, where the UV is redshifted to the observed visible light wavelength range. In particular, we search for a UV bump and related implications for dust attenuation determinations. Methods: We use photometric data in the Chandra Deep Field South (CDFS), obtained in intermediate and broad band filters by the MUSYC project, to sample the UV rest-frame of 751 galaxies with 0.95 < z < 2.2. When available, infrared (IR) Herschel/PACS data from the GOODS-Herschel project, coupled with Spitzer/MIPS measurements, are used to estimate the dust emission and to constrain dust attenuation. The SED of each source is fit using the CIGALE code. The amount of dust attenuation and the characteristics of the dust attenuation curve are obtained as outputs of the SED fitting process, together with other physical parameters linked to the star formation history. Results: The global amount of dust attenuation at UV wavelengths is found to increase with stellar mass and to decrease as UV luminosity increases. A UV bump at 2175 Å is securely detected in 20% of the galaxies, and the mean amplitude of the bump for the sample is similar to that observed in the extinction curve of the LMC supershell region. This amplitude is found to be lower in galaxies with very high specific star formation rates, and 90% of the galaxies exhibiting a secure bump are at z < 1.5. The attenuation curve is confirmed to be steeper than that of local starburst galaxies for 20% of the galaxies. The large dispersion found for these two parameters describing the attenuation law is likely to reflect a wide diversity of attenuation laws among galaxies. The relations between dust attenuation, IR-to-UV flux ratio, and the slope of the UV continuum are derived for the mean attenuation curve found for our sample. Deviations from the average trends are found to correlate with the age of the young stellar population and the shape of the attenuation curve. Table of multi-colour photometry for the 751 galaxies is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/545/A141

  16. The Cold Dust Content of the Oxygen-rich Supernova Remnant G292.0+1.8

    NASA Astrophysics Data System (ADS)

    Ghavamian, Parviz; Williams, Brian J.

    2016-11-01

    We present far-infrared images of the Galactic oxygen-rich supernova remnant (SNR) G292.0+1.8, acquired with the PACS and SPIRE instruments of the Herschel Space Observatory. We find that the SNR shell is detected in the PACS blue (100 μm) band, but not in the red (160 μm) band, broadly consistent with results from AKARI observations. There is no discernible emission from G292.0+1.8 in SPIRE imagery at 250, 350 and 500 μm. Comparing the 100 μm emission to that observed with Spitzer at 24 and 70 μm, we find a very similar appearance for G292.0+1.8 at all three wavelengths. The infrared emission is dominated by dust from non-radiative circumstellar shocks. In addition, the radiatively shocked O-rich clump known as the “Spur” on the eastern side of G292.0+1.8 is clearly detected in the PACS blue images, with marginal detection in the red. Fitting the existing 14-40 μm IRS spectra of the Spur together with photometric measurements from 70 μm MIPS and 100 μm PACS photometry, we place an upper limit of ≲ 0.04 M ⊙ of ejecta dust mass in the Spur, under the most conservative assumption that the ejecta dust has a temperature of 15 K. Modeling the dust continuum in the IRS spectra at four positions around the rim, we estimate post-shock densities ranging from {n}p=3.5 cm-3 to 11 cm-3. The integrated spectrum of the entire SNR, dominated by swept-up circumstellar dust, can be fitted with a two-component dust model with a silicate component at 62 K and graphite component at 40 K for a total dust mass of 0.023 M ⊙.

  17. A near-infrared relationship for estimating black hole masses in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Landt, Hermine; Ward, Martin J.; Peterson, Bradley M.; Bentz, Misty C.; Elvis, Martin; Korista, Kirk T.; Karovska, Margarita

    2013-06-01

    Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra using scaling relations anchored in reverberation mapping results. In particular, the two quantities needed for calculating black hole masses, namely the velocity and the radial distance of the orbiting gas are derived from the widths of the Balmer hydrogen broad emission lines and the optical continuum luminosity, respectively. We have recently presented a near-infrared (near-IR) relationship for estimating AGN black hole masses based on the widths of the Paschen hydrogen broad emission lines and the total 1 μm continuum luminosity. The near-IR offers several advantages over the optical: it suffers less from dust extinction, the AGN continuum is observed only weakly contaminated by the host galaxy and the strongest Paschen broad emission lines Paα and Paβ are unblended. Here, we improve the calibration of the near-IR black hole mass relationship by increasing the sample from 14 to 23 reverberation-mapped AGN using additional spectroscopy obtained with the Gemini Near-Infrared Spectrograph. The additional sample improves the number statistics in particular at the high-luminosity end.

  18. ALMA Observations of the Archetypal “Hot Core” That Is Not: Orion-KL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orozco-Aguilera, M. T.; Zapata, Luis A.; Hirota, Tomoya

    We present sensitive high angular resolution (∼0.″1–0.″3) continuum Atacama Large Millimeter/Submillimeter Array (ALMA) observations of the archetypal hot core located in the Orion Kleinmann-Low (KL) region. The observations were made in five different spectral bands (bands 3, 6, 7, 8, and 9) covering a very broad range of frequencies (149–658 GHz). Apart from the well-known millimeter emitting objects located in this region (Orion Source I and BN), we report the first submillimeter detection of three compact continuum sources (ALMA1–3) in the vicinities of the Orion-KL hot molecular core. These three continuum objects have spectral indices between 1.47 and 1.56, andmore » brightness temperatures between 100 and 200 K at 658 GHz, suggesting that we are seeing moderate, optically thick dust emission with possible grain growth. However, as these objects are not associated with warm molecular gas, and some of them are farther out from the molecular core, we thus conclude that they cannot heat the molecular core. This result favors the hypothesis that the hot molecular core in Orion-KL core is heated externally.« less

  19. Comet C/2012 S1 (ISON)'s carbon-rich and micron-size-dominated coma dust

    NASA Astrophysics Data System (ADS)

    Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; Lisse, C.; de Pater, I.; Gehrz, R.; Kolokolova, L.

    2014-07-01

    Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (r_h ˜ 1.15 au, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a steep (and therefor narrow) grain size distribution (GSD) dominated by ˜ micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 μ m and by a silicate feature strength of ˜1.1 and an 8-13 μ m continuum greybody color temperature of ˜275-280 K (using T_{bb}∝ {r}_h^{-0.5} and T_{bb}˜260-265 K from Subaru+COMICS, 2013-Oct-19 UT) [1,2]. Spectra of comet ISON with IRTF+BASS (2013-Nov-11-12 UT) also show a silicate feature strength of ˜1.1 as well as an 11.2 μ m forsterite peak [3]. Our thermal models [6], which employ 0.1-1000 μ m grains, yield constraints for the dust composition as well as GSD parameters of slope, peak grain size, porosity: ISON's dust has a low silicate-to-amorphous carbon ratio (˜1:9), the GSD has a steep slope (N≃4.5), a peak grain radius of ˜0.7 μ m, and moderately porous grains. Specifically, the 8-13 μ m continuum color temperature implies submicron- to micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the GSD to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A IR proxy for the dust production rate is ɛ f ρ ˜ 1500 cm [4], which is akin to but larger than Afρ in scattered light (2013-Oct-20 UT, Afρ=796 cm(±5 %) in V-band from Swift) [5]. Also, ISON had a moderate-to-low dust-to-gas ratio [6]. Comet ISON's dust composition and GSD properties are distinct from the few well-studied long-period Nearly Isotropic Comets (NICs) that all had 'typical' GSD slopes (3.4≤N≤3.7) and silicate-to-amorphous carbon ratios ≫1 as well as the following properties: C/1995 O1 (Hale-Bopp)[7,8,9,10] and C/2001 Q4 (NEAT)[11] had smaller and highly porous grains, whereas C/2007 N4 (Lulin)[12] and C/2006 P1 (McNaught)[13] had larger and compact porous grains. Radial transport to comet-forming disk distances (≥ 20 au) is easier for smaller grains than for larger grains (≤ 1 μ m vs.˜20 μ m-like Stardust terminal particles) [14]. Perhaps Comet ISON formed either earlier in disk evolution whereby larger grains did not have the time to be transported to distances beyond Neptune, or the comet formed so far out in the disk that larger grains did not traverse such large radial distances. The high carbon-content of ISON's refractory dust appears to be complimented by the presence of limited-lifetime organic (CHON-like) grain materials: preliminary analyses of near-IR and high-resolution optical spectra indicate that gas-phase daughter molecules C_2, CN, and CH were more abundant than their parent molecules (HCN, C_2H_2, C_2H_6, measured in the near-IR) [15]. Dust composition as well as grain size distribution parameters (slope, peak grain size, and porosity) give clues to comet origins [16,17].

  20. From 20 cm - 1 micron: Measuring the Gas and Dust in Massive Low Surface Brightness Galaxies

    NASA Astrophysics Data System (ADS)

    Kearsley, E.; O'Neil, K.

    2005-12-01

    Archival data from the IRAS, 2MASS, NVSS, and FIRST catalogs, supplemented with new measurements of HI, are used to analyze the relationship between the relative mass of the various components of galaxies (stars, atomic hydrogen, dust, and molecular gas) using a small sample of nearby (z<0.1), massive low surface brightness galaxies. The sample is compared to three sets of published data: a large collection of radio sources from the UGC having a radio continuum intensity >2.5 mJy (Condon, Cotton, & Broderick 2002 AJ 124, 675) ; a smaller sample of low surface brightness galaxies (Galaz, et al 2002 2002 AJ 124, 1360); and a collection of NIR low surface brightness galaxies (Monnier-Ragaigne, et al 2002 Ap&SS 281, 145). Overall, our sample properties are similar to the comparison samples in regard to NIR color, gas, stellar, and dynamic mass ratios, etc. Based off the galaxies' q-value (determined from the FIR/1.4 GHz ratio), it appears likely that at least two of the 28 galaxies studied harbor AGN. Notably, we also find that if we naively assume the ratio of the dust and molecular gas mass relative to the mass of HI is a constant we are unable to predict the observed ratio of stellar mass to HI mass, indicating that the HI mass ratio is a poor indicator of the total baryonic mass in the studied galaxies. HI measurements obtained during this study using the Green Bank Telescope also provide a correction to the velocity of UGC 11068.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jingwen; Wright, Edward L.; Bussmann, R. Shane

    The Wide-field Infrared Survey Explorer (WISE) has discovered an extraordinary population of hyper-luminous dusty galaxies that are faint in the two bluer passbands (3.4 μm and 4.6 μm) but are bright in the two redder passbands of WISE (12 μm and 22 μm). We report on initial follow-up observations of three of these hot, dust-obscured galaxies, or Hot DOGs, using the Combined Array for Research in Millimeter-wave Astronomy and the Submillimeter Array interferometer arrays at submillimeter/millimeter wavelengths. We report continuum detections at ∼1.3 mm of two sources (WISE J014946.17+235014.5 and WISE J223810.20+265319.7, hereafter W0149+2350 and W2238+2653, respectively), and upper limitsmore » to CO line emission at 3 mm in the observed frame for two sources (W0149+2350 and WISE J181417.29+341224.8, hereafter W1814+3412). The 1.3 mm continuum images have a resolution of 1''-2'' and are consistent with single point sources. We estimate the masses of cold dust are 2.0 × 10{sup 8} M {sub ☉} for W0149+2350 and 3.9 × 10{sup 8} M {sub ☉} for W2238+2653, comparable to cold dust masses of luminous quasars. We obtain 2σ upper limits to the molecular gas masses traced by CO, which are 3.3 × 10{sup 10} M {sub ☉} and 2.3 × 10{sup 10} M {sub ☉} for W0149+2350 and W1814+3412, respectively. We also present high-resolution, near-IR imaging with the WFC3 on the Hubble Space Telescope for W0149+2653 and with NIRC2 on Keck for W2238+2653. The near-IR images show morphological structure dominated by a single, centrally condensed source with effective radius less than 4 kpc. No signs of gravitational lensing are evident.« less

  2. The ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Search for [CII] Line and Dust Emission in 6

    NASA Astrophysics Data System (ADS)

    Aravena, M.; Decarli, R.; Walter, F.; Bouwens, R.; Oesch, P. A.; Carilli, C. L.; Bauer, F. E.; Da Cunha, E.; Daddi, E.; Gónzalez-López, J.; Ivison, R. J.; Riechers, D. A.; Smail, I.; Swinbank, A. M.; Weiss, A.; Anguita, T.; Bacon, R.; Bell, E.; Bertoldi, F.; Cortes, P.; Cox, P.; Hodge, J.; Ibar, E.; Inami, H.; Infante, L.; Karim, A.; Magnelli, B.; Ota, K.; Popping, G.; van der Werf, P.; Wagg, J.; Fudamoto, Y.

    2016-12-01

    We present a search for [C II] line and dust continuum emission from optical dropout galaxies at z > 6 using ASPECS, our Atacama Large Millimeter submillimeter Array Spectroscopic Survey in the Hubble Ultra-deep Field (UDF). Our observations, which cover the frequency range of 212-272 GHz, encompass approximately the range of 6 < z < 8 for [C II] line emission and reach a limiting luminosity of L [C II] ˜ (1.6-2.5) × 108 L ⊙. We identify 14 [C II] line emitting candidates in this redshift range with significances >4.5σ, two of which correspond to blind detections with no optical counterparts. At this significance level, our statistical analysis shows that about 60% of our candidates are expected to be spurious. For one of our blindly selected [C II] line candidates, we tentatively detect the CO(6-5) line in our parallel 3 mm line scan. None of the line candidates are individually detected in the 1.2 mm continuum. A stack of all [C II] candidates results in a tentative detection with S 1.2 mm = 14 ± 5 μJy. This implies a dust-obscured star-formation rate (SFR) of (3 ± 1) M ⊙ yr-1. We find that the two highest-SFR objects have candidate [C II] lines with luminosities that are consistent with the low-redshift L [C II] versus SFR relation. The other candidates have significantly higher [C II] luminosities than expected from their UV-based SFR. At the current sensitivity, it is unclear whether the majority of these sources are intrinsically bright [C II] emitters, or spurious sources. If only one of our line candidates was real (a scenario greatly favored by our statistical analysis), we find a source density for [C II] emitters at 6 < z < 8 that is significantly higher than predicted by current models and some extrapolations from galaxies in the local universe.

  3. Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, A. Meredith; Lieman-Sifry, Jesse; Flaherty, Kevin M.

    We present ∼0.″4 resolution images of CO(3–2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broadband spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ∼100 and 310 au, with a marginally significant enhancement of surface density at a radius of ∼110 au. The SED requires an inner disk of small grains in addition to the outer diskmore » of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ∼80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ∼20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (∼220 au) is smaller than that of the dust disk (∼300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti’s disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.« less

  4. Physics of interplanetary dust capture via impact into organic polymer foams

    NASA Technical Reports Server (NTRS)

    Anderson, William W.; Ahrens, Thomas J.

    1994-01-01

    The physics of hypervelocity impacts into foams is of interest because of the possible application to interplanetary dust particle (IDP) capture by spacecraft. We present a model for the phenomena occurring in such impacts into low-density organic polymer foams. Particles smaller than foam cells behave as if the foam is a series of solid slabs and are fragmented and, at higher velocities, thermally altered. Particles much larger than the foam cells behave as if the foam were a continuum, allowing the use of a continuum mechanics model to describe the effects of drag and ablation. Fragmentation is expected to be a major process, especially for aggregates of small grains. Calculations based on these arguments accurately predict experimental data and, for hypothetical IDPs, indicate that recovery of organic materials will be low for encounter velocities greater than 5 km/s. For an organic particle 100 micrometers in diameter, approx. 35% of the original mass would be collected in an impact at 5 km/s, dropping to approx. 10% at 10 km/s and approx. 0% at 15 km/s. For the same velocities the recovery ratios for troilite (FeS) are approx. 95%, 65%, and 50%, and for olivine (Mg2SiO4) they are approx. 98%, 80%, and 65%, demonstrating that inorganic materials are much more easily collected. The density of the collector material has only a second-order effect, changing the recovered mass by less than 10% of the original mass.

  5. New ALMA constraints on the star-forming interstellar medium at low metallicity: a 50 pc view of the blue compact dwarf galaxy SBS 0335-052

    NASA Astrophysics Data System (ADS)

    Cormier, D.; Bendo, G. J.; Hony, S.; Lebouteiller, V.; Madden, S. C.; Galliano, F.; Glover, S. C. O.; Klessen, R. S.; Abel, N. P.; Bigiel, F.; Clark, P. C.

    2017-06-01

    Properties of the cold interstellar medium of low-metallicity galaxies are not well known due to the faintness and extremely small scale on which emission is expected. We present deep ALMA band 6 (230 GHz) observations of the nearby, low-metallicity (12 + log (O/H) = 7.25) blue compact dwarf galaxy SBS 0335-052 at an unprecedented resolution of 0.2 arcsec (52 pc). The 12CO J = 2→1 line is not detected and we report a 3σ upper limit of LCO(2-1) = 3.6 × 104 K km s-1 pc2. Assuming that molecular gas is converted into stars with a given depletion time, ranging from 0.02 to 2 Gyr, we find lower limits on the CO-to-H2 conversion factor αCO in the range 102-104 M⊙ pc-2 (K km s-1)-1. The continuum emission is detected and resolved over the two main super star clusters. Re-analysis of the IR-radio spectral energy distribution suggests that the mm-fluxes are not only free-free emission but are most likely also associated with a cold dust component coincident with the position of the brightest cluster. With standard dust properties, we estimate its mass to be as large as 105 M⊙. Both line and continuum results suggest the presence of a large cold gas reservoir unseen in CO even with ALMA.

  6. Molecular Gas Reservoirs in Cluster Galaxies at z = 1.46

    NASA Astrophysics Data System (ADS)

    Hayashi, Masao; Tadaki, Ken-ichi; Kodama, Tadayuki; Kohno, Kotaro; Yamaguchi, Yuki; Hatsukade, Bunyo; Koyama, Yusei; Shimakawa, Rhythm; Tamura, Yoichi; Suzuki, Tomoko L.

    2018-04-01

    We present molecular gas reservoirs of 18 galaxies associated with the XMMXCS J2215.9–1738 cluster at z = 1.46. From Band 7 and Band 3 data of the Atacama Large Millimeter/submillimeter Array, we detect dust continuum emission at 870 μm and the CO J = 2–1 emission line from 8 and 17 member galaxies, respectively, within a clustercentric radius of R 200. The molecular gas masses derived from the CO and/or dust continuum luminosities show that the fraction of molecular gas mass and the depletion timescale for the cluster galaxies are larger than expected from the scaling relations of molecular gas on stellar mass and offset from the main sequence of star-forming galaxies in general fields. The galaxies closer to the cluster center in terms of both projected position and accretion phase seem to show a larger deviation from the scaling relations. We speculate that the environment of the galaxy cluster helps feed the gas through inflow to the member galaxies and reduce the efficiency of star formation. The stacked Band 3 spectrum of 12 quiescent galaxies with M stellar ∼ 1011 M ⊙ within 0.5R 200 shows no detection of a CO emission line, giving the upper limit of molecular gas mass and molecular gas fraction to be ≲1010 M ⊙ and ≲10%, respectively. Therefore, the massive galaxies in the cluster core quench the star formation activity while consuming most of the gas reservoirs.

  7. ALMA Measurements of Circumstellar Material in the GQ Lup System

    NASA Astrophysics Data System (ADS)

    Wilner, David J.; MacGregor, Meredith A.; Czekala, Ian; Andrews, Sean M.; Dai, Yu Sophia; Herczeg, Gregory; Kratter, Kaitlin M.; Kraus, Adam L.; Ricci, Luca; Testi, Leonardo

    2017-01-01

    We present ALMA observations of the GQ Lup system, a young Sun-like star with a substellar mass companion in a wide-separation orbit. These observations of 870 micron continuum and CO J=3-2 line emission with beam 0.3 arcsec (45 AU) resolve the disk of dust and gas surrounding the primary star, GQ Lup A, and provide deep limits on any circumplanetary disk surrounding the companion, GQ Lup b. The 3 sigma upper limit on the 870 micron flux density of < 0.15 mJy implies an upper limit on the GQ Lup b disk mass of about 0.04 solar masses for standard assumptions about optically thin dust emission. Given the non-detection of a circumplanetary disk around GQ Lup b, and other similar systems observed by ALMA, we discuss implications for formation mechanisms of wide-separation substellar companions.

  8. On the calibration of the COBE/IRAS dust emission reddening maps

    NASA Astrophysics Data System (ADS)

    Dutra, C. M.; Ahumada, A. V.; Clariá, J. J.; Bica, E.; Barbuy, B.

    2003-09-01

    In this work we study the spectral properties (3600-6800 Å) of the nuclear region of early-type galaxies at low (|b|<25deg), intermediate (including surroundings of the Magellanic Clouds) and high (South Polar Cap) Galactic latitudes. We determine the E(B-V) reddening values of the galaxies by matching their continuum distribution with respect to those of reddening-free spectral galaxy templates with similar stellar populations. We also compare the spectroscopic reddening value of each galaxy with that derived from 100 mu m dust emission (E(B-V)FIR) in its line of sight, and we find that there is agreement up to E(B-V)=0.25. Beyond this limit E(B-V)FIR values are higher. Taking into account the data up to E(B-V) ~ 0.7, we derive a calibration factor of 0.016 between the spectroscopic E(B-V) values and Schlegel et al.'s (\\cite{Schlegel1998}) opacities. By combining this result with an AK extinction map built within ten degrees of the Galactic centre using Bulge giants as probes (Dutra et al. \\cite{Dutra2003}), we extended the calibration of dust emission reddening maps to low Galactic latitudes down to |b|=4deg and E(B-V)= 1.6 (AV ~ 5). According to this new calibration, a multiplicative factor of ~0.75 must be applied to the COBE/IRAS dust emission reddening maps. Based on observations made at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Pata, Córdoba and San Juan, Argentina.

  9. JCMT Spectral and Continuum Imaging of Comet 252P/LINEAR

    NASA Astrophysics Data System (ADS)

    Coulson, Iain M.; Cordiner, Martin A.; Kuan, Yi-Jehng; Tseng, Wei-Ling; Chuang, Yo-Ling; Lin, Zhong-Yi; Milam, Stefanie N.; Charnley, Steven B.; Ip, Wing-Huen

    2017-04-01

    Comet 252P/LINEAR passed the Earth at a distance of 0.035 au on 2016 March 21, presenting a rare opportunity to study a comet at high spatial resolution. Even with a single dish facility such as JCMT, the chemical structure of the coma could be observed on scales of 500-1000 km, which are smaller than the scale lengths of known distributed cometary molecules. Our week-long observing campaign at JCMT started on March 27 (UT), 12 days after perihelion, and ended on April 3, during which time the comet's distance from Earth increased from 0.045 to 0.078 au. Our observations of the J = 4 - 3 transition of HCN showed generally uniform levels of activity. Expansion velocities were ˜0.6 km s-1 (±10%), and the derived mean HCN production rate during the week was 6.4 × 1024 mol s-1. Comparison with independent estimates of the water production rate during the same period yields a mixing ratio of 0.12% with respect to water. Methanol emissions appear to arise from an extended source—probably in the form of an ice halo—suggesting that all the gases from 252P may originate in large part from the sublimation of icy grains in the coma. Adopting a mean dust particle size of 1 mm, the mass of dust in the coma at the same time is estimated at 4 × 107 kg, implying a total dust production rate of 4 kg s-1. The dust-to-gas mass ratio of ˜0.025 is one of the lowest values ever observed for a comet.

  10. Statistical properties of the polarized emission of Planck Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Ristorcelli, Isabelle; Planck Collaboration

    2015-08-01

    The Galactic magnetic fields are considered as one of the key components regulating star formation, but their actual role on the dense cores formation and evolution remains today an open question.Dust polarized continuum emission is particularly well suited to probe the dense and cold medium and study the magnetic field structure. Such observations also provide tight constraints to better understand the efficiency of the dust alignment along the magnetic field lines, which in turn relate on our grasp to properly interpret the B-field properties.With the Planck all-sky survey of dust submillimeter emission in intensity and polarization, we can investigate the intermediate scales, between that of molecular cloud and of prestellar cores, and perform a statistical analysis on the polarization properties of cold clumps.Combined with the IRAS map at 100microns, the Planck survey has allowed to build the first all-sky catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015). The corresponding 13188 sources cover a broad range in physical properties, and correspond to different evolutionary stages, from cold and starless clumps, nearby cores, to young protostellar objects still embedded in their cold surrounding cloud.I will present the main results of our polarization analysis obtained on different samples of sources from the PGCC catalogue, based on the 353GHz polarized emission measured with Planck. The statistical properties are derived from a stacking method, using optimized estimators for the polarization fraction and angle parameters. These properties are determined and compared according to the nature of the sources (starless or YSOs), their size or density range. Finally, I will present a comparison of our results with predictions from MHD simulations of clumps including radiative transfer and the dust radiative torque alignment mechanism.

  11. The ZINGRS Radio Survey: Probing metallicities at high-z with far-IR fine-structure lines and the radio continuum

    NASA Astrophysics Data System (ADS)

    Ferkinhoff, Carl; Higdon, Sarah; Higdon, James L.; Tidwell, Hannah; Rangel, Miguel; Vishwas, Amit; Nikola, Thomas; Stacey, Gordon J.; Brisbin, Drew

    2017-01-01

    The present day Universe is rich in metals that enable efficient cooling of gas in the ISM in order to form stars, create planets and make the building blocks of life as we know it. The Universe did not start in this state - we know that metals had to build up over time with successive generations of stars. Revealing the details of this evolution, however, is challenging and requires probes of metallicity that are not susceptible to dust extinction nor exhibit the degeneracies common to tracers in the visible regime. One possible indicator combines the far-IR fine structure lines with the radio continuum. Recently we have undertaken a multi-band radio continuum survey with the JVLA of high-z galaxies from ZINGRS. These observations will constrain the galaxies’ thermal and nonthermal radio emissions and demonstrate the use of far-IR lines together with radio continuum as a metallicity indicator. ZINGRS, the ZEUS 1 and 2 INvestigated Galaxy Reference Sample, includes ~30 galaxies from z ~ 1 - 4.5 for which the far-IR fine-structure lines (e.g. [CII] 158, [NII] 122, [OIII] 88) have been observed with the ZEUS-1 and 2 instruments. This is the largest collection of far-IR fine-structure line detections at high-z and is ideal for demonstrating the use of this new indicator. Here we describe the theory behind the new indicator, give an overview of ZINGRS, and report on the status of our radio survey.

  12. ALMA observations of TiO2 around VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    De Beck, E.; Vlemmings, W.; Muller, S.; Black, J. H.; O'Gorman, E.; Richards, A. M. S.; Baudry, A.; Maercker, M.; Decin, L.; Humphreys, E. M.

    2015-08-01

    Context. Titanium dioxide, TiO2, is a refractory species that could play a crucial role in the dust-condensation sequence around oxygen-rich evolved stars. To date, gas phase TiO2 has been detected only in the complex environment of the red supergiant VY CMa. Aims: We aim to constrain the distribution and excitation of TiO2 around VY CMa in order to clarify its role in dust formation. Methods: We analyse spectra and channel maps for TiO2 extracted from ALMA science verification data. Results: We detect 15 transitions of TiO2, and spatially resolve the emission for the first time. The maps demonstrate a highly clumpy, anisotropic outflow in which the TiO2 emission likely traces gas exposed to the stellar radiation field. An accelerating bipolar-like structure is found, oriented roughly east-west, of which the blue component runs into and breaks up around a solid continuum component. A distinct tail to the south-west is seen for some transitions, consistent with features seen in the optical and near-infrared. Conclusions: We find that a significant fraction of TiO2 remains in the gas phase outside the dust-formation zone and suggest that this species might play only a minor role in the dust-condensation process around extreme oxygen-rich evolved stars like VY CMa. Appendix A is available in electronic form at http://www.aanda.org

  13. The nature of cometary dust as determined from infrared observations

    NASA Technical Reports Server (NTRS)

    Swamy, K. S. Krishna; Sandford, Scott A.; Allamandola, Louis J.; Witteborn, Fred C.; Bregman, Jesse D.

    1989-01-01

    The infrared measurements of comets, the compositional information available from interplanetary dust particles (IDPs), and the recent results of flybys to Comet Halley can help in restricting the nature and composition of cometary dust models (c.f., Proceedings of the 20th ESLAB Symposium on Exploration of Halley's Comet, 1986). Researchers tried to incorporate some of these results into a coherent model to account for the observed cometary infrared emission. The presence of 10 and 3.4 micron features in Comet Halley (c.f. Bregman et al. 1987; Wickramasinghe and Allen 1986) indicated the presence of at least two components in the grain material, namely silicates and some form of amorphous carbon. These two components could reside in separate grains or may be parts of composite particles. Both these cases have been considered (see Krishna Swamy el a. 1988a, 1988b). In the absence of refractive index data for cometary analogs, the authors used the optical constants of olivine-rich lunar material 12009.48 (Perry et al. 1972) for the infrared region and that of alpha:C-H film for amorphous carbon (angus et al. 1986). For the visible region, a value of m = 1.38-0.39i was used for the silicates, and values published by Arakawa et al. (1985) were used for the amorphous carbon. These materials should give a representative behavior of the expected results. The model results were compared to observational data. The strength of the 3.4 micron and 10 micron features relative to the adjacent continuum, as well as the slope of the continuum between 2500 and 1250 cm(exp -1) (4 to 8 microns), were used as criteria for comparison. Model calculations with alpha approx. equals -3.5, and also the size distribution function inferred for Comet Halley, with a mass fraction (X) of silicate to amorphous carbon grains of about 40 to 1 can fit the data. A good match is obtained for the infrared spectra of Comets Halley and West from a 40 to 1 mixture of silicate and amorphous carbon grains with a a(exp -3.5) size distribution function. The results are consistent with compositional constraints provided by interplanetary dust particles (IPDs) and Halley flyby data. The variation of grain temperature with heliocentric distance appears to account for the major changes observed in cometary spectra.

  14. The Eagle Nebula: a spectral template for star forming regions

    NASA Astrophysics Data System (ADS)

    Flagey, Nicolas; Boulanger, Francois; Carey, Sean; Compiegne, Mathieu; Dwek, Eli; Habart, Emilie; Indebetouw, Remy; Montmerle, Thierry; Noriega-Crespo, Alberto

    2008-03-01

    IRAC and MIPS have revealed spectacular images of massive star forming regions in the Galaxy. These vivid illustrations of the interaction between the stars, through their winds and radiation, and their environment, made of gas and dust, still needs to be explained. The large scale picture of layered shells of gas components, is affected by the small scale interaction of stars with the clumpy medium that surrounds them. To understand spatial variations of physical conditions and dust properties on small scales, spectroscopic imaging observations are required on a nearby object. The iconic Eagle Nebula (M16) is one of the nearest and most observed star forming region of our Galaxy and as such, is a well suited template to obtain this missing data set. We thus propose a complete spectral map of the Eagle Nebula (M16) with the IRS/Long Low module (15-38 microns) and MIPS/SED mode (55-95 microns). Analysis of the dust emission, spectral features and continuum, and of the H2 and fine-structure gas lines within our models will provide us with constraints on the physical conditions (gas ionization state, pressure, radiation field) and dust properties (temperature, size distribution) at each position within the nebula. Only such a spatially and spectrally complete map will allow us to characterize small scale structure and dust evolution within the global context and understand the impact of small scale structure on the evolution of dusty star forming regions. This project takes advantage of the unique ability of IRS at obtaining sensitive spectral maps covering large areas.

  15. Circumnuclear starbursts in Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew S.

    1987-01-01

    Observational diagnostics for the recognition of circumnuclear star formation in Seyfert galaxies are described and illustrated. These methods include: (1) spatially resolved optical spectroscopy, which allows the emission lines for HII regions to be separated from those originating in gas ionized by the Seyfert nucleus; (2) radio continuum mapping, where the linear radio sources characteristic of the nuclear activity may be distinguished from the diffuse morphology of multiple supernova remnants generated in a starburst; (3) infrared spectroscopic searches for emission features of dust, which are seen in starbursts but not in Seyfert nuclei; (4) the shape of the IRAS spectrum. These various diagnostics agree well as to the presence or absence of ongoing star formation. The IRAS spectra of a significant fraction of Seyferts are dominated by emission from dust heated by stars, not the Seyfert nucleus itself. In these cases, the spectrum is curved, being steep between 25 and 60 microns and flatter between 60 and 100 microns. When the Seyfert nucleus dominates, the 25 to 100 micron spectrum is much flatter. It is suggested that the location of a Seyfert galaxy in the IRAS color-color diagram reflects primarily the relative contributions of the active nucleus and dust heated by stars to the infrared fluxes.

  16. HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hao Heng; Elvis, Martin; Civano, Francesca

    2010-11-20

    We report a sizable class of type 1 active galactic nuclei (AGNs) with unusually weak near-infrared (1-3 {mu}m) emission in the XMM-COSMOS type 1 AGN sample. The fraction of these 'hot-dust-poor' AGNs increases with redshift from 6% at low redshift (z < 2) to 20% at moderate high redshift (2 < z < 3.5). There is no clear trend of the fraction with other parameters: bolometric luminosity, Eddington ratio, black hole mass, and X-ray luminosity. The 3 {mu}m emission relative to the 1 {mu}m emission is a factor of 2-4 smaller than the typical Elvis et al. AGN spectral energymore » distribution (SED), which indicates a 'torus' covering factor of 2%-29%, a factor of 3-40 smaller than required by unified models. The weak hot dust emission seems to expose an extension of the accretion disk continuum in some of the source SEDs. We estimate the outer edge of their accretion disks to lie at (0.3-2.0) x 10{sup 4} Schwarzschild radii, {approx}10-23 times the gravitational stability radii. Formation scenarios for these sources are discussed.« less

  17. GOODS-HERSCHEL: STAR FORMATION, DUST ATTENUATION, AND THE FIR–RADIO CORRELATION ON THE MAIN SEQUENCE OF STAR-FORMING GALAXIES UP TO z ≃ 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, M.; Elbaz, D.; Daddi, E.

    We use deep panchromatic data sets in the GOODS-N field, from GALEX to the deepest Herschel far-infrared (FIR) and VLA radio continuum imaging, to explore the evolution of star-formation activity and dust attenuation properties of star-forming galaxies to z ≃ 4, using mass-complete samples. Our main results can be summarized as follows: (i) the slope of the star-formation rate–M{sub *} correlation is consistent with being constant ≃0.8 up to z ≃ 1.5, while its normalization keeps increasing with redshift; (ii) for the first time we are able to explore the FIR–radio correlation for a mass-selected sample of star-forming galaxies: themore » correlation does not evolve up to z ≃ 4; (iii) we confirm that galaxy stellar mass is a robust proxy for UV dust attenuation in star-forming galaxies, with more massive galaxies being more dust attenuated. Strikingly, we find that this attenuation relation evolves very weakly with redshift, with the amount of dust attenuation increasing by less than 0.3 mag over the redshift range [0.5–4] for a fixed stellar mass; (iv) the correlation between dust attenuation and the UV spectral slope evolves with redshift, with the median UV slope becoming bluer with redshift. By z ≃ 3, typical UV slopes are inconsistent, given the measured dust attenuations, with the predictions of commonly used empirical laws. (v) Finally, building on existing results, we show that gas reddening is marginally larger (by a factor of around 1.3) than the stellar reddening at all redshifts probed. Our results support a scenario where the ISM conditions of typical star-forming galaxies evolve with redshift, such that at z ≥ 1.5 Main Sequence galaxies have ISM conditions moving closer to those of local starbursts.« less

  18. Modeling the Morphology of Comet LINEAR (2001 A2)

    NASA Astrophysics Data System (ADS)

    Woodney, L. M.; Barkume, K. M.; Schleicher, D. G.

    2002-09-01

    Imaging of Comet LINEAR (2001 A2) obtained at the Lowell Observatory June 29 - 30, 2001 revealed CN arcs symmetrical about p.a. 250o. Three successive arcs separated by approximately 12 000 km were observed on each side; outward motion of the arcs was detected. Simlar arcs are seen in C2 and C3, but no jets were observed in the dust continuum. No jet structure was apparent by our next set of observations on July 8. We will present results from Monte Carlo modeling of these gas jets.

  19. An ALMA and MagAO Study of the Substellar Companion GQ Lup B*

    NASA Astrophysics Data System (ADS)

    Wu, Ya-Lin; Sheehan, Patrick D.; Males, Jared R.; Close, Laird M.; Morzinski, Katie M.; Teske, Johanna K.; Haug-Baltzell, Asher; Merchant, Nirav; Lyons, Eric

    2017-02-01

    Multi-wavelength observations provide a complementary view of the formation of young, directly imaged planet-mass companions. We report the ALMA 1.3 mm and Magellan adaptive optics Hα, I\\prime , z\\prime , and Y S observations of the GQ Lup system, a classical T Tauri star with a 10{--}40 {M}{Jup} substellar companion at ˜110 au projected separation. We estimate the accretion rates for both components from the observed Hα fluxes. In our ˜0.″05 resolution ALMA map, we resolve GQ Lup A’s disk in the dust continuum, but no signal is found from the companion. The disk is compact, with a radius of ˜22 au, a dust mass of ˜6 M ⊕, an inclination angle of ˜56°, and a very flat surface density profile indicative of a radial variation in dust grain sizes. No gaps or inner cavity are found in the disk, so there is unlikely a massive inner companion to scatter GQ Lup B outward. Thus, GQ Lup B might have formed in situ via disk fragmentation or prestellar core collapse. We also show that GQ Lup A’s disk is misaligned with its spin axis, and possibly with GQ Lup B’s orbit. Our analysis on the tidal truncation radius of GQ Lup A’s disk suggests that GQ Lup B’s orbit might have a low eccentricity. This paper includes data gathered with the 6.5 m Magellan Clay Telescope at Las Campanas Observatory, Chile.

  20. Deep Submillimeter and Radio Observations in the SSA22 Field. I. Powering Sources and the Lyα Escape Fraction of Lyα Blobs

    NASA Astrophysics Data System (ADS)

    Ao, Y.; Matsuda, Y.; Henkel, C.; Iono, D.; Alexander, D. M.; Chapman, S. C.; Geach, J.; Hatsukade, B.; Hayes, M.; Hine, N. K.; Kato, Y.; Kawabe, R.; Kohno, K.; Kubo, M.; Lehnert, M.; Malkan, M.; Menten, K. M.; Nagao, T.; Norris, R. P.; Ouchi, M.; Saito, T.; Tamura, Y.; Taniguchi, Y.; Umehata, H.; Weiss, A.

    2017-12-01

    We study the heating mechanisms and Lyα escape fractions of 35 Lyα blobs (LABs) at z ≈ 3.1 in the SSA22 field. Dust continuum sources have been identified in 11 of the 35 LABs, all with star formation rates (SFRs) above 100 M ⊙ yr-1. Likely radio counterparts are detected in 9 out of 29 investigated LABs. The detection of submillimeter dust emission is more linked to the physical size of the Lyα emission than to the Lyα luminosities of the LABs. A radio excess in the submillimeter/radio-detected LABs is common, hinting at the presence of active galactic nuclei. Most radio sources without X-ray counterparts are located at the centers of the LABs. However, all X-ray counterparts avoid the central regions. This may be explained by absorption due to exceptionally large column densities along the line-of-sight or by LAB morphologies, which are highly orientation dependent. The median Lyα escape fraction is about 3% among the submillimeter-detected LABs, which is lower than a lower limit of 11% for the submillimeter-undetected LABs. We suspect that the large difference is due to the high dust attenuation supported by the large SFRs, the dense large-scale environment as well as large uncertainties in the extinction corrections required to apply when interpreting optical data.

  1. Infrared and X-Ray Spectroscopy of the KES 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Slane, Patrick; Arendt, Richard G.

    2009-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and ill emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  2. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Slane, Patrick; Arendt, Richard G.; Dwek, Eli

    2011-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approximately 1.5 keY, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approximately 140 K by a relatively dense, hot plasma that also gives rise to the hot X-my emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-my emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) x solar mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  3. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Shell Characterizing the Dust and Gas Properties

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Arendt, Richard G.; Dwek, Eli; Slane, Patrick

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of approx 1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keY. Previous studies suggest that the hot component may originate from reverse-shocked SN ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from supernova (SN) ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of approx 140 K by a relatively dense, hot plasma, that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 x 10(exp -2) Solar Mass, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  4. Infrared and X-Ray Spectroscopy of the Kes 75 Supernova Remnant Shell: Characterizing the Dust and Gas Properties

    NASA Astrophysics Data System (ADS)

    Temim, Tea; Slane, Patrick; Arendt, Richard G.; Dwek, Eli

    2012-01-01

    We present deep Chandra observations and Spitzer Space Telescope infrared (IR) spectroscopy of the shell in the composite supernova remnant (SNR) Kes 75 (G29.7-0.3). The remnant is composed of a central pulsar wind nebula and a bright partial shell in the south that is visible at radio, IR, and X-ray wavelengths. The X-ray emission can be modeled by either a single thermal component with a temperature of ~1.5 keV, or with two thermal components with temperatures of 1.5 and 0.2 keV. Previous studies suggest that the hot component may originate from reverse-shocked supernova (SN) ejecta. However, our new analysis shows no definitive evidence for enhanced abundances of Si, S, Ar, Mg, and Fe, as expected from SN ejecta, or for the IR spectral signatures characteristic of confirmed SN condensed dust, thus favoring a circumstellar or interstellar origin for the X-ray and IR emission. The X-ray and IR emission in the shell are spatially correlated, suggesting that the dust particles are collisionally heated by the X-ray emitting gas. The IR spectrum of the shell is dominated by continuum emission from dust with little, or no line emission. Modeling the IR spectrum shows that the dust is heated to a temperature of ~140 K by a relatively dense, hot plasma that also gives rise to the hot X-ray emission component. The density inferred from the IR emission is significantly higher than the density inferred from the X-ray models, suggesting a low filling factor for this X-ray emitting gas. The total mass of the warm dust component is at least 1.3 × 10-2 M ⊙, assuming no significant dust destruction has occurred in the shell. The IR data also reveal the presence of an additional plasma component with a cooler temperature, consistent with the 0.2 keV gas component. Our IR analysis therefore provides an independent verification of the cooler component of the X-ray emission. The complementary analyses of the X-ray and IR emission provide quantitative estimates of density and filling factors of the clumpy medium swept up by the SNR.

  5. Characterizing the Evolution of Circumstellar Systems with the Hubble Space Telescope and the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Wolff, Schuyler; Schuyler G. Wolff

    2018-01-01

    The study of circumstellar disks at a variety of evolutionary stages is essential to understand the physical processes leading to planet formation. The recent development of high contrast instruments designed to directly image the structures surrounding nearby stars, such as the Gemini Planet Imager (GPI) and coronagraphic data from the Hubble Space Telescope (HST) have made detailed studies of circumstellar systems possible. In my thesis work I detail the observation and characterization of three systems. GPI polarization data for the transition disk, PDS 66 shows a double ring and gap structure with a temporally variable azimuthal asymmetry. This evolved morphology could indicate shadowing from some feature in the innermost regions of the disk, a gap-clearing planet, or a localized change in the dust properties of the disk. Millimeter continuum data of the DH Tau system places limits on the dust mass that is contributing to the strong accretion signature on the wide-separation planetary mass companion, DH Tau b. The lower than expected dust mass constrains the possible formation mechanism, with core accretion followed by dynamical scattering being the most likely. Finally, I present HST scattered light observations of the flared, edge-on protoplanetary disk ESO H$\\alpha$ 569. I combine these data with a spectral energy distribution to model the key structural parameters such as the geometry (disk outer radius, vertical scale height, radial flaring profile), total mass, and dust grain properties in the disk using the radiative transfer code MCFOST. In order to conduct this work, I developed a new tool set to optimize the fitting of disk parameters using the MCMC code \\texttt{emcee} to efficiently explore the high dimensional parameter space. This approach allows us to self-consistently and simultaneously fit a wide variety of observables in order to place constraints on the physical properties of a given disk, while also rigorously assessing the uncertainties in those derived properties.

  6. Gas in the protoplanetary disc of HD 169142: Herschel's view

    NASA Astrophysics Data System (ADS)

    Meeus, G.; Pinte, C.; Woitke, P.; Montesinos, B.; Mendigutía, I.; Riviere-Marichalar, P.; Eiroa, C.; Mathews, G. S.; Vandenbussche, B.; Howard, C. D.; Roberge, A.; Sandell, G.; Duchêne, G.; Ménard, F.; Grady, C. A.; Dent, W. R. F.; Kamp, I.; Augereau, J. C.; Thi, W. F.; Tilling, I.; Alacid, J. M.; Andrews, S.; Ardila, D. R.; Aresu, G.; Barrado, D.; Brittain, S.; Ciardi, D. R.; Danchi, W.; Fedele, D.; de Gregorio-Monsalvo, I.; Heras, A.; Huelamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mora, A.; Morales-Calderon, M.; Nomura, H.; Pantin, E.; Pascucci, I.; Phillips, N.; Podio, L.; Poelman, D. R.; Ramsay, S.; Riaz, B.; Rice, K.; Solano, E.; Walker, H.; White, G. J.; Williams, J. P.; Wright, G.

    2010-07-01

    In an effort to simultaneously study the gas and dust components of the disc surrounding the young Herbig Ae star HD 169142, we present far-IR observations obtained with the PACS instrument onboard the Herschel Space Observatory. This work is part of the open time key program GASPS, which is aimed at studying the evolution of protoplanetary discs. To constrain the gas properties in the outer disc, we observed the star at several key gas-lines, including [OI] 63.2 and 145.5 μm, [CII] 157.7 μm, CO 72.8 and 90.2 μm, and o-H2O 78.7 and 179.5 μm. We only detect the [OI] 63.2 μm line in our spectra, and derive upper limits for the other lines. We complement our data set with PACS photometry and 12/13CO data obtained with the Submillimeter Array. Furthermore, we derive accurate stellar parameters from optical spectra and UV to mm photometry. We model the dust continuum with the 3D radiative transfer code MCFOST and use this model as an input to analyse the gas lines with the thermo-chemical code ProDiMo. Our dataset is consistent with a simple model in which the gas and dust are well-mixed in a disc with a continuous structure between 20 and 200 AU, but this is not a unique solution. Our modelling effort allows us to constrain the gas-to-dust mass ratio as well as the relative abundance of the PAHs in the disc by simultaneously fitting the lines of several species that originate in different regions. Our results are inconsistent with a gas-poor disc with a large UV excess; a gas mass of 5.0 ± 2.0 × 10-3 M⊙ is still present in this disc, in agreement with earlier CO observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  7. Probing gas and dust in the tidal tail of NGC 5221 with the type Ia supernova iPTF16abc

    NASA Astrophysics Data System (ADS)

    Ferretti, R.; Amanullah, R.; Goobar, A.; Petrushevska, T.; Borthakur, S.; Bulla, M.; Fox, O.; Freeland, E.; Fremling, C.; Hangard, L.; Hayes, M.

    2017-10-01

    Context. Type Ia supernovae (SNe Ia) can be used to address numerous questions in astrophysics and cosmology. Due to their well known spectral and photometric properties, SNe Ia are well suited to study gas and dust along the lines-of-sight to the explosions. For example, narrow Na I D and Ca II H&K absorption lines can be studied easily, because of the well-defined spectral continuum of SNe Ia around these features. Aims: We aim to study the gas and dust along the line-of-sight to iPTF16abc, which occurred in an unusual location, in a tidal arm, 80 kpc from centre of the galaxy NGC 5221. Methods: Using a time-series of high-resolution spectra, we have examined narrow Na I D and Ca II H&K absorption features for variations in time, which would be indicative for circumstellar (CS) matter. Furthermore, we have taken advantage of the well known photometric properties of SNe Ia to determine reddening due to dust along the line-of-sight. Results: From the lack of variations in Na I D and Ca II H&K, we determine that none of the detected absorption features originate from the CS medium of iPTF16abc. While the Na I D and Ca II H&K absorption is found to be optically thick, a negligible amount of reddening points to a small column of interstellar dust. Conclusions: We find that the gas along the line-of-sight to iPTF16abc is typical of what might be found in the interstellar medium (ISM) within a galaxy. It suggests that we are observing gas that has been tidally stripped during an interaction of NGC 5221 with one of its neighbouring galaxies in the past 109 yr. In the future, the gas clouds could become the locations of star formation. On a longer time scale, the clouds might diffuse, enriching the circum-galactic medium (CGM) with metals. The gas profile along the line-of-sight should be useful for future studies of the dynamics of the galaxy group containing NGC 5221. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO DDT programme 297.D-5005(A), P. I. Ferretti.

  8. Odin space telescope monitoring of water vapor in the stratosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Cavalié, T.; Biver, N.; Hartogh, P.; Dobrijevic, M.; Billebaud, F.; Lellouch, E.; Sandqvist, Aa.; Brillet, J.; Lecacheux, A.; Hjalmarson, Å.; Frisk, U.; Olberg, M.; Odin Team

    2012-02-01

    The Odin space telescope has monitored the H2O (110-101) line in Jupiter's stratosphere over the 2003-2009 period. When comparing these data with previous spectra obtained with SWAS and Odin over the 1999-2002 period, we see no significant variations in the line-to-continuum ratio of the H2O line over the whole period. We have however tentatively identified a decrease by ∼15% of the line-to-continuum ratio between 2002 and 2007-2009, indicating that there was less H2O in the stratosphere of Jupiter in 2007-2009 than anticipated. We have tested the IDP (interplanetary dust particles) and SL9 (Shoemaker-Levy 9) 1D time-dependent models presented in Cavalié et al. [2008, Observation of water vapor in the stratosphere 613 of Jupiter with the Odin space telescope. Planetary and Space Science 56, 1573-1584]. We present a series of scenarios that lead to satisfactory fits of the whole data set (1999-2002 and 2003-2009 periods) based on IDP and SL9 models. The evolution of Jupiter's stratospheric H2O that we have tentatively observed has however to be confirmed by Herschel/HIFI observations. If the decrease of the line-to-continuum ratio is confirmed by future observations, it would be a direct evidence that Jupiter's H2O comes from SL9. In addition, this study shows that new constraints on Jupiter's eddy diffusion coefficient profile could be obtained (in the pressure ranges that are probed) from the monitoring of SL9 species in its stratosphere.

  9. The 60 micron to 20 centimeter infrared-to-radio ratio within spiral galaxies

    NASA Technical Reports Server (NTRS)

    Bicay, M. D.; Helou, G.

    1990-01-01

    A detailed comparison is presented of the distribution of 60 micron IR and 20 cm radio continuum emission within 25 galaxies, mostly disk spirals. Local maxima in the thermal IR and nonthermal radio emission are found to be spatially coincident on scales of less than about 0.4 kpc in the nearest sample galaxies. The IR-red disk in normal spirals appears to be characterized by a shorter scale length than that of the radio continuum disk, suggesting that the IR-to-radio ratio should decrease as a function of radius. A model that successfully accounts for the observations is introduced which is based on the assumptions of steady-state star formation activity within the disk on kpc scales and a tight coupling between the origins of the dust-heating radiation and the radio-emitting cosmic-ray electrons. The underlying source is described as an exponential disk. The results also suggest that a random walk process cannot by itself describe the temporal evolution of cosmic rays.

  10. An Icy Kuiper Belt Around the Young Solar-type Star HD 181327

    NASA Technical Reports Server (NTRS)

    Lebreton, J.; Augereau, J.-C.; Thi, W.-F.; Roberge, A.; Donaldson, J; Schneider, G.; Maddison, S. T.; Menard, F.; Riviere-Marichalar, P.; Matthews, G. S.; hide

    2012-01-01

    Context. HD 181327 is a young main sequence F5/F6 V star belonging to the Beta Pictoris moving group (age approx.. 12 Myr). It harbors an optically thin belt of circumstellar material at radius approx.. 90 AU, presumed to result from collisions in a population of unseen planetesimals. Aims. We aim to study the dust properties in the belt in details, and to constrain the gas-to-dust ratio. Methods. We obtained far-infrared photometric observations of HD 181327 with the PACS instrument onboard the Herschel Space Observatory, complemented by new 3.2 mm observations carried with the ATCA array. The geometry of the belt is constrained with newly reduced HST/NICMOS scattered light images that allow the degeneracy between the disk geometry and the dust properties to be broken. We then use the radiative transfer code GRaTeR to compute a large grid of models, and we identify the grain models that best reproduce the spectral energy distribution (SED) through a Bayesian analysis. We attempt to detect the oxygen and ionized carbon fine-structure lines with Herschel/PACS spectroscopy, providing observables to our photochemical code ProDiMo. Results. The HST observations confirm that the dust is confined in a narrow belt. The continuum is detected with Herschel/PACS completing nicely the SED in the far-infrared. The disk is marginally resolved with both PACS and ATCA. A medium integration of the gas spectral lines only provides upper limits on the [OI] and [CII] line fluxes.We show that the HD 181327 dust disk consists of micron-sized grains of porous amorphous silicates and carbonaceous material surrounded by an important layer of ice, for a total dust mass of approx.. 0.05 Solar Mass (in grains up to 1 mm). We discuss evidences that the grains consists of fluffy aggregates. The upper limits on the gas atomic lines do not provide unambiguous constraints: only if the PAH abundance is high, the gas mass must be lower than approx. 17 Solar Mass. Conclusions. Despite the weak constraints on the gas disk, the age of HD 181327 and the properties of the dust disk suggest that it has passed the stage of gaseous planets formation. The dust reveals a population of icy planetesimals, similar to the primitive Edgeworth-Kuiper belt, that may be a source for the future delivery of water and volatiles onto forming terrestrial planets.

  11. The near-infrared continuum emission of visual reflection nebulae

    NASA Technical Reports Server (NTRS)

    Sellgren, K.

    1984-01-01

    In the past, reflection nebulae have provided an astrophysical laboratory well suited for the study of the reflection properties of interstellar dust grains at visual and ultraviolet wavelengths. The present investigation is concerned with observations which were begun with the objective to extend to near-infrared wavelengths the study of grains in reflection. Observations of three classical visual reflection nebulae were conducted in the wavelength range from 1.25 to 2.2 microns, taking into account NGC 7023, 2023, and 2068. All three nebulae were found to have similar near-infrared colors, despite widely different colors of their illuminating stars. The brightness level shown by two of the nebulae at 2.2 microns was too high to be easily accounted for on the basis of reflected light. Attention is given to a wide variety of possible emission mechanisms.

  12. The spectroscopic orbits and physical parameters of GG Carinae

    NASA Astrophysics Data System (ADS)

    Marchiano, P.; Brandi, E.; Muratore, M. F.; Quiroga, C.; Ferrer, O. E.; García, L. G.

    2012-04-01

    Aims: GG Car is an eclipsing binary classified as a B[e] supergiant star. The aims of our study are to improve the orbital elements of the binary system in order to obtain the actual orbital period of this system. We also compare the spectral energy distribution of the observed fluxes over a wide wavelength range with a model of a circumstellar envelope composed of gas and dust. This fitting allows us to derive the physical parameters of the system and its environment, as well as to obtain an estimation of the distance to GG Car. Methods: We analyzed about 55 optical and near infrared spectrograms taken during 1996-2010. The spectroscopic orbits were obtained by measuring the radial velocities of the blueshifted absorptions of the He I P-Cygni profiles, which are very representative of the orbital motion of both stars. On the other hand, we modeled the spectral energy distribution of GG Car, proposing a simple model of a spherical envelope consisting of a layer close to the central star composed of ionized gas and other outermost layers composed of dust. Its effect on the spectral energy distribution considering a central B-type star is presented. Comparing the model with the observed continuum energy distribution of GG Car, we can derive fundamental parameters of the system, as well as global physical properties of the gas and dust envelope. It is also possible to estimate the distance taking the spectral regions into account where the theoretical data fit the observational data very well and using the set of parameters obtained and the value of the observed flux for different wavelengths. Results: For the first time, we have determined the orbits for both components of the binary through a detailed study of the He I lines, at λλ4471, 5875, 6678, and 7065 Å, thereby obtaining an orbital period of 31.033 days. An eccentric orbit with e = 0.28 and a mass ratio q = 2.2 ± 0.9 were calculated. Comparing the model with the observed continuum energy distribution of GG Car, we obtain Teff = 23 000 K and log g = 3. The central star is surrounded by a spherical envelope consisting of a layer of 3.5 stellar radii composed of ionized gas and other outermost dust layers with EB - V = 0.39. These calculations are not strongly modified if we consider two similar B-type stars instead of a central star, provided our model suggests that the second star might contribute less than 10% of the primary flux. The calculated effective temperature is consistent with an spectral type B0-B2 and a distance to the object of 5 ± 1 kpc was determined. Based on observations taken at Complejo Astronómico EL LEONCITO, operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  13. Behaviour of Comet 21P/Giacobini-Zinner during the 1998 perihelion

    NASA Astrophysics Data System (ADS)

    Lara, L.-M.; Licandro, J.; Oscoz, A.; Motta, V.

    2003-02-01

    Comet 21P/Giacobini-Zinner was observed from Nov. 8 to Dec. 10, 1998. Pre- and post-perihelion CCD images of the gas (CN, C2) and dust (green and red continua) coma were obtained with the 82 cm IAC-80 telescope at Teide Observatory (Canary Islands, Spain). For vp =0.85 rH-0.5 and vd = 1.19 km s-1 (i.e. characteristic of HCN being the CN parent species), the CN column density profiles are best reproduced with parent and daughter lifetimes of the order of 19 300 and 256 000 s. An equally good reproduction of the observed profiles is achieved by considering that a mixture of nitrogen compounds expanding at vp =1 km s-1 and with a lifetime of 19 000 s produces CN with an ejection velocity of vd=2.5 km s-1 and a lifetime of 174 000 s. Fitting the observed CN profiles with variable velocities and lifetimes, the results indicate that the nature of the CN precursor in comet 21P/Giacobini-Zinner is still unclear, ruling out HCN as the only precursor and favouring a mixture of nitrogen compounds. Regarding C2, the derived lifetimes are 35 000 and 62 000 s, if the parent and daughter velocities are fixed at ~ 1 km s-1. Gas production rates derived by means of the Vectorial modeling with the mentioned above lifetimes and velocities indicate that (i) the comet activity decreases with decreasing rH (i.e. peak activity is not reached at the perihelion), and (ii) as already known, the comet is typically depleted in C2 with a log {QC_2/ QCN } ~ -0.4. The azimuthally averaged surface brightness profiles of the continuum images are well fitted with m >=1 in a log B - log rho representation at projected radial distances (rho ) larger than 1000 km. The continuum light scattered from the dust in the coma of comet Giacobini-Zinner is redder than the Sun light on every date from Nov. 8 to 24, regardless the cometocentric distance. On Nov. 25, there is a sudden change in the dust color, being considerably bluer than the Sun, whereas on Dec. 7 and 8, the dust became much redder than it was before. These color variations do not seem to be related to sudden variations (relative minimum or maximum) in the cometary activity. The gas-to-dust mass ratio is ~ 1, but affected by a large uncertainty (about a factor of 2) since the comet was not simultaneously imaged in the OH band, and the H2O production rate has been considered from other measurements taken some weeks before ours.

  14. Direct Lyman continuum and Ly α escape observed at redshift 4

    NASA Astrophysics Data System (ADS)

    Vanzella, E.; Nonino, M.; Cupani, G.; Castellano, M.; Sani, E.; Mignoli, M.; Calura, F.; Meneghetti, M.; Gilli, R.; Comastri, A.; Mercurio, A.; Caminha, G. B.; Caputi, K.; Rosati, P.; Grillo, C.; Cristiani, S.; Balestra, I.; Fontana, A.; Giavalisco, M.

    2018-05-01

    We report on the serendipitous discovery of a z = 4.0, M1500 = -22.20 star-forming galaxy (Ion3) showing copious Lyman continuum (LyC) leakage (˜60 per cent escaping), a remarkable multiple peaked Ly α emission, and significant Ly α radiation directly emerging at the resonance frequency. This is the highest redshift confirmed LyC emitter in which the ionizing and Ly α radiation possibly share a common ionized channel (with NH I < 1017.2 cm-2). Ion3 is spatially resolved, it shows clear stellar winds signatures like the P-Cygni N Vλ1240 profile, and has blue ultraviolet continuum (β = -2.5 ± 0.25, Fλ ˜ λβ) with weak low-ionization interstellar metal lines. Deep VLT/HAWKI Ks and Spitzer/IRAC 3.6 and 4.5μm imaging show a clear photometric signature of the H α line with equivalent width of 1000 Å rest-frame emerging over a flat continuum (Ks - 4.5μm ≃ 0). From the SED fitting, we derive a stellar mass of 1.5 × 109 M⊙, SFR of 140 M⊙ yr-1 and age of ˜10 Myr, with a low dust extinction, E(B - V) ≲ 0.1, placing the source in the starburst region of the SFR-M* plane. Ion3 shows similar properties of another LyC emitter previously discovered (z = 3.21, Ion2, Vanzella et al. 2016). Ion3 (and Ion2) represents ideal high-redshift reference cases to guide the search for reionizing sources at z > 6.5 with JWST.

  15. ALMA RESOLVES 30 DORADUS: SUB-PARSEC MOLECULAR CLOUD STRUCTURE NEAR THE CLOSEST SUPER STAR CLUSTER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indebetouw, Remy; Brogan, Crystal; Leroy, Adam

    2013-09-01

    We present Atacama Large (sub)Millimeter Array observations of 30 Doradus-the highest resolution view of molecular gas in an extragalactic star formation region to date ({approx}0.4 pc Multiplication-Sign 0.6 pc). The 30Dor-10 cloud north of R136 was mapped in {sup 12}CO 2-1, {sup 13}CO 2-1, C{sup 18}O 2-1, 1.3 mm continuum, the H30{alpha} recombination line, and two H{sub 2}CO 3-2 transitions. Most {sup 12}CO emission is associated with small filaments and clumps ({approx}<1 pc, {approx}10{sup 3} M{sub Sun} at the current resolution). Some clumps are associated with protostars, including ''pillars of creation'' photoablated by intense radiation from R136. Emission from molecularmore » clouds is often analyzed by decomposition into approximately beam-sized clumps. Such clumps in 30 Doradus follow similar trends in size, linewidth, and surface density to Milky Way clumps. The 30 Doradus clumps have somewhat larger linewidths for a given size than predicted by Larson's scaling relation, consistent with pressure confinement. They extend to a higher surface density at a given size and linewidth compared to clouds studied at 10 pc resolution. These trends are also true of clumps in Galactic infrared-dark clouds; higher resolution observations of both environments are required. Consistency of clump masses calculated from dust continuum, CO, and the virial theorem reveals that the CO abundance in 30 Doradus clumps is not significantly different from the Large Magellanic Cloud mean, but the dust abundance may be reduced by {approx}2. There are no strong trends in clump properties with distance from R136; dense clumps are not strongly affected by the external radiation field, but there is a modest trend toward lower dense clump filling fraction deeper in the cloud.« less

  16. ALMA Imaging of HCN, CS, and Dust in Arp 220 and NGC 6240

    NASA Astrophysics Data System (ADS)

    Scoville, Nick; Sheth, Kartik; Walter, Fabian; Manohar, Swarnima; Zschaechner, Laura; Yun, Min; Koda, Jin; Sanders, David; Murchikova, Lena; Thompson, Todd; Robertson, Brant; Genzel, Reinhard; Hernquist, Lars; Tacconi, Linda; Brown, Robert; Narayanan, Desika; Hayward, Christopher C.; Barnes, Joshua; Kartaltepe, Jeyhan; Davies, Richard; van der Werf, Paul; Fomalont, Edward

    2015-02-01

    We report ALMA Band 7 (350 GHz) imaging at 0.''4-0.''6 resolution and Band 9 (696 GHz) at ~0.''25 resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate interstellar medium masses for Arp 220 east and west and NGC 6240 of 1.9, 4.2, and 1.6 × 109 M ⊙within radii of 69, 65, and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220 estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are nH_2 ˜ 10^5 cm-3 at R <50 pc. We develop an analytic treatment for the molecular excitation (including photon trapping), yielding volume densities for both the HCN and CS emission with n H2 ~ 2 × 105 cm-3. The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e., it is not cloudy or like swiss cheese.

  17. Cross-calibration of CO- vs dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies

    NASA Astrophysics Data System (ADS)

    Bertemes, Caroline; Wuyts, Stijn; Lutz, Dieter; Förster Schreiber, Natascha M.; Genzel, Reinhard; Minchin, Robert F.; Mundell, Carole G.; Rosario, David; Saintonge, Amélie; Tacconi, Linda

    2018-05-01

    We present a cross-calibration of CO- and dust-based molecular gas masses at z ≤ 0.2. Our results are based on a survey with the IRAM 30-m telescope collecting CO(1-0) measurements of 78 massive (log M⋆/M⊙ > 10) galaxies with known gas-phase metallicities, and with IR photometric coverage from WISE (22 μ ) and Herschel SPIRE (250, 350, 500μ). We find a tight relation (˜0.17 dex scatter) between the gas masses inferred from CO and dust continuum emission, with a minor systematic offset of 0.05 dex. The two methods can be brought into agreement by applying a metallicity-dependent adjustment factor (˜0.13 dex scatter). We illustrate that the observed offset is consistent with a scenario in which dust traces not only molecular gas, but also part of the H I reservoir, residing in the H2 -dominated region of the galaxy. Observations of the CO(2-1) to CO(1-0) line ratio for two thirds of the sample indicate a narrow range in excitation properties, with a median ratio of luminosities ⟨R21⟩ ˜ 0.64. Finally, we find dynamical mass constraints from spectral line profile fitting to agree well with the anticipated mass budget enclosed within an effective radius, once all mass components (stars, gas and dark matter) are accounted for.

  18. The First Reported Infrared Emission from the SN1006 Remnant

    NASA Technical Reports Server (NTRS)

    Winkler, P. Frank; Williams, Brian J.; Blair, William P.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Long, Knox S.; Raymond, John C.; Reynolds, Stephen P.

    2012-01-01

    We report results of infrared imaging and spectroscopic observations of the SN 1006 remnant, carried out with the Spitzer Space Telescope. The 24 m image from MIPS clearly shows faint filamentary emission along the northwest rim of the remnant shell, nearly coincident with the Balmer filaments that delineate the present position of the expanding shock. The 24 m emission traces the Balmer filaments almost perfectly, but lies a few arcsec within, indicating an origin in interstellar dust heated by the shock. Subsequent decline in the IR behind the shock is presumably due largely to grain destruction through sputtering. The emission drops far more rapidly than current models predict, however, even for a higher proportion of small grains than would be found closer to the Galactic plane. The rapid drop may result in part from a grain density that has always been lowera relic effect from an earlier epoch when the shock was encountering a lower densitybut higher grain destruction rates still seem to be required. Spectra from three positions along the NW filament from the IRS instrument all show only a featureless continuum, consistent with thermal emission from warm dust. The dust-to-gas mass ratio in the pre-shock interstellar medium is lower than that expected for the Galactic ISM-as has also been observed in the analysis of IR emission from other SNRs but whose cause remains unclear. As with other SNIa remnants, SN1006 shows no evidence for dust grain formation in the supernova ejecta.

  19. Early Science with the Large Millimeter Telescope: CO and [C II] Emission in the z = 4.3 AzTEC J095942.9+022938 (COSMOS AzTEC-1)

    NASA Astrophysics Data System (ADS)

    Yun, Min S.; Aretxaga, I.; Gurwell, M. A.; Hughes, D. H.; Montaña, A.; Narayanan, G.; Rosa-González, D.; Sánchez-Argüelles, D.; Schloerb, F. P.; Snell, R. L.; Vega, O.; Wilson, G. W.; Zeballos, M.; Chavez, M.; Cybulski, R.; Díaz-Santos, T.; De La Luz, V.; Erickson, N.; Ferrusca, D.; Gim, H. B.; Heyer, M. H.; Iono, D.; Pope, A.; Rogstad, S. M.; Scott, K. S.; Souccar, K.; Terlevich, E.; Terlevich, R.; Wilner, D.; Zavala, J. A.

    2015-12-01

    Measuring redshifted CO line emission is an unambiguous method for obtaining an accurate redshift and total cold gas content of optically faint, dusty starburst systems. Here, we report the first successful spectroscopic redshift determination of AzTEC J095942.9+022938 (`COSMOS AzTEC-1'), the brightest 1.1 mm continuum source found in the AzTEC/James Clerk Maxwell Telescope survey (Scott et al.), through a clear detection of the redshifted CO (4-3) and CO (5-4) lines using the Redshift Search Receiver on the Large Millimeter Telescope. The CO redshift of z = 4.3420 ± 0.0004 is confirmed by the detection of the redshifted 158 μm [C II] line using the Submillimeter Array. The new redshift and Herschel photometry yield LFIR = (1.1 ± 0.1) × 1013 L⊙ and SFR ≈ 1300 M⊙ yr-1. Its molecular gas mass derived using the ultraluminous infrared galaxy conversion factor is 1.4 ± 0.2 × 1011M⊙ while the total interstellar medium mass derived from the 1.1 mm dust continuum is 3.7 ± 0.7 × 1011M⊙ assuming Td = 35 K. Our dynamical mass analysis suggests that the compact gas disc (r ≈ 1.1 kpc, inferred from dust continuum and spectral energy distribution analysis) has to be nearly face-on, providing a natural explanation for the uncommonly bright, compact stellar light seen by the HST. The [C II] line luminosity L_[C II]= 7.8± 1.1 × 10^9 L_{⊙} is remarkably high, but it is only 0.04 per cent of the total IR luminosity. AzTEC COSMOS-1 and other high redshift sources with a spatially resolved size extend the tight trend seen between [C II]/FIR ratio and ΣFIR among IR-bright galaxies reported by Díaz-Santos et al. by more than an order of magnitude, supporting the explanation that the higher intensity of the IR radiation field is responsible for the `[C II] deficiency' seen among luminous starburst galaxies.

  20. ALMA observations of the nearby AGB star L2 Puppis. I. Mass of the central star and detection of a candidate planet

    NASA Astrophysics Data System (ADS)

    Kervella, P.; Homan, W.; Richards, A. M. S.; Decin, L.; McDonald, I.; Montargès, M.; Ohnaka, K.

    2016-12-01

    Six billion years from now, while evolving on the asymptotic giant branch (AGB), the Sun will metamorphose from a red giant into a beautiful planetary nebula. This spectacular evolution will impact the solar system planets, but observational confirmations of the predictions of evolution models are still elusive as no planet orbiting an AGB star has yet been discovered. The nearby AGB red giant L2 Puppis (d = 64 pc) is surrounded by an almost edge-on circumstellar dust disk. We report new observations with ALMA at very high angular resolution (18 × 15 mas) in band 7 (ν ≈ 350 GHz) that allow us to resolve the velocity profile of the molecular disk. We establish that the gas velocity profile is Keplerian within the central cavity of the dust disk, allowing us to derive the mass of the central star L2 Pup A, mA = 0.659 ± 0.011 ± 0.041 M⊙ (± 6.6%). From evolutionary models, we determine that L2 Pup A had a near-solar main-sequence mass, and is therefore a close analog of the future Sun in 5 to 6 Gyr. The continuum map reveals a secondary source (B) at a radius of 2 AU contributing fB/fA = 1.3 ± 0.1% of the flux of the AGB star. L2 Pup B is also detected in CO emission lines at a radial velocity of vB = 12.2 ± 1.0 km s-1. The close coincidence of the center of rotation of the gaseous disk with the position of the continuum emission from the AGB star allows us to constrain the mass of the companion to mB = 12 ± 16 MJup. L2 Pup B is most likely a planet or low-mass brown dwarf with an orbital period of about five years. Its continuum brightness and molecular emission suggest that it may be surrounded by an extended molecular atmosphere or an accretion disk. L2 Pup therefore emerges as a promising vantage point on the distant future of our solar system.

  1. AUTOMATED UNSUPERVISED CLASSIFICATION OF THE SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA USING k-MEANS CLUSTERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez Almeida, J.; Allende Prieto, C., E-mail: jos@iac.es, E-mail: callende@iac.es

    2013-01-20

    Large spectroscopic surveys require automated methods of analysis. This paper explores the use of k-means clustering as a tool for automated unsupervised classification of massive stellar spectral catalogs. The classification criteria are defined by the data and the algorithm, with no prior physical framework. We work with a representative set of stellar spectra associated with the Sloan Digital Sky Survey (SDSS) SEGUE and SEGUE-2 programs, which consists of 173,390 spectra from 3800 to 9200 A sampled on 3849 wavelengths. We classify the original spectra as well as the spectra with the continuum removed. The second set only contains spectral lines,more » and it is less dependent on uncertainties of the flux calibration. The classification of the spectra with continuum renders 16 major classes. Roughly speaking, stars are split according to their colors, with enough finesse to distinguish dwarfs from giants of the same effective temperature, but with difficulties to separate stars with different metallicities. There are classes corresponding to particular MK types, intrinsically blue stars, dust-reddened, stellar systems, and also classes collecting faulty spectra. Overall, there is no one-to-one correspondence between the classes we derive and the MK types. The classification of spectra without continuum renders 13 classes, the color separation is not so sharp, but it distinguishes stars of the same effective temperature and different metallicities. Some classes thus obtained present a fairly small range of physical parameters (200 K in effective temperature, 0.25 dex in surface gravity, and 0.35 dex in metallicity), so that the classification can be used to estimate the main physical parameters of some stars at a minimum computational cost. We also analyze the outliers of the classification. Most of them turn out to be failures of the reduction pipeline, but there are also high redshift QSOs, multiple stellar systems, dust-reddened stars, galaxies, and, finally, odd spectra whose nature we have not deciphered. The template spectra representative of the classes are publicly available in the online journal.« less

  2. Radio and infrared study of southern H II regions G346.056-0.021 and G346.077-0.056

    NASA Astrophysics Data System (ADS)

    Das, S. R.; Tej, A.; Vig, S.; Liu, T.; Ghosh, S. K.; Chandra, C. H. I.

    2018-04-01

    Aim. We present a multiwavelength study of two southern Galactic H II regions G346.056-0.021 and G346.077-0.056 which are located at a distance of 10.9 kpc. The distribution of ionized gas, cold and warm dust, and the stellar population associated with the two H II regions are studied in detail using measurements at near-infrared, mid-infrared, far-infrared, submillimeter and radio wavelengths. Methods: The radio continuum maps at 1280 and 610 MHz were obtained using the Giant Metrewave Radio Telescope to probe the ionized gas. The dust temperature, column density, and dust emissivity maps were generated using modified blackbody fits in the far-infrared wavelength range 160-500 μm. Various near- and mid-infrared color and magnitude criteria were adopted to identify candidate ionizing star(s) and the population of young stellar objects in the associated field. Results: The radio maps reveal the presence of diffuse ionized emission displaying distinct cometary morphologies. The 1280 MHz flux densities translate to zero age main sequence spectral types in the range O7.5V-O7V and O8.5V-O8V for the ionizing stars of G346.056-0.021 and G346.077-0.056, respectively. A few promising candidate ionizing star(s) are identified using near-infrared photometric data. The column density map shows the presence of a large, dense dust clump enveloping G346.077-0.056. The dust temperature map shows peaks towards the two H II regions. The submillimeter image shows the presence of two additional clumps, one being associated with G346.056-0.021. The masses of the clumps are estimated to range between 1400 and 15250 M⊙. Based on simple analytic calculations and the correlation seen between the ionized gas distribution and the local density structure, the observed cometary morphology in the radio maps is better explained invoking the champagne-flow model. GMRT data (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A36

  3. The Evolution of Interstellar Medium Mass Probed by Dust Emission: ALMA Observations at z = 0.3-2

    NASA Astrophysics Data System (ADS)

    Scoville, N.; Aussel, H.; Sheth, K.; Scott, K. S.; Sanders, D.; Ivison, R.; Pope, A.; Capak, P.; Vanden Bout, P.; Manohar, S.; Kartaltepe, J.; Robertson, B.; Lilly, S.

    2014-03-01

    The use of submillimeter dust continuum emission to probe the mass of interstellar dust and gas in galaxies is empirically calibrated using samples of local star-forming galaxies, Planck observations of the Milky Way, and high-redshift submillimeter galaxies. All of these objects suggest a similar calibration, strongly supporting the view that the Rayleigh-Jeans tail of the dust emission can be used as an accurate and very fast probe of the interstellar medium (ISM) in galaxies. We present ALMA Cycle 0 observations of the Band 7 (350 GHz) dust emission in 107 galaxies from z = 0.2 to 2.5. Three samples of galaxies with a total of 101 galaxies were stellar-mass-selected from COSMOS to have M * ~= 1011 M ⊙: 37 at z ~ 0.4, 33 at z ~ 0.9, and 31 at z = 2. A fourth sample with six infrared-luminous galaxies at z = 2 was observed for comparison with the purely mass-selected samples. From the fluxes detected in the stacked images for each sample, we find that the ISM content has decreased by a factor ~6 from 1 to 2 × 1010 M ⊙ at both z = 2 and 0.9 down to ~2 × 109 M ⊙ at z = 0.4. The infrared-luminous sample at z = 2 shows a further ~4 times increase in M ISM compared with the equivalent non-infrared-bright sample at the same redshift. The gas mass fractions are ~2% ± 0.5%, 12% ± 3%, 14% ± 2%, and 53% ± 3% for the four subsamples (z = 0.4, 0.9, and 2 and infrared-bright galaxies).

  4. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral/carbonaceous matrix, without organic refractory mantles, in between the ices. Unfortunately, they may be significantly processed by chemical processes accompanying the warming (over the 10 K of the dark cloud cores) which occurs in the outer solar system. Evidence of this processing is the chemical anomalies present in interplanetary dust particles collected in the stratosphere, which may be the most primitive materials we have obtained to date. The comet return mission would greatly clarify the situation, and probably provide samples of genuine interstellar grains.

  5. Digging deep into the ULIRG phenomenon: When radio beats dust

    NASA Astrophysics Data System (ADS)

    Pérez-Torres, M. A.

    2013-05-01

    Luminous and Ultra-Luminous Infrared Galaxies (U/LIRGs) do also radiate copious amounts of radio emission, both thermal (free-free) and non-thermal (mainly synchrotron). This is very handy since, unlike optical and infra-red observations, radio is not obscured by the ubiquitous dust present in U/LIRGs, which allows a direct view of the ongoing activity in the hearts of those prolific star-forming galaxies. Here, I first justify the need for this high-angular resolution radio studies of local U/LIRGs, discuss the energy budget and the magnetic field, as well as IC and synchrotron losses in U/LIRGs, and present some selected results obtained by our team on high-angular resolution radio continuum studies of U/LIRGs. Among other results, I show the impressive discovery of an extremely prolific supernova factory in the central ˜150 pc of the galaxy Arp 299-A (D = 45 Mpc) and the monitoring of a large number of very compact radio sources in it, the detection and precise location of the long-sought AGN in Arp 299-A. A movie summarizing those results can be found in http://www.iaa.es/ torres/research/arp299a.html. All those results demonstrate that very-high angular resolution studies of nearby U/LIRGs are of high relevance for the comprehension of both local and high-z starbursting galaxies.

  6. El medio interestelar en los alrededores de la region HII Sh2-183

    NASA Astrophysics Data System (ADS)

    Cichowolski, S.; Cappa, C. E.; Blanco, A.; Eppens, L.; Ertini, K.; Leiva, M. M.

    2017-10-01

    We present a multiwavelength study of the HII region Sh2-183, located at (,) = (123.3,+3.0) at a distance of 7.0 1.5 kpc from the Sun. Based on the radio continuum data we estimated the amount of ionized gas, the electronic density, and the number of ionizing photons needed to keep the region ionized, which is important since the star/s responsible of the region was/were not detected yet. On the other hand, based on IRAS data we have analyzed the dust temperature and distribution. The Hi line data allowed the detection of a shell-like structure surrounding the ionized gas and the CO data revealed the presence of 6 molecular clouds probably related to Sh2-183, which harbor several young stellar object candidates.

  7. Triggered star-formation in the bright rimmed globule IC1396A

    NASA Astrophysics Data System (ADS)

    Patel, Nimesh A.; Sicilia-Aguilar, Aurora; Goldsmith, Paul

    2015-01-01

    IC1396 is a well known HII region and molecular cloud complex surrounding the Trumpler 37 cluster of OB stars in the Cepheus OB2 association. The dense, elephant trunk shaped globules in this region typically show bright rims facing the central exciting O6 star HD~206267. This region, at a distance of 870 pc, is an excellent astrophysical laboratory for studying the feedback effects of massive stars on neighboring molecular clouds. Triggered star formation occurs when dense cores (which would otherwise remain stable) are compressed and made unstable by the sustained energy input from the OB association. Observationally it remains challenging to prove whether the onset of star-formation in such globules is triggered or spontaneous.Using the Submillimeter Array (SMA), we observed IC1396 globule A (Pottasch 1958 nomenclature), targeting four newly discovered protostars from recent Herschel PACS observations. Here we present 230 GHz molecular line (CO, 13CO, C18O, N2D+ and H2CO) and continuum results for the source IC1396A-PACS-1 (Sicilia-Aguilar et al. 2014). This is a Class 0 source very close to the edge of the ionization front and Herschel observations show this to be a most promisingcase of triggered star-formation. The SMA 230 GHz continuum source has a flux density of 280 mJy. We estimate a dust mass of about 0.1 Msun in this source which appears very compact in our 5" beam. CO, 13CO and C18O emission is largely resolved out by the interferometer and will require combined imaging with single-dish observations. (We have a parallel ongoing study being carried out with the IRAM 30m telescope). SMA N2D+ emission peaks on the continuum sourceand is partially resolved. H2CO emission appears to avoid the peak of continuum and N2D+, suggesting depletion. Both the morphology and kinematics in H2CO emission are indicative of internal disturbance, away from the PDR region into the globule.

  8. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukagoshi, Takashi; Momose, Munetake; Hashimoto, Jun

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of themore » spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.« less

  9. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    NASA Astrophysics Data System (ADS)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  10. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  11. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  12. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, A. J.; Greene, J. E.; Ho, L. C.

    2009-05-01

    The Sloan Digital Sky Survey has made it possible to identify the first samples of active galaxies with estimated black hole masses below 106 solar masses. We have obtained Spitzer IRS low-resolution spectra, covering 5-30 microns, of a sample of 41 Seyfert galaxies with low-mass black holes. Our sample includes SDSS-selected objects from the low-mass Seyfert 1 sample of Greene & Ho (2004) and the low-mass Seyfert 2 sample of Barth et al. (2008), as well as NGC 4395 and POX 52. The goals of this work are to examine the dust emission properties of these objects and investigate the relationship between Type 1 and Type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions. We will present preliminary results from this project, including measurements of continuum shapes and dust temperatures, narrow-line region diagnostics, and PAH features, derived using the IDL code PAHFIT (Smith et al. 2007).

  13. Three-dimensional couette flow of dusty fluid with heat transfer in the presence of magnetic field

    NASA Astrophysics Data System (ADS)

    Gayathri, R.; Govindarajan, A.; Sasikala, R.

    2018-04-01

    This paper is focused on the mathematical modelling of three-dimensional couette flow and heat transfer of a dusty fluid between two infinite horizontal parallel porous flat plates in the presence of an induced magnetic field. The problem is formulated using a continuum two-phase model and the resulting equations are solved analytically. The lower plate is stationary while the upper plate is undergoing uniform motion in its plane. These plates are, respectively subjected to transverse exponential injection and its corresponding removal by constant suction. Due to this type of injection velocity, the flow becomes three dimensional. The closed-form expressions for velocity and temperature fields of both the fluid and dust phase are obtained by solving the governing partial differentiation equations using the perturbation method. A selective set of graphical results is presented and discussed to show interesting features of the problem. It is found that the velocity profiles of both fluid and dust particles decrease due to the increase of (magnetic parameter) Hartmann number.

  14. Earliest phases of star formation (EPoS). Dust temperature distributions in isolated starless cores

    NASA Astrophysics Data System (ADS)

    Lippok, N.; Launhardt, R.; Henning, Th.; Balog, Z.; Beuther, H.; Kainulainen, J.; Krause, O.; Linz, H.; Nielbock, M.; Ragan, S. E.; Robitaille, T. P.; Sadavoy, S. I.; Schmiedeke, A.

    2016-07-01

    Context. Stars form by the gravitational collapse of cold and dense molecular cloud cores. Constraining the temperature and density structure of such cores is fundamental for understanding the initial conditions of star formation. We use Herschel observations of the thermal far-infrared (FIR) dust emission from nearby and isolated molecular cloud cores and combine them with ground-based submillimeter continuum data to derive observational constraints on their temperature and density structure. Aims: The aim of this study is to verify the validity of a ray-tracing inversion technique developed to derive the dust temperature and density structure of nearby and isolated starless cores directly from the dust emission maps and to test if the resulting temperature and density profiles are consistent with physical models. Methods: We have developed a ray-tracing inversion technique that can be used to derive the temperature and density structure of starless cores directly from the observed dust emission maps without the need to make assumptions about the physical conditions. Using this ray-tracing inversion technique, we derive the dust temperature and density structure of six isolated starless molecular cloud cores from dust emission maps in the wavelengths range 100 μm-1.2 mm. We then employ self-consistent radiative transfer modeling to the density profiles derived with the ray-tracing inversion method. In this model, the interstellar radiation field (ISRF) is the only heating source. The local strength of the ISRF as well as the total extinction provided by the outer envelope are treated as semi-free parameters which we scale within defined limits. The best-fit values of both parameters are derived by comparing the self-consistently calculated temperature profiles with those derived by the ray-tracing method. Results: We confirm earlier results and show that all starless cores are significantly colder inside than outside, with central core temperatures in the range 7.5-11.9 K and envelope temperatures that are 2.4 - 9.6 K higher. The core temperatures show a strong negative correlation with peak column density which suggests that the thermal structure of the cores is dominated by external heating from the ISRF and shielding by dusty envelopes. We find that temperature profiles derived with the ray-tracing inversion method can be well-reproduced with self-consistent radiative transfer models if the cores have geometry that is not too complex and good data coverage with spatially resolved maps at five or more wavelengths in range between 100 μm and 1.2 mm. We also confirm results from earlier studies that found that the usually adopted canonical value of the total strength of the ISRF in the solar neighbourhood is incompatible with the most widely used dust opacity models for dense cores. However, with the data available for this study, we cannot uniquely resolve the degeneracy between dust opacity law and strength of the ISRF. Final T maps (FITS format) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/A+A/592/A61

  15. Kiloparsec-scale Dust Disks in High-redshift Luminous Submillimeter Galaxies

    NASA Astrophysics Data System (ADS)

    Hodge, J. A.; Swinbank, A. M.; Simpson, J. M.; Smail, I.; Walter, F.; Alexander, D. M.; Bertoldi, F.; Biggs, A. D.; Brandt, W. N.; Chapman, S. C.; Chen, C. C.; Coppin, K. E. K.; Cox, P.; Dannerbauer, H.; Edge, A. C.; Greve, T. R.; Ivison, R. J.; Karim, A.; Knudsen, K. K.; Menten, K. M.; Rix, H.-W.; Schinnerer, E.; Wardlow, J. L.; Weiss, A.; van der Werf, P.

    2016-12-01

    We present high-resolution (0.″16) 870 μm Atacama Large Millimeter/submillimeter Array (ALMA) imaging of 16 luminous ({L}{IR}˜ 4× {10}12 {L}⊙ ) submillimeter galaxies (SMGs) from the ALESS survey of the Extended Chandra Deep Field South. This dust imaging traces the dust-obscured star formation in these z˜ 2.5 galaxies on ˜1.3 kpc scales. The emission has a median effective radius of R e = 0.″24 ± 0.″02, corresponding to a typical physical size of {R}e= 1.8 ± 0.2 kpc. We derive a median Sérsic index of n = 0.9 ± 0.2, implying that the dust emission is remarkably disk-like at the current resolution and sensitivity. We use different weighting schemes with the visibilities to search for clumps on 0.″12 (˜1.0 kpc) scales, but we find no significant evidence for clumping in the majority of cases. Indeed, we demonstrate using simulations that the observed morphologies are generally consistent with smooth exponential disks, suggesting that caution should be exercised when identifying candidate clumps in even moderate signal-to-noise ratio interferometric data. We compare our maps to comparable-resolution Hubble Space Telescope {H}160-band images, finding that the stellar morphologies appear significantly more extended and disturbed, and suggesting that major mergers may be responsible for driving the formation of the compact dust disks we observe. The stark contrast between the obscured and unobscured morphologies may also have implications for SED fitting routines that assume the dust is co-located with the optical/near-IR continuum emission. Finally, we discuss the potential of the current bursts of star formation to transform the observed galaxy sizes and light profiles, showing that the z˜ 0 descendants of these SMGs are expected to have stellar masses, effective radii, and gas surface densities consistent with the most compact massive ({M}* ˜ 1-2 × 1011 {M}⊙ ) early-type galaxies observed locally.

  16. Simultaneous UV and X-ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Evidence for Dust in the UV Absorbers

    NASA Astrophysics Data System (ADS)

    Kraemer, S. B.; Crenshaw, D. M.; Gabel, J. R.; Kaastra, J. S.; Steenbrugge, K.; George, I. M.; Turner, T. J.; Yaqoob, T.; Dunn, J. P.

    2002-12-01

    We present new UV spectra of the nucleus of the Seyfert 1 galaxy NGC 5548, obtained with the Space Telescope Imaging Spectrograph at high spectral resolution (λ /Δ λ = 30,000 - 46,000), simultaneously with Chandra X-ray Observatory spectra. Taking advantage of the low UV continuum and broad emission-line fluxes, we have determined that the deepest UV absorption component covers at least a portion of the inner high-ionization narrow-line region (NLR). Assuming the NLR is fully covered, we find nonunity covering factors in the cores of several components, which increase the column density measurements of N V and C IV by factors of 1.2 to 1.9; however, the revised columns have only a minor effect on the parameters derived from our photoionization models. For the first time, we have simultaneous C IV and N V columns for component 1 (at -1040 km s-1), and find that this component cannot be an X-ray warm absorber, contrary to our previous claim (based on nonsimultaneous observations of N V and C IV). We find that dust-free models of the absorbers severely overpredict the O VI columns previously obtained with the Far Ultraviolet Spectrograph, and present arguments that this is not likely due to variability. However, models that include dust (and thereby heavily deplete carbon) are successful in matching all of the observed ionic columns, and result in substantially lower ionization parameters and total column densities compared to dust-free models. Interestingly, these models yield the exact amount of dust needed to produce the observed reddening of the inner NLR, assuming a Galactic dust to gas ratio. The models produce little O VII and O VIII, indicating that none of the dusty UV absorbers is associated with a classic X-ray warm absorber.

  17. Gaps, rings, and non-axisymmetric structures in protoplanetary disks: Emission from large grains

    NASA Astrophysics Data System (ADS)

    Ruge, J. P.; Flock, M.; Wolf, S.; Dzyurkevich, N.; Fromang, S.; Henning, Th.; Klahr, H.; Meheut, H.

    2016-05-01

    Aims: Dust grains with sizes around (sub)mm are expected to couple only weakly to the gas motion in regions beyond 10 au of circumstellar disks. In this work, we investigate the influence of the spatial distribution of these grains on the (sub)mm appearance of magnetized protoplanetary disks. Methods: We perform non-ideal global 3D magneto-hydrodynamic (MHD) stratified disk simulations, including particles of different sizes (50 μm to 1 cm), using a Lagrangian particle solver. Subsequently, we calculate the spatial dust temperature distribution, including the dynamically coupled submicron-sized dust grains, and derive ideal continuum re-emission maps of the disk through radiative transfer simulations. Finally, we investigate the feasibility of observing specific structures in the thermal re-emission maps with the Atacama Large Millimeter/submillimeter Array (ALMA). Results: Depending on the level of turbulence, the radial pressure gradient of the gas, and the grain size, particles settle to the midplane and/or drift radially inward. The pressure bump close to the outer edge of the dead-zone leads to particle-trapping in ring structures. More specifically, vortices in the disk concentrate the dust and create an inhomogeneous distribution of solid material in the azimuthal direction. The large-scale disk perturbations are preserved in the (sub)mm re-emission maps. The observable structures are very similar to those expected from planet-disk interaction. Additionally, the larger dust particles increase the brightness contrast between the gap and ring structures. We find that rings, gaps, and the dust accumulation in the vortex could be traced with ALMA down to a scale of a few astronomical units in circumstellar disks located in nearby star-forming regions. Finally, we present a brief comparison of these structures with those recently found with ALMA in the young circumstellar disks of HL Tau and Oph IRS 48.

  18. The multiple infrared source GL 437

    NASA Technical Reports Server (NTRS)

    Wynn-Williams, C. G.; Becklin, E. E.; Beichman, C. A.; Capps, R.; Shakeshaft, J. R.

    1981-01-01

    Infrared and radio continuum observations of the multiple infrared source GL 437 show that it consists of a compact H II region plus two objects which are probably early B stars undergoing rapid mass loss. The group of sources appears to be a multiple system of young stars that have recently emerged from the near side of a molecular cloud. Emission in the unidentified 3.3 micron feature is associated with, but more extended than, the emission from the compact H II region; it probably arises from hot dust grains at the interface between the H II region and the molecular cloud.

  19. STAR FORMATION RELATIONS IN THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vutisalchavakul, Nalin; Evans II, Neal J.; Heyer, Mark, E-mail: nje@astro.as.utexas.edu

    2016-11-01

    The relations between star formation and properties of molecular clouds (MCs) are studied based on a sample of star-forming regions in the Galactic Plane. Sources were selected by having radio recombination lines to provide identification of associated MCs and dense clumps. Radio continuum emission and mid-infrared emission were used to determine star formation rates (SFRs), while {sup 13}CO and submillimeter dust continuum emission were used to obtain the masses of molecular and dense gas, respectively. We test whether total molecular gas or dense gas provides the best predictor of SFR. We also test two specific theoretical models, one relying onmore » the molecular mass divided by the free-fall time, the other using the free-fall time divided by the crossing time. Neither is supported by the data. The data are also compared to those from nearby star-forming regions and extragalactic data. The star formation “efficiency,” defined as SFR divided by mass, spreads over a large range when the mass refers to molecular gas; the standard deviation of the log of the efficiency decreases by a factor of three when the mass of relatively dense molecular gas is used rather than the mass of all of the molecular gas.« less

  20. Featured Image: A New Look at Fomalhaut

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-06-01

    ALMA continuum image overlaid as contours on the Hubble STIS image of Fomalhaut. [MacGregor et al. 2017]This stunning image of the Fomalhaut star system was taken by the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. This image maps the 1.3-mm continuum emission from the dust around the central star, revealing a ring that marks the outer edge of the planet-forming debris disk surrounding the star. In a new study, a team of scientists led by Meredith MacGregor (Harvard-Smithsonian Center for Astrophysics) examines these ALMA observations of Fomalhaut, which beautifully complement former Hubble images of the system. ALMAs images provide the first robust detection of apocenter glow the brightening of the ring at the point farthest away from the central star, a side effect of the rings large eccentricity. The authors use ALMAsobservations to measure properties of the disk, such as its span (roughly 136 x 14 AU), eccentricity (e 0.12), and inclination angle ( 66). They then explore the implications for Fomalhaut b, the planet located near the outer disk. To read more about the teams observations, check out the paper below.CitationMeredith A. MacGregor et al 2017 ApJ 842 8. doi:10.3847/1538-4357/aa71ae

  1. A likely planet-induced gap in the disc around T Cha

    NASA Astrophysics Data System (ADS)

    Hendler, Nathanial P.; Pinilla, Paola; Pascucci, Ilaria; Pohl, Adriana; Mulders, Gijs; Henning, Thomas; Dong, Ruobing; Clarke, Cathie; Owen, James; Hollenbach, David

    2018-03-01

    We present high-resolution (0.11 × 0.06 arcsec2) 3 mm ALMA observations of the highly inclined transition disc around the star T Cha. Our continuum image reveals multiple dust structures: an inner disc, a spatially resolved dust gap, and an outer ring. When fitting sky-brightness models to the real component of the 3 mm visibilities, we infer that the inner emission is compact (≤1 au in radius), the gap width is between 18 and 28 au, and the emission from the outer ring peaks at ˜36 au. We compare our ALMA image with previously published 1.6 μm VLT/SPHERE imagery. This comparison reveals that the location of the outer ring is wavelength dependent. More specifically, the peak emission of the 3 mm ring is at a larger radial distance than that of the 1.6 μm ring, suggesting that millimeter-sized grains in the outer disc are located farther away from the central star than micron-sized grains. We discuss different scenarios to explain our findings, including dead zones, star-driven photoevaporation, and planet-disc interactions. We find that the most likely origin of the dust gap is from an embedded planet, and estimate - for a single planet scenario - that T Cha's gap is carved by a 1.2MJup planet.

  2. The hidden quasar nucleus of a WISE-selected, hyperluminous, dust-obscured galaxy at z ~ 2.3

    NASA Astrophysics Data System (ADS)

    Piconcelli, E.; Vignali, C.; Bianchi, S.; Zappacosta, L.; Fritz, J.; Lanzuisi, G.; Miniutti, G.; Bongiorno, A.; Feruglio, C.; Fiore, F.; Maiolino, R.

    2015-02-01

    We present the first X-ray spectrum of a hot dust-obscured galaxy (DOG), namely W1835+4355 at z ~ 2.3. Hot DOGs represent a very rare population of hyperluminous (≥1047 erg s-1), dust-enshrouded objects at z ≥ 2 recently discovered in the WISE All Sky Survey. The 40 ks XMM-Newton spectrum reveals a continuum as flat (Γ ~ 0.8) as typically seen in heavily obscured AGN. This, along with the presence of strong Fe Kα emission, clearly suggests a reflection-dominated spectrum due to Compton-thick absorption. In this scenario, the observed luminosity of L2-10~ 2 × 1044 erg s-1 is a fraction (<10%) of the intrinsic one, which is estimated to be ≳ 5 × 1045 erg s-1 by using several proxies. The Herschel data allow us to constrain the SED up to the sub-mm band, providing a reliable estimate of the quasar contribution (~75%) to the IR luminosity as well as the amount of star formation (~2100 M⊙ yr-1). Our results thus provide additional pieces of evidence that associate Hot DOGs with an exceptionally dusty phase during which luminous quasars and massive galaxies co-evolve and a very efficient and powerful AGN-driven feedback mechanism is predicted by models.

  3. Herschel-PACS observation of gas lines from the disc around HD141569A

    NASA Astrophysics Data System (ADS)

    Thi, Wing-Fai; Pinte, Christophe; Pantin, Eric; Augereau, Jean-Charles; Meeus, Gwendolyn; Ménard, Francois; Martin-Zaidi, Claire; Woitke, Peter; Riviere-Marichalar, Pablo; Kamp, Inga; Carmona, Andres; Sandell, Goran; Eiroa, Carlos; Dent, William; Montesinos, Benjamin; Aresu, Giambattista; Meijerink, Rowin; Spaans, Marco; White, Glenn; Ardila, David; Lebreton, Jeremy; Mendigutia, Ignacio; Brittain, Sean

    2013-07-01

    At the distance of ˜ 99-116 pc, HD141569A is one of the nearest HerbigAe stars that is surrounded by a tenuous disc, probably in transition between a massive primordial disc and a debris disc. We observed the fine-structure lines of O I at 63 and 145 μm , and the C II line at 157 μm with the PACS instrument on board the Herschel Space Telescope as part of the open-time large programme GASPS. We complemented the atomic line observations with Spitzer spectroscopic and photometric continuum data, ground-based VLT-VISIR image at 8.6 microns, and 12CO J=3-2 observations. We simultaneously modelled the continuum emission and the line fluxes with the Monte-Carlo radiative transfer code MCFOST and the thermo-chemical code ProDiMo to derive the disc gas and dust properties. We modelled the [O I] lines at 63 μm and at 145 μm, and the [C II] line at 157 μm. The models show that the oxygen lines are emitted from the inner disc around HD141569A, whereas the [C II] line emission is more extended. The CO submillimeter flux is emitted from the outer disc. Simultaneous modelling of the photometric and line data using a realistic disc structure suggests a dust mass derived from grains having a radius less than 1 mm of ˜ 2.1 × 10-7M⊙ and a total solid mass of 4.9 × 10-6 M⊙ . We constrained the PAH mass to be between 2 × 10-11 and 1.4 × 10-10 M⊙ depending on the size of the PAH. The associated PAH abundance is lower than those found in the interstellar medium by two to three orders of magnitude. The gas mass is a few 10-4M⊙. We constrained simultaneously the silicate dust grain, PAH, and gas mass in an evolved Herbig Ae disc. The uncertainty on the gas mass is large (around a factor 5) because the different gas tracers give estimates that do not agree with each other.

  4. High Resolution Radio Observations Of Energetically Dominant Regions In Local Luminous Infrared Galaxies

    NASA Astrophysics Data System (ADS)

    Barcos-Munoz, Loreto

    2016-07-01

    Luminous and Ultra-luminous Infrared galaxies (U/LIRGs) are one of the most powerful classes of extragalactic objects in the local universe, and they provide a unique opportunity to study star formation and feedback processes in extreme environments. They are primarily observed to be interacting or merging disk galaxies. During the interaction, large amounts of gas are funneled to the central few kpc, triggering high star formation rates (SFR) and dust production. The absorption of UV and optical radiation from stars, or active galactic nuclei (AGN), by dust produces their observed high infrared luminosities.The high level of dust obscuration intrinsic to U/LIRGs makes them difficult to study. Radio interferometry is thus the perfect tool for revealing the nature of these systems - it provides the high spatial resolution needed to resolve energetically dominant regions in U/LIRGs at wavelengths that have both diagnostic power and transparency to dust. In this thesis, 6 and 33 GHz radio continuum interferometric observations with the upgraded Karl G. Jansky Very Large Array (VLA) are used to study a sample of 22 local U/LIRGs.First, a detailed analysis of the 6 and 33 GHz radio continuum emission from the closest ULIRG, Arp 220, is presented. This late stage merger is highly obscured, being optically thick even at mid-infrared wavelengths. Further, due to its extreme environment, it is often used as a template for high redshift starbursts. Arp 220 hosts two distinct nuclei that are separated by (\\sim) 370 pc. The nuclei are well resolved with the 33 GHz observations (i.e., with a spatial resolution of ˜ 30 pc). The deconvolved radii enclosing half of the total 33 GHz light are approximately 50 and 35 pc for the eastern and western nucleus, respectively. Literature values of the gas mass and infrared luminosity are combined with the 33 GHz sizes under the assumption of co-spatiality to show that Arp 220 has one of the highest molecular gas surface densities ((\\Sigma_mol \\sim 10^{5.3}) (east) and (10^{5.7}) (west) (\\mathrm{M_\\odot pc^{-2}})) and SFR surface densities ((\\mathrm{\\Sigma_{SFR} \\sim 10^{4.0} (east) and 10^{4.0} (west) M_{\\odot} yr^{-1} kpc^{-2}})) measured for any star-forming system. Despite these high values, the nuclei of Arp 220 are not maximal starbursts (i.e., under the assumption that the main feedback mechanism is radiation pressure on dust). The small derived sizes for the nuclei indicate Arp 220 is only optically thin in a narrow frequency range, (\\sim) 5 to 350 GHz.The analysis of a larger sample of 22 U/LIRGs at 33 GHz with the VLA is also presented. It is found that, for most of these galaxies, the integrated radio flux densities correlate well with those at infrared wavelengths, indicating these systems follow the radio-IR correlation and that the emission at 33 GHz is primarily produced by star formation activity. The radio emission from most of these galaxies are resolved, with deconvolved half-light radii ranging from 20 pc to 1.7 kpc. Similar assumptions for Arp 220 above are used here to estimate SFR surface densities of (\\Sigma_SFR) from (10^{0.5}) to (10^{4.5}) (\\mathrm{M_{\\odot} yr^{-1} kpc^{-2}}) and molecular gas surface densities (\\Sigma_mol) of (\\mathrm{10^{2.5} to 10^{5.7} M_{\\odot} pc^{-2}}). These values are among the highest values measured for any galaxies. The star formation-gas scaling relation is used to compare the U/LIRGs with regions within normal spiral galaxies. The presence of two ``modes" of star formation is inferred in the comparison, although this result is extremely dependent on the CO-to-({H_{2}}) conversion factor. The local U/LIRGs studied in this survey show high infrared surface brightnesses, however 19 of the 22 sources are not maximal starbursts. Finally, those targets showing the flattest 1.5-6 GHz spectral indices and the highest surface brightnesses exhibit the strongest [Cii] deficits, which supports the idea that deficit is associated with the most highly obscured, high energy density star-forming regions.In order to determine the true limit for star formation in galaxies (e.g., through Eddington limit analysis), better measures of the gas content, opacity and velocity dispersion of U/LIRGs are needed. The last study presented in this thesis is an analysis of the first high spatial resolution ALMA observations of the mm continuum and dense molecular gas tracers in Arp 220. A spatial resolution of 30 pc is achieved using the most extended configuration available in Cycle 3. An optically thin model of the spectral flux density distribution is found to predict the continuum emission at 92 GHz, within the uncertainties of the measurement and accounting for extended emission that is potentially filtered out. At 92 GHz, the western nucleus is dominated by dust emission, while the eastern nucleus by free-free emission. High critical gas density tracers HCN, HCO(^{+}), their isotopologues, and the shock tracer SiO are detected. P-Cygni profiles are observed in the central beam of both nuclei, with a cleaner profile shape in the eastern nucleus. The western nucleus shows strong absorption in the center, which makes determination of the profile line shapes more complicated. These P-Cygni features indicate the presence of outflowing gas. The derived mass loading factors are 18 (east) and 35 (west), which may be an indication that active galactic nuclei help to boost the outflow mass rates. However, these numbers are strongly dependent on the highly uncertain HCN-to-gas mass conversion factor and should only be considered as upper limits. In addition to signatures of outflowing gas, clear evidence of gas rotation in both nuclei are observed.

  5. Monitoring Atmospheric Dust Opacity at High Latitudes on Mars by Imaging Spectroscopy

    NASA Astrophysics Data System (ADS)

    Doute, S.; Vincendon, M.; Langevin, Y.; Spiga, A.; Bibring, J.; OMEGA Team

    2010-12-01

    Micrometer sized mineral particles drifting over Mars surface greatly influence both solar and thermal radiative fluxes in the atmosphere, thus its energy balance and its global circulation. Furthermore any kind of remotely sensed data in the optical domain includes their strong, spatially varying, often annoying contributions. Monitoring the particles as well as identifying the sources and the sinks in relation with surface activity is of paramount importance. Since 2004 and 2006 respectively, the imaging spectrometers OMEGA@MEX and CRISM@MRO perform nadir-looking and EPF observations in the VIS and the NIR for the study of the surface and atmosphere alike. We propose an original method to retrieve the optical depth τ dust of the Martian dust over the targeted scenes at a reference wavelength of one micron. Our method works even if the underlying surface is completely made of minerals (low contrast between surface and atmospheric dust) while being observed at a fixed geometry. Nevertheless it provides the maximum of information when applied to spectra acquired over the same area at different emergence angles. The method is based on a parametrization of the radiative coupling between particles and gas that determines, with local altimetry and the meteorological situation, the absorption band depth of gaseous CO2. The coupling depends on (i) the acquisition geometry (ii) the type, abundance and vertical distribution of particles (iii) the surface albedo As. For each spectro-pixel of an image, comparison of band depths estimated on the one hand from the observed spectrum and on the other hand from a calculated transmission spectrum through the atmospheric gases alone, one can build a precious new observable that directly depends on τ dust. Combining the latter with the radiance factor in the continuum, we evaluate after LUT inversion τ dust and As. After validation on test images, we have applied the present method - associated with a complementary approach proposed by [1] - in order to map dust abundance at high southern latitudes from early to late spring of MY 27 and 28. For that purpose we use a time series of OMEGA images for global coverage associated with a limited number of more spatially focused CRISM observations to determine the scale height of dust vertical distribution. As a result, we obtain de-trended and extended maps that are corrected for changes of optical depth due to varying atmospheric height because of topography. They clearly show dust activity within and around the area covered by the CO2 seasonal deposits. Atmospheric mineral particles are clearly depleted above the latter compared to the surroundings, even if occasional incursions of dusty clouds can occur. We note sudden, strong and spatially localized enhancements of dust opacity that can be traced as they migrate before disappearance. [1] Vincendon et al. JGR 2008

  6. Witnessing the Birth of the Red Sequence: ALMA High-resolution Imaging of [C II] and Dust in Two Interacting Ultra-red Starbursts at z = 4.425

    NASA Astrophysics Data System (ADS)

    Oteo, I.; Ivison, R. J.; Dunne, L.; Smail, I.; Swinbank, A. M.; Zhang, Z.-Y.; Lewis, A.; Maddox, S.; Riechers, D.; Serjeant, S.; Van der Werf, P.; Biggs, A. D.; Bremer, M.; Cigan, P.; Clements, D. L.; Cooray, A.; Dannerbauer, H.; Eales, S.; Ibar, E.; Messias, H.; Michałowski, M. J.; Pérez-Fournon, I.; van Kampen, E.

    2016-08-01

    Exploiting the sensitivity and spatial resolution of the Atacama Large Millimeter/submillimeter Array, we have studied the morphology and the physical scale of the interstellar medium—both gas and dust—in SGP 38326, an unlensed pair of interacting starbursts at z = 4.425. SGP 38326 is the most luminous star bursting system known at z > 4, with a total IR luminosity of L IR ˜ 2.5 × 1013 L ⊙ and a star formation rate of ˜ 4500 M ⊙ yr-1. SGP 38326 also contains a molecular gas reservoir among the most massive yet found in the early universe, and it is the likely progenitor of a massive, red-and-dead elliptical galaxy at z ˜ 3. Probing scales of ˜0.″1 or ˜800 pc we find that the smooth distribution of the continuum emission from cool dust grains contrasts with the more irregular morphology of the gas, as traced by the [C II] fine structure emission. The gas is also extended over larger physical scales than the dust. The velocity information provided by the resolved [C II] emission reveals that the dynamics of the two interacting components of SGP 38326 are each compatible with disk-like, ordered rotation, but also reveals an ISM which is turbulent and unstable. Our observations support a scenario where at least a subset of the most distant extreme starbursts are highly dissipative mergers of gas-rich galaxies.

  7. Interferometric molecular line observations of W51

    NASA Technical Reports Server (NTRS)

    Rudolph, Alexander; Welch, William J.; Palmer, Patrick; Dubrulle, Berengere

    1989-01-01

    Observations are presented of the H II region complex in W51 made with a mm interferometer. W51 is a region of massive star formation approx. 7 kpc distant from the sun. This region has been well studied in both the IR and submillimeter, the radio, as well as the maser transitions. These previous observations have revealed three regions of interest: (1) W51MAIN, a know of bright maser emission near two compact H II regions W51e1 and W51e2 (W51MAIN is also the peak of the 400 micron emission indicating that the bulk of the mass is centered there; (2) W51IRS1 is a long curving structure seen at 20 micron and at 2 and 6 cm but not at 400 micron; (3) W51IRS2 (also known as W51NORTH) is another compact H II region slightly offset from an 8 and a 20 micron peak and a collection of masers. Some conclusions are as follows: (1) SO and H(13)CN emission are similar and coincide with outflow activity; (2) HCO+ spectra show evidence for overall collapse of the W51 cloud toward W51MAIN; (3) A previously undetected continuum peak, W51DUST, coincides with the molecular peak H(13)CN-4; and (4) Dust emission at 3.4 mm reveals that about half of the 400 micron emission comes from the ultracompact H II region e2, and the rest from W51e1 and W51DUST.

  8. WITNESSING THE BIRTH OF THE RED SEQUENCE: ALMA HIGH-RESOLUTION IMAGING OF [C II] AND DUST IN TWO INTERACTING ULTRA-RED STARBURSTS AT z = 4.425

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oteo, I.; Ivison, R. J.; Dunne, L.

    Exploiting the sensitivity and spatial resolution of the Atacama Large Millimeter/submillimeter Array, we have studied the morphology and the physical scale of the interstellar medium—both gas and dust—in SGP 38326, an unlensed pair of interacting starbursts at z = 4.425. SGP 38326 is the most luminous star bursting system known at z > 4, with a total IR luminosity of L {sub IR} ∼ 2.5 × 10{sup 13} L {sub ⊙} and a star formation rate of ∼ 4500 M {sub ⊙} yr{sup −1}. SGP 38326 also contains a molecular gas reservoir among the most massive yet found in themore » early universe, and it is the likely progenitor of a massive, red-and-dead elliptical galaxy at z ∼ 3. Probing scales of ∼0.″1 or ∼800 pc we find that the smooth distribution of the continuum emission from cool dust grains contrasts with the more irregular morphology of the gas, as traced by the [C ii] fine structure emission. The gas is also extended over larger physical scales than the dust. The velocity information provided by the resolved [C ii] emission reveals that the dynamics of the two interacting components of SGP 38326 are each compatible with disk-like, ordered rotation, but also reveals an ISM which is turbulent and unstable. Our observations support a scenario where at least a subset of the most distant extreme starbursts are highly dissipative mergers of gas-rich galaxies.« less

  9. ISM DUST GRAINS AND N-BAND SPECTRAL VARIABILITY IN THE SPATIALLY RESOLVED SUBARCSECOND BINARY UY Aur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.

    2010-03-10

    The 10 {mu}m silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries ({approx}<3''; {approx}< 420 AU) at the distances of the nearest star-forming regions ({approx}140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0.''88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR,more » and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk.« less

  10. Partial dust obscuration in active galactic nuclei as a cause of broad-line profile and lag variability, and apparent accretion disc inhomogeneities

    NASA Astrophysics Data System (ADS)

    Gaskell, C. Martin; Harrington, Peter Z.

    2018-04-01

    The profiles of the broad emission lines of active galactic nuclei (AGNs) and the time delays in their response to changes in the ionizing continuum ("lags") give information about the structure and kinematics of the inner regions of AGNs. Line profiles are also our main way of estimating the masses of the supermassive black holes (SMBHs). However, the profiles often show ill-understood, asymmetric structure and velocity-dependent lags vary with time. Here we show that partial obscuration of the broad-line region (BLR) by outflowing, compact, dusty clumps produces asymmetries and velocity-dependent lags similar to those observed. Our model explains previously inexplicable changes in the ratios of the hydrogen lines with time and velocity, the lack of correlation of changes in line profiles with variability of the central engine, the velocity dependence of lags, and the change of lags with time. We propose that changes on timescales longer than the light-crossing time do not come from dynamical changes in the BLR, but are a natural result of the effect of outflowing dusty clumps driven by radiation pressure acting on the dust. The motion of these clumps offers an explanation of long-term changes in polarization. The effects of the dust complicate the study of the structure and kinematics of the BLR and the search for sub-parsec SMBH binaries. Partial obscuration of the accretion disc can also provide the local fluctuations in luminosity that can explain sizes deduced from microlensing.

  11. Extended Red Emission in the Evil Eye Galaxy

    NASA Astrophysics Data System (ADS)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2001-05-01

    The Evil Eye Galaxy (NGC 4826) is a nearby galaxy with an asymmetrically placed, strongly absorbing dust lane across its prominent bulge, associated to an active star formation (SF) region. We obtained accurate low--resolution (4.2 Å/pixel) spectroscopy (KPNO 4-m) of NGC 4826 in the wavelength range 5300--9100Å with a slit of 4.4' length, positioned across the nucleus of the galaxy and encompassing its bulge size. We were able to study the wavelength dependent effects of absorption and scattering by the dust by comparing the stellar SEDs at corresponding positions on the bulge, symmetrically placed with respect to the nucleus, under the assumption that the intrinsic (i.e. unobscured by the dust lane) ISRF is radially symmetric, except for the ongoing SF region. We report on the detection of strong extended red emission (ERE) from the dust lane of NGC 4826 within a radial distance of about 15{' '} from its nucleus, adjacent to the active SF region. At the nucleus, the ERE band extends from about 5800 Å to 9100 Å, with peak near 8300 Å, and the ERE-to-scattered light integrated intensity ratio is about 0.7. At farther distances, approaching the ongoing SF region, the ERE band and peak shift to longer wavelengths, while the integrated ERE intensity diminishes and, finally, vanishes there. The H α line intensity and the index [NII]λ 6583/H α constrain the Lyman continuum photon rate and the effective temperatures of the OB association stars. The ERE-to-scattered light ratio decreases as well but shows a secondary maximum where the opacity of the dust lane peaks. We interpret the ERE nature as photoluminescence by nanometer--sized clusters, illuminated by UV/visible photons of the local radiation field. When examined within the context of ERE observations in the diffuse ISM of our Galaxy and in a variety of other dusty environments, we conclude that the ERE photon conversion efficiency in NGC 4826 is as high as found elsewhere, but that the characteristic size of the nanoparticles there is about twice as large as that inferred in the Galactic diffuse ISM.

  12. Can dead zones create structures like a transition disk?

    NASA Astrophysics Data System (ADS)

    Pinilla, Paola; Flock, Mario; Ovelar, Maria de Juan; Birnstiel, Til

    2016-12-01

    Context. Regions of low ionisation where the activity of the magneto-rotational instability is suppressed, the so-called dead zones, have been suggested to explain gaps and asymmetries of transition disks. Dead zones are therefore a potential cause for the observational signatures of transition disks without requiring the presence of embedded planets. Aims: We investigate the gas and dust evolution simultaneously assuming simplified prescriptions for a dead zone and a magnetohydrodynamic (MHD) wind acting on the disk. We explore whether the resulting gas and dust distribution can create signatures similar to those observed in transition disks. Methods: We imposed a dead zone and/or an MHD wind in the radial evolution of gas and dust in protoplanetary disks. For the dust evolution, we included the transport, growth, and fragmentation of dust particles. To compare with observations, we produced synthetic images in scattered optical light and in thermal emission at mm wavelengths. Results: In all models with a dead zone, a bump in the gas surface density is produced that is able to efficiently trap large particles (≳ 1 mm) at the outer edge of the dead zone. The gas bump reaches an amplitude of a factor of 5, which can be enhanced by the presence of an MHD wind that removes mass from the inner disk. While our 1D simulations suggest that such a structure can be present only for 1 Myr, the structure may be maintained for a longer time when more realistic 2D/3D simulations are performed. In the synthetic images, gap-like low-emission regions are seen at scattered light and in thermal emission at mm wavelengths, as previously predicted in the case of planet-disk interaction. Conclusions: Main signatures of transition disks can be reproduced by assuming a dead zone in the disk, such as gap-like structure in scattered light and millimetre continuum emission, and a lower gas surface density within the dead zone. Previous studies showed that the Rossby wave instability can also develop at the edge of such dead zones, forming vortices and also creating asymmetries.

  13. Seeing the Forest Through the Trees: The Distribution and Properties of Dense Molecular Gas in the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Ellsworth-Bowers, Timothy P.

    The Milky Way Galaxy serves as a vast laboratory for studying the dynamics and evolution of the dense interstellar medium and the processes of and surrounding massive star formation. From our vantage point within the Galactic plane, however, it has been extremely difficult to construct a coherent picture of Galactic structure; we cannot see the forest for the trees. The principal difficulties in studying the structure of the Galactic disk have been obscuration by the ubiquitous dust and molecular gas and confusion between objects along a line of sight. Recent technological advances have led to large-scale blind surveys of the Galactic plane at (sub-)millimeter wavelengths, where Galactic dust is generally optically thin, and have opened a new avenue for studying the forest. The Bolocam Galactic Plane Survey (BGPS) observed over 190 deg 2 of the Galactic plane in dust continuum emission near lambda = 1.1 mm, producing a catalog of over 8,000 dense molecular cloud structures across a wide swath of the Galactic disk. Deriving the spatial distribution and physical properties of these objects requires knowledge of distance, a component lacking in the data themselves. This thesis presents a generalized Bayesian probabilistic distance estimation method for dense molecular cloud structures, and demonstrates it with the BGPS data set. Distance probability density functions (DPDFs) are computed from kinematic distance likelihoods (which may be double- peaked for objects in the inner Galaxy) and an expandable suite of prior information to produce a comprehensive tally of our knowledge (and ignorance) of the distances to dense molecular cloud structures. As part of the DPDF formalism, this thesis derives several prior DPDFs for resolving the kinematic distance ambiguity in the inner Galaxy. From the collection of posterior DPDFs, a set of objects with well-constrained distance estimates is produced for deriving Galactic structure and the physical properties of dense molecular cloud structures. This distance catalog of 1,802 objects across the Galactic plane represents the first large-scale analysis of clump-scale objects in a variety of Galactic environments. The Galactocentric positions of these objects begin to trace out the spiral structure of the Milky Way, and suggest that dense molecular gas settles nearer the Galactic midplane than tracers of less-dense gas such as CO. Physical properties computed from the DPDFs reveal that BGPS objects trace a continuum of scales within giant molecular clouds, and extend the scaling relationships known as Larson's Laws to lower-mass substructures. The results presented here represent the first step on the road to seeing the molecular content of the Milky Way as a forest rather than individual nearby trees.

  14. Non-conservative evolution in Algols: where is the matter?

    NASA Astrophysics Data System (ADS)

    Deschamps, R.; Braun, K.; Jorissen, A.; Siess, L.; Baes, M.; Camps, P.

    2015-05-01

    Context. There is indirect evidence of non-conservative evolutions in Algols. However, the systemic mass-loss rate is poorly constrained by observations and generally set as a free parameter in binary-star evolution simulations. Moreover, systemic mass loss may lead to observational signatures that still need to be found. Aims: Within the "hotspot" ejection mechanism, some of the material that is initially transferred from the companion star via an accretion stream is expelled from the system due to the radiative energy released on the gainer's surface by the impacting material. The objective of this paper is to retrieve observable quantities from this process and to compare them with observations. Methods: We investigate the impact of the outflowing gas and the possible presence of dust grains on the spectral energy distribution (SED). We used the 1D plasma code Cloudy and compared the results with the 3D Monte-Carlo radiative transfer code Skirt for dusty simulations. The circumbinary mass-distribution and binary parameters were computed with state-of-the-art binary calculations done with the Binstar evolution code. Results: The outflowing material reduces the continuum flux level of the stellar SED in the optical and UV. Because of the time-dependence of this effect, it may help to distinguish between different ejection mechanisms. If present, dust leads to observable infrared excesses, even with low dust-to-gas ratios, and traces the cold material at large distances from the star. By searching for this dust emission in the WISE catalogue, we found a small number of Algols showing infrared excesses, among which the two rather surprising objects SX Aur and CZ Vel. We find that some binary B[e] stars show the same strong Balmer continuum as we predict with our models. However, direct evidence of systemic mass loss is probably not observable in genuine Algols, since these systems no longer eject mass through the hotspot mechanism. Furthermore, owing to its high velocity, the outflowing material dissipates in a few hundred years. If hot enough, the hotspot may produce highly ionised species, such as Si iv, and observable characteristics that are typical of W Ser systems. Conclusions: If present, systemic mass loss leads to clear observational imprints. These signatures are not to be found in genuine Algols but in the closely related β Lyraes, W Serpentis stars, double periodic variables, symbiotic Algols, and binary B[e] stars. We emphasise the need for further observations of such objects where systemic mass loss is most likely to occur. Appendices are available in electronic form at http://www.aanda.org

  15. The PyCASSO database: spatially resolved stellar population properties for CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    de Amorim, A. L.; García-Benito, R.; Cid Fernandes, R.; Cortijo-Ferrero, C.; González Delgado, R. M.; Lacerda, E. A. D.; López Fernández, R.; Pérez, E.; Vale Asari, N.

    2017-11-01

    The Calar Alto Legacy Integral Field Area (CALIFA) survey, a pioneer in integral field spectroscopy legacy projects, has fostered many studies exploring the information encoded on the spatially resolved data on gaseous and stellar features in the optical range of galaxies. We describe a value-added catalogue of stellar population properties for CALIFA galaxies analysed with the spectral synthesis code starlight and processed with the pycasso platform. Our public database (http://pycasso.ufsc.br/, mirror at http://pycasso.iaa.es/) comprises 445 galaxies from the CALIFA Data Release 3 with COMBO data. The catalogue provides maps for the stellar mass surface density, mean stellar ages and metallicities, stellar dust attenuation, star formation rates, and kinematics. Example applications both for individual galaxies and for statistical studies are presented to illustrate the power of this data set. We revisit and update a few of our own results on mass density radial profiles and on the local mass-metallicity relation. We also show how to employ the catalogue for new investigations, and show a pseudo Schmidt-Kennicutt relation entirely made with information extracted from the stellar continuum. Combinations to other databases are also illustrated. Among other results, we find a very good agreement between star formation rate surface densities derived from the stellar continuum and the H α emission. This public catalogue joins the scientific community's effort towards transparency and reproducibility, and will be useful for researchers focusing on (or complementing their studies with) stellar properties of CALIFA galaxies.

  16. The First Billion Years project: constraining the dust attenuation law of star-forming galaxies at z ≃ 5

    NASA Astrophysics Data System (ADS)

    Cullen, F.; McLure, R. J.; Khochfar, S.; Dunlop, J. S.; Dalla Vecchia, C.

    2017-09-01

    We present the results of a study investigating the dust attenuation law at z ≃ 5, based on synthetic spectral energy distributions (SEDs) calculated for a sample of N = 498 galaxies drawn from the First Billion Years (FiBY) simulation project. The simulated galaxies at z ≃ 5, which have M1500 ≤ -18.0 and 7.5 ≤ log(M/M}_{⊙}) ≤ 10.2, display a mass-dependent α-enhancement, with a median value of [α /{Fe}]_{z=5} ˜eq 4 × [α /{Fe}]_{Z_{⊙}}. The median Fe/H ratio of the simulated galaxies is 0.14 ± 0.05 which produces steep intrinsic ultraviolet (UV) continuum slopes; 〈βI〉 = -2.4 ± 0.05. Using a set of simple dust attenuation models, in which the wavelength-dependent attenuation is assumed to be of the form A(λ) ∝ λn, we explore the parameter values which best reproduce the observed z = 5 luminosity function (LF) and colour-magnitude relation (CMR). We find that a simple model in which the absolute UV attenuation is a linearly increasing function of log stellar mass (A1500 = 0.5 × log(M/M⊙) - 3.3), and the dust attenuation slope (n) is within the range -0.7 ≤ n ≤ -0.3, can successfully reproduce the LF and CMR over a wide range of stellar population synthesis model assumptions, including the effects of massive binaries. This range of attenuation curves is consistent with a power-law fit to the Calzetti attenuation law in the UV (n = -0.55). In contrast, curves as steep as the Small Magellanic Cloud extinction curve (n = -1.24) are formally ruled out. Finally, we show that our models are consistent with recent 1.3 mm Atacama Large Millimeter Array observations of the Hubble Ultra Deep Field, and predict the form of the z ≃ 5 infrared excess (IRX)-β relation.

  17. Near-IR spectral evolution of dusty starburst galaxies

    NASA Astrophysics Data System (ADS)

    Lançon, Ariane; Rocca-Volmerange, Brigitte

    1996-11-01

    We propose a multicomponent analysis of starburst galaxies, based on a model that takes into account the young and evolved stellar components and the gas emission, with their respective extinction, in the frame of a coherent dust distribution pattern. Near-IR signatures are preferentially investigated, in order to penetrate as deep as possible into the dusty starburst cores. We computed the 1.4-2.5 μm spectra of synthetic stellar populations evolving through strong, short timescale bursts of star formation (continuum and lines, R ≃ 500). The evolution model is specifically sensitive to cool stellar populations (AGB and red supergiant stars). It takes advantage of the stellar library of Lançon & Rocca-Volmerange (1992) [A&ASS, 96, 593], observed with the same instrument (FTS/CFHT) as the analysed galaxy sample, so that the instrumental effects are minimised. The main near-IR observable constraints are the molecular signatures of CO and H2O and the slope of the continuum, observed over a range exceptionally broad for spectroscopic data. The H - K colour determined from the spectra measures the intrinsic stellar energy distribution but also differential extinction, which is further constrained by optical emission line ratios. Other observational constraints are the near-IR emission lines (Brγ, He I 2.06 μm, [Fe II] 1.64 μm, H2 2.12 μm) and the far-IR luminosity. The coherence of the results relies on the interpretation in terms of stellar populations from which all observable properties are derived, so that the link between the various wavelength ranges is secured. The luminosity LK is used for the absolute calibration. We apply this approach to the typical spectrum of the core of NGC 1614. Consistent solutions for the starburst characteristics (star-formation rate, IMF, burst age, morphology) are found and the role of each observational constraint in deriving satisfactory models is extensively discussed. The acceptable contamination of the K band light by the underlying population amounts ≥ 15% even through a 5 arcsec aperture. The model leads to a limit on the direct absorption of Lyman continuum photons by dust situated inside the ionised areas, which in turn, with standard gas-to-dust ratios, translates into small characteristic sizes for the individual coexisting H II regions of the massive starburst area (clusters containing ˜ 102 ionising stars). We show that room is left for IMFs extending to 120 M⊙, rather than truncated at ˜ 60 M⊙ as most conservative studies conclude. High internal velocity dispersions (≥ 20 km s-1) are then needed for the H II regions. An original feature of this work is to base the analysis of near-infrared spectral galaxy observations on a large wavelength range, using models constructed with spectral stellar data observed with the same instrument. However a broader use of this spectral evolution model on other spectral or photometric data samples is possible if the spectral resolution of the model is adapted to observations or if colours are derived from the energy distributions. Catherine J. Cesarsky

  18. Investigating the Near-Infrared Properties of Planetary Nebulae II. Medium Resolution Spectra. 2; Medium Resolution Spectra

    NASA Technical Reports Server (NTRS)

    Hora, Joseph L.; Latter, William B.; Deutsch, Lynne K.

    1998-01-01

    We present medium-resolution (R approximately 700) near-infrared (lambda = 1 - 2.5 micrometers) spectra of a sample of planetary nebulae (PNe). A narrow slit was used which sampled discrete locations within the nebulae; observations were obtained at one or more positions in the 41 objects included in the survey. The PN spectra fall into one of four general categories: H1 emission line-dominated PNe, H1 and H2 emission line PNe, H2 emission line-dominated PNe, and continuum-dominated PNe. These categories correlate with morphological type, with the elliptical PNe falling into the first group, and the bipolar PNe primarily in the H2 and continuum emission groups. The categories also correlate with C/O ratio, with the O-rich objects falling into the first group and the C-rich objects in the groups. Other spectral features were observed in all catagories, such as continuum emission from the central star, and warm dust continuum emission towards the long wavelength end of the spectra. H2 was detected in four PNe in this survey for the first time. An analysis was performed using the H2 line ratios in all of the PN spectra in the survey where a sufficient number of lines were observed to determine the ortho-to-para ratio and the rotational and vibrational excitation temperatures of the H-2 in those objects. One unexpected result from this analysis is that the H-2 is excited by absorption of ultraviolet photons in most of the PNe, although there are several PNe in which collisional excitation plays an important role. The correlation between bipolar morphology and H2 emission has been strengthened with the new detections of H2 in this survey.

  19. Strong Stellar-driven Outflows Shape the Evolution of Galaxies at Cosmic Dawn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fontanot, Fabio; De Lucia, Gabriella; Hirschmann, Michaela

    We study galaxy mass assembly and cosmic star formation rate (SFR) at high redshift (z ≳ 4), by comparing data from multiwavelength surveys with predictions from the GAlaxy Evolution and Assembly (gaea) model. gaea implements a stellar feedback scheme partially based on cosmological hydrodynamical simulations, which features strong stellar-driven outflows and mass-dependent timescales for the re-accretion of ejected gas. In previous work, we have shown that this scheme is able to correctly reproduce the evolution of the galaxy stellar mass function (GSMF) up to z ∼ 3. We contrast model predictions with both rest-frame ultraviolet (UV) and optical luminosity functionsmore » (LFs), which are mostly sensitive to the SFR and stellar mass, respectively. We show that gaea is able to reproduce the shape and redshift evolution of both sets of LFs. We study the impact of dust on the predicted LFs, and we find that the required level of dust attenuation is in qualitative agreement with recent estimates based on the UV continuum slope. The consistency between data and model predictions holds for the redshift evolution of the physical quantities well beyond the redshift range considered for the calibration of the original model. In particular, we show that gaea is able to recover the evolution of the GSMF up to z ∼ 7 and the cosmic SFR density up to z ∼ 10.« less

  20. AzTEC 1.1 mm OBSERVATIONS OF THE MBM12 MOLECULAR CLOUD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, M. J.; Kim, S.; Youn, S.

    2012-02-10

    We present 1.1 mm observations of the dust continuum emission from the MBM12 high-latitude molecular cloud observed with the Astronomical Thermal Emission Camera (AzTEC) mounted on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. We surveyed 6.34 deg{sup 2} centered on MBM12, making this the largest area that has ever been surveyed in this region with submillimeter and millimeter telescopes. Eight secure individual sources were detected with a signal-to-noise ratio of over 4.4. These eight AzTEC sources can be considered to be real astronomical objects compared to the other candidates based on calculations of the false detection rate. Themore » distribution of the detected 1.1 mm sources or compact 1.1 mm peaks is spatially anti-correlated with that of the 100 {mu}m emission and the {sup 12}CO emission. We detected the 1.1 mm dust continuum emitting sources associated with two classical T Tauri stars, LkH{alpha}262 and LkH{alpha}264. Observations of spectral energy distributions (SEDs) indicate that LkH{alpha}262 is likely to be Class II (pre-main-sequence star), but there are also indications that it could be a late Class I (protostar). A flared disk and a bipolar cavity in the models of Class I sources lead to more complicated SEDs. From the present AzTEC observations of the MBM12 region, it appears that other sources detected with AzTEC are likely to be extragalactic and located behind MBM12. Some of these have radio counterparts and their star formation rates are derived from a fit of the SEDs to the photometric evolution of galaxies in which the effects of a dusty interstellar medium have been included.« less

  1. Resolved Structure of the Arp 220 Nuclei at λ ≈ 3 mm

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kazushi; Aalto, Susanne; Barcos-Muñoz, Loreto; Costagliola, Francesco; Evans, Aaron S.; Harada, Nanase; Martín, Sergio; Wiedner, Martina; Wilner, David

    2017-11-01

    We analyze the 3 mm emission of the ultraluminous infrared galaxy Arp 220 for the spatially resolved structure and the spectral properties of the merger nuclei. ALMA archival data at ˜0.″05 resolution are used for extensive visibility fitting and deep imaging of the continuum emission. The data are fitted well by two concentric components for each nucleus, such as two Gaussians or one Gaussian plus one exponential disk. The larger components in the individual nuclei are similar in shape and extent, ˜100-150 pc, to the centimeter wave emission due to supernovae. They are therefore identified with the known starburst nuclear disks. The smaller components in both nuclei have about a few 10 pc sizes and peak brightness temperatures ({T}{{b}}) more than twice higher than those in previous single-Gaussian fitting. They correspond to the dust emission that we find centrally concentrated in both nuclei by subtracting the plasma emission measured at 33 GHz. The dust emission in the western nucleus is found to have a peak {T}{{b}}≈ 530 K and an FWHM of about 20 pc. This component is estimated to have a bolometric luminosity on the order of {10}12.5 {L}⊙ and a 20 pc scale luminosity surface density {10}15.5 {{L}}⊙ {{{k}}{{p}}{{c}}}-2. A luminous active galactic nucleus is a plausible energy source for these high values while other explanations remain to be explored. Our continuum image also reveals a third structural component of the western nucleus—a pair of faint spurs perpendicular to the disk major axis. We attribute it to a bipolar outflow from the highly inclined (I≈ 60^\\circ ) western nuclear disk.

  2. Spitzer Observations of a 24 μm Shadow: Bok Globule CB 190

    NASA Astrophysics Data System (ADS)

    Stutz, Amelia M.; Bieging, John H.; Rieke, George H.; Shirley, Yancy L.; Balog, Zoltan; Gordon, Karl D.; Green, Elizabeth M.; Keene, Jocelyn; Kelly, Brandon C.; Rubin, Mark; Werner, Michael W.

    2007-08-01

    We present Spitzer observations of the dark globule CB 190 (LDN 771). We observe a roughly circular 24 μm shadow with a 70" radius. The extinction profile of this shadow matches the profile derived from 2MASS photometry at the outer edges of the globule and reaches a maximum of ~32 visual magnitudes at the center. The corresponding mass of CB 190 is ~10 Msolar. Our 12CO and 13CO J=2-1 data over a 10'×10' region centered on the shadow show a temperature ~10 K. The thermal continuum indicates a similar temperature for the dust. The molecular data also show evidence of freezeout onto dust grains. We estimate a distance to CB 190 of 400 pc using the spectroscopic parallax of a star associated with the globule. Bonnor-Ebert fits to the density profile, in conjunction with this distance, yield ξmax=7.2, indicating that CB 190 may be unstable. The high temperature (56 K) of the best-fit Bonnor-Ebert model is in contradiction with the CO and thermal continuum data, leading to the conclusion that the thermal pressure is not enough to prevent free-fall collapse. We also find that the turbulence in the cloud is inadequate to support it. However, the cloud may be supported by the magnetic field, if this field is at the average level for dark globules. Since the magnetic field will eventually leak out through ambipolar diffusion, it is likely that CB 190 is collapsing or in a late precollapse stage. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under NASA contract 1407.

  3. A Triple Protostar System in L1448 IRS3B Formed via Fragmentation of a Gravitationally Unstable Disk

    NASA Astrophysics Data System (ADS)

    Tobin, John J.; Kratter, Kaitlin M.; Persson, Magnus; Looney, Leslie; Dunham, Michael; Segura-Cox, Dominique; Li, Zhi-Yun; Chandler, Claire J.; Sadavoy, Sarah; Harris, Robert J.; Melis, Carl; Perez, Laura M.

    2017-01-01

    Binary and multiple star systems are a frequent outcome of the star formation process; most stars form as part of a binary/multiple protostar system. A possible pathway to the formation of close (< 500 AU) binary/multiple star systems is fragmentation of a massive protostellar disk due to gravitational instability. We observed the triple protostar system L1448 IRS3B with ALMA at 1.3 mm in dust continuum and molecular lines to determine if this triple protostar system, where all companions are separated by < 200 AU, is likely to have formed via disk fragmentation. From the dust continuum emission, we find a massive, 0.39 solar mass disk surrounding the three protostars with spiral structure. The disk is centered on two protostars that are separated by 61 AU and the third protostar is located in the outer disk at 183 AU. The tertiary companion is coincident with a spiral arm, and it is the brightest source of emission in the disk, surrounded by ~0.09 solar masses of disk material. Molecular line observations from 13CO and C18O confirm that the kinematic center of mass is coincident with the two central protostars and that the disk is consistent with being in Keplerian rotation; the combined mass of the two close protostars is ~1 solar mass. We demonstrate that the disk around L1448 IRS3B remains marginally unstable at radii between 150~AU and 320~AU, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning the companion stars.

  4. Alma Survey of Circumstellar Disks in the Young Stellar Cluster IC 348

    NASA Astrophysics Data System (ADS)

    Ruíz-Rodríguez, D.; Cieza, L. A.; Williams, J. P.; Andrews, S. M.; Principe, D. A.; Caceres, C.; Canovas, H.; Casassus, S.; Schreiber, M. R.; Kastner, J. H.

    2018-05-01

    We present a 1.3 mm continuum survey of the young (2-3 Myr) stellar cluster IC 348, which lies at a distance of 310 pc, and is dominated by low-mass stars (M⋆ ˜ 0.1-0.6 M⊙). We observed 136 Class II sources (disks that are optically thick in the infrared) at 0.8″ (200 au) resolution with a 3σ sensitivity of ˜ 0.45 mJy (Mdust ˜ 1.3 M⊕). We detect 40 of the targets and construct a mm-continuum luminosity function. We compare the disk mass distribution in IC 348 to those of younger and older regions, taking into account the dependence on stellar mass. We find a clear evolution in disk masses from 1 to 5-10 Myr. The disk masses in IC 348 are significantly lower than those in Taurus (1-3 Myr) and Lupus (1-3 Myr), similar to those of Chamaleon I, (2-3 Myr) and σ Ori (3-5 Myr) and significantly higher than in Upper Scorpius (5-10 Myr). About 20 disks in our sample (˜5% of the cluster members) have estimated masses (dust + gas) >1 MJup and hence might be the precursors of giant planets in the cluster. Some of the most massive disks include transition objects with inner opacity holes based on their infrared SEDs. From a stacking analysis of the 96 non-detections, we find that these disks have a typical dust mass of just ≲ 0.4 M⊕, even though the vast majority of their infrared SEDs remain optically thick and show little signs of evolution. Such low-mass disks may be the precursors of the small rocky planets found by Kepler around M-type stars.

  5. X-Ray Absorption, Nuclear Infrared Emission, and Dust Covering Factors of AGNs: Testing Unification Schemes

    NASA Astrophysics Data System (ADS)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X.; Asensio Ramos, A.; Watson, M. G.; Blain, A.; Caccianiga, A.; Ballo, L.; Braito, V.; Ramos Almeida, C.

    2016-03-01

    We present the distributions of the geometrical covering factors of the dusty tori (f2) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2-10 keV luminosities between 1042 and 1046 erg s-1, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1-20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f2 than type 1 AGNs. Nevertheless, ˜20% of type 1 AGNs have tori with large covering factors, while ˜23%-28% of type 2 AGNs have tori with small covering factors. Low f2 are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f2 increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f2 determine the optical appearance of an AGN and control the shape of the rest-frame ˜1-20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  6. A Thorough View of the Nuclear Region of NGC 253: Combined Herschel, SOFIA, and APEX Data Set

    NASA Astrophysics Data System (ADS)

    Pérez-Beaupuits, J. P.; Güsten, R.; Harris, A.; Requena-Torres, M. A.; Menten, K. M.; Weiß, A.; Polehampton, E.; van der Wiel, M. H. D.

    2018-06-01

    We present a large set of spectral lines detected in the 40″ central region of the starburst galaxy NGC 253. Observations were obtained with the three instruments SPIRE, PACS, and HIFI on board the Herschel Space Observatory, upGREAT on board the SOFIA airborne observatory, and the ground-based Atacama Pathfinder EXperiment telescope. Combining the spectral and photometry products of SPIRE and PACS, we model the dust continuum spectral energy distribution (SED) and the most complete 12CO line SED reported so far toward the nuclear region of NGC 253. The properties and excitation of the molecular gas were derived from a three-component non-LTE radiative transfer model, using the SPIRE 13CO lines and ground-based observations of the lower-J 13CO and HCN lines, to constrain the model parameters. Three dust temperatures were identified from the continuum emission, and three components are needed to fit the full CO line SED. Only the third CO component (fitting mostly the HCN and PACS 12CO lines) is consistent with a shock-/mechanical-heating scenario. A hot core chemistry is also argued as a plausible scenario to explain the high-J 12CO lines detected with PACS. The effect of enhanced cosmic-ray ionization rates, however, cannot be ruled out and is expected to play a significant role in the diffuse and dense gas chemistry. This is supported by the detection of ionic species like OH+ and H2O+, as well as the enhanced fluxes of the OH lines with respect to those of H2O lines detected in both PACS and SPIRE spectra.

  7. The polarization and ultraviolet spectrum of Markarian 231

    NASA Technical Reports Server (NTRS)

    Smith, Paul S.; Schmidt, Gary D.; Allen, Richard G.; Angel, J. R. P.

    1995-01-01

    Ultraviolet spectropolarimetry acquired with the Hubble Space Telescope (HST) of the peculiar Seyfert galaxy Mrk 231 is combined with new high-quality ground-based measurements to provide the first, nearly complete, record of its linear polarization from 1575 to 7900 A. The accompanying ultraviolet spectrum portrays the heavily extinguished emission-line spectrum of the active nucleus plus the emergence of a blue continuum shortward of approximately 2400 A. In addition, absorption features due to He I lambda 3188, Mg I lambda 2853, Mg II lambda 2798, and especially several resonance multiplets of Fe II are identified with a well-known optical absorption system blueshifted approximately 4600 km/s with respect to emission lines. The continuum is attributed to approximately 10(exp 5) hot, young stars surrounding the nucleus. This component dilutes the polarized nuclear light, implying that the intrinsic polarization of the active galactic nucleus (AGN) spectrum approaches 20% at 2800 A. The rapid decline in degree of polarization toward longer wavelengths is best explained by the strongly frequency-dependent scattering cross section of dust grains coupled with modest starlight dilution. Peculiar S-shaped inflections in both the degree and position angle of polarization through H alpha and other major emission lines are interpreted as effects of scattering from two regions offset in velocity by several hundred km/s. A third source of (weakly) polarized flux is required to explain a nearly 40 deg rotation in position angle between 3200 and 1800 A. The displaced absorption features, polarimetry, and optical/infrared properties of Mrk 231 all point to its classification as a low-ionization, or Mg II broad absorption line quasar, in which most, if not all, lines of sight to the active nucleus are heavily obscured by dust and low-ionization gas clouds.

  8. THE SPITZER INFRARED SPECTROGRAPH SURVEY OF PROTOPLANETARY DISKS IN ORION A. I. DISK PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K. H.; Watson, Dan M.; Manoj, P.

    2016-09-01

    We present our investigation of 319 Class II objects in Orion A observed by Spitzer /IRS. We also present the follow-up observations of 120 of these Class II objects in Orion A from the Infrared Telescope Facility/SpeX. We measure continuum spectral indices, equivalent widths, and integrated fluxes that pertain to disk structure and dust composition from IRS spectra of Class II objects in Orion A. We estimate mass accretion rates using hydrogen recombination lines in the SpeX spectra of our targets. Utilizing these properties, we compare the distributions of the disk and dust properties of Orion A disks with thosemore » of Taurus disks with respect to position within Orion A (Orion Nebular Cluster [ONC] and L1641) and with the subgroups by the inferred radial structures, such as transitional disks (TDs) versus radially continuous full disks (FDs). Our main findings are as follows. (1) Inner disks evolve faster than the outer disks. (2) The mass accretion rates of TDs and those of radially continuous FDs are statistically significantly displaced from each other. The median mass accretion rate of radially continuous disks in the ONC and L1641 is not very different from that in Taurus. (3) Less grain processing has occurred in the disks in the ONC compared to those in Taurus, based on analysis of the shape index of the 10 μ m silicate feature ( F {sub 11.3}/ F {sub 9.8}). (4) The 20–31 μ m continuum spectral index tracks the projected distance from the most luminous Trapezium star, θ {sup 1} Ori C. A possible explanation is UV ablation of the outer parts of disks.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bally, John; Ginsburg, Adam; Probst, Ron

    We present observations of near-infrared 2.12 μm molecular hydrogen outflows emerging from 1.1 mm dust continuum clumps in the North America and Pelican Nebula (NAP) complex selected from the Bolocam Galactic Plane Survey (BGPS). Hundreds of individual shocks powered by over 50 outflows from young stars are identified, indicating that the dusty molecular clumps surrounding the NGC 7000/IC 5070/W80 H II region are among the most active sites of ongoing star formation in the solar vicinity. A spectacular X-shaped outflow, MHO 3400, emerges from a young star system embedded in a dense clump more than a parsec from the ionizationmore » front associated with the Pelican Nebula (IC 5070). Suspected to be a binary, the source drives a pair of outflows with orientations differing by 80°. Each flow exhibits S-shaped symmetry and multiple shocks indicating a pulsed and precessing jet. The 'Gulf of Mexico', located south of the North America Nebula (NGC 7000), contains a dense cluster of molecular hydrogen objects (MHOs), Herbig-Haro (HH) objects, and over 300 young stellar objects (YSOs), indicating a recent burst of star formation. The largest outflow detected thus far in the North America and Pelican Nebula complex, the 1.6 parsec long MHO 3417 flow, emerges from a 500 M {sub ☉} BGPS clump and may be powered by a forming massive star. Several prominent outflows such as MHO 3427 appear to be powered by highly embedded YSOs only visible at λ > 70 μm. An 'activity index' formed by dividing the number of shocks by the mass of the cloud containing their source stars is used to estimate the relative evolutionary states of Bolocam clumps. Outflows can be used as indicators of the evolutionary state of clumps detected in millimeter and submillimeter dust continuum surveys.« less

  10. Temperatures of dust and gas in S 140

    NASA Astrophysics Data System (ADS)

    Koumpia, E.; Harvey, P. M.; Ossenkopf, V.; van der Tak, F. F. S.; Mookerjea, B.; Fuente, A.; Kramer, C.

    2015-08-01

    Context. In dense parts of interstellar clouds (≥105 cm-3), dust and gas are expected to be in thermal equilibrium, being coupled via collisions. However, previous studies have shown that in the presence of intense radiation fields, the temperatures of the dust and gas may remain decoupled even at higher densities. Aims: The objective of this work is to study in detail the temperatures of dust and gas in the photon-dominated region S 140, especially around the deeply embedded infrared sources IRS 1-3 and at the ionization front. Methods: We derive the dust temperature and column density by combining Herschel-PACS continuum observations with SOFIA observations at 37 μm and SCUBA data at 450 μm. We model these observations using simple greybody fits and the DUSTY radiative transfer code. For the gas analysis we use RADEX to model the CO 1-0, CO 2-1, 13CO 1-0 and C18O 1-0 emission lines mapped with the IRAM-30 m telescope over a 4' field. Around IRS 1-3, we use HIFI observations of single-points and cuts in CO 9-8, 13CO 10-9 and C18O 9-8 to constrain the amount of warm gas, using the best fitting dust model derived with DUSTY as input to the non-local radiative transfer model RATRAN. The velocity information in the lines allows us to separate the quiescent component from outflows when deriving the gas temperature and column density. Results: We find that the gas temperature around the infrared sources varies between ~35 and ~55 K. In contrast to expectation, the gas is systematically warmer than the dust by ~5-15 K despite the high gas density. In addition we observe an increase of the gas temperature from 30-35 K in the surrounding up to 40-45 K towards the ionization front, most likely due to the UV radiation from the external star. Furthermore, detailed models of the temperature structure close to IRS 1 which take the known density gradient into account show that the gas is warmer and/or denser than what we model. Finally, modelling of the dust emission from the sub-mm peak SMM 1 constrains its luminosity to a few ×102L⊙. Conclusions: We conclude that the gas heating in the S 140 region is very efficient even at high densities. The most likely explanation is deep UV penetration from the embedded sources in a clumpy medium and/or oblique shocks. Based on Herschel observations. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Final Herschel and IRAM data (cube) as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A68

  11. ALMA Detections of CO Emission in the Most Luminous, Heavily Dust-obscured Quasars at z > 3

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Knudsen, Kirsten K.; Fogasy, Judit; Drouart, Guillaume

    2018-03-01

    We report the results of a pilot study of CO(4 ‑ 3) emission line of three Wide-field Infrared Survey Explorer (WISE)-selected hyper-luminous, dust-obscured quasars (QSOs) with sensitive ALMA Band 3 observations. These obscured QSOs with L bol > 1014 L ⊙ are among the most luminous objects in the universe. All three QSO hosts are clearly detected both in continuum and in CO(4 ‑ 3) emission line. Based on CO(4 ‑ 3) emission line detection, we derive the molecular gas masses (∼1010‑11 M ⊙), suggesting that these QSOs are gas-rich systems. We find that the obscured QSOs in our sample follow the similar {L}CO}{\\prime }{--}{L}FIR} relation as unobscured QSOs at high redshifts. We also find the complex velocity structures of CO(4 ‑ 3) emission line, which provide the possible evidence for a gas-rich merger in W0149+2350 and possible molecular outflow in W0220+0137 and W0410‑0913. Massive molecular outflow can blow away the obscured interstellar medium and make obscured QSOs evolve toward the UV/optical bright, unobscured phase. Our result is consistent with the popular active galactic nucleus (AGN) feedback scenario involving the co-evolution between the supermassive black holes and host galaxy.

  12. The physical and chemical evolution of disks during planet formation

    NASA Astrophysics Data System (ADS)

    Gorti, Uma

    2018-06-01

    Protoplanetary disks evolve and disperse rapidly during the early stages of star and planet formation. While disks initially inherit a full complement of interstellar cloud material that is mainly accreted on to the central star, their gas and dust components appear to evolve along distinct pathways. Dust accumulates to form rocky planets, whereas only a small fraction of the available gas may be incorporated into gas giants in a typical exoplanetary system. However, the radial distribution of gas and its chemistry are expected to impact the architecture and composition of formed planets. Recent ALMA results have underscored the importance of ices and grain surface chemistry in disks, and their significance for planet formation. I will describe disk models that aim to probe the physical and chemical processes in the disk at various stages of evolution, and specifically discuss diagnostics of conditions in the innermost regions of disks which will become accessible for the first time with the launch of JWST. Current theoretical modeling is however hindered by many uncertainties in input parameters and poorly known chemical and physical processes. I will highlight some gaps in our current understanding, and discuss how laboratory astrophysics can help in preparing for the JWST era and aid in the interpretation of future line and continuum emission studies.

  13. POLYCYCLIC AROMATIC HYDROCARBON PROCESSING IN THE BLAST WAVE OF THE SUPERNOVA REMNANT N132D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappe, A.; Rho, J.; Boersma, C.

    2012-08-01

    We present Spitzer Infrared Spectrograph 14-36 {mu}m mapping observations of the supernova remnant N132D in the Large Magellanic Cloud. This study focuses on the processing of polycyclic aromatic hydrocarbons (PAHs) that we previously identified in the southern blast wave. The mid-infrared spectra show strong continuum emission from shock-heated dust and a unique, nearly featureless plateau in the 15-20 {mu}m region, which we attribute to PAH molecules. The typical PAH emission bands observed in the surrounding interstellar medium ahead of the blast wave disappear, which indicates shock processing of PAH molecules. The PAH plateau appears most strongly at the outer edgemore » of the blast wave and coincides with diffuse X-ray emission that precedes the brightest X-ray and optical filaments. This suggests that PAH molecules in the surrounding medium are swept up and processed in the hot gas of the blast wave shock, where they survive the harsh conditions long enough to be detected. We also observe a broad emission feature at 20 {mu}m appearing with the PAH plateau. We speculate that this feature is either due to FeO dust grains or connected to the processing of PAHs in the supernova blast wave shock.« less

  14. Disk mass determination through CO isotopologues

    NASA Astrophysics Data System (ADS)

    Miotello, Anna; Kama, Mihkel; van Dishoeck, Ewine

    2015-08-01

    One of the key properties for understanding how disks evolve to planetary systems is their overall mass, combined with their surface density distribution. So far, virtually all disk mass determinations are based on observations of the millimeter continuum dust emission.To derive the total gas + dust disk mass from these data involves however several big assumptions. The alternative method is to directly derive the gas mass through the detection of carbon monoxide (CO) and its less abundant isotopologues. CO chemistry is well studied and easily implemented in chemical models, provided that isotope-selective processes are properly accounted for.CO isotope-selective photodissociation was implemented for the first time in a full physical-chemical code in Miotello et al. (2014). The main result is that if isotope-selective effects are not considered in the data analysis, disk masses can be underestimated by an order of magnitude or more. For example, the mass discrepancy found for the renowned TW Hya disk may be explained or at least mitigated by this implementation. In this poster, we present new results for a large grid of disk models. We derive mass correction factors for different disk, stellar and grain properties in order to account for isotope-selective effects in analyzing ALMA data of CO isotopologues (Miotello et al., in prep.).

  15. A survey of the cold molecular gas in gravitationally lensed star-forming galaxies at z > 2

    NASA Astrophysics Data System (ADS)

    Aravena, M.; Spilker, J. S.; Bethermin, M.; Bothwell, M.; Chapman, S. C.; de Breuck, C.; Furstenau, R. M.; Gónzalez-López, J.; Greve, T. R.; Litke, K.; Ma, J.; Malkan, M.; Marrone, D. P.; Murphy, E. J.; Stark, A.; Strandet, M.; Vieira, J. D.; Weiss, A.; Welikala, N.; Wong, G. F.; Collier, J. D.

    2016-04-01

    Using the Australia Telescope Compact Array, we conducted a survey of CO J = 1 - 0 and J = 2 - 1 line emission towards strongly lensed high-redshift dusty star-forming galaxies (DSFGs) previously discovered with the South Pole Telescope (SPT). Our sample comprises 17 sources that had CO-based spectroscopic redshifts obtained with the Atacama Large Millimeter/submillimeter Array and the Atacama Pathfinder Experiment. We detect all sources with known redshifts in either CO J = 1 - 0 or J = 2 - 1. 12 sources are detected in the 7-mm continuum. The derived CO luminosities imply gas masses in the range (0.5-11) × 1010 M⊙ and gas depletion time-scales tdep < 200 Myr, using a CO to gas mass conversion factor αCO = 0.8 M⊙ (K km s-1 pc2)-1. Combining the CO luminosities and dust masses, along with a fixed gas-to-dust ratio, we derive αCO factors in the range 0.4-1.8 M⊙ (K km s-1 pc2)-1, similar to what is found in other starbursting systems. We find small scatter in αCO values within the sample, even though inherent variations in the spatial distribution of dust and gas in individual cases could bias the dust-based αCO estimates. We find that lensing magnification factors based on the CO linewidth to luminosity relation (μCO) are highly unreliable, but particularly when μ < 5. Finally, comparison of the gas and dynamical masses suggest that the average molecular gas fraction stays relatively constant at z = 2-5 in the SPT DSFG sample.

  16. [C ii] 158-μm emission from the host galaxies of damped Lyman-alpha systems.

    PubMed

    Neeleman, Marcel; Kanekar, Nissim; Prochaska, J Xavier; Rafelski, Marc; Carilli, Chris L; Wolfe, Arthur M

    2017-03-24

    Gas surrounding high-redshift galaxies has been studied through observations of absorption line systems toward background quasars for decades. However, it has proven difficult to identify and characterize the galaxies associated with these absorbers due to the intrinsic faintness of the galaxies compared with the quasars at optical wavelengths. Using the Atacama Large Millimeter/Submillimeter Array, we report on detections of [C ii] 158-μm line and dust-continuum emission from two galaxies associated with two such absorbers at a redshift of z ~ 4. Our results indicate that the hosts of these high-metallicity absorbers have physical properties similar to massive star-forming galaxies and are embedded in enriched neutral hydrogen gas reservoirs that extend well beyond the star-forming interstellar medium of these galaxies. Copyright © 2017, American Association for the Advancement of Science.

  17. The Host Galaxies of Nearby, Optically Luminous, AGN

    NASA Astrophysics Data System (ADS)

    Petric, Andreea

    2016-01-01

    Coevolution of galaxies and their central black holes (BH) has been the central theme of much of recent extragalactic astronomical research. Observations of the dynamics of stars and gas in the nuclear regions of nearby galaxies suggest that the majority of spheroidal galaxies in the local Universe contain massive BHs and that the masses of those central BH correlate with the velocity dispersions of the stars in the spheroid and the bulge luminosity. Cold ISM is the basic fuel for star-formation and BH growth so its study is essential to understanding how galaxies evolve.I will present high sensitivity observations taken with the Herschel Space Observatory to measure the cold dust content in a sample of 85 nearby (z <= 0.5) QSOs chosen from the optically luminous broad-line PG QSOs sample (QSO1s) and in a complementary sample of 85 narrow-line QSOs (QSO2s) chosen to match the redshift and optical luminosity distribution of the broad-line targets. The FIR data are combined with NIR and MIR measurements from the Two Micron All Sky Survey and the Wide-Field Infrared Survey Explorer to determine their IR spectral energy distributions which we use to assess and compare the aggregate dust properties of QSO1s and QSO2s. I will also present NIR spectroscopy obtained with Gemini's Near-Infrared Spectrograph of a sub-sample of QSO2s and QSO1s which I use to compare the ratio of cold to warm H2 gas that emits in the NIR in the hosts of QSO1s and QSO2s.Finally I will present a comparison of star-formation in QSO1s and QSO2s. For both QSO1s and QSO2s 3stimates of star-formation rates that are based on the total IR continuum emission correlate with those based on the 11.3 micron PAH feature. However, for the QSO1s, star-formation rates estimated from the FIR continuum are higher than those estimated from the 11.3 micron PAH emission. This result can be attributed to a variety of factors including the possible destruction of the PAHs and that, in some sources, a fraction of the FIR originates from dust heated by the active galactic nucleus and by old stars. For QSO2s the SFR derived from the 11.3 micron PAH feature match those derived from the 160micron emission.

  18. Molecular gas properties of a lensed star-forming galaxy at z 3.6: a case study

    NASA Astrophysics Data System (ADS)

    Dessauges-Zavadsky, M.; Zamojski, M.; Rujopakarn, W.; Richard, J.; Sklias, P.; Schaerer, D.; Combes, F.; Ebeling, H.; Rawle, T. D.; Egami, E.; Boone, F.; Clément, B.; Kneib, J.-P.; Nyland, K.; Walth, G.

    2017-09-01

    We report on the galaxy MACSJ0032-arc at zCO = 3.6314 discovered during the Herschel Lensing snapshot Survey of massive galaxy clusters, and strongly lensed by the cluster MACS J0032.1+1808. The successful detections of its rest-frame ultraviolet (UV), optical, far-infrared (FIR), millimeter, and radio continua, and of its CO emission enable us to characterize, for the first time at such a high redshift, the stellar, dust, and molecular gas properties of a compact star-forming galaxy with a size smaller than 2.5 kpc, a fairly low stellar mass of 4.8+ 0.5-1.0 × 109M⊙, and a moderate IR luminosity of 4.8+ 1.2-0.6 × 1011L⊙. By combining the stretching effect of the lens with the high angular resolution imaging of the CO(1-0) line emission and the radio continuum at 5 GHz, we find that the bulk of the molecular gas mass and star formation seems to be spatially decoupled from the rest-frame UV emission. About 90% of the total star formation rate is undetected at rest-frame UV wavelengths because of severe obscuration by dust, but is seen through the thermal FIR dust emission and the radio synchrotron radiation. The observed CO(4-3) and CO(6-5) lines demonstrate that high-J transitions, at least up to J = 6, remain excited in this galaxy, whose CO spectral line energy distribution resembles that of high-redshift submm galaxies, even though the IR luminosity of MACSJ0032-arc is ten times lower. This high CO excitation is possibly due to the compactness of the galaxy. We find evidence that this high CO excitation has to be considered in the balance when estimating the CO-to-H2 conversion factor. Indeed, the respective CO-to-H2 conversion factors as derived from the correlation with metallicity and the FIR dust continuum can only be reconciled if excitation is accounted for. The inferred depletion time of the molecular gas in MACSJ0032-arc supports the decrease in the gas depletion timescale of galaxies with redshift, although to a lesser degree than predicted by galaxy evolution models. Instead, the measured molecular gas fraction as high as 60-79% in MACSJ0032-arc favors the continued increase in the gas fraction of galaxies with redshift as expected, despite the plateau observed between z 1.5 and z 2.5. Based on observations carried out with the IRAM Plateau de Bure Interferometer, the IRAM 30 m telescope, and the NRAO Karl G. Jansky Very Large Array. The Institut de Radioastronomie Millimétrique (IRAM) is supported by CNRS/INSU (France), the MPG (Germany), and the IGN (Spain). The National Radio Astronomy Observatory (NRAO) is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

  19. Discovery of a red quasar with recurrent activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, S.; Baes, M.; Gentile, G.

    2014-07-01

    We report a new double-double radio quasar (DDRQ) J0746+4526 which exhibits two cycles of episodic activity. From radio continuum observations at 607 MHz using the Giant Metrewave Radio Telescope and 1400 MHz from the Faint Images of the Radio Sky at Twenty-cm survey we confirm its episodic nature. We examine the Sloan Digital Sky Survey (SDSS) optical spectrum and estimate the black hole mass to be (8.2 ± 0.3)×10{sup 7} M {sub ☉} from its observed Mg II emission line, and the Eddington ratio to be 0.03. The black hole mass is significantly smaller than for the other reported DDRQ,more » J0935+0204, while the Eddington ratios are comparable. The SDSS spectrum is significantly red-continuum-dominated, suggesting that it is highly obscured with E(B – V){sub host} = 0.70 ± 0.16 mag. This high obscuration further indicates the existence of a large quantity of dust and gas along the line of sight, which may have a key role in triggering the recurrent jet activity in such objects.« less

  20. Evidence for Periodicity in 43 year-long Monitoring of NGC 5548

    NASA Astrophysics Data System (ADS)

    Bon, E.; Zucker, S.; Netzer, H.; Marziani, P.; Bon, N.; Jovanović, P.; Shapovalova, A. I.; Komossa, S.; Gaskell, C. M.; Popović, L. Č.; Britzen, S.; Chavushyan, V. H.; Burenkov, A. N.; Sergeev, S.; La Mura, G.; Valdés, J. R.; Stalevski, M.

    2016-08-01

    We present an analysis of 43 years (1972 to 2015) of spectroscopic observations of the Seyfert 1 galaxy NGC 5548. This includes 12 years of new unpublished observations (2003 to 2015). We compiled about 1600 Hβ spectra and analyzed the long-term spectral variations of the 5100 Å continuum and the Hβ line. Our analysis is based on standard procedures, including the Lomb-Scargle method, which is known to be rather limited to such heterogeneous data sets, and a new method developed specifically for this project that is more robust and reveals a ˜5700 day periodicity in the continuum light curve, the Hβ light curve, and the radial velocity curve of the red wing of the Hβ line. The data are consistent with orbital motion inside the broad emission line region of the source. We discuss several possible mechanisms that can explain this periodicity, including orbiting dusty and dust-free clouds, a binary black hole system, tidal disruption events, and the effect of an orbiting star periodically passing through an accretion disk.

  1. Distant Jupiter family Comet P/2011 P1 (McNaught)

    NASA Astrophysics Data System (ADS)

    Korsun, Pavlo P.; Ivanova, Oleksandra V.; Afanasiev, Viktor L.; Kulyk, Irina V.

    2016-03-01

    The spectra and images obtained through broadband BVRc filters for Jupiter family Comet P/2011 P1 (McNaught) were analyzed. We observed the comet on November 24, 2011, when its heliocentric distance was 5.43 AU. Two dimensional long slit spectra and photometric images were obtained using the focal reducer SCORPIO attached to the prime focus of the 6-m telescope BTA (SAO RAS, Russia). The spectra cover the wavelength range of 4200-7000 Å. No emissions of C2 and CO+, which are expected in this wavelength region, were detected above 3σ level. An upper limit in gas production rate of C2 is expected to be 1.1 × 1024 mol s-1. The continuum shows a reddening effect with the normalized gradient of reflectivity along dispersion of 5.1 ± 1.2% per 1000 Å. The color indices (B-V) = 0.89 ± 0.09 and (V-Rc) = 0.42 ± 0.07 for the nucleus region or (B-V) = 0.68 ± 0.12 and (V-Rc) = 0.39 ± 0.10 for the coma region, which are derived from the photometric data, also evidence that the color of the cometary nucleus and dust are redder with respect to the Sun. The normalized gradients of 5.9 ± 2.9% per 1000 Å and 2.6 ± 1.9% per 1000 Å for VRc filters were obtained for the cometary nucleus and the dust coma, respectively. The estimated dust mass production rate is about 12 kg s-1 for Rc filter. The dust coma like a spiral galaxy edge-on was fitted using a Monte Carlo model. Since it is expected that the particles forming the dust coma consist of ;dirty; ice, Greenberg's model was adopted to track grains with an icy component that evaporates slowly when exposed to solar radiation. The observed coma was fitted assuming two isolated active zones located at the cometocentric latitudes of -8° and -35° with outflow of the dust within the cones having half opening angles of 8° and 70°, respectively. About, 45% and 55% of the observed dust were originated from the high collimated and low collimated active zones, respectively. The spin-axis of the rotating nucleus is positioned in the comet's orbit plane. The sizes of the dust particles were ranged from 5 μm to 1 mm with a power index of -3.0 for the adopted exponential dust size distribution.

  2. The Evolution of NR TrA (Nova TrA 2008) from 2008 through 2017

    NASA Astrophysics Data System (ADS)

    Walter, Frederick M.; Burwitz, Vadim; Kafka, Stella

    2018-06-01

    The classical nova NR TrA was discovered as an O-type optically-thick classical nova. There is no evidence that it formed dust. Within four years the envelope became sufficiently thin to reveal an eclipsing accretion disk-dominated system with orbitally-modulated permitted lines of C IV, N V, and O VI. XMM observations reveal a non-eclipsing soft X-ray source and a deeply-eclipsing UV continuum. We will present the first ten years of optical spectral evolution of this system accompanied by ten years of BVRIJHK photometry, with an eye to deciphering the current nature of the system.

  3. Radiative transfer in scattering stochastic atmospheres

    NASA Astrophysics Data System (ADS)

    Silant'ev, N. A.; Alekseeva, G. A.; Novikov, V. V.

    2017-12-01

    Many stars, active galactic nuclei, accretion discs etc. are affected by the stochastic variations of temperature, turbulent gas motions, magnetic fields, number densities of atoms and dust grains. These stochastic variations influence on the extinction factors, Doppler widths of lines and so on. The presence of many reasons for fluctuations gives rise to Gaussian distribution of fluctuations. The usual models leave out of account the fluctuations. In many cases the consideration of fluctuations improves the coincidence of theoretical values with the observed data. The objective of this paper is the investigation of the influence of the number density fluctuations on the form of radiative transfer equations. We consider non-magnetized atmosphere in continuum.

  4. NGC 3503 and its molecular environment

    NASA Astrophysics Data System (ADS)

    Duronea, N. U.; Vasquez, J.; Cappa, C. E.; Corti, M.; Arnal, E. M.

    2012-01-01

    Aims: We present a study of the molecular gas and interstellar dust distribution in the environs of the Hii region NGC 3503 associated with the open cluster Pis 17 with the aim of investigating the spatial distribution of the molecular gas linked to the nebula and achieving a better understanding of the interaction of the nebula and Pis 17 with their molecular environment. Methods: We based our study on 12CO(1-0) observations of a region of ~0.6° in size obtained with the 4-m NANTEN telescope, unpublished radio continuum data at 4800 and 8640 MHz obtained with the ATCA telescope, radio continuum data at 843 MHz obtained from SUMSS, and available IRAS, MSX, IRAC-GLIMPSE, and MIPSGAL images. Results: We found a molecular cloud (Component 1) having a mean velocity of -24.7 km s-1 ,compatible with the velocity of the ionized gas, which is associated with the nebula and its surroundings. Adopting a distance of 2.9 ± 0.4 kpc, the total molecular mass yields (7.6 ± 2.1) × 103M⊙ and density yields 400 ± 240 cm-3. The radio continuum data confirm the existence of an electron density gradient in NGC 3503. The IR emission shows a PDR bordering the higher density regions of the nebula. The spatial distribution of the CO emission shows that the nebula coincides with a molecular clump, and the strongest CO emission peak is located close to the higher electron density region. The more negative velocities of the molecular gas (about -27 km s-1), are coincident with NGC 3503. Candidate young stellar objects (YSOs) were detected toward the Hii region, suggesting that embedded star formation may be occurring in the neighborhood of the nebula. The clear electron density gradient, along with the spatial distribution of the molecular gas and PAHs in the region indicates that NGC 3503 is a blister-type Hii region that has probably undergone a champagne phase.

  5. A Mid-Infrared Study of the Circumstellar Dust Composition and Phase Behavior of Oxygen-rich Mira Variables

    NASA Astrophysics Data System (ADS)

    Guth, Tina

    2017-08-01

    The elements essential as building blocks of life, such as carbon and oxygen, have long been considered to come from exploding stars, known as supernovae. However, in the last several years, observations obtained with improved telescopes and instruments have shown that these heavier elements, i.e. elements beyond helium, are readily found in mass-loss products of stars called Asymptotic Giant Branch (AGB) stars. The sub-category of AGB stars that have regular pulsation periods of 200 - 500 days, called Mira variables, are of particular interest. These regular pulsators are quite bright in both the optical and infrared wavelengths, and exhibit large changes in magnitude that are easily observable. Studying their circumstellar dust environment allows astronomers to determine the presence of compounds, such as silicates and oxides, which are indicative of common elements found on Earth - oxygen, carbon, and silicon. Mira variables are dynamic stars, which implies that the circumstellar dust composition should change as the star goes through its pulsation cycle. In order to study the dust behavior with pulsational phase, repeated infrared observations were obtained with the Spitzer Space Telescope. This infrared, space-based telescope was launched in 2003 and carries the Infrared Spectrograph (IRS) instrument, which produces brightness versus wavelength, i.e. a spectrum (Houck et al., 2004). Due to the pulsation period of these stars, they were observed approximately monthly during the campaign run in 2008-9. This work focuses on the high-resolution data over a wavelength range of 9.8 - 40 microns because it provides a high signal-to-noise ratio and examines the part of the spectrum where dust features are most apparent. The full dataset obtained with Spitzer consists of 25 stars and covers nearly 100 spectra spanning all three chemical subclasses, however the focus of this dissertation is on investigating the dusty environment of oxygen-rich Mira variables. First, an identical data reduction process was applied to the dataset. To determine the dust composition in the circumstellar environment, the publically available 1-D radiative transfer modeling code, DUSTY (Ivezic et al., 1999), was implemented with key physical parameters, such as stellar temperature, inner dust boundary temperature, and optical depth, kept the same for all stars to help elucidate changes with phase. Because a simple blackbody fit does not adequately characterize the dust composition in the circumstellar environment, the 1-D hydrostatic, spherical local thermodynamic equilibrium (LTE) model grid code called MARCS was used (Gustafsson et al., 2008), which includes the molecular and atomic opacities that are characteristic of AGB spectra. MARCS only extends to a wavelength range of 20 micron, hence a power-law function is combined with the spectral energy distribution (SED) from MARCS to provide a reasonable source function for input in DUSTY. For the oxygen-rich Miras investigated, there are clear indications that the dust composition changes with phase over fairly short time scales, and that there are trends in the required dust species that correlate with the SE (silicate emission) classification (Sloan and Price, 1998) of the star. Iron oxide (FeO) is present in the dust composition of all stars, while aluminum oxide (Al2O3) shifts from being porous to compact for SE1-3 to SE7-8, respectively. The dust species pyroxene is only present in SE7-8 classes to account for a broad emission feature centered at 18 micron. The "13 micron feature", which is a well-known yet unidentified feature in the astronomical community is only present in SE1-4 classes, while completely absent in the other SE classes. In this work, the focus was not on identifying the 13 micron feature, though several constituents can be ruled out. Other dust constituents, such as water ice and sulfides, were considered but the shapes of their opacity curves do not fit with the observed features in the spectra. This study has shown several interesting and potentially unique results, such as changes in the dust continuum with phase over short timescales (i.e. roughly 30 days), the presence of iron oxide in all SE classes, and the appearance of a broad emission feature ranging from 19.5 micron to 25 micron in certain SE classes. Obtaining more phase sampling would help in cementing some of these results, while comparison to the other chemical subclasses in the study can provide insight in potential correlations between the subclasses. More detailed investigation into some of the "unique" features, such as the "13 micron feature", is presently limited due to availability of optical constant tables for other dust species.

  6. High-resolution continuum and Br (gamma) imaging observations of M82

    NASA Technical Reports Server (NTRS)

    Larkin, J. E.; Graham, J. R.; Matthews, K.; Soifer, B. T.; Beckwith, S.; Herbst, T. M.; Quillen, A. C.

    1994-01-01

    We report high angular resolution (about 0.6 sec), broad-band imaging at 1.2 microns (J band), 1.6 microns (H band), 2.2 microns (K band), and 3.7 microns (L' band) of the central 110 sec x 21 sec (1.65 kpc x 0.32 kpc) of the nearby starburst galaxy M82. We also present spectral imaging with 90 km/s resolution in the Br (gamma) (2.17 microns) hydrogen recombination line covering the central 16 sec x 16 sec (240 pc x 240 pc) of this edge-on, disk galaxy. The broad-band mosaics reveal two plateaus of emission indicative of an inner disk of stars and perhaps a larger bar structure. Color maps reveal an extinction ridge running along the central kiloparsec which is strongest at the nucleus and on the western side. The dust emission is more symmetric, suggesting that a dust lane is in front of the stellar population to the west of the nucleus, and behind the stars to the east; this is again suggestive of a stellar bar with leading dust lanes. Channel maps and a position-velocity image of the Br (gamma) reveal two lobes and are consistent with the interpretation that the ionized gas, and hence, the young massive stars are distributed in a toroid of H II regions surrounding the nucleus.

  7. The Dust-to-Gas Ratio in the Damped Ly alpha Clouds Towards the Gravitationally Lensed QSO 0957+561

    NASA Technical Reports Server (NTRS)

    Zuo, Lin; Beaver, E. A.; Burbidge, E. Margaret; Cohen, Ross D.; Junkkarinen, Vesa T.; Lyons, R. W.

    1997-01-01

    We present HST/FOS spectra of the two bright images (A and B) of the gravitationally lensed QSO 0957+561 in the wavelength range 2200-3300 A. We find that the absorption system (Z(sub abs)) = 1.3911) near z(sub em) is a weak, damped Ly alpha system with strong Ly alpha absorption lines seen in both images. However, the H(I) column densities are different, with the line of sight to image A intersecting a larger column density. The continuum shapes of the two spectra differ in the sense that the flux level of image A increases more slowly toward shorter wavelengths than that of image B. We explain this as the result of differential reddening by dust grains in the damped Ly alpha absorber. A direct outcome of this explanation is a determination of the dust-to-gas ratio, k, in the damped Ly alpha system. We derive k = 0.55 + 0.18 for a simple 1/lambda extinction law and k = 0.31 + 0.10 for the Galactic extinction curve. For gravitationally lensed systems with damped Ly alpha absorbers, our method is a powerful tool for determining the values and dispersion of k, and the shapes of extinction curves, especially in the FUV and EUV regions. We compare our results with previous work.

  8. Variations in Canonical Star-Forming Laws at Low Metallicity

    NASA Astrophysics Data System (ADS)

    Monkiewicz, Jacqueline; Bowman, Judd D.; Scowen, Paul

    2018-01-01

    Empirically-determined star formation relations link observed galaxy luminosities to extrapolated star formation rates at almost every observable wavelength range. These laws are a cornerstone of extragalactic astronomy, and will be critically important for interpreting upcoming observations of early high-redshift protogalaxies with JWST and WFIRST. There are indications at a variety of wavelengths that these canonical relations may become unreliable at the lowest metallicities observed. This potentially complicates interpretation of the earliest protogalaxies, which are expected to be pristine and largely unenriched by stellar nucleosynthesis. Using a sample of 15 local dwarf galaxies with 12+[O/H] < 8.2, I focus on two of these relations: the far-infrared/radio relation and the H-alpha/ultraviolet relation. The sample is chosen to have pre-existing far-IR and UV observations, and to span the full spread of the galaxy mass-metallicity relationship at low luminosity, so that luminosity and metallicity may be examined separately. Radio continuum observations of low metallicity dwarf galaxies 1 Zw 18 and SBS 0335-052E suggest that the far-IR/radio relation probably deviates at low metallicities, but the low luminosity end of the relation is not well sampled. The upgraded Jansky Very Large Array has the sensitivity to fill in this gap. I have obtained 45 hours of L- and C-band continuum data of my dwarf galaxy sample. I present radio continuum imaging of an initial sub-sample of Local Group dwarfs, some of which have never before been detected in radio continuum. The H-alpha/UV relationship is likewise known to become unreliable for dwarf galaxies, though this has been attributed to dwarf galaxy "bursty-ness" rather than metallicity effects. I have conducted a parallel survey of emission line imaging to study the underlying astrophysics of the H-alpha/UV relation. Using Balmer decrement imaging, I map out the pixel-to-pixel dust distribution and geometry within the nearest galaxies in my sample. I compare this to GALEX UV imaging. I discuss implications for UV escape fraction, and present initial results of the canonical star-forming relations at low galaxy luminosity and metallicity. THIS IS A POSTER AND WILL BE LOCATED IN THE AAS BOOTH.

  9. A Complete ALMA Map of the Fomalhaut Debris Disk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacGregor, Meredith A.; Wilner, David J.; Matrà, Luca

    We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 μ Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt an MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of 136.3 ± 0.9 au and width of 13.5 ± 1.8 au. We determine a best-fit eccentricity of 0.12more » ± 0.01. Assuming a size distribution power-law index of q = 3.46 ± 0.09, we constrain the dust absorptivity power-law index β to be 0.9 < β < 1.5. The geometry of the disk is robustly constrained with inclination 65.°6 ± 0.°3, position angle 337.°9 ± 0.°3, and argument of periastron 22.°5 ± 4.°3. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with Hubble Space Telescope , SCUBA, and ALMA. However, we cannot rule out structures ≤10 au in size or that only affect smaller grains. The central star is clearly detected with a flux density of 0.75 ± 0.02 mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.« less

  10. The Relationship Between Stellar Populations and Lyα Emission in Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine; Shapley, A. E.; Erb, D. K.; Steidel, C. C.; Reddy, N. A.; Pettini, M.; Bogosavljevic, M.

    2010-01-01

    We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ˜ 3 to investigate systematically the relationship between Lyα emission and stellar populations. Lyα equivalent widths (EWs) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lyα emission, where we designate the former group (EW ≥ 20 angstroms) as Lyα-emitters (LAEs) and the latter group (EW < 20 angstroms) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lyα equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lyα emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lyα emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lyα emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lyα photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture.

  11. The discrete regime of flame propagation

    NASA Astrophysics Data System (ADS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment available only on orbital platforms.

  12. The JCMT Gould Belt Survey: the effect of molecular contamination in SCUBA-2 observations of Orion A

    NASA Astrophysics Data System (ADS)

    Coudé, S.; Bastien, P.; Kirk, H.; Johnstone, D.; Drabek-Maunder, E.; Graves, S.; Hatchell, J.; Chapin, E. L.; Gibb, A. G.; Matthews, B.; JCMT Gould Belt Survey Team

    2016-04-01

    Thermal emission from cold dust grains in giant molecular clouds can be used to probe the physical properties, such as density, temperature and emissivity in star-forming regions. We present the Submillimetre Common-User Bolometer Array (SCUBA-2) shared-risk observations at 450 and 850 μm of the Orion A molecular cloud complex taken at the James Clerk Maxwell Telescope (JCMT). Previous studies showed that molecular emission lines can contribute significantly to the measured fluxes in those continuum bands. We use the Heterodyne Array Receiver Programme 12CO J = 3-2 integrated intensity map for Orion A in order to evaluate the molecular line contamination and its effects on the SCUBA-2 maps. With the corrected fluxes, we have obtained a new spectral index α map for the thermal emission of dust in the well-known integral-shaped filament. Furthermore, we compare a sample of 33 sources, selected over the Orion A molecular cloud complex for their high 12CO J = 3-2 line contamination, to 27 previously identified clumps in OMC 4. This allows us to quantify the effect of line contamination on the ratio of 850-450 μm flux densities and how it modifies the deduced spectral index of emissivity β for the dust grains. We also show that at least one Spitzer-identified protostellar core in OMC 5 has a 12CO J = 3-2 contamination level of 16 per cent. Furthermore, we find the strongest contamination level (44 per cent) towards a young star with disc near OMC 2. This work is part of the JCMT Gould Belt Legacy Survey.

  13. Bi-Abundance Ionisation Structure of the Wolf-Rayet Planetary Nebula PB 8

    NASA Astrophysics Data System (ADS)

    Danehkar, A.

    2018-01-01

    The planetary nebula PB 8 around a [WN/WC]-hybrid central star is one of planetary nebulae with moderate abundance discrepancy factors (ADFs 2-3), which could be an indication of a tiny fraction of metal-rich inclusions embedded in the nebula (bi-abundance). In this work, we have constructed photoionisation models to reproduce the optical and infrared observations of the planetary nebula PB 8 using a non-LTE stellar model atmosphere ionising source. A chemically homogeneous model initially used cannot predict the optical recombination lines. However, a bi-abundance model provides a better fit to most of the observed optical recombination lines from N and O ions. The metal-rich inclusions in the bi-abundance model occupy 5.6% of the total volume of the nebula, and are roughly 1.7 times cooler and denser than the mean values of the surrounding nebula. The N/H and O/H abundance ratios in the metal-rich inclusions are 1.0 and 1.7 dex larger than the diffuse warm nebula, respectively. To reproduce the Spitzer spectral energy distribution of PB 8, dust grains with a dust-to-gas ratio of 0.01 (by mass) were also included. It is found that the presence of metal-rich inclusions can explain the heavy element optical recombination lines, while a dual-dust chemistry with different grain species and discrete grain sizes likely produces the infrared continuum of this planetary nebula. This study demonstrates that the bi-abundance hypothesis, which was examined in a few planetary nebulae with large abundance discrepancies (ADFs > 10), could also be applied to those typical planetary nebulae with moderate abundance discrepancies.

  14. ASPHERICITY, INTERACTION, AND DUST IN THE TYPE II-P/II-L SUPERNOVA 2013EJ IN MESSIER 74

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauerhan, Jon C.; Graham, Melissa L.; Filippenko, Alexei V.

    2017-01-10

    SN 2013ej is a well-studied core-collapse supernova (SN) that stemmed from a directly identified red supergiant (RSG) progenitor in galaxy M74. The source exhibits signs of substantial geometric asphericity, X-rays from persistent interaction with circumstellar material (CSM), thermal emission from warm dust, and a light curve that appears intermediate between supernovae of Types II-P and II-L. The proximity of this source motivates a close inspection of these physical characteristics and their potential interconnection. We present multiepoch spectropolarimetry of SN 2013ej during the first 107 days and deep optical spectroscopy and ultraviolet through infrared photometry past ∼800 days. SN 2013ej exhibitsmore » the strongest and most persistent continuum and line polarization ever observed for a SN of its class during the recombination phase. Modeling indicates that the data are consistent with an oblate ellipsoidal photosphere, viewed nearly edge-on and probably augmented by optical scattering from circumstellar dust. We suggest that interaction with an equatorial distribution of CSM, perhaps the result of binary evolution, is responsible for generating the photospheric asphericity. Relatedly, our late-time optical imaging and spectroscopy show that asymmetric CSM interaction is ongoing, and the morphology of broad H α emission from shock-excited ejecta provides additional evidence that the geometry of the interaction region is ellipsoidal. Alternatively, a prolate ellipsoidal geometry from an intrinsically bipolar explosion is also a plausible interpretation of the data but would probably require a ballistic jet of radioactive material capable of penetrating the hydrogen envelope early in the recombination phase. Finally, our latest space-based optical imaging confirms that the late interaction-powered light curve dropped below the stellar progenitor level, confirming the RSG star’s association with the explosion.« less

  15. Physical and chemical properties of Red MSX Sources in the southern sky: H II regions

    NASA Astrophysics Data System (ADS)

    Yu, Naiping; Wang, Jun-Jie; Li, Nan

    2015-01-01

    We have studied the physical and chemical properties of 18 southern Red Midcourse Space Experiment Sources (RMSs), using archival data taken from the Atacama Pathfinder Experiment (APEX) Telescope Large Area Survey of the Galaxy, the Australia Telescope Compact Array, and the Millimeter Astronomy Legacy Team Survey at 90 GHz. Most of our sources have simple cometary/unresolved radio emissions at 4.8 and/or 8.6GHz. The large number of Lyman continuum fluxes (NL) indicates they are probably massive O- or early B-type star formation regions. Archival IRAS infrared data are used to estimate the dust temperature, which is about 30 K of our sources. Then, the H2 column densities and the volume-averaged H2 number densities are estimated using the 870 μm dust emissions. Large-scale infall and ionized accretions may be occurring in G345.4881+00.3148. We also attempt to characterize the chemical properties of these RMSs through molecular line (N2H+ (1-0) and HCO+ (1-0)) observations. Most of the detected N2H+ and HCO+ emissions match well with the dust emission, implying a close link to their chemical evolution in the RMSs. We found that the abundance of N2H+ is one order of magnitude lower than that in other surveys of infrared dark clouds, and a positive correlation between the abundances of N2H+ and HCO+. The fractional abundance of N2H+ with respect to H2 seems to decrease as a function of NL. These observed trends could be interpreted as an indication of enhanced destruction of N2H+, either by CO or through dissociative recombination with electrons produced by central UV photons.

  16. WHAT IS CONTROLLING THE FRAGMENTATION IN THE INFRARED DARK CLOUD G14.225–0.506?: DIFFERENT LEVELS OF FRAGMENTATION IN TWIN HUBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busquet, Gemma; Girart, Josep Miquel; Estalella, Robert

    We present observations of the 1.3 mm continuum emission toward hub-N and hub-S of the infrared dark cloud G14.225–0.506 carried out with the Submillimeter Array, together with observations of the dust emission at 870 and 350 μm obtained with APEX and CSO telescopes. The large-scale dust emission of both hubs consists of a single peaked clump elongated in the direction of the associated filament. At small scales, the SMA images reveal that both hubs fragment into several dust condensations. The fragmentation level was assessed under the same conditions and we found that hub-N presents 4 fragments while hub-S is moremore » fragmented, with 13 fragments identified. We studied the density structure by means of a simultaneous fit of the radial intensity profile at 870 and 350 μm and the spectral energy distribution adopting a Plummer-like function to describe the density structure. The parameters inferred from the model are remarkably similar in both hubs, suggesting that density structure could not be responsible for determining the fragmentation level. We estimated several physical parameters, such as the level of turbulence and the magnetic field strength, and we found no significant differences between these hubs. The Jeans analysis indicates that the observed fragmentation is more consistent with thermal Jeans fragmentation compared with a scenario in which turbulent support is included. The lower fragmentation level observed in hub-N could be explained in terms of stronger UV radiation effects from a nearby H ii region, evolutionary effects, and/or stronger magnetic fields at small scales, a scenario that should be further investigated.« less

  17. ISM Dust Grains and N-band Spectral Variability in the Spatially Resolved Subarcsecond Binary UY Aur

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Greene, Thomas P.; Males, Jared R.; Beck, Tracy L.

    2010-03-01

    The 10 μm silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries (lsim3''; <~ 420 AU) at the distances of the nearest star-forming regions (~140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0farcs88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR, and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk. The observations reported here were partially obtained at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program.

  18. Interaction of N-vortex structures in a continuum, including atmosphere, hydrosphere and plasma

    NASA Astrophysics Data System (ADS)

    Belashov, Vasily Yu.

    2017-10-01

    The results of analysis and numerical simulation of evolution and interaction of the N-vortex structures of various configuration and different vorticities in the continuum including atmosphere, hydrosphere and plasma are presented. It is found that in dependence on initial conditions the regimes of weak interaction with quasi-stationary evolution and active interaction with the "phase intermixing", when the evolution can lead to formation of complex forms of vorticity regions, are realized in the N-vortex systems. For the 2-vortex interaction the generalized critical parameter determining qualitative character of interaction of vortices is introduced. It is shown that for given initial conditions its value divides modes of active interaction and quasi-stationary evolution. The results of simulation of evolution and interaction of the two-dimensional and three-dimensional vortex structures, including such phenomena as dynamics of the atmospheric synoptic vortices of cyclonic types and tornado, hydrodynamic 4-vortex interaction and also interaction in the systems of a type of "hydrodynamic vortex - dust particles" are presented. The applications of undertaken approach to the problems of such plasma systems as streams of charged particles in a uniform magnetic field B and plasma clouds in the ionosphere are considered. It is shown that the results obtained have obvious applications in studies of the dynamics of the vortex structures dynamics in atmosphere, hydrosphere and plasma.

  19. Millimeter and Submillimeter Survey of the R Coronae Australis Region

    NASA Astrophysics Data System (ADS)

    Groppi, Christopher E.; Kulesa, Craig; Walker, Christopher; Martin, Christopher L.

    2004-09-01

    Using a combination of data from the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO), the Arizona Radio Observatory Kitt Peak 12 m telescope, and the Arizona Radio Observatory 10 m Heinrich Hertz Telescope, we have studied the most active part of the R CrA molecular cloud in multiple transitions of carbon monoxide, HCO+, and 870 μm continuum emission. Since R CrA is nearby (130 pc), we are able to obtain physical spatial resolution as high as 0.01 pc over an area of 0.16 pc2, with velocity resolution finer than 1 km s-1. Mass estimates of the protostar driving the millimeter-wave emission derived from HCO+, dust continuum emission, and kinematic techniques point to a young, deeply embedded protostar of ~0.5-0.75 Msolar, with a gaseous envelope of similar mass. A molecular outflow is driven by this source that also contains at least 0.8 Msolar of molecular gas with ~0.5 Lsolar of mechanical luminosity. HCO+ lines show the kinematic signature of infall motions, as well as bulk rotation. The source is most likely a Class 0 protostellar object not yet visible at near-IR wavelengths. With the combination of spatial and spectral resolution in our data set, we are able to disentangle the effects of infall, rotation, and outflow toward this young object.

  20. Discovery of polarized light scattered by dust around Alpha Orionis

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. S.; Tapia, S.

    1978-01-01

    Following the suggestion by Jura and Jacoby (1976), linearly polarized blue continuum starlight scattered by the dust shell around the M2 Iab star Alpha Orionis (Betelgeuse) has been discovered. The polarization has been traced in the NE, NW, SE, and SW directions and has positive (tangential) orientation. Some asymmetry of the optical depth in the shell exists 15 and 30 arcsec from the star. In the NE direction the polarization was measured as far as 90 arcsec (17,000 AU) from the star. The dependence of the average intensity of the scattered light from the nebula on angular distance from the star is more consistent with an inverse-square density law than with inverse 1.5 or inverse-cube laws. Assuming that the density is proportional to the inverse square of distance from the star, the scattering optical depth in blue light along a radius of 0.03 arcsec is no more than 0.15 + or - 0.05. Future observations of the wavelength dependence of polarization will allow a determination of grain size.

  1. Observations of faint comets with the IUE

    NASA Astrophysics Data System (ADS)

    Festou, M.

    1982-06-01

    Spectral observations of eight comets, including seven periodic comets, made in the range 1150-3400 A with the IUE satellite are presented. Comet Bradfield, the sole nonperiodic comet observed, is found to exhibit strong OH and atomic hydrogen emissions from the decomposition of water, along with oxygen, carbon, sulfur, carbon disulfide, C2 and CO2(plus) emissions and a faint continuum due to dust at longer wavelengths. Comets Encke, Tuttle and Stefan-Oterma appear to have identical spectra in the UV, showing evidence of much gas, little dust and few ions (only CO2(plus) detected), and differing from comet Bradfield only in the lack of C2 emission. All eight comets observed by IUE, including Seargent, Meier, Borrelly and Panther, had the same chemical composition, consisting mainly of water with a few per mil or per cent CN, C2, C3 and CS. The water production rates of the periodic comets range from levels 6 times less to 11 times more than that of Comet Bradfield, which may be related to nuclear size or cometary age.

  2. The energetics and mass structure of regions of star formation: S201

    NASA Technical Reports Server (NTRS)

    Thronson, H. A., Jr.; Smith, H. A.; Lada, C. J.; Glaccum, W.; Harper, D. A.; Loewenstein, R. F.; Smith, J.

    1984-01-01

    Theoretical predictions about dust and gas in star forming regions are tested by observing a 4 arcmin region surrounding the radio continuum source in 5201. The object was mapped in two far infrared wavelengths and found to show significant extended emission. Under the assumption that the molecular gas is heated solely via thermal coupling with the dust, the volume density was mapped in 5201. The ratios of infrared optical depth to CO column density were calculated for a number of positions in the source. Near the center of the cloud the values are found to be in good agreement with other determinations for regions with lower column density. In addition, the observations suggest significant molecular destruction in the outer parts of the object. Current models of gas heating were used to calculate a strong limit for the radius of the far infrared emitting grains, equal to or less than 0.15 micron. Grains of about this size are required by the observation of high temperature (T equal to or greater than 20 K) gas in many sources.

  3. The evolution of hydrocarbons past the asymptotic giant branch: the case of MSX SMC 029

    NASA Astrophysics Data System (ADS)

    Pauly, Tyler; Sloan, Gregory C.; Kraemer, Kathleen E.; Bernard-Salas, Jeronimo; Lebouteiller, Vianney; Goes, Christopher; Barry, Donald

    2015-01-01

    We present an optimally extracted high-resolution spectrum of MSX SMC 029 obtained by the Infrared Spectrograph on the Spitzer Space Telescope. MSX SMC 029 is a carbon-rich object in the Small Magellanic Cloud that has evolved past the asymptotic giant branch (AGB). The spectrum reveals a cool carbon-rich dust continuum with emission from polycyclic aromatic hydrocarbons (PAHs) and absorption from simpler hydrocarbons, both aliphatic and aromatic, including acetylene and benzene. The spectrum shows many similarities to the carbon-rich post-AGB objects SMP LMC 011 in the Large Magellanic Cloud and AFGL 618 in the Galaxy. Both of these objects also show infrared absorption features from simple hydrocarbons. All three spectra lack strong atomic emission lines in the infrared, indicating that we are observing the evolution of carbon-rich dust and free hydrocarbons in objects between the AGB and planetary nebulae. These three objects give us a unique view of the elusive phase when hydrocarbons exist both as relatively simple molecules and the much more complex and ubiquitous PAHs. We may be witnessing the assembly of amorphous carbon into PAHs.

  4. THE TYPE Ia SUPERNOVA RATE IN RADIO AND INFRARED GALAXIES FROM THE CANADA-FRANCE-HAWAII TELESCOPE SUPERNOVA LEGACY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graham, M. L.; Pritchet, C. J.; Balam, D.

    2010-02-15

    We have combined the large SN Ia database of the Canada-France-Hawaii Telescope Supernova Legacy Survey and catalogs of galaxies with photometric redshifts, Very Large Array 1.4 GHz radio sources, and Spitzer infrared sources. We present eight SNe Ia in early-type host galaxies which have counterparts in the radio and infrared source catalogs. We find the SN Ia rate in subsets of radio and infrared early-type galaxies is {approx}1-5 times the rate in all early-type galaxies, and that any enhancement is always {approx}<2{sigma}. Rates in these subsets are consistent with predictions of the two-component 'A+B' SN Ia rate model. Since infraredmore » properties of radio SN Ia hosts indicate dust-obscured star formation, we incorporate infrared star formation rates into the 'A+B' model. We also show the properties of SNe Ia in radio and infrared galaxies suggest the hosts contain dust and support a continuum of delay time distributions (DTDs) for SNe Ia, although other DTDs cannot be ruled out based on our data.« less

  5. Investigation of Dual Active Nuclei, Outflows, Shock-heated Gas, and Young Star Clusters in Markarian 266

    NASA Astrophysics Data System (ADS)

    Mazzarella, J. M.; Iwasawa, K.; Vavilkin, T.; Armus, L.; Kim, D.-C.; Bothun, G.; Evans, A. S.; Spoon, H. W. W.; Haan, S.; Howell, J. H.; Lord, S.; Marshall, J. A.; Ishida, C. M.; Xu, C. K.; Petric, A.; Sanders, D. B.; Surace, J. A.; Appleton, P.; Chan, B. H. P.; Frayer, D. T.; Inami, H.; Khachikian, E. Ye.; Madore, B. F.; Privon, G. C.; Sturm, E.; U, Vivian; Veilleux, S.

    2012-11-01

    Results of observations with the Spitzer, Hubble, GALEX, Chandra, and XMM-Newton space telescopes are presented for the luminous infrared galaxy (LIRG) merger Markarian 266. The SW (Seyfert 2) and NE (LINER) nuclei reside in galaxies with Hubble types SBb (pec) and S0/a (pec), respectively. Both companions are more luminous than L* galaxies and they are inferred to each contain a ≈2.5 × 108 M ⊙ black hole. Although the nuclei have an observed hard X-ray flux ratio of fX (NE)/fX (SW) = 6.4, Mrk 266 SW is likely the primary source of a bright Fe Kα line detected from the system, consistent with the reflection-dominated X-ray spectrum of a heavily obscured active galactic nucleus (AGN). Optical knots embedded in an arc with aligned radio continuum radiation, combined with luminous H2 line emission, provide evidence for a radiative bow shock in an AGN-driven outflow surrounding the NE nucleus. A soft X-ray emission feature modeled as shock-heated plasma with T ~ 107 K is cospatial with radio continuum emission between the galaxies. Mid-infrared diagnostics provide mixed results, but overall suggest a composite system with roughly equal contributions of AGN and starburst radiation powering the bolometric luminosity. Approximately 120 star clusters have been detected, with most having estimated ages less than 50 Myr. Detection of 24 μm emission aligned with soft X-rays, radio continuum, and ionized gas emission extending ~34'' (20 kpc) north of the galaxies is interpreted as ~2 × 107 M ⊙ of dust entrained in an outflowing superwind. At optical wavelengths this Northern Loop region is resolved into a fragmented morphology indicative of Rayleigh-Taylor instabilities in an expanding shell of ionized gas. Mrk 266 demonstrates that the dust "blow-out" phase can begin in a LIRG well before the galaxies fully coalesce during a subsequent ultraluminous infrared galaxy (ULIRG) phase, and rapid gas consumption in luminous dual AGNs with kiloparsec-scale separations early in the merger process may explain the paucity of detected binary QSOs (with parsec-scale orbital separations) in spectroscopic surveys. An evolutionary sequence is proposed representing a progression from dual to binary AGNs, accompanied by an increase in observed Lx /L ir ratios by over two orders of magnitude.

  6. A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Third Data Release

    NASA Astrophysics Data System (ADS)

    Trump, Jonathan R.; Hall, Patrick B.; Reichard, Timothy A.; Richards, Gordon T.; Schneider, Donald P.; Vanden Berk, Daniel E.; Knapp, Gillian R.; Anderson, Scott F.; Fan, Xiaohui; Brinkman, J.; Kleinman, S. J.; Nitta, Atsuko

    2006-07-01

    We present a total of 4784 unique broad absorption line quasars from the Sloan Digital Sky Survey Third Data Release. An automated algorithm was used to match a continuum to each quasar and to identify regions of flux at least 10% below the continuum over a velocity range of at least 1000 km s-1 in the C IV and Mg II absorption regions. The model continuum was selected as the best-fit match from a set of template quasar spectra binned in luminosity, emission line width, and redshift, with the power-law spectral index and amount of dust reddening as additional free parameters. We characterize our sample through the traditional ``balnicity'' index and a revised absorption index, as well as through parameters such as the width, outflow velocity, fractional depth, and number of troughs. From a sample of 16,883 quasars at 1.7<=z<=4.38, we identify 4386 (26.0%) quasars with broad C IV absorption, of which 1756 (10.4%) satisfy traditional selection criteria. From a sample of 34,973 quasars at 0.5<=z<=2.15, we identify 457 (1.31%) quasars with broad Mg II absorption, 191 (0.55%) of which satisfy traditional selection criteria. We also provide a supplementary list of 39 visually identified z>4.38 quasars with broad C IV absorption. We find that broad absorption line quasars may have broader emission lines on average than other quasars.

  7. The dense gas mass fraction of molecular clouds in the Milky Way

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battisti, Andrew J.; Heyer, Mark H., E-mail: abattist@astro.umass.edu, E-mail: heyer@astro.umass.edu

    2014-01-10

    The mass fraction of dense gas within giant molecular clouds (GMCs) of the Milky Way is investigated using {sup 13}CO data from the Five College Radio Astronomy Observatory Galactic Plane Surveys and the Bolocam Galactic Plane Survey (BGPS) of 1.1 mm dust continuum emission. A sample of 860 compact dust sources are selected from the BGPS catalog and kinematically linked to 344 clouds of extended (>3') {sup 13}CO J = 1-0 emission. Gas masses are tabulated for the full dust source and subregions within the dust sources with mass surface densities greater than 200 M {sub ☉} pc{sup –2}, whichmore » are assumed to be regions of enhanced volume density. Masses of the parent GMCs are calculated assuming optically thin {sup 13}CO J = 1-0 emission and local thermodynamic equilibrium conditions. The mean fractional mass of dust sources to host GMC mass is 0.11{sub −0.06}{sup +0.12}. The high column density subregions comprise 0.07{sub −0.05}{sup +0.13} of the mass of the cloud. Owing to our assumptions, these values are upper limits to the true mass fractions. The fractional mass of dense gas is independent of GMC mass and gas surface density. The low dense gas mass fraction suggests that the formation of dense structures within GMCs is the primary bottleneck for star formation. The distribution of velocity differences between the dense gas and the low density material along the line of sight is also examined. We find a strong, centrally peaked distribution centered on zero velocity displacement. This distribution of velocity differences is modeled with radially converging flows toward the dense gas position that are randomly oriented with respect to the observed line of sight. These models constrain the infall velocities to be 2-4 km s{sup –1} for various flow configurations.« less

  8. The physical and chemical structure of Sagittarius B2. II. Continuum millimeter emission of Sgr B2(M) and Sgr B2(N) with ALMA

    NASA Astrophysics Data System (ADS)

    Sánchez-Monge, Á.; Schilke, P.; Schmiedeke, A.; Ginsburg, A.; Cesaroni, R.; Lis, D. C.; Qin, S.-L.; Müller, H. S. P.; Bergin, E.; Comito, C.; Möller, Th.

    2017-07-01

    Context. The two hot molecular cores Sgr B2(M) and Sgr B2(N), which are located at the center of the giant molecular cloud complex Sagittarius B2, have been the targets of numerous spectral line surveys, revealing a rich and complex chemistry. Aims: We seek to characterize the physical and chemical structure of the two high-mass star-forming sites Sgr B2(M) and Sgr B2(N) using high-angular resolution observations at millimeter wavelengths, reaching spatial scales of about 4000 au. Methods: We used the Atacama Large Millimeter/submillimeter Array (ALMA) to perform an unbiased spectral line survey of both regions in the ALMA band 6 with a frequency coverage from 211 GHz to 275 GHz. The achieved angular resolution is 0.̋4, which probes spatial scales of about 4000 au, I.e., able to resolve different cores and fragments. In order to determine the continuum emission in these line-rich sources, we used a new statistical method, STATCONT, which has been applied successfully to this and other ALMA datasets and to synthetic observations. Results: We detect 27 continuum sources in Sgr B2(M) and 20 sources in Sgr B2(N). We study the continuum emission variation across the ALMA band 6 (I.e., spectral index) and compare the ALMA 1.3 mm continuum emission with previous SMA 345 GHz and VLA 40 GHz observations to study the nature of the sources detected. The brightest sources are dominated by (partially optically thick) dust emission, while there is an important degree of contamination from ionized gas free-free emission in weaker sources. While the total mass in Sgr B2(M) is distributed in many fragments, most of the mass in Sgr B2(N) arises from a single object, with filamentary-like structures converging toward the center. There seems to be a lack of low-mass dense cores in both regions. We determine H2 volume densities for the cores of about 107-109 cm-3 (or 105-107 M⊙ pc-3), I.e., one to two orders of magnitude higher than the stellar densities of super star clusters. We perform a statistical study of the chemical content of the identified sources. In general, Sgr B2(N) is chemically richer than Sgr B2(M). The chemically richest sources have about 100 lines per GHz and the fraction of luminosity contained in spectral lines at millimeter wavelengths with respect to the total luminosity is about 20%-40%. There seems to be a correlation between the chemical richness and the mass of the fragments, where more massive clumps are more chemically rich. Both Sgr B2(N) and Sgr B2(M) harbor a cluster of hot molecular cores. We compare the continuum images with predictions from a detailed 3D radiative transfer model that reproduces the structure of Sgr B2 from 45 pc down to 100 au. Conclusions: This ALMA dataset, together with other ongoing observational projects in the range 5 GHz to 200 GHz, better constrain the 3D structure of Sgr B2 and allow us to understand its physical and chemical structure. FITS files of the continuum images as well as the spectral index are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A6

  9. The composite nature of Dust-Obscured Galaxies (DOGs) at z ˜ 2-3 in the COSMOS field - I. A far-infrared view

    NASA Astrophysics Data System (ADS)

    Riguccini, L.; Le Floc'h, E.; Mullaney, J. R.; Menéndez-Delmestre, K.; Aussel, H.; Berta, S.; Calanog, J.; Capak, P.; Cooray, A.; Ilbert, O.; Kartaltepe, J.; Koekemoer, A.; Lutz, D.; Magnelli, B.; McCracken, H.; Oliver, S.; Roseboom, I.; Salvato, M.; Sanders, D.; Scoville, N.; Taniguchi, Y.; Treister, E.

    2015-09-01

    Dust-Obscured Galaxies (DOGs) are bright 24 μm-selected sources with extreme obscuration at optical wavelengths. They are typically characterized by a rising power-law continuum of hot dust (TD ˜ 200-1000 K) in the near-IR indicating that their mid-IR luminosity is dominated by an active galactic nucleus (AGN). DOGs with a fainter 24 μm flux display a stellar bump in the near-IR and their mid-IR luminosity appears to be mainly powered by dusty star formation. Alternatively, it may be that the mid-IR emission arising from AGN activity is dominant but the torus is sufficiently opaque to make the near-IR emission from the AGN negligible with respect to the emission from the host component. In an effort to characterize the astrophysical nature of the processes responsible for the IR emission in DOGs, this paper exploits Herschel data (PACS + SPIRE) on a sample of 95 DOGs within the COSMOS field. We derive a wealth of far-IR properties (e.g. total IR luminosities; mid-to-far-IR colours; dust temperatures and masses) based on spectral energy distribution fitting. Of particular interest are the 24 μm-bright DOGs (F24 μm > 1 mJy). They present bluer far-IR/mid-IR colours than the rest of the sample, unveiling the potential presence of an AGN. The AGN contribution to the total 8-1000 μm flux increases as a function of the rest-frame 8 μm-luminosity irrespective of the redshift. This confirms that faint DOGs (L8 μm < 1012 L⊙) are dominated by star formation while brighter DOGs show a larger contribution from an AGN.

  10. Hyperactivity and Dust Composition of Comet 103P/Hartley 2 During the EPOXI Encounter

    NASA Astrophysics Data System (ADS)

    Harker, David E.; Woodward, Charles E.; Kelley, Michael S. P.; Wooden, Diane H.

    2018-05-01

    Short-period comet 103P/Hartley 2 (103P) was the flyby target of the Deep Impact eXtended Investigation on 2010 November 4 UT. This comet has a small hyperactive nucleus, i.e., it has a high water production rate for its surface area. The underlying cause of the hyperactivity is unknown; the relative abundances of volatiles in the coma of 103P are not unusual. However, the dust properties of this comet have not been fully explored. We present four epochs of mid-infrared spectra and images of comet 103P observed from Gemini-South +T-ReCS on 2010 November 5, 7, 21 and December 13 UT, near and after the spacecraft encounter. Comet 103P exhibited a weak 10 μm emission feature ≃1.14 ± 0.01 above the underlying local 10 μm continuum. Thermal dust grain modeling of the spectra shows the grain composition (mineralogy) was dominated by amorphous carbon and amorphous pyroxene with evidence for Mg-rich crystalline olivine. The grain size has a peak grain radius range of a peak ∼ 0.5–0.9 μm. On average, the crystalline silicate mass fraction is ≃0.24, fairly typical of other short-period comets. In contrast, the silicate-to-carbon ratio of ≃0.48–0.64 is lower compared to other short-period comets, which indicates that the flux measured in the 10 μm region of 103P was dominated by amorphous carbon grains. We conclude that the hyperactivity in comet 103P is not revealing dust properties similar to the small grains seen with the Deep Impact experiment on comet 9P/Tempel 1 or from comet C/1995 O1 (Hale–Bopp).

  11. Polycyclic Aromatic Hydrocarbon Emission Toward the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Shannon, M. J.; Peeters, E.; Cami, J.; Blommaert, J. A. D. L.

    2018-03-01

    We examine polycyclic aromatic hydrocarbon (PAH), dust, and atomic/molecular emission toward the Galactic bulge using Spitzer Space Telescope observations of four fields: C32, C35, OGLE, and NGC 6522. These fields are approximately centered on (l, b) = (0.°0, 1.°0), (0.°0, ‑1.°0), (0.°4, ‑2.°4), and (1.°0, ‑3.°8), respectively. Far-infrared photometric observations complement the Spitzer/IRS spectroscopic data and are used to construct spectral energy distributions. We find that the dust and PAH emission are exceptionally similar between C32 and C35 overall, in part explained due to their locations—they reside on or near boundaries of a 7 Myr old Galactic outflow event and are partly shock-heated. Within the C32 and C35 fields, we identify a region of elevated Hα emission that is coincident with elevated fine-structure and [O IV] line emission and weak PAH feature strengths. We are likely tracing a transition zone of the outflow into the nascent environment. PAH abundances in these fields are slightly depressed relative to typical ISM values. In the OGLE and NGC 6522 fields, we observe weak features on a continuum dominated by zodiacal dust. SED fitting indicates that thermal dust grains in C32 and C35 have temperatures comparable to those of diffuse, high-latitude cirrus clouds. Little variability is detected in the PAH properties between C32 and C35, indicating that a stable population of PAHs dominates the overall spectral appearance. In fact, their PAH features are exceptionally similar to that of the M82 superwind, emphasizing that we are probing a local Galactic wind environment.

  12. Blazar Sheath Illumination of the Outer Molecular Torus: A Resolution of the Seed Photon Problem for the Far-GeV Blazar Flares

    NASA Astrophysics Data System (ADS)

    Breiding, Peter; Georganopoulos, Markos; Meyer, Eileen T.

    2018-01-01

    Recent multiwavelength work led by the Boston University blazar group (e.g., Marscher et al.) strongly suggests that a fraction of the blazar flares seen by the Fermi Large Area Telescope (LAT) take place a few to several pc away from the central engine. However, at such distances from the central engine, there is no adequate external photon field to provide the seed photons required for producing the observed GeV emission under leptonic inverse Compton (IC) models. A possible solution is a spine-sheath geometry for the emitting region (MacDonald et al., but see Nalewajko et al.). Here we use the current view of the molecular torus (e.g., Elitzur; Netzer), in which the torus extends a few pc beyond the dust sublimation radius with dust clouds distributed with a declining density for decreasing polar angle. We show that for a spine-sheath blazar jet embedded in the torus, the wide beaming pattern of the synchrotron radiation of the relatively slow sheath will heat molecular clouds with subsequent IR radiation that will be highly boosted in the spine comoving frame, and that under reasonable conditions this photon field can dominate over the sheath photons directly entering the spine. If the sheath is sufficiently luminous it will sublimate the dust, and if the sheath synchrotron radiation extends to optical-UV energies (as may happen during flares), this will illuminate the sublimated dust clouds to produce emission lines that will vary in unison with the optical-UV continuum, as has been very recently reported for blazar CTA 102 (Jorstad et al.).

  13. Starburst or AGN dominance in submm-luminous candidate AGN

    NASA Astrophysics Data System (ADS)

    Coppin, Kristen; Alexander, Dave; Aretxaga, Itziar; Blain, Andrew; Chapman, Scott; Clements, Dave; Dunlop, James; Dunne, Loretta; Dye, Simon; Farrah, Duncan; Hughes, David; Ivison, Rob; Kim, Sungeun; Menendez-Delmestre, Karin; Oliver, Sebastian; Page, Mat; Pope, Alexandra; Rowan-Robinson, Michael; Scott, Douglas; Smail, Ian; Swinbank, Mark; Vaccari, Mattia; van Kampen, Eelco

    2008-03-01

    It is widely believed that starbursts/ULIRGs and AGN activity are triggered by galaxy interactions and merging; and sub-mm selected galaxies (SMGs) seem to be simply high redshift ULIRGs, observed near the peak of activity. In this evolutionary picture every SMG would host an AGN, which would eventually grow a black hole strong enough to blow off all of the gas and dust leaving an optically luminous QSO. In order to probe this evolutionary sequence, a crucial sub-sample to focus on would be the 'missing link' sources, which demonstrate both strong starburst and AGN signatures and to determine if the starburst is the main power source even in SMGs when we have evidence that an AGN is present. The best way to determine if a dominant AGN is present is to look in the mid-IR for their signatures, since often even deep X-ray observations miss identifying the presence of AGN in heavily dust-obscured SMGs. We have selected a sample of SMGs which are good candidates for harboring powerful AGN on the basis of their IRAC colours (S8um/S4.5um>2). Once we confirm these SMGs are AGN-dominated, we can then perform an audit of the energy balance between star-formation and AGN within this special sub-population of SMGs where the BH has grown appreciably to begin heating the dust emission. The proposed observations with IRS will probe the physics of how SMGs evolve from a cold-dust starburst-dominated ULIRG to an AGN/QSO by measuring the level of the mid-IR continuum, PAH luminosity, and Si absorption in these intermediate `transitory' AGN/SMGs.

  14. Likely transiting exocomets detected by Kepler

    NASA Astrophysics Data System (ADS)

    Rappaport, S.; Vanderburg, A.; Jacobs, T.; LaCourse, D.; Jenkins, J.; Kraus, A.; Rizzuto, A.; Latham, D. W.; Bieryla, A.; Lazarevic, M.; Schmitt, A.

    2018-02-01

    We present the first good evidence for exocomet transits of a host star in continuum light in data from the Kepler mission. The Kepler star in question, KIC 3542116, is of spectral type F2V and is quite bright at Kp = 10. The transits have a distinct asymmetric shape with a steeper ingress and slower egress that can be ascribed to objects with a trailing dust tail passing over the stellar disc. There are three deeper transits with depths of ≃ 0.1 per cent that last for about a day, and three that are several times more shallow and of shorter duration. The transits were found via an exhaustive visual search of the entire Kepler photometric data set, which we describe in some detail. We review the methods we use to validate the Kepler data showing the comet transits, and rule out instrumental artefacts as sources of the signals. We fit the transits with a simple dust-tail model, and find that a transverse comet speed of ˜35-50 km s-1 and a minimum amount of dust present in the tail of ˜1016 g are required to explain the larger transits. For a dust replenishment time of ˜10 d, and a comet lifetime of only ˜300 d, this implies a total cometary mass of ≳3 × 1017 g, or about the mass of Halley's comet. We also discuss the number of comets and orbital geometry that would be necessary to explain the six transits detected over the 4 yr of Kepler prime-field observations. Finally, we also report the discovery of a single comet-shaped transit in KIC 11084727 with very similar transit and host-star properties.

  15. EVIDENCE FOR A WIDE RANGE OF ULTRAVIOLET OBSCURATION IN z {approx} 2 DUSTY GALAXIES FROM THE GOODS-HERSCHEL SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Penner, Kyle; Dickinson, Mark; Dey, Arjun

    Dusty galaxies at z {approx} 2 span a wide range of relative brightness between rest-frame mid-infrared (8 {mu}m) and ultraviolet wavelengths. We attempt to determine the physical mechanism responsible for this diversity. Dust-obscured galaxies (DOGs), which have rest-frame mid-IR to UV flux density ratios {approx}> 1000, might be abnormally bright in the mid-IR, perhaps due to prominent emission from active galactic nuclei and/or polycyclic aromatic hydrocarbons, or abnormally faint in the UV. We use far-infrared data from the GOODS-Herschel survey to show that most DOGs with 10{sup 12} L {sub Sun} {approx}< L {sub IR} {approx}< 10{sup 13} L {submore » Sun} are not abnormally bright in the mid-IR when compared to other dusty galaxies with similar IR (8-1000 {mu}m) luminosities. We observe a relation between the median IR to UV luminosity ratios and the median UV continuum power-law indices for these galaxies, and we find that only 24% have specific star formation rates that indicate the dominance of compact star-forming regions. This circumstantial evidence supports the idea that the UV- and IR-emitting regions in these galaxies are spatially coincident, which implies a connection between the abnormal UV faintness of DOGs and dust obscuration. We conclude that the range in rest-frame mid-IR to UV flux density ratios spanned by dusty galaxies at z {approx} 2 is due to differing amounts of UV obscuration. Of galaxies with these IR luminosities, DOGs are the most obscured. We attribute differences in UV obscuration to either (1) differences in the degree of alignment between the spatial distributions of dust and massive stars or (2) differences in the total dust content.« less

  16. Oxygen isotopic composition of chondritic interplanetary dust particles: A genetic link between carbonaceous chondrites and comets

    NASA Astrophysics Data System (ADS)

    Aléon, J.; Engrand, C.; Leshin, L. A.; McKeegan, K. D.

    2009-08-01

    Oxygen isotopes were measured in four chondritic hydrated interplanetary dust particles (IDPs) and five chondritic anhydrous IDPs including two GEMS-rich particles (Glass embedded with metal and sulfides) by a combination of high precision and high lateral resolution ion microprobe techniques. All IDPs have isotopic compositions tightly clustered around that of solar system planetary materials. Hydrated IDPs have mass-fractionated oxygen isotopic compositions similar to those of CI and CM carbonaceous chondrites, consistent with hydration of initially anhydrous protosolar dust. Anhydrous IDPs have small 16O excesses and depletions similar to those of carbonaceous chondrites, the largest 16O variations being hosted by the two GEMS-rich IDPs. Coarse-grained forsteritic olivine and enstatite in anhydrous IDPs are isotopically similar to their counterparts in comet Wild 2 and in chondrules suggesting a high temperature inner solar system origin. The small variations in the 16O content of GEMS-rich IDPs suggest that most GEMS either do not preserve a record of interstellar processes or the initial interstellar dust is not 16O-rich as expected by self-shielding models, although a larger dataset is required to verify these conclusions. Together with other chemical and mineralogical indicators, O isotopes show that the parent-bodies of carbonaceous chondrites, of chondritic IDPs, of most Antarctic micrometeorites, and comet Wild 2 belong to a single family of objects of carbonaceous chondrite chemical affinity as distinct from ordinary, enstatite, K- and R-chondrites. Comparison with astronomical observations thus suggests a chemical continuum of objects including main belt and outer solar system asteroids such as C-type, P-type and D-type asteroids, Trojans and Centaurs as well as short-period comets and other Kuiper Belt Objects.

  17. Assessing the Performance of a Machine Learning Algorithm in Identifying Bubbles in Dust Emission

    NASA Astrophysics Data System (ADS)

    Xu, Duo; Offner, Stella S. R.

    2017-12-01

    Stellar feedback created by radiation and winds from massive stars plays a significant role in both physical and chemical evolution of molecular clouds. This energy and momentum leaves an identifiable signature (“bubbles”) that affects the dynamics and structure of the cloud. Most bubble searches are performed “by eye,” which is usually time-consuming, subjective, and difficult to calibrate. Automatic classifications based on machine learning make it possible to perform systematic, quantifiable, and repeatable searches for bubbles. We employ a previously developed machine learning algorithm, Brut, and quantitatively evaluate its performance in identifying bubbles using synthetic dust observations. We adopt magnetohydrodynamics simulations, which model stellar winds launching within turbulent molecular clouds, as an input to generate synthetic images. We use a publicly available three-dimensional dust continuum Monte Carlo radiative transfer code, HYPERION, to generate synthetic images of bubbles in three Spitzer bands (4.5, 8, and 24 μm). We designate half of our synthetic bubbles as a training set, which we use to train Brut along with citizen-science data from the Milky Way Project (MWP). We then assess Brut’s accuracy using the remaining synthetic observations. We find that Brut’s performance after retraining increases significantly, and it is able to identify yellow bubbles, which are likely associated with B-type stars. Brut continues to perform well on previously identified high-score bubbles, and over 10% of the MWP bubbles are reclassified as high-confidence bubbles, which were previously marginal or ambiguous detections in the MWP data. We also investigate the influence of the size of the training set, dust model, evolutionary stage, and background noise on bubble identification.

  18. Modeling of the Dust and Gas Outflows from OH 26.5+0.6: The Superwind

    NASA Technical Reports Server (NTRS)

    Justtanont, K.; Skinner, C. J.; Tielens, A. G. G. M.; Meixner, M.; Baas, F.

    1996-01-01

    We have observed the extreme OH/IR star, OH 26.5+0.6, in the infrared dust continuum and in the sub- millimeter rotational lines of CO. Mid-infrared images reveal the compact nature of the circumstellar shell (less than 0.5 sec). A deep 9.7 microns absorption feature and an absorption at 18 microns show that the dust mass-loss rate is very high. However, the low antenna temperatures of CO J = 1-0 and 2-1 lines suggest that the outer part of the circumstellar shell is much more tenuous. In order to resolve this discrepancy, we have observed the J = 3-2 and 4-3 CO rotational transitions. We have developed a model for the circumstellar shell for OH 26.5 + 0.6 which is consistent with the infrared and submillimeter observations. The dust and gas data are well fitted by a two-shell model, consisting of a dense shell surrounded by a more tenuous shell. The former we identify with the superwind (M = 5.5 x 10(exp -4) solar mass/ yr), and the latter we identify with mass loss on the asymptotic giant branch (AGB) (M = 10(exp -6) solar mass/ yr). The transition between the two mass-loss phases is shown to be rather abrupt ((Delta)t less than 150 yr). Depending on the mass of the progenitor, this superwind phase may be the last thermal pulse (for M(sub *) less than 1.5 solar mass), or the first of a series of the superwind phases (for up to 8 solar mass), punctuated by a period of low mass-loss rates, before the star evolves off the AGB.

  19. ALMA Resolves the Nuclear Disks of Arp 220

    NASA Astrophysics Data System (ADS)

    Scoville, Nick; Murchikova, Lena; Walter, Fabian; Vlahakis, Catherine; Koda, Jin; Vanden Bout, Paul; Barnes, Joshua; Hernquist, Lars; Sheth, Kartik; Yun, Min; Sanders, David; Armus, Lee; Cox, Pierre; Thompson, Todd; Robertson, Brant; Zschaechner, Laura; Tacconi, Linda; Torrey, Paul; Hayward, Christopher C.; Genzel, Reinhard; Hopkins, Phil; van der Werf, Paul; Decarli, Roberto

    2017-02-01

    We present 90 mas (37 pc) resolution ALMA imaging of Arp 220 in the CO (1-0) line and continuum at λ =2.6 {mm}. The internal gas distribution and kinematics of both galactic nuclei are well resolved for the first time. In the west nucleus, the major gas and dust emission extends out to 0.″2 radius (74 pc); the central resolution element shows a strong peak in the dust emission but a factor of 3 dip in the CO line emission. In this nucleus, the dust is apparently optically thick ({τ }2.6{mm}˜ 1) at λ =2.6 {mm} with a dust brightness temperature of ˜147 K. The column of interstellar matter at this nucleus is {N}{{H}2}≥slant 2× {10}26 cm-2, corresponding to ˜900 gr cm-2. The east nucleus is more elongated with radial extent 0.″3 or ˜111 pc. The derived kinematics of the nuclear disks provide a good fit to the line profiles, yielding the emissivity distributions, the rotation curves, and velocity dispersions. In the west nucleus, there is evidence of a central Keplerian component requiring a central mass of 8 × 108 {M}⊙ . The intrinsic widths of the emission lines are {{Δ }}v({FWHM})=250 (west) and 120 (east) km s-1. Given the very short dissipation timescales for turbulence (≲105 years), we suggest that the line widths may be due to semicoherent motions within the nuclear disks. The symmetry of the nuclear disk structures is impressive, implying the merger timescale is significantly longer than the rotation period of the disks.

  20. Ejecta of Eta Carinae: What We Learn about N-Rich Chemistry

    NASA Technical Reports Server (NTRS)

    Gull, Theodore

    2006-01-01

    At least one member of the binary system, Eta Carinae, is in the late stages of CNO-cycle. At least ten solar masses of ejecta make up the Homunculus, a neutral bi-polar shell ejected in the 1840s and the Little Homunculus, an internal, ionized bi-polar shell ejected in the 1890s. HST/STIS and VLTAJVES high dispersion spectroscopy revealed absorptions of multiple elements and diatomic molecules in these shells, some, such as V II and Sr II have not been seen previously in the ISM. The skirt region between the bi-lobes includes the very bright Weigelt blobs, within 0.1 to 0.3" of the central source, and the more distant, unusual Strontium Filament, a neutral emission nebula photoexcited by Balmer continuum, but shielded by Fe II from Lyman radiation. The 600+ emission lines are due to metals usually tied up in dust, but underabundances of C and O prevent precipitation as oxides onto the dust grains. Indications are that Ti/Ni is 100X solar, likely due not to nuclear processing, but the very different photo-excitation environments coupled with N-rich, C-, O-poor chemistry. In the Homunculus, level populations of the molecules indicate 60K gas; the metal absorption lines, 760K; that of the Little Homunculus 6400K during the broad spectroscopic maximum, relaxing to 5000K for the few month long minimum. Lyman radiation, including both continuum and Lyman lines, is trapped across periastron. leading to temporary relaxation of the ejecta. These ejecta are a treasure trove of information on material thrown out of massive stars in the CNO-cycle, well before the helium burning phase. Curiously, spectra of three very recent SWIFT GRBs indicate the presence of warm, photoexcited ejecta in the vicinity of the protoGRBs, but obviously of very different abundances. However, the ejecta of Eta Carinae promise to be a nearby example of massive ejecta, the study of which should lead to increased insight of earlier, very distant massive stars.

  1. Constraining the size of the dusty torus in Active Galactic Nuclei: An Optical/Infrared Reverberation Lag Study

    NASA Astrophysics Data System (ADS)

    Vazquez, Billy

    The dusty torus is the key component in the Active Galactic Nuclei (AGN) Unification Scheme that explains the spectroscopic differences between Seyfert galaxies of types 1 and 2. The torus dust is heated by the nuclear source and emits the absorbed energy in the infrared (IR); but because of light travel times, the torus IR emission responds to variations of the nuclear ultraviolet/optical continuum with a delay that corresponds to the size of the emitting region. The results from a mid-infrared (MIR) monitoring campaign using the Spitzer Space Telescope and optical ground-based telescopes (B and V band imaging), which spanned over 2 years and covered a sample of 12 Seyfert galaxies, are presented. The aim was to constrain the distances from the nucleus to the regions in the torus emitting at wavelengths of 3.6 microm and 4.5 microm. MIR light curves showing the variability characteristics of these AGN are presented and the effects of photometric uncertainties on the time-series analysis of the light curves are discussed. Significant variability was observed in the IR light curves of 10 of 12 objects, with relative amplitudes ranging from ˜10% to ˜100% from their mean flux. The "reverberation lags" between the 3.6 microm and 4.5 microm IR bands were determined for the entire sample and between the optical and MIR bands for NGC6418. In NGC6418, the 3.6 microm and 4.5 microm fluxes lagged behind those of the optical continuum by 47.5+2.0-1.9) days and 62.5+2.5-2.9 days, respectively. This is consistent with the inferred lower limit to the sublimation radius for pure graphite grains at T=1800 K but smaller by a factor of 2 than the lower limit for dust grains with a "standard" interstellar medium (ISM) composition. There is evidence that the lags increased following approximately by a factor of 2 increase in luminosity, consistent with an increase in the sublimation radius.

  2. Probing Protoplanetary Disks: From Birth to Planets

    NASA Astrophysics Data System (ADS)

    Cox, Erin Guilfoil

    2018-01-01

    Disks are very important in the evolution of protostars and their subsequent planets. How early disks can form has implications for early planet formation. In the youngest protostars (i.e., Class 0 sources) magnetic fields can control disk growth. When the field is parallel to the collapsing core’s rotation axis, infalling material loses angular momentum and disks form in later stages. Sub-/millimeter polarization continuum observations of Class 0 sources at ~1000 au resolution support this idea. However, in the inner (~100 au), denser regions, it is unknown if the polarization only traces aligned dust grains. Recent theoretical studies have shown that self-scattering of thermal emission in the disk may contribute significantly to the polarization. Determining the scattering contribution in these sources is important to disentangle the magnetic field. At older times (the Class II phase), the disk structure can both act as a modulator and signpost of planet formation, if there is enough of a mass reservoir. In my dissertation talk, I will present results that bear on disk evolution at both young and late ages. I will present 8 mm polarization results of two Class 0 protostars (IRAS 4A and IC348 MMS) from the VLA at ~50 au resolution. The inferred magnetic field of IRAS 4A has a circular morphology, reminiscent of material being dragged into a rotating structure. I will show results from SOFIA polarization data of the area surrounding IRAS 4A at ~4000 au. I will also present ALMA 850 micron polarization data of ten protostars in the Perseus Molecular Cloud. Most of these sources show very ordered patterns and low (~0.5%) polarization in their inner regions, while having very disordered patterns and high polarization patterns in their extended emission that may suggest different mechanisms in the inner/outer regions. Finally, I will present results from our ALMA dust continuum survey of protoplanetary disks in Rho Ophiuchus; we measured both the sizes and fluxes of 49 pre main-sequence stellar systems and detected either gaps or cavities in ~6 of these sources. Combined, these results build upon how early protoplanetary disks can form around young protostars and thus how early planets can begin to form.

  3. The Galaxy Evolution Probe

    NASA Astrophysics Data System (ADS)

    Glenn, Jason; Galaxy Evolution Probe Team

    2018-01-01

    The Galaxy Evolution Probe (GEP) is a concept for a far-infrared observatory to survey large regions of sky for star-forming galaxies from z = 0 to beyond z = 3. Our knowledge of galaxy formation is incomplete and requires uniform surveys over a large range of redshifts and environments to accurately describe mass assembly, star formation, supermassive black hole growth, interactions between these processes, and what led to their decline from z ~ 2 to the present day. Infrared observations are sensitive to dusty, star-forming galaxies, which have bright polycyclic aromatic hydrocarbon (PAH) emission features and warm dust continuum in the rest-frame mid infrared and cooler thermal dust emission in the far infrared. Unlike previous far-infrared continuum surveys, the GEP will measure photometric redshifts commensurate with galaxy detections from PAH emission and Si absorption features, without the need for obtaining spectroscopic redshifts of faint counterparts at other wavelengths.The GEP design includes a 2 m diameter telescope actively cooled to 4 K and two instruments: (1) An imager covering 10 to 300 um with 25 spectral resolution R ~ 8 bands (with lower R at the longest wavelengths) to detect star-forming galaxies and measure their redshifts photometrically. (2) A 23 – 190 um, R ~ 250 dispersive spectrometer for redshift confirmation and identification of obscured AGN using atomic fine-structure lines. Lines including [Ne V], [O IV], [O III], [O I], and [C II] will probe gas physical conditions, radiation field hardness, and metallicity. Notionally, the GEP will have a two-year mission: galaxy surveys with photometric redshifts in the first year and a second year devoted to follow-up spectroscopy. A comprehensive picture of star formation in galaxies over the last 10 billion years will be assembled from cosmologically relevant volumes, spanning environments from field galaxies and groups, to protoclusters, to dense galaxy clusters.Commissioned by NASA, the GEP concept is being developed to demonstrate the ambitious science that could be enabled by a Probe-class mission (defined to be in the cost range $400M to $1B). GEP concept study partners are the University of Colorado Boulder, JPL, and Ball Aerospace.

  4. A MULTIWAVELENGTH STUDY OF STAR FORMATION IN THE VICINITY OF GALACTIC H II REGION Sh 2-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, M. R.; Pandey, A. K.; Sagar, R.

    We present multiwavelength investigation of morphology, physical-environment, stellar contents, and star formation activity in the vicinity of star-forming region Sh 2-100. It is found that the Sh 2-100 region contains seven H II regions of ultracompact and compact nature. The present estimation of distance for three H II regions, along with the kinematic distance for others, suggests that all of them belong to the same molecular cloud complex. Using near-infrared photometry, we identified the most probable ionizing sources of six H II regions. Their approximate photometric spectral type estimates suggest that they are massive early-B to mid-O zero-age-main-sequence stars andmore » agree well with radio continuum observations at 1280 MHz, for sources whose emissions are optically thin at this frequency. The morphology of the complex shows a non-uniform distribution of warm and hot dust, well mixed with the ionized gas, which correlates well with the variation of average visual extinction ({approx}4.2-97 mag) across the region. We estimated the physical parameters of ionized gas with the help of radio continuum observations. We detected an optically visible compact nebula located to the south of the 850 {mu}m emission associated with one of the H II regions and the diagnostic of the optical emission line ratios gives electron density and electron temperature of {approx}0.67 x 10{sup 3} cm{sup -3} and {approx}10{sup 4} K, respectively. The physical parameters suggest that all the H II regions are in different stages of evolution, which correlate well with the probable ages in the range {approx}0.01-2 Myr of the ionizing sources. The spatial distribution of infrared excess stars, selected from near-infrared and Infrared Array Camera color-color diagrams, correlates well with the association of gas and dust. The positions of infrared excess stars, ultracompact and compact H II regions at the periphery of an H I shell, possibly created by a WR star, indicate that star formation in Sh 2-100 region might have been induced by an expanding H I shell.« less

  5. Interpreting the 10 micron Astronomical Silicate Feature

    NASA Astrophysics Data System (ADS)

    Bowey, Janet E.

    1998-11-01

    10micron spectra of silicate dust in the diffuse medium towards Cyg OB2 no. 12 and towards field and embedded objects in the Taurus Molecular Cloud (TMC) were obtained with CGS3 at the United Kingdom Infrared Telescope (UKIRT). Cold molecular-cloud silicates are sampled in quiescent lines of sight towards the field stars Taurus-Elias 16 and Elias 13, whilst observations of the embedded young stellar objects HL Tau, Taurus-Elias 7 (Haro6-10) and Elias 18 also include emission from heated dust. To obtain the foreground silicate absorption profiles, featureless continua are estimated using smoothed astronomical and laboratory silicate emissivities. TMC field stars and Cyg OB2 no. 12 are modelled as photospheres reddened by foreground continuum and silicate extinction. Dust emission in the non-photospheric continua of HL Tau and Elias 7 (Haro6-10) is distinguished from foreground silicate absorption using a 10micron disk model, based on the IR-submm model of T Tauri stars by Adams, Lada & Shu (1988), with terms added to represent the foreground continuum and silicate extinction. The absorption profiles of HL Tau and Elias 7 are similar to that of the field star Elias 16. Fitted temperature indices of 0.43 (HL Tau) and 0.33 (Elias 7) agree with Boss' (1996) theoretical models of the 200-300K region, but are lower than those of IR-submm disks (0.5-0.61; Mannings & Emerson 1994); the modelled 10micron emission of HL Tau is optically thin, that of Elias 7 is optically thick. A preliminary arcsecond-resolution determination of the 10micron emissivity near θ1 Ori D in the Trapezium region of Orion and a range of emission temperatures (225-310K) are derived from observations by T. L. Hayward; this Ney-Allen emissivity is 0.6micron narrower than the Trapezium emissivity obtained by Forrest et al. (1975) with a large aperture. Published interstellar grain models, elemental abundances and laboratory studies of Solar System silicates (IDPs, GEMS and meteorites), the 10micron spectra of comets, interstellar silicates, synthetic silicates and terrestrial minerals, and the effects of laboratory processing on the 10micron spectra of crystalline and amorphous silicates are reviewed to provide insight into the mineralogy of interstellar silicate dust. The wavelengths of the peaks of the 10micron silicate profiles decrease between circumstellar, diffuse medium and molecular-cloud environments, indicating (after Gürtler & Henning 1986) that the amorphous pyroxene content of initially olivine-rich interstellar dust increases with time. This is accompanied by an increase in the FWHM of the features which indicates an increase in grain size and/or an increasing fraction of chemically-varied crystalline pyroxene. Fine structure in the Cyg OB2 no. 12, Elias 16, Elias 7, HL Tau profiles indicate that hydrated layer silicates similar to terrestrial serpentines, clays and talc may be a ubiquitous component of interstellar dust. At 10microns the narrow bands of mixed crystalline pyroxenes blend, making their identification difficult. Since no fine structure is observed near 11.2microns, the fraction of crystalline olivine is small. In geology direct olivine-plus-SiO2 to pyroxene reactions occur only at high pressure within the terrestrial mantle. Therefore the fraction of amorphous pyroxene is probably increased by the hydration of Mg-rich olivine to form a serpentine-like hydrated silicate, which is subsequently annealed to form a mixture of amorphous pyroxene and olivine. Terrestrial and laboratory olivine samples are readily converted to serpentine in the presence of water, and (after extended annealing) the first crystalline band to appear is the 11.2micron olivine feature frequently observed in cometary spectra.

  6. ALMA Observations of the Molecular Gas in the Debris Disk of the 30 Myr Old Star HD 21997

    NASA Technical Reports Server (NTRS)

    Kospal, A.; Moor, A.; Juhasz, A.; Abraham, P.; Apai, D.; Csengeri, T.; Grady, C. A.; Henning, Th.; Hughes, A. M.; Kiss, Cs.; hide

    2013-01-01

    The 30 Myr old A3-type star HD 21997 is one of the two known debris dust disks having a measurable amount of cold molecular gas. With the goal of understanding the physical state, origin, and evolution of the gas in young debris disks, we obtained CO line observations with the Atacama Large Millimeter/submillimeter Array (ALMA). Here, we report on the detection of (12)CO and (13)CO in the J = 2-1 and J = 3-2 transitions and C(18)O in the J = 2-1 line. The gas exhibits a Keplerian velocity curve, one of the few direct measurements of Keplerian rotation in young debris disks. The measured CO brightness distribution could be reproduced by a simple star+disk system, whose parameters are r(sub in) < 26 AU, r(sub out) = 138 +/- 20 AU, Stellar M = 1.8 +0.5/-0.2 Solar M, and i = 32. Deg. 6 +/- 3 deg..1. The total CO mass, as calculated from the optically thin C(18)O line, is about (4-8) ×10(exp -2 ) Solar M, while the CO line ratios suggest a radiation temperature on the order of 6-9 K. Comparing our results with those obtained for the dust component of the HD 21997 disk from ALMA continuum observations by Moor et al., we conclude that comparable amounts of CO gas and dust are present in the disk. Interestingly, the gas and dust in the HD 21997 system are not colocated, indicating a dust-free inner gas disk within 55 AU of the star. We explore two possible scenarios for the origin of the gas. A secondary origin, which involves gas production from colliding or active planetesimals, would require unreasonably high gas production rates and would not explain why the gas and dust are not colocated. We propose that HD 21997 is a hybrid system where secondary debris dust and primordial gas coexist. HD 21997, whose age exceeds both the model predictions for disk clearing and the ages of the oldest T Tauri-like or transitional gas disks in the literature, may be a key object linking the primordial and the debris phases of disk evolution.

  7. A Snapshot of the Continuous Emission of the Active Galactic Nucleus in NGC 3783 from Gamma-Ray to Radio Wavelengths

    NASA Technical Reports Server (NTRS)

    Alloin, D.; Santos-Lleo, M.; Peterson, B. M.; Wamsteker, W.; Altieri, B.; Brinkmann, W.; Clavel, J.; Crenshaw, D. M.; George, I. M.; Glass, I. S.; hide

    1995-01-01

    To better understand the physical processes that produce the continuous emission in active galactic nuclei (AGN), a snapshot of the overall continuous energy distribution of NGC 3783, from gamma ray to radio wavelengths, has been obtained within the framework of the World Astronomy Days. The data collected in this campaign are from GRO, ROSAT, Voyager 2, IUE, HST, CTIO, SAAO, and the VLA. Great care has been taken in disentangling the genuine AGN continusous emission from other contributions; depending on the waveband, the latter might be (1) unrelated contaminating sources in cases where the instrument field of view is large (2) components within which the AGN is embedded, such as the stellar bulge population which accounts for a significant fraction of the optical continuum, and free-bound and FE2 blends wich contribute to the ultraviolet flux. After correction for these other contributins, the continuous emission of the isolated AGN appears to be rather flat (i.e., approximately equal energy per unit logarithmic frequency) from soft gamma ray to infrared wavelengths. At high energies (0.1 MeV to 0.1 keV), the AGN continuum can be fitted by a power law F nu approaches Nu(exp -a) with a spectral index of alpha approximately 1. At longer wavelengths, two excesses above this power law ('bumps') appear: in the ultraviolet, the classical big blue bump, which can be interpreted as thermal emission from the accretion disc surrounding a massive black hole, and in the infrared, a second bump which can be ascribed to thermal emission from dust in the vicinity of the AGN, heated by ultraviolet radiation from the central source. By fitting accretion-disk models to the observed AGN spectral energy distribution, we find values for the accretion disk innermost temperature, accretion rate, and black hole mass, with some differences that depend on whether or not we extrapolate the high energy power law up to infrared wavelengths. A fit to the IR bump above the extended alpha equals 1 power law suggests the presence of a dust component covering the region from a distance rho approximately equals 80 light days (hot grains at a temperature of approximately equals 1500 K) to rho approximately equals 60 light years (cool grains at T approximately equals 200 K). The total mass of dust is around 60 solar masses.

  8. UV-CONTINUUM SLOPES AT z {approx} 4-7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR-MAGNITUDE RELATIONSHIP FOR z {>=} 4 STAR-FORMING GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouwens, R. J.; Franx, M.; Labbe, I.

    2012-08-01

    Ultra-deep Advanced Camera for Surveys (ACS) and WFC3/IR HUDF+HUDF09 data, along with the wide-area GOODS+ERS+CANDELS data over the CDF-S GOODS field, are used to measure UV colors, expressed as the UV-continuum slope {beta}, of star-forming galaxies over a wide range of luminosity (0.1L*{sub z=3} to 2L*{sub z=3}) at high redshift (z {approx} 7 to z {approx} 4). {beta} is measured using all ACS and WFC3/IR passbands uncontaminated by Ly{alpha} and spectral breaks. Extensive tests show that our {beta} measurements are only subject to minimal biases. Using a different selection procedure, Dunlop et al. recently found large biases in their {beta}more » measurements. To reconcile these different results, we simulated both approaches and found that {beta} measurements for faint sources are subject to large biases if the same passbands are used both to select the sources and to measure {beta}. High-redshift galaxies show a well-defined rest-frame UV color-magnitude (CM) relationship that becomes systematically bluer toward fainter UV luminosities. No evolution is seen in the slope of the UV CM relationship in the first 1.5 Gyr, though there is a small evolution in the zero point to redder colors from z {approx} 7 to z {approx} 4. This suggests that galaxies are evolving along a well-defined sequence in the L{sub UV}-color ({beta}) plane (a 'star-forming sequence'?). Dust appears to be the principal factor driving changes in the UV color {beta} with luminosity. These new larger {beta} samples lead to improved dust extinction estimates at z {approx} 4-7 and confirm that the extinction is essentially zero at low luminosities and high redshifts. Inclusion of the new dust extinction results leads to (1) excellent agreement between the star formation rate (SFR) density at z {approx} 4-8 and that inferred from the stellar mass density; and (2) to higher specific star formation rates (SSFRs) at z {approx}> 4, suggesting that the SSFR may evolve modestly (by factors of {approx}2) from z {approx} 4-7 to z {approx} 2.« less

  9. The Mass Surface Density Distribution of a High-Mass Protocluster forming from an IRDC and GMC

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael

    2016-01-01

    We study the probability distribution function (PDF) of mass surface densities of infrared dark cloud (IRDC) G028.36+00.07 and its surrounding giant molecular cloud (GMC). Such PDF analysis has the potential to probe the physical processes that are controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 parsecs, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a high-mass, "super star cluster". We study mass surface densities in two ways. First, we use a combination of NIR, MIR and FIR extinction maps that are able to probe the bulk of the cloud structure that is not yet forming stars. This analysis also shows evidence for flattening of the IR extinction law as mass surface density increases, consistent with increasing grain size and/or growth of ice mantles. Second, we study the FIR and sub-mm dust continuum emission from the cloud, especially utlizing Herschel PACS and SPIRE images. We first subtract off the contribution of the foreground diffuse emission that contaminates these images. Next we examine the effects of background subtraction and choice of dust opacities on the derived mass surface density PDF. The final derived PDFs from both methods are compared, including also with other published studies of this cloud. The implications for theoretical models and simulations of cloud structure, including the role of turbulence and magnetic fields, are discussed.

  10. Determination of the coma dust back-scattering of 67P for phase angles from 1.2° to 75°

    NASA Astrophysics Data System (ADS)

    Fink, Uwe; Doose, Lyn

    2018-07-01

    A phase curve is derived for the dust coma of comet 67P/Churyumov-Gerasimenko (67P) from 1.2° to 74° using images from the OSIRIS camera system on board the Rosetta mission during the period 2014 July 25 to 2015 February 23 as the spacecraft approached the comet. We analyzed 123 images of the continuum filter at 612.6 nm and 60 images of the 375 nm UV continuum filter of the Wide Angle Camera. Our method of extracting a phase curve, close to the nucleus, taking into account illumination conditions, activity of the comet, strong radial radiance intensity decrease and varying phase angles across the image, is described in detail. Our derived backscattering phase curve is considerably steeper than earlier published data. The radiance of the scattering dust in the 612.6 nm filter increases by about a factor of 12 going from a phase angle of 75° to a phase angle of 2.0°. The phase curve for the 375 nm filter is similar but there is reasonable evidence that the I/F color ratio between the two filters changes from a roughly neutral color ratio of 1.2 to a more typical red color of ∼ 2.0 as the activity of the comet increases. No substantial change in the shape of the phase curve could be discerned between 2014 August and 2015 February 19-23 when the comet increased considerably in activity. The phase curve behavior on the illuminated side of the comet and the dark side is in general similar. A comparison of our phase curve with a recent phase curve for 67P by Bertini et al. for the phase angle range ∼15°-80°, where our two reductions overlap, shows good agreement (as does our color ratio between the 612.6 nm and the 375 nm filters) despite the fact that the two phase curve determinations observed the comet at different dust activity levels, at different distances from the nucleus and used completely different observing and data reduction methodologies. Trial scattering calculations demonstrate that the observed strong backscattering most likely arises from particles in the size range 1-20 μm. Our observed backscattering phase curve gives no constraints on the real index of refraction, the particle size distribution or the minimum and maximum particle size cut-offs. However, an upper limit to the imaginary index of refraction of ∼0.01 was required, making these particles quite transparent. Simple spherical scattering calculations including particle size distributions can fit the general characteristics of the phase curve but cannot produce a satisfactory detailed fit.

  11. Modeling photopolarimetric characteristics of comet dust as a polydisperse mixture of polyshaped rough spheroids

    NASA Astrophysics Data System (ADS)

    Kolokolova, L.; Das, H.; Dubovik, O.; Lapyonok, T.

    2013-12-01

    It is widely recognized now that the main component of comet dust is aggregated particles that consist of submicron grains. It is also well known that cometary dust obey a rather wide size distribution with abundant particles whose size reaches dozens of microns. However, numerous attempts of computer simulation of light scattering by comet dust using aggregated particles have not succeeded to consider particles larger than a couple of microns due to limitations in the memory and speed of available computers. Attempts to substitute aggregates by polydisperse solid particles (spheres, spheroids, cylinders) could not consistently reproduce observed angular and spectral characteristics of comet brightness and polarization even in such a general case as polyshaped (i.e. containing particles of a variety of aspect ratios) mixture of spheroids (Kolokolova et al., In: Photopolarimetry in Remote Sensing, Kluwer Acad. Publ., 431, 2004). In this study we are checking how well cometary dust can be modeled using modeling tools for rough spheroids. With this purpose we use the software package described in Dubovik et al. (J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619d, 2006) that allows for a substantial reduction of computer time in calculating scattering properties of spheroid mixtures by means of using pre-calculated kernels - quadrature coefficients employed in the numerical integration of spheroid optical properties over size and shape. The kernels were pre-calculated for spheroids of 25 axis ratios, ranging from 0.3 to 3, and 42 size bins within the size parameter range 0.01 - 625. This software package has been recently expanded with the possibility of simulating not only smooth but also rough spheroids that is used in present study. We consider refractive indexes of the materials typical for comet dust: silicate, carbon, organics, and their mixtures. We also consider porous particles accounting on voids in the spheroids through effective medium approach. The roughness of the spheroids is considered as a normal distribution of particle surface slopes and can be of different degree depending on the standard deviation of the distribution, σ, where σ=0 corresponds to smooth surface and σ=0.5 describes severely rough surface (see Young et al., J. Atm. Sci., 70, 330, 2012). We perform computations for two wavelengths, typical for blue (447nm) and red (640nm) cometary continuum filters. We compare phase angle dependence of polarization and brightness and their spectral change obtained with the rough-spheroid model with those observed for comets (e.g. Kolokolova et al., In: Comets 2, Arizona Press, 577, 2004) to see how well rough spheroids can reproduce cometary low albedo, red color, red polarimetric color, negative polarization at small phase angles and polarization maximum at medium phase angles.

  12. The Compact, ˜1 kpc Host Galaxy of a Quasar at a Redshift of 7.1

    NASA Astrophysics Data System (ADS)

    Venemans, Bram P.; Walter, Fabian; Decarli, Roberto; Bañados, Eduardo; Hodge, Jacqueline; Hewett, Paul; McMahon, Richard G.; Mortlock, Daniel J.; Simpson, Chris

    2017-03-01

    We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the [C II] fine-structure line and the underlying far-infrared (FIR) dust continuum emission in J1120+0641, the most distant quasar currently known (z=7.1). We also present observations targeting the CO(2-1), CO(7-6), and [C I] 369 μm lines in the same source obtained at the Very Large Array and Plateau de Bure Interferometer. We find a [C II] line flux of {F}[{{C}{{II}}]}=1.11+/- 0.10 Jy {km} {{{s}}}-1 and a continuum flux density of {S}227{GHz}=0.53+/- 0.04 mJy beam-1, consistent with previous unresolved measurements. No other source is detected in continuum or [C II] emission in the field covered by ALMA (˜ 25″). At the resolution of our ALMA observations (0.″23, or 1.2 kpc, a factor of ˜70 smaller beam area compared to previous measurements), we find that the majority of the emission is very compact: a high fraction (˜80%) of the total line and continuum flux is associated with a region 1-1.5 kpc in diameter. The remaining ˜20% of the emission is distributed over a larger area with radius ≲4 kpc. The [C II] emission does not exhibit ordered motion on kiloparsec scales: applying the virial theorem yields an upper limit on the dynamical mass of the host galaxy of (4.3+/- 0.9)× {10}10 {M}⊙ , only ˜20 × higher than the central black hole (BH). The other targeted lines (CO(2-1), CO(7-6), and [C I]) are not detected, but the limits of the line ratios with respect to the [C II] emission imply that the heating in the quasar host is dominated by star formation, and not by the accreting BH. The star formation rate (SFR) implied by the FIR continuum is 105-340 {M}⊙ {{yr}}-1, with a resulting SFR surface density of ˜100-350 {M}⊙ {{yr}}-1 kpc-2, well below the value for Eddington-accretion-limited star formation.

  13. Rotationally-supported disks around Class I sources in Taurus: disk formation constraints

    NASA Astrophysics Data System (ADS)

    Harsono, D.; Jørgensen, J. K.; van Dishoeck, E. F.; Hogerheijde, M. R.; Bruderer, S.; Persson, M. V.; Mottram, J. C.

    2014-02-01

    Context. Disks are observed around pre-main sequence stars, but how and when they form is still heavily debated. While disks around young stellar objects have been identified through thermal dust emission, spatially and spectrally resolved molecular line observations are needed to determine their nature. Only a handful of embedded rotationally supported disks have been identified to date. Aims: We identify and characterize rotationally supported disks near the end of the main accretion phase of low-mass protostars by comparing their gas and dust structures. Methods: Subarcsecond observations of dust and gas toward four Class I low-mass young stellar objects in Taurus are presented at significantly higher sensitivity than previous studies. The 13CO and C18O J = 2-1 transitions at 220 GHz were observed with the Plateau de Bure Interferometer at a spatial resolution of ≤0.8″ (56 AU radius at 140 pc) and analyzed using uv-space position velocity diagrams to determine the nature of their observed velocity gradient. Results: Rotationally supported disks (RSDs) are detected around 3 of the 4 Class I sources studied. The derived masses identify them as Stage I objects; i.e., their stellar mass is higher than their envelope and disk masses. The outer radii of the Keplerian disks toward our sample of Class I sources are ≤100 AU. The lack of on-source C18O emission for TMR1 puts an upper limit of 50 AU on its size. Flattened structures at radii >100 AU around these sources are dominated by infalling motion (υ ∝ r-1). A large-scale envelope model is required to estimate the basic parameters of the flattened structure from spatially resolved continuum data. Similarities and differences between the gas and dust disk are discussed. Combined with literature data, the sizes of the RSDs around Class I objects are best described with evolutionary models with an initial rotation of Ω = 10-14 Hz and slow sound speeds. Based on the comparison of gas and dust disk masses, little CO is frozen out within 100 AU in these disks. Conclusions: Rotationally supported disks with radii up to 100 AU are present around Class I embedded objects. Larger surveys of both Class 0 and I objects are needed to determine whether most disks form late or early in the embedded phase. Based on observations carried out with the IRAM Plateau de Bure Interferometer. IRAM is supported by INSU/CNBRS (France), MPG (Germany) and IGN (Spain).Appendices are available in electronic form at http://www.aanda.org

  14. Cometary Dust in the Debris of HD 31648 and HD163296: Two "Baby" Beta pictoris Stars

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.

    1999-01-01

    The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 Am that resembles that of the star P Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.

  15. Cometary Dust in the Debris Disks of HD 31648 and HD 163296: Two "Baby" (BETA) Pictoris Stars

    NASA Technical Reports Server (NTRS)

    Sitko, Michael L.; Grady, Carol A.; Lynch, David K.; Russell, Ray W.; Hanner, Martha S.; Hanner, Martha S.

    1999-01-01

    The debris disks surrounding the pre-main-sequence stars HD 31648 and HD 163296 were observed spectroscopically between 3 and 14 microns. Both stars possess a silicate emission feature at 10 microns that resembles that of the star beta Pictoris and those observed in solar system comets. The structure of the band is consistent with a mixture of olivine and pyroxene material, plus an underlying continuum of unspecified origin. The similarity in both size and structure of the silicate band suggests that the material in these systems had a processing history similar to that in our own solar system prior to the time that the grains were incorporated into comets.

  16. Mapping luminous blue compact galaxies with VIRUS-P. Morphology, line ratios, and kinematics

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; Caon, N.; García Lorenzo, B.; Kelz, A.; Roth, M.; Papaderos, P.; Streicher, O.

    2012-11-01

    Context. Blue compact galaxies (BCG) are narrow emission-line systems that undergo a violent burst of star formation. They are compact, low-luminosity galaxies, with blue colors and low chemical abundances, which offer us a unique opportunity to investigate collective star formation and its effects on galaxy evolution in a relatively simple, dynamically unperturbed environment. Spatially resolved spectrophotometric studies of BCGs are essential for a better understanding of the role of starburst-driven feedback processes on the kinematical and chemical evolution of low-mass galaxies near and far. Aims: We carry out an integral field spectroscopy (IFS) study of a sample of luminous BCGs, with the aim to probe the morphology, kinematics, dust extinction, and excitation mechanisms of their warm interstellar medium (ISM). Methods: We obtained IFS data for five luminous BCGs with VIRUS-P, the prototype instrument for the Visible Integral Field Replicable Unit Spectrograph, attached to the 2.7 m Harlan J. Smith Telescope at the McDonald Observatory. VIRUS-P consists of a square array of 247 optical fibers, which covers a 109″ × 109″ field of view, with a spatial sampling of 4farcs2 and a 0.3 filling factor. We observed in the 3550-5850 Å spectral range, with a resolution of 5 Å FWHM. From these data we built two-dimensional maps of the continuum and the most prominent emission-lines ([O ii] λ3727, Hγ, Hβ and [O iii] λ5007), and investigated the morphology of diagnostic emission-line ratios and the extinction patterns in the ISM as well as stellar and gas kinematics. Additionally, from integrated spectra we inferred total line fluxes and luminosity-weighted extinction coefficients and gas-phase metallicities. Results: All galaxies exhibit an overall regular morphology in the stellar continuum, while their warm ISM morphology is more complex: in II Zw 33 and Mrk 314, the star-forming regions are aligned along a chain-structure; Haro 1, NGC 4670 and III Zw 102 display several salient features, such as extended gaseous filaments and bubbles. A significant intrinsic absorption by dust is present in all galaxies, the most extreme case being III Zw 102. Our data reveal a plethora of kinematical patterns, from overall regular gas and stellar rotation to complex velocity fields produced by structurally and kinematically distinct components.

  17. Polarization of the changing-look quasar J1011+5442

    NASA Astrophysics Data System (ADS)

    Hutsemékers, D.; Agís González, B.; Sluse, D.; Ramos Almeida, C.; Acosta Pulido, J.-A.

    2017-07-01

    If the disappearance of the broad emission lines observed in changing-look quasars were caused by the obscuration of the quasar core through moving dust clouds in the torus, high linear polarization typical of type 2 quasars would be expected. We measured the polarization of the changing-look quasar J1011+5442 in which the broad emission lines have disappeared between 2003 and 2015. We found a polarization degree compatible with null polarization. This measurement suggests that the observed change of look is not due to a change of obscuration hiding the continuum source and the broad line region, and that the quasar is seen close to the system axis. Our results thus support the idea that the vanishing of the broad emission lines in J1011+5442 is due to an intrinsic dimming of the ionizing continuum source that is most likely caused by a rapid decrease in the rate of accretion onto the supermassive black hole. Based on observations made with the William Herschel telescope operated on the island of La Palma by the Isaac Newton Group of Telescopes in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.

  18. ALMA observations of the narrow HR 4796A debris ring

    NASA Astrophysics Data System (ADS)

    Kennedy, Grant M.; Marino, Sebastian; Matrà, Luca; Panić, Olja; Wilner, David; Wyatt, Mark C.; Yelverton, Ben

    2018-04-01

    The young A0V star HR 4796A is host to a bright and narrow ring of dust, thought to originate in collisions between planetesimals within a belt analogous to the Solar system's Edgeworth-Kuiper belt. Here we present high spatial resolution 880 μm continuum images from the Atacama Large Millimeter Array. The 80 au radius dust ring is resolved radially with a characteristic width of 10 au, consistent with the narrow profile seen in scattered light. Our modelling consistently finds that the disc is also vertically resolved with a similar extent. However, this extent is less than the beam size, and a disc that is dynamically very cold (i.e. vertically thin) provides a better theoretical explanation for the narrow scattered light profile, so we remain cautious about this conclusion. We do not detect 12CO J=3-2 emission, concluding that unless the disc is dynamically cold the CO+CO2 ice content of the planetesimals is of order a few per cent or less. We consider the range of semi-major axes and masses of an interior planet supposed to cause the ring's eccentricity, finding that such a planet should be more massive than Neptune and orbit beyond 40 au. Independent of our ALMA observations, we note a conflict between mid-IR pericentre-glow and scattered light imaging interpretations, concluding that models where the spatial dust density and grain size vary around the ring should be explored.

  19. ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Li, Zhi-Yun; Yang, Haifeng; Tobin, John J.; Stephens, Ian

    2018-03-01

    We present 870 μm ALMA dust polarization observations of 10 young Class 0/I protostars in the Perseus Molecular Cloud. At ∼0.″35 (80 au) resolution, all of our sources show some degree of polarization, with most (9/10) showing significantly extended emission in the polarized continuum. Each source has incredibly intricate polarization signatures. In particular, all three disk-candidates have polarization vectors roughly along the minor axis, which is indicative of polarization produced by dust scattering. On ∼100 au scales, the polarization is at a relatively low level (≲1%) and is quite ordered. In sources with significant envelope emission, the envelope is typically polarized at a much higher (≳5%) level and has a far more disordered morphology. We compute the cumulative probability distributions for both the small (disk-scale) and large (envelope-scale) polarization percentage. We find that the two are intrinsically different, even after accounting for the different detection thresholds in the high/low surface brightness regions. We perform Kolmogorov–Smirnov and Anderson–Darling tests on the distributions of angle offsets of the polarization from the outflow axis. We find disk-candidate sources are different from the non-disk-candidate sources. We conclude that the polarization on the 100 au scale is consistent with the signature of dust scattering for disk-candidates and that the polarization on the envelope-scale in all sources may come from another mechanism, most likely magnetically aligned grains.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Espaillat, C.; D'Alessio, P.; Hernandez, J.

    In the past few years, several disks with inner holes that are relatively empty of small dust grains have been detected and are known as transitional disks. Recently, Spitzer has identified a new class of 'pre-transitional disks' with gaps based on near-infrared photometry and mid-infrared spectra; these objects have an optically thick inner disk separated from an optically thick outer disk by an optically thin disk gap. A near-infrared spectrum provided the first confirmation of a gap in the pre-transitional disk of LkCa 15 by verifying that the near-infrared excess emission in this object was due to an optically thickmore » inner disk. Here, we investigate the difference between the nature of the inner regions of transitional and pre-transitional disks using the same veiling-based technique to extract the near-infrared excess emission above the stellar photosphere. However, in this work we use detailed disk models to fit the excess continua as opposed to the simple blackbody fits previously used. We show that the near-infrared excess emission of the previously identified pre-transitional disks of LkCa 15 and UX Tau A in the Taurus cloud as well as the newly identified pre-transitional disk of ROX 44 in Ophiuchus can be fit with an inner disk wall located at the dust destruction radius. We also present detailed modeling of the broadband spectral energy distributions of these objects, taking into account the effect of shadowing by the inner disk on the outer disk, but considering the finite size of the star, unlike other recent treatments. The near-infrared excess continua of these three pre-transitional disks, which can be explained by optically thick inner disks, are significantly different from that of the transitional disks of GM Aur, whose near-infrared excess continuum can be reproduced by emission from sub-micron-sized optically thin dust, and DM Tau, whose near-infrared spectrum is consistent with a disk hole that is relatively free of small dust. The structure of pre-transitional disks may be a sign of young planets forming in these disks and future studies of pre-transitional disks will provide constraints to aid in theoretical modeling of planet formation.« less

Top