Sample records for dust devil visible

  1. Automatic detection of typical dust devils from Mars landscape images

    NASA Astrophysics Data System (ADS)

    Ogohara, Kazunori; Watanabe, Takeru; Okumura, Susumu; Hatanaka, Yuji

    2018-02-01

    This paper presents an improved algorithm for automatic detection of Martian dust devils that successfully extracts tiny bright dust devils and obscured large dust devils from two subtracted landscape images. These dust devils are frequently observed using visible cameras onboard landers or rovers. Nevertheless, previous research on automated detection of dust devils has not focused on these common types of dust devils, but on dust devils that appear on images to be irregularly bright and large. In this study, we detect these common dust devils automatically using two kinds of parameter sets for thresholding when binarizing subtracted images. We automatically extract dust devils from 266 images taken by the Spirit rover to evaluate our algorithm. Taking dust devils detected by visual inspection to be ground truth, the precision, recall and F-measure values are 0.77, 0.86, and 0.81, respectively.

  2. Techniques for identifying dust devils in mars pathfinder images

    USGS Publications Warehouse

    Metzger, S.M.; Carr, J.R.; Johnson, J. R.; Parker, T.J.; Lemmon, M.T.

    2000-01-01

    Image processing methods used to identify and enhance dust devil features imaged by IMP (Imager for Mars Pathfinder) are reviewed. Spectral differences, visible red minus visible blue, were used for initial dust devil searches, driven by the observation that Martian dust has high red and low blue reflectance. The Martian sky proved to be more heavily dust-laden than pre-Pathfinder predictions, based on analysis of images from the Hubble Space Telescope. As a result, these initial spectral difference methods failed to contrast dust devils with background dust haze. Imager artifacts (dust motes on the camera lens, flat-field effects caused by imperfections in the CCD, and projection onto a flat sensor plane by a convex lens) further impeded the ability to resolve subtle dust devil features. Consequently, reference images containing sky with a minimal horizon were first subtracted from each spectral filter image to remove camera artifacts and reduce the background dust haze signal. Once the sky-flat preprocessing step was completed, the red-minus-blue spectral difference scheme was attempted again. Dust devils then were successfully identified as bright plumes. False-color ratios using calibrated IMP images were found useful for visualizing dust plumes, verifying initial discoveries as vortex-like features. Enhancement of monochromatic (especially blue filter) images revealed dust devils as silhouettes against brighter background sky. Experiments with principal components transformation identified dust devils in raw, uncalibrated IMP images and further showed relative movement of dust devils across the Martian surface. A variety of methods therefore served qualitative and quantitative goals for dust plume identification and analysis in an environment where such features are obscure.

  3. How Do Martian Dust Devils Vary Throughout the Sol?

    NASA Astrophysics Data System (ADS)

    Chapman, R.; Lewis, S.; Balme, M. R.; Steele, L.

    2016-12-01

    Dust devils are vortices of air made visible by entrained dust particles. Dust devils have been observed on Earth and captured in many Mars lander and orbiter images. Martian dust devils may be important to the global climate and are parameterised within Mars Global Circulation Models (MGCMs). We show that the dust devil parameterisation in use within most MGCMs results in an unexpectedly high level of dust devil activity during morning hours. In contrast to expectations, based on the observed behaviour of terrestrial dust devils and the diurnal maximum thermal contrast at the surface, we find that large areas of the modelled Martian surface experience dust devil activity during the morning as well as in the afternoon, and that many locations experience a peak in dust devil activity before mid-sol. Using the UK MGCM, we study the amount of surface dust lifted by dust devils throughout the diurnal cycle as a proxy for the level of dust devil activity occurring. We compare the diurnal variation in dust devil activity with the diurnal variation of the variables included in the dust devil parameterisation. We find that the diurnal variation in dust devil activity is strongly modulated by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce more dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. We compare our results with observations of Martian dust devil timings and obtain a good match with the majority of surface-based surveys. We do not find such a good match with orbital observations, but these data tend to be biased in their temporal coverage. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further dust devil observations are required to support any such modifications.

  4. Dust devil vortices seen by the Mars Pathfinder camera

    USGS Publications Warehouse

    Metzger, S.M.; Carr, J.R.; Johnson, J. R.; Parker, T.J.; Lemmon, M.T.

    1999-01-01

    Discovery of dust devil vortices in Mars Pathfinder (MPF) images reveals a dust entrainment mechanism at work on Mars. Scattering of visible light by dust in the Martian atmosphere creates a pronounced haze, preventing conventional image processing from displaying dust plumes. Spectral differencing techniques have enhanced five localized dust plumes from the general haze in images acquired near midday, which we determine to be dust devils. Processing of 440 nm images highlights dust devils as distinct occultation features against the horizon. The dust devils are interpreted to be 14-79 m wide, 46-350 m tall, travel at 0.5-4.6 m/s, with dust loading of 7E-5 kg m-3, relative to the general haze of 9E-8 kg m-3, and total particulate transport of 2.2 - 700 kg. The vortices match predictions from terrestrial analog studies. Copyright 1999 by the American Geophysical Union.

  5. A framework for relating the structures and recovery statistics in pressure time-series surveys for dust devils

    NASA Astrophysics Data System (ADS)

    Jackson, Brian; Lorenz, Ralph; Davis, Karan

    2018-01-01

    Dust devils are likely the dominant source of dust for the martian atmosphere, but the amount and frequency of dust-lifting depend on the statistical distribution of dust devil parameters. Dust devils exhibit pressure perturbations and, if they pass near a barometric sensor, they may register as a discernible dip in a pressure time-series. Leveraging this fact, several surveys using barometric sensors on landed spacecraft have revealed dust devil structures and occurrence rates. However powerful they are, though, such surveys suffer from non-trivial biases that skew the inferred dust devil properties. For example, such surveys are most sensitive to dust devils with the widest and deepest pressure profiles, but the recovered profiles will be distorted, broader and shallow than the actual profiles. In addition, such surveys often do not provide wind speed measurements alongside the pressure time series, and so the durations of the dust devil signals in the time series cannot be directly converted to profile widths. Fortunately, simple statistical and geometric considerations can de-bias these surveys, allowing conversion of the duration of dust devil signals into physical widths, given only a distribution of likely translation velocities, and the recovery of the underlying distributions of physical parameters. In this study, we develop a scheme for de-biasing such surveys. Applying our model to an in-situ survey using data from the Phoenix lander suggests a larger dust flux and a dust devil occurrence rate about ten times larger than previously inferred. Comparing our results to dust devil track surveys suggests only about one in five low-pressure cells lifts sufficient dust to leave a visible track.

  6. THEMIS VIS and IR observations of a high-altitude Martian dust devil

    USGS Publications Warehouse

    Cushing, G.E.; Titus, T.N.; Christensen, P.R.

    2005-01-01

    The Mars Odyssey Thermal Emission Imaging System (THEMIS) imaged a Martian dust devil in both visible and thermal-infrared wavelengths on January 30, 2004. We believe this is the first documented infrared observation of an extraterrestrial dust devil, and the highest to be directly observed at more than 16 kilometers above the equatorial geoid of Mars. This dust devil measured over 700 meters in height and 375 meters across, and the strongest infrared signature was given by atmospheric dust absorption in the 9-micron range (THEMIS IR band 5). In addition to having formed in the extremely low-pressure environment of about 1 millibar, this dust devil is of particular interest because it was observed at 16:06 local time. This is an unusually late time of day to find dust devils on Mars, during a period when rapid surface cooling typically reduces the boundary-layer turbulence necessary to form these convective vortices. Understanding the mechanisms for dust-devil formation under such extreme circumstances will help to constrain theories of atmospheric dynamics, and of dust lifting and transport mechanisms on Mars. Copyright 2005 by the American Geophysical Union.

  7. Observations from the High Resolution Imaging Science Experiment (HiRISE): Martian dust devils in Gusev and Russell craters

    NASA Astrophysics Data System (ADS)

    Verba, Circe A.; Geissler, Paul E.; Titus, Timothy N.; Waller, Devin

    2010-09-01

    Two areas targeted for repeated imaging by detailed High Resolution Imaging Science Experiment (HiRISE) observations allow us to examine morphological differences and monitor seasonal variations of Martian dust devil tracks at two quite different locations. Russell crater (53.3°S, 12.9°E) is regularly imaged to study seasonal processes including deposition and sublimation of CO2 frost. Gusev crater (14.6°S, 175.4°E) has been frequently imaged in support of the Mars Exploration Rover mission. Gusev crater provides the first opportunity to compare “ground truth” orbital observations of dust devil tracks to surface observations of active dust plumes. Orbital observations show that dust devil tracks are rare, forming at a rate <1/110 that of the occurrence of active dust plumes estimated from Spirit's surface observations. Furthermore, the tracks observed from orbit are wider than typical plume diameters observed by Spirit. We conclude that the tracks in Gusev are primarily formed by rare, large dust devils. Smaller dust devils fail to leave tracks that are visible from orbit, perhaps because of limited surface excavation depths. Russell crater displays more frequent, smaller sinuous tracks than Gusev. This may be due to the thin dust cover in Russell, allowing smaller dust devils to penetrate through the bright dust layer and leave conspicuous tracks. The start of the dust devil season and peak activity are delayed in Russell in comparison to Gusev, likely because of its more southerly location. Dust devils in both sites travel in directions consistent with general circulation model (GCM)-predicted winds, confirming a laboratory-derived approach to determining dust devil travel directions based on track morphology.

  8. Dust Devils in Gusev Crater, Sol 463

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows a several dust devils -- whirlwinds that loft dust into the air -- moving across a plain below the hillside vantage point of NASA's Mars Exploration Rover Spirit. Several of the dust devils are visible at once in some of the frames in this sequence. The local solar time was about 2 p.m., when the ground temperature was high enough to cause turbulence that kicks up dust devils as the wind blows across the plain. The number of seconds elapsed since the first frame is indicated at lower left of the images, typically 20 seconds between frames. Spirit's navigation camera took these images on the rover's 463rd martian day, or sol (April 22, 2005.) Contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust devil.

    Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection can trigger dust devils.

  9. Several Dust Devils in Gusev Crater, Sol 461

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows a several dust devils -- whirlwinds that loft dust into the air -- moving across a plain below the hillside vantage point of NASA's Mars Exploration Rover Spirit. Several of the dust devils are visible at once in some of the 21 frames in this sequence. The local solar time was about 2 p.m., when the ground temperature was high enough to cause turbulence that kicks up dust devils as the wind blows across the plain. The number of seconds elapsed since the first frame is indicated at lower left of the images, typically 20 seconds between frames. Spirit's navigation camera took these images on the rover's 461st martian day, or sol (April 20, 2005.) Contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust devil.

    Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection can trigger dust devils.

  10. Field measurements of horizontal forward motion velocities of terrestrial dust devils: Towards a proxy for ambient winds on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Balme, M. R.; Pathare, A.; Metzger, S. M.; Towner, M. C.; Lewis, S. R.; Spiga, A.; Fenton, L. K.; Renno, N. O.; Elliott, H. M.; Saca, F. A.; Michaels, T. I.; Russell, P.; Verdasca, J.

    2012-11-01

    Dust devils - convective vortices made visible by the dust and debris they entrain - are common in arid environments and have been observed on Earth and Mars. Martian dust devils have been identified both in images taken at the surface and in remote sensing observations from orbiting spacecraft. Observations from landing craft and orbiting instruments have allowed the dust devil translational forward motion (ground velocity) to be calculated, but it is unclear how these velocities relate to the local ambient wind conditions, for (i) only model wind speeds are generally available for Mars, and (ii) on Earth only anecdotal evidence exists that compares dust devil ground velocity with ambient wind velocity. If dust devil ground velocity can be reliably correlated to the ambient wind regime, observations of dust devils could provide a proxy for wind speed and direction measurements on Mars. Hence, dust devil ground velocities could be used to probe the circulation of the martian boundary layer and help constrain climate models or assess the safety of future landing sites. We present results from a field study of terrestrial dust devils performed in the southwest USA in which we measured dust devil horizontal velocity as a function of ambient wind velocity. We acquired stereo images of more than a 100 active dust devils and recorded multiple size and position measurements for each dust devil. We used these data to calculate dust devil translational velocity. The dust devils were within a study area bounded by 10 m high meteorology towers such that dust devil speed and direction could be correlated with the local ambient wind speed and direction measurements. Daily (10:00-16:00 local time) and 2-h averaged dust devil ground speeds correlate well with ambient wind speeds averaged over the same period. Unsurprisingly, individual measurements of dust devil ground speed match instantaneous measurements of ambient wind speed more poorly; a 20-min smoothing window applied to the ambient wind speed data improves the correlation. In general, dust devils travel 10-20% faster than ambient wind speed measured at 10 m height, suggesting that their ground speeds are representative of the boundary layer winds a few tens of meters above ground level. Dust devil ground motion direction closely matches the measured ambient wind direction. The link between ambient winds and dust devil ground velocity demonstrated here suggests that a similar one should apply on Mars. Determining the details of the martian relationship between dust devil ground velocity and ambient wind velocity might require new in situ or modelling studies but, if completed successfully, would provide a quantitative means of measuring wind velocities on Mars that would otherwise be impossible to obtain.

  11. A Mid-Summer's Dust Devil

    NASA Technical Reports Server (NTRS)

    2001-01-01

    One objective for the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) in the Extended Mission is to continue looking for changes and dynamic events taking place on the red planet. The feature shown here elicited gasps of excitement among the MOC Operations Staff when it was received in early April 2001.

    The feature is a dust devil. Dust devils are spinning, columnar vortices of wind that move across the landscape, pick up dust, and look somewhat like miniature tornadoes. Dust devils are a common occurrence in dry and desert landscapes on Earth as well as Mars. When this dust devil was spied in Amazonis Planitia on April 10th, the MOC was looking straight down. Usually when the camera is looking down the dust devil will appear as a circular, fuzzy patch with a straight shadow indicating its columnar shape. In this case, however, the dust devil is somewhat curved and kinked--its shape is best seen in the shadow it casts to the right. A thin, light-toned track has been left by the dust devil as it moved eastward across the landscape. Usually, such tracks are darker than the surroundings, in this case the light tone might indicate that the dust being removed by the passing dust devil is darker than the surface underneath the thin veneer of dust.

    Dust devils most typically form when the ground heats up during the day, warming the air immediately above the surface. As the warmed air nearest the surface begins to rise, it spins. The spinning column begins to move across the surface and picks up loose dust (if any is present). The dust makes the vortex visible and gives it the 'dust devil' or tornado-like appearance. This dust devil occurred at an optimal time for dust devils whether on Earth or Mars--around 2 p.m. local time in the middle of Northern Hemisphere Summer. North is up, sunlight illuminates the scene from the left (west), and 500 meters is about 547 yards. The shadow cast by the dust devil goes off the edge of the image, but the length shown here (about 1.5 km) indicates that the dust devil was a bit more than 1 km (0.62 mi) in height.

  12. Using an Instrumented Drone to Sample Dust Devils

    NASA Astrophysics Data System (ADS)

    Jackson, Brian; Lorenz, Ralph; Davis, Karan; Lipple, Brock

    2017-10-01

    Dust devils are low-pressure, small (many to tens of meters) convective vortices powered by surface heating and rendered visible by lofted dust. Dust devils occur in arid climates on Earth, where they degrade air quality and pose a hazard to small aircraft. They also occur ubiquitously on Mars, where they may dominate the supply of atmospheric dust. Since dust contributes significantly to Mars’ atmospheric heat budget, dust devils probably play an important role in its climate. The dust-lifting capacity of a devil likely depends sensitively on its structure, particularly the wind and pressure profiles, but the exact dependencies are poorly constrained. Thus, the exact contribution to Mars’ atmosphere remains unresolved. Moreover, most previous studies of martian dust devils have relied on passive sampling of the profiles via meteorology packages on landed spacecraft, resulting in random encounter geometries which non-trivially skew the retrieved profiles. Analog studies of terrestrial devils have employed more active sampling (instrumented vehicles or manned aircraft) but have been limited to near-surface (few meters) or relatively high altitude (hundreds of meters) sampling. Unmanned aerial vehicles (UAVs) or drones, combined with miniature, digital instrumentation, promise a novel and uniquely powerful platform from which to sample dust devils via (relatively) controlled geometries at a wide variety of altitudes. In this presentation, we will describe a pilot study using an instrumented quadcopter on an active field site in southeastern Oregon, which (to our knowledge) has not previously been surveyed for dust devils. We will present preliminary results from the resulting encounters, including stereo image analysis and encounter footage collected onboard the drone.

  13. An investigation of Martian and terrestrial dust devils

    NASA Astrophysics Data System (ADS)

    Ringrose, Timothy John

    2004-10-01

    It is the purpose of this work to provide an insight into the theoretical and practical dynamics of dust devils and how they are detected remotely from orbit or in situ on planetary surfaces. There is particular interest in the detection of convective vortices on Mars; this has been driven by involvement in the development of the Beagle 2 Environmental Sensor Suite. This suite of sensors is essentially a martian weather station and will be the first planetary lander experiment specifically looking for the presence of dust devils on Mars. Dust devils are characterised by their visible dusty core and intense rotation. The physics of particle motion, including dust lofting and the rotational dynamics within convective vortices are explained and modelled. This modelling has helped in identifying dust devils in meteorological data from both terrestrial and martian investigations. An automated technique for dust devil detection using meteorological data has been developed. This technique searches data looking for the specific vortex signature as well as detecting other transient events. This method has been tested on both terrestrial and martian data with surprising results. 38 possible convective vortices were detected in the first 60 sols of the Viking Lander 2 meteorological data. Tests were also carried out on data from a terrestrial dust devil campaign, which provided conclusive evidence from visual observations of the reliability of this technique. A considerable amount of this work does focus on terrestrial vortices. This is to aid in the understanding of dust devils, specifically how, why and when they form. Both laboratory and terrestrial fieldwork is investigated, providing useful data on the general structure of dust devils.

  14. Martian Arctic Dust Devil, Phoenix Sol 104

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The dust devil visible in the center of this image just below the horizon is estimated to be about 400 meters (about 1,300 feet) from Phoenix, and 4 meters (13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those.

    The image has been enhanced to make the dust devil easier to see.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Dunes and Dust Devils

    NASA Image and Video Library

    2015-02-12

    This image captured by NASA 2001 Mars Odyssey spacecraft is of an unnamed crater in Noachis Terra. Part of the crater floor contains a dune field. Dust devil tracks are visible east of the dunes. Orbit Number: 57931 Latitude: -52.1733 Longitude: 18.0624 Instrument: VIS Captured: 2015-01-04 18:28 http://photojournal.jpl.nasa.gov/catalog/PIA19199

  16. Martian Arctic Dust Devil and Phoenix Meteorology Mast

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west-southwest of the lander at 11:16 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The vertical post near the left edge of this image is the mast of the Meteorological Station on Phoenix. The dust devil visible at the horizon just to the right of the mast is estimated to be 600 to 700 meters (about 2,000 to 2,300 feet) from Phoenix, and 4 to 5 meters (10 to 13 feet) in diameter. It is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those.

    The image has been enhanced to make the dust devil easier to see.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  17. Dust Devils Seen Streaking Across Mars: PART II--They're the Work of the Devil!

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    In December 1999, the MOC team finally had an answer! A dust devil, shown in the above left figure, was caught in the act of creating a swirly, dark streak! An eerie sensation washed over the first team members who saw this picture--here was an event on Mars 'caught in the act' just hours before the picture was played back to Earth. A 'smoking gun.'

    The first dust devil seen making a streak--located in Promethei Terra (above, left)--was traveling from right (east) to left (west). A columnar shadow was cast by sunlight coming from the upper left. This shadow indicates the true shape of the dust devil. The bright dust devil itself does not look like a column because the picture was taken from a camera looking straight down on it. The dust devil is less than 100 meters (less than 100 yards) wide and the picture covers an area approximately 1.5 by 1.7 kilometers (about 1 by 1 mile).

    Dust devils are spinning, columnar vortices of wind that move across the landscape, pick up dust, and look somewhat like miniature tornadoes. Dust devils are a common occurrence in dry and desert landscapes on Earth as well as Mars. They form when the ground heats up during the day, warming the air immediately above the surface. As the warmed air nearest the surface begins to rise, it spins. The spinning column begins to move across the surface and picks up loose dust (if any is present). The dust makes the vortex visible and gives it the 'dust devil' or tornado-like appearance. On Earth, dust devils typically last for only a few minutes.

    The fourth picture (above, right) shows a surface in southwestern Terra Sirenum near 63oS, 168oW, that has seen the activity of so many dust devils that it looks like a plate of dark gray spaghetti. This image, taken in early summer during February 2000, covers an area 3 km wide and 30 km long (1.9 by 19 miles). In fact, a dust devil can be seen in the upper right of this image. Like the other pictures shown here, the Terra Sirenum image is illuminated by sunlight from the upper left.

  18. Martian Dust Devil Movie, Phoenix Sol 104

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west of the lander in four frames shot about 50 seconds apart from each other between 11:53 a.m. and 11:56 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The dust devil visible in this sequence was about 1,000 meters (about 3,300 feet) from the lander when the first frame was taken, and had moved to about 1,700 meters (about 5,600 feet) away by the time the last frame was taken about two and a half minutes later. The dust devil was moving westward at an estimated speed of 5 meters per second (11 miles per hour), which is similar to typical late-morning wind speed and direction indicated by the telltale wind gauge on Phoenix.

    This dust devil is about 5 meters (16 feet) in diameter. This is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those..

    The image has been enhanced to make the dust devil easier to see. Some of the frame-to-frame differences in the appearance of foreground rocks is because each frame was taken through a different color filter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  19. A Dust Devil Making a Streak and Climbing a Crater Wall

    NASA Technical Reports Server (NTRS)

    2002-01-01

    MGS MOC Release No. MOC2-318, 8 August 2002 [figure removed for brevity, see original site] One of the key elements of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) Extended Mission is to look for and monitor changes taking place on the planet over the course of a second--and, eventually, a third--martian year. MGS is now well into its second Mars year, which will draw to a close in December 2002. Among the changes the MOC has observed are streaks believed to be caused by the passage of dust devils. Thousands of MOC images show these streaks, dozens show that they change over time, but far fewer images have actually captured a dust devil in the act of creating a streak. At the center right of this image (above left) is a dust devil that, on May 21, 2002, was seen climbing the wall of a crater at 4.1oS, 9.5oW. This crater (above right) is in western Terra Meridiani. The dust devil was moving toward the northeast (upper right), leaving behind a dark trail where a thin coating of surficial dust was removed or disrupted as the dust devil advanced. Dust devils most commonly form after noon on days when the martian air is still (that is, when there isn't even a faint breeze). On such days, the ground is better able to heat up the air immediately above the surface. As the warmed near-surface air begins to rise, it also begins to spin, creating a vortex. The spinning column then moves across the surface and picks up loose dust (if any is present). The dust makes the vortex visible and gives it a tornado-like appearance. The dust devil in this image has a very short, dark shadow cast to the right of the bright column; this shadow is short because the sun was nearly overhead.

  20. Temporal and spatial characteristics of dust devils and their contribution to the aerosol budget in East Asia-An analysis using a new parameterization scheme for dust devils

    NASA Astrophysics Data System (ADS)

    Tang, Yaoguo; Han, Yongxiang; Liu, Zhaohuan

    2018-06-01

    Dust aerosols are the main aerosol components of the atmosphere that affect climate change, but the contribution of dust devils to the atmospheric dust aerosol budget is uncertain. In this study, a new parameterization scheme for dust devils was established and coupled with WRF-Chem, and the diurnal and monthly variations and the contribution of dust devils to the atmospheric dust aerosol budget in East Asia was simulated. The results show that 1) both the diurnal and monthly variations in dust devil emissions in East Asia had unimodal distributions, with peaks in the afternoon and the summer that were similar to the observations; 2) the simulated dust devils occurred frequently in deserts, including the Gobi. The distributed area and the intensity center of the dust devil moved from east to west during the day; 3) the ratio between the availability of convective buoyancy relative to the frictional dissipation was the main factor that limited the presence of dust devils. The position of the dust devil formation, the surface temperature, and the boundary layer height determined the dust devil intensity; 4) the contribution of dust devils to atmospheric dust aerosols determined in East Asia was 30.4 ± 13%, thereby suggesting that dust devils contribute significantly to the total amount of atmospheric dust aerosols. Although the new parameterization scheme for dust devils was rough, it was helpful for understanding the distribution of dust devils and their contribution to the dust aerosol budget.

  1. Dust Devil Track Occurrence in Argyre Planitia.

    NASA Astrophysics Data System (ADS)

    Whelley, P. L.; Balme, M. R.; Greeley, R.

    2002-12-01

    Martian dust devil tracks were first observed in Viking Orbiter images [Thomas et al., 1985]. While the interpretation of these features was at first controversial, it is now widely accepted that the tracks are formed by the passage of small convective vortices (dust devils). As the dust devils travel across the surface the atmosphere is loaded with fine particles creating a visible trail inferred to be removal or deposition of material [Greeley et al., 2001]. Mars Global Surveyor (MGS) Mars Orbital Camera (MOC) images of dust devil tracks in Argyre Planitia were used to asses dust devil track abundance as a function of Martian season as well as elevation using Mars Orbiter Laser Altimeter (MOLA) data. Argyre Planitia is a large impact basin in the southern hemisphere (55° to 33°W and 35° to 58°S), with topographic relief of 7 km with the median at -1km. We have studied the 564 Narrow Angle MOC images (taken as of summer 2002) covering the area. The images were divided into two categories: those with devil tracks and those without. The Ls (solar longitude degrees as a fraction of orbit) and elevation of all of the images with and without devil tracks were noted. The elevation was recorded at the center point of each MOC image using MOLA data. A polar plot of all of the images shows a statistically random distribution throughout the Martian year. A context map of the images shows a representative distribution over the area of the crater itself. A polar plot of dust devil track occurrence within the area observed shows a major concentration of tracks between Ls 200° and 360° (southern spring to late summer). A seasonal breakdown of devil track occurrence as a percentage of total area observed yields: fall 11.25%, winter 2.24%, spring 27.21%, and summer 46.49%. We therefore conclude that dust devils tracks are formed preferentially in summer and are destroyed, fade or are covered, over a period of a few months. The elevation of all 564 images was measured and 1km bins were used to calculate the percent of occurrence. We discovered that, at 3km 0% of the observed area contain dust devil tracks, 2km 7.69%, 1km 12.90%, at Datum 15.95%, -1km 8.97%, -2km 28.92%, -3km% 50.00%, -4km 50.00%. Independent of the season a majority of the devil tracks were observed below -3km. Therefore elevation is a key factor governing the formation of dust devils or their ability to produce tracks. Our interpretation of these results is that dust devils are much more likely to form during the summer and, as suggested by recent experiments [Balme et al., 2002], that they are more efficient at moving materials on the surface in areas where the atmospheric pressure is greatest (in the lowest elevations). The short timescale for disappearance of tracks suggests that the distinct albedo variations of the tracks result from only the removal or deposition of a very thin layer of material. Thomas. P. et al., 1985, Science v. 230 Greeley. R. et al., 2001, LPSC XXXII Balme. M. et al., 2002, LPSC XXXIII

  2. Dust Devil Tracks

    NASA Astrophysics Data System (ADS)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand-sized material that is eroded from the outer vortex area of a dust devil is redeposited in annular patterns in the central vortex region. This type of DDT can also be found in on Mars in orbital image data, and although in situ studies are lacking, terrestrial analog studies, laboratory work, and numerical modeling suggest they have the same formation mechanism as those on Earth. Finally, bright DDTs are characterized by their continuous track pattern and high albedo compared to their undisturbed surroundings. They are found on both planets, but to date they have only been analyzed in situ on Earth. Here, the destruction of aggregates of dust, silt and sand by dust devils leads to smooth surfaces in contrast to the undisturbed rough surfaces surrounding the track. The resulting change in photometric properties occurs because the smoother surfaces have a higher reflectance compared to the surrounding rough surface, leading to bright DDTs. On Mars, the destruction of surficial dust-aggregates may also lead to bright DDTs. However, higher reflective surfaces may be produced by other formation mechanisms, such as dust compaction by passing dust devils, as this may also cause changes in photometric properties. On Mars, DDTs in general are found at all elevations and on a global scale, except on the permanent polar caps. DDT maximum areal densities occur during spring and summer in both hemispheres produced by an increase in dust devil activity caused by maximum insolation. Regionally, dust devil densities vary spatially likely controlled by changes in dust cover thicknesses and substrate materials. This variability makes it difficult to infer dust devil activity from DDT frequencies. Furthermore, only a fraction of dust devils leave tracks. However, DDTs can be used as proxies for dust devil lifetimes and wind directions and speeds, and they can also be used to predict lander or rover solar panel clearing events. Overall, the high DDT frequency in many areas on Mars leads to drastic albedo changes that affect large-scale weather patterns.

  3. A Multi-Year Dust Devil Vortex Survey Using an Automated Search of Pressure Time-Series

    NASA Astrophysics Data System (ADS)

    Jackson, Brian K.; Lorenz, Ralph

    2014-11-01

    Dust devils occur in arid climates on the Earth and ubiquitously on Mars, where they likely dominate the supply of atmospheric dust and influence climate. Martian dust devils have been studied with a combination of orbiting and landed spacecraft, while most studies of terrestrial dust devils have involved manned monitoring of field sites, which can be costly both in time and personnel. As an alternative approach, we describe a multi-year in-situ survey of terrestrial dust devils using pressure loggers deployed at El Dorado Playa in Nevada, USA, a site known for dust devil activity. Analogous to previous surveys for Martian dust devils, we conduct a post-hoc analysis of the barometric data to search for putative dust devil pressure dips using a new automated detection algorithm. We investigate the completeness and false positive rates of our new algorithm and conduct several statistically robust analyses of the resulting population of dips. We also investigate seasonal, annual, and spatial variability of the putative dust devil dips, possible correlations with precipitation, and the influence of sample size on the derived population statistics. Our results suggest that large numbers of dips (> 1,000) collected over multiple seasons are probably required for accurate assessment of the underlying dust devil population. Correlating long-term barometric time-series with other data streams (e.g., solar flux measurements from photovoltaic cells) can uniquely elucidate the natures and origins of dust devils, and accurately assessing their influence requires consideration of the full distribution of dust devil properties, rather than average values. For example, our results suggest the dust flux from the average terrestrial devil is nearly 1,000 times smaller than the (more representative) population-weighted average flux. If applicable to Martian dust devils, such corrections may help resolve purported discrepancies between the dust fluxes estimated from dust devil studies and those required to maintain the atmospheric dust concentration.

  4. Multitemporal observations of identical active dust devils on Mars with the High Resolution Stereo Camera (HRSC) and Mars Orbiter Camera (MOC)

    NASA Astrophysics Data System (ADS)

    Reiss, D.; Zanetti, M.; Neukum, G.

    2011-09-01

    Active dust devils were observed in Syria Planum in Mars Observer Camera - Wide Angle (MOC-WA) and High Resolution Stereo Camera (HRSC) imagery acquired on the same day with a time delay of ˜26 min. The unique operating technique of the HRSC allowed the measurement of the traverse velocities and directions of motion. Large dust devils observed in the HRSC image could be retraced to their counterparts in the earlier acquired MOC-WA image. Minimum lifetimes of three large (avg. ˜700 m in diameter) dust devils are ˜26 min, as inferred from retracing. For one of these large dust devil (˜820 m in diameter) it was possible to calculate a minimum lifetime of ˜74 min based on the measured horizontal speed and the length of its associated dust devil track. The comparison of our minimum lifetimes with previous published results of minimum and average lifetimes of small (˜19 m in diameter, avg. min. lifetime of ˜2.83 min) and medium (˜185 m in diameter, avg. min. lifetime of ˜13 min) dust devils imply that larger dust devils on Mars are active for much longer periods of time than smaller ones, as it is the case for terrestrial dust devils. Knowledge of martian dust devil lifetimes is an important parameter for the calculation of dust lifting rates. Estimates of the contribution of large dust devils (>300-1000 m in diameter) indicate that they may contribute, at least regionally, to ˜50% of dust entrainment by dust devils into the atmosphere compared to the dust devils <300 m in diameter given that the size-frequency distribution follows a power-law. Although large dust devils occur relatively rarely and the sediment fluxes are probably lower compared to smaller dust devils, their contribution to the background dust opacity by dust devils on Mars could be at least regionally large due to their longer lifetimes and ability of dust lifting into high atmospheric layers.

  5. Sol 568 Dust Devil in Gusev, Unenhanced

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows several dust devils moving from right to left across a plain inside Mars' Gusev Crater, as seen from the vantage point of NASA's Mars Exploration Rover Spirit in hills rising from the plain. The clip consists of frames taken by Spirit's navigation camera during the rover's 543rd martian day, or sol (July 13, 2005). Unlike some other movie clips of dust devils seen by Spirit, the images in this clip have not been processed to enhance contrast of the dust devils. The total time elapsed during the taking of these frames was 12 minutes, 17 seconds.

    Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks.

  6. Dust Devils Whip by Spirit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On sol 1120 (February 26, 2007), the navigation camera aboard NASA's Mars Exploration Rover Spirit captured one of the best dust devils it's seen in its three-plus year mission. The series of navigation camera images were put together to make a dust devil movie.

    The dust devil column is clearly defined and is clearly bent in the down wind direction. Near the end of the movie, the base of the dust devil becomes much wider. The atmospheric science team thinks that this is because the dust devil encountered some sand and therefore produced a 'saltation skirt,' an apron of material that is thrown out of the dust devil because it is too large to be carried up into suspension.

    Also near the end of the movie the dust devil seems to move faster across the surface. This is because Spirit began taking pictures less frequently, and not because the dust devil sped up.

  7. Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit

    USGS Publications Warehouse

    Greeley, R.; Whelley, P.L.; Arvidson, R. E.; Cabrol, N.A.; Foley, D.J.; Franklin, B.J.; Geissler, P.G.; Golombek, M.P.; Kuzmin, R.O.; Landis, G.A.; Lemmon, M.T.; Neakrase, L.D.V.; Squyres, S. W.; Thompson, S.D.

    2006-01-01

    A full dust devil "season" was observed from Spirit from 10 March 2005 (sol 421, first active dust devil observed) to 12 December 2005 (sol 691, last dust devil seen); this corresponds to the period Ls 173.2?? to 339.5??, or the southern spring and summer on Mars. Thermal Emission Spectrometer data suggest a correlation between high surface temperatures and a positive thermal gradient with active dust devils in Gusev and that Spirit landed in the waning stages of a dust devil season as temperatures decreased. 533 active dust devils were observed, enabling new characterizations; they ranged in diameter from 2 to 276 m, with most in the range of 10-20 m in diameter, and occurred from about 0930 to 1630 hours local true solar time (with the maximum forming around 1300 hours) and a peak occurrence in southern late spring (Ls ??? 250??). Horizontal speeds of the dust devils ranged from <1 to 21 m/s, while vertical wind speeds within the dust devils ranged from 0.2 to 8.8 m/s. These data, when combined with estimates of the dust content within the dust devils, yield dust fluxes of 3.95 ?? 10-9 to 4.59-4 kg/m2/s. Analysis of the dust devil frequency distribution over the inferred dust devil zone within Gusev crater yields ???50 active dust devils/km2/sol, suggesting a dust loading into the atmosphere of ???19 kg/km2/sol. This value is less than one tenth the estimates by Cantor et al. (2001) for regional dust storms on Mars. Copyright 2006 by the American Geophysical Union.

  8. Diurnal variation in martian dust devil activity

    NASA Astrophysics Data System (ADS)

    Chapman, R. M.; Lewis, S. R.; Balme, M.; Steele, L. J.

    2017-08-01

    We show that the dust devil parameterisation in use in most Mars Global Circulation Models (MGCMs) results in an unexpectedly high level of dust devil activity during morning hours. Prior expectations of the diurnal variation of Martian dust devils are based mainly upon the observed behaviour of terrestrial dust devils: i.e. that the majority occur during the afternoon. We instead find that large areas of the Martian surface experience dust devil activity during the morning in our MGCM, and that many locations experience a peak in dust devil activity before mid-sol. We find that the diurnal variation in dust devil activity is governed by near-surface wind speeds. Within the range of daylight hours, higher wind speeds tend to produce higher levels of dust devil activity, rather than the activity simply being governed by the availability of heat at the planet's surface, which peaks in early afternoon. Evidence for whether the phenomenon we observe is real or an artefact of the parameterisation is inconclusive. We compare our results with surface-based observations of Martian dust devil timings and obtain a good match with the majority of surveys. We do not find a good match with orbital observations, which identify a diurnal distribution more closely matching that of terrestrial dust devils, but orbital observations have limited temporal coverage, biased towards the early afternoon. We propose that the generally accepted description of dust devil behaviour on Mars is incomplete, and that theories of dust devil formation may need to be modified specifically for the Martian environment. Further surveys of dust devil observations are required to support any such modifications. These surveys should include both surface and orbital observations, and the range of observations must encompass the full diurnal period and consider the wider meteorological context surrounding the observations.

  9. Particle Lifting Processes in Dust Devils

    NASA Astrophysics Data System (ADS)

    Neakrase, L. D. V.; Balme, M. R.; Esposito, F.; Kelling, T.; Klose, M.; Kok, J. F.; Marticorena, B.; Merrison, J.; Patel, M.; Wurm, G.

    2016-11-01

    Particle lifting in dust devils on both Earth and Mars has been studied from many different perspectives, including how dust devils could influence the dust cycles of both planets. Here we review our current understanding of particle entrainment by dust devils by examining results from field observations on Earth and Mars, laboratory experiments (at terrestrial ambient and Mars-analog conditions), and analytical modeling. By combining insights obtained from these three methodologies, we provide a detailed overview on interactions between particle lifting processes due to mechanical, thermal, electrodynamical and pressure effects, and how these processes apply to dust devils on Earth and Mars. Experiments and observations have shown dust devils to be effective lifters of dust given the proper conditions on Earth and Mars. However, dust devil studies have yet to determine the individual roles of each of the component processes acting at any given time in dust devils.

  10. Martian Dust Devils: 2 Mars Years of MGS MOC Observations

    NASA Astrophysics Data System (ADS)

    Cantor, B. A.; Edgett, K. S.

    2002-12-01

    Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide and narrow angle images have captured more than 1000 active dust devils over 2 Mars years. In the most recent Mars year, we repeatedly imaged (and are continuing to image) several areas to monitor dust devil occurrence. Some Mars dust devils are as small as a few to 10s of meters across, others are 100s of meters across and over 6 km high. Each Martian hemisphere has a "dust devil season" that generally follows the subsolar latitude. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer (probably every afternoon; observations are acquired 2-3 times a week). The Amazonis and other MOC observations show no evidence that dust devils cause, lead to, or have a systematic relationship with dust storms. However, dust devils sometimes do occur near small, localized storms; and one specific relation occurred during the onset of the global dust events of 2001: slightly elevated levels of atmospheric dust (an optically thin cloud) triggered a very short period of dust devil activity in NW Amazonis in early northern autumn. The redistribution of dust by the 2001 global events may have also affected subsequent spring and summer dust devil activity in Hellas, where considerably fewer dust devils occurred in 2001-2002 than 1999-2000. In SW Syria, frequent, large dust devils occurred after the 2001 global events and persisted through southern summer. While dust devils have no specific relation to dust storms, they might play a role in the seasonal "wave of darkening" at middle and high latitudes by removing or disrupting thin veneers of dust. Dust devils have been observed to create thin, filamentary streaks. Some streaks are darker than their surroundings, while others are lighter. Some dust devils do not create streaks. At mid-latitudes, surfaces darken in spring as 100s of crisscrossing streaks form on widely-varied terrain. Some rare streaks exhibit cycloidal patterns similar to those created on Earth by tornadoes with multiple sub-vortices. The streaks occur at nearly all latitudes and elevations, from north polar dunes to the south polar layered terrain, from the summit of Olympus Mons to the floor of Hellas. During "dust devil season" at a given latitude, tremendous changes in streak patterns occur in periods as short as 1 month. These observations, along with repeated imaging in NW Amazonis and SW Syria, provide some idea of the frequency of dust devils. Uncertain is whether dust devils are responsible for all thin, filamentary streaks: while active vortices have been seen creating the plethora of streaks at southern mid-latitudes, none have been observed on the northern plains, despite observation of similar streak patterns. Perhaps northern plains dust devils occur at a different time of day relative to the MGS 1400 LT orbit, or perhaps dust devils did not form them. We monitored removal of dust from surfaces after the 2001 global dust events in several locations. Of particular interest was western Syrtis Major, which had brightened considerably after the 2001 storms. We observed this area for several months while very little change occurred. Finally, in January 2002, the surface was swept clean of most of its 2001 veneer of dust in a period of about 1 week. Dust devils played no role in this process; instead, regional surface winds were responsible.

  11. Dust devil track survey at Elysium Planitia, Mars: Implications for the InSight landing sites

    NASA Astrophysics Data System (ADS)

    Reiss, Dennis; Lorenz, Ralph D.

    2016-03-01

    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) robotic lander is scheduled to land in Elysium Planitia on Mars in September 2016. InSight will perform the first comprehensive surface-based geophysical investigation including seismic measurements. Knowledge about encounter rates of dust devils with the InSight lander are important for two main reasons: (1) dust devils will affect the scientific measurements, i.e., wind-induced seismic noise, and (2) the power-supply of the InSight lander and instruments is provided by solar arrays and previous landers and rovers on Mars were affected by a steady decline in electrical power output due to atmospheric dust deposition on the solar panels. Long term science operations were only made possible by dust clearing events of the solar arrays caused by wind gusts and dust devils. In this study we analyzed dust devil tracks (DDTs) at the final InSight landing site region in Elysium Planitia. Formation of DDTs is caused by the removal of a layer of dust by passing dust devils, hence in principle the same process as clearing of dust from solar panels. We mapped the number, size (width and length), and orientation of DDTs in repeat observations using High Resolution Imaging Science Experiment (HiRISE) images covering the exact same surface area acquired within a relatively short time span (<90 martian days). In total, we analyzed 557 newly formed dust devil tracks in 8 study areas. DDTs are morphologically relatively straight with a low mean sinuosity of 1.03 and only reach maximum widths of 30 m. The mean DDT width is 4 m, indicating that the dust devil size population is dominated by small dust devils with a diameter <10 m. The size-frequency distribution of DDTs follows a -2 power law. The mean lengths of DDTs are 0.62 km and 1.23 km for complete (tracks which are visible from their start to end point) and incomplete DDTs (tracks running across the HiRISE footprint), respectively. The alignment of DDTs in combination with Mars Climate Database (MCD) predicted wind directions imply that dust devils are moving from SE to NW until early northern autumn with a reversal to NW-SE directions of movement at LS = 200° consistent with the seasonal reversal in direction of the Hadley circulation. DDT formation rates vary between 0.002 and 0.08 ddt km-2 sol-1. DDT area formation rates using the measured DDT widths, lengths, and formation rates are in the range of 0.0003-0.00006 km2 km-2 sol-1, implying that a given spot on the surface may be cleared of dust only once between ∼3000 and 16,000 sols (i.e. every ∼5-24 Mars years). Measured DDT formation rates were used to find a scaling factor to the seasonal DDA index, and then integrated over the year to estimate a mean annual DDT formation rate of 0.046 ddt km-2 sol-1. This translates into a solar panel clearing recurrence interval estimate of ∼11 Mars years using the mean annual DDT formation rate, and the mean DDT width and length from all measured DDTs. Due to several uncertainties this solar panel clearing recurrence interval for the InSight landing should be seen as an upper limit estimate.

  12. Gusev Dust Devil, sol 532

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows a dust devil seen by NASA's Mars Exploration Rover Spirit during the rover's 532nd martian day, or sol (July 2, 2005). The dust-carrying whirlwind is moving across a plain inside Gusev Crater and viewed from Spirit's vantage point on hills rising from the plain. The clip consists of frames taken by Spirit's navigation camera, processed to enhance contrast for anything in the images that changes from frame to frame. The total elapsed time during the taking of these frames was 8 minutes, 48 seconds.

    Spirit began seeing dust devil activity around the beginning of Mars' spring season. Activity increased as spring continued, but fell off again for about two weeks during a dust storm. As the dust storm faded away, dust devil activity came back. In the mid-afternoons as the summer solstice approached, dust devils were a very common occurrence on the floor of Gusev crater. The early-spring dust devils tended to move southwest-to-northeast, across the dust devil streaks in Gusev seen from orbit. Increasingly as the season progresses, the dust devils are seen moving northwest-to-southeast, in the same direction as the streaks. Scientists are watching for the big dust devils that leave those streaks.

  13. A multiyear dust devil vortex survey using an automated search of pressure time series

    NASA Astrophysics Data System (ADS)

    Jackson, Brian; Lorenz, Ralph

    2015-03-01

    Dust devils occur in arid climates on the Earth and ubiquitously on Mars, where they likely dominate the supply of atmospheric dust and influence climate. Martian dust devils have been studied with a combination of orbiting and landed spacecraft, while most studies of terrestrial dust devils have involved manned monitoring of field sites, which can be costly both in time and personnel. As an alternative approach, we describe a multiyear in situ survey of terrestrial dust devils using pressure loggers deployed at El Dorado Playa in Nevada, USA, a site known for dust devil activity. Analogous to previous surveys for Martian dust devils, we conduct a posthoc analysis of the barometric data to search for putative dust devil pressure dips using a new automated detection algorithm. We investigate the completeness and false positive rates of our new algorithm and conduct several statistically robust analyses of the resulting population of dips. We also investigate possible seasonal, annual, and spatial variability of the putative dust devil dips, possible correlations with precipitation, and the influence of sample size on the derived population statistics. Our results suggest that large numbers of dips (>1000) collected over multiple seasons are probably required for accurate assessment of the underlying dust devil population. Correlating long-term barometric time series with other data streams (e.g., solar flux measurements from photovoltaic cells) can uniquely elucidate the natures and origins of dust devils, and accurately assessing their influence requires consideration of the full distribution of dust devil properties, rather than average values.

  14. Boundary Layer Regimes Conducive to Formation of Dust Devils on Mars

    NASA Astrophysics Data System (ADS)

    Williams, B.; Nair, U. S.

    2014-12-01

    Dust devils on Mars contribute to maintenance of background atmospheric aerosol loading and thus dust radiative forcing, which is an important modulator of Martian climate. Dust devils also cause surface erosion and change in surface albedo which impacts radiative energy budget. Thus there is a need for parameterizing dust devil impacts in Martian climate models. In this context it is important to understand environmental conditions that are favorable for formation of dust devils on Mars and associated implications for diurnal, seasonal, and geographical variation of dust devil occurrence. On earth, prior studies show that thresholds of ratio of convective and friction scale velocities may be used to identify boundary layer regimes that are conducive to formation of dust devils. On earth, a w*/u* ratio in excess of 5 is found to be conducive for formation of dust devils. In this study, meteorological observations collected during the Viking Lander mission are used to constrain Martian boundary layer model simulations, which is then used to estimate w*/u* ratio. The w*/u* ratio is computed for several case days during which dust devil occurrence was detected. A majority of dust devils occurred in convective boundary layer regimes characterized by w*/u* ratios exceeding 10. The above described analysis is being extended to other mars mission landing sites and results from the extended analysis will also be presented.

  15. Gusev Dust Devil Movie, Sol 456 (Plain and Isolated)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows a dust devil scooting across a plain inside Gusev Crater on Mars as seen from the NASA rover Spirit's hillside vantage point during the rover's 456th martian day, or sol (April 15, 2005). The individual images were taken about 20 seconds apart by Spirit's navigation camera. Each frame in this movie has the raw image on the top half and a processed version in the lower half that enhances contrast and removes stationary objects, producing an image that is uniformly gray except for features that change from frame to frame.

    The movie results from a new way of watching for dust devils, which are whirlwinds that hoist dust from the surface into the air. Spirit began seeing dust devils in isolated images in March 2005. At first, the rover team relied on luck. It might catch a dust devil in an image or it might miss by a few minutes. Using the new detection strategy, the rover takes a series of 21 images. Spirit sends a few of them to Earth, as well as little thumbnail images of all of them. Team members use the 3 big images and all the small images to decide whether the additional big images have dust devils. For this movie, they specifically told Spirit to send back frames that they knew had dust devils.

    Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection should trigger dust devils.

    Scientists will use the images to study several things. Tracking the dust devils tells which way the wind blows at different times of day. Statistics on the size of typical dust devils will help with estimates of how much dust they pump into the atmosphere every day. By watching individual dust devils change as they go over more-dusty and less-dusty terrain, researchers can learn about the turbulent motion near the surface. Ultimately, that motion of wind and dust near the surface relates these small dust devils with Mars' large dust storms.

  16. Gusev Dust Devil Movie, Sol 459 (Plain and Isolated)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows a dust devil scooting across a plain inside Gusev Crater on Mars as seen from the NASA rover Spirit's hillside vantage point during the rover's 459th martian day, or sol (April 18, 2005). The individual images were taken about 20 seconds apart by Spirit's navigation camera. Each frame in this movie has the raw image on the top half and a processed version in the lower half that enhances contrast and removes stationary objects, producing an image that is uniformly gray except for features that change from frame to frame.

    The movie results from a new way of watching for dust devils, which are whirlwinds that hoist dust from the surface into the air. Spirit began seeing dust devils in isolated images in March 2005. At first, the rover team relied on luck. It might catch a dust devil in an image or it might miss by a few minutes. Using the new detection strategy, the rover takes a series of 21 images. Spirit sends a few of them to Earth, as well as little thumbnail images of all of them. Team members use the 3 big images and all the small images to decide whether the additional big images have dust devils. For this movie, they specifically told Spirit to send back frames that they knew had dust devils.

    Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection should trigger dust devils.

    Scientists will use the images to study several things. Tracking the dust devils tells which way the wind blows at different times of day. Statistics on the size of typical dust devils will help with estimates of how much dust they pump into the atmosphere every day. By watching individual dust devils change as they go over more-dusty and less-dusty terrain, researchers can learn about the turbulent motion near the surface. Ultimately, that motion of wind and dust near the surface relates these small dust devils with Mars' large dust storms.

  17. Gusev Dust Devil Movie, Sol 459 (Enhanced)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows a dust devil scooting across a plain inside Gusev Crater on Mars as seen from the NASA rover Spirit's hillside vantage point during the rover's 459th martian day, or sol (April 18, 2005). The individual images were taken about 20 seconds apart by Spirit's navigation camera, and the contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust devil.

    The movie results from a new way of watching for dust devils, which are whirlwinds that hoist dust from the surface into the air. Spirit began seeing dust devils in isolated images in March 2005. At first, the rover team relied on luck. It might catch a dust devil in an image or it might miss by a few minutes. Using the new detection strategy, the rover takes a series of 21 images. Spirit sends a few of them to Earth, as well as little thumbnail images of all of them. Team members use the 3 big images and all the small images to decide whether the additional big images have dust devils. For this movie, they specifically told Spirit to send back frames that they knew had dust devils.

    The images were processed in three steps. All images were calibrated to remove known camera artifacts. The images were then processed to remove stationary objects. The result is a gray scene showing only features that change with time. The final step combined the original image with the image that shows only moving features, showing the martian scene and the enhanced dust devils.

    Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection should trigger dust devils.

    Scientists will use the images to study several things. Tracking the dust devils tells which way the wind blows at different times of day. Statistics on the size of typical dust devils will help with estimates of how much dust they pump into the atmosphere every day. By watching individual dust devils change as they go over more-dusty and less-dusty terrain, researchers can learn about the turbulent motion near the surface. Ultimately, that motion of wind and dust near the surface relates these small dust devils with Mars' large dust storms.

  18. Gusev Dust Devil Movie, Sol 456 (Enhanced)

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows a dust devil scooting across a plain inside Gusev Crater on Mars as seen from the NASA rover Spirit's hillside vantage point during the rover's 456th martian day, or sol (April 15, 2005). The individual images were taken about 20 seconds apart by Spirit's navigation camera, and the contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust devil.

    The movie results from a new way of watching for dust devils, which are whirlwinds that hoist dust from the surface into the air. Spirit began seeing dust devils in isolated images in March 2005. At first, the rover team relied on luck. It might catch a dust devil in an image or it might miss by a few minutes. Using the new detection strategy, the rover takes a series of 21 images. Spirit sends a few of them to Earth, as well as little thumbnail images of all of them. Team members use the 3 big images and all the small images to decide whether the additional big images have dust devils. For this movie, they specifically told Spirit to send back frames that they knew had dust devils.

    The images were processed in three steps. All images were calibrated to remove known camera artifacts. The images were then processed to remove stationary objects. The result is a gray scene showing only features that change with time. The final step combined the original image with the image that shows only moving features, showing the martian scene and the enhanced dust devils.

    Scientists expected dust devils since before Spirit landed. The landing area inside Gusev Crater is filled with dark streaks left behind when dust devils pick dust up from an area. It is also filled with bright 'hollows,' which are dust-filled miniature craters. Dust covers most of the terrain. Winds flow into and out of Gusev crater every day. The Sun heats the surface so that the surface is warm to the touch even though the atmosphere at 2 meters (6 feet) above the surface would be chilly. That temperature contrast causes convection. Mixing the dust, winds, and convection should trigger dust devils.

    Scientists will use the images to study several things. Tracking the dust devils tells which way the wind blows at different times of day. Statistics on the size of typical dust devils will help with estimates of how much dust they pump into the atmosphere every day. By watching individual dust devils change as they go over more-dusty and less-dusty terrain, researchers can learn about the turbulent motion near the surface. Ultimately, that motion of wind and dust near the surface relates these small dust devils with Mars' large dust storms.

  19. Dust devil characteristics and associated dust entrainment based on large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Klose, Martina; Kwidzinski, Nick; Shao, Yaping

    2015-04-01

    The characteristics of dust devils, such as occurrence frequency, lifetime, size, and intensity, are usually inferred from in situ field measurements and remote sensing. Numerical models, e.g. large-eddy simulation (LES) models, have also been established as a tool to investigate dust devils and their structures. However, most LES models do not contain a dust module. Here, we present results from simulations using the WRF-LES model coupled to the convective turbulent dust emission (CTDE) scheme of Klose et al. (2014). The scheme describes the stochastic process of aerodynamic dust entrainment in the absence of saltation. It therefore allows for dust emission even below the threshold friction velocity for saltation. Numerical experiments have been conducted for different atmospheric stability and background wind conditions at 10 m horizontal resolution. A dust devil tracking algorithm is used to identify dust devils in the simulation results. The detected dust devils are statistically analyzed with regard to e.g. radius, pressure drop, lifetime, and turbulent wind speeds. An additional simulation with higher horizontal resolution (2 m) is conducted for conditions, which are especially favorable for dust devil development, i.e. unstable atmospheric stratification and weak mean winds. The higher resolution enables the identification of smaller dust devils and a more detailed structure analysis. Dust emission fluxes, dust concentrations, and dust mass budgets are calculated from the simulations. The results are compared to field observations reported in literature.

  20. Electrical Characteristics of Simulated Tornadoes and Dust Devils

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Farrell, William M.; Barth, E. L.; Lewellen, W. S.; Perlongo, N. J.; Jackson, T. L.

    2012-01-01

    It is well known that tornadoes and dust devils have the ability to accumulate significant, visible clouds of debris. Collisions between sand-like debris species produce different electric charges on different types of grains, which convect along different trajectories around the vortex. Thus, significant charge separations and electric currents are possible, which as the vortex fluctuates over time are thought to produce ULF radiation signatures that have been measured in the field. These electric and magnetic fields may contain valuable information about tornado structure and genesis, and may be critical in driving electrochemical processes within dust devils on Mars. In the present work, existing large eddy simulations of debris-laden tornadoes performed at West Virginia University are coupled with a new debris-charging and advection code developed at Goddard Space Flight Center to investigate the detailed (meter-resolution) fluid-dynamic origins of electromagnetic fields within terrestrial vortices. First results are presented, including simulations of the electric and magnetic fields that would be observed by a near-surface, instrument-laden probe during a direct encounter with a tornado.

  1. Orbital Observations of Dust Lofted by Daytime Convective Turbulence

    NASA Astrophysics Data System (ADS)

    Fenton, Lori; Reiss, Dennis; Lemmon, Mark; Marticorena, Béatrice; Lewis, Stephen; Cantor, Bruce

    2016-11-01

    Over the past several decades, orbital observations of lofted dust have revealed the importance of mineral aerosols as a climate forcing mechanism on both Earth and Mars. Increasingly detailed and diverse data sets have provided an ever-improving understanding of dust sources, transport pathways, and sinks on both planets, but the role of dust in modulating atmospheric processes is complex and not always well understood. We present a review of orbital observations of entrained dust on Earth and Mars, particularly that produced by the dust-laden structures produced by daytime convective turbulence called "dust devils". On Earth, dust devils are thought to contribute only a small fraction of the atmospheric dust budget; accordingly, there are not yet any published accounts of their occurrence from orbit. In contrast, dust devils on Mars are thought to account for several tens of percent of the planet's atmospheric dust budget; the literature regarding martian dust devils is quite rich. Because terrestrial dust devils may temporarily contribute significantly to local dust loading and lowered air quality, we suggest that martian dust devil studies may inform future studies of convectively-lofted dust on Earth.

  2. Curiosity Observes Whirlwinds Carrying Martian Dust

    NASA Image and Video Library

    2017-02-27

    Dust devils dance in the distance in this frame from a sequence of images taken by the Navigation Camera on NASA's Curiosity Mars rover on Feb. 12, 2017, during the summer afternoon of the rover's 1,607th Martian day, or sol. Within a broader context view, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. One dust devil appears at the right edge of the inset -- toward the south from the rover -- in the first few frames. Another appears on the left -- toward south-southeast -- later in the sequence. Contrast has been modified to make frame-to-frame changes easier to see. A black frame is added between repeats of the sequence. Portions of Curiosity are visible in the foreground. The cylindrical UHF (ultra-high frequency) antenna on the left is used for sending data to Mars orbiters, which relay the data to Earth. The angled planes to the right of this antenna are fins of the rover's radioisotope thermoelectric generator, which provides the vehicle's power. The post with a knob on top at right is a low-gain, non-directional antenna that can be used for receiving transmissions from Earth, as backup to the main high-gain antenna (not shown here) used for that purpose. On Mars as on Earth, dust devils are whirlwinds that result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of Martian dust devils provide information about wind directions and interaction between the surface and the atmosphere. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21482

  3. In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.

    PubMed

    Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele

    2017-04-19

    During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.

  4. Dust devils as aeolian transport mechanisms in southern Nevada and the Mars Pathfinder landing site

    NASA Astrophysics Data System (ADS)

    Metzger, Stephen M.

    Discovery of dust devils vortices in Mars Pathfinder images by this study is direct evidence of a dust entrainment mechanism at work on Mars. Dust devils on Earth can entrain fine material from crusted as well as unconsolidated surfaces, even when forced-convection wind speeds are below threshold. Terrestrial dust devils are commonly ``squat'' V-shaped vortices lasting several minutes. Well developed vortices consist of an outer cylinder of high rotation (<25 m/s), an Intermediate cylinder of moderate vertical lift (<13 m/s), and a inner cylindrical core of low pressure (<1.5% below ambient pressure) and elevated temperature (up to 20°C above ambient air temperature). Directly sampled dust devils on Earth were found to carry from 30 to over 2000 kg of soil. On average, the Eldorado Valley, NV, experienced 42 observable dust devils per summer day, each lofting over 200 kg for a daily total of 9 metric tonnes from this desert basin. Spectral differencing techniques have enhanced five localized dust plumes against the general haze in Mars Pathfinder images acquired near midday, which are determined to be dust devils. Given interpreted geographic locations relative to the lander, the dust devils are 14 to 79 m wide, 46 to over 350 m tall, and travel over ground at 0.5 to 4.6 m/s. Their dust loading was approximately 7 × 10-5 kg/m3, relative to the general haze of 9 × 10-8 kg/m3. With an estimated vertical dust flux of 0.5 g m-2 s-1, total particulate transport of these Martian dust devils may have ranged from 2.2 kg for a small dust devil lasting 35 s to over 700 kg for a large plume of 400 s duration. Observed characteristics of these plumes are consistent with expectations based on theory and the lessons of terrestrial field studies. The increasingly apparent role of dust devils in the dust aeolian transport cycle may largely explain the continued concentration of the general Martian dust haze and perhaps the Initiation mechanism for global dust storms.

  5. Measurements of Dust Devil Lower Structure and Properties, El Dorado Valley, Nevada, June 2002

    NASA Astrophysics Data System (ADS)

    Towner, M. C.; Ringrose, T. J.; Balme, M.; Greeley, R.; Zarnecki, J. C.

    2002-12-01

    We report the results of a recent field campaign in Nevada, USA, carried out to investigate the lower structure (less than 2m) and dust lofting mechanisms of terrestrial dust devils. Over several days, an instrumented platform was repeatedly deployed from the back of a pickup truck into the path of oncoming dust devils. Around 40 events were recorded, including core penetrations of large and small dust devils, close misses and periods of ambient background conditions before and after dust devil events, and during periods of dust devil inactivity. The platform deployed consisted of a 2 by 1m base with a 2m mast and carried a total of 24 instruments. The instrument suite consisted of horizontal wind profiling down to 5mm above surface, vertical wind speed and direction, temperature and pressure profiling, airborne and saltating particle recorders, vertical electric field gradient measurements, and upward looking UV sensors. We present preliminary results of profiles for several events, together with details of ambient conditions required for dust devil formation.

  6. Argyre Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-363, 17 May 2003

    This summertime Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) view of the floor of Argyre Basin shows a plethora of dark streaks thought to have been created by the passage of dust devils. Dust devils are vortices of wind--just as a tornado is a vortex of wind associated with stormy weather on Earth, and the spiraling of water down a bathtub drain is a vortex in a liquid. Dust devils usually form on Mars on relatively calm, quiet, spring and summer afternoons. The passage of a dust devil picks up and disturbs the thin coatings of dust on the martian surface, forming streaks that mark the path that the moving dust devil took. This picture covers an area 3 km (1.9 mi) wide and is located near 48.5oS, 43.0oW. Sunlight illuminates the scene from the upper left.

  7. Dust loading in Gusev crater, Mars: Results from two active dust devil seasons

    NASA Astrophysics Data System (ADS)

    Waller, D. A.; Greeley, R.; Neakrase, L. D.; Landis, G. A.; Whelley, P.; Thompson, S. D.

    2009-12-01

    Dust devils dominate the volcanic plains at the Mars Exploration Rover (MER) landing site within the Low Albedo Zone (LAZ) in Gusev Crater. Previous studies indicate that the inferred pressure drop within the dust devil core allows the vortex to lift large amounts of unconsolidated dust high into the atmosphere which contributes to the atmospheric haze. Previous laboratory results indicate that dust devils are efficient in lifting very fine-grained (<10 μm) material, even when boundary layer winds do not exceed previously predicted threshold wind speeds (~30-35 m/s at 1.5 m above the surface for Mars conditions). Since landing in Gusev crater in January 2004, MER Spirit has obtained data for two dust devil seasons (defined as the period of time when the first and last dust devils were imaged), with a third season currently being analyzed. These seasons typically correspond to southern spring and summer, when winds capable of lifting sediment are determined to be most frequent. All observations for Season One were taken as Spirit neared the summit of Husband Hill. During Season Two Spirit imaged dust devils in the plains as it traversed within the Inner Basin, a low-lying area in the Columbia Hills complex. All results were extrapolated so that they are representative of the entire LAZ. Season One lasted 270 sols (March 2005 to December 2005 corresponding to Ls 173.2 to 339.5 degrees), whereas Season Two lasted 153 sols (January 2007 to June 2007 corresponding to Ls 171.2 to 266.7 degrees) and ended suddenly on sol 1240 just after the dust devil frequency peaked for the season. This abrupt drop in dust devil activity corresponded to atmospheric opacity levels that exceeded 1.0 and the onset of a global dust storm that originated in the southern hemisphere that engulfed Gusev within weeks. Results show a large contrast in activity between the two seasons. An 81% decrease in dust devil frequency across the plains was found in Season Two. 533 dust devils were imaged during Season One and resulted in an average of ~50 active dust devils/km2/sol extrapolated out to the LAZ while 103 dust devils were imaged during Season Two resulting in an average of ~5 active dust devils/km2/sol within the LAZ. This drop in dust devil frequency from one season to the next was coupled with a 50% decrease in the amount of dust loaded into the atmosphere during Season Two (~19 kg/km2/sol in Season One and ~10 kg/km2/sol in Season Two). Previous models indicate that the increased amount of dust in the atmosphere during the storm decreased the amount of solar insolation to the surface therefore also decreasing the surface heat flux. The rapidly decreasing surficial heat flux prevents the temperature lapse rate (change in temperature gradient with elevation) from becoming super-adiabatic and therefore causes the low-altitude atmospheric temperature profile to become too homogeneous to sustain convective plumes.

  8. Summertime Dust Devil

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-464, 26 August 2003

    Dust devils are spinning, columnar vortices of air that move across a landscape, picking up dust as they go. They are common occurrences during summer on Mars. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired during northern summer, shows a dust devil in the Phlegra region of Mars near 32.0oN, 182.1oW. Sunlight illuminates the scene from the lower left; the dust devil is casting a columnar shadow toward the upper right. Some dust devils on Mars make streaks as they disrupt the fine coating of dust on the surface--but others do not make streaks. This one did not make a streak. The view shown here is 3 km (1.9 mi) wide.

  9. Dust Devil in Spirit's View Ahead on Sol 1854

    NASA Technical Reports Server (NTRS)

    2009-01-01

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,854th Martian day, or sol, of Spirit's surface mission (March 21, 2009).

    The rover had driven 13.79 meters (45 feet) westward earlier on Sol 1854.

    West is at the center, where a dust devil is visible in the distance. North on the right, where Husband Hill dominates the horizon; Spirit was on top of Husband Hill in September and October 2005. South is on the left, where lighter-toned rock lines the edge of the low plateau called 'Home Plate.'

    This view is presented as a cylindrical projection with geometric seam correction.

  10. Dust Devil Tracks

    NASA Image and Video Library

    2017-03-06

    This image captured by NASA 2001 Mars Odyssey spacecraft shows dust devil tracks in Aonia Terra. As the dust devil moves along the surface it scours the dust and fine materials away, revealing the darker rocky surface below the dust. Orbit Number: 66962 Latitude: -68.8221 Longitude: 241.346 Instrument: VIS Captured: 2017-01-17 13:13 http://photojournal.jpl.nasa.gov/catalog/PIA21501

  11. Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  12. Dust Devil Tracks

    NASA Image and Video Library

    2017-02-20

    Today's VIS image shows dust devil tracks on the plains of Aonia Terra. As the dust devil moves across the surface it scours the fine dust particles, revealing the darker rock surface below. Orbit Number: 66800 Latitude: -65.2605 Longitude: 239.338 Instrument: VIS Captured: 2017-01-04 04:52 http://photojournal.jpl.nasa.gov/catalog/PIA21316

  13. Marching Dust Devils

    NASA Image and Video Library

    2015-11-05

    On an early fall afternoon in Ganges Chasma Valles Marineris, NASA Mars Reconnaissance Orbiter spacecraft managed to capture a cluster of eight dust devils, five of them in the enhanced color strip. They're together on a dark sandy surface that tilts slightly to the north, towards the Sun. Both of these factors help warm the surface and generate convection in the air above. The surface is streaked with the faint tracks of earlier dust devils. A pair of dust devils appears together at top right, spaced only 250 meters apart. These two have quite different morphologies. The bigger one (on the right) is about 100 meters in diameter and is shaped like a doughnut with a hole in the middle. Its smaller companion is more compact and plume-like, but it too has a small hole in the center, where the air pressure is lowest. It may be that the smaller dust devil is younger than the larger one. A row of four dust devils are in the middle of the color strip, separated by about 900 meters from one another. This image might answer some interesting questions about the behavior of dust devils. Dust devils are theoretically expected to migrate uphill on a sloping surface, or migrate downwind when there is a breeze. Where they are found close together in pairs, they are expected to rotate in opposite directions. HiRISE color observations can be used to determine the direction of rotation and-for fast moving dust devils-the direction of their travel. This is because the different color observations (infrared, red, and blue) are taken at slightly different times. The differences between the earliest color observation and the last tell us about the changes that took place during that time interval. All this requires careful analysis, but if these dust devils are moving fast enough, and spaced closely enough, these here might display some interesting "social dynamics," possibly marching together and rotating in alternating directions. http://photojournal.jpl.nasa.gov/catalog/PIA20045

  14. First Dust Devil Seen by Opportunity

    NASA Image and Video Library

    2010-07-28

    This is the first dust devil that NASA rover Opportunity has observed in the rover six and a half years on Mars. This image has been carefully calibrated and the contrast stretched to make the dust devil easier to see against the Martian sky.

  15. Large-Eddy Simulations of Dust Devils and Convective Vortices

    NASA Astrophysics Data System (ADS)

    Spiga, Aymeric; Barth, Erika; Gu, Zhaolin; Hoffmann, Fabian; Ito, Junshi; Jemmett-Smith, Bradley; Klose, Martina; Nishizawa, Seiya; Raasch, Siegfried; Rafkin, Scot; Takemi, Tetsuya; Tyler, Daniel; Wei, Wei

    2016-11-01

    In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.

  16. Laser Doppler dust devil measurements

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.; Jeffreys, H. B.; Kaufman, J. W.; Weaver, E. A.

    1977-01-01

    A scanning laser doppler velocimeter (SLDV) system was used to detect, track, and measure the velocity flow field of naturally occurring tornado-like flows (dust devils) in the atmosphere. A general description of the dust devil phenomenon is given along with a description of the test program, measurement system, and data processing techniques used to collect information on the dust devil flow field. The general meteorological conditions occurring during the test program are also described, and the information collected on two selected dust devils are discussed in detail to show the type of information which can be obtained with a SLDV system. The results from these measurements agree well with those of other investigators and illustrate the potential for the SLDV in future endeavors.

  17. Dust devil signatures in infrasound records of the International Monitoring System

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.; Christie, Douglas

    2015-03-01

    We explore whether dust devils have a recognizable signature in infrasound array records, since several Comprehensive Nuclear-Test-Ban Treaty verification stations conducting continuous measurements with microbarometers are in desert areas which see dust devils. The passage of dust devils (and other boundary layer vortices, whether dust laden or not) causes a local temporary drop in pressure: the high-pass time domain filtering in microbarometers results in a "heartbeat" signature, which we observe at the Warramunga station in Australia. We also observe a ~50 min pseudoperiodicity in the occurrence of these signatures and some higher-frequency infrasound. Dust devils do not significantly degrade the treaty verification capability. The pipe arrays for spatial averaging used in infrasound monitoring degrade the detection efficiency of small devils, but the long observation time may allow a useful census of large vortices, and thus, the high-sensitivity infrasonic array data from the monitoring network can be useful in studying columnar vortices in the lower atmosphere.

  18. Measurements of Martian dust devil winds with HiRISE

    USGS Publications Warehouse

    Choi, D.S.; Dundas, C.M.

    2011-01-01

    We report wind measurements within Martian dust devils observed in plan view from the High Resolution Imaging Science Experiment (HiRISE) orbiting Mars. The central color swath of the HiRISE instrument has three separate charge-coupled devices (CCDs) and color filters that observe the surface in rapid cadence. Active features, such as dust devils, appear in motion when observed by this region of the instrument. Our image animations reveal clear circulatory motion within dust devils that is separate from their translational motion across the Martian surface. Both manual and automated tracking of dust devil clouds reveal tangential winds that approach 20-30 m s -1 in some cases. These winds are sufficient to induce a ???1% decrease in atmospheric pressure within the dust devil core relative to ambient, facilitating dust lifting by reducing the threshold wind speed for particle elevation. Finally, radial velocity profiles constructed from our automated measurements test the Rankine vortex model for dust devil structure. Our profiles successfully reveal the solid body rotation component in the interior, but fail to conclusively illuminate the profile in the outer regions of the vortex. One profile provides evidence for a velocity decrease as a function of r -1/2, instead of r -1, suggestive of surface friction effects. However, other profiles do not support this observation, or do not contain enough measurements to produce meaningful insights. Copyright 2011 by the American Geophysical Union.

  19. Martian Dust Cycle

    NASA Astrophysics Data System (ADS)

    Cantor, B. A.; James, P. B.

    The Mars Observer Camera (MOC), aboard Mars Global Surveyor (MGS), has completed approximately 3 consecutive Martian years of global monitoring, since entering its mapping orbit on March 9, 1999. MOC observations have shown the important role that dust devils and dust storms play in the Martian dust cycle on time scales ranging from semi-diurnally to interannually. These dust events have been observed across much of the planet from the depths of Hellas basin to the summit of Arsia Mons and range in size from10s of meters across (dust devils) to planet encircling (global dust veils). Though dust devils occur throughout most of the Martian year, each hemisphere has a "dust devil season" that generally follows the subsolar latitude and appears to be repeatable from year-to-year. An exception is NW Amazonis, which has frequent, large dust devils throughout northern spring and summer. MOC observations show no evidence that dust devils cause or lead to dust storms, however, observations do suggest that dust storms can initiate dust devil activity. Dust devils also might play a role in maintaining the low background dust opacity of the Martian atmosphere. Dust storms occur almost daily with few exceptions, with 1000s occurring each year in the present Martian environment, dispelling the notion of a "Classical Dust Storm Season". However, there does appear to be an annual dust storm cycle, with storms developing in specific locations during certain seasons and that some individual storm events are repeatable from year-to-year. The majority of storms develop near the receding seasonal polar cap edge or along the corresponding polar hood boundaries in their respective hemispheres, but they also occur in the northern plains, the windward side of the large shield volcanoes, and in low laying regions such as Hellas, Argyre, and Chryse. The rarest of dust events are the "Great Storms" or "Global Events", of which only 6 (4 "planet encircling" and 2 "global") have been observed to date. With MOC we have observed that global dust events are not individual storms but are composed of a number of local and regional storms (sources) and that they do not signify climatic changes, but are only short-term perturbations to the general interannually repeatable Martian dust storm cycle.

  20. Spirit Captures Two Dust Devils On the Move

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 Annotated

    At the Gusev site recently, skies have been very dusty, and on its 421st sol (March 10, 2005) NASA's Mars Exploration Rover Spirit spied two dust devils in action. This is an image from the rover's navigation camera.

    Views of the Gusev landing region from orbit show many dark streaks across the landscape -- tracks where dust devils have removed surface dust to show relatively darker soil below -- but this is the first time Spirit has photographed an active dust devil.

    Scientists are considering several causes of these small phenomena. Dust devils often occur when the Sun heats the surface of Mars. Warmed soil and rocks heat the layer of atmosphere closest to the surface, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. Another possibility is that a flow structure might develop over craters as wind speeds increase. As winds pick up, turbulence eddies and rotating columns of air form. As these columns grow in diameter they become taller and gain rotational speed. Eventually they become self-sustaining and the wind blows them down range.

    One sol before this image was taken, power output from Spirit's solar panels went up by about 50 percent when the amount of dust on the panels decreased. Was this a coincidence, or did a helpful dust devil pass over Spirit and lift off some of the dust?

    By comparing the separate images from the rover's different cameras, team members estimate that the dust devils moved about 500 meters (1,640 feet) in the 155 seconds between the navigation camera and hazard-avoidance camera frames; that equates to about 3 meters per second (7 miles per hour). The dust devils appear to be about 1,100 meters (almost three-quarters of a mile) from the rover.

  1. Dust Devils Seen by Spirit

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1 Annotated

    At the Gusev site recently, skies have been very dusty, and on its 421st sol (March 10, 2005) NASA's Mars Exploration Rover Spirit spied two dust devils in action. This pair of images is from the rover's rear hazard-avoidance camera. Views of the Gusev landing region from orbit show many dark streaks across the landscape -- tracks where dust devils have removed surface dust to show relatively darker soil below -- but this is the first time Spirit has photographed an active dust devil.

    Scientists are considering several causes of these small phenomena. Dust devils often occur when the Sun heats the surface of Mars. Warmed soil and rocks heat the layer of atmosphere closest to the surface, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado. Another possibility is that a flow structure might develop over craters as wind speeds increase. As winds pick up, turbulence eddies and rotating columns of air form. As these columns grow in diameter they become taller and gain rotational speed. Eventually they become self-sustaining and the wind blows them down range.

    One sol before this image was taken, power output from Spirit's solar panels went up by about 50 percent when the amount of dust on the panels decreased. Was this a coincidence, or did a helpful dust devil pass over Spirit and lift off some of the dust?

    By comparing the separate images from the rover's different cameras, team members estimate that the dust devils moved about 500 meters (1,640 feet) in the 155 seconds between the navigation camera and hazard-avoidance camera frames; that equates to about 3 meters per second (7 miles per hour). The dust devils appear to be about 1,100 meters (almost three-quarters of a mile) from the rover.

  2. Properties of Arizona Dust Devils: a Martian Analog

    NASA Astrophysics Data System (ADS)

    Smith, P. H.; Renno, N.; MATADOR Team

    2001-11-01

    During the week of June 4-8, 2001, the MATADOR team instrumented a truck to study the properties of dust devils at a Martian analog site in Eloy, AZ. MATADOR consists of a group of instruments operated by a science team of about 20 members originally selected by the HEDS program for a 2003 lander mission to Mars. Currently deselected with the loss of the mission, the team has continued studying the optimum means for measuring dust devil properties. With an eye for remotely sensing and identifying potential hazards to humans and their equipment, MATADOR can eventually act as an early warning system much like tornedo and hurricane watches on the Earth. Key questions that the MATADOR group is addressing concern the ability of LIDAR (provided by Optech in Canada) to scan dust devils, the strength of electrical charging and the associated E-fields that are created, the oxidation of the local soil from ionized species, and the best ways to measure the quixotic meteorological properties that define dust devils. Dozens of dust devils were monitored during the field test both remotely and in situ, the results of our study will be presented in detail. One thing is clear though, dust devils maintain a tremendous charge separation such that E-fields approach the breakdown potential of the Earth's atmosphere. Equivalent dust devils on Mars would be 100 times larger than their small Earth cousins; despite the much reduced breakdown potential of the Martian atmosphere, charge separations are likely to occur on Mars. The discharging of these dust events would create electrical signals that can be studied remotely. We would like to thank NASA's HEDS division for their support of these investigations.

  3. In-situ measurement of dust devil activity at La Jornada Experimental Range, New Mexico, USA

    USDA-ARS?s Scientific Manuscript database

    We document observations of dust devil vortices using a linear array of 10 miniature pressure- and sunlight-logging stations in summer 2013 at La Jornada Experimental Range in the southwestern USA. These data provide a census of vortex and dust-devil activity at this site. The simultaneous spatial...

  4. Dust devils on Mars

    NASA Technical Reports Server (NTRS)

    Thomas, P. G.; Gierasch, P.

    1985-01-01

    Large columns of dust have been discovered rising above plains on Mars. The storms are probably analogous to terrestrial dust devils, but their size indicates that they are more similar to tornadoes in intensity. They occur at locations where the soil has been strongly warmed by the Sun, and there the surface is smooth and fine grained. These are the same conditions that favor dust devils on Earth. Warm gas from the lowest atmospheric layer converges and rises in a thin column, with intense swirl developing at the edge of the column. In one area a mosaic of Viking images shows 97 vortices in a three day period. This represents a density of vortices of about one in each 900 square kilometers. Thus, these dust devils may be important in moving dust or starting over dust storms.

  5. Dust devils on Mars

    NASA Astrophysics Data System (ADS)

    Thomas, P.; Gierasch, P. J.

    1985-10-01

    Viking Orbiter photographic imagery has confirmed the occurrence of dust devils on Mars. The images were of small bright clouds with long, tapered shadows viewed from a nearly-nadir angle. Spectra of the features were consistent with dust and not condensates. A maximum height of 6.8 km and width of 1 km were measured. The dust devils appeared on smooth planes, and had average dimensions of 2 km height and 200 m diam, carrying 3000 kg of dust. The data may be of use in interpreting convective processes on earth.

  6. Results from Automated Cloud and Dust Devil Detection Onboard the MER

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Castano, Rebecca; Bornstein, Benjamin; Fukunaga, Alex; Castano, Andres; Biesiadecki, Jeffrey; Greeley, Ron; Whelley, Patrick; Lemmon, Mark

    2008-01-01

    We describe a new capability to automatically detect dust devils and clouds in imagery onboard rovers, enabling downlink of just the images with the targets or only portions of the images containing the targets. Previously, the MER rovers conducted campaigns to image dust devils and clouds by commanding a set of images be collected at fixed times and downloading the entire image set. By increasing the efficiency of the campaigns, more campaigns can be executed. Software for these new capabilities was developed, tested, integrated, uploaded, and operationally checked out on both rovers as part of the R9.2 software upgrade. In April 2007 on Sol 1147 a dust devil was automatically detected onboard the Spirit rover for the first time. We discuss the operational usage of the capability and present initial dust devil results showing how this preliminary application has demonstrated the feasibility and potential benefits of the approach.

  7. The Electric Environment of Martian Dust Devils

    NASA Astrophysics Data System (ADS)

    Barth, E. L.; Farrell, W. M.; Rafkin, S. C.

    2017-12-01

    While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.

  8. Global potential of dust devil occurrence

    NASA Astrophysics Data System (ADS)

    Jemmett-Smith, Bradley; Marsham, John; Knippertz, Peter; Gilkeson, Carl

    2014-05-01

    Mineral dust is a key constituent in the climate system. Airborne mineral dust forms the largest component of the global aerosol budget by mass and subsequently affects climate, weather and biogeochemical processes. There remains large uncertainty in the quantitative estimates of the dust cycle. Dry boundary-layer convection serves as an effective mechanism for dust uplift, typically through a combination of rotating dust devils and non-rotating larger and longer-lived convective plumes. These microscale dry-convective processes occur over length scales of several hundred metres or less. They are difficult to observe and model, and therefore their contribution to the global dust budget is highly uncertain. Using an analytical approach to extrapolate limited observations, Koch and Renno (2006) suggest that dust devils and plumes could contribute as much as 35%. Here, we use a new method for quantifying the potential of dust devil occurrence to provide an alternative perspective on this estimate. Observations have shown that dust devil and convective plume occurrence is favoured in hot arid regions under relatively weak background winds, large ground-to-air temperature gradients and deep dry convection. By applying such known constraints to operational analyses from the European Centre for Medium Range Weather Forecasts (ECMWF), we provide, to the best of the authors' knowledge, the first hourly estimates of dust devil occurrence including an analysis of sensitivity to chosen threshold uplift. The results show the expected diurnal variation and allow an examination of the seasonal cycle and day-to-day variations in the conditions required for dust devil formation. They confirm that desert regions are expected to have by far the highest frequency of dry convective vortices, with winds capable of dust uplift. This approach is used to test the findings of Koch and Renno (2006). Koch J., Renno N. (2006). The role of convective plumes and vortices on the global aerosol budget. Geophys. Res. Lett., L18806.

  9. Gaussian-based filters for detecting Martian dust devils

    USGS Publications Warehouse

    Yang, F.; Mlsna, P.A.; Geissler, P.

    2006-01-01

    The ability to automatically detect dust devils in the Martian atmosphere from orbital imagery is becoming important both for scientific studies of the planet and for the planning of future robotic and manned missions. This paper describes our approach for the unsupervised detection of dust devils and the preliminary results achieved to date. The algorithm centers upon the use of a filter constructed from Gaussian profiles to match dust devil characteristics over a range of scale and orientation. The classification step is designed to reduce false positive errors caused by static surface features such as craters. A brief discussion of planned future work is included. ?? 2006 IEEE.

  10. A numerical study on dust devils with implications to global dust budget estimates

    USDA-ARS?s Scientific Manuscript database

    The estimates of the contribution of dust devils (DDs) to the global dust budget have large uncertainties because the dust emission mechanisms in DDs are not yet well understood. In this study, a large-eddy simulation model coupled with a dust scheme is used to investigate DD dust entrainment. DDs a...

  11. Martian Dust Devil Action in Gale Crater, Sol 1597

    NASA Image and Video Library

    2017-02-27

    This frame from a sequence of images shows a dust-carrying whirlwind, called a dust devil, scooting across the ground inside Gale Crater, as observed on the local summer afternoon of NASA's Curiosity Mars Rover's 1,597th Martian day, or sol (Feb. 1, 2017). Set within a broader southward view from the rover's Navigation Camera, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. A dust devil is most evident in the 10th, 11th and 12th frames. In the first and fifth frames, dust blowing across the ground appears as pale horizontal streak. Contrast has been modified to make frame-to-frame changes easier to see. A black frame is added between repeats of the sequence. On Mars as on Earth, dust devils are whirlwinds that result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of Martian dust devils provide information about wind directions and interaction between the surface and the atmosphere. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21270

  12. Comparison of Martian Dust Devil Track Morphologies in Gusev and Russell Craters

    NASA Astrophysics Data System (ADS)

    Verba, C. A.; Geissler, P. E.

    2008-12-01

    Detailed HiRISE images were used to observe the seasonal changes of dust devil tracks in Gusev and Russell craters, focusing on the temporal and morphological differences between the two locations. Seasonal variations in dust devil activity are influenced by topography, sediment supply, altitude, as well as latitudinal variations in the atmospheric dust cycle and local winds. Topographical features, such as the dunes in Russell, enhance convective circulation, thereby playing a key role in dust devil formation. The greater the contrast between surface and air temperatures, the greater the surface heat flux and potential for dust devil activity. The NASA Ames General Circulation Model (GCM) was used to compare predicted wind directions to those determined from inferred scallops of tracks mapped using ArcMap. Observations indicate distinct variations in the density, shape, and size of the tracks during specific seasons. Russell crater tracks are curvilinear and highly sinuous, with widths and lengths ranging from 20-40 m and 340 m to 9 km respectively. Gusev crater tracks are less sinuous, measuring tens of meters wide and 2-4 km long. Tracks in Russell crater are aligned with the northwesterly oriented prevailing wind as predicted by the GCM. The dust devil season in Gusev Crater is much shorter (Ls= 160° - 340°, with only minor activity afterwards) than that of Russell Crater (Ls= 172° - 40°). Peak dust devil frequencies occur sooner at Gusev (Ls 250°) than at Russell crater (Ls 288°). Track densities are greater and more consistent in Gusev crater and are more variable at Russell, particularly during the early part of the season. Possible explanations for the differences in seasonal behavior between the study sites include: (1) average altitudes up to 2000 m higher at Russell crater than at Gusev, resulting in enhanced convective circulation; (2) increased insolation at higher southern latitudes during perihelion; and (3) frost on the dunes delays the start of the dust devil season in Russell crater.

  13. In Situ Sampling of Terrestrial Dust Devils and Implications for Mars

    NASA Astrophysics Data System (ADS)

    Raack, J.; Reiss, D.; Balme, M. R.; Taj-Eddine, K.; Ori, G. G.

    2017-09-01

    We report on first very detailed in situ samples of the relative dust load and the vertical grain size distribution of terrestrial dust devils sampled during two field campaigns in Morocco and their implications for Mars. Our measurements imply, i.e., a similar internal structure for sampled dust devils, despite their different strenghts and dimensions; an exponential decreasing of particle size with height; and that between 60 and 70% of all lifted particles can go into atmospheric suspension.

  14. ARC-2005-ACD05-0022-019

    NASA Image and Video Library

    2005-02-04

    Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Carbondale Red Clay dust used in vortex generatory and Mars Wind Tunnel

  15. Extensive computation of albedo contrast between martian dust devil tracks and their neighboring regions

    NASA Astrophysics Data System (ADS)

    Statella, Thiago; Pina, Pedro; da Silva, Erivaldo Antônio

    2015-04-01

    We have developed a method to compute the albedo contrast between dust devil tracks and their surrounding regions on Mars. It is mainly based on Mathematical Morphology operators and uses all the points of the edges of the tracks to compute the values of the albedo contrast. It permits the extraction of more accurate and complete information, when compared to traditional point sampling, not only providing better statistics but also permitting the analysis of local variations along the entirety of the tracks. This measure of contrast, based on relative quantities, is much more adequate to establish comparisons at regional scales and in multi-temporal basis using imagery acquired in rather different environmental and operational conditions. Also, the substantial increase in the details extracted may permit quantifying differential depositions of dust by computing local temporal fading of the tracks with consequences on a better estimation of the thickness of the top most layer of dust and the minimum value needed to create dust devils tracks. The developed tool is tested on 110 HiRISE images depicting regions in the Aeolis, Argyre, Eridania, Noachis and Hellas quadrangles. As a complementary evaluation, we also performed a temporal analysis of the albedo in a region of Russell crater, where high seasonal dust devil activity was already observed before, comprising the years 2007-2012. The mean albedo of the Russell crater is in this case indicative of dust devil tracks presence and, therefore, can be used to quantify dust devil activity.

  16. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-01-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding at grain boundaries). If dust devils continually loft dust to kilometer heights, and the dust is sprayed into many cubic kilometers of atmosphere each time, could the devils produce a continual background of atmospheric dust that might be mistaken for the fallout of a distant large-scale dust storm? From a human exploration perspective, dust devils are unlikely to pose any, life- threatening situation for an astronaut unfortunate enough to encounter a momentary swirling cloud of loose soil. However, it is noted that pervasive dust is probably one of the greatest long-term hazards for a human encampment. The fineness and penetration capabilities of the dust, its electrostatic adhesive properties, and its complete ubiquity, render the material a persistent nuisance at best, but at worst, over a period of many months it is possible that space suits, machinery, habitat interiors, air filters, and so forth, could become jeopardized. Owing to dust penetration, the space suits used in the Apollo landings were rendered unusable after a few EVA activities. There will be a definite attempt to situate a human colony on Mars in an area that is far removed from the regions of the planet known for being the centers of major dust storms. At the heart of these storm systems, the dust lofting mechanics are unknown, but they are energetic and perhaps potentially life-threatening for an astronaut. Locating a colony in a region that appears from space to be meteorologically benign may lead to colony placement in a region prone to dust devils, but dust devils are not (or have not been) detectable from orbital observations: the region surveyed for placement will appear like the apparently inactive and area referred to earlier. The region may be spared from highly energetic weather systems, but it may not be necessarily immune from continual dust disturbance. Additional information is contained in the original.

  17. "Dust Devils": Gardening Agents on the Surface of Mars, and Hidden Hazards to Human Exploration?

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Smith, P.; White, B.; Farrell, W.

    1999-09-01

    Dust devils are familiar sites in the and regions of the world: they can produce quite spectacular displays of dust lofting when the vortices scavenge very loose dust from a dry lake bed or from recently disturbed agricultural fields. If one were to arrive at the center of an arid region, take one photograph, or even a series of photographs over a period of several days, then return the images for laboratory analysis, it would be most likely concluded that the region was inactive from an aeolian perspective. No images of general dust movement were obtained, nor were any dust devils "caught on camera" owing to their ephemeral and unpredictable appearance, and the fact that there was deceptively little residue of their actions. If, however, a camera were to take a 360 degree continuous recording over a period of a year, and the film were then to be shown at high speed over a period a several minutes, the impression might be that of a region ravaged by air vorticity and dust movement. Extrapolate this over geological time, and it is possible to visualize dust devils as prime aeolian agents, rather than insignificant vagaries of nature, On Mars, the thin atmosphere permits the surface of the planet to be heated but it does not itself retain heat with the capacity of the earth's atmosphere. This gives rise to greater thermal instability near the surface of Mars as "warm" air pockets diapiritically inject themselves into higher atmospheric layers. Resulting boundary-layer vorticity on Mars might therefore be expected to produce dust devils in abundance, if only seasonally. The spectacular images of dust devils obtained by Pathfinder within its brief functional period on the planet testify to the probability of highly frequent surface vorticity in light of the above reasoning about observational probability. Notably, the Pathfinder devils appeared to be at least a kilometer in height. There are several consequences for the geology of Mars, and for human exploration, if dust devils are to be expected in reasonable abundance. First, from a geological perspective, the vortices will act as "gardening" agents for the top few centimeters of entrainable material. Over time (hundreds of millions, or billions of years being available), they will cover the surface with scouring paths, and the grain sizes that can be lofted by a vortex probably extends over the whole sand to dust range. The depositional paths are, of course, much larger, so that vortex-induced deposition is more widespread than vortex-induced erosion, and will without doubt, affect the whole region in which the dust devils occur (this might explain why rocks at the Viking site seemed oddly capped with dust in a region apparently subject to general aeolian scouring). On Mars, the lift forces in dust devils might be less than on earth owing to the much thinner atmosphere, but this may be counterbalanced by lower gravity and greater vortex velocities. Certainly, when active, other aeolian phenomena on Mars --sand motion and dust storms, seem no less energetic and no less capable of lofting sediments than equivalent terrestrial aeolian phenomena. Every several years, within the current climatic regime, the surface of Mars is subject to light dust fall from global dust storms. Over time, this should develop a very uniform surface layer, with commensurate uniformity in grain size, mineralogy, albedo, color, and general spectroscopic properties. Dust devils will disturb this situation by continually mixing the surface dust with underlying layers, perhaps composed of silt and sand. This size mixing will also involve compositional mixing. After some years, the thin layer of dust that may be difficult to entrain alone, becomes progressively mixed with coarser materials that could reduce the general aeolian threshold of the soil. Certainly the continual disturbance by vorticity will prevent surface stabilization that may bind or indurate grains (caused by slow cementation or ice welding at grain boundaries). If dust devils continually loft dust to kilometer heights, and the dust is sprayed into many cubic kilometers of atmosphere each time, could the devils produce a continual background of atmospheric dust that might be mistaken for the fallout of a distant large-scale dust storm? From a human exploration perspective, dust devils are unlikely to pose any, life- threatening situation for an astronaut unfortunate enough to encounter a momentary swirling cloud of loose soil. However, it is noted that pervasive dust is probably one of the greatest long-term hazards for a human encampment. The fineness and penetration capabilities of the dust, its electrostatic adhesive properties, and its complete ubiquity, render the material a persistent nuisance at best, but at worst, over a period of many months it is possible that space suits, machinery, habitat interiors, air filters, and so forth, could become jeopardized. Owing to dust penetration, the space suits used in the Apollo landings were rendered unusable after a few EVA activities. There will be a definite attempt to situate a human colony on Mars in an area that is far removed from the regions of the planet known for being the centers of major dust storms. At the heart of these storm systems, the dust lofting mechanics are unknown, but they are energetic and perhaps potentially life-threatening for an astronaut. Locating a colony in a region that appears from space to be meteorologically benign may lead to colony placement in a region prone to dust devils, but dust devils are not (or have not been) detectable from orbital observations: the region surveyed for placement will appear like the apparently inactive and area referred to earlier. The region may be spared from highly energetic weather systems, but it may not be necessarily immune from continual dust disturbance. Additional information is contained in the original.

  18. Analysis of Dust Devils on Mars using CFD

    NASA Astrophysics Data System (ADS)

    Lange, C. F.; Chen, K.; Davis, J. A.; Gheynani, B. T.

    2009-05-01

    Recent Mars missions have reported evidence of the existence of dust devils. A detailed study of vortex dynamics will provide a better understanding of this swirling flow of the Martian atmosphere. Further, it is believed that there is a relationship between dust devils and water transport. Recently, the Phoenix Mars mission, designed to investigate ice water and natural events on Mars, has successfully finished. The Phoenix Surface Stereo Imager (SSI) camera captured images of the passage of dust devils over or close to the lander. Additionally, dustless devils, which have similar vortex characteristics but insufficient strength to raise dust from the surface, have been detected in the lander's pressure measurements. It was found that dust devils occur mainly in the early afternoon. Because of this, numerical models of a vortex generator are used to study the physics of this complex swirling flow and the effect of dust devils on the transport of water vapour from the regolith. Characteristic parameters such as core radius and swirl ratio are being explored for scaling factors. Scaling factors will be studied and tested, comparing the small and large scales of numerically generated vortices and laboratory generated vortices. Small scale of numerical models of atmospheric vortices are studied using a commercial software package, ANSYS/CFX11.0 with finite volume method (FVM). Large eddy simulations (LES) of planetary boundary layers are based on NCAR LES code to simulate convective vertical vortices that naturally form in quiescent convective boundary layers (CBL) over homogeneous flat surfaces. This will help to find the approximate location and physical characteristics of the vortices on the surface. The numerical models of atmospheric vortices and the experimental vortex generator validations will help to define the water vapour cycle on Mars.

  19. From Dust Devil to Sustainable Swirling Wind Energy

    NASA Astrophysics Data System (ADS)

    Zhang, Mingxu; Luo, Xilian; Li, Tianyu; Zhang, Liyuan; Meng, Xiangzhao; Kase, Kiwamu; Wada, Satoshi; Yu, Chuck Wah; Gu, Zhaolin

    2015-02-01

    Dust devils are common but meteorologically unique phenomena on Earth and on Mars. The phenomenon produces a vertical vortex motion in the atmosphere boundary layer and often occurs in hot desert regions, especially in the afternoons from late spring to early summer. Dust devils usually contain abundant wind energy, for example, a maximum swirling wind velocity of up to 25 m/s, with a 15 m/s maximum vertical velocity and 5 m/s maximum near-surface horizontal velocity can be formed. The occurrences of dust devils cannot be used for energy generation because these are generally random and short-lived. Here, a concept of sustained dust-devil-like whirlwind is proposed for the energy generation. A prototype of a circular shed with pre-rotation vanes has been devised to generate the whirlwind flow by heating the air inflow into the circular shed. The pre-rotation vanes can provide the air inflow with angular momentum. The results of numerical simulations and experiment illustrate a promising potential of the circular shed for generating swirling wind energy via the collection of low-temperature solar energy.

  20. Terrestrial in situ sampling of dust devils (relative particle loads and vertical grain size distributions) as an equivalent for martian dust devils.

    NASA Astrophysics Data System (ADS)

    Raack, J.; Dennis, R.; Balme, M. R.; Taj-Eddine, K.; Ori, G. G.

    2017-12-01

    Dust devils are small vertical convective vortices which occur on Earth and Mars [1] but their internal structure is almost unknown. Here we report on in situ samples of two active dust devils in the Sahara Desert in southern Morocco [2]. For the sampling we used a 4 m high aluminium pipe with sampling areas made of removable adhesive tape. We took samples between 0.1-4 m with a sampling interval of 0.5 m and between 0.5-2 m with an interval of 0.25 m, respectively. The maximum diameter of all particles of the different sampling heights were then measured using an optical microscope to gain vertical grain size distributions and relative particle loads. Our measurements imply that both dust devils have a general comparable internal structure despite their different strengths and dimensions which indicates that the dust devils probably represents the surficial grain size distribution they move over. The particle sizes within the dust devils decrease nearly exponential with height which is comparable to results by [3]. Furthermore, our results show that about 80-90 % of the total particle load were lifted only within the first meter, which is a direct evidence for the existence of a sand skirt. If we assume that grains with a diameter <31 μm can go into suspension [4], our results show that only less than 0.1 wt% can be entrained into the atmosphere. Although this amount seems very low, these values represent between 60 and 70 % of all lifted particles due to the small grain sizes and their low weight. On Mars, the amount of lifted particles will be general higher as the dust coverage is larger [5], although the atmosphere can only suspend smaller grain sizes ( <20 μm) [6] compared to Earth. During our field campaign we observed numerous larger dust devils each day which were up to several hundred meters tall and had diameters of several tens of meters. This implies a much higher input of fine grained material into the atmosphere (which will have an influence on the climate, weather, and human health [7]) compared to the relative small dust devils sampled during our field campaign. [1] Thomas and Gierasch (1985) Science 230 [2] Raack et al. (2017) Astrobiology [3] Oke et al. (2007) J. Arid Environ. 71 [4] Balme and Greeley (2006) Rev. Geophys. 44 [5] Christensen (1986) JGR 91 [6] Newman et al. (2002) JGR 107 [7] Gillette and Sinclair (1990) Atmos. Environ. 24

  1. ARC-2005-ACD05-0022-025

    NASA Image and Video Library

    2005-02-04

    Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: is the control room for the Mars W.T. with Eric Eddlemon

  2. ARC-2005-ACD05-0022-017

    NASA Image and Video Library

    2005-02-04

    Ames Mars Wind Tunnel Facility N-245: NASA is simulating small martian 'dust devils' and wind in a laboraotry to determine how they may affect the landscape and environment of the red planet. Dust Devils on Mars are often a great deal biggger than those on Earth and can at times cover the whole planet. Martian winds & dust devils, big and little, collectively are a great force that is constantly changing the planet's environment. shown here: Silica Sand (Oklahoma 90) particles used in vortex generatory and Mars Wind Tunnel

  3. Quantifying global dust devil occurrence from meteorological analyses

    PubMed Central

    Jemmett-Smith, Bradley C; Marsham, John H; Knippertz, Peter; Gilkeson, Carl A

    2015-01-01

    Dust devils and nonrotating dusty plumes are effective uplift mechanisms for fine particles, but their contribution to the global dust budget is uncertain. By applying known bulk thermodynamic criteria to European Centre for Medium-Range Weather Forecasts (ECMWF) operational analyses, we provide the first global hourly climatology of potential dust devil and dusty plume (PDDP) occurrence. In agreement with observations, activity is highest from late morning into the afternoon. Combining PDDP frequencies with dust source maps and typical emission values gives the best estimate of global contributions of 3.4% (uncertainty 0.9–31%), 1 order of magnitude lower than the only estimate previously published. Total global hours of dust uplift by dry convection are ∼0.002% of the dust-lifting winds resolved by ECMWF, consistent with dry convection making a small contribution to global uplift. Reducing uncertainty requires better knowledge of factors controlling PDDP occurrence, source regions, and dust fluxes induced by dry convection. Key Points Global potential dust devil occurrence quantified from meteorological analyses Climatology shows realistic diurnal cycle and geographical distribution Best estimate of global contribution of 3.4% is 10 times smaller than the previous estimate PMID:26681815

  4. New Approaches in estimating Dust Devil Parameters, Trajectories and Populations from Single-Station Measurements on Mars and Earth

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph

    2015-11-01

    A Monte-Carlo modeling approach (Lorenz, J. Atm. Sci., 2014) using a power law population function and empirical correlations between diameter and longevity can be used to reconcile single-station pressure records of vortex close-approaches with visual counts of dust devils and Large Eddy Simulations (LES). That work suggests that on Earth, the populations can be reconciled if dust-lifting occurs with a typical threshold corresponding to core pressure drop of 0.8 mb, a little higher than the ~0.3 mb estimated in laboratory experiments. A similar analysis can be conducted at Mars. The highest vortex production rates in LES, indicated from field encounters, and extrapolated from visual counts, appear to be of the order of 1000 per km2 per day.Recent field experiments at a playa near Goldstone, CA (Lorenz et al., Bulletin of the Seismological Society of America, in press) show that dust devils cause a ground tilt, due to the negative pressure load of the vortex on the elastic ground, that can be detected with a broadband seismometer like that on InSight. Dust devils therefore can serve as a ‘seismic source’ to characterize the shallow subsurface.Observations of the InSight landing area in Elysium by Reiss and Lorenz (Icarus, submitted) show that dust devil trails are abundant, but smaller in diameter than those at Gusev. This may indicate a shallower Planetary Boundary Layer (PBL) at this site and season : Fenton and Lorenz (Icarus, 2015) found that observed dust devil height and spacing in Amazonis relates to the PBL thickness.Quantitative assessment of dust devil effects (e.g. electrical and magnetic signatures) requires knowledge of encounter geometry, notably miss distance. A recent heuristic approach has been developed (Lorenz, Icarus, submitted) to fit an analytic vortex model to pressure, windspeed and direction histories to recover this geometry. Some ambiguities exist, but can be constrained with camera images and/or the azimuth history estimated from seismic data.

  5. Mars Global Surveyor MOC Images

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Images of several dust devils were captured by the Mars Orbiter Camera (MOC) during its global geodesy campaign. The images shown were taken two days apart, May 13, 1999 and May 15, 1999. Dust devils are columnar vortices of wind that move across the landscape and pick up dust. They look like mini tornadoes.

  6. The Martian Dust Devil Electron Avalanche: Laboratory Measurements of the E-Field Fortifying Effects of Dust-Electron Absorption

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; McLain, J. L.; Collier, M. R.; Keller, J. W.

    2017-01-01

    Analogous to terrestrial dust devils, charged dust in Mars dust devils should become vertically stratified in the convective features, creating large scale E-fields. This E-field in a Martian-like atmosphere has been shown to stimulate the development of a Townsend discharge (electron avalanche) that acts to dissipate charge in regions where charge build-up occurs. While the stratification of the charged dust is a source of the electrical energy, the uncharged particulates in the dust population may absorb a portion of these avalanching electrons, thereby inhibiting dissipation and leading to the development of anomalously large E-field values. We performed a laboratory study that does indeed show the presence of enhanced E-field strengths between an anode and cathode when dust-absorbing filaments (acting as particulates) are placed in the avalanching electron flow. Further, the E-field threshold condition to create an impulsive spark discharge increases to larger values as more filaments are placed between the anode and cathode. We conclude that the spatially separated charged dust creates the charge centers and E-fields in a dust devil, but the under-charged portion of the population acts to reduce Townsend electron dissipation currents, further fortifying the development of larger-than-expected E-fields.

  7. Signal-adapted tomography as a tool for dust devil detection

    NASA Astrophysics Data System (ADS)

    Aguirre, C.; Franzese, G.; Esposito, F.; Vázquez, Luis; Caro-Carretero, Raquel; Vilela-Mendes, Rui; Ramírez-Nicolás, María; Cozzolino, F.; Popa, C. I.

    2017-12-01

    Dust devils are important phenomena to take into account to understand the global dust circulation of a planet. On Earth, their contribution to the injection of dust into the atmosphere seems to be secondary. Elsewhere, there are many indications that the dust devil's role on other planets, in particular on Mars, could be fundamental, impacting the global climate. The ability to identify and study these vortices from the acquired meteorological measurements assumes a great importance for planetary science. Here we present a new methodology to identify dust devils from the pressure time series testing the method on the data acquired during a 2013 field campaign performed in the Tafilalt region (Morocco) of the North-Western Sahara Desert. Although the analysis of pressure is usually studied in the time domain, we prefer here to follow a different approach and perform the analysis in a time signal-adapted domain, the relation between the two being a bilinear transformation, i.e. a tomogram. The tomographic technique has already been successfully applied in other research fields like those of plasma reflectometry or the neuronal signatures. Here we show its effectiveness also in the dust devils detection. To test our results, we compare the tomography with a phase picker time domain analysis. We show the level of agreement between the two methodologies and the advantages and disadvantages of the tomographic approach.

  8. Real-Time Detection of Dust Devils from Pressure Readings

    NASA Technical Reports Server (NTRS)

    Wagstaff, Kiri

    2009-01-01

    A method for real-time detection of dust devils at a given location is based on identifying the abrupt, temporary decreases in atmospheric pressure that are characteristic of dust devils as they travel through that location. The method was conceived for use in a study of dust devils on the Martian surface, where bandwidth limitations encourage the transmission of only those blocks of data that are most likely to contain information about features of interest, such as dust devils. The method, which is a form of intelligent data compression, could readily be adapted to use for the same purpose in scientific investigation of dust devils on Earth. In this method, the readings of an atmospheric- pressure sensor are repeatedly digitized, recorded, and processed by an algorithm that looks for extreme deviations from a continually updated model of the current pressure environment. The question in formulating the algorithm is how to model current normal observations and what minimum magnitude deviation can be considered sufficiently anomalous as to indicate the presence of a dust devil. There is no single, simple answer to this question: any answer necessarily entails a compromise between false detections and misses. For the original Mars application, the answer was sought through analysis of sliding time windows of digitized pressure readings. Windows of 5-, 10-, and 15-minute durations were considered. The windows were advanced in increments of 30 seconds. Increments of other sizes can also be used, but computational cost increases as the increment decreases and analysis is performed more frequently. Pressure models were defined using a polynomial fit to the data within the windows. For example, the figure depicts pressure readings from a 10-minute window wherein the model was defined by a third-degree polynomial fit to the readings and dust devils were identified as negative deviations larger than both 3 standard deviations (from the mean) and 0.05 mbar in magnitude. An algorithm embodying the detection scheme of this example was found to yield a miss rate of just 8 percent and a false-detection rate of 57 percent when evaluated on historical pressure-sensor data collected by the Mars Pathfinder lander. Since dust devils occur infrequently over the course of a mission, prioritizing observations that contain successful detections could greatly conserve bandwidth allocated to a given mission. This technique can be used on future Mars landers and rovers, such as Mars Phoenix and the Mars Science Laboratory.

  9. Systematic characterization of structural, dynamical and electrical properties of dust devils and implications for dust lifting processes

    NASA Astrophysics Data System (ADS)

    Franzese, Gabriele; Esposito, Francesca; Lorenz, Ralph D.; Popa, Ciprian; Silvestro, Simone; Deniskina, Natalia; Cozzolino, Fabio

    2017-04-01

    Dust devils are convective vortices able to lift sand and dust grains from the soil surface, even in conditions of low wind speed environment. They have been observed not only on Earth but also on other planets of the solar system; in particular, they are largely studied on Mars. Indeed, the contribution of the dust devils to the Martian climate is a highly debated question. In order to investigate this topic, it is important to understand the nature of the dust lifting mechanism by the vortex and characterize the induced electric field. As part of the development process of DREAMS, the meteorological station on board the Schiapparelli lander of the ExoMars 2016 mission, and of the Dust complex package of the ExoMars 2020 mission, we performed various field campaigns in the Sahara desert (Tafilalt region, Morocco). We deployed a fully equipped meteorological station and, during the 2014 summer, we observed three months of dust devils activity, collecting almost six hundreds events. For each dust devil, we monitored the horizontal wind speed and direction, the vertical wind speed, the pressure drop due to the vortex core, the temperature, the induced electric field and the concentration of dust lifted. This data set is unique in literature and represents up to now the most comprehensive one available for the dusty convective vortices. Here we will present the analysis of the Moroccan data with particular emphasis on the study of the atmospheric electric field variations due to the passage of the vortices. The distribution of the vortex parameters (wind speed and direction, pressure, E-field and dust lifted) are showed and compared, when possible, to the ones observed by the Martian surveys. The connection between the E-field and the other parameters will be presented. In the terrestrial environment, the development of the convective vortices is restricted by the presence of the vegetation and of the urban areas, hence dust devils can impact the climate only on local scale. Instead, on Mars the presence of the dust devils has been confirmed at almost every latitude and altitude and it has been indicated as the possible main source of suspended dust outside the storm seasons. Hence, the study of the dust devils becomes of great importance in order to understand the atmospheric dust loading and the global climate of the planet. In addition, the dust lifting phenomena are probably one of the main source of atmospheric electrification on Mars and the measurement and study of the Martian boundary layer electric field is one of the main objectives of the future Martian space missions, such as ExoMars 2020. Indeed, this mission will accommodate "Dust Complex", a suite of sensors that will monitor lifted dust and atmospheric electric field on the surface of Mars. For these reasons, the present work represents a useful tool for the understanding of the dust lifting phenomena and their electrification both on Earth and on Mars.

  10. Devilish Details

    NASA Technical Reports Server (NTRS)

    2005-01-01

    23 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small, springtime dust devil creating a dark streak on the plains of Argyre. The small, bright dot is the dust devil. Many other dark streaks on the plains indicate the areas where other dust devils had passed within the past several weeks before this July 2005 image was acquired.

    Location near: 44.6oS, 40.3oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Spring

  11. Wind vs. Dust Devil Streaks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    22 February 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image presents a fine illustration of the difference between streaks made by dust devils and streaks made by wind gusts. Dust devils are usually solitary, spinning vortices. They resemble a tornado, or the swirling motion of a familiar, Tasmanian cartoon character. Wind gusts, on the other hand, can cover a larger area and affect more terrain at the same time. The dark, straight, and parallel features resembling scrape marks near the right/center of this image are thought to have been formed by a singular gust of wind, whereas the more haphazard dark streaks that crisscross the scene were formed by dozens of individual dust devils, acting at different times. This southern summer image is located in Noachis Terra near 67.0oS, 316.2oW. Sunlight illuminates the scene from the upper left; the picture covers an area 3 km (1.9 mi) wide.

  12. Dust Devils on Mars: Effects of Surface Roughness on Particle Threshold

    NASA Technical Reports Server (NTRS)

    Neakrase, Lynn D.; Greeley, Ronald; Iversen, James D.; Balme, Matthew L.; Foley, Daniel J.; Eddlemon, Eric E.

    2005-01-01

    Dust devils have been proposed as effective mechanisms for lofting large quantities of dust into the martian atmosphere. Previous work showed that vortices lift dust more easily than simple boundary layer winds. The aim of this study is to determine experimentally the effects of non-erodable roughness elements on vortex particle threshold through laboratory simulations of natural surfaces. Additional information is included in the original extended abstract.

  13. Swirling Dust in Gale Crater, Mars, Sol 1613

    NASA Image and Video Library

    2017-02-27

    This frame from a sequence of images shows a dust-carrying whirlwind, called a dust devil, on lower Mount Sharp inside Gale Crater, as viewed by NASA's Curiosity Mars Rover during the summer afternoon of the rover's 1,613rd Martian day, or sol (Feb. 18, 2017). Set within a broader southward view from the rover's Navigation Camera, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. Contrast has been modified to make frame-to-frame changes easier to see. A black frame provides a marker between repeats of the sequence. On Mars as on Earth, dust devils result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of dust devils provide information about wind directions and interaction between the surface and the atmosphere. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21483

  14. A Laboratory Scale Vortex Generator for Simulation of Martian Dust Devils.

    NASA Astrophysics Data System (ADS)

    Balme, M.; Greeley, R.; Mickelson, B.; Iversen, J.; Beardmore, G.; Metzger, S.

    2001-12-01

    Martian dust particles are a few microns in diameter. Current Martian ambient wind speeds appear to be insufficient to lift such fine particles and are marginal to entrain even the optimum particles sizes for threshold (100-160mm diameter). Instead, dust devils were suggested as a local source of airborne particles and have been observed on Mars both from orbit and from lander data. Dust devils lift particles through enhanced local wind speeds and by a pressure drop often associated with the vortex which provides `lift'. This study seeks to 1) quantify the relative importance of enhanced wind speed versus pressure drop lift in dust devil entrainment threshold; 2) measure the mass transport potential of dust devils; 3) investigate the effects of surface roughness and topography on dust devil morphology; 4) quantify the overall effects of low atmospheric pressure on the formation, structure and entrainment processes of dust devils. To investigate the particle lifting properties of dust devils, a laboratory vortex generator was fabricated. It consists of a large vertical cylinder (45 and 75cm in diameter) containing a motor-driven rotor comprised of four vertical blades. Beneath the cylinder is a 2.4 by 2.4 m tabletop containing 14 differential pressure transducer ports used to measure the surface pressure structure of the vortex. Both the distance between the cylinder and the tabletop and the height of the blades within the cylinder can be varied. By controlling these variables and the angular velocity of the blades, a wide range of geometries and intensities of atmospheric vortices can be achieved. The apparatus is portable for use both under terrestrial atmospheric conditions and in the NASA-Ames Research Center Mars Surface Wind Tunnel facility to simulate Martian atmospheric conditions. The laboratory simulation is preferable to a numerical model because direct measurements of dust lifting threshold can be made and holds several advantages over terrestrial field measurements in that it is convenient, easily instrumented and, most importantly, can be moved to a low-pressure environment. Terrestrial field data are necessary, however, to validate the laboratory simulation as a good approximation of reality. Field measurements show that both pressure and velocity structure of the laboratory-generated vortex are similar to terrestrial dust devils. Initial threshold tests under terrestrial conditions show that the geometry of the vortex plays a key role in the angular velocity required to entrain material: smaller vortices have lower angular velocities at threshold. This is thought to be due to the smaller inflow boundary layer associated with narrow vortices and hence enhanced shear stress. However, calculations show that the shear stresses at the surface are at least two orders of magnitude less than the upward force caused by the pressure drop at the center of the vortex. This leads to the tentative conclusion that the actual particle lifting action of the `lift' force is minimal. A full program of experiments using this apparatus is under way to confirm these initial findings and a sequence of experiments under Martian conditions is being planned.

  15. Point discharge current measurements beneath dust devils

    USDA-ARS?s Scientific Manuscript database

    We document for the first time observations of point discharge currents under dust devils using a novel compact sensor deployed in summer 2016 at the USDA-ARS Jornada Experimental Range in New Mexico, USA. A consistent signature is noted in about a dozen events seen over 40 days, with a positive cur...

  16. To the theory of particle lifting by terrestrial and Martian dust devils

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2018-01-01

    The combined Rankine vortex model is applied to describe the radial profile of azimuthal velocity in atmospheric dust devils, and a simplified model version is proposed of the turbulent surface boundary layer beneath the Rankine vortex periphery that corresponds to the potential vortex. Based on the results by Burggraf et al. (1971), it is accepted that the radial velocity near the ground in the potential vortex greatly exceeds the azimuthal velocity, which makes tractable the problem of the surface shear stress determination, including the case of the turbulent surface boundary layer. The constructed model explains exceeding the threshold shear velocity for aeolian transport in typical dust-devil vortices both on Earth and on Mars.

  17. Mars Atmospheric Chemistry in Electrified Dust Devils and Storms

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.; Wong, A.-S.; Renno, N. O.; Sentmann, D. D.; Marshall, J. G.; Cummer, S. A.; Rafkin, S.; Catling, D.

    2005-01-01

    Laboratory studies, simulations and desert field tests all indicate that aeolian mixing dust can generate electricity via contact electrification or "triboelectricity". In convective structures like dust devils or storms, grain stratification (or charge separation) occurs giving rise to an overall electric dipole moment to the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous simulation studies [1] indicate that this storm electric field on Mars can approach atmospheric breakdown field strength of 20 kV/m. In terrestrial dust devils, coherent dipolar electric fields exceeding 20 kV/m have been measured directly via electric field instrumentation. Given the expected electrostatic fields in Martian dust devils and storms, electrons in the low pressure CO2 gas can be energized via the electric field to values exceeding the electron dissociative attachment energy of both CO2 and H2O, resulting in the formation of new chemical products CO and O- and OH and H- within the storm. Using a collisional plasma physics model we present a calculation of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with ambient electric field, with substantial production of dissociative products when fields approach breakdown levels of 20-30 kV/m.

  18. Dust Devil in Spirit's View Ahead on Sol 1854 (Stereo)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    [figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11960 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11960

    NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,854th Martian day, or sol, of Spirit's surface mission (March 21, 2009).

    This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left.

    The rover had driven 13.79 meters (45 feet) westward earlier on Sol 1854.

    West is at the center, where a dust devil is visible in the distance. North on the right, where Husband Hill dominates the horizon; Spirit was on top of Husband Hill in September and October 2005. South is on the left, where lighter-toned rock lines the edge of the low plateau called 'Home Plate.'

    This view is presented as a cylindrical-perspective projection with geometric seam correction.

  19. Dune and Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    31 January 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dark sand dune patch that occurs on the floor of a southern hemisphere crater near 64.1oS, 197.2oW. Passing dust devils have disrupted the fine, bright dust that coats the surrounding terrain, leaving wildly-varied streak patterns. Dark dots to the left (west) of the dune are boulders. The picture covers an area 3 km (1.9 mi) wide; sunlight illuminates the scene from the upper left.

  20. Remote measurement utilizing NASA's scanning laser Doppler systems. Volume 2: Laser Doppler dust devil velocity profile measurement program

    NASA Technical Reports Server (NTRS)

    Howle, R. E.; Krause, M. C.; Craven, C. E.; Gorzynski, E. J.; Edwards, B. B.

    1976-01-01

    The first detailed velocity profile data on thermally induced dust vortices are presented. These dust devils will be analyzed and studied to determine their flow fields and origin in an effort to correlate this phenomena with the generation and characteristics of tornadoes. A continuing effort to increase mankind's knowledge of vortex and other meteorological phenomena will hopefully allow the prediction of tornado occurrence, their path, and perhaps eventually even lead to some technique for their destruction.

  1. Dust Devil Art

    NASA Technical Reports Server (NTRS)

    2005-01-01

    12 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark squiggles and streaks created by passing spring and summer dust devils near Pallacopas Vallis in the martian southern hemisphere.

    Location near: 53.9oS, 17.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  2. Modeling of Ground Deformation and Shallow Surface Waves Generated by Martian Dust Devils and Perspectives for Near-Surface Structure Inversion

    NASA Astrophysics Data System (ADS)

    Kenda, Balthasar; Lognonné, Philippe; Spiga, Aymeric; Kawamura, Taichi; Kedar, Sharon; Banerdt, William Bruce; Lorenz, Ralph; Banfield, Don; Golombek, Matthew

    2017-10-01

    We investigated the possible seismic signatures of dust devils on Mars, both at long and short period, based on the analysis of Earth data and on forward modeling for Mars. Seismic and meteorological data collected in the Mojave Desert, California, recorded the signals generated by dust devils. In the 10-100 s band, the quasi-static surface deformation triggered by pressure fluctuations resulted in detectable ground-tilt effects: these are in good agreement with our modeling based on Sorrells' theory. In addition, high-frequency records also exhibit a significant excitation in correspondence to dust devil episodes. Besides wind noise, this signal includes shallow surface waves due to the atmosphere-surface coupling and is used for a preliminary inversion of the near-surface S-wave profile down to 50 m depth. In the case of Mars, we modeled the long-period signals generated by the pressure field resulting from turbulence-resolving Large-Eddy Simulations. For typical dust-devil-like vortices with pressure drops of a couple Pascals, the corresponding horizontal acceleration is of a few nm/s2 for rocky subsurface models and reaches 10-20 nm/s2 for weak regolith models. In both cases, this signal can be detected by the Very-Broad Band seismometers of the InSight/SEIS experiment up to a distance of a few hundred meters from the vortex, the amplitude of the signal decreasing as the inverse of the distance. Atmospheric vortices are thus expected to be detected at the InSight landing site; the analysis of their seismic and atmospheric signals could lead to additional constraints on the near-surface structure, more precisely on the ground compliance and possibly on the seismic velocities.

  3. Martian Dust Devils: Laboratory Simulations of Particle Threshold

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Balme, Matthew R.; Iverson, James D.; Metzger, Stephen; Mickelson, Robert; Phoreman, Jim; White, Bruce

    2003-01-01

    An apparatus has been fabricated to simulate terrestrial and Martian dust devils. Comparisons of surface pressure profiles through the vortex core generated in the apparatus with both those in natural dust devils on Earth and those inferred for Mars are similar and are consistent with theoretical Rankine vortex models. Experiments to determine particle threshold under Earth ambient atmospheric pressures show that sand (particles > 60 micron in diameter) threshold is analogous to normal boundary-layer shear, in which the rotating winds of the vortex generate surface shear and hence lift. Lower-pressure experiments down to approx. 65 mbar follow this trend for sand-sized particles. However, smaller particles (i.e., dust) and all particles at very low pressures (w 10-60 mbar) appear to be subjected to an additional lift function interpreted to result from the strong decrease in atmospheric pressure centered beneath the vortex core. Initial results suggest that the wind speeds required for the entrainment of grains approx. 2 microns in diameter (i.e., Martian dust sizes) are about half those required for entrainment by boundary layer winds on both Earth and Mars.

  4. Aeolian processes in Proctor Crater on Mars: Sedimentary history as analyzed from multiple data sets

    USGS Publications Warehouse

    Fenton, L.K.; Bandfield, J.L.; Ward, A.W.

    2003-01-01

    Proctor Crater is a 150 km diameter crater in Noachis Terra, within the southern highlands of Mars. The analysis leading to the sedimentary history incorporates several data sets including imagery, elevation, composition, and thermal inertia, mostly from the Mars Global Surveyor mission. The resulting stratigraphy reveals that the sedimentary history of Proctor Crater has involved a complex interaction of accumulating and eroding sedimentation. Aeolian features spanning much of the history of the crater interior dominate its surface, including large erosional pits, stratified beds of aeolian sediment, sand dunes, erosional and depositional streaks, dust devil tracks, and small bright bed forms that are probably granule ripples. Long ago, up to 450 m of layered sediment filled the crater basin, now exposed in eroded pits on the crater floor. These sediments are probably part of an ancient deposit of aeolian volcaniclastic material. Since then, some quantity of this material has been eroded from the top layers of the strata. Small, bright dune forms lie stratigraphically beneath the large dark dune field. Relative to the large dark dunes, the bright bed forms are immobile, although in places, their orientations are clearly influenced by the presence of the larger dunes. Their prevalence in the crater and their lack of compositional and thermal distinctiveness relative to the crater floor suggests that these features were produced locally from the eroding basin fill. Dust devil tracks form during the spring and summer, following a west-southwesterly wind. Early in the spring the dust devils are largely restricted to dark patches of sand. As the summer approaches, dust devil tracks become more plentiful and spread to the rest of the crater floor, indicating that the entire region acquires an annual deposit of dust that is revealed by seasonal dust devils. The dark dunes contain few dust devil tracks, suggesting that accumulated dust is swept away directly by saltation, rather than by the passage of dust devils. Spectral deconvolution indicates that the dark dunes have infrared spectra consistent with basalt-like materials. The average thermal inertia calculated from Thermal Emission Spectrometer bolometric temperatures is 277 ?? 17 J m-2 s-0.5 K-1, leading to an effective grain size of 740 ?? 170 ??m, which is consistent with coarse sand and within the range expected for Martian sand. The coarse sand that composes the large dune field may have originated from outside the crater, saltating in from the southwest. Most of the transport pathway that delivered this sand to the dune field has since been eroded away or buried. The sand was transported to the east center of the crater floor, where beneath the present-day dunes a 50 m high mound of sand has accumulated. Dune slip faces indicate a wind regime consisting of three opposing winds. Some of these wind directions are correlated with the orientations of dust devil tracks and bright bed forms. The combination of a tall mound of sand and three opposing winds is consistent with a convergent wind regime, which produces the large reversing transverse and star dunes that dominate the dune field. The dark dunes have both active slip faces and seemingly inactive slip faces, suggesting that the dunes vary spatially in their relative activity. Nevertheless, the aeolian activity that has dominated the history of Proctor Crater still continues today. Copyright 2003 by the American Geophysical Union.

  5. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Astrophysics Data System (ADS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J. J.; Déprez, G.; Farrell, W. M.; Houghton, I. M. P.; Renno, N. O.; Nicoll, K. A.; Tripathi, S. N.; Zimmerman, M.

    2016-11-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m-1 to 100 kV m-1 have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m-1 can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface)—MicroARES ( Atmospheric Radiation and Electricity Sensor) instrumentation to Mars in 2016 for the first in situ electrical measurements.

  6. Applications of Electrified Dust and Dust Devil Electrodynamics to Martian Atmospheric Electricity

    NASA Technical Reports Server (NTRS)

    Harrison, R. G.; Barth, E.; Esposito, F.; Merrison, J.; Montmessin, F.; Aplin, K. L.; Borlina, C.; Berthelier, J J.; Deprez, G.; Farrell, William M.; hide

    2016-01-01

    Atmospheric transport and suspension of dust frequently brings electrification, which may be substantial. Electric fields of 10 kV m(exp. -1) to 100 kV m(exp. -1) have been observed at the surface beneath suspended dust in the terrestrial atmosphere, and some electrification has been observed to persist in dust at levels to 5 km, as well as in volcanic plumes. The interaction between individual particles which causes the electrification is incompletely understood, and multiple processes are thought to be acting. A variation in particle charge with particle size, and the effect of gravitational separation explains to, some extent, the charge structures observed in terrestrial dust storms. More extensive flow-based modelling demonstrates that bulk electric fields in excess of 10 kV m(exp. -1) can be obtained rapidly (in less than 10 s) from rotating dust systems (dust devils) and that terrestrial breakdown fields can be obtained. Modelled profiles of electrical conductivity in the Martian atmosphere suggest the possibility of dust electrification, and dust devils have been suggested as a mechanism of charge separation able to maintain current flow between one region of the atmosphere and another, through a global circuit. Fundamental new understanding of Martian atmospheric electricity will result from the ExoMars mission, which carries the DREAMS (Dust characterization, Risk Assessment, and Environment Analyser on the Martian Surface) MicroARES (Atmospheric Radiation and Electricity Sensor) Instrumentation to Mars in 2016 for the first in situ electrical measurements.

  7. A Dust Devil Playground

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Context image for PIA02185 A Dust Devil Playground

    Dust Devil activity in this region between Brashear and Ross Craters is very common. Large regions of dust devil tracks surround the south polar region of Mars.

    Image information: VIS instrument. Latitude -55.2N, Longitude 244.2E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  8. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the NMS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the hEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints and fabrics, change the thermal properties of the suit, and possibly affect electronic/electrical suit functions. It is paramount that future missions address the issue of interparticle forces, and in particular, the role played by ionizing radiation in affecting these forces on Mars.

  9. Dust on Mars: An Aeolian Threat to Human Exploration?

    NASA Technical Reports Server (NTRS)

    Marshall, J.

    1999-01-01

    The NASA HEDS Program is duly concerned for human explorers regarding the potential hazard posed by the ubiquitous dust mantle on Mars. To evaluate properties of dust that could be hazardous to humans, the MPS 2001 Lander payload will include the Mars Environmental Compatibility Assessment (MECA) experiment. This includes optical and atomic-force microscopy to evaluate soil grains for shape and size, wet chemistry to evaluate toxic substances, electrometry to evaluate triboelectric charging, and test-material palets to evaluate electrostatic and magnetic adhesion, and the hardness/abrasiveness of soil grains; these experimental subcomponents are delivered samples by the camera-equipped robotic arm of the lander which will acquire material from depths of 0.5 to 1.0 m in the soil. Data returned by MECA will be of value to both the BEDS and planetary/astrobiology communities. Dust poses a threat to human exploration because the martian system does not hydrologically or chemically remove fine particles that are being continuously generated by thermal, aeolian, and colluvial weathering, and by volcanism and impact over billions of years. The dust is extremely fine-grained, in copious quantities, ubiquitous in distribution, continually mobile, and a source of poorly-grounded static charges -- a suite of characteristics posing a particulate and electrical threat to explorers and their equipment. Dust is mobilized on global and regional scales, but probably also unpredictably and violently at local scales by dust devils. The latter might be expected in great abundance owing to near surface atmospheric instability (dust devils were detected by Pathfinder during its brief lifetime). Preliminary laboratory experiments suggest that space-suit materials subjected to windblown dust may acquire a uniform, highly adhesive dust layer that is also highly cohesive laterally owing to electrostatic forces. This layer will obscure visibility through the helmet visor, penetrate joints and fabrics, change the thermal properties of the suit, and possibly affect electronic/electrical suit functions. It is paramount that future missions address the issue of interparticle forces, and in particular, the role played by ionizing radiation in affecting these forces on Mars.

  10. The Changing Dunes of Wirtz Crater

    NASA Image and Video Library

    2017-01-19

    The large dark feature is a classic Martian sand dune. Most sand on Earth is made from the mineral quartz, which is white and bright. On Mars, most sand is composed of dark basalt, a volcanic rock. For this reason, dunes on Mars are darker than those on Earth. The dunes in this observation, within Wirtz Crater, are known as "barchans." The steepest slope is on the eastern (right) side, partially in shadow, and represents the direction the dune is migrating as the sand is blown and transported by the wind. Small ripples are visible on much of the dune surface. The dark streaks on the dune are tracks left by passing vortices known to us as dust devils. These raise dust off the dune, revealing a darker substrate. http://photojournal.jpl.nasa.gov/catalog/PIA12289

  11. SUV Tracks On Mars? The 'Devil' is in the Details

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Sport Utility Vehicles (SUVs) on Mars? Imagine the MOC imaging team's surprise on the morning of April 27, 1998, as the latest images came in from the 'Red Planet.'

    A picture taken by the camera on Mars Global Surveyor just one day earlier showed several thin, dark lines that--at first glance--looked like pathways blazed by off-road sport utility vehicles. Who's been driving around on Mars?

    The MOC image in question (#26403), seen here at full resolution of 13.8 meters (45 feet) per pixel, was obtained around 10:22 a.m. PDT on April 26, 1998, during Mars Global Surveyor's 264th orbit. North is approximately up, illumination is from the lower right. Located in eastern Arabia Terra near 16.5o N latitude, 311.4o W longitude, the image showed a number of natural features--small craters formed by meteor impact, several buttes and mesas left by erosion of the surrounding terrain, small dunes and drifts, and a mantle of dust that varies in thickness from place to place. But the new picture also showed two dark lines--each varying in width up to about 15 meters (49 feet)--that extended several kilometers/miles across the image.

    Lines like these have been seen before on Mars. They are most likely the result of dust devils--columnar vortices of wind that move across the landscape, pick up dust, and look somewhat like miniature tornadoes. Dust devils are a common occurrence in dry and desert landscapes on Earth as well as Mars. They form when the ground heats up during the day, warming the air immediately above the surface. As pockets of warm air rise and interfere with one another, they create horizontal pressure variations that, combined with other meteorological winds, cause the upward moving air to spin (the direction of the spin is controlled by the same Coriolis forces that cause terrestrial hurricanes to spin in specific directions). As the spinning column of air moves across the surface, it occasionally encounters dust on the surface, which it can suck upward. This dust rises into the spinning air, giving the appearance of a tornado-like column that moves across the landscape. As the column of air moves, its ability to pick up dust varies--sometimes they hold a lot of dust and are nearly opaque; sometimes you cannot even see them. Dust-devils rarely last long, since their very motion changes the conditions that allowed them to form in the first place.

    Mars Pathfinder detected the passage of several dust devils during its 83 days of operation on Mars in 1997. Mariner 9 and the Viking landers and orbiters of the 1970s also found evidence that dust devils occur on Mars; indeed, some Viking Orbiter images actually show dust devil clouds. MOC image 26403 is the latest entry in the body of evidence for the work of wind in the modern martian environment. The MOC Science Team is continuing to study these and other streaks caused by wind interacting with the martian surface.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  12. Electrical characteristics of simulated tornadoes

    NASA Astrophysics Data System (ADS)

    Zimmerman, M. I.; Farrell, W. M.; Barth, E. L.; Lewellen, D. C.; Lewellen, W. S.; Perlongo, N. J.; Jackson, T.

    2012-12-01

    It is well known that tornadoes and dust devils have the ability to accumulate significant, visible clouds of debris. Collisions between sand-like debris species produce different electric charges on different types of grains, which convect along different trajectories around the vortex. Thus, significant charge separations and electric currents are possible, which as the vortex fluctuates over time are thought to produce ULF radiation signatures that have been measured in the field. These electric and magnetic fields may contain valuable information about tornado structure and genesis, and may be critical in driving electrochemical processes within dust devils on Mars. In the present work, existing large eddy simulations of debris-laden tornadoes performed at West Virginia University are coupled with a new debris-charging and advection code developed at Goddard Space Flight Center to investigate the detailed (meter-resolution) fluid-dynamic origins of electromagnetic fields within terrestrial vortices. First results are presented, including simulations of the electric and magnetic fields that would be observed by a near-surface, instrument-laden probe during a direct encounter with a tornado. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. The generous allocation of computing resources by Dr. Timothy J. Stubbs is gratefully acknowledged.

  13. A Comparative Study Of Dust Devils

    NASA Astrophysics Data System (ADS)

    Lange, C. F.; Prieto, L. E.

    2005-12-01

    Spatial variations in the column of water vapour in the Martian near-surface are due to the combined effects of several process within water underground reservoirs and the atmosphere. Among these process, dust devils could be an important local factor in the water concentration levels. In fact, the apparently high occurrence of dust devils could potentially affect the mass transfer rate of water vapour from the Martian regolith. A detailed study of these atmospheric vortices may help to better understand the complex relation between the cycle of water and this Martian atmospheric event. Subsequently, field data are required to provide a close estimation of the dynamics presented in Martian surface. The upcoming Phoenix mission is being designed to investigate these natural events on Mars. However, field studies of dust devils are difficult because of their sporadic, unpredictable occurrence and distance. In contrast, laboratory simulations present a better physical insight into this complex swirling flow by consideration of a much simplified, and more controllable and reproducible model flow. The use of numerical simulations in addition to laboratory experiments can provide complementary information on flow properties in regions where measurements are difficult due to flow profiles. Computational models also allow for significant flexibility in the model layout and they are, therefore, ideally suited for a comparison of different types of model flows. A 3-D numerical study is presented for two different types of dust devil laboratory simulators (Ward, 1952 and Greeley et al., 2001). An initial numerical study was conducted to validate the simulation results with previous laboratory measurements (Lund and Snow, 1993). Secondly, a numerical comparison was carried out between the two tornado-like vortex representations based on kinematic similarities to provide a clear method to relate dust devils in several nature environments, laboratory simulations, and computational models. This was accomplished by examining features of the dust devils in the form of three main flow parameters: the ratio of the inflow layer height h to the updraft radius r_0 (aspect ratio), the radial Reynolds number characterizing the updraft zone, and the ratio of the tangential velocity to the mean radial velocity (swirl ratio) at the radius of the updraft zone, r_0. The detailed analysis of the numerical flow solutions led to a simple definition of h and r_0, valid for the types of model flows analyzed. This study is a necessary part of a larger effort to examine and compare both numerical and laboratory simulations of atmospheric vortices in terrestrial and Martian conditions. References [1] R. Greeley et al., XXXII Lunar and Planetary Science, 2001. [2] D. E. Lund and J. T. Snow, The Tornado: Its Structure, Dynamics, Prediction, and Hazards, 1993, p. 297--306. [3] N. B. Ward, J. Atmos. Sci., 1972, 1194--1204.

  14. Plains Traveler

    NASA Technical Reports Server (NTRS)

    2006-01-01

    10 April 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust devil traveling across a plain west-southwest of Schiaparelli Crater, in far eastern Sinus Meridiani. The dust devil is casting a shadow toward the northeast, just south (below) of an egg-shaped crater.

    Location near: 6.4oS, 349.3oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  15. Dust lifting in GEM-Mars using a roughness length map

    NASA Astrophysics Data System (ADS)

    Daerden, F.; Neary, L.; Whiteway, J. A.; Hébrard, E.

    2013-09-01

    Lifting of size distributed dust due to surface wind stress and dust devils has been implemented in the GEM-Mars 3D-GCM. It turned out that a detailed surface roughness length map was necessary to bring the simulated dust opacities in accordance with observations.

  16. Oxidant enhancement in martian dust devils and storms: storm electric fields and electron dissociative attachment.

    PubMed

    Delory, Gregory T; Farrell, William M; Atreya, Sushil K; Renno, Nilton O; Wong, Ah-San; Cummer, Steven A; Sentman, Davis D; Marshall, John R; Rafkin, Scot C R; Catling, David C

    2006-06-01

    Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars.

  17. The Electrostatic Environments of Mars: Atmospheric Discharges

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James, III; Cox, Rachel E.

    2016-01-01

    The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  18. Dust Devil Art

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-541, 11 November 2003

    In some regions of Mars, dust devils create streaks by disrupting or removing thin coatings of fine, bright dust from the surface. This summertime view of terrain in southern Noachis Terra, acquired by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC), provides an example. Streak patterns such as these are commonly created during the spring and summer in the southern hemisphere; in autumn and winter they are often erased--perhaps by deposition of a new coating of dust--and then a completely different pattern is formed the following spring and summer. This image is located near 59.6oS, 328.8oW. The picture is 3 km (1.9 mi) wide and illuminated by sunlight from the upper left.

  19. Electrical Charging Hazards Originating from the Surface (ECHOS): Understanding the Martian Electro-Meteorological Environment

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Desch, M. D.; Marshall, J. R.; Delory, G. T.; Kolecki, J. C.; Hillard, G. B.; Kaiser, M. L.; Haberle, R. M.; Zent, A. P.; Luhmann, J. G.

    2000-01-01

    In 1999, the NASA/Human Exploration and Development of Space (HEDS) enterprise selected a number of payloads to fly to the Martian surface in an 03 opportunity (prior to the MPL loss). Part of a proposed experiment, ECHOS, was selected to specifically understand the electrical charging hazards from tribocharged dust in the ambient atmosphere, in dust devils, and in larger storms. It is expected that Martian dust storms become tribocharged much like terrestrial dust devils which can possess almost a million elementary charges per cubic centimeter. The ECHOS package features a set of instruments for measuring electric effects: a radio to detect AC electric fields radiating from discharges in the storm,a DC electric field system for sensing electrostatic fields from concentrations of charged dust grains, and a lander electrometer chain for determining the induced potential on its body and MAV (Mars Ascent Vehicle) during the passages of a charged dust storm. Given that electricity is a systemic process originating from wind-blown dust, we also proposed to correlate the electrical measurements with fundamental fluid/meteorological observations, including wind velocity and vorticity, temperature, and pressure. Triboelectricity will also affect local chemistry, and chemical-sensing devices were also considered a feature of the package. The primary HEDS objectives of the ECHOS sensing suite is to discover and monitor the natural electrical hazards associated with dust devils and storms, and determine their enviro-effectiveness on human systems. However, ECHOS also has a strong footprint in the overarching science objectives of the Mars Surveyor Program.

  20. Lunar and Planetary Science XXXV: Mars: Wind, Dust Sand, and Debris

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Mars: Wind, Dust Sand, and Debris" included: Mars Exploration Rovers: Laboratory Simulations of Aeolian Interactions; Thermal and Spectral Analysis of an Intracrater Dune Field in Amazonis Planitia; How High is that Dune? A Comparison of Methods Used to Constrain the Morphometry of Aeolian Bedforms on Mars; Dust Devils on Mars: Scaling of Dust Flux Based on Laboratory Simulations; A Close Encounter with a Terrestrial Dust Devil; Interpretation of Wind Direction from Eolian Features: Herschel Crater, Mars Erosion Rates at the Viking 2 Landing Site; Mars Dust: Characterization of Particle Size and Electrostatic Charge Distributions; Simple Non-fluvial Models of Planetary Surface Modification, with Application to Mars; Comparison of Geomorphically Determined Winds with a General Circulation Model: Herschel Crater, Mars; Analysis of Martian Debris Aprons in Eastern Hellas Using THEMIS; Origin of Martian Northern Hemisphere Mid-Latitude Lobate Debris Aprons; Debris Aprons in the Tempe/Mareotis Region of Mars;and Constraining Flow Dynamics of Mass Movements on Earth and Mars.

  1. Phoenix Mars Lander: Vortices and Dust Devils at the Landing Site

    NASA Astrophysics Data System (ADS)

    Ellehoj, M. D.; Taylor, P. A.; Gunnlaugsson, H. P.; Gheynani, B. T.; Drube, L.; von Holstein-Rathlou, C.; Whiteway, J.; Lemmon, M.; Madsen, M. B.; Fisher, D.; Volpe, R.; Smith, P.

    2008-12-01

    Near continuous measurements of temperatures and pressure on the Phoenix Mars Lander are used to identify the passage of vertically oriented vortex structures at the Phoenix landing site (126W, 68N) on Mars. Observations: During the Phoenix mission the pressure and temperature sensors frequently detected features passing over or close to the lander. Short duration (order 20 s) pressure drops of order 1-2 Pa, and often less, were observed relatively frequently, accompanied by increases in temperature. Similar features were observed from the Pathfinder mission, although in that case the reported pressure drops were often larger [1]. Statistics of the pressure drop features over the first 102 sols of the Phoenix mission shows that most of the events occur between noon and 15:00 LMST - the hottest part of the sol. Dust Raising: By assuming the concept of a vortex in cyclostrophic flow as well as various assumptions about the atmosphere, we obtain a pressure drop of 1.9 - 3.2 Pa if dust is to be raised. We only saw few pressure drops this large in Sols 0-102. However, the features do not need to pass directly over the lander and the pressures could be lower than the minima we measure. Furthermore, the response time of the pressure sensor is of order 3-5 s so it may not capture peak pressure perturbations. Thus, more dust devils may have occurred near the Phoenix site, but most of our detected vortices would be ghostly, dustless devils. Modelling: Using a Large Eddy Simulation model, we can simulate highly convective boundary layers on Mars [2]. The typical vortex has a diameter of 150 m, and extends up to 1 km. Further calculations give an incidence of 11 vortex events per day that could be compatible with the LES simulations. Deeper investigation of this is planned -but the numbers are roughly compatible. If the significant pressure signatures are limited to the center of the vortex then 5 per sol might be appropriate. The Phoenix mission has collected a unique set of in situ meteorological data from the Arctic regions on Mars. Modelling work shows that vertically oriented vortices with low pressure, warm cores, can develop on internal boundaries, such as those associated with cellular convection, and this is supported by observations. Simple cyclostrophic estimates of vortex wind speeds suggest that dust devils will form, but that most vortices will not be capable of lifting dust from the surface. So, at least in the first 102 sols, most of the Phoenix devils are dustless. References [1] F Ferri, PH Smith, M Lemmon, NO Renno; (2003) Dust devils as observed by Mars Pathfinder. JGR,108, NO. E12, 5133, doi:10.1029/2000JE001421. [2] Gheynani, B.T. and Taylor, P.A., (2008), Large Eddy Simulation of vertical vortices in highly convective Martian boundary layer, Paper 10 B.6, 18th Symposium on Boundary Layers and Turbulence, June 2008, Stockholm, Sweden

  2. Summary of Natural Hazard Statistics for 2017 in the United States

    MedlinePlus

    ... Damage Costs Weather Event Convection Lightning Tornado Thunderstorm Wind Hail Extreme Temperatures Cold Heat Flood Flash Flood ... Drought Dust Storm Dust Devil Rain Fog High Wind Waterspout Fire Weather Mud Slide Volcanic Ash Miscellaneous ...

  3. Summary of Natural Hazard Statistics for 2015 in the United States

    MedlinePlus

    ... Damage Costs Weather Event Convection Lightning Tornado Thunderstorm Wind Hail Extreme Temperatures Cold Heat Flood Flash Flood ... Drought Dust Storm Dust Devil Rain Fog High Wind Waterspout Fire Weather Mud Slide Volcanic Ash Miscellaneous ...

  4. Maintaining the Background Dust Opacity During Northern Hemisphere Summer Mars Using Wind Stress Based Dust Lifting

    NASA Astrophysics Data System (ADS)

    Jha, V.; Kahre, M. A.

    2017-12-01

    The Mars atmosphere has low levels of dust during Northern Hemisphere (NH) spring and summer (the non-dusty season) and increased levels during NH autumn and winter (the dusty season). In the absence of regional or global storms, dust devils and local storms maintain a background minimum dust loading during the non-dusty season. While observational surveys and Global Climate Model (GCM) studies suggest that dust devils are likely to be major contributors to the background haze during NH spring and summer, a complete understanding of the relative contribution of dust devils and local dust storms has not yet been achieved. We present preliminary results from an investigation that focuses on the effects of radiatively active water ice clouds on dust lifting processes during these seasons. Water ice clouds are known to affect atmospheric temperatures directly by absorption and emission of thermal infrared radiation and indirectly through dynamical feedbacks. Our goal is to understand how clouds affect the contribution by local (wind stress) dust storms to the background dust haze during NH spring and summer. The primary tool for this work is the NASA Ames Mars GCM, which contains physical parameterizations for a fully interactive dust cycle. Three simulations that included wind stress dust lifting were executed for a period of 5 Martian years: a case that included no cloud formation, a case that included radiatively inert cloud formation and a case that included radiatively active cloud (RAC) formation. Results show that when radiatively active clouds are included, the clouds in the aphelion cloud belt radiatively heat the atmosphere aloft in the tropics (Figure 1). This heating produces a stronger overturning circulation, which in turn produces an enhanced low-level flow in the Hadley cell return branch. The stronger low-level flow drives higher surface stresses and increased dust lifting in those locations. We examine how realistic these simulated results are by comparing the spatial pattern of predicted wind stress lifting with a catalog of observed local storms. Better agreement is achieved in the radiatively active cloud case. These results suggest that wind stress lifting may contribute more to maintaining the background dust haze during NH spring and summer than what previous studies have shown.

  5. Martian Dust Devil Electron Avalanche Process and Associated Electrochemistry

    NASA Technical Reports Server (NTRS)

    Jackson, Telana L.; Farrell, William M.; Delory, Gregory T.; Nithianandam, Jeyasingh

    2010-01-01

    Mars' dynamic atmosphere displays localized dust devils and larger, global dust storms. Based on terrestrial analog studies, electrostatic modeling, and laboratory work these features will contain large electrostatic fields formed via triboelectric processes. In the low-pressure Martian atmosphere, these fields may create an electron avalanche and collisional plasma due to an increase in electron density driven by the internal electrical forces. To test the hypothesis that an electron avalanche is sustained under these conditions, a self-consistent atmospheric process model is created including electron impact ionization sources and electron losses via dust absorption, electron dissociation attachment, and electron/ion recombination. This new model is called the Dust Devil Electron Avalanche Model (DDEAM). This model solves simultaneously nine continuity equations describing the evolution of the primary gaseous chemical species involved in the electrochemistry. DDEAM monitors the evolution of the electrons and primary gas constituents, including electron/water interactions. We especially focus on electron dynamics and follow the electrons as they evolve in the E field driven collisional gas. When sources and losses are self-consistently included in the electron continuity equation, the electron density grows exponentially with increasing electric field, reaching an equilibrium that forms a sustained time-stable collisional plasma. However, the character of this plasma differs depending upon the assumed growth rate saturation process (chemical saturation versus space charge). DDEAM also shows the possibility of the loss of atmospheric methane as a function of electric field due to electron dissociative attachment of the hydrocarbon. The methane destruction rates are presented and can be included in other larger atmospheric models.

  6. Cycloidal Dust Devil Track

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-382, 5 June 2003

    The spiraling feature near the center of this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image is known as a cycloidal marking. Patterns like this can also occur on Earth. On Mars, the cycloidalpattern--and all of the other dark streaks in this picture--are thought to have been formed by passing dust devils. On Earth, cycloidal markings have been observed to result from some tornadoes. The pattern is created when more than one vortex (spinning column of air) is traveling, and spinning, together. This picture is near 62.9oS, 234.7oW. Sunlight illuminates the scene from the upper left.

  7. Dust Devil Tracks and Wind Streaks in the North Polar Region of Mars: A Study of the 2007 Phoenix Mars Lander Sites

    NASA Technical Reports Server (NTRS)

    Drake, Nathan B.; Tamppari, Leslie K.; Baker, R. David; Cantor, Bruce A.; Hale, Amy S.

    2006-01-01

    The 65-72 latitude band of the North Polar Region of Mars, where the 2007 Phoenix Mars Lander will land, was studied using satellite images from the Mars Global Surveyor (MGS) Mars Orbiter Camera Narrow-Angle (MOC-NA) camera. Dust devil tracks (DDT) and wind streaks (WS) were observed and recorded as surface evidence for winds. No active dust devils (DDs) were observed. 162 MOC-NA images, 10.3% of total images, contained DDT/WS. Phoenix landing Region C (295-315W) had the highest concentration of images containing DDT/WS per number of available images (20.9%); Region D (130-150W) had the lowest (3.5%). DDT and WS direction were recorded for Phoenix landing regions A (110-130W), B (240-260W), and C to infer local wind direction. Region A showed dominant northwest-southeast DDT/WS, Region B showed dominant north-south, east-west and northeast-southwest DDT/WS, and region C showed dominant west/northwest - east/southeast DDT/ WS. Results indicate the 2007 Phoenix Lander has the highest probability of landing near DDT/WS in landing Region C. Based on DDT/WS linearity, we infer Phoenix would likely encounter directionally consistent background wind in any of the three regions.

  8. Terra Sirenum

    NASA Technical Reports Server (NTRS)

    2002-01-01

    [figure removed for brevity, see original site]

    This image is from a region called Terra Sirenum in Mars' southern hemisphere. This region was named in 1958 for the Sea of the Sirens from Greek Mythology. This is not a sea, however, but a relatively dusty, high albedo region of Mars. There are numerous dust devil tracks that are apparent in the center- left of the image. The dust devils act like vacuum cleaners and lift dust off of the surface leaving a less dusty and relatively lower albedo surface behind. Dust devils are very common on Mars and are thought to be the primary mechanism for constantly lifting the dust into the atmosphere. Dust is constantly present in the Martian atmosphere in greater abundances than typically seen on Earth. The Martian dust is one of the main factors that affect the present Martian climate and clearly displays the relationship between Mars' geology and atmosphere.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Is the Electron Avalanche Process in a Martian Dust Devil Self-Quenching?

    NASA Technical Reports Server (NTRS)

    Farrell, William M.; McLain, Jason L.; Collier, M. R.; Keller, J. W.; Jackson, T. J.; Delory, G. T.

    2015-01-01

    Viking era laboratory experiments show that mixing tribocharged grains in a low pressure CO2 gas can form a discharge that glows, indicating the presence of an excited electron population that persists over many seconds. Based on these early experiments, it has been predicted that martian dust devils and storms may also contain a plasma and new plasma chemical species as a result of dust grain tribo-charging. However, recent results from modeling suggest a contrasting result: that a sustained electron discharge may not be easily established since the increase in gas conductivity would act to short-out the local E-fields and quickly dissipate the charged grains driving the process. In essence, the system was thought to be self-quenching (i.e., turn itself off). In this work, we attempt to reconcile the difference between observation and model via new laboratory measurements. We conclude that in a Mars-like low pressure CO2 atmosphere and expected E-fields, the electron current remains (for the most part) below the expected driving tribo-electric dust currents (approx. 10 microA/m(exp. 2)), thereby making quenching unlikely.

  10. The physics of wind-blown sand and dust.

    PubMed

    Kok, Jasper F; Parteli, Eric J R; Michaels, Timothy I; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  11. The physics of wind-blown sand and dust

    NASA Astrophysics Data System (ADS)

    Kok, Jasper F.; Parteli, Eric J. R.; Michaels, Timothy I.; Karam, Diana Bou

    2012-10-01

    The transport of sand and dust by wind is a potent erosional force, creates sand dunes and ripples, and loads the atmosphere with suspended dust aerosols. This paper presents an extensive review of the physics of wind-blown sand and dust on Earth and Mars. Specifically, we review the physics of aeolian saltation, the formation and development of sand dunes and ripples, the physics of dust aerosol emission, the weather phenomena that trigger dust storms, and the lifting of dust by dust devils and other small-scale vortices. We also discuss the physics of wind-blown sand and dune formation on Venus and Titan.

  12. Vortex formation in a complex plasma

    NASA Astrophysics Data System (ADS)

    Ishihara, Osamu

    Complex plasma experiments in ground-based laboratories as well as in microgravity conditions have shown the formation of vortex structures in various conditions (e.g., 1,2,3,4). The vortex structures formed in a complex plasma are visible by naked eyes with the help of irradiating laser and the individual dust particles in the structure give us the opportunity to study detailed physics of the commonly observed natural phenomena known such as tornadoes, typhoons, hurricanes and dust devils. Based on the Navier-Stokes equation with proper complex plasma conditions we analyze as much as possible in a universal way the vortex structure and clarifies the role of the controlling parameters like flow velocity and external magnetic field. 1. G. E. Morfill,H. M. Thomas, U. Konopka,H. Rothermel, M. Zuzic, A. Ivlev, and J. Goree, Phys,. Rev. Lett. 83, 1598 (1999). 2. E. Nebbat and R. Annou, Phys. Plasmas 17, 093702 (2010). 3. Y. Saitou and O. Ishihara, Phys. Rev. Lett. 111, 185003 (2013). 4. V. N. Tsytovich and N. G. Gusein-zade, Plasma Phys. Rep. 39, 515 (2013).

  13. Comparing wind directions inferred from Martian dust devil tracks analysis with those predicted by the Mars Climate Database

    NASA Astrophysics Data System (ADS)

    Statella, T.; Pina, P.; Silva, E. A.; Nervis Frigeri, Ary Vinicius; Neto, Frederico Gallon

    2016-10-01

    We have calculated the prevailing dust devil tracks direction as a means of verifying the Mars Climate Database (MCD) predicted wind directions accuracy. For that purpose we have applied an automatic method based on morphological openings for inferring the prevailing tracks direction in a dataset comprising 200 Mars Orbiter Camera (MOC) Narrow Angle (NA) and High Resolution Imaging Science Experiment (HiRISE) images of the Martian surface, depicting regions in the Aeolis, Eridania, Noachis, Argyre and Hellas quadrangles. The prevailing local wind directions were calculated from the MCD predicted speeds for the WE and SN wind components. The results showed that the MCD may not be able to predict accurately the locally dominant wind direction near the surface. In adittion, we confirm that the surface wind stress alone cannot produce dust lifting in the studied sites, since it never exceeds the threshold value of 0.0225 Nm-2 in the MCD.

  14. Circles and Streaks

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-544, 14 November 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, acquired less than a week ago on 8 November 2003, shows a typical southern middle-to-high latitude scene at this time of year. It is summer in the southern hemisphere, and regions such as Promethei Terra, where this image was acquired, are being streaked by dust devils that remove or disrupt the coating of dust that was deposited over the region in the previous autumn or winter. While no active dust devils were captured in this scene, their tell-tale tracks are scratched all across the image. The circular features are the sites of buried meteor impact craters; their rims form dark rings; the material that fills the craters has become cracked. This picture is located near 68.1oS, 247.9oW. The area shown is approximately 3 km (1.9 mi) across and is illuminated by sunlight from the upper left.

  15. Which Came First?

    NASA Image and Video Library

    2015-09-16

    The workings of the Martian winds are visible in this image of sand dunes trapped inside an unnamed crater in southern Terra Cimmeria captured by NASA Mars Reconnaissance Orbiter spacecraft. Many of the craters in the Southern highlands of Mars contain sand dunes, and HiRISE is still in the process of mapping these dunes and determining how active they are today. So far, the dunes in these craters appear to be a mixed bunch, with some dunes actively advancing while others seem to be frozen in place. This image will be compared to a previous picture, to see how these dunes have changed since 2008. The sand dunes are the large, branched ridges and dark patches that are conspicuous against the bright background, particularly in the northwest corner of our picture. There are also signs of two other wind-related processes: smaller, brighter ridges line the floor of the crater in regularly spaced rows. These are also windblown deposits, mysterious "transverse aeolian ridges" or TARs that are more common in the Martian tropics. Faint, irregular dark lines cross the dunes and the TARs, marking the tracks of dust devils that vacuum the surface during southern summer. So, which came first? We can untangle the history of these processes by looking at the picture more closely. Over most of the image, it is obvious that the dark sand dunes bury the bright TARs, meaning that the sand dunes are younger than the TARs. But this relationship is not so clear for the southernmost dune we see in this picture. Here, the TARs look like they extend into the dune and merge with ripples on the dune's surface, suggesting that the TARs might be younger than the dunes. The question can be resolved by carefully examining an enhanced color cutout. The TARs are brighter and redder than the sand dunes and this color persists on the crests of the TARs as the sand encroaches, burying the valleys first and then the slopes and finally the TAR crests. This tells us that the unusual appearance of the dune margin is caused by burial and exposure of the older TARs by the younger sand. Finally, you can trace the tracks of dust devils crossing over the dunes, telling us that they are younger than the dunes. So, first came the TARs, next the dunes, and last the dust devils -- probably within the last few months! http://photojournal.jpl.nasa.gov/catalog/?IDNumber=pia19941

  16. Dust Devil Tracks

    NASA Image and Video Library

    2012-11-13

    This image from NASA 2001 Mars Odyssey spacecraft of Daedalia Planum shows the termination or end of a single flow. In this case it is the end of the brighter/rougher flow on the right side of the image.

  17. Mangala Fossa

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 29 May 2002) The Science Today's THEMIS release captures Mangala Fossa. Mangala Fossa is a graben, which in geologic terminology translates into a long parallel to semi-parallel fracture or trough. Grabens are dropped or downthrown areas relative to the rocks on either side and these features are generally longer than they are wider. There are numerous dust devil trails seen in this image. In the lower portion of this image several dust devil tracks can be seen cutting across the upper surface then down the short stubby channel and finally back up and over to the adjacent upper surface. Some dust avalanche streaks on slopes are also visible. The rough material in the upper third of the image contains a portion of the rim of a 90 km diameter crater located in Daedalia Planum. The smooth crater floor has a graben (up to 7 km wide) and channel (2 km wide) incised into its surface. In the middle third and right of this image one can see ripples (possibly fossil dunes) on the crater floor material just above the graben. The floor of Mangala Fossa and the southern crater floor surface also have smaller linear ridges trending from the upper left to lower right. These linear ridges could be either erosional (yardangs) or depositional (dunes) landforms. The lower third of the scene contains a short stubby channel (near the right margin) and lava flow front (lower left). The floor of this channel is fairly smooth with some linear crevasses located along its course. One gets the impression that the channel floor is mantled with some type of indurated material that permits cracks to form in its surface. The Story In the Daedalia Plains on Mars, the rim of an old eroded crater rises up, a wreck of its former self (see context image at right). From the rough, choppy crater rim (top of the larger THEMIS image), the terrain descends to the almost smooth crater floor, gouged deeply by a trough, a channel, and the occasional dents of small, scattered craters. The deep trough running from southwest to northeast across the middle of this image is called 'Mangala Fossa.' Mangala Fossa is a graben, a land feature created by tectonic processes that worked to create a depression in the landscape. This graben is a little more than 4 miles wide at its maximum, but like most grabens, is much longer than it is wide. You can see from the context image that it runs across much of the width of the crater. Running southward from the graben (lower right-hand side of the larger THEMIS image) is a branching channel a little over a mile wide. The floor of this channel is fairly smooth with some linear crevasses along its course. These features suggest that the channel floor might be layered with some type of cemented material that permits cracks to form in its surface. Between the rough crater rim and the depressed graben, tiny crackles on the otherwise smooth surface appear. They might be the ripples of fossil dunes, hardened remains from a more active time. The floor of Mangala Fossa and the southern crater floor surface also feature small lines that seem to crease the surface. We know that they are ridges on the surface, but how did they form? Were higher surfaces carved away in grooves by the wind and scouring sand, forming ridges called yardangs? Or were dunes deposited on the smooth, lower terrain? No one knows for sure. Look closely for faint details as well. Do you see the subtle, scalloped pattern that laps at the lower left of the image, almost too muted to be seen? That's the sign of an ancient lava flow that stopped just there. And the shadowy gray streaks? Some are smudges caused by dust avalanches running down the slopes of the channel. Others are the tracks of dust devils that pass across the land, lifting and carrying away brighter dust to reveal the darker surface beneath. For a good example of a dust devil track, check out the faint gray line that cuts across the upper part of the channel, just below the point where it meets the graben.

  18. The role of water content in triboelectric charging of wind-blown sand.

    PubMed

    Gu, Zhaolin; Wei, Wei; Su, Junwei; Yu, Chuck Wah

    2013-01-01

    Triboelectric charging is common in desert sandstorms and dust devils on Earth; however, it remains poorly understood. Here we show a charging mechanism of sands with the adsorbed water on micro-porous surface in wind-blown sand based on the fact that water content is universal but usually a minor component in most particle systems. The triboelectric charging could be resulted due to the different mobility of H(+)/OH(-) between the contacting sands with a temperature difference. Computational fluid dynamics (CFD) and discrete element method (DEM) were used to demonstrate the dynamics of the sand charging. The numerically simulated charge-to-mass ratios of sands and electric field strength established in wind tunnel agreed well with the experimental data. The charging mechanism could provide an explanation for the charging process of all identical granular systems with water content, including Martian dust devils, wind-blown snow, even powder electrification in industrial processes.

  19. The role of water content in triboelectric charging of wind-blown sand

    PubMed Central

    Gu, Zhaolin; Wei, Wei; Su, Junwei; Yu, Chuck Wah

    2013-01-01

    Triboelectric charging is common in desert sandstorms and dust devils on Earth; however, it remains poorly understood. Here we show a charging mechanism of sands with the adsorbed water on micro-porous surface in wind-blown sand based on the fact that water content is universal but usually a minor component in most particle systems. The triboelectric charging could be resulted due to the different mobility of H+/OH− between the contacting sands with a temperature difference. Computational fluid dynamics (CFD) and discrete element method (DEM) were used to demonstrate the dynamics of the sand charging. The numerically simulated charge-to-mass ratios of sands and electric field strength established in wind tunnel agreed well with the experimental data. The charging mechanism could provide an explanation for the charging process of all identical granular systems with water content, including Martian dust devils, wind-blown snow, even powder electrification in industrial processes. PMID:23434920

  20. Deep Extragalactic VIsible Legacy Survey (DEVILS): Motivation, Design and Target Catalogue

    NASA Astrophysics Data System (ADS)

    Davies, L. J. M.; Robotham, A. S. G.; Driver, S. P.; Lagos, C. P.; Cortese, L.; Mannering, E.; Foster, C.; Lidman, C.; Hashemizadeh, A.; Koushan, S.; O'Toole, S.; Baldry, I. K.; Bilicki, M.; Bland-Hawthorn, J.; Bremer, M. N.; Brown, M. J. I.; Bryant, J. J.; Catinella, B.; Croom, S. M.; Grootes, M. W.; Holwerda, B. W.; Jarvis, M. J.; Maddox, N.; Meyer, M.; Moffett, A. J.; Phillipps, S.; Taylor, E. N.; Windhorst, R. A.; Wolf, C.

    2018-06-01

    The Deep Extragalactic VIsible Legacy Survey (DEVILS) is a large spectroscopic campaign at the Anglo-Australian Telescope (AAT) aimed at bridging the near and distant Universe by producing the highest completeness survey of galaxies and groups at intermediate redshifts (0.3 < z < 1.0). Our sample consists of ˜60,000 galaxies to Y<21.2 mag, over ˜6 deg2 in three well-studied deep extragalactic fields (Cosmic Origins Survey field, COSMOS, Extended Chandra Deep Field South, ECDFS and the X-ray Multi-Mirror Mission Large-Scale Structure region, XMM-LSS - all Large Synoptic Survey Telescope deep-drill fields). This paper presents the broad experimental design of DEVILS. Our target sample has been selected from deep Visible and Infrared Survey Telescope for Astronomy (VISTA) Y-band imaging (VISTA Deep Extragalactic Observations, VIDEO and UltraVISTA), with photometry measured by PROFOUND. Photometric star/galaxy separation is done on the basis of NIR colours, and has been validated by visual inspection. To maximise our observing efficiency for faint targets we employ a redshift feedback strategy, which continually updates our target lists, feeding back the results from the previous night's observations. We also present an overview of the initial spectroscopic observations undertaken in late 2017 and early 2018.

  1. Spirit Feels Dust Gust

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On sol 1149 (March 28, 2007) of its mission, NASA's Mars Exploration Rover Spirit caught a wind gust with its navigation camera. A series of navigation camera images were strung together to create this movie. The front of the gust is observable because it was strong enough to lift up dust. From assessing the trajectory of this gust, the atmospheric science team concludes that it is possible that it passed over the rover. There was, however, no noticeable increase in power associated with this gust. In the past, dust devils and gusts have wiped the solar panels of dust, making it easier for the solar panels to absorb sunlight.

  2. Whirlwind Drama During Spirit's 496th Sol

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This movie clip shows a dust devil growing in size and blowing across the plain inside Mars' Gusev Crater. The clip consists of frames taken by the navigation camera on NASA's Mars Exploration Rover Spirit during the morning of the rover's 496th martian day, or sol (May 26, 2005). Contrast has been enhanced for anything in the images that changes from frame to frame, that is, for the dust moved by wind.

  3. Observational evidence of a suppressed planetary boundary layer in northern Gale Crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover

    NASA Astrophysics Data System (ADS)

    Moores, John E.; Lemmon, Mark T.; Kahanpää, Henrik; Rafkin, Scot C. R.; Francis, Raymond; Pla-Garcia, Jorge; Bean, Keri; Haberle, Robert; Newman, Claire; Mischna, Michael; Vasavada, Ashwin R.; de la Torre Juárez, Manuel; Rennó, Nilton; Bell, Jim; Calef, Fred; Cantor, Bruce; Mcconnochie, Timothy H.; Harri, Ari-Matti; Genzer, Maria; Wong, Michael H.; Smith, Michael D.; Martín-Torres, F. Javier; Zorzano, María-Paz; Kemppinen, Osku; McCullough, Emily

    2015-03-01

    The Navigation Cameras (Navcam) of the Mars Science Laboratory rover, Curiosity, have been used to examine two aspects of the planetary boundary layer: vertical dust distribution and dust devil frequency. The vertical distribution of dust may be obtained by using observations of the distant crater rim to derive a line-of-sight optical depth within Gale Crater and comparing this optical depth to column optical depths obtained using Mastcam observations of the solar disc. The line of sight method consistently produces lower extinctions within the crater compared to the bulk atmosphere. This suggests a relatively stable atmosphere in which dust may settle out leaving the air within the crater clearer than air above and explains the correlation in observed column opacity between the floor of Gale Crater and the higher elevation Meridiani Planum. In the case of dust devils, despite an extensive campaign only one optically thick vortex (τ = 1.5 ± 0.5 × 10-3) was observed compared to 149 pressure events >0.5 Pa observed in REMS pressure data. Correcting for temporal coverage by REMS and geographic coverage by Navcam still suggests 104 vortices should have been viewable, suggesting that most vortices are dustless. Additionally, the most intense pressure excursions observed on other landing sites (pressure drop >2.5 Pa) are lacking from the observations by the REMS instrument. Taken together, these observations are consistent with pre-landing circulation modeling of the crater showing a suppressed, shallow boundary layer. They are further consistent with geological observations of dust that suggests the northern portion of the crater is a sink for dust in the current era.

  4. Global warming and climate forcing by recent albedo changes on Mars

    USGS Publications Warehouse

    Fenton, L.K.; Geissler, P.E.; Haberle, R.M.

    2007-01-01

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by ???0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies. ??2007 Nature Publishing Group.

  5. Global warming and climate forcing by recent albedo changes on Mars.

    PubMed

    Fenton, Lori K; Geissler, Paul E; Haberle, Robert M

    2007-04-05

    For hundreds of years, scientists have tracked the changing appearance of Mars, first by hand drawings and later by photographs. Because of this historical record, many classical albedo patterns have long been known to shift in appearance over time. Decadal variations of the martian surface albedo are generally attributed to removal and deposition of small amounts of relatively bright dust on the surface. Large swaths of the surface (up to 56 million km2) have been observed to darken or brighten by 10 per cent or more. It is unknown, however, how these albedo changes affect wind circulation, dust transport and the feedback between these processes and the martian climate. Here we present predictions from a Mars general circulation model, indicating that the observed interannual albedo alterations strongly influence the martian environment. Results indicate enhanced wind stress in recently darkened areas and decreased wind stress in brightened areas, producing a positive feedback system in which the albedo changes strengthen the winds that generate the changes. The simulations also predict a net annual global warming of surface air temperatures by approximately 0.65 K, enhancing dust lifting by increasing the likelihood of dust devil generation. The increase in global dust lifting by both wind stress and dust devils may affect the mechanisms that trigger large dust storm initiation, a poorly understood phenomenon, unique to Mars. In addition, predicted increases in summertime air temperatures at high southern latitudes would contribute to the rapid and steady scarp retreat that has been observed in the south polar residual ice for the past four Mars years. Our results suggest that documented albedo changes affect recent climate change and large-scale weather patterns on Mars, and thus albedo variations are a necessary component of future atmospheric and climate studies.

  6. Impact-Mobilized Dust in the Martian Atmosphere

    NASA Technical Reports Server (NTRS)

    Nemtchinov, I. V.; Shuvalov, V. V.; Greeley, R.

    2002-01-01

    We consider dust production and entrainment into the atmosphere of Mars by impacts. Numerical simulations based on the multidimensional multimaterial hydrocode were conducted for impactors 1 to 100 m in size and velocities 11 and 20 kilometers per second. The size distribution of particles was based on experimentrr wing TNT explosions. Dust can be mobilized even when the impactor does not reach the ground through the release of energy in the atmosphere, We found that the blast produced winds entrained dust by a mechanism similar to boundary layer winds as determined from the wind-tunnel tests. For a l-m radius stony asteroid releasing its energy in the atmosphere the lifted mass of dust is larger than that in a typical dust devil and could trigger local dust storms, For a 100-m-radius meteoroid the amount of injected dust is comparable with the tota! mass of a global dust storm.

  7. The Challenge of Modelling the Meteorology of Dust Emission: Lessons Learned from the Desert Storms Project

    NASA Astrophysics Data System (ADS)

    Knippertz, Peter; Marsham, John H.; Cowie, Sophie; Fiedler, Stephanie; Heinold, Bernd; Jemmett-Smith, Bradley; Pantillon, Florian; Schepanski, Kerstin; Roberts, Alexander; Pope, Richard; Gilkeson, Carl; Hubel, Eva

    2016-04-01

    Mineral dust plays an important role in the Earth system, but a reliable quantification of the global dust budget is still not possible due to a lack of observations and insufficient representation of relevant processes in climate and weather models. Five years ago, the Desert Storms project funded by the European Research Council set out to reduce these uncertainties. Its aims were to (1) improve the understanding of key meteorological mechanisms of peak wind generation in dust emission regions (particularly in northern Africa), (2) assess their relative importance, (3) evaluate their representation in models, (4) determine model sensitivities with respect to resolution and model physics, and (5) explore the usefulness of new approaches for model improvements. Here we give an overview of the most significant findings: (1) The morning breakdown of nocturnal low-level jets is an important emission mechanism, but details depend crucially on nighttime stability, which is often badly handled by models. (2) Convective cold pools are a key control on summertime dust emission over northern Africa, directly and through their influence on the heat low; they are severely misrepresented by models using parameterized convection. A new scheme based on downdraft mass flux has been developed that can mitigate this problem. (3) Mobile cyclones make a relatively unimportant contribution, except for northeastern Africa in spring. (4) A new global climatology of dust devils identifies local hotspots but suggests a minor contribution to the global dust budget in contrast to previous studies. A new dust-devil parameterization based on data from large-eddy simulations will be presented. (5) The lack of sufficient observations and misrepresentation of physical processes lead to a considerable uncertainty and biases in (re)analysis products. (6) Variations in vegetation-related surface roughness create small-scale wind variability and support long-term dust trends in semi-arid areas.

  8. The Challenge of Modeling the Meteorology of Dust Emission: Lessons Learned from the Desert Storms Project

    NASA Astrophysics Data System (ADS)

    Knippertz, P.; Marsham, J. H.; Cowie, S. M.; Fiedler, S.; Heinold, B.; Jemmett-Smith, B. C.; Pantillon, F.; Schepanski, K.; Roberts, A. J.; Pope, R.; Gilkeson, C. A.; Hubel, E.

    2015-12-01

    Mineral dust plays an important role in the Earth system, but a reliable quantification of the global dust budget is still not possible due to a lack of observations and insufficient representation of relevant processes in climate and weather models. Five years ago, the Desert Storms project funded by the European Research Council set out to reduce these uncertainties. Its aims were to (1) improve the understanding of key meteorological mechanisms of peak wind generation in dust emission regions (particularly in northern Africa), (2) assess their relative importance, (3) evaluate their representation in models, (4) determine model sensitivities with respect to resolution and model physics, and (5) explore the usefulness of new approaches for model improvements. Here we give an overview of the most significant findings: (1) The morning breakdown of nocturnal low-level jets is an important emission mechanism, but details depend crucially on nighttime stability, which is often badly handled by models. (2) Convective cold pools are a key control on summertime dust emission over northern Africa, directly and through their influence on the heat low; they are severely misrepresented by models using parameterized convection. A new scheme based on downdraft mass flux has been developed that can mitigate this problem. (3) Mobile cyclones make a relatively unimportant contribution, except for northeastern Africa in spring. (4) A new global climatology of dust devils identifies local hotspots but suggests a minor contribution to the global dust budget in contrast to previous studies. A new dust-devil parameterization based on data from large-eddy simulations will be presented. (5) The lack of sufficient observations and misrepresentation of physical processes lead to a considerable uncertainty and biases in (re)analysis products. (6) Variations in vegetation-related surface roughness create small-scale wind variability and support long-term dust trends in semi-arid areas.

  9. Atmospheric laser Doppler velocimetry - An overview

    NASA Technical Reports Server (NTRS)

    Bilbro, J. W.

    1980-01-01

    Research, development, and application of atmospheric laser Doppler velocimetry are overviewed. Consideration is given to operation principles of CO2 heterodyne systems. Global wind, pollution, V/STOL flow, and true airspeed measurements are outlined. Wind energy, dust devils, water spouts, tornadoes, and aircraft wake vortices are covered.

  10. Dust Mitigation for Martian Exploration

    NASA Technical Reports Server (NTRS)

    Williams, Blakeley Shay

    2011-01-01

    One of the efforts of the In-Situ Resource Utilization project is to extract oxygen, fuel, and water from the Martian air. However, the surface of Mars is covered in a layer of dust, which is uploaded into the atmosphere by dust devils and dust storms. This atmospheric dust would be collected along with the air during the conversion process. Thus, it is essential to extract the dust from the air prior to commencing the conversion. An electrostatic precipitator is a commonly used dust removal technology on earth. Using this technology, dust particles that pass through receive an electrostatic charge by means of a corona discharge. The particles are then driven to a collector in a region of high electric field at the center of the precipitator. Experiments were conducted to develop a precipitator that will function properly in the Martian atmosphere, which has a very low pressure and is made up . of primarily carbon dioxide.

  11. Cerberus

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 24 April 2002) The Science The Cerberus feature is a relatively dark region at the southeastern edge of the huge Elysium Mons volcanic complex. It was visible to early astronomers of Mars because it was a distinctive dark spot on a large bright region of the planet. Today we recognize that the Cerberus region encompasses a range of geologic terrains from relatively young and smooth lava flows to the very rugged, ancient eroded landscape seen in this THEMIS image. The Cerberus feature has also proven to be ephemeral. Compared to just 20 years ago when the Viking orbiter instruments viewed the planet, the Cerberus feature has shrunk down from its original length of roughly 1000 kilometers to just a few isolated dark splotches of just a few 100 kilometers. This is testament to the active eolian environment on Mars where global dust storms can lift and then later deposit significant amounts of dust, brightening formerly dark surfaces. The THEMIS image occurs in a portion of Cerberus that remains relatively dark and dust-free although in the bottommost portion of the image are faint, criss-crossing lines that likely are dust devil tracks. The abundant dune-like features covering many of the low, smooth surfaces are similar to those found in many places across the planet. They are evidence of the interaction of wind and movable particles at the surface but not necessarily in today's environment. In many other places on Mars they are clearly inactive; relicts of a different climate. The Story Hellhound of Greek mythology, Cerberus was the three-headed, dragon-tailed dog that stood guard at the opening to the underworld. This rough-and-tumble Mars terrain looks just as fierce and foreboding. At the edge of the huge Elysium Mons volcano complex, the Cerberus area appeared as a dark spot to early Mars astronomers in an otherwise bright region of the planet. If this dark area seems somewhat hellish to your imagination too, you'll be glad to know that the Martian wind has been brightening up the area. Just twenty years ago, the Viking orbiters reached Mars for the first long-term studies of Mars up close. The Cerberus feature was then almost 600 miles long, but has now been vanquished down to few small splotches about 60 miles long. Call that a triumph of lightness upon the surface, but don't think that the force bringing back the light is gentle and kind. The Martian wind can kick up a fierce global dust storm that lifts up the bright Martian dust into the air and then blankets the surface with the brighter material as it settles down again. The ancient, eroded terrain in this image is still rather dark and dust free, so you might say it's one area where a mythical Cerberus still guards its shrinking territory. The wind teases it, however, by kicking up small, whirling dust devils that leave long, dark, scratchy tracks upon the land. Fields of dunes wrinkle the surface in places as well, but they may be permanently cemented upon the surface now, no longer able to blow and drift as they did in their younger days.

  12. Dust in the wind: long range transport of dust in the atmosphere and its implications for global public and ecosystem health

    USGS Publications Warehouse

    Griffin, Dale W.; Kellogg, Christina A.; Shinn, Eugene A.

    2001-01-01

    Movement of soil particles in atmospheres is a normal planetary process. Images of Martian dust devils (wind-spouts) and dust storms captured by NASA's Pathfinder have demonstrated the significant role that storm activity plays in creating the red atmospheric haze of Mars. On Earth, desert soils moving in the atmosphere are responsible for the orange hues in brilliant sunrises and sunsets. In severe dust storm events, millions of tons of soil may be moved across great expanses of land and ocean. An emerging scientific interest in the process of soil transport in the Earth's atmosphere is in the field of public and ecosystem health. This article will address the benefits and the potential hazards associated with exposure to particle fallout as clouds of desert dust traverse the globe.

  13. DEVELOPMENT OF COUNTY-LEVEL WIND EROSION AND UNPAVED ROAD ALKALINE EMISSION ESTIMATES FOR THE 1985 NAPAP EMISSIONS INVENTORY

    EPA Science Inventory

    The report details the methods used and the result of the conversion of the National Acid Precipitation Assessment Program's (NAPAP's) alkaline material emissions information for wind erosion, unpaved roads, and dust devils from the' current spatial resolution to county-level res...

  14. The Electrostatic Environments of the Moon and Mars: Implications for Human Missions

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.

    2016-01-01

    Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  15. Oxidant enhancement in martian dust devils and storms: implications for life and habitability.

    PubMed

    Atreya, Sushil K; Wong, Ah-San; Renno, Nilton O; Farrell, William M; Delory, Gregory T; Sentman, Davis D; Cummer, Steven A; Marshall, John R; Rafkin, Scot C R; Catling, David C

    2006-06-01

    We investigate a new mechanism for producing oxidants, especially hydrogen peroxide (H2O2), on Mars. Large-scale electrostatic fields generated by charged sand and dust in the martian dust devils and storms, as well as during normal saltation, can induce chemical changes near and above the surface of Mars. The most dramatic effect is found in the production of H2O2 whose atmospheric abundance in the "vapor" phase can exceed 200 times that produced by photochemistry alone. With large electric fields, H2O2 abundance gets large enough for condensation to occur, followed by precipitation out of the atmosphere. Large quantities of H2O2 would then be adsorbed into the regolith, either as solid H2O2 "dust" or as re-evaporated vapor if the solid does not survive as it diffuses from its production region close to the surface. We suggest that this H2O2, or another superoxide processed from it in the surface, may be responsible for scavenging organic material from Mars. The presence of H2O2 in the surface could also accelerate the loss of methane from the atmosphere, thus requiring a larger source for maintaining a steady-state abundance of methane on Mars. The surface oxidants, together with storm electric fields and the harmful ultraviolet radiation that readily passes through the thin martian atmosphere, are likely to render the surface of Mars inhospitable to life as we know it.

  16. Preliminary Testing of a Pressurized Space Suit and Candidate Fabrics Under Simulated Mars Dust Storm and Dust Devil Conditions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; deLeon, Pablo G.; Lee, Pascal; McCue, Terry R.; Hodgson, Edward W.; Thrasher, Jeff

    2010-01-01

    In August 2009 YAP Films (Toronto) received permission from all entities involved to create a documentary film illustrating what it might be like to be on the surface of Mars in a space suit during a dust storm or in a dust devil. The science consultants on this project utilized this opportunity to collect data which could be helpful to assess the durability of current space suit construction to the Martian environment. The NDX?1 prototype planetary space suit developed at the University of North Dakota was used in this study. The suit features a hard upper torso garment, and a soft lower torso and boots assembly. On top of that, a nylon-cotton outer layer is used to protect the suit from dust. Unmanned tests were carried out in the Martian Surface Wind Tunnel (MARSWIT) at the NASA Ames Research Center, with the suit pressurized to 10 kPa gauge. These tests blasted the space suit upper torso and helmet, and a collection of nine candidate outer layer fabrics, with wind-borne simulant for five different 10 minute tests under both terrestrial and Martian surface pressures. The infiltration of the dust through the outer fabric of the space suit was photographically documented. The nine fabric samples were analyzed under light and electron microscopes for abrasion damage. Manned tests were carried out at Showbiz Studios (Van Nuys, CA) with the pressure maintained at 20?2 kPa gauge. A large fan-created vortex lifted Martian dust simulant (Fullers Earth or JSC Mars?1) off of the floor, and one of the authors (Lee) wearing the NDX?1 space suit walked through it to judge both subjectively and objectively how the suit performed under these conditions. Both the procedures to scale the tests to Martian conditions and the results of the infiltration and abrasion studies will be discussed.

  17. Preliminary Testing of a Pressurized Space Suit and Candidate Fabrics Under Simulated Mars Dust Storm and Dust Devil Conditions

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; deLeon, Pablo G.; Lee, Pascal; McCue, Terry R.; Hodgson, Edward W.; Thrasher, Jeff

    2010-01-01

    In August 2009 YAP Films (Toronto) received permission from all entities involved to create a documentary film illustrating what it might be like to be on the surface of Mars in a space suit during a dust storm or in a dust devil. The science consultants on this project utilized this opportunity to collect data which could be helpful to assess the durability of current space suit construction to the Martian environment. The NDX-1 prototype planetary space suit developed at the University of North Dakota was used in this study. The suit features a hard upper torso garment, and a soft lower torso and boots assembly. On top of that, a nylon-cotton outer layer is used to protect the suit from dust. Unmanned tests were carried out in the Martian Surface Wind Tunnel (MARSWIT) at the NASA Ames Research Center, with the suit pressurized to 10 kPa gauge. These tests blasted the space suit upper torso and helmet, and a collection of nine candidate outer layer fabrics, with wind-borne simulant for five different 10 min tests under both terrestrial and Martian surface pressures. The infiltration of the dust through the outer fabric of the space suit was photographically documented. The nine fabric samples were analyzed under light and electron microscopes for abrasion damage. Manned tests were carried out at Showbiz Studios (Van Nuys, California) with the pressure maintained at 20 2 kPa gauge. A large fan-created vortex lifted Martian dust simulant (Fullers Earth or JSC Mars-1) off of the floor, and one of the authors (Lee) wearing the NDX-1 space suit walked through it to judge both subjectively and objectively how the suit performed under these conditions. Both the procedures to scale the tests to Martian conditions and the results of the infiltration and abrasion studies will be discussed.

  18. Lunar and Planetary Science XXXV: Martian Aeolian and Mass Wasting Processes: Blowing and Flowing

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session Martian Aeolian and Mass Wasting Processes: BLowing and Flowing included the following topics: 1) Three Decades of Martian Surface Changes; 2) Thermophysical Properties of Isidis Basin, Mars; 3) Intracrater Material in Eastern Arabia Terra: THEMIS, MOC, and MOLA Analysis of Wind-blown Deposits and Possible High-Inertia Source Material; 4) Thermal Properties of Sand from TES and THEMIS: Do Martian Dunes Make a Good Control for Thermal Inertia Calculations? 5) A Comparative Analysis of Barchan Dunes in the Intra-Crater Dune Fields and the North Polar Sand Sea; 6) Diluvial Dunes in Athabasca Valles, Mars: Morphology, Modeling and Implications; 7) Surface Profiling of Natural Dust Devils; 8) Martian Dust Devil Tracks: Inferred Directions of Movement; 9) Numerical Simulations of Anastomosing Slope Streaks on Mars; 10) Young Fans in an Equatorial Crater in Xanthe Terra, Mars; 11) Large Well-exposed Alluvual Fans in Deep Late-Noachian Craters; 12) New Evidence for the Formation of Large Landslides on Mars; and 13) What Can We Learn from the Ages of Valles Marineris Landslides on Martian Impact History?

  19. Exploration of Characteristics Governing Dynamics of Whirlwinds: Application to Dust Devils

    NASA Astrophysics Data System (ADS)

    Pandey, Sanjay Kumar; Maurya, Jagdish Prasad

    2017-08-01

    It is intended to model mathematically an ideal whirlwind which characterises this geo-physical phenomenon and eventually helps us decode the inherent dynamics. A dense cylindrical aerial mass is taken into consideration surrounding a rarer aerial region in order to keep a radial favourable gradient of pressure to sustain a rotational motion. It has been concluded that the whirlwind will survive as long as the low pressure region exists. The vertical pressure gradient also plays an equally important role. Since it is not connected to any cloud and the axial velocity is in the vertically upward direction, the momentary vertical gradient of pressure is required for its growth and survival. Horizontal ambient winds that rush towards low pressure zone, crush the air in the buffer zone, and turn vertically upward may also take the dust carried with them visibly to some height. It is considered that the angular azimuthal velocity varies within the annulus. An inference is that no whirlwind without a low pressure region within it can survive. This may be termed as the fundamental characteristic of whirlwind. It is further concluded that if the radial pressure difference between the outermost and innermost layers is larger, the whirlwind is thicker and consequently, it will last longer. Moreover, another conclusion arrived at is that the angular velocity will vanish if the inner radius is zero.

  20. Degradation of Organics in a Glow Discharge Under Martian Conditions

    NASA Technical Reports Server (NTRS)

    Hintze, P. E.; Calle, L. M.; Calle, C. I.; Buhler, C. R.; Trigwell, S.; Starnes, J. W.; Schuerger, A. C.

    2006-01-01

    The primary objective of this project is to understand the consequences of glow electrical discharges on the chemistry and biology of Mars. The possibility was raised some time ago that the absence of organic material and carbonaceous matter in the Martian soil samples studied by the VikinG Landers might be due in part to an intrinsic atmospheric mechanism such as glow discharge. The high probability for dust interactions during Martian dust storms and dust devils, combined with the cold, dry climate of Mars most likely results in airborne dust that is highly charged. Such high electrostatic potentials generated during dust storms on Earth are not permitted in the low-pressure CO2 environment on Mars; therefore electrostatic energy released in the form of glow discharges is a highly likely phenomenon. Since glow discharge methods are used for cleaning and sterilizing surfaces throughout industry, the idea that dust in the Martian atmosphere undergoes a cleaning action many times over geologic time scales appears to be a plausible one.

  1. Waiting for Water

    ERIC Educational Resources Information Center

    Lamson-Nussbaum, Jorie

    2013-01-01

    The author waits in the hot and oppressive air while dust devils are born and die over the newly plowed field. It is a dry spring and she prays for rain. The lupine beans withered to dry threads last week and the corn that sprouted in a green haze over the north field is turning to brown paper. However, driving north, the author discovers the Rum…

  2. Origin of Bright Dust Devil Track on Mars

    NASA Astrophysics Data System (ADS)

    Hamada, K.; Kurita, K.; Nishizawa, S.

    2017-09-01

    we performed detailed in- vestigation on DDT in specific regions where BDDT are abundantly observed; in and around Schiaparelli Crater and Amazonis Planitia by using CTX images. We found 1) BDDT are confined to localized regions while DDDT are distributed broadly in these regions, 2) in 10km scale both BDDT and DDDT exhibit dom- inant orientations, 3) existence of banded DDT.

  3. Paradigms for Tropical Cyclone Intensification

    DTIC Science & Technology

    2014-03-01

    a large number of hurricanes using the Global Positioning System dropwindsondes released from National Oceanic and Atmospheric Administration and...energy source for all atmospheric and oceanic motions. 16http://www.comet.ucar.edu 48 Australian Meteorological and Oceanographic Journal 64:1 March...appears to be a feature of other rapidly-rotat- ing atmospheric vortices such as tornadoes, waterspouts and dust devils and is manifest as a type of

  4. The Electrostatic Environments of Mars and the Moon

    NASA Technical Reports Server (NTRS)

    Calle, Carlos I.

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  5. Global Monitoring of Martian Surface Albedo Changes from Orbital Observations

    NASA Astrophysics Data System (ADS)

    Geissler, P.; Enga, M.; Mukherjee, P.

    2013-12-01

    Martian surface changes were first observed from orbit during the Mariner 9 and Viking Orbiter missions. They were found to be caused by eolian processes, produced by deposition of dust during regional and global dust storms and subsequent darkening of the surface through erosion and transportation of dust and sand. The albedo changes accumulated in the 20 years between Viking and Mars Global Surveyor were sufficient to alter the global circulation of winds and the climate of Mars according to model calculations (Fenton et al., Nature 2007), but little was known about the timing or frequency of the changes. Since 1999, we have had the benefit of continuous monitoring by a series of orbiting spacecraft that continues today with Mars Reconnaissance Orbiter, Mars Odyssey, and Mars Express. Daily synoptic observations enable us to determine whether the surface albedo changes are gradual or episodic in nature and to record the seasons that the changes take place. High resolution images of surface morphology and atmospheric phenomena help identify the physical mechanisms responsible for the changes. From these data, we hope to learn the combinations of atmospheric conditions and sediment properties that produce surface changes on Mars and possibly predict when they will take place in the future. Martian surface changes are particularly conspicuous in low albedo terrain, where even a thin layer of bright dust brightens the surface drastically. Equatorial dark areas are repeatedly coated and recoated by dust, which is later shed from the surface by a variety of mechanisms. An example is Syrtis Major, suddenly buried in bright dust by the global dust storm of 2001. Persistent easterly winds blew much of the dust cover away over the course of the next Martian year, but episodic changes continue today, particularly during southern summer when regional dust storms are rife. Another such region is Solis Planum, south of the Valles Marineris, where changes take place relentlessly in all seasons as bright dust and dark sand battle to dominate the landscape. Elsewhere, gradual processes steadily shift albedo boundaries between bright and dark terrain. Dark terrain near the Spirit rover landing site is gradually spreading to the north, driven by seasonal southerly winds. A bright fringe of newly deposited dust appears ahead of the moving boundary, populated by wind streaks and dust avalanches. Dark terrain at higher latitudes gradually creeps towards the equator by the dust cleaning action of dust devils, for example at Nilosytis (43°N, 85°E). Much less obvious is the deposition and erosion of dust on already bright, dust-covered terrain. Changes in the distribution of fresh dust take place frequently in the region surrounding the Tharsis Montes. Dust in this high altitude zone is constantly on the move as faint dark streaks mark the removal of recently deposited dust that is only slightly brighter than the dust already settled on the surface. Dramatic deposition of dust onto dusty terrain took place at much lower elevations in northwestern Amazonis between 2002 and 2005. Since then, the dust has been energetically eroded by towering dust devils that cluster here each summer.

  6. Layers and a Dust Devil in Melas Chasma

    NASA Technical Reports Server (NTRS)

    2000-01-01

    One of the earliest observations made by the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) was that the upper crust of the planet appears to be layered to considerable depth. This was especially apparent, early in the mission, in the walls of the Valles Marineris chasms. However, layered mesas and mounds within the Valles Marineris troughs were recognized all the way back in 1972 with Mariner 9 images. The MOC image presented here shows many tens of layers of several meters (yards) thickness in the walls of a mesa in southern Melas Chasma in Valles Marineris. Erosion by mass wasting--landslides--has exposed these layers and created the dark fan-shaped deposits seen near the middle of the image. The floor of Melas Chasma is dark and covered with many parallel ridges and grooves (lower 1/3 of image). In the lower left corner of the picture, a bright, circular dust devil can be seen casting a columnar shadow toward the left. This image, illuminated by sunlight from the right/lower right, covers an area 3 kilometers (1.9 miles) wide and 8.2 kilometers (5.1 miles) long. The scene is located near 10.1oS, 74.4oW and was acquired on July 11, 1999. North is toward the lower left.

  7. Turbine Design for Energy Extraction from Dust Devils

    NASA Astrophysics Data System (ADS)

    Malaya, Nicholas; Moser, Robert

    2016-11-01

    Columnar vortices ("Dust-Devils") arise naturally in the atmosphere, over a wide range of scales in many different locations across the Earth, as well as on Mars. A new energy harvesting approach makes use of this ubiquitous process by creating and anchoring the vortices artificially and extracting energy from them. However, any analysis of the power that can be extracted is complicated by the presence of considerable vertical and azimuthal flow in the vortex, and so the design considerations are different from those for a classical wind turbine. This talk presents a modeling approach to estimate the upper limit on the power that could be extracted from such a flow. This method is based on the actuator disk model common to turbine design, but with generalized drag polars permitting exploration of a broader design space. This model can be fully coupled to the flow, which ensures the results do not violate any Betz-like considerations that might similarly arise in an analysis of frozen flow fields. The results of this model demonstrate a limit on how much of the energy can be extracted before disrupting the flow so greatly that the vortex cannot be maintained. This work supported by the Department of Energy [ARPA-E] un- der Award Number [DE-FOA-0000670].

  8. 'Everest' Panorama; 20-20 Vision

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] 'Everest' Panorama 20-20 Vision (QTVR)

    [figure removed for brevity, see original site] 'Everest' Panorama Animation

    If a human with perfect vision donned a spacesuit and stepped onto the martian surface, the view would be as clear as this sweeping panorama taken by NASA's Mars Exploration Rover Spirit. That's because the rover's panoramic camera has the equivalent of 20-20 vision. Earthlings can take a virtual tour of the scenery by zooming in on their computer screens many times to get a closer look at, say, a rock outcrop or a sand drift, without losing any detail. This level of clarity is unequaled in the history of Mars exploration.

    It took Spirit three days, sols 620 to 622 (Oct. 1 to Oct. 3, 2005), to acquire all the images combined into this mosaic, called the 'Everest Panorama,' looking outward in every direction from the true summit of 'Husband Hill.' During that period, the sky changed in color and brightness due to atmospheric dust variations, as shown in contrasting sections of this mosaic. Haze occasionally obscured the view of the hills on the distant rim of Gusev Crater 80 kilometers (50 miles) away. As dust devils swooped across the horizon in the upper right portion of the panorama, the robotic explorer changed the filters on the camera from red to green to blue, making the dust devils appear red, green, and blue. In reality, the dust devils are similar in color to the reddish-brown soils of Mars. No attempt was made to 'smooth' the sky in this mosaic, as has been done in other panoramic-camera mosaics to simulate the view one would get by taking in the landscape all at once. The result is a sweeping vista that allows viewers to observe weather changes on Mars.

    The summit of Husband Hill is a broad plateau of rock outcrops and windblown drifts about 100 meters (300 feet) higher than the surrounding plains of Gusev Crater. In the distance, near the center of the mosaic, is the 'South Basin,' the destination for the downhill travel Spirit began after exploring the summit region.

    This panorama spans 360 degrees and consists of images obtained during 81 individual pointings of the panoramic camera. Four filters were used at each pointing. Images through three of the filters, for wavelengths of 750 nanometers, 530 nanometers and 430 nanometers, were combined for this approximately true-color rendering.

  9. Dust Removal Technolgy for a Mars In Situ Resource Utilization System

    NASA Technical Reports Server (NTRS)

    Calle, C. I.; Johansen, M. R.; Williams, B. S.; Hogue, M. D.; Mackey, P. J.; Clements, J. S.

    2011-01-01

    Several In Situ Resource Utilization (lSRU) systems being considered to enable future manned exploration of Mars require capture of Martian atmospheric gas to extract oxygen and other commodities. However, the Martian atmosphere contains relatively large amounts of dust which must be removed in tbe collection systems of the ISRU chambers. The amount of atmospheric dust varies largely with the presence of daily dust devils and the less frequent but much more powerful global dust storms. A common and mature dust removal technology for terrestrial systems is the electrostatic precipitator. With this technology, dust particles being captured are imparted an electrostatic charge by means of a corona discharge. Charged dust particles are then driven to a region of high electric field which forces the particles onto a collector for capture. Several difficulties appear when this technology is adapted to the Martian atmospheric environment At the low atmospheric pressure of Mars, electrical breakdown occurs at much lower voltages than on Earth and corona discharge is difficult to sustain. In this paper, we report on our efforts to obtain a steady corona/glow discharge in a simulated Martian atmosphere of carbon dioxide at 9 millibars of pressure. We also present results on the design of a dust capture system under these atmospheric conditions.

  10. Martian and Asteroid Dusts as Toxicological Risks for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    James, John T.

    2012-01-01

    As the lunar dust toxicity project winds down, our attention is drawn to the potential toxicity of dust present at the surface of more distant celestial objects. Lunar dust has proven to be surprisingly toxic to the respiratory systems of test animals, so one might expect dust from other celestial bodies to hold toxicological surprises for us. At this point all one can do is consider what should be known about these dusts to characterize their toxicity, and then ask to what extent that information is known. In an ideal world it might be possible to suggest an exposure standard based on the known properties of a celestial dust without direct testing of the dust in laboratory animals. Factors known to affect the toxicity of mineral dusts under some conditions include the following: particle size distribution, particle shape/porosity, mineralogical properties (crystalline vs. amorphous), chemical properties and composition, and surface reactivity. Data from a recent Japanese mission to the S-type asteroid Itokawa revealed some surprises about the dust found there, given that there is only a very week gravitational field to hold the dust on the surface. On Mars the reddish-brown dust is widely distributed by global dust storms and by local clusters of dust devils. Past surface probes have revealed some of the properties of dust found there. Contemporary data from Curiosity and other surface probes will be weighed against the data needed to set a defensible safe exposure limit. Gaps will emerge.

  11. Martian dust storms as a possible sink of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Delory, G. T.; Atreya, S. K.

    2006-11-01

    Recent laboratory tests, analog studies and numerical simulations all suggest that Martian dust devils and larger dusty convective storms generate and maintain large-scale electric fields. Such expected E-fields will have the capability to create significant electron drift motion in the collisional gas and to form an extended high energy (u $\\gg$ kT) electron tail in the distribution. We demonstrate herein that these energetic electrons are capable of dissociating any trace CH4 in the ambient atmosphere thereby acting as an atmospheric sink of this important gas. We demonstrate that the methane destruction rate increases by a factor of 1012 as the dust storm E-fields, E, increase from 5 to 25 kV/m, resulting in an apparent decrease in methane stability from ~ 1010 sec to a value of ~1000 seconds. While destruction in dust storms is severe, the overall methane lifetime is expected to decrease only moderately due to recycling of products, heterogeneous effects from localized sinks, etc. We show further evidence that the electrical activity anticipated in Martian dust storms creates a new harsh electro-chemical environment.

  12. Pitted Landforms in Southern Hellas Planitia

    NASA Image and Video Library

    2015-03-25

    This image is of a portion of the Southern plains region within Hellas, the largest impact basin on Mars, with a diameter of about 2300 kilometers 1400 miles, as observed by NASA Mars Reconnaissance Orbiter. There are three main phenomena apparent in this image. First, the faint dark streaks that criss-cross the terrain are dust devil tracks that clear the bright dust along their way. Second, the subtle overall bumpy "basketball" texture of the surface is formed by repeated seasonal freezing and thawing of the ice-rich regolith and is common at higher latitudes. Third, the large, elliptical, scalloped depressions are common in permafrost terrains in both hemispheres, where thick, latitude-dependent sedimentary mantles comprise the surface units. These mantles are composed of ice-rich sediments that degrade as the ice sublimates away and is heated either by the Sun or by locally higher geothermal gradients. Sublimation, or the direct change in phase from ice to gas, occurs on Mars because of its low density atmosphere. These depressions have steeper pole-facing slopes, whereas the equator-facing slopes gently fade into the surrounding terrain. At full resolution (see close up view), numerous sublimation pits and networks of polygonal cracks are visible on the steeper, unstable pole-ward facing slopes. The overall morphology of this terrain is characteristic of what is called "thermokarstic degradation processes," which is a term used to describe the formation of pits in an ice-rich terrain due to loss of ice creating pits and collapse features. http://photojournal.jpl.nasa.gov/catalog/PIA19350

  13. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; McMillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff)variance-0.8 micron), smaller particle size (r(sub mode)-0.02 microns) distribution coupled with a "palagonite-like" composition is argued to fit the complete ultraviolet-to-30-micron absorption properties of the dust better than the montmorillonite-basalt r(sub eff)variance= 0.4 micron, r(sub mode)= 0.40 micron dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971 - 1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emission-phase-function (EPF) observations at 9 microns are analyzed to retrieve 9-micron dust opacities coincident with solar band dust opacities obtained from the same EPF sequences. These EPF dust opacities provide an independent measurement of the visible/9-microns extinction opacity ratio (> or equal to 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-microns opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions and compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micron absorption well. However, it predicts structured, deep absorptions at 20 microns which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8- to 9-micron absorption presented by the dust in the IRIS spectra, probably due to its low SiO2 content (31%). However, it does provide consistent levels of ultraviolet/visible absorption, 9- to 12-micron absorption, and a lack of structured absorption at 20 microns. The ratios of dust extinction opacities at visible, 9 microns, and 30 microns are strongly affected by the dust particle size distribution. The Toon et al. dust size distribution (r(sub mode)= 0.40, r(sub eff)variance= 0.4 microns, r(sub cw mu)= 2.7 microns) predicts the correct ratio of the 9- to 30-micron opacity, but underpredicts the visible/9-micron opacity ratio considerably (1 versus > or equal to 2). A similar particle distribution width with smaller particle sizes (r(sub mode)= 0.17, r(sub eff)variance= 0.4 microns, r(sub cw mu)=1.2 microns) will fit the observed visible/9-micron opacity ratio, but overpredicts the observed 9-micron/30-micron opacity ratio. A smaller and much broader particle size distribution (r(sub mode)= 0.02, r(sub eff)variance= 0.8 microns, r(sub cw mu)= 1.8 microns) can fit both dust opacity ratios. Overall, the nanocrystalline structure of palagonite coupled with a smaller, broader distribution of dust particle sizes provides a more consistent fit than the Toon et al. model of the dust to the IRIS spectra, the observed visible/9-micron dust opacity ratio, the Phobos occultation measurements of dust particle sizes, and the weakness of surface near IR absorptions expected for clay minerals.

  14. A new model for Mars atmospheric dust based upon analysis of ultraviolet through infrared observations from Mariner 9, Viking, and Phobos

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.; Mcmillan, W. W.; Rousch, T.

    1995-01-01

    We propose key modifications to the Toon et al. (1977) model of the particle size distribution and composition of Mars atmospheric dust, based on a variety of spacecraft and wavelength observations of the dust. A much broader (r(sub eff) variance approximately 0.8 micrometers), smaller particle size (r(sub mode) approximately 0.02 micrometers) distribution coupled with a 'palagonite-like' composition is argued to fit the complete ultraviolet-to-30-micrometer absorption properties of the dust better than the montmorillonite-basalt, r(sub eff) variance = 0.4 micrometers, r(sub mode) = 0.40 dust model of Toon et al. Mariner 9 (infrared interferometer spectrometer) IRIS spectra of high atmospheric dust opacities during the 1971-1972 Mars global dust storm are analyzed in terms of the Toon et al. dust model, and a Hawaiian palagonite sample (Rousch et al., 1991) with two different size distribution models incorporating smaller dust particle sizes. Viking Infrared Thermal Mapper (IRTM) emmission-phase-function (EPF) observations at 9 micrometers are analyzed to retrieve 9-micrometer dust opacities coincident with solar band dust opacities obtained from the same EPF sequences (Clancy and Lee, 1991). These EPF dust opacities provide an independent measurement of the visible/9-micrometer extinction opacity ratio (greater than or = 2) for Mars atmospheric dust, which is consistent with a previous measurement by Martin (1986). Model values for the visible/9-micrometer opacity ratio and the ultraviolet and visible single-scattering albedos are calculated for the palagonite model with the smaller particle size distributions compared to the same properties for the Toon et al. model of dust. The montmorillonite model of the dust is found to fit the detailed shape of the dust 9-micrometer absorption well. However, it predicts structured, deep aborptions at 20 micrometers which are not observed and requires a separate ultraviolet-visible absorbing component to match the observed behavior of the dust in this wavelength region. The modeled palagonite does not match the 8-to 9-micrometer absorption presented by the dust in the IRIS spectra, probably due to its low SiO2 content (31%). However, it does provide consistent levels of ultraviolet/visible absorption, 9-to 12-micrometer absorption, and a lack of structured absorption at 20 micrometers. The ratios of dust extinction opacities at visible, 9 micrometers, and 30 micrometers are strongly affected by the dust particle size distribution. The Toon et al. dust size distribution (r(sub mode) = 0.40,r(sub eff) variance = 0.4 micrometers, r(sub cwmu) = 2.7 micrometers) predicts the correct ratio of the 9- to 30-micrometer opacity, but underpredicts the visible/9-micrometer opacity ratio considerably (1 versus greater than or = 2). A similar particle distribution width with smaller particle sizes (r(sub mode) = 0.17, r(sub eff) variance = 0.4 micrometers, r(sub cwmu) = 1.2 micrometers) will fit the observed visible/9-micrometer opacity ratio, but overpredicts the observed 9-micrometer/30-micrometer opacity ratio. A smaller and much broader particle size distribution (r(sub mode) = 0.002, r(sub eff) variance = 0.8 micrometers, r(sub cwmu) = 1.8 micrometers) can fit both dust opacity ratios. Overall, the nanocrystalline structure of palagonite coupled with a smaller, broader distribution of dust particle sizes provides a more consistent fit than the Toon et al. model of the dust to the IRIS spectra, the observed visible/9-micrometer dust opacity ratio, the Phobos occulation measurements of the dust particle sizes (Chassefiere et al., 1992), and the weakness of surface near IR absorptions expected for clay minerals (Clark, 1992; Bell and Crisp, 1993).

  15. Dust Aerosol, Clouds, and the Atmospheric Optical Depth Record over 5 Mars Years of the Mars Exploration Rover Mission

    NASA Technical Reports Server (NTRS)

    Lemmon, Mark T.; Wolff, Michael J.; Bell, James F., III; Smith, Michael D.; Cantor, Bruce A.; Smith, Peter H.

    2014-01-01

    Dust aerosol plays a fundamental role in the behavior and evolution of the Martian atmosphere. The first five Mars years of Mars Exploration Rover data provide an unprecedented record of the dust load at two sites. This record is useful for characterization of the atmosphere at the sites and as ground truth for orbital observations. Atmospheric extinction optical depths have been derived from solar images after calibration and correction for time-varying dust that has accumulated on the camera windows. The record includes local, regional, and globally extensive dust storms. Comparison with contemporaneous thermal infrared data suggests significant variation in the size of the dust aerosols, with a 1 micrometer effective radius during northern summer and a 2 micrometer effective radius at the onset of a dust lifting event. The solar longitude (L (sub s)) 20-136 degrees period is also characterized by the presence of cirriform clouds at the Opportunity site, especially near LS = 50 and 115 degrees. In addition to water ice clouds, a water ice haze may also be present, and carbon dioxide clouds may be present early in the season. Variations in dust opacity are important to the energy balance of each site, and work with seasonal variations in insolation to control dust devil frequency at the Spirit site.

  16. Breaking Trail

    NASA Technical Reports Server (NTRS)

    2006-01-01

    25 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies in the north wall of a crater south of Proctor Crater in Noachis Terra. To form, the gullies might have required liquid water. Dark streaks cutting across the scene were formed by passing dust devils.

    Location near: 51.4oS, 331.4oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  17. Terra Cimmeria - False Color

    NASA Image and Video Library

    2016-10-11

    The THEMIS VIS camera contains 5 filters. The data from different filters can be combined in multiple ways to create a false color image. These false color images may reveal subtle variations of the surface not easily identified in a single band image. Today's false color image shows dust devil tracks (dark blue linear feature) in Terra Cimmeria. Orbit Number: 43463 Latitude: -53.1551 Longitude: 125.069 Instrument: VIS Captured: 2011-10-01 23:55 http://photojournal.jpl.nasa.gov/catalog/PIA21009

  18. Non-Contact Stiffness Measurement of a Suspended Single Walled Carbon Nanotube Device

    NASA Technical Reports Server (NTRS)

    Zheng, Yun; Su, Chanmin; Getty, Stephanie

    2010-01-01

    A new nanoscale electric field sensor was developed for studying triboelectric charging in terrestrial and Martian dust devils. This sensor is capable to measure the large electric fields for large dust devils without saturation. However, to quantify the electric charges and the field strength it is critical to calibrate the mechanical stiffness of the sensor devices. We performed a technical feasibility study of the Nano E-field Sensor stiffness by a non-contact stiffness measurement method. The measurement is based on laser Doppler vibrometer measurement of the thermal noise due to energy flunctuations in the devices. The experiment method provides a novel approach to acquire data that is essential in analyzing the quantitative performance of the E-field Nano Sensor. To carry out the non-contact stiffness measurement, we fabricated a new Single-Walled Carbon Nanotube (SWCNT) E-field sensor with different SWCNTs suspension conditions. The power spectra of the thermal induced displacement in the nano E-field sensor were measured at the accuracy of picometer. The power spectra were then used to derive the mechanical stiffness of the sensors. Effect of suspension conditions on stiffness and sensor sensitivty was discussed. After combined deformation and resistivity measurement, we can compare with our laboratory testing and field testing results. This new non-contact measurement technology can also help to explore to other nano and MEMS devices in the future.

  19. Prototype detector development for measurement of high altitude Martian dust using a future orbiter platform

    NASA Astrophysics Data System (ADS)

    Pabari, Jayesh; Patel, Darshil; Chokhawala, Vimmi; Bogavelly, Anvesh

    2016-07-01

    Dust devils mostly occur during the mid of Southern hemisphere summer on Mars and play a key role in the background dust opacity. Due to continuous bombardment of micrometeorites, secondary ejecta come out from the Moons of the Mars and can easily escape. This phenomenon can contribute dust around the Moons and therefore, also around the Mars. Similar to the Moons of the Earth, the surfaces of the Martian Moons get charged and cause the dust levitation to occur, adding to the possible dust source. Also, interplanetary dust particles may be able to reach the Mars and contribute further. It is hypothesized that the high altitude Martian dust could be in the form of a ring or tori around the Mars. However, no such rings have been detected to the present day. Typically, width and height of the dust torus is ~5 Mars radii wide (~16950 km) in both the planes as reported in the literature. Recently, very high altitude dust at about 1000 km has been found by MAVEN mission and it is expected that the dust may be concentrated at about 150 to 500 km. However, a langmuir probe cannot explain the source of such dust particles. It is a puzzling question to the space scientist how dust has reached to such high altitudes. A dedicated dust instrument on future Mars orbiter may be helpful to address such issues. To study origin, abundance, distribution and seasonal variation of Martian dust, a Mars Orbit Dust Experiment (MODEX) is proposed. In order to measure the Martian dust from a future orbiter, design of a prototype of an impact ionization dust detector has been initiated at PRL. This paper presents developmental aspects of the prototype dust detector and initial results. The further work is underway.

  20. The MAGO experiment for dust environment monitoring on the Martian surface

    NASA Astrophysics Data System (ADS)

    Palumbo, P.; Battaglia, R.; Brucato, J. R.; Colangeli, L.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Mennella, V.; Palomba, E.; Panizza, A.; Rotundi, A.

    2004-01-01

    Among the main directions identified for future Martian exploration, the study of the properties of dust dispersed in the atmosphere, its cycle and the impact on climate are considered of primary relevance. Dust storms, dust devils and the dust ``cycle'' have been identified and studied by past remote and in situ experiments, but little quantitative information is available on these processes, so far. The airborne dust contributes to the determination of the dynamic and thermodynamic evolution of the atmosphere, including the large-scale circulation processes and its impact on the climate of Mars. Moreover, aeolian erosion, redistribution of dust on the surface and weathering processes are mostly known only qualitatively. In order to improve our knowledge of the airborne dust evolution and other atmospheric processes, it is mandatory to measure the amount, mass-size distribution and dynamical properties of solid particles in the Martian atmosphere as a function of time. In this context, there is clearly a need for the implementation of experiments dedicated to study directly atmospheric dust. The Martian atmospheric grain observer (MAGO) experiment is aimed at providing direct quantitative measurements of mass and size distributions of dust particles, a goal that has never been fully achieved so far. The instrument design combines three types of sensors to monitor in situ the dust mass flux (micro balance system, MBS) and single grain properties (grain detection system, GDS+impact sensor, IS). Technical solutions and science capabilities are discussed in this paper.

  1. Global Surface Dust Distribution Changes on Mars (MY24-33)

    NASA Astrophysics Data System (ADS)

    Piqueux, S.; Hayne, P. O.; Kleinboehl, A.; Edwards, C. S.; Elder, C. M.; Heavens, N. G.; Kass, D. M.; McCleese, D. J.; Schofield, J. T.; Shirley, J. H.; Smith, M. D.

    2016-12-01

    Telescopic and spacecraft observations document inter-annual and inter-seasonal changes of the Martian albedo that are interpreted to result from the redistribution of surface dust in response to atmospheric events such as global or regional dust storms, dust devil activity, or seasonal winds. Based on these observations and general circulation modeling, several authors have hypothesized that a necessary condition for global dust storm initiation and growth is the presence of strategically located surface dust reservoirs replenished during inter-storm periods. If this hypothesis is valid, the cyclical accumulation and removal of thermally thick (>50 μm) layers of dust at specific locations ought to produce a distinct temperature signature, since Martian dust exhibits extremely low thermal conductivity and thermal inertia values compared to sand, gravel, rocks, and bedrock. Characterizing dust movement using temperature data presents a major advantage over mapping relying solely on albedo changes: it yields dust layer thicknesses, whose spatial and temporal integration enables the derivation of surface dust fluxes. In this work, we use global (1° per pixel resolution) seasonal (10° Ls resolution, from MY24 to 33) maps of the Martian surface albedo, atmospheric dust opacity, and ground temperature (derived from TES, THEMIS, and MCS observations) to derive apparent variations of the thermal inertia, and thereby characterize surface changes consistent with the deposition or removal of dust. We show that changes in thermal inertia for some regions are consistent with dust accumulation; whereas others seem to lose dust. We compare these maps with published GCM dust lifting predictions, and with observations of past dust storm occurrence, thereby constraining the role of surface dust availability.

  2. Atmospheric results from the Phoenix Mars Mission

    NASA Astrophysics Data System (ADS)

    Smith, Peter

    The Phoenix Mission operated in the northern plains of Mars for 5 months starting May 25, 2008 spanning solar longitudes from 78 to 143 (summer). Throughout this period a diverse set of atmospheric measurements were taken and analyzed. The data sets provide information on the diurnal temperatures at 2 m above the surface, diurnal pressure, wind vectors, cloud properties, dust devils, the boundary layer, and humidity. In addition, coordinated observations were obtained with orbital instruments from Mars Reconnaissance Orbiter, Odyssey, and Mars Express. The measurements have been compared with predictions from Global Climate Models and found to agree in most regards. Taken as a whole this represents a unique description of the summer weather in a heretofore unexplored region of Mars. The Canadian LIDAR experiment gives us the first direct measurement of the boundary layer height. The first 90 sols of the mission were conducted under dusty conditions and the height of the dust layer was determined as 4-5 km above the surface. After 90 sols, the dust dispersed and water ice clouds were seen at ever lower altitudes and the boundary layer dropped to as low as 3 km. Snowfall was observed and frost imaged on the surface. Winds swirled around the lander completing a full circle each sol; typical wind speeds were 5-10 m/s. From near surface humidity measurements, a diurnal cycle sublimates ice and adsorbed water from the surface soil as the Sun heats it forming water ice clouds at the boundary layer. As temperatures cool in the night the water is returned as snow and frost to the soil. Temperatures ranged from -30 C to -90 C, but never exceed the melting point; even though atmospheric pressures are always above the triple point, liquid water is not allowed at this time. The lack of dune forms and the presence of dust devils suggest that wind erosion is a strong force despite the constant dust fall observed on the spacecraft deck. Local dust storms are often seen by the MARCI instrument on Odyssey and the dust optical depth above Phoenix testifies to rapid variations. The microscopic examination of the soil by the MECA instrument reveals two size modes: larger particles rounded by saltation and a clay-sized mode likely transported by atmospheric winds. Even so, the crusted surface and cobbles perched on the surface make it likely that the soil particles have been emplaced for long periods. Atmospheric data sets are still being analyzed and the latest results will be presented at the conference.

  3. Broken Plain

    NASA Technical Reports Server (NTRS)

    2006-01-01

    2 February 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows polygonally patterned ground on the floor of a trough in the southern hemisphere of Mars. The polygons could be an indicator that ground ice is or was present at this location. The dark streaks were formed by passing dust devils.

    Location near: 67.4oS, 240.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  4. JPRS Report, Latin America, Reference Aid, Glossary of Spanish and Portuguese Narcotics Terms.

    DTIC Science & Technology

    1989-05-04

    devils, seconal, barbiturates, amphetamines, LSD a "deal"—to make a connection to obtain drugs (Ar) to deal bread, dough , money "dirty money...drug addict federal police; feds, "G" men PCP; angel dust; phencyclidine bread, dough , money weapon (Ar) a fix, a jab to inject, to shoot up...used to cut heroin); manida, mannite, milk sugar brick (usually a kilogram of hashish or marijuana) bread, dough , money money laundering to

  5. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    NASA Technical Reports Server (NTRS)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  6. Particle sizes and composition of Mars atmospheric dust based upon Viking and Mariner 9 observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.; Gladstone, G. R.

    1993-01-01

    Mars atmospheric dust can play an important role in the thermal structure of the Mars atmosphere during periods of high dust loading. However, the radiative properties of Mars atmospheric dust remain uncertain due to uncertain definitions of the dust composition and size distribution. The analysis by Toon et al., of Mariner 9 IRIS spectra during the 1971-1972 global dust storm indicated a reasonable match between the modeled 9-micron absorption of montmorillinite and the observed 9-micron absorption. Toon et al. also determined that an effective (cross-section weighted) mean radius of 2.5 microns (R(sub mode) = 0.4 microns) provided a consistent fit of montmorillinite to the IRIS dust spectra at 9 microns. Pollack et al. analyzed Viking lander observations of atmospheric extinction and scattering at visible-near IR wavelengths (0.5-1.0 microns), and obtained consistency with the Toon et al. dust size distribution when the effects of nonspherical particle shapes were included. An additional, minor (1 percent) component of visible-ultraviolet absorbing material was required to model the derived visible (0.86) and ultraviolet (0.4-0.6) single-scattering albedos of the dust, since montmorillinite does not absorb sufficiently in this wavelength region. A combined analysis of the Viking IRTM and Mariner 9 observations was conducted to reassess the model of Mars atmospheric ultraviolet-to-infrared measurements of dust absorption and scattering. The optical constants for palagonite are incorporated in a doubling-adding radiative transfer model of the Mars atmosphere to simulate Mariner 9 IRIS spectra as well as the Viking IRTM IR band observations. Visible and ultraviolet single-scattering albedos based on the Hansen and Travis Mie scattering code were also derived. A tentative conclusion is that smaller dust particles (R(sub mode) = 0.15 microns, cross-section weighted mean R = 1.2 microns) composed of palagonite provide a much improved fit to the Mariner 9 IRIS spectra; agreement with the observed ratio of visible-to-infrared extinction opacities; and ultraviolet and visible single-scattering albedos comparable to their observed values.

  7. Numerical Prediction of Dust. Chapter 10

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, J. M.; Basart, S.; Benincasa, F.; Boucher, O.; Brooks, M.; Chen, J. P.; Colarco, P. R.; Gong, S.; Huneeus, N.; hide

    2013-01-01

    Covers the whole breadth of mineral dust research, from a scientific perspective Presents interdisciplinary work including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies Explores the role of dust as a player and recorder of environmental change This volume presents state-of-the-art research about mineral dust, including results from field campaigns, satellite observations, laboratory studies, computer modelling and theoretical studies. Dust research is a new, dynamic and fast-growing area of science and due to its multiple roles in the Earth system, dust has become a fascinating topic for many scientific disciplines. Aspects of dust research covered in this book reach from timescales of minutes (as with dust devils, cloud processes, and radiation) to millennia (as with loess formation and oceanic sediments), making dust both a player and recorder of environmental change. The book is structured in four main parts that explore characteristics of dust, the global dust cycle, impacts of dust on the Earth system, and dust as a climate indicator. The chapters in these parts provide a comprehensive, detailed overview of this highly interdisciplinary subject. The contributions presented here cover dust from source to sink and describe all the processes dust particles undergo while travelling through the atmosphere. Chapters explore how dust is lifted and transported, how it affects radiation, clouds, regional circulations, precipitation and chemical processes in the atmosphere, and how it deteriorates air quality. The book explores how dust is removed from the atmosphere by gravitational settling, turbulence or precipitation, how iron contained in dust fertilizes terrestrial and marine ecosystems, and about the role that dust plays in human health. We learn how dust is observed, simulated using computer models and forecast. The book also details the role of dust deposits for climate reconstructions. Scientific observations and results are presented, along with numerous illustrations. This work has an interdisciplinary appeal and will engage scholars in geology, geography, chemistry, meteorology and physics, amongst others with an interest in the Earth system and environmental change.

  8. Satellite Observations of Desert Dust-induced Himalayan Snow Darkening

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Hsu, N. Christina; Lau, William K.-M.; Yasunari, Teppei J.

    2013-01-01

    The optically thick aerosol layer along the southern edge of the Himalaya has been subject of several recent investigations relating to its radiative impacts on the South Asian summer monsoon and regional climate forcing. Prior to the onset of summer monsoon, mineral dust from southwest Asian deserts is transported over the Himalayan foothills on an annual basis. Episodic dust plumes are also advected over the Himalaya, visible as dust-laden snow surface in satellite imagery, particularly in western Himalaya. We examined spectral surface reflectance retrieved from spaceborne MODIS observations that show characteristic reduction in the visible wavelengths (0.47 nm) over western Himalaya, associated with dust-induced solar absorption. Case studies as well as seasonal variations of reflectance indicate a significant gradient across the visible (0.47 nm) to near-infrared (0.86 nm) spectrum (VIS-NIR), during premonsoon period. Enhanced absorption at shorter visible wavelengths and the resulting VIS-NIR gradient is consistent with model calculations of snow reflectance with dust impurity. While the role of black carbon in snow cannot be ruled out, our satellite-based analysis suggests the observed spectral reflectance gradient dominated by dust-induced solar absorption during premonsoon season. From an observational viewpoint, this study underscores the importance of mineral dust deposition toward darkening of the western Himalayan snow cover, with potential implications to accelerated seasonal snowmelt and regional snow albedo feedbacks.

  9. First records of bentfin devil ray (Mobula thurstoni) and the examination in physical factors of its habitat in the western waters of Morotai Island (North Moluccas)

    NASA Astrophysics Data System (ADS)

    Mukharror, D. A.; Baiti, I. T.; Harahap, S. A.; Prihadi, D. J.; Ichsan, M.; Pridina, N.

    2018-04-01

    Bentfin devil ray (Mobula thurstoni) was recorded for the first time in Morotai waters on 3rd March 2017. In a conservation management context, it is important to clarify the population of Mobula thurstoni and their relations with their habitat. Thus, we examined the existence of Mobula thurstoni with the physical parameters: depth, temperature, visibility, current, weather, and tidal. We measured the existence of Mobula thurstoni with the Underwater Visual Census (UVC) combined with Diver Operated Video (DOV) census. The research from 3rd March to 14th July 2017 (50 dives) showed the Frequency of Occurence (FO) is 50% per single dive. The highest aggregation of 30 Mobula thurstoni was recorded at 14th May 2017 and the average sighting was 3.1 Mobula thurstoni per single dive. Among the examined parameters, it was found that strong factor affecting the sighting of Mobula thurstoni were at the depth of 30-35 m, temperature of 30°C, visibility of 16-20 m, low current (< 1 knot), sunny weather, and tidal category of B. Analysis of UVC and DOV results show that the research location was categorised as feeding location for the Mobula thurstoni.

  10. Global trends in visibility: Implications for dust sources

    USGS Publications Warehouse

    Mahowald, N.M.; Ballantine, J.A.; Feddema, J.; Ramankutty, N.

    2007-01-01

    There is a large uncertainty in the relative roles of human land use, climate change and carbon dioxide fertilization in changing desert dust source strength over the past 100 years, and the overall sign of human impacts on dust is not known. We used visibility data from meteorological stations in dusty regions to assess the anthropogenic impact on long term trends in desert dust emissions. Visibility data are available at thousands of stations globally from 1900 to the present, but we focused on 359 stations with more than 30 years of data in regions where mineral aerosols play a dominant role in visibility observations. We evaluated the 1974 to 2003 time period because most of these stations have reliable records only during this time. We first evaluated the visibility data against AERONET aerosol optical depth data, and found that only in dusty regions are the two moderately correlated. Correlation coefficients between visibility derived variables and AERONET optical depths indicate a moderate correlation (???0.47), consistent with capturing about 20% of the variability in optical depths. Two visibility derived variables appear to compare the best with AERONET observations: the fraction of observations with visibility less than 5 km (VIS5) and the surface extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are statistically significantly correlated with the palmer drought severity index (based on precipitation and temperature) or surface wind speeds, consistent with dust temporal variability being largely driven by meteorology. This is especially true for North African and Chinese dust sources, but less true in the Middle East, Australia or South America, where there are not consistent patterns in the correlations. Climate indices such as El Nino or the North Atlantic Oscillation are not correlated with visibility derived variables in this analysis. There are few stations where visibility measures are correlated with cultivation or grazing estimates on a temporal basis, although this may be a function of the very coarse temporal resolution of the land use datasets. On the other hand, spatial analysis of the visibility data suggests that natural topographic lows are not correlated with visibility, but land use is correlated at a moderate level. This analysis is consistent with land use being important in some regions, but meteorology driving interannual variability during 1974-2003.

  11. Micro-ARES, an electric-field sensor for ExoMars 2016: Electric fields modelling, sensitivity evaluations and end-to-end tests.

    NASA Astrophysics Data System (ADS)

    Déprez, Grégoire; Montmessin, Franck; Witasse, Olivier; Lapauw, Laurent; Vivat, Francis; Abbaki, Sadok; Granier, Philippe; Moirin, David; Trautner, Roland; Hassen-Khodja, Rafik; d'Almeida, Éric; Chardenal, Laurent; Berthelier, Jean-Jacques; Esposito, Francesca; Debei, Stefano; Rafkin, Scott; Barth, Erika

    2014-05-01

    For the past few years, LATMOS has been involved in the development of micro-ARES, an electric field sensor part of the science payload (DREAMS) of the ExoMars 2016 Schiaparelli entry, descent and landing demonstrator. It is dedicated to the very first measurement and characterization of the Martian atmospheric electricity which is suspected to be at the very basis of various phenomenon such as dust lifting, formation of oxidizing agents or Schumann resonances. Although the data collection will be restricted to a few days of operations, these first results will be of importance to understand the Martian dust cycle, the electrical environment and possibly relevant to atmospheric chemistry. The instrument, a compact version of the ARES instrument for the ExoMars Humboldt payload, is composed of an electronic board, with an amplification line and a real-time data processing DSP, which handles the electric signal measured between the spherical electrode (located at the top of a 27-cm high antenna) that adjusts itself to the local atmospheric potential, and the lander chassis, connected to the mechanical ground. Since the electric fields on Mars have never been measured before, we can rely on two sources in order to know their expected order of magnitude. The first one is the measurement of the atmospheric electric fields on Earth, at the surface (in dust storms or the so-called dust-devils) or in the high atmosphere (closer to the Martian temperature and pressure conditions). The second one is the computer simulation of the phenomenon, that we obtained by combining two models. On the one hand, the mesoscale PRAMS model, developed at SwRI, which has the ability to simulate the dust transportation, and on the other hand the implementation made at LATMOS of Farell's 2005 dust-triboelectricity equations. Those models allowed us to simulate electric fields up to tens or even hundreds of kilo-volts per meter inside dust devils, which corresponds to the observations made on Earth and transposed to the Martian atmospheric parameters. Knowing the expected electric fields and simulating them, the next step in order to evaluate the performance of the instrument is to determine its sensitivity by modelling the response of the instrument. The last step is to confront the model of the instrument, and the expected results for a given signal with the effective outputs of the electric board with the same signal as an input. To achieve this end-to-end test, we use a signal generator followed by an electrical circuit reproducing the electrode behaviour in the Martian environment, in order to inject a realistic electric signal in the processing board and finally compare the produced formatted data with the expected ones.

  12. [Research on the measurement of flue-dust concentration in Vis, IR spectral region].

    PubMed

    Sun, Xiao-gang; Tang, Hong; Yuan, Gui-bin

    2008-10-01

    In the measurement of flue-dust concentration based on the transmission method, the dependent model algorithm was used to invert the flue-dust concentration in the visible, infrared and visible-infrared spectral regions respectively. By the analysis and comparison of the accuracy, linearity and sensitivity of the inversion flue-dust concentration, the optimal spectral region was determined. Meanwhile, the influence of the water droplet with different size distribution and volume concentration was simulated, and a method was proposed which has advantages of simplicity, rapidity, and suitability for on line measurement. Simulation experiments illustrate that the flue-dust concentration can be inverted very well in the visible-infrared spectral region, and it is feasible to use the ratio of the constrained light extinction method to overcome the influence of water droplet. The inverse results all remain satisfactory when 2% stochastic noise is added to the value of the light extinction.

  13. Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study

    NASA Astrophysics Data System (ADS)

    Abdi Vishkaee, Farhad; Flamant, Cyrille; Cuesta, Juan; Oolman, Larry; Flamant, Pierre; Khalesifard, Hamid R.

    2012-02-01

    Dynamical processes leading to dust emission over Syria and Iraq, in response to a strong winter Shamal event as well as the subsequent transport of dust over Iraq and northwest Iran, are analyzed on the basis of a case study (22-23 February 2010) using a suite of ground-based and spaceborne remote sensing platforms together with modeling tools. Surface measurements on 22 February show a sharp reduction in horizontal visibility over Iraq occurring shortly after the passage of a cold front (behind which the northwesterly Shamal winds were blowing) and that visibilities could be as low as 1 km on average for 1-2 days in the wake of the front. The impact of the southwesterly Kaus winds blowing ahead (east) of the Shamal winds on dust emission over Iraq is also highlighted. Unlike what is observed over Iraq, low near-surface horizontal visibilities (<1 km) over northwest Iran are observed well after the passage of the cold front on 23 February, generally in the hours following sunrise. Ground-based lidar measurements acquired in Zanjan show that, in the wake of the front, dust from Syria/Iraq was transported in an elevated 1 to 1.5 km thick plume separated from the surface during the night/morning of 23 February. After sunrise, strong turbulence in the developing convective boundary layer led to mixing of the dust into the boundary layer and in turn to a sharp reduction of the horizontal visibility in Zanjan. The timing of the reduction of surface horizontal visibility in other stations over northwest Iran (Tabriz, Qom, and Tehran) is consistent with the downward mixing of dust in the planetary boundary layer just after sunset, as evidenced in Zanjan. This study sheds new light on the processes responsible for dust emission and transport over Iraq and northwest Iran in connection with winter Shamal events. Enhanced knowledge of these processes is key for improving dust forecasts in this region.

  14. Observation of dust emission and transport over Iraq and northwest Iran associated with winter Shamal

    NASA Astrophysics Data System (ADS)

    Flamant, C.; Abdi Vishkaee, F.; Cuesta, J.; Khalesifard, H.; Oolman, L.; Flamant, P.

    2012-04-01

    Dynamical processes leading to dust emission over Syria and Iraq, in response to a strong winter Shamal event as well as the subsequent transport of dust over Iraq and northwest Iran, are analyzed on the basis of a case study (22-23 February 2010) using a suite of ground-based and space-borne remote sensing platforms together with modeling tools. Surface measurements on 22 February show a sharp reduction in horizontal visibility over Iraq occurring shortly after the passage of a cold front (behind which the northwesterly Shamal winds were blowing) and that visibilities could be as low as 1 km on average for one to two days in the wake of the front. The impact of the southwesterly Kaus winds blowing ahead (east) of the Shamal winds on dust emission over Iraq is also highlighted. Unlike what is observed over Iraq, low near-surface horizontal visibilities (less than 1 km) over northwest Iran are observed well after the passage of the cold front on 23 February, generally in the hours following sunrise. Ground-based lidar measurements acquired in Zanjan show that, in the wake of the front, dust from Syria/Iraq was transported in an elevated 1 to 1.5 km thick plume separated from the surface during the night/morning of February. After sunrise, strong turbulence in the developing convective boundary layer led to mixing of the dust into the boundary layer and in turn to a sharp reduction of the horizontal visibility in Zanjan. The timing of the reduction of surface horizontal visibility in other stations over northwest Iran (Tabriz, Qom and Tehran) is consistent with the downward mixing of dust in the PBL just after sunset, as evidenced in Zanjan. This study shades new light on the processes responsible for dust emission and transport over Iraq and northwest Iran in connection with winter Shamal events. Enhanced knowledge of these processes is key for improving dust forecasts in this region.

  15. Rates and causes of accidents for general aviation aircraft operating in a mountainous and high elevation terrain environment.

    PubMed

    Aguiar, Marisa; Stolzer, Alan; Boyd, Douglas D

    2017-10-01

    Flying over mountainous and/or high elevation terrain is challenging due to rapidly changeable visibility, gusty/rotor winds and downdrafts and the necessity of terrain avoidance. Herein, general aviation accident rates and mishap cause/factors were determined (2001-2014) for a geographical region characterized by such terrain. Accidents in single piston engine-powered aircraft for states west of the US continental divide characterized by mountainous terrain and/or high elevation (MEHET) were identified from the NTSB database. MEHET-related-mishaps were defined as satisfying any one, or more, criteria (controlled flight into terrain/obstacles (CFIT), downdrafts, mountain obscuration, wind-shear, gusting winds, whiteout, instrument meteorological conditions; density altitude, dust-devil) cited as factors/causal in the NTSB report. Statistics employed Poisson distribution and contingency tables. Although the MEHET-related accident rate declined (p<0.001) 57% across the study period, the high proportion of fatal accidents showed little (40-43%) diminution (χ 2 =0.935). CFIT and wind gusts/shear were the most frequent accident cause/factor categories. For CFIT accidents, half occurred in degraded visibility with only 9% operating under instrument flight rules (IFR) and the majority (85%) involving non-turbo-charged engine-powered aircraft. For wind-gust/shear-related accidents, 44% occurred with a cross-wind exceeding the maximum demonstrated aircraft component. Accidents which should have been survivable but which nevertheless resulted in a fatal outcome were characterized by poor accessibility (60%) and shoulder harness under-utilization (41%). Despite a declining MEHET-related accident rate, these mishaps still carry an elevated risk of a fatal outcome. Airmen should be encouraged to operate in this environment utilizing turbo-charged-powered airplanes and flying under IFR to assure terrain clearance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modeling Visible/Near-Infrared Photometric Properties of Dustfall on a Known Substrate

    NASA Technical Reports Server (NTRS)

    Sohl-Dickstein, J.; Johnson, J. R.; Grundy, W. M.; Guinness, E.; Graff, T.; Shepard, M. K.; Arvidson, R. E.; Bell, J. F., III; Christensen, P.; Morris, R.

    2005-01-01

    We present a comprehensive visible/near-infrared two-layer radiative transfer modeling study using laboratory spectra of variable dust thicknesses deposited on substrates with known photometric parameters. The masking effects of Martian airfall dust deposition on rocks, soils, and lander/rover components provides the incentive to improve two-layer models [1-3]. It is believed that the model presented will facilitate understanding of the spectral and compositional properties of both the dust layer and substrate material, and allow for better compensation for dust deposition.

  17. Molecular characterization of Cryptosporidium and Giardia from the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Wait, Liana F; Fox, Samantha; Peck, Sarah; Power, Michelle L

    2017-01-01

    The Tasmanian devil (Sarcophilus harrisii) is a carnivorous marsupial found only in the wild in Tasmania, Australia. Tasmanian devils are classified as endangered and are currently threatened by devil facial tumour disease, a lethal transmissible cancer that has decimated the wild population in Tasmania. To prevent extinction of Tasmanian devils, conservation management was implemented in 2003 under the Save the Tasmanian Devil Program. This study aimed to assess if conservation management was altering the interactions between Tasmanian devils and their parasites. Molecular tools were used to investigate the prevalence and diversity of two protozoan parasites, Cryptosporidium and Giardia, in Tasmanian devils. A comparison of parasite prevalence between wild and captive Tasmanian devils showed that both Cryptosporidium and Giardia were significantly more prevalent in wild devils (p < 0.05); Cryptosporidium was identified in 37.9% of wild devils but only 10.7% of captive devils, while Giardia was identified in 24.1% of wild devils but only 0.82% of captive devils. Molecular analysis identified the presence of novel genotypes of both Cryptosporidium and Giardia. The novel Cryptosporidium genotype was 98.1% similar at the 18S rDNA to Cryptosporidium varanii (syn. C. saurophilum) with additional samples identified as C. fayeri, C. muris, and C. galli. Two novel Giardia genotypes, TD genotype 1 and TD genotype 2, were similar to G. duodenalis from dogs (94.4%) and a Giardia assemblage A isolate from humans (86.9%). Giardia duodenalis BIV, a zoonotic genotype of Giardia, was also identified in a single captive Tasmanian devil. These findings suggest that conservation management may be altering host-parasite interactions in the Tasmanian devil, and the presence of G. duodenalis BIV in a captive devil points to possible human-devil parasite transmission.

  18. Molecular characterization of Cryptosporidium and Giardia from the Tasmanian devil (Sarcophilus harrisii)

    PubMed Central

    Fox, Samantha; Peck, Sarah; Power, Michelle L.

    2017-01-01

    The Tasmanian devil (Sarcophilus harrisii) is a carnivorous marsupial found only in the wild in Tasmania, Australia. Tasmanian devils are classified as endangered and are currently threatened by devil facial tumour disease, a lethal transmissible cancer that has decimated the wild population in Tasmania. To prevent extinction of Tasmanian devils, conservation management was implemented in 2003 under the Save the Tasmanian Devil Program. This study aimed to assess if conservation management was altering the interactions between Tasmanian devils and their parasites. Molecular tools were used to investigate the prevalence and diversity of two protozoan parasites, Cryptosporidium and Giardia, in Tasmanian devils. A comparison of parasite prevalence between wild and captive Tasmanian devils showed that both Cryptosporidium and Giardia were significantly more prevalent in wild devils (p < 0.05); Cryptosporidium was identified in 37.9% of wild devils but only 10.7% of captive devils, while Giardia was identified in 24.1% of wild devils but only 0.82% of captive devils. Molecular analysis identified the presence of novel genotypes of both Cryptosporidium and Giardia. The novel Cryptosporidium genotype was 98.1% similar at the 18S rDNA to Cryptosporidium varanii (syn. C. saurophilum) with additional samples identified as C. fayeri, C. muris, and C. galli. Two novel Giardia genotypes, TD genotype 1 and TD genotype 2, were similar to G. duodenalis from dogs (94.4%) and a Giardia assemblage A isolate from humans (86.9%). Giardia duodenalis BIV, a zoonotic genotype of Giardia, was also identified in a single captive Tasmanian devil. These findings suggest that conservation management may be altering host-parasite interactions in the Tasmanian devil, and the presence of G. duodenalis BIV in a captive devil points to possible human-devil parasite transmission. PMID:28423030

  19. Global trends in visibility: Implications for dust sources

    USGS Publications Warehouse

    Mahowald, N.M.; Ballantine, J.A.; Feddema, J.; Ramankutty, N.

    2007-01-01

    There is a large uncertainty in the relative roles of human land use, climate change and carbon dioxide fertilization in changing desert dust source strength over the past 100 years, and the overall sign of human impacts on dust is not known. We used visibility data from meteorological stations in dusty regions to assess the anthropogenic impact on long term trends in desert dust emissions. We did this by looking at time series of visibility derived variables and their correlations with precipitation, drought, winds, land use and grazing. Visibility data are available at thousands of stations globally from 1900 to the present, but we focused on 357 stations with more than 30 years of data in regions where mineral aerosols play a dominant role in visibility observations. We evaluated the 1974 to 2003 time period because most of these stations have reliable records only during this time. We first evaluated the visibility data against AERONET aerosol optical depth data, and found that only in dusty regions are the two moderately correlated. Correlation coefficients between visibility-derived variables and AERONET optical depths indicate a moderate correlation (0.47), consistent with capturing about 20% of the variability in optical depths. Two visibility-derived variables appear to compare the best with AERONET observations: the fraction of observations with visibility less than 5 km (VIS5) and the surface extinction (EXT). Regional trends show that in many dusty places, VIS5 and EXT are statistically significantly correlated with the Palmer drought severity index (based on precipitation and temperature) or surface wind speeds, consistent with dust temporal variability being largely driven by meteorology. This is especially true for North African and Chinese dust sources, but less true in the Middle East, Australia or South America, where there are not consistent patterns in the correlations. Climate indices such as El Nino or the North Atlantic Oscillation are not correlated with visibility-derived variables in this analysis. There are few stations where visibility measures are correlated with cultivation or grazing estimates on a temporal basis, although this may be a function of the very coarse temporal resolution of the land use datasets. On the other hand, spatial analysis of the visibility data suggests that natural topographic lows are not correlated with VIS5 or EXT, but land use is correlated at a moderate level. This analysis is consistent with land use being important in some regions, but meteorology driving interannual variability during 1974-2003.

  20. Aeolian Erosion on Mars - a New Threshold for Saltation

    NASA Astrophysics Data System (ADS)

    Teiser, J.; Musiolik, G.; Kruss, M.; Demirci, T.; Schrinski, B.; Daerden, F.; Smith, M. D.; Neary, L.; Wurm, G.

    2017-12-01

    The Martian atmosphere shows a large variety of dust activity, ranging from local dust devils to global dust storms. Also, sand motion has been observed in form of moving dunes. The dust entrainment into the Martian atmosphere is not well understood due to the small atmospheric pressure of only a few mbar. Laboratory experiments on Earth and numerical models were developed to understand these processes leading to dust lifting and saltation. Experiments so far suggested that large wind velocities are needed to reach the threshold shear velocity and to entrain dust into the atmosphere. In global circulation models this threshold shear velocity is typically reduced artificially to reproduce the observed dust activity. Although preceding experiments were designed to simulate Martian conditions, no experiment so far could scale all parameters to Martian conditions, as either the atmospheric or the gravitational conditions were not scaled. In this work, a first experimental study of saltation under Martian conditions is presented. Martian gravity is reached by a centrifuge on a parabolic flight, while pressure (6 mbar) and atmospheric composition (95% CO2, 5% air) are adjusted to Martian levels. A sample of JSC 1A (grain sizes from 10 - 100 µm) was used to simulate Martian regolith. The experiments showed that the reduced gravity (0.38 g) not only affects the weight of the dust particles, but also influences the packing density within the soil and therefore also the cohesive forces. The measured threshold shear velocity of 0.82 m/s is significantly lower than the measured value for 1 g in ground experiments (1.01 m/s). Feeding the measured value into a Global Circulation Model showed that no artificial reduction of the threshold shear velocity might be needed to reproduce the global dust distribution in the Martian atmosphere.

  1. Mars Climate Continues to Fascinate

    NASA Technical Reports Server (NTRS)

    2005-01-01

    After Opportunity ground a hole in the rock called 'Ice Cream' and conducted various scientific experiments, it took this final microscopic image of the hole before driving away. When the image arrived at Earth, scientist discovered that the hole had been filled with dust. Apparently, a blast of wind had picked up some of the tailings produced by the grinding of the rover's rock abrasion tool and swept them back into the hole. In recent months, both rovers have experienced the effects of wind. The Spirit rover on the other side of Mars has tracked the progress of numerous dust devils moving across the plains.

    Opportunity took this mosaic of images on martian day, or sol, 549 (Aug. 9, 2005). The area shown is approximately 6 centimeters (2.4 inches) wide. The darker portions in the upper left corner of each quadrangle in the mosaic are shadows cast by the rover's robotic arm.

  2. Imaging the asymmetric dust shell around CI Cam with long baseline optical interferometry

    NASA Astrophysics Data System (ADS)

    Thureau, N. D.; Monnier, J. D.; Traub, W. A.; Millan-Gabet, R.; Pedretti, E.; Berger, J.-P.; Garcia, M. R.; Schloerb, F. P.; Tannirkulam, A.-K.

    2009-09-01

    We present the first high angular resolution observation of the B[e] star/X-ray transient object CI Cam, performed with the two-telescope Infrared Optical Telescope Array (IOTA), its upgraded three-telescope version (IOTA3T) and the Palomar Testbed Interferometer (PTI). Visibilities and closure phases were obtained using the IONIC-3 integrated optics beam combiner. CI Cam was observed in the near-infrared H and K spectral bands, wavelengths well suited to measure the size and study the geometry of the hot dust surrounding CI Cam. The analysis of the visibility data over an 8yr period from soon after the 1998 outburst to 2006 shows that the dust visibility has not changed over the years. The visibility data show that CI Cam is elongated which confirms the disc-shape of the circumstellar environment and totally rules out the hypothesis of a spherical dust shell. Closure phase measurements show direct evidence of asymmetries in the circumstellar environment of CI Cam and we conclude that the dust surrounding CI Cam lies in an inhomogeneous disc seen at an angle. The near-infrared dust emission appears as an elliptical skewed Gaussian ring with a major axis a = 7.58 +/- 0.24mas, an axis ratio r = 0.39 +/- 0.03 and a position angle θ = 35° +/- 2°.

  3. The source of groundwater and solutes to Many Devils Wash at a former uranium mill site in Shiprock, New Mexico

    USGS Publications Warehouse

    Robertson, Andrew J.; Ranalli, Anthony J.; Austin, Stephen A.; Lawlis, Bryan R.

    2016-04-21

    The Shiprock Disposal Site is the location of the former Navajo Mill (Mill), a uranium ore-processing facility, located on a terrace overlooking the San Juan River in the town of Shiprock, New Mexico. Following the closure of the Mill, all tailings and associated materials were encapsulated in a disposal cell built on top of the former Mill and tailings piles. The milling operations, conducted at the site from 1954 to 1968, created radioactive tailings and process-related wastes that are now found in the groundwater. Elevated concentrations of constituents of concern—ammonium, manganese, nitrate, selenium, strontium, sulfate, and uranium—have also been measured in groundwater seeps in the nearby Many Devils Wash arroyo, leading to the inference that these constituents originated from the Mill. These constituents have also been reported in groundwater that is associated with Mancos Shale, the bedrock that underlies the site. The objective of this report is to increase understanding of the source of water and solutes to the groundwater beneath Many Devils Wash and to establish the background concentrations for groundwater that is in contact with the Mancos Shale at the site. This report presents evidence on three working hypotheses: (1) the water and solutes in Many Devils Wash originated from the operations at the former Mill, (2) groundwater in deep aquifers is upwelling under artesian pressure to recharge the shallow groundwater beneath Many Devils Wash, and (3) the groundwater beneath Many Devils Wash originates as precipitation that infiltrates into the shallow aquifer system and discharges to Many Devils Wash in a series of springs on the east side of the wash. The solute concentrations in the shallow groundwater of Many Devils Wash would result from the interaction of the water and the Mancos Shale if the source of water was upwelling from deep aquifers or precipitation.In order to compare the groundwater from various wells to groundwater that has been affected by Mill activities, a classification system was developed to determine which wells were most likely to have been affected. Affects to groundwater by the Mill were determined by using the reported uranium alpha activity ratios measured in groundwater samples, along with the concentration of the uranium and the location of the wells relative to the Mill. Activity ratios of 1.2 or less were determined to be the most reliable indicator of Mill-affected groundwater. Wells with samples that had a reported activity ratio of 1.2 or less were classified as Mill affected. To compare groundwater with background water-quality, data from groundwater seeps and springs in the Upper Eagle Nest Arroyo and Salt Creek Wash, located north of the San Juan River, are also presented and analyzed.Based on groundwater elevations and tritium concentrations measured in wells located between the disposal cell and Many Devils Wash, Mill water is not likely to reach Many Devils Wash. The tritium concentrations also indicate that groundwater from the Mill has not substantially affected Many Devils Wash in the past. Upwelling from deep aquifers was also determined to be an unlikely source, primarily by comparing the composition of the stable isotopes of water in the shallow groundwater with those reported in groundwater samples from the deeper aquifers. The stable-isotope compositions of the shallow groundwater around the site are enriched relative to the San Juan River and local meteoric lines, which suggests that most of the shallow groundwater has been influenced by evaporation and therefore was recharged at the surface. Several observations indicate that focused recharge is the likely source of groundwater in the area of Many Devils Wash. The visible erosional features in Many Devils Wash provide evidence of piping and groundwater sapping, and the distribution and type of vegetation in Many Devils Wash suggest that the focused recharge of precipitation is occurring. The estimated recharge from precipitation was calculated to be 0.0008 inches per year (in/yr) by using the mass-balance approach from reported seep discharge and 0.0011 in/yr using the chloride mass-balance approach.A conceptual model of groundwater quality beneath Many Devils Wash is presented to explain the source of solutes in the groundwater beneath Many Devils Wash. The major-ion concentrations and geochemical evolution in the groundwater beneath Many Devils Wash and across the study area support the conceptual model that the underlying Mancos Shale is the source of solutes. Differences in the major-ion composition between groundwater samples collected around the site, result from the degree of weathering to the Mancos Shale. The cation distribution appears to be an indicator of effects from the Mill, with samples from the Mill-affected wells largely having a calcium/magnesium-sulfate composition that resembles the reported compositions of more weathered shale; however, that composition could change if the Mill-processed water flowed into areas where the Mancos Shale was less weathered. On the basis of the widespread presence of uranium in the Mancos Shale and the distribution of aqueous uranium in the analog sites and other sites in the region, it appears likely that uranium in the groundwater of Many Devils Wash is naturally sourced from the Mancos Shale.

  4. Combing Visible and Infrared Spectral Tests for Dust Identification

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Levy, Robert; Kleidman, Richard; Remer, Lorraine; Mattoo, Shana

    2016-01-01

    The MODIS Dark Target aerosol algorithm over Ocean (DT-O) uses spectral reflectance in the visible, near-IR and SWIR wavelengths to determine aerosol optical depth (AOD) and Angstrom Exponent (AE). Even though DT-O does have "dust-like" models to choose from, dust is not identified a priori before inversion. The "dust-like" models are not true "dust models" as they are spherical and do not have enough absorption at short wavelengths, so retrieved AOD and AE for dusty regions tends to be biased. The inference of "dust" is based on postprocessing criteria for AOD and AE by users. Dust aerosol has known spectral signatures in the near-UV (Deep blue), visible, and thermal infrared (TIR) wavelength regions. Multiple dust detection algorithms have been developed over the years with varying detection capabilities. Here, we test a few of these dust detection algorithms, to determine whether they can be useful to help inform the choices made by the DT-O algorithm. We evaluate the following methods: The multichannel imager (MCI) algorithm uses spectral threshold tests in (0.47, 0.64, 0.86, 1.38, 2.26, 3.9, 11.0, 12.0 micrometer) channels and spatial uniformity test [Zhao et al., 2010]. The NOAA dust aerosol index (DAI) uses spectral contrast in the blue channels (412nm and 440nm) [Ciren and Kundragunta, 2014]. The MCI is already included as tests within the "Wisconsin" (MOD35) Cloud mask algorithm.

  5. Side-by-Side

    NASA Technical Reports Server (NTRS)

    2006-01-01

    18 May 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows neighboring networks of gullies in the northwest wall of a south middle-latitude crater west of Hellas Planitia. The faint crisscrossing streaks, also observed on the wall of the crater, are evidence of passing dust devils, a common phenomenon in this region. The gullies might have formed by erosion caused by running water, mixed with debris.

    Location near: 16.4oN, 92.6oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  6. The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in ‘devil's gardens’ is increased herbivory on Duroia hirsuta trees

    PubMed Central

    Frederickson, Megan E; Gordon, Deborah M

    2007-01-01

    ‘Devil's gardens’ are nearly pure stands of the myrmecophyte, Duroia hirsuta, that occur in Amazonian rainforests. Devil's gardens are created by Myrmelachista schumanni ants, which nest in D. hirsuta trees and kill other plants using formic acid as an herbicide. Here, we show that this ant–plant mutualism has an associated cost; by making devil's gardens, M. schumanni increases herbivory on D. hirsuta. We measured standing leaf herbivory on D. hirsuta trees and found that they sustain higher herbivory inside than outside devil's gardens. We also measured the rate of herbivory on nursery-grown D. hirsuta saplings planted inside and outside devil's gardens in ant-exclusion and control treatments. We found that when we excluded ants, herbivory on D. hirsuta was higher inside than outside devil's gardens. These results suggest that devil's gardens are a concentrated resource for herbivores. Myrmelachista schumanni workers defend D. hirsuta against herbivores, but do not fully counterbalance the high herbivore pressure in devil's gardens. We suggest that high herbivory may limit the spread of devil's gardens, possibly explaining why devil's gardens do not overrun Amazonian rainforests. PMID:17301016

  7. The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in 'devil's gardens' is increased herbivory on Duroia hirsuta trees.

    PubMed

    Frederickson, Megan E; Gordon, Deborah M

    2007-04-22

    'Devil's gardens' are nearly pure stands of the myrmecophyte, Duroia hirsuta, that occur in Amazonian rainforests. Devil's gardens are created by Myrmelachista schumanni ants, which nest in D. hirsuta trees and kill other plants using formic acid as an herbicide. Here, we show that this ant-plant mutualism has an associated cost; by making devil's gardens, M. schumanni increases herbivory on D. hirsuta. We measured standing leaf herbivory on D. hirsuta trees and found that they sustain higher herbivory inside than outside devil's gardens. We also measured the rate of herbivory on nursery-grown D. hirsuta saplings planted inside and outside devil's gardens in ant-exclusion and control treatments. We found that when we excluded ants, herbivory on D. hirsuta was higher inside than outside devil's gardens. These results suggest that devil's gardens are a concentrated resource for herbivores. Myrmelachista schumanni workers defend D. hirsuta against herbivores, but do not fully counterbalance the high herbivore pressure in devil's gardens. We suggest that high herbivory may limit the spread of devil's gardens, possibly explaining why devil's gardens do not overrun Amazonian rainforests.

  8. Development of an Electrostatic Precipitator to Remove Martian Atmospheric Dust from ISRU Gas Intakes During Planetary Exploration Missions

    NASA Technical Reports Server (NTRS)

    Clements, J. Sidney; Thompson, Samuel M.; Cox, Nathan D.; Johansen, Michael R.; Williams, Blakeley S.; Hogue, Michael D.; Lowder, M. Loraine; Calle, Carlos I.

    2011-01-01

    Manned exploration missions to Mars will need dependable in situ resource utilization (ISRU) for the production of oxygen and other commodities. One of these resources is the Martian atmosphere itself, which is composed of carbon dioxide (95.3%), nitrogen (2.7%), argon (1.6%), oxygen (0.13%), carbon monoxide (0.07%), and water vapor (0.03%), as well as other trace gases. However, the Martian atmosphere also contains relatively large amounts of dust, uploaded by frequent dust devils and high Winds. To make this gas usable for oxygen extraction in specialized chambers requires the removal of most of the dust. An electrostatic precipitator (ESP) system is an obvious choice. But with an atmospheric pressure just one-hundredth of Earth's, electrical breakdown at low voltages makes the implementation of the electrostatic precipitator technology very challenging. Ion mobility, drag forces, dust particle charging, and migration velocity are also affected because the low gas pressure results in molecular mean free paths that are approximately one hundred times longer than those at Earth .atmospheric pressure. We report here on our efforts to develop this technology at the Kennedy Space Center, using gases with approximately the same composition as the Martian atmosphere in a vacuum chamber at 9 mbars, the atmospheric pressure on Mars. We also present I-V curves and large particle charging data for various versions of wire-cylinder and rod-cylinder geometry ESPs. Preliminary results suggest that use of an ESP for dust collection on Mars may be feasible, but further testing with Martian dust simulant is required.

  9. Improved Dust Forecast Products for Southwest Asia Forecasters through Dust Source Database Advancements

    NASA Astrophysics Data System (ADS)

    Brooks, G. R.

    2011-12-01

    Dust storm forecasting is a critical part of military theater operations in Afghanistan and Iraq as well as other strategic areas of the globe. The Air Force Weather Agency (AFWA) has been using the Dust Transport Application (DTA) as a forecasting tool since 2001. Initially developed by The Johns Hopkins University Applied Physics Laboratory (JHUAPL), output products include dust concentration and reduction of visibility due to dust. The performance of the products depends on several factors including the underlying dust source database, treatment of soil moisture, parameterization of dust processes, and validity of the input atmospheric model data. Over many years of analysis, seasonal dust forecast biases of the DTA have been observed and documented. As these products are unique and indispensible for U.S. and NATO forces, amendments were required to provide the best forecasts possible. One of the quickest ways to scientifically address the dust concentration biases noted over time was to analyze the weaknesses in, and adjust the dust source database. Dust source database strengths and weaknesses, the satellite analysis and adjustment process, and tests which confirmed the resulting improvements in the final dust concentration and visibility products will be shown.

  10. Construction dust amelioration techniques.

    DOT National Transportation Integrated Search

    2012-04-01

    Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...

  11. The Infrared Hunter

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2

    This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud, an industrious star-making region located near the hunter constellation's sword. The infrared picture is from NASA's Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Ariz.

    In addition to Orion, two other nebulas can be seen in both pictures. The Orion nebula, or M42, is the largest and takes up the lower half of the images; the small nebula to the upper left of Orion is called M43; and the medium-sized nebula at the top is NGC 1977. Each nebula is marked by a ring of dust that stands out in the infrared view. These rings make up the walls of cavities that are being excavated by radiation and winds from massive stars. The visible view of the nebulas shows gas heated by ultraviolet radiation from the massive stars.

    Above the Orion nebula, where the massive stars have not yet ejected much of the obscuring dust, the visible image appears dark with only a faint glow. In contrast, the infrared view penetrates the dark lanes of dust, revealing bright swirling clouds and numerous developing stars that have shot out jets of gas (green). This is because infrared light can travel through dust, whereas visible light is stopped short by it.

    The infrared image shows light captured by Spitzer's infrared array camera. Light with wavelengths of 8 and 5.8 microns (red and orange) comes mainly from dust that has been heated by starlight. Light of 4.5 microns (green) shows hot gas and dust; and light of 3.6 microns (blue) is from starlight.

  12. In Situ Atmospheric Pressure Measurements in the Martian Southern Polar Region: Mars Volatiles and Climate Surveyor Meteorology Package on the Mars Polar Lander

    NASA Technical Reports Server (NTRS)

    Harri, A.-M.; Polkko, J.; Siili, T.; Crisp, D.

    1998-01-01

    Pressure observations are crucial for the success of the Mars Volatiles and Climate Surveyor (MVACS) Meteorology (MET) package onboard the Mars Polar Lander (MPL), due for launch early next year. The spacecraft is expected to land in December 1999 (L(sub s) = 256 degrees) at a high southern latitude (74 degrees - 78 degrees S). The nominal period of operation is 90 sols but may last up to 210 sols. The MVACS/MET experiment will provide the first in situ observations of atmospheric pressure, temperature, wind, and humidity in the southern hemisphere of Mars and in the polar regions. The martian atmosphere goes through a large-scale atmospheric pressure cycle due to the annual condensation/sublimation of the atmospheric CO2. Pressure also exhibits short period variations associated with dust storms, tides, and other atmospheric events. A series of pressure measurements can hence provide us with information on the large-scale state and dynamics of the atmosphere, including the CO2 and dust cycles as well as local weather phenomena. The measurements can also shed light on the shorter time scale phenomena (e.g., passage of dust devils) and hence be important in contributing to our understanding of mixing and transport of heat, dust, and water vapor.

  13. General Circulation Model Simulations of the Annual Cycle of Martian Climate

    NASA Astrophysics Data System (ADS)

    Wilson, R.; Richardson, M.; Rodin, A.

    Observations of the martian atmosphere have revealed a strong annual modulation of global mean atmospheric temperature that has been attributed to the pronounced seasonal asymmetry in solar radiation and the highly variable distribution of aerosol. These observations indicate little interannual variability during the relatively cool aphelion season and considerable variability in the perihelion season that is associated with the episodic occurrence of regional and major dust storms. The atmospheric circulation responds to the evolving spatial distribution of aerosol-induced heating and, in turn, plays a major role in determining the sources, sinks, and transport of radiatively active aerosol. We will present simulations employing the GFDL Mars General Circulation Model (MGCM) that show that aspects of the seasonally evolving climate may be simulated in a self-consistent manner using simple dust source parameterizations that represent the effects of lifting associated with local dust storms, dust devil activity, and other processes. Aerosol transport is accomplished, in large part, by elements of the large-scale circulation such as the Hadley circulation, baroclinic storms, tides, etc. A seasonal cycle of atmospheric opacity and temperature results from the variation in the strength and distribution of dust sources as well as from seasonal variations in the efficiency of atmospheric transport associated with changes in the circulation between solstice and equinox, and between perihelion and aphelion. We examine the efficiency of atmospheric transport of dust lifted along the perimeter of the polar caps to gauge the influence of these storms on the global circulation. We also consider the influence of water, as the formation of water ice clouds on dust nuclei may also affect the vertical distribution of dust and strongly influence the aerosol radiative properties.

  14. Construction dust amelioration techniques : [executive summary].

    DOT National Transportation Integrated Search

    2012-04-01

    Dust produced on seasonal road construction sites in Alaska is both a traffic safety and environmental concern. Dust emanating from : unpaved road surfaces during construction severely reduces visibility and impacts stopping sight distance, and contr...

  15. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  16. Long-term variability of dust events in Iceland (1949-2011)

    NASA Astrophysics Data System (ADS)

    Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.

    2014-06-01

    Long-term frequency of atmospheric dust observations was investigated for the southern part of Iceland and merged with results obtained from the Northeast Iceland (Dagsson-Waldhauserova et al., 2013). In total, over 34 dust days per year on average occurred in Iceland based on conventionally used synoptic codes for dust. Including codes 04-06 into the criteria for dust observations, the frequency was 135 dust days annually. The Sea Level Pressure (SLP) oscillation controlled whether dust events occurred in NE (16.4 dust days annually) or in southern part of Iceland (about 18 dust days annually). The most dust-frequent decade in S Iceland was the 1960s while the most frequent decade in NE Iceland was the 2000s. A total of 32 severe dust storms (visibility < 500 m) was observed in Iceland with the highest frequency during the 2000s in S Iceland. The Arctic dust events (NE Iceland) were typically warm and during summer/autumn (May-September) while the Sub-Arctic dust events (S Iceland) were mainly cold and during winter/spring (March-May). About half of dust events in S Iceland occurred in winter or at sub-zero temperatures. A good correlation was found between PM10 concentrations and visibility during dust observations at the stations Vik and Storhofdi. This study shows that Iceland is among the dustiest areas of the world and dust is emitted the year-round.

  17. Impact of Asian Dust on Global Surface Air Quality and Radiation Budget

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Ginoux, Paul

    2006-01-01

    Dust originating from Asian deserts and desertification areas can be transported regionally and globally to affect surface air quality, visibility, and radiation budget not only at immediate downwind locations (e.g., eastern Asia) but also regions far away from the sources (e.g., North America). Deposition of Asian dust to the North Pacific Ocean basin influences the ocean productivity. In this study, we will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, remote sensing data form satellite and from the ground-based network, and in-situ data from aircraft and surface observations to address the following questions: - What are the effects of Asian dust on the surface air quality and visibility over Asia and North America? - What are the seasonal and spatial variations of dust deposition to the North Pacific Ocean? How does the Asian dust affect surface radiation budget?

  18. Immunoglubolin dynamics and cancer prevalence in Tasmanian devils (Sarcophilus harrisii)

    PubMed Central

    Ujvari, Beata; Hamede, Rodrigo; Peck, Sarah; Pemberton, David; Jones, Menna; Belov, Katherine; Madsen, Thomas

    2016-01-01

    Immunoglobulins such as IgG and IgM have been shown to induce anti-tumour cytotoxic activity. In the present study we therefore explore total serum IgG and IgM expression dynamics in 23 known-aged Tasmanian devils (Sarcophilus harrisii) of which 9 where affected by Devil Facial Tumour Disease (DFTD). DFTD is clonally transmissible cancer that has caused massive declines in devil numbers. Our analyses revealed that IgM and IgG expression levels as well as IgM/IgG ratios decreased with increasing devil age. Neither age, sex, IgM nor IgG expression levels affected devil DFTD status in our analyses. However, devils with increased IgM relative to IgG expression levels had significantly lower DFTD prevalence. Our results therefore suggest that IgM/IgG ratios may play an important role in determining devil susceptibility to DFTD. We consequently propose that our findings warrant further studies to elucidate the underpinning(s) of devil IgM/IgG ratios and DFTD status. PMID:27126067

  19. A compact led lidar system fitted for a mars rover - design and ground experiment

    NASA Astrophysics Data System (ADS)

    Ong, Prane Mariel B.; Shiina, Tatsuo; Manago, Naohiro; Kuze, Hiroaki; Senshu, Hiroki; Otobe, Naohito; Hashimoto, George; Kawabata, Yasuhiro

    2018-04-01

    A compact LED lidar was constructed and fieldtested with the aim to observe the Mars' dust devils. To be able to fit it on the Mars rover, a specialized Cassegrain telescope was designed to be within a 10 cm-cube, with a field of view of 3mrad. The transmitter has 385 nm LED light source with 3 cmϕ opening, 70mrad divergence, 0.75W (7.5nJ/10ns) pulse power, and 500 kHz repetition frequency. The configuration of the optical system is biaxial to easily configure the overlap between their optical axes.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renno, Nilton O.; Ruf, Christopher S., E-mail: renno@alum.mit.edu

    Ruf et al. used the Deep Space Network (DSN) to search for the emission of non-thermal radiation by martian dust storms, theoretically predicted by Renno et al. They detected the emission of non-thermal radiation that they were searching for, but were surprised that it contained spectral peaks suggesting modulation at various frequencies and their harmonics. Ruf et al. hypothesized that the emission of non-thermal radiation was caused by electric discharges in a deep convective dust storm, modulated by Schumann resonances (SRs). Anderson et al. used the Allen Telescope Array (ATA) to search for similar emissions. They stated that they foundmore » only radio frequency interference (RFI) during their search for non-thermal emission by martian dust storms and implicitly suggested that the signal detected by Ruf et al. was also RFI. However, their search was not conducted during the dust storm season when deep convective storms are most likely to occur. Here, we show that the ubiquitous dust devils and small-scale dust storms that were instead likely present during their observations are too shallow to excite SRs and produce the signals detected by Ruf et al. We also show that the spectral and temporal behavior of the signals detected by Anderson et al. corroborates the idea that they originated from man-made pulse-modulated telecommunication signals rather than martian electric discharges. In contrast, an identical presentation of the signals detected by Ruf et al. demonstrates that they do not resemble man-made signals. The presentation indicates that the DSN signals were consistent with modulation by martian SRs, as originally hypothesized by Ruf et al. We propose that a more comprehensive search for electrostatic discharges be conducted with either the ATA or DSN during a future martian dust storm season to test the hypothesis proposed by Ruf et al.« less

  1. Sahara Dust

    Atmospheric Science Data Center

    2013-04-15

    article title:  Casting Light and Shadows on a Saharan Dust Storm     ... ocean and dust layer, which are visible in shades of blue and tan, respectively. In the lower panel, heights derived from automated ... cast by the cirrus clouds onto the dust (indicated by blue and cyan pixels) provide sufficient spatial contrast for a retrieval of ...

  2. ERBB3: A potential serum biomarker for early detection and therapeutic target for devil facial tumour 1 (DFT1)

    PubMed Central

    Kunde, Dale A.; Taylor, Robyn L.; Pyecroft, Stephen B.; Sohal, Sukhwinder Singh; Snow, Elizabeth T.

    2017-01-01

    Devil Facial Tumour 1 (DFT1) is one of two transmissible neoplasms of Tasmanian devils (Sarcophilus harrisii) predominantly affecting their facial regions. DFT1’s cellular origin is that of Schwann cell lineage where lesions are evident macroscopically late in the disease. Conversely, the pre-clinical timeframe from cellular transmission to appearance of DFT1 remains uncertain demonstrating the importance of an effective pre-clinical biomarker. We show that ERBB3, a marker expressed normally by the developing neural crest and Schwann cells, is immunohistohemically expressed by DFT1, therefore the potential of ERBB3 as a biomarker was explored. Under the hypothesis that serum ERBB3 levels may increase as DFT1 invades local and distant tissues our pilot study determined serum ERBB3 levels in normal Tasmanian devils and Tasmanian devils with DFT1. Compared to the baseline serum ERBB3 levels in unaffected Tasmanian devils, Tasmanian devils with DFT1 showed significant elevation of serum ERBB3 levels. Interestingly Tasmanian devils with cutaneous lymphoma (CL) also showed elevation of serum ERBB3 levels when compared to the baseline serum levels of Tasmanian devils without DFT1. Thus, elevated serum ERBB3 levels in otherwise healthy looking devils could predict possible DFT1 or CL in captive or wild devil populations and would have implications on the management, welfare and survival of Tasmanian devils. ERBB3 is also a therapeutic target and therefore the potential exists to consider modes of administration that may eradicate DFT1 from the wild. PMID:28591206

  3. The effect of dust lifting process on the electrical properties of the atmosphere

    NASA Astrophysics Data System (ADS)

    Esposito, Francesca; Molinaro, Roberto; Ionut Popa, Ciprian; Molfese, Cesare; Cozzolino, Fabio; Marty, Laurent; Taj-Eddine, Kamal; Di Achille, Gaetano; Silvestro, Simone; Ori, Gian Gabriele

    2015-04-01

    Airborne dust and aerosol particles affect climate by absorbing and scattering thermal and solar radiation and acting as condensation nuclei for the formation of clouds. So, they strongly influence the atmospheric thermal structure, balance and circulation. On Earth and Mars, this 'climate forcing' is one of the most uncertain processes in climate change predictions. Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. These processes are not confined to Earth, but occur also on Mars, Venus and Titan. It is clear that the knowledge of the atmospheric dust properties and the mechanisms of dust settling and raising into the atmosphere are important to understand planetary climate and surface evolution. On Mars the physical processes responsible for dust injection into the atmosphere are still poorly understood, but they likely involve saltation as on Earth. Saltation is a process where large sand grains are forced by the wind to move in ballistic trajectories on the soil surface. During these hops they hit dust particles, that are well bound to the soil due to interparticle cohesive forces, thus transferring to them the momentum necessary to be entrained into the atmosphere. Recently, it has been shown that this process is also responsible to generate strong electric fields in the atmosphere up to 100-150 kV/m. This enhanced electric force acts as a feedback in the dust lifting process, lowering the threshold of the wind friction velocity u* necessary to initiate sand saltation. It is an important aspect of dust lifting process that need to be well characterized and modeled. Even if literature reports several measurements of E-fields in dust devils events, very few reports deal with atmospheric electric properties during dust storms or isolated gusts. We present here preliminary results of an intense field test campaign we performed in the West Sahara during the 2013 and 2014 dust storm seasons. We collected a statistical meaningful set of data characterizing relationship between dust lifting and atmospheric E-field that had never been achieved so far.

  4. A decade of infrared versus visible AOD analysis within the dust belt

    NASA Astrophysics Data System (ADS)

    Capelle, Virginie; Chédin, Alain; Pondrom, Marc; Crevoisier, Cyril; Armante, Raymond; Crépeau, Laurent; Scott, Noëlle

    2017-04-01

    Aerosols represent one of the dominant uncertainties in radiative forcing, partly because of their very high spatiotemporal variability, a still insufficient knowledge of their microphysical and optical properties, or of their vertical distribution. A better understanding and forecasting of their impact on climate therefore requires precise observations of dust emission and transport. Observations from space offer a good opportunity to follow, day by day and at high spatial resolution, dust evolution at global scale and over long time series. In this context, infrared observations, by allowing retrieving simultaneously dust optical depth (AOD) as well as the mean dust layer altitude, daytime and nighttime, over oceans and over continents, in particular over desert, appears highly complementary to observations in the visible. In this study, a decade of infrared observations (Metop-A/IASI and AIRS/AQUA) has been processed pixel by pixel, using a "Look-Up-Table" (LUT) physical approach. The retrieved infrared 10µm coarse-mode AOD is compared with the Spectral Deconvolution Algorithm (SDA) 500nm coarse mode AOD observed at 50 ground-based Aerosol RObotic NETwork (AERONET) sites located within the dust belt. Analyzing their brings into evidence an important geographical variability. Lowest values are found close to dust sources ( 0.45 for the Sahel or Arabian Peninsula, 0.6-0.7 for the Northern part of Africa or India), whereas the ratio increases for transported dust with values of 0.9-1 for the Caribbean and for the Mediterranean basin. This variability is interpreted as a marker of clays abundance, and might be linked to the dust particle illite to kaolinite ratio, a recognized tracer of dust sources and transport. More generally, it suggests that the difference between the radiative impact of dust aerosols in the visible and in the infrared depends on the type of particles observed. This highlights the importance of taking into account the specificity of the infrared when considering the role of mineral dust on the Earth's energy budget.

  5. A large source of dust missing in particulate matter emission inventories? Wind erosion of post-fire landscapes

    Treesearch

    N. S. Wagenbrenner; S. H. Chung; B. K. Lamb

    2017-01-01

    Wind erosion of soils burned by wildfire contributes substantial particulate matter (PM) in the form of dust to the atmosphere, but the magnitude of this dust source is largely unknown. It is important to accurately quantify dust emissions because they can impact human health, degrade visibility, exacerbate dust-on-snow issues (including snowmelt timing, snow chemistry...

  6. Dust measurements in tokamaks (invited).

    PubMed

    Rudakov, D L; Yu, J H; Boedo, J A; Hollmann, E M; Krasheninnikov, S I; Moyer, R A; Muller, S H; Pigarov, A Yu; Rosenberg, M; Smirnov, R D; West, W P; Boivin, R L; Bray, B D; Brooks, N H; Hyatt, A W; Wong, C P C; Roquemore, A L; Skinner, C H; Solomon, W M; Ratynskaia, S; Fenstermacher, M E; Groth, M; Lasnier, C J; McLean, A G; Stangeby, P C

    2008-10-01

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 microm in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C(2) dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  7. Attraction of likely charged nano-sized grains in dust-electron plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vishnyakov, Vladimir I., E-mail: eksvar@ukr.net

    2016-01-15

    Dust-electron plasma, which contains only the dust grains and electrons, emitted by them, is studied. Assumption of almost uniform spatial electrons distribution, which deviates from the uniformity only near the dust grains, leads to the grain charge division into two parts: first part is the individual for each grain “visible” charge and the second part is the common charge of the neutralized background. The visible grain charge can be both negative and positive, while the total grain charge is only positive. The attraction of likely charged grains is possible, because the grain interaction is determined by the visible charges. Themore » equilibrium state between attraction and repulsion of grains is demonstrated.« less

  8. Report on the survey for electrostatic discharges on Mars using NASA's Deep Space Network (DSN)

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Majid, W.; Geldzahler, B.; Kocz, J.; Schulter, T.; White, L.

    2017-12-01

    Mars atmosphere has strong dust activity. It is suggested that the larger regional storms are capable of producing electric fields large enough to initiate electrostatic discharges. The storms have charging process similar to terrestrial dust devils and have hot cores and complicated vortex winds similar to terrestrial thunderstorms. However, due to uncertainties in our understanding of the electrical environment of the storms and absence of related in-situ measurements, the existence (or non-existence) of such electrostatic discharges on the planet is yet to be confirmed. Knowing about the electrical activity on Mars is essential for future human explorations of the planet. We have recently launched a long-term monitoring campaign at NASA's Madrid Deep Space Communication Complex (MDSCC) to search for powerful discharges on Mars. The search occurs during routine tracking of Mars orbiting spacecraft by Deep Space Network (DSN) radio telescope. In this presentation, we will report on the result of processing and analysis of the data from the first six months of our campaign.

  9. Preliminary Interpretation of the MSL REMS Pressure Data

    NASA Astrophysics Data System (ADS)

    Haberle, Robert; Gómez-Elvira, Javier; de la Torre Juárez, Manuel; Harri, Ari-Matti; Hollingsworth, Jeffery; Kahanpää, Henrik; Kahre, Melinda; Martin-Torres, Javier; Mischna, Michael; Newman, Claire; Rafkin, Scot; Rennó, Nilton; Richardson, Mark; Rodríguez-Manfredi, Jose; Vasavada, Ashwin; Zorzano, Maria-Paz; REMS/MSL Science Teams

    2013-04-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) Curiosity rover consists of a suite of meteorological instruments that measure pressure, temperature (air and ground), wind (speed and direction), relative humidity, and the UV flux. A detailed description of the REMS sensors and their performance can be found in Gómez-Elvira et al. [2012, Space Science Reviews, 170(1-4), 583-640]. Here we focus on interpreting the first 100 sols of REMS operations with a particular emphasis on the pressure data. A unique feature of pressure data is that they reveal information on meteorological phenomena with time scales from seconds to years and spatial scales from local to global. From a single station we can learn about dust devils, regional circulations, thermal tides, synoptic weather systems, the CO2 cycle, dust storms, and interannual variability. Thus far MSL's REMS pressure sensor, provided by the Finnish Meteorological Institute and integrated into the REMS payload by Centro de Astrobiología, is performing flawlessly and our preliminary interpretation of its data includes the discovery of relatively dust-free convective vortices; a regional circulation system significantly modified by Gale crater and its central mound; the strongest thermal tides yet measured from the surface of Mars whose amplitudes and phases are very sensitive to fluctuations in global dust loading; and the classical signature of the seasonal cycling of carbon dioxide into and out of the polar caps.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudakov, D. L.; Yu, J. H.; Boedo, J. A.

    Dust production and accumulation present potential safety and operational issues for the ITER. Dust diagnostics can be divided into two groups: diagnostics of dust on surfaces and diagnostics of dust in plasma. Diagnostics from both groups are employed in contemporary tokamaks; new diagnostics suitable for ITER are also being developed and tested. Dust accumulation in ITER is likely to occur in hidden areas, e.g., between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In the DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers,more » visible imaging, and spectroscopy. Laser scattering is able to resolve particles between 0.16 and 1.6 {mu}m in diameter; using these data the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in two-dimension with a single camera or three-dimension using multiple cameras, but determination of particle size is challenging. In order to calibrate diagnostics and benchmark dust dynamics modeling, precharacterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase in carbon line (CI, CII, C{sub 2} dimer) and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.« less

  11. Complex refractive index of Martian dust - Mariner 9 ultraviolet observations

    NASA Technical Reports Server (NTRS)

    Pang, K.; Ajello, J. M.; Hord, C. W.; Egan, W. G.

    1976-01-01

    Mariner 9 ultraviolet spectrometer observations of the 1971 dust clouds obscuring the surface of Mars have been analyzed by matching the observed dust phase function with Mie scattering calculations for size distributions of homogeneous and isotropic material. Preliminary results indicate an effective particle radius of not less than 0.2. The real component of the index of refraction is not less than 1.8 at both 268 and 305 nm; corresponding values for the imagery component are 0.02 and 0.01. These values are consistent with those found by Mead (1970) for the visible and near-visible wavelengths. The refractive index and the absorption coefficient increase rapidly with decreasing wavelength in going from the visible to the ultraviolet, indicating the presence of an ultraviolet absorption band which may shield organisms from ultraviolet irradiation.

  12. Relict or reintroduction? Genetic population assignment of three Tasmanian devils (Sarcophilus harrisii) recovered on mainland Australia

    PubMed Central

    2017-01-01

    Today, the Tasmanian devil (Sarcophilus harrisii) is found only on the island of Tasmania, despite once being widespread across mainland Australia. While the devil is thought to have become extinct on the mainland approximately 3000 years ago, three specimens were collected in Victoria (south-eastern Australia) between 1912 and 1991, raising the possibility that a relict mainland population survived in the area. Alternatively, these devils may have escaped captivity or were deliberately released after being transported from Tasmania, a practice that has been strictly controlled since the onset of devil facial tumour disease in the early 1990s. Such quarantine regimes are important to protect disease-free, ‘insurance populations’ in zoos on the mainland. To test whether the three Victorian devils were members of a relict mainland population or had been recently transported from Tasmania we identified seven single nucleotide polymorphisms (SNPs) in the mitochondrial genome that can distinguish between Tasmanian and ancient mainland populations. The three Victorian devil specimens have the same seven SNPs diagnostic of modern Tasmanian devils, confirming that they were most likely transported from Tasmania and do not represent a remnant population of mainland devils. PMID:28484632

  13. Squiggles in Hellas Planitia

    NASA Image and Video Library

    2017-10-25

    At around 2,200 kilometers in diameter, Hellas Planitia is the largest visible impact basin in the Solar System, and hosts the lowest elevations on Mars' surface as well as a variety of landscapes. This image from NASA's Mars Reconnaisance Orbiter (MRO) covers a small central portion of the basin and shows a dune field with lots of dust devil trails. In the middle, we see what appears to be long and straight "scratch marks" running down the southeast (bottom-right) facing dune slopes. If we look closer, we can see these scratch marks actually squiggle back and forth on their way down the dune. These scratch marks are linear gullies. Just like on Earth, high-latitude regions on Mars are covered with frost in the winter. However, the winter frost on Mars is made of carbon dioxide ice (dry ice) instead of water ice. We believe linear gullies are the result of this dry ice breaking apart into blocks, which then slide or roll down warmer sandy slopes, sublimating and carving as they go. The linear gullies exhibit exceptional sinuosity (the squiggle pattern) and we believe this to be the result of repeated movement of dry ice blocks in the same path, possibly in combination with different hardness or flow resistance of the sand within the dune slopes. Determining the specific process that causes the formation and evolution of sinuosity in linear gullies is a question scientists are still trying to answer. What do you think causes the squiggles? https://photojournal.jpl.nasa.gov/catalog/PIA22052

  14. Long-term variability of dust events in Iceland (1949-2011)

    NASA Astrophysics Data System (ADS)

    Dagsson-Waldhauserova, P.; Arnalds, O.; Olafsson, H.

    2014-12-01

    The long-term frequency of atmospheric dust observations was investigated for the southern part of Iceland and interpreted together with earlier results obtained from northeastern (NE) Iceland (Dagsson-Waldhauserova et al., 2013). In total, over 34 dust days per year on average occurred in Iceland based on conventionally used synoptic codes for dust observations. However, frequent volcanic eruptions, with the re-suspension of volcanic materials and dust haze, increased the number of dust events fourfold (135 dust days annually). The position of the Icelandic Low determined whether dust events occurred in the NE (16.4 dust days annually) or in the southern (S) part of Iceland (about 18 dust days annually). The decade with the most frequent dust days in S Iceland was the 1960s, but the 2000s in NE Iceland. A total of 32 severe dust storms (visibility < 500 m) were observed in Iceland with the highest frequency of events during the 2000s in S Iceland. The Arctic dust events (NE Iceland) were typically warm, occurring during summer/autumn (May-September) and during mild southwesterly winds, while the subarctic dust events (S Iceland) were mainly cold, occurring during winter/spring (March-May) and during strong northeasterly winds. About half of the dust events in S Iceland occurred in winter or at sub-zero temperatures. A good correlation was found between particulate matter (PM10) concentrations and visibility during dust observations at the stations Vík and Stórhöfði. This study shows that Iceland is among the dustiest areas of the world and that dust is emitted year-round.

  15. Effects of Palagonitic Dust Coatings on Visible, Near-IR, and Mossbauer Spectra of Rocks and Minerals: Implication for Mineralogical Remote Sensing of Mars

    NASA Technical Reports Server (NTRS)

    Morris, R.; Graff, T. G.; Shelfer, T. D.; Bell, J. F., III

    2001-01-01

    Visible, near-IR, and Mossbauer measurements on dust coated rocks and minerals show that a 300 5m thick layer is required to obscure the substrate for VNIR measurements and that a greater than 2000-micron-thick layer is required to obscure the substrate for Mossbauer measurements. Additional information is contained in the original extended abstract.

  16. The Two-faced Whirlpool Galaxy

    NASA Image and Video Library

    2017-12-08

    NASA image release January 13, 2011 These images by NASA's Hubble Space Telescope show off two dramatically different face-on views of the spiral galaxy M51, dubbed the Whirlpool Galaxy. The image here, taken in visible light, highlights the attributes of a typical spiral galaxy, including graceful, curving arms, pink star-forming regions, and brilliant blue strands of star clusters. In the image above, most of the starlight has been removed, revealing the Whirlpool's skeletal dust structure, as seen in near-infrared light. This new image is the sharpest view of the dense dust in M51. The narrow lanes of dust revealed by Hubble reflect the galaxy's moniker, the Whirlpool Galaxy, as if they were swirling toward the galaxy's core. To map the galaxy's dust structure, researchers collected the galaxy's starlight by combining images taken in visible and near-infrared light. The visible-light image captured only some of the light; the rest was obscured by dust. The near-infrared view, however, revealed more starlight because near-infrared light penetrates dust. The researchers then subtracted the total amount of starlight from both images to see the galaxy's dust structure. The red color in the near-infrared image traces the dust, which is punctuated by hundreds of tiny clumps of stars, each about 65 light-years wide. These stars have never been seen before. The star clusters cannot be seen in visible light because dense dust enshrouds them. The image reveals details as small as 35 light-years across. Astronomers expected to see large dust clouds, ranging from about 100 light-years to more than 300 light-years wide. Instead, most of the dust is tied up in smooth and diffuse dust lanes. An encounter with another galaxy may have prevented giant clouds from forming. Probing a galaxy's dust structure serves as an important diagnostic tool for astronomers, providing invaluable information on how the gas and dust collapse to form stars. Although Hubble is providing incisive views of the internal structure of galaxies such as M51, the planned James Webb Space Telescope (JWST) is expected to produce even crisper images. Researchers constructed the image by combining visible-light exposures from Jan. 18 to 22, 2005, with the Advanced Camera for Surveys (ACS), and near-infrared light pictures taken in December 2005 with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Credit: NASA, ESA, M. Regan and B. Whitmore (STScI), and R. Chandar (University of Toledo)

  17. The Two-faced Whirlpool Galaxy

    NASA Image and Video Library

    2011-01-13

    NASA image release January 13, 2011 These images by NASA's Hubble Space Telescope show off two dramatically different face-on views of the spiral galaxy M51, dubbed the Whirlpool Galaxy. The image above, taken in visible light, highlights the attributes of a typical spiral galaxy, including graceful, curving arms, pink star-forming regions, and brilliant blue strands of star clusters. In the image here, most of the starlight has been removed, revealing the Whirlpool's skeletal dust structure, as seen in near-infrared light. This new image is the sharpest view of the dense dust in M51. The narrow lanes of dust revealed by Hubble reflect the galaxy's moniker, the Whirlpool Galaxy, as if they were swirling toward the galaxy's core. To map the galaxy's dust structure, researchers collected the galaxy's starlight by combining images taken in visible and near-infrared light. The visible-light image captured only some of the light; the rest was obscured by dust. The near-infrared view, however, revealed more starlight because near-infrared light penetrates dust. The researchers then subtracted the total amount of starlight from both images to see the galaxy's dust structure. The red color in the near-infrared image traces the dust, which is punctuated by hundreds of tiny clumps of stars, each about 65 light-years wide. These stars have never been seen before. The star clusters cannot be seen in visible light because dense dust enshrouds them. The image reveals details as small as 35 light-years across. Astronomers expected to see large dust clouds, ranging from about 100 light-years to more than 300 light-years wide. Instead, most of the dust is tied up in smooth and diffuse dust lanes. An encounter with another galaxy may have prevented giant clouds from forming. Probing a galaxy's dust structure serves as an important diagnostic tool for astronomers, providing invaluable information on how the gas and dust collapse to form stars. Although Hubble is providing incisive views of the internal structure of galaxies such as M51, the planned James Webb Space Telescope (JWST) is expected to produce even crisper images. Researchers constructed the image by combining visible-light exposures from Jan. 18 to 22, 2005, with the Advanced Camera for Surveys (ACS), and near-infrared light pictures taken in December 2005 with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Credit: NASA, ESA, S. Beckwith (STScI), and the Hubble Heritage Team (STScI/AURA) The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook

  18. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    NASA Astrophysics Data System (ADS)

    Smith, Andrew J. A.; Grainger, Roy G.

    2014-01-01

    Mineral dust aerosol is a major component of natural airborne particulates. Using satellite measurements from the visible and near-infrared, there is insufficient information to retrieve a full microphysical and chemical description of an aerosol distribution. As such, refractive index is one of many parameters that must be implicitly assumed in order to obtain an optical depth retrieval. This is essentially a proxy for the dust mineralogy. Using a global soil map, it is shown that as long as a reasonable refractive index for dust is assumed, global dust variability is unlikely to cause significant variation in the optical properties of a dust aerosol distribution in the short-wave, and so should not greatly affect retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol optical depth due to this variation are expected to be ≲ 1 %. The work is framed around the ORAC AATSR aerosol retrieval, but is equally applicable to similar satellite retrievals. In this case, variations in the top-of-atmosphere reflectance caused by mineral variation are within the noise limits of the instrument.

  19. The Martian Dust Cycle: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Kahre, Melinda A.

    2013-01-01

    The dust cycle is critically important for Mars' current climate system. Suspended atmospheric dust affects the radiative balance of the atmosphere, and thus greatly influences the thermal and dynamical state of the atmosphere. Evidence for the presence of dust in the Martian atmosphere can be traced back to yellow clouds telescopically observed as early as the early 19th century. The Mariner 9 orbiter arrived at Mars in November of 1971 to find a planet completely enshrouded in airborne dust. Since that time, the exchange of dust between the planet's surface and atmosphere and the role of airborne dust on Mars' weather and climate has been studied using observations and numerical models. The goal of this talk is to give an overview of the observations and to discuss the successes and challenges associated with modeling the dust cycle. Dust raising events on Mars range in size from meters to hundreds of kilometers. During some years, regional storms merge to produce hemispheric or planet encircling dust clouds that obscure the surface and raise atmospheric temperatures by tens of kelvin. The interannual variability of planet encircling dust storms is poorly understood. Although the occurrence and season of large regional and global dust storms are highly variable from one year to the next, there are many features of the dust cycle that occur year after year. A low-level dust haze is maintained during northern spring and summer, while elevated levels of atmospheric dust occur during northern autumn and winter. During years without global-scale dust storms, two peaks in total dust loading are generally observed: one peak occurs before northern winter solstice and one peak occurs after northern winter solstice. Numerical modeling studies attempting to interactively simulate the Martian dust cycle with general circulation models (GCMs) include the lifting, transport, and sedimentation of radiatively active dust. Two dust lifting processes are commonly represented in these models: wind-stress lifting (i.e., saltation) and dust devil lifting. Although the predicted patterns of dust lifting and atmospheric dust loading from these simulations capture some aspects of the observed dust cycle, there are many notable differences between the simulated and observed dust cycles. For example, it is common for models to predict one peak in global dust loading near northern winter solstice due to excessive dust lifting in the Hellas basin at this season. Additionally, it is difficult for models to realistically capture the observed interannual variability in global dust storms. New avenues of dust cycle modeling research include exploring the effects of finite surface dust reservoirs and the effects of coupling the dust and water cycles on the predicted dust cycle.

  20. Chemical quality of surface waters in Devils Lake basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert; Colby, Bruce R.

    1955-01-01

    Devils Lake basin, a closed basin in northeastern North Dakota, covers about 3,900 square miles of land, the topography of which is morainal and of glacial origin. In this basin lies a chain of waterways, which begins with the Sweetwater group and extends successively through Mauvais Coulee, Devils Lake, East Bay Devils Lake, and East Devils Lake, to Stump Lake. In former years when lake levels were high, Mauvais Coulee drained the Sweetwater group and discharged considerable water into Devils Lake. Converging coulees also transported excess water to Stump Lake. For at least 70 years prior to 1941, Mauvais Coulee flowed only intermittently, and the levels of major lakes in this region gradually declined. Devils Lake, for example, covered an area of about 90,000 acres in 1867 but had shrunk to approximately 6,500 acres by 1941. Plans to restore the recreational appeal of Devils Lake propose the dilution and eventual displacement of the brackish lake water by fresh water that would be diverted from the Missouri River. Freshening of the lake water would permit restocking Devils Lake with fish. Devils and Stump Lake have irregular outlines and numerous windings and have been described as lying in the valley of a preglacial river, the main stem and tributaries of which are partly filled with drift. Prominent morainal hills along the south shore of Devils Lake contrast sharply with level farmland to the north. The mean annual temperature of Devils Lake basin ranges between 36 ? and 42 ? F. Summer temperatures above 100 ? F and winter temperatures below -30 ? Fare not uncommon. The annual precipitation for 77 years at the city of Devils Lake averaged 17.5 inches. Usually, from 75 to 80 percent of the precipitation in the basin falls during the growing season, April to September. From 1867 to 1941 the net fall of the water surface of Devils Lake was about 38 feet. By 1951 the surface had risen fully 14 feet from its lowest altitude, 1,400.9 feet. Since 1951, the level has fallen slowly. Hydrologic changes that may have caused Devils Lake to alter from a very large, moderately deep lake of fresh water to a small, shallow body of brackish water are discussed and evaluated on the basis of scanty information. During several years of average precipitation, temperature, and evaporation, Devils Lake and lakes upstream should receive nearly a quarter of an inch of runoff annually from the drainage area of about 3,000 square miles. Approximately 55 square miles of tributary area would be required to maintain each square mile of lake surface. However, runoff, expressed as percentage of the average, differs greatly from year to year. The amount of runoff retained in upstream lakes also Varies greatly. For these two reasons, annual inflow to Devils Lake is extremely variable. Because many waterways in this basin have no surface outlets at normal stages, runoff collects in depressions, is concentrated by evaporation, and forms saline or alkaline lakes. The chemical and physical properties of the lake waters vary chiefly with changes in lake stage and volume of inflow. Scattered records from 1899 to 1923 and more comprehensive data from 1948 to 1952 show a range of salt concentration from 6,130 to 25,000 parts per million (ppm) in the water of Devils Lake. Although concentration has varied, the chemical composition of the dissolved solids has not changed appreciably. Lake waters are more concentrated in the lower part of the basin, downstream from Devils Lake. For periods of record the salt concentration ranged from 14,932 to 62,000 ppm in East Devils Lake and from 19,000 to 106,000 ppm in east Stump Lake. Current and past tonnages of dissolved solids in Devils Lake, East Bay Devils Lake, East Devils Lake, and east and west Stump Lakes were computed from concentrations and from altitude-capacity curves for each lake. Neither the average rate of diversion of water to restore Devils Lake to a higher level nor the quality of the divert

  1. A new physically-based windblown dust emission parametrization in CMAQ

    EPA Science Inventory

    Dust has significant impacts on weather and climate, air quality and visibility, and human health; therefore, it is important to include a windblown dust emission module in atmospheric and air quality models. In this presentation, we summarize our efforts in development of a phys...

  2. Asian Dust Weather Categorization with Satellite and Surface Observations

    NASA Technical Reports Server (NTRS)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  3. Extreme dust storm over the eastern Mediterranean in September 2015: satellite, lidar, and surface observations in the Cyprus region

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Nisantzi, Argyro; Solomos, Stavros; Kallos, George; Hadjimitsis, Diofantos G.

    2016-11-01

    A record-breaking dust storm originating from desert regions in northern Syria and Iraq occurred over the eastern Mediterranean in September 2015. In this contribution of a series of two articles (part 1, observations; part 2, atmospheric modeling), we provide a comprehensive overview of the aerosol conditions during this extreme dust outbreak in the Cyprus region. These observations are based on satellite observations (MODIS, moderate resolution imaging spectroradiometer) of aerosol optical thickness (AOT) and Ångström exponent, surface particle mass (PM10) concentrations measured at four sites in Cyprus, visibility observations at three airports in southern Cyprus and corresponding conversion products (particle extinction coefficient, dust mass concentrations), EARLINET (European Aerosol Research Lidar Network) lidar observations of dust vertical layering over Limassol, particle optical properties (backscatter, extinction, lidar ratio, linear depolarization ratio), and derived profiles of dust mass concentrations. Maximum 550 nm AOT exceeded values of 5.0, according to MODIS, and the mass loads were correspondingly > 10 g m-2 over Larnaca and Limassol during the passage of an extremely dense dust front on 8 September 2015. Hourly mean PM10 values were close to 8000 µg m-3 and the observed meteorological optical range (visibility) was reduced to 300-750 m at Larnaca and Limassol. The visibility observations suggest peak values of the near-surface total suspended particle (TSP) extinction coefficients of 6000 Mm-1 and thus TSP mass concentrations of 10 000 µg m-3. The Raman polarization lidar observations mainly indicated a double layer structure of the dust plumes (reaching to about 4 km height), pointing to at least two different dust source regions. Dust particle extinction coefficients (532 nm) already exceeded 1000 Mm-1 and the mass concentrations reached 2000 µg m-3 in the elevated dust layers on 7 September, more than 12 h before the peak dust front on 8 September reached the Limassol lidar station around local noon. Typical Middle Eastern dust lidar ratios around 40 sr were observed in the dense dust plumes. The particle depolarization ratio decreased from around 0.3 in the lofted dense dust layers to 0.2 at the end of the dust period (11 September), indicating an increasing impact of anthropogenic haze.

  4. Relaxation of risk-sensitive behaviour of prey following disease-induced decline of an apex predator, the Tasmanian devil

    PubMed Central

    Hollings, Tracey; McCallum, Hamish; Kreger, Kaely; Mooney, Nick; Jones, Menna

    2015-01-01

    Apex predators structure ecosystems through lethal and non-lethal interactions with prey, and their global decline is causing loss of ecological function. Behavioural changes of prey are some of the most rapid responses to predator decline and may act as an early indicator of cascading effects. The Tasmanian devil (Sarcophilus harrisii), an apex predator, is undergoing progressive and extensive population decline, of more than 90% in long-diseased areas, caused by a novel disease. Time since local disease outbreak correlates with devil population declines and thus predation risk. We used hair traps and giving-up densities (GUDs) in food patches to test whether a major prey species of devils, the arboreal common brushtail possum (Trichosurus vulpecula), is responsive to the changing risk of predation when they forage on the ground. Possums spend more time on the ground, discover food patches faster and forage more to a lower GUD with increasing years since disease outbreak and greater devil population decline. Loss of top–down effects of devils with respect to predation risk was evident at 90% devil population decline, with possum behaviour indistinguishable from a devil-free island. Alternative predators may help to maintain risk-sensitive anti-predator behaviours in possums while devil populations remain low. PMID:26085584

  5. In-situ growth of calcite at Devils Hole, Nevada: Comparison of field and laboratory rates to a 500,000 year record of near-equilibrium calcite growth

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, E.; Riggs, A.C.

    2000-01-01

    Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7??C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34??C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of P(CO)(2), decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.

  6. In-situ growth of calcite at Devils Hole, Nevada--Comparison of field and laboratory rates to a 500,000 year record of near-equilibrium calcite growth

    USGS Publications Warehouse

    Plummer, Niel; Busenberg, Eurybiades; Riggs, Alan C.

    2000-01-01

    Calcite grew continuously for 500,000 years on the submerged walls of an open fault plane (Devils Hole) in southern Nevada, U.S.A. at rates of 0.3 to 1.3 mm/ka, but ceased growing approximately 60,000 years ago, even though the fault plane remained open and was continuously submerged. The maximum initial in-situ growth rate on pre-weighed crystals of Iceland spar placed in Devils Hole (calcite saturation index, SI, is 0.16 to 0.21 at 33.7 °C) for growth periods of 0.75 to 4.5 years was 0.22 mm/ka. Calcite growth on seed crystals slowed or ceased following initial contact with Devils Hole groundwater. Growth rates measured in synthetic Ca-HCO3 solutions at 34 °C, CO2 partial pressures of 0.101, 0.0156 (similar to Devils Hole groundwater) and 0.00102 atm, and SI values of 0.2 to 1.9 were nearly independent of PCO2, decreased with decreasing saturation state, and extrapolated through the historical Devils Hole rate. The results show that calcite growth rate is highly sensitive to saturation state near equilibrium. A calcite crystal retrieved from Devils Hole, and used without further treatment of its surface, grew in synthetic Devils Hole groundwater when the saturation index was raised nearly 10-fold that of Devils Hole water, but the rate was only 1/4 that of fresh laboratory crystals that had not contacted Devils Hole water. Apparently, inhibiting processes that halted calcite growth in Devils Hole 60,000 years ago continue today.

  7. The Tasmanian devil microbiome-implications for conservation and management.

    PubMed

    Cheng, Yuanyuan; Fox, Samantha; Pemberton, David; Hogg, Carolyn; Papenfuss, Anthony T; Belov, Katherine

    2015-12-21

    The Tasmanian devil, the world's largest carnivorous marsupial, is at risk of extinction due to devil facial tumour disease (DFTD), a fatal contagious cancer. The Save the Tasmanian Devil Program has established an insurance population, which currently holds over 600 devils in captive facilities across Australia. Microbes are known to play a crucial role in the health and well-being of humans and other animals, and increasing evidence suggests that changes in the microbiota can influence various aspects of host physiology and development. To improve our understanding of devils and facilitate management and conservation of the species, we characterised the microbiome of wild devils and investigated differences in the composition of microbial community between captive and wild individuals. A total of 1,223,550 bacterial 16S ribosomal RNA (rRNA) sequences were generated via Roche 454 sequencing from 56 samples, including 17 gut, 15 skin, 18 pouch and 6 oral samples. The devil's gut microbiome was dominated by Firmicutes and showed a high Firmicutes-to-Bacteroidetes ratio, which appears to be a common feature of many carnivorous mammals. Metabolisms of carbohydrates, amino acids, energy, cofactors and vitamins, nucleotides and lipids were predicted as the most prominent metabolic pathways that the devil's gut flora contributed to. The microbiota inside the female's pouch outside lactation was highly similar to that of the skin, both co-dominated by Firmicutes and Proteobacteria. The oral microbiome had similar proportions of Proteobacteria, Bacteroidetes, Firmicutes and Fusobacteria. Compositional differences were observed in all four types of microbiota between devils from captive and wild populations. Certain captive devils had significantly lower levels of gut bacterial diversity than wild individuals, and the two groups differed in the proportion of gut bacteria accounting for the metabolism of glycan, amino acids and cofactors and vitamins. Further studies are underway to investigate whether alterations in the microbiome of captive devils can have impacts on their ability to adapt and survive following re-introduction to the wild.

  8. Radiative transfer modeling of dust-coated Pancam calibration target materials: Laboratory visible/near-infrared spectrogoniometry

    USGS Publications Warehouse

    Johnson, J. R.; Sohl-Dickstein, J.; Grundy, W.M.; Arvidson, R. E.; Bell, J.F.; Christensen, P.R.; Graff, T.; Guinness, E.A.; Kinch, K.; Morris, Robert; Shepard, M.K.

    2006-01-01

    Laboratory visible/near-infrared multispectral observations of Mars Exploration Rover Pancam calibration target materials coated with different thicknesses of Mars spectral analog dust were acquired under variable illumination geometries using the Bloomsburg University Goniometer. The data were fit with a two-layer radiative transfer model that combines a Hapke formulation for the dust with measured values of the substrate interpolated using a He-Torrance approach. We first determined the single-scattering albedo, phase function, opposition effect width, and amplitude for the dust using the entire data set (six coating thicknesses, three substrates, four wavelengths, and phase angles 3??-117??). The dust exhibited single-scattering albedo values similar to other Mars analog soils and to Mars Pathfinder dust and a dominantly forward scattering behavior whose scattering lobe became narrower at longer wavelengths. Opacity values for each dust thickness corresponded well to those predicted from the particles sizes of the Mars analog dust. We then restricted the number of substrates, dust thicknesses, and incidence angles input to the model. The results suggest that the dust properties are best characterized when using substrates whose reflectances are brighter and darker than those of the deposited dust and data that span a wide range of dust thicknesses. The model also determined the dust photometric properties relatively well despite limitations placed on the range of incidence angles. The model presented here will help determine the photometric properties of dust deposited on the MER rovers and to track the multiple episodes of dust deposition and erosion that have occurred at both landing sites. Copyright 2006 by the American Geophysical Union.

  9. Characterization of east Asian dust outbreaks in the spring of 2001 using ground-based and satellite data

    NASA Astrophysics Data System (ADS)

    Darmenova, Kremena; Sokolik, Irina N.; Darmenov, Anton

    2005-01-01

    This study presents a detailed examination of east Asian dust events during March-April of 2001, by combining satellite multisensor observation (Total Ozone Mapping Spectrometer (TOMS), Moderate-Resolution Imaging Spectroradiometer (MODIS), and Sea-Viewing Wide Field-of-View Sensor (SeaWiFS)) meteorological data from weather stations in China and Mongolia and the Pennsylania State University/National Center for Atmospheric Research Mesoscale Modeling System (MM5) driven by the National Centers for Environmental Prediction Reanalysis data. The main goal is to determine the extent to which the routine surface meteorological observations (including visibility) and satellite data can be used to characterize the spatiotemporal distribution of dust plumes at a range of scales. We also examine the potential of meteorological time series for constraining the dust emission schemes used in aerosol transport models. Thirty-five dust events were identified in the source region during March and April of 2001 and characterized on a case-by-case basis. The midrange transport routes were reconstructed on the basis of visibility observations and observed and MM5-predicted winds with further validation against satellite data. We demonstrate that the combination of visibility data, TOMS aerosol index, MODIS aerosol optical depth over the land, and a qualitative analysis of MODIS and SeaWiFS imagery enables us to constrain the regions of origin of dust outbreaks and midrange transport, though various limitations of individual data sets were revealed in detecting dust over the land. Only two long-range transport episodes were found. The transport routes and coverage of these dust episodes were reconstructed by using MODIS aerosol optical depth and TOMS aerosol index. Our analysis reveals that over the oceans the presence of persistent clouds poses a main problem in identifying the regions affected by dust transport, so only partial reconstruction of dust transport routes reaching the west coast of the United States was possible.

  10. The remote measurement of tornado-like flows employing a scanning laser Doppler system

    NASA Technical Reports Server (NTRS)

    Jeffreys, H. B.; Bilbro, J. W.; Dimarzio, C.; Sonnenschein, C.; Toomey, D.

    1977-01-01

    The paper deals with a scanning laser Doppler velocimeter system employed in a test program for measuring naturally occurring tornado-like phenomena, known as dust devils. A description of the system and the test program is followed by a discussion of the data processing techniques and data analysis. The system uses a stable 15-W CO2 laser with the beam expanded and focused by a 12-inch telescope. Range resolution is obtained by focusing the optical system. The velocity of each volume of air (scanned in a horizontal plane) is determined from spectral analysis of the heterodyne signal. Results derived from the measurement program and data/system analyses are examined.

  11. MPF Lander Measured Surface Pressure

    NASA Image and Video Library

    1997-10-14

    Here is a comparison of the most recent 24-hour met sessions. Note the general trend of increasing pressure with time into the mission. This indicates that the South polar cap is reducing, freeing CO2 into the atmosphere. Also note small pressure features around noon, which we think are "dust-devils." Sojourner spent 83 days of a planned seven-day mission exploring the Martian terrain, acquiring images, and taking chemical, atmospheric and other measurements. The final data transmission received from Pathfinder was at 10:23 UTC on September 27, 1997. Although mission managers tried to restore full communications during the following five months, the successful mission was terminated on March 10, 1998. http://photojournal.jpl.nasa.gov/catalog/PIA00976

  12. Three decades of Martian surface changes

    USGS Publications Warehouse

    Geissler, P.E.

    2005-01-01

    The surface of Mars has changed dramatically during the three decades spanned by spacecraft exploration. Comparisons of Mars Global Surveyor images with Viking and Mariner 9 pictures suggest that more than one third of Mars' surface area has brightened or darkened by at least 10%. Such albedo changes could produce significant effects on solar heating and the global circulation of winds across the planet. All of the major changes took place in areas of moderate to high thermal inertia and rock abundance, consistent with burial of rocky surfaces by thin dust layers deposited during dust storms and subsequent exposure of the rocky surfaces by aeolian erosion. Several distinct mechanisms contribute to aeolian erosion on Mars. Prevailing winds dominate erosion at low latitudes, producing diffuse albedo boundaries and elongated wind streaks generally oriented in the direction of southern summer winds. Dust devils darken the mid to high latitudes from 45 to 70 degrees during the summer seasons, forming irregular albedo patterns consisting of dark linear tracks. Dust storms produce regional albedo variations with distinct but irregular margins. Dark sand duties in southern high latitudes appear to be associated with regional darkening that displays diffuse albedo boundaries. No surface changes were observed to repeat regularly on an annual basis, but many of the changes took place in areas that alternate episodically between high- and low-albedo states as thin mantles of dust are deposited and later stripped off. Hence the face of Mars remains recognizable after a century of telescopic observations, in spite of the enormous extent of alteration that has taken place during the era of spacecraft exploration.

  13. Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing Site to Backstay Rock in the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Squyres, S. W,; Anderson, R. C.; Bell, J. F., III; Blaney, D.; Brueckner, J.; Cabrol, N. A.; Calvin, W. M.; Carr, M. H.; Christensen, P. R.; hide

    2005-01-01

    Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.

  14. High-resolution speckle masking interferometry and radiative transfer modeling of the oxygen-rich AGB star AFGL 2290

    NASA Astrophysics Data System (ADS)

    Gauger, A.; Balega, Y. Y.; Irrgang, P.; Osterbart, R.; Weigelt, G.

    1999-06-01

    We present the first diffraction-limited speckle masking observations of the oxygen-rich AGB star AFGL 2290. The speckle interferograms were recorded with the Russian 6 m SAO telescope. At the wavelength 2.11 microns a resolution of 75 milli-arcsec (mas) was obtained. The reconstructed diffraction-limited image reveals that the circumstellar dust shell (CDS) of AFGL 2290 is at least slightly non-spherical. The visibility function shows that the stellar contribution to the total 2.11 microns flux is less than ~ 40%, indicating a rather large optical depth of the circumstellar dust shell. The 2-dimensional Gaussian visibility fit yields a diameter of AFGL 2290 at 2.11 microns of 43 masx51 mas, which corresponds to a diameter of 42 AUx50 AU for an adopted distance of 0.98 kpc. Our new observational results provide additional constraints on the CDS of AFGL 2290, which supplement the information from the spectral energy distribution (SED). To determine the structure and the properties of the CDS we have performed radiative transfer calculations for spherically symmetric dust shell models. The observed SED approximately at phase 0.2 can be well reproduced at all wavelengths by a model with T_eff=2000 K, a dust temperature of 800 K at the inner boundary r1, an optical depth tau_ {V}=100 and a radius for the single-sized grains of a_gr=0.1 microns . However, the 2.11 microns visibility of the model does not match the observation. Exploring the parameter space, we found that grain size is the key parameter in achieving a fit of the observed visibility while retaining the match of the SED, at least partially. Both the slope and the curvature of the visibility strongly constrain the possible grain radii. On the other hand, the SED at longer wavelengths, the silicate feature in particular, determines the dust mass loss rate and, thereby, restricts the possible optical depths of the model. With a larger grain size of 0.16 microns and a higher tau_ {V}=150, the observed visibility can be reproduced preserving the match of the SED at longer wavelengths. Nevertheless, the model shows a deficiency of flux at short wavelengths, which is attributed to the model assumption of a spherically symmetric dust distribution, whereas the actual structure of the CDS around AFGL 2290 is in fact non-spherical. Our study demonstrates the possible limitations of dust shell models which are constrained solely by the spectral energy distribution, and emphasizes the importance of high spatial resolution observations for the determination of the structure and the properties of circumstellar dust shells around evolved stars. Based on data collected at the 6~m telescope of the Special Astrophysical Observatory in Russia

  15. The influence of an extensive dust event on snow chemistry in the southern Rocky Mountains

    Treesearch

    Charles Rhoades; Kelly Elder; E. Greene

    2010-01-01

    In mid-February 2006, windstorms in Arizona, Utah, and western Colorado generated a dust cloud that distributed a layer of dust across the surface of the snowpack throughout much of the Colorado Rockies; it remained visible throughout the winter. We compared the chemical composition of snowfall and snowpack collected during and after the dust deposition event with pre-...

  16. Evolution in a transmissible cancer: a study of the chromosomal changes in devil facial tumor (DFT) as it spreads through the wild Tasmanian devil population.

    PubMed

    Pearse, Anne-Maree; Swift, Kate; Hodson, Pamela; Hua, Bobby; McCallum, Hamish; Pyecroft, Stephen; Taylor, Robyn; Eldridge, Mark D B; Belov, Katherine

    2012-03-01

    Tasmanian devils (Sarcophilus harrisii) are the largest extant marsupial carnivores. This species, now confined to Tasmania, is endangered from the emergence of a transmissible cancer, devil facial tumor disease (DFTD). In the present study, we use cytogenetic and molecular techniques to examine the stability of devil facial tumor (DFT) cell lines across time and space. This article describes disease progression from February 2004 to June 2011. We demonstrate evolutionary changes in the disease, which affects devils in different sites across Tasmania and over a period of several years, producing several chromosomal variants (strains) that are capable of transmission between devils. We describe the evolution of DFTs in the field and speculate on the possible impacts on the disease, including (1) development of less aggressive forms of the disease; (2) development of more aggressive forms of the disease; (3) development of forms capable of affecting closely related species of dasyurids (e.g., quolls); (4) extinction of the disease as it acquires additional deleterious mutations that affect either cell viability or transmissibility; and (5) co-evolution of the disease and the host. We also speculate about the future of the Tasmanian devil in the wild. We note that although DFTs are regarded as unstable by comparison with another much older transmissible cancer, canine transmissible venereal tumor (CTVT), the potential for development of less aggressive forms of DFTs or for development of resistance in devils is limited by devils' small numbers, low genetic diversity, and restricted geographical distribution. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. 76 FR 28171 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-16

    ...-Clyde Ice Field, Takeoff Minimum and Obstacle DP, Amdt 1 Gladewater, TX, Gladewater Muni, Takeoff... Field, VOR/DME RWY 12, Amdt 4 Devil's Lake, ND, Devil's Lake Rgnl, ILS OR LOC/DME RWY 31, Amdt 2 Devil's Lake, ND, Devil's Lake Rgnl, RNAV (GPS) RWY 3, Amdt 1 Ely, NV, Ely Airport-Yelland Field, Takeoff...

  18. Regression of devil facial tumour disease following immunotherapy in immunised Tasmanian devils

    PubMed Central

    Tovar, Cesar; Pye, Ruth J.; Kreiss, Alexandre; Cheng, Yuanyuan; Brown, Gabriella K.; Darby, Jocelyn; Malley, Roslyn C.; Siddle, Hannah V. T.; Skjødt, Karsten; Kaufman, Jim; Silva, Anabel; Baz Morelli, Adriana; Papenfuss, Anthony T.; Corcoran, Lynn M.; Murphy, James M.; Pearse, Martin J.; Belov, Katherine; Lyons, A. Bruce; Woods, Gregory M.

    2017-01-01

    Devil facial tumour disease (DFTD) is a transmissible cancer devastating the Tasmanian devil (Sarcophilus harrisii) population. The cancer cell is the ‘infectious’ agent transmitted as an allograft by biting. Animals usually die within a few months with no evidence of antibody or immune cell responses against the DFTD allograft. This lack of anti-tumour immunity is attributed to an absence of cell surface major histocompatibility complex (MHC)-I molecule expression. While the endangerment of the devil population precludes experimentation on large experimental groups, those examined in our study indicated that immunisation and immunotherapy with DFTD cells expressing surface MHC-I corresponded with effective anti-tumour responses. Tumour engraftment did not occur in one of the five immunised Tasmanian devils, and regression followed therapy of experimentally induced DFTD tumours in three Tasmanian devils. Regression correlated with immune cell infiltration and antibody responses against DFTD cells. These data support the concept that immunisation of devils with DFTD cancer cells can successfully induce humoral responses against DFTD and trigger immune-mediated regression of established tumours. Our findings support the feasibility of a protective DFTD vaccine and ultimately the preservation of the species. PMID:28276463

  19. Growth, productivity, and relative extinction risk of a data-sparse devil ray

    PubMed Central

    Pardo, Sebastián A.; Kindsvater, Holly K.; Cuevas-Zimbrón, Elizabeth; Sosa-Nishizaki, Oscar; Pérez-Jiménez, Juan Carlos; Dulvy, Nicholas K.

    2016-01-01

    Devil rays (Mobula spp.) face intensifying fishing pressure to meet the ongoing international demand for gill plates. The paucity of information on growth, mortality, and fishing effort for devil rays make quantifying population growth rates and extinction risk challenging. Furthermore, unlike manta rays (Manta spp.), devil rays have not been listed on CITES. Here, we use a published size-at-age dataset for the Spinetail Devil Ray (Mobula japanica), to estimate somatic growth rates, age at maturity, maximum age, and natural and fishing mortality. We then estimate a plausible distribution of the maximum intrinsic population growth rate (rmax) and compare it to 95 other chondrichthyans. We find evidence that larger devil ray species have low somatic growth rate, low annual reproductive output, and low maximum population growth rates, suggesting they have low productivity. Fishing rates of a small-scale artisanal Mexican fishery were comparable to our estimate of rmax, and therefore probably unsustainable. Devil ray rmax is very similar to that of manta rays, indicating devil rays can potentially be driven to local extinction at low levels of fishing mortality and that a similar degree of protection for both groups is warranted. PMID:27658342

  20. On the production of Gamma rays and Relativistic Runaway Electron Avalanches from Martian dust storms

    NASA Astrophysics Data System (ADS)

    Arabshahi, S.; Majid, W.; Dwyer, J. R.; Rassoul, H.

    2016-12-01

    In Earth's atmosphere, runaway electrons are routinely produced from large electric fields such as occurs inside thunderclouds. Electrons run away when the average rate of energy loss in a medium is less than the average rate of energy gains from an electric field. These electrons can then produce more energetic electrons, and subsequently an avalanche of energetic electrons, through electron-electron Møller scattering with air atoms and molecules. The process is called a Relativistic Runaway Electron Avalanche (RREA). RREA also produces large flux of X-rays and gamma rays (e.g. Terrestrial Gamma Ray Flashes) through bremsstrahlung scattering. Theoretical modeling of electric fields inside dust devils [Farrel et al. 2006], and possible observation of large electrostatic discharges from Mars [Ruf et al. 2009] suggest that the electric fields could get close to the breakdown values for Mars' atmosphere, i.e. 25 kV/m. Using detailed Monte Carlo simulations, we have shown that for such electric fields it is possible to have a RREA-like mechanism also at work inside the Martian dust storms, capable of producing a large flux of gamma-ray photons. We have also shown that the resulting gamma ray photons could be detected using instruments either on the surface of Mars or on orbiting satellites.

  1. On Release of Microbe-Laden Particles from Mars Landers

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2006-01-01

    A paper presents a study in which rates of release of small particles from Mars lander spacecraft into the Martian atmosphere were estimated from first principles. Because such particles can consist of, or be laden with, terrestrial microbes, the study was undertaken to understand their potential for biological contamination of Mars. The study included taking account of forces and energies involved in adhesion of particles and of three mechanisms of dislodgement of particles from the surface of a Mars lander: wind shear, wind-driven impingement of suspended dust, and impingement of wind-driven local saltating sand particles. Wind shear was determined to be effective in dislodging only particles larger than about 10 microns and would probably be of limited interest because such large particles could be removed by pre-flight cleaning of the spacecraft, and their number on the launched spacecraft would thus be relatively small. Dislodgement by wind-driven dust was found to be characterized by an adhesion half-life of the order of 10,000 years judged to be too long to be of concern. Dislodgement by saltating sand particles, including skirts of dust devils, was found to be of potential importance, depending on the sizes of the spacecraft-attached particles and characteristics of both Mars sand-particle and spacecraft surfaces.

  2. Unprecedented last-glacial mass accumulation rates determined by luminescence dating of loess from western Nebraska

    USGS Publications Warehouse

    Roberts, H.M.; Muhs, D.R.; Wintle, A.G.; Duller, G.A.T.; Bettis, E. Arthur

    2003-01-01

    A high-resolution chronology for Peoria (last glacial period) Loess from three sites in Nebraska, midcontinental North America, is determined by applying optically stimulated luminescence (OSL) dating to 35-50 ??m quartz. At Bignell Hill, Nebraska, an OSL age of 25,000 yr near the contact of Peoria Loess with the underlying Gilman Canyon Formation shows that dust accumulation occurred early during the last glacial maximum (LGM), whereas at Devil's Den and Eustis, Nebraska, basal OSL ages are significantly younger (18,000 and 21,000 yr, respectively). At all three localities, dust accumulation ended at some time after 14,000 yr ago. Mass accumulation rates (MARs) for western Nebraska, calculated using the OSL ages, are extremely high from 18,000 to 14,000 yr-much higher than those calculated for any other pre-Holocene location worldwide. These unprecedented MARs coincide with the timing of a mismatch between paleoenvironmental evidence from central North America, and the paleoclimate simulations from atmospheric global circulation models (AGCMs). We infer that the high atmospheric dust loading implied by these MARs may have played an important role, through radiative forcing, in maintaining a colder-than-present climate over central North America for several thousand years after summer insolation exceeded present-day values. ?? 2003 Elsevier Science (USA). All rights reserved.

  3. Physical-property, water-quality, plankton, and bottom-material data for Devils Lake and East Devils Lake, North Dakota, September 1988 through October 1990

    USGS Publications Warehouse

    Sando, Steven K.; Sether, Bradley A.

    1993-01-01

    Physical-properties were measured and water-quality, plankton, and bottom-material samples were collected at 10 sites in Devils Lake and East Devils Lake during September 1988 through October 1990 to study water-quality variability and water-quality and plankton relations in Devils Lake and East Devils Lake. Physical properties measured include specific conductance, pH, water temperature, dissolved-oxygen concentration, water transparency, and light transmission. Water-quality samples were analyzed for concentrations of major ions, selected nutrients, and selected trace elements. Plankton samples were examined for identification and enumeration of phytoplankton and zooplankton species, and bottom-material samples were analyzed for concentrations of selected nutrients. Data-collection procedures are discussed and the data are presented in tabular form.

  4. Low major histocompatibility complex diversity in the Tasmanian devil predates European settlement and may explain susceptibility to disease epidemics

    PubMed Central

    Morris, Katrina; Austin, Jeremy J.; Belov, Katherine

    2013-01-01

    The Tasmanian devil (Sarcophilus harrisii) is at risk of extinction owing to the emergence of a contagious cancer known as devil facial tumour disease (DFTD). The emergence and spread of DFTD has been linked to low genetic diversity in the major histocompatibility complex (MHC). We examined MHC diversity in historical and ancient devils to determine whether loss of diversity is recent or predates European settlement in Australia. Our results reveal no additional diversity in historical Tasmanian samples. Mainland devils had common modern variants plus six new variants that are highly similar to existing alleles. We conclude that low MHC diversity has been a feature of devil populations since at least the Mid-Holocene and could explain their tumultuous history of population crashes. PMID:23221872

  5. Spatial and temporal variability of dissolved sulfate in Devils Lake, North Dakota, 1998

    USGS Publications Warehouse

    Sether, Bradley A.; Vecchia, Aldo V.; Berkas, Wayne R.

    1998-01-01

    The Devils Lake Basin is a 3,810-squaremile closed subbasin of the Red River of the North Basin (fig. 1). About 3,320 square miles of the total 3,810 square miles is tributary to Devils Lake. The Devils Lake Basin contributes to the Red River of the North Basin when the level of Devils Lake is greater than 1,459 feet above sea level.Lake levels of Devils Lake were recorded sporadically from 1867 to 1890. In 1901, the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 through 1998, the lake level has fluctuated between a minimum of 1,400.9 feet above sea level in 1940 and a maximum of 1,444.7 feet above sea level in 1998 (fig. 2). The maximum, which occurred on July 7, 1998, was 22.1 feet higher than the level recorded in February 1993.The rapid rise in the lake level of Devils Lake since 1993 is in response to abovenormal precipitation and below-normal evaporation from the summer of 1993 through 1998. Because of the rising lake level, more than 50,000 acres of land and many roads around the lake have been flooded. In addition, the water quality of Devils Lake changed substantially in 1993 because of the summer flooding (Williams-Sether and others, 1996). In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) flood mitigation options. Current and accurate hydrologic and water-quality information is needed to assess the effectiveness of the flood mitigation options, which include managing and storing water in the Devils Lake Basin, continuing infrastructure protection, and providing an outlet to the Sheyenne River (Wiche, 1998). As part of the U.S. Army Corps of Engineers Devils Lake emergency outlet feasibility study, the U.S. Geological Survey is modeling lake levels and sulfate concentrations in Devils Lake to simulate operation of an emergency outlet. Accurate simulation of sulfate concentrations in Devils Lake is required to determine potential effects of the outlet on downstream water quality. Historical sulfate concentrations are used to calibrate and verify the model. Most of the Devils Lake water-quality data available before 1998 were obtained from samples collected from the water column about three to four times a year. The samples were collected at one location in each of the Devils Lake major bays (West Bay, Main Bay, East Bay, and East Devils Lake). However, sample collection from only one location in a bay may not give an adequate representation of the water quality of the bay because of factors such as wind, precipitation, temperature, surface- and ground-water inflow, and possible bed-sediment interactions. Thus, spatial variability (the variability within each bay) and temporal variability (the variability with time) of dissolved sulfate need to be determined to evaluate the accuracy of the estimates obtained from the model.

  6. Devil Declines and Catastrophic Cascades: Is Mesopredator Release of Feral Cats Inhibiting Recovery of the Eastern Quoll?

    PubMed Central

    Fancourt, Bronwyn A.; Hawkins, Clare E.; Cameron, Elissa Z.; Jones, Menna E.; Nicol, Stewart C.

    2015-01-01

    The eastern quoll (Dasyurus viverrinus) is a medium-sized Australian marsupial carnivore that has recently undergone a rapid and severe population decline over the 10 years to 2009, with no sign of recovery. This decline has been linked to a period of unfavourable weather, but subsequent improved weather conditions have not been matched by quoll recovery. A recent study suggested another mechanism: that declines in Tasmanian devil (Sarcophilus harrisii) populations, due to the spread of the fatal Devil Facial Tumour Disease, have released feral cats (Felis catus) from competitive suppression, with eastern quoll declines linked to a subsequent increase in cat sightings. Yet current evidence of intraguild suppression among devils, cats and quolls is scant and equivocal. We therefore assessed the influences of top-down effects on abundance and activity patterns among devils, feral cats and eastern quolls. Between 2011 and 2013, we monitored four carnivore populations using longitudinal trapping and camera surveys, and performed camera surveys at 12 additional sites throughout the eastern quoll’s range. We did not find evidence of a negative relationship between devil and cat abundance, nor of higher cat abundance in areas where devil populations had declined the longest. Cats did not appear to avoid devils spatially; however, there was evidence of temporal separation of cat and devil activity, with reduced separation and increasing nocturnal activity observed in areas where devils had declined the longest. Cats and quolls used the same areas, and there was no evidence that cat and quoll abundances were negatively related. Temporal overlap in observed cat and quoll activity was higher in summer than in winter, but this seasonal difference was unrelated to devil declines. We suggest that cats did not cause the recent quoll decline, but that predation of juvenile quolls by cats could be inhibiting low density quoll populations from recovering their former abundance through a ‘predator pit’ effect following weather-induced decline. Predation intensity could increase further should cats become increasingly nocturnal in response to devil declines. PMID:25760348

  7. Devil declines and catastrophic cascades: is mesopredator release of feral cats inhibiting recovery of the eastern quoll?

    PubMed

    Fancourt, Bronwyn A; Hawkins, Clare E; Cameron, Elissa Z; Jones, Menna E; Nicol, Stewart C

    2015-01-01

    The eastern quoll (Dasyurus viverrinus) is a medium-sized Australian marsupial carnivore that has recently undergone a rapid and severe population decline over the 10 years to 2009, with no sign of recovery. This decline has been linked to a period of unfavourable weather, but subsequent improved weather conditions have not been matched by quoll recovery. A recent study suggested another mechanism: that declines in Tasmanian devil (Sarcophilus harrisii) populations, due to the spread of the fatal Devil Facial Tumour Disease, have released feral cats (Felis catus) from competitive suppression, with eastern quoll declines linked to a subsequent increase in cat sightings. Yet current evidence of intraguild suppression among devils, cats and quolls is scant and equivocal. We therefore assessed the influences of top-down effects on abundance and activity patterns among devils, feral cats and eastern quolls. Between 2011 and 2013, we monitored four carnivore populations using longitudinal trapping and camera surveys, and performed camera surveys at 12 additional sites throughout the eastern quoll's range. We did not find evidence of a negative relationship between devil and cat abundance, nor of higher cat abundance in areas where devil populations had declined the longest. Cats did not appear to avoid devils spatially; however, there was evidence of temporal separation of cat and devil activity, with reduced separation and increasing nocturnal activity observed in areas where devils had declined the longest. Cats and quolls used the same areas, and there was no evidence that cat and quoll abundances were negatively related. Temporal overlap in observed cat and quoll activity was higher in summer than in winter, but this seasonal difference was unrelated to devil declines. We suggest that cats did not cause the recent quoll decline, but that predation of juvenile quolls by cats could be inhibiting low density quoll populations from recovering their former abundance through a 'predator pit' effect following weather-induced decline. Predation intensity could increase further should cats become increasingly nocturnal in response to devil declines.

  8. Dietary partitioning of Australia's two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range

    PubMed Central

    Johnson, Christopher N.; Barmuta, Leon A.; Jones, Menna E.

    2017-01-01

    Australia’s native marsupial fauna has just two primarily flesh-eating ‘hypercarnivores’, the Tasmanian devil (Sarcophilus harrisii) and the spotted-tailed quoll (Dasyurus maculatus) which coexist only on the island of Tasmania. Devil populations are currently declining due to a fatal transmissible cancer. Our aim was to analyse the diet of both species across their range in Tasmania, as a basis for understanding how devil decline might affect the abundance and distribution of quolls through release from competition. We used faecal analysis to describe diets of one or both species at 13 sites across Tasmania. We compared diet composition and breadth between the two species, and tested for geographic patterns in diets related to rainfall and devil population decline. Dietary items were classified into 6 broad categories: large mammals (≥ 7.0kg), medium-sized mammals (0.5–6.9kg), small mammals (< 0.5kg), birds, reptiles and invertebrates. Diet overlap based on prey-size category was high. Quoll diets were broader than devils at all but one site. Devils consumed more large and medium-sized mammals and quolls more small mammals, reptiles and invertebrates. Medium-sized mammals (mainly Tasmanian pademelon Thylogale billardierii), followed by large mammals (mainly Bennett’s wallaby Macropus rufogriseus) and birds, were the most important prey groups for both species. Diet composition varied across sites, suggesting that both species are flexible and opportunistic foragers, but was not related to rainfall for devils. Quolls included more large mammals but fewer small mammals and invertebrates in their diet in the eastern drier parts of Tasmania where devils have declined. This suggests that a competitive release of quolls may have occurred and the substantial decline of devils has provided more food in the large-mammal category for quolls, perhaps as increased scavenging opportunities. The high diet overlap suggests that if resources become limited in areas of high devil density, interspecific competition could occur. PMID:29176811

  9. Coordinated analyses of orbital and spirit rover data to characterize surface materials on the cratered plains of Gusev Crater, Mars

    USGS Publications Warehouse

    Lichtenberg, K.A.; Arvidson, R. E.; Poulet, F.; Morris, R.V.; Knudson, A.; Bell, J.F.; Bellucci, G.; Bibring, J.-P.; Farrand, W. H.; Johnson, J. R.; Ming, D. W.; Pinet, P.C.; Rogers, A.D.; Squyres, S. W.

    2007-01-01

    Comparison of the Mars Exploration Rover Spirit's Pancam (0.4 to 1.0 ??m) and Mars Express Observatoire pour la Mineralogie l'Eau, les Glaces et l'Activite?? (OMEGA) (0.4 to 2.5 ??m) spectral reflectance data over Spirit's traverses shows that Gusev cratered plains are dominated by nanophase ferric-oxide-rich dust covering weakly altered basaltic sands. This interpretation is also consistent with both observations from OMEGA data covering plains beyond the traverse region and interpretations of data from the other payload instruments on the Spirit Rover. OMEGA observations of relatively low albedo regions where dust has presumably been stripped by dust devils show negative spectral reflectance slopes from 1.5 to 2.5 ??m and moderately masked spectral features which are indicative of olivine or pyroxene. High-albedo regions north and south of the Spirit landing site have flat spectral reflectance slopes and few spectral features, although all spectra have a nanophase ferric-oxide absorption edge between 0.4 and 0.75 ??m. Comparison of THEMIS-derived thermal inertia values with OMEGA-derived spectral parameters shows that although the dust cover can be optically thick (0.4 to 2.5 ??m wavelength region) in some areas, it is not thick enough (???1 cm) to mask the thermal inertia of the underlying substrate for areas included in this study. Copyright 2007 by the American Geophysical Union.

  10. Ultraviolet and visible variability of the coma of Comet Levy (1990c)

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Budzien, S. A.; Festou, M. C.; A'Hearn, M. F.; Tozzi, G. P.

    1992-01-01

    A visible lightcurve of Comet Levy obtained with the IUE Fine Error Sensor has revealed short-term coma variability. A production-rate source function is derivable from these data which implies a nucleus exhibiting hemispherically asymmetric activity. The ratio of gas-to-dust-production rates is also noted to exhibit asymmetry. The low dust-outflow velocity derived from observations, at about 200 m/sec, indicates a distribution that is rich in large, 3-10 micron particles.

  11. The Desert Storms Project - Towards an Improved Representation of Meteorological Processes in Models of Mineral Dust Emission

    NASA Astrophysics Data System (ADS)

    Knippertz, P.; Marsham, J. H.; Schepanski, K.; Heinold, B.; Cowie, S.; Fiedler, S.; Roberts, A. J.

    2012-04-01

    Dust significantly affects weather and climate through its influences on radiation, cloud microphysics, atmospheric chemistry and the carbon cycle via the fertilization of ecosystems. It also has important impacts on air quality and human health. To date, quantitative estimates of dust emission and deposition are highly uncertain. This is largely due to the strongly nonlinear dependence of emissions on peak winds, which are often underestimated in models and analysis data. This contribution serves to introduce the general motivation and approach of the recently started "Desert Storms" project at the University of Leeds. It is funded by the European Research Council (ERC) and runs until 2015. The core objective of this project is to explore ways of better representing crucial meteorological processes in numerical dust models. These include daytime downward mixing of momentum from nocturnal low-level jets, convective cold pools (sometimes referred to as "haboobs") and small-scale dust devils and plumes in the daytime convective boundary layer. To achieve this, the following steps are currently undertaken: (A) a detailed analysis of observations including station data, measurements from recent and future field campaigns, analysis data and novel satellite products, (B) a comprehensive comparison between output from a wide range of global and regional dust models, and (C) extensive sensitivity studies with regional and large-eddy simulation models in realistic and idealized set-ups to explore effects of resolution and model physics. The ultimate goal of the project is to develop novel parameterizations that link gridscale quantities with probabilities of winds exceeding a given threshold within the gridbox. Liaising with the regional and global aerosol and dust modelling community right from the outset of the project helps to ensure that results are targeted towards operational and Earth system modelling needs. First detailed results from "Desert Storms" will be presented in several accompanying contributions in the same session.

  12. Spitzer Spies Spectacular Sombrero

    NASA Image and Video Library

    2005-05-04

    NASA's Spitzer Space Telescope set its infrared eyes on one of the most famous objects in the sky, Messier 104, also called the Sombrero galaxy. In this striking infrared picture, Spitzer sees an exciting new view of a galaxy that in visible light has been likened to a "sombrero," but here looks more like a "bulls-eye." Recent observations using Spitzer's infrared array camera uncovered the bright, smooth ring of dust circling the galaxy, seen in red. In visible light, because this galaxy is seen nearly edge-on, only the near rim of dust can be clearly seen in silhouette. Spitzer's full view shows the disk is warped, which is often the result of a gravitational encounter with another galaxy, and clumpy areas spotted in the far edges of the ring indicate young star-forming regions. Spitzer's infrared view of the starlight from this galaxy, seen in blue, can pierce through obscuring murky dust that dominates in visible light. As a result, the full extent of the bulge of stars and an otherwise hidden disk of stars within the dust ring are easily seen. The Sombrero galaxy is located some 28 million light years away. Viewed from Earth, it is just six degrees south of its equatorial plane. Spitzer detected infrared emission not only from the ring, but from the center of the galaxy too, where there is a huge black hole, believed to be a billion times more massive than our Sun. This picture is composed of four images taken at 3.6 (blue), 4.5 (green), 5.8 (orange), and 8.0 (red) microns. The contribution from starlight (measured at 3.6 microns) has been subtracted from the 5.8 and 8-micron images to enhance the visibility of the dust features. http://photojournal.jpl.nasa.gov/catalog/PIA07899

  13. Debris Disk Dust Characterization through Spectral Types: Deep Visible-Light Imaging of Nine Systems

    NASA Astrophysics Data System (ADS)

    Choquet, Elodie

    2017-08-01

    We propose STIS coronagraphy of 9 debris disks recently seen in the near-infrared from our re-analysis of archival NICMOS data. STIS coronagraphy will provide complementary visible-light images that will let us characterize the disk colors needed to place constraints on dust grain sizes, albedos, and anisotropy of scattering of these disks. With 3 times finer angular resolution and much better sensitivity, our STIS images will dramatically surpass the NICMOS discovery images, and will more clearly reveal disk local structures, cleared inner regions, and test for large-scale asymmetries in the dust distributions possibly triggered by associated planets in these systems. The exquisite sensitivity to visible-light scattering by submicron particles uniquely offered by STIS coronagraphy will let us detect and spatially characterize the diffuse halo of dust blown out of the systems by the host star radiative pressure. Our sample includes disks around 3 low-mass stars, 3 solar-type stars, and 3 massive A stars; together with our STIS+NICMOS imaging of 6 additional disks around F and G stars, our sample covers the full range of spectral types and will let us perform a comparative study of dust distribution properties as a function of stellar mass and luminosity. Our sample makes up more than 1/3 of all debris disks imaged in scattered light to date, and will offer the first homogeneous characterization of the visible-light to near-IR properties of debris disk systems over a large range of spectral types. Our program will let us analyze how the dynamical balance is affected by initial conditions and star properties, and how it may be perturbed by gas drag or planet perturbations.

  14. Genome Sequencing and Analysis of the Tasmanian Devil and Its Transmissible Cancer

    PubMed Central

    Murchison, Elizabeth P.; Schulz-Trieglaff, Ole B.; Ning, Zemin; Alexandrov, Ludmil B.; Bauer, Markus J.; Fu, Beiyuan; Hims, Matthew; Ding, Zhihao; Ivakhno, Sergii; Stewart, Caitlin; Ng, Bee Ling; Wong, Wendy; Aken, Bronwen; White, Simon; Alsop, Amber; Becq, Jennifer; Bignell, Graham R.; Cheetham, R. Keira; Cheng, William; Connor, Thomas R.; Cox, Anthony J.; Feng, Zhi-Ping; Gu, Yong; Grocock, Russell J.; Harris, Simon R.; Khrebtukova, Irina; Kingsbury, Zoya; Kowarsky, Mark; Kreiss, Alexandre; Luo, Shujun; Marshall, John; McBride, David J.; Murray, Lisa; Pearse, Anne-Maree; Raine, Keiran; Rasolonjatovo, Isabelle; Shaw, Richard; Tedder, Philip; Tregidgo, Carolyn; Vilella, Albert J.; Wedge, David C.; Woods, Gregory M.; Gormley, Niall; Humphray, Sean; Schroth, Gary; Smith, Geoffrey; Hall, Kevin; Searle, Stephen M.J.; Carter, Nigel P.; Papenfuss, Anthony T.; Futreal, P. Andrew; Campbell, Peter J.; Yang, Fengtang; Bentley, David R.; Evers, Dirk J.; Stratton, Michael R.

    2012-01-01

    Summary The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations. PaperClip PMID:22341448

  15. Boldness towards novelty and translocation success in captive-raised, orphaned Tasmanian devils.

    PubMed

    Sinn, David L; Cawthen, Lisa; Jones, Susan M; Pukk, Chrissy; Jones, Menna E

    2014-01-01

    Translocation of endangered animals is common, but success is often variable and/or poor. Despite its intuitive appeal, little is known with regards to how individual differences amongst translocated animals influence their post-release survival, growth, and reproduction. We measured consistent pre-release responses to novelty in a familiar environment (boldness; repeatability=0.55) and cortisol response in a group of captive-reared Tasmanian devils, currently listed as "Endangered" by the IUCN. The devils were then released at either a hard- or soft-release site within their mothers' population of origin, and individual growth, movement, reproduction (females only), and survival across 2-8 months post-release was measured. Sex, release method, cohort, behavior, and cortisol response did not affect post-release growth, nor did these factors influence the home range size of orphan devils. Final linear distances moved from the release site were impacted heavily by the release cohort, but translocated devils' movement overall was not different from that in the same-age wild devils. All orphan females of reproductive age were subsequently captured with offspring. Overall survival rates in translocated devils were moderate (∼42%), and were not affected by devil sex, release method, cohort, release weight, or pre-release cortisol response. Devils that survived during the study period were, however, 3.5 times more bold than those that did not (effect size r=0.76). Our results suggest that conservation managers may need to provide developmental conditions in captivity that promote a wide range of behaviors across individuals slated for wild release. © 2013 Wiley Periodicals, Inc.

  16. 9 CFR 319.760 - Deviled ham, deviled tongue, and similar products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: Provided, That the total fat content shall not exceed 35 percent of the finished product. The moisture content of deviled ham shall not exceed that of the fresh unprocessed meat. (b) The moisture content of...

  17. 9 CFR 319.760 - Deviled ham, deviled tongue, and similar products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: Provided, That the total fat content shall not exceed 35 percent of the finished product. The moisture content of deviled ham shall not exceed that of the fresh unprocessed meat. (b) The moisture content of...

  18. Immunization Strategies Producing a Humoral IgG Immune Response against Devil Facial Tumor Disease in the Majority of Tasmanian Devils Destined for Wild Release

    PubMed Central

    Pye, Ruth; Patchett, Amanda; McLennan, Elspeth; Thomson, Russell; Carver, Scott; Fox, Samantha; Pemberton, David; Kreiss, Alexandre; Baz Morelli, Adriana; Silva, Anabel; Pearse, Martin J.; Corcoran, Lynn M.; Belov, Katherine; Hogg, Carolyn J.; Woods, Gregory M; Lyons, A. Bruce

    2018-01-01

    Devil facial tumor disease (DFTD) is renowned for its successful evasion of the host immune system. Down regulation of the major histocompatabilty complex class I molecule (MHC-I) on the DFTD cells is a primary mechanism of immune escape. Immunization trials on captive Tasmanian devils have previously demonstrated that an immune response against DFTD can be induced, and that immune-mediated tumor regression can occur. However, these trials were limited by their small sample sizes. Here, we describe the results of two DFTD immunization trials on cohorts of devils prior to their wild release as part of the Tasmanian Government’s Wild Devil Recovery project. 95% of the devils developed anti-DFTD antibody responses. Given the relatively large sample sizes of the trials (N = 19 and N = 33), these responses are likely to reflect those of the general devil population. DFTD cells manipulated to express MHC-I were used as the antigenic basis of the immunizations in both trials. Although the adjuvant composition and number of immunizations differed between trials, similar anti-DFTD antibody levels were obtained. The first trial comprised DFTD cells and the adjuvant combination of ISCOMATRIX™, polyIC, and CpG with up to four immunizations given at monthly intervals. This compared to the second trial whereby two immunizations comprising DFTD cells and the adjuvant combination ISCOMATRIX™, polyICLC (Hiltonol®) and imiquimod were given a month apart, providing a shorter and, therefore, more practical protocol. Both trials incorporated a booster immunization given up to 5 months after the primary course. A key finding was that devils in the second trial responded more quickly and maintained their antibody levels for longer compared to devils in the first trial. The different adjuvant combination incorporating the RNAase resistant polyICLC and imiquimod used in the second trial is likely to be responsible. The seroconversion in the majority of devils in these anti-DFTD immunization trials was remarkable, especially as DFTD is hallmarked by its immune evasion mechanisms. Microsatellite analyzes of MHC revealed that some MHC-I microsatellites correlated to stronger immune responses. These trials signify the first step in the long-term objective of releasing devils with immunity to DFTD into the wild. PMID:29515577

  19. Curiosity Brushwork on Martian Bonanza King Target

    NASA Image and Video Library

    2014-08-18

    NASA Curiosity Mars rover used the Dust Removal Tool on its robotic arm to brush aside reddish, more-oxidized dust, revealing a gray patch of less-oxidized rock material at a target called Bonanza King, visible from the rover Mastcam.

  20. Nutritional status and functional digestive histology of the carnivorous Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Stannard, Hayley J; Tong, Lydia; Shaw, Michelle; Van Sluys, Monique; McAllan, Bronwyn; Raubenheimer, David

    2017-03-01

    Tasmanian devils (Sarcophilus harrisii) are the largest carnivorous marsupial in Australia. Currently many animals are being held in captivity as a management procedure to combat Devil Facial Tumor Disease. Only one published study thus far has investigated nutrition in Tasmanian devils, determining their maintenance energy requirements and digestibility on a rodent diet. More information is needed on Tasmanian devil nutritional and gastrointestinal function to aid in their management. Our study aimed to investigate the current nutritional status of Tasmanian devils in a captive population and functional morphology and histology of their gastrointestinal tract. Animals were maintained on a diet of kangaroo, rabbit, quail and chicken wings and digestibility of these items by the devils was high (>85% for dry matter, protein and lipid). Kangaroo and rabbit were high protein diet items while the quail and chicken wings provided high lipid to the diet, and carbohydrates were minimal (≤3% energy). Maintenance energy requirements were determined to be 620kJkg -0.75 d -1 with no significant difference between males and females. Opportunistic samples for gastrointestinal morphology were obtained from captive specimens. Tasmanian devils have a simple digestive tract similar to other dasyurid species. Both the morphology and histology of the gastrointestinal tract show specialization for a high protein carnivorous diet. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Seeing Beyond the Monkey Head

    NASA Image and Video Library

    2015-08-20

    Scores of baby stars shrouded by dust are revealed in this infrared image of the star-forming region NGC 2174, as seen by NASA Spitzer Space Telescope. Found in the constellation Orion, NGC 2174 is located around 6,400 light-years away. Some of the clouds in the region resemble the face of a monkey in visible-light images, hence the nebula's nickname: the "Monkey Head." However, in infrared images such as this, the monkey disappears. That's because different clouds are highlighted in infrared and visible-light images. Found in the northern reaches of the constellation Orion, NGC 2174 is located around 6,400 light-years away. Columns of dust, slightly to the right of center in the image, are being carved out of the dust by radiation and stellar winds from the hottest young stars recently born in the area. Spitzer's infrared view provides us with a preview of the next clusters of stars that will be born in the coming millennia. The reddish spots of light scattered through the darker filaments are infant stars swaddled by blankets of warm dust. The warm dust glows brightly at infrared wavelengths. Eventually, these stars will pop out of their dusty envelopes and their light will carve away at the dust clouds surrounding them. In this image, infrared wavelengths have been assigned visible colors we see with our eyes. Light with a wavelength of 3.5 microns is shown in blue, 8.0 microns is green, and 24 microns in red. The greens show the organic molecules in the dust clouds, illuminated by starlight. Reds are caused by the thermal radiation emitted from the very hottest areas of dust. Areas around the edges that were not observed by Spitzer have been filled in using infrared observations from NASA's Wide Field Infrared Survey Explorer, or WISE. http://photojournal.jpl.nasa.gov/catalog/PIA19836

  2. The origin and evolution of dust clouds in Central Asia

    USGS Publications Warehouse

    Smirnov, V.V.; Gillette, Dale A.; Golitsyn, G.S.; MacKinnon, D.J.

    1994-01-01

    Data from a high resolution radiometer AVHRR (580-680 nm optical lengthwaves) installed on the "NOAA-11" satellite as well as TV (500-700 nm) and IR (8000-12000 nm) equipment of the Russia satellite "Meteor-2/16" were used to study the evolution of dust storms for 1-30 September 1989 in Tajikistan, Uzbekistan, Turkmenistan and Afghanistan. These data help to validate the hypothesis, that long-term dusted boundary layer (duration of the order of a day or more), but of comparatively not high optical density (4-10 km meteorological visibility range at the 20-50 km background), is formed after the northwest intrusions into a region of intensive cold fronts at the surface wind velocities of 7-15 m/s. Stability of dust clouds of vertical power to 3-3.5 km (up to an inversion level) is explained by an action of collective buoyancy factors at heating the dust particles of 2-4 ??m in mean diameter by solar radiation. The more intensive intrusions stimulate a formation of simultaneously dust and water clouds. The last partially reduce the solar radiation (by the calculations of the order of 30-50%) and decrease the role of buoyancy factors. Thus, initiated is the intensive but short-term dusted boundary layer at horizontal visibility of 50-200 m. ?? 1994.

  3. Optical properties of dust and the opacity of the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Korablev, O.; Moroz, V. I.; Petrova, E. V.; Rodin, A. V.

    Particulate component of the Mars atmosphere composed by micron-sized products of soil weathering and water ice clouds strongly affects the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with τ ≈ 0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data (τ = 0.05-0.2) and measurements from the surface (Viking landers, Pathfinder) which give the typical “clear” optical depth of τ ≈ 0.5 from one side, and ground-based observations in the UV-visible range showing much more transparent atmosphere, on the other side. Also the relationship between τ9 and the visible optical depth is not well constrained experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.

  4. Open questions on optical properties of dust and the opacity of the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Korablev, O.; Moroz, V.; Petrova, E.; Rodin, A.

    Particulate component of the atmosphere composed by micron-sized products of soil weathering and water ice clouds that strongly affect the current climate of the planet. In the absence of a dust storm so-called permanent dust haze with0.2 in the atmosphere of Mars determines its thermal structure. Dust loading varies substantially with the season and geographic location, and only the data of mapping instruments are adequate to characterize it, such as TES/MGS and IRTM/Viking. In spite of vast domain of collected data, no model is now capable to explain all observed spectral features of dust aerosol. Several mineralogical and microphysical models of the atmospheric dust have been proposed but they cannot explain the pronounced systematic differences between the IR data and measurem ents from the surface (Viking landers, Pathfinder) which give in the quiet seasons the typical optical depth of? 0.5 from one side, and ground-based observations in the UV-visible range that frequently infer <0.2, on the other side. Also the relationship between9 and the visible optical depth is not well established experimentally so far. Future focused measurements are therefore necessary to study Martian aerosol.

  5. A comparative study of prokaryotic diversity and physicochemical characteristics of Devils Hole and the Ash Meadows Fish Conservation Facility, a constructed analog.

    PubMed

    Sackett, Joshua D; Huerta, Desiree C; Kruger, Brittany R; Hamilton-Brehm, Scott D; Moser, Duane P

    2018-01-01

    Devils Hole is the sole natural habitat of the critically endangered Devils Hole pupfish (Cyprinodon diabolis). To establish a backup population, the Ash Meadows Fish Conservation Facility (AMFCF), a full-scale replica of the uppermost 6.7 m of Devils Hole, was constructed by management agencies in the mid-2010s. Despite rigorous efforts to mimic the bathymetric and physical details of the Devils Hole environment, the biogeochemistry and microbiology of the AMFCF refuge tank remain largely unaddressed. We evaluated water physicochemistry and employed Illumina DNA sequencing of 16S rRNA gene libraries to evaluate planktonic and benthic bacterial and archaeal community composition within their respective physicochemical contexts in Devils Hole and AMFCF on the same day. Major ion concentrations were consistent between the two systems, but water temperature and dissolved oxygen dynamics differed. Bioavailable nitrogen (primarily nitrate) was 5x lower in AMFCF. Devils Hole and AMFCF nitrogen:phosphorus molar ratios were 107:1 and 22:1, indicative of different nutrient control mechanisms. Both sites are microbiologically diverse, with over 40 prokaryotic phyla represented at each, with 37 shared between them and nearly than half deriving from candidate divisions. The abundance and composition of predicted photosynthetic primary producers (Cyanobacteria) was markedly different between sites: Devils Hole planktonic and sediment communities were dominated by Oscillatoria spp. (13.2% mean relative abundance), which proved virtually undetectable in AMFCF. Conversely, AMFCF was dominated by a predicted heterotroph from the Verrucomicrobiaceae family (31.7%); which was comparatively rare (<2.4%) in Devils Hole. We propose that the paucity of bioavailable nitrogen in AMFCF, perhaps resulting from physical isolation from allochthonous environmental inputs, is reflected in the microbial assemblage disparity, influences biogeochemical cycling of other dissolved constituents, and may ultimately impact survivorship and recruitment of refuge populations of the Devils Hole pupfish.

  6. A comparative study of prokaryotic diversity and physicochemical characteristics of Devils Hole and the Ash Meadows Fish Conservation Facility, a constructed analog

    PubMed Central

    Huerta, Desiree C.; Kruger, Brittany R.; Hamilton-Brehm, Scott D.; Moser, Duane P.

    2018-01-01

    Devils Hole is the sole natural habitat of the critically endangered Devils Hole pupfish (Cyprinodon diabolis). To establish a backup population, the Ash Meadows Fish Conservation Facility (AMFCF), a full-scale replica of the uppermost 6.7 m of Devils Hole, was constructed by management agencies in the mid-2010s. Despite rigorous efforts to mimic the bathymetric and physical details of the Devils Hole environment, the biogeochemistry and microbiology of the AMFCF refuge tank remain largely unaddressed. We evaluated water physicochemistry and employed Illumina DNA sequencing of 16S rRNA gene libraries to evaluate planktonic and benthic bacterial and archaeal community composition within their respective physicochemical contexts in Devils Hole and AMFCF on the same day. Major ion concentrations were consistent between the two systems, but water temperature and dissolved oxygen dynamics differed. Bioavailable nitrogen (primarily nitrate) was 5x lower in AMFCF. Devils Hole and AMFCF nitrogen:phosphorus molar ratios were 107:1 and 22:1, indicative of different nutrient control mechanisms. Both sites are microbiologically diverse, with over 40 prokaryotic phyla represented at each, with 37 shared between them and nearly than half deriving from candidate divisions. The abundance and composition of predicted photosynthetic primary producers (Cyanobacteria) was markedly different between sites: Devils Hole planktonic and sediment communities were dominated by Oscillatoria spp. (13.2% mean relative abundance), which proved virtually undetectable in AMFCF. Conversely, AMFCF was dominated by a predicted heterotroph from the Verrucomicrobiaceae family (31.7%); which was comparatively rare (<2.4%) in Devils Hole. We propose that the paucity of bioavailable nitrogen in AMFCF, perhaps resulting from physical isolation from allochthonous environmental inputs, is reflected in the microbial assemblage disparity, influences biogeochemical cycling of other dissolved constituents, and may ultimately impact survivorship and recruitment of refuge populations of the Devils Hole pupfish. PMID:29543879

  7. Multi-Wavelength Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site] Click on individual images below for larger view

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    [figure removed for brevity, see original site]

    The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this image from NASA's Spitzer Space Telescope. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years.

    The main image is a composite mosaic obtained with the multiband imaging photometer for Spitzer and the infrared array camera. Thermal infrared emission at 24 microns detected by the photometer (red, bottom left inset) is combined with camera data at 8.0 microns (green, bottom center inset) and 3.6 microns (blue, bottom right inset).

    A visible-light image of Messier 81, obtained at Kitt Peak National Observatory, a ground-based telescope, is shown in the upper right inset. Both the visible-light picture and the 3.6-micron near-infrared image trace the distribution of stars, although the Spitzer image is virtually unaffected by obscuring dust. Both images reveal a very smooth stellar mass distribution, with the spiral arms relatively subdued.

    As one moves to longer wavelengths, the spiral arms become the dominant feature of the galaxy. The 8-micron emission is dominated by infrared light radiated by hot dust that has been heated by nearby luminous stars. Dust in the galaxy is bathed by ultraviolet and visible light from nearby stars. Upon absorbing an ultraviolet or visible-light photon, a dust grain is heated and re-emits the energy at longer infrared wavelengths. The dust particles are composed of silicates (chemically similar to beach sand), carbonaceous grains and polycyclic aromatic hydrocarbons and trace the gas distribution in the galaxy. The well-mixed gas (which is best detected at radio wavelengths) and dust provide a reservoir of raw materials for future star formation.

    The 24-micron multiband imaging photometer image shows emission from warm dust heated by the most luminous young stars. The infrared-bright clumpy knots within the spiral arms show where massive stars are being born in giant H II (ionized hydrogen) regions. Studying the locations of these star forming regions with respect to the overall mass distribution and other constituents of the galaxy (e.g., gas) will help identify the conditions and processes needed for star formation.

  8. A Glimpse of the Milky Way

    NASA Image and Video Library

    2005-12-13

    In visible light, the bulk of our Milky Way galaxy stars are eclipsed behind thick clouds of galactic dust and gas. But to the infrared eyes of NASA Spitzer Space Telescope, distant stars and dust clouds shine with unparalleled clarity and color.

  9. Short-Wavelength Infrared Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this NASA Spitzer Space Telescope image. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years from Earth.

    Because of its proximity, M81 provides astronomers with an enticing opportunity to study the anatomy of a spiral galaxy in detail. The unprecedented spatial resolution and sensitivity of Spitzer at infrared wavelengths show a clear separation between the several key constituents of the galaxy: the old stars, the interstellar dust heated by star formation activity, and the embedded sites of massive star formation. The infrared images also permit quantitative measurements of the galaxy's overall dust content, as well as the rate at which new stars are being formed.

    The infrared image was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). Winding outward from the bluish-white central bulge of the galaxy, where old stars predominate and there is little dust, the grand spiral arms are dominated by infrared emission from dust. Dust in the galaxy is bathed by ultraviolet and visible light from the surrounding stars. Upon absorbing an ultraviolet or visible-light photon, a dust grain is heated and re-emits the energy at longer infrared wavelengths. The dust particles, composed of silicates (which are chemically similar to beach sand) and polycyclic aromatic hydrocarbons, trace the gas distribution in the galaxy. The well-mixed gas (which is best detected at radio wavelengths) and dust provide a reservoir of raw materials for future star formation.

    The infrared-bright clumpy knots within the spiral arms denote where massive stars are being born in giant H II (ionized hydrogen) regions. The 8-micron emission traces the regions of active star formation in the galaxy. Studying the locations of these regions with respect to the overall mass distribution and other constituents of the galaxy (e.g., gas) will help identify the conditions and processes needed for star formation. With the Spitzer observations, this information comes to us without complications from absorption by cold dust in the galaxy, which makes interpretation of visible-light features uncertain.

    The white stars scattered throughout the field of view are foreground stars within our own Milky Way galaxy.

  10. An Archaeological Inventory of Portions of the Devils Lake Basin, Benson, Eddy, Nelson, and Ramsey Counties, North Dakota

    DTIC Science & Technology

    1989-01-18

    INVENTORY O: PORTIONS OF THE DEVILS LAKE BASIN , I BENSON, EDDY, NELSON, AND RAMSEY COUNTIES, NORTH DAKOTA By: 5 MERVIN G. FLOODMAN, M.A. Submitted By...had a geomorphological study conducted for the Devils Lake Basin , to interpret the Pleistocene and Holocene development of the landscape, and assess...investigations, in an attempt to make broad statements about the location of cultural resources within the Devils Lake Basin . None of the historic sites

  11. Source reconciliation of atmospheric dust causing visibility impairment in Class I areas of the western United States

    NASA Astrophysics Data System (ADS)

    Kavouras, Ilias G.; Etyemezian, Vicken; Dubois, David W.; Xu, Jin; Pitchford, Marc

    2009-01-01

    Aerosol data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network, air mass backward trajectories, land use maps, soil characteristics maps, diagnostic ratios of elemental composition, and multivariate linear regression were utilized as part of a semiquantitative analysis. The purpose of the analysis was to determine the types of dust-causing events that contribute to low visibility at a given site when the sum of extinction from coarse mass (CM) and fine soil (FS) was larger than any other aerosol component and the reconstructed aerosol extinction coefficient was among the 20% highest (calculated on a calendar year basis) for that site. For these "worst dust days," the above tools were used to ascribe the cause of low visibility to one of the following types of events: (1) transcontinental transport of dust originating from Asia; (2) windblown dust events from sources located nearby the site and; (3) transport of windblown dust from sources upwind of the site. Depending on the weight of evidence, a low or high level of confidence was associated with the assignment of one of these three events. Absence of convincing evidence resulted in ascribing the worst dust day to "undetermined events." Of the 610 worst dust days over the 2001-2003 period, 51% were associated with one of the three event types with high confidence and an additional 30% were accounted for with low confidence. Of the 496 worst dust days associated with an event (either low or high confidence), Asian dust was the assigned event on 55 days (for 2001-2002), locally generated windblown dust on 201 days, and transport from upwind source areas susceptible to wind erosion on 240 days. Events associated with windblown episodes from source areas in the United States and Mexico exhibited the highest dust concentrations. Asian dust events were associated with lower dust concentrations and a larger FS-to-CM ratio. Some variations between Asian dust and continental North American dust were observed in organic matter (OMC), black carbon (LAC), and nitrate (NO3-) content. None of the tools used in this study was adequate for identifying events associated with mechanically released dust by anthropogenic activities including, agriculture, construction and motor vehicle travel on paved and unpaved roads. Some of the worst dust days may have been caused by these types of activities, especially in central Arizona and northern and Southern California, where the fraction of undetermined events was higher than in other regions within the western United States. All in all, the methods and results of this study can help improve the performance of large-scale dust emission models and provide insight into the distribution of the types of events that cause dust resultant haze in relatively remote areas of the western United States.

  12. 40 CFR 49.124 - Rule for limiting visible emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions. (a) What is the purpose of this section? This section limits the visible emissions of air... residential buildings with four or fewer dwelling units, fugitive dust from public roads owned or maintained... sources. (d) What are the opacity limits for air pollution sources? (1) The visible emissions from an air...

  13. GO-DEVILS

    DOEpatents

    Jefferson, S.

    1958-01-28

    This patent relates to a device normally termed a godevil for use in clearing pipes of sludge, and in particular describes an arrangement for housing a radioactive source within a go-devil whereby the source is removed from a radioactivity shield for detection purposes only when the go-devil is in use. In the described go-devil the radioactive source is housed in a member attached to a piston. Under normal pressure conditions the piston is forced in a direction to position the source within a lead shield. A bellows senses the pressure external to the go-devil and acts through a hydraulic line to force the piston in a direction to remove the source from the shield as long as the pressure is above a pre-set value.

  14. High-resolution near-infrared speckle interferometry and radiative transfer modeling of the OH/IR star OH 104.9+2.4

    NASA Astrophysics Data System (ADS)

    Riechers, D.; Balega, Y.; Driebe, T.; Hofmann, K.-H.; Men'shchikov, A. B.; Weigelt, G.

    2004-09-01

    We present near-infrared speckle interferometry of the OH/IR star OH 104.9+2.4 in the K' band obtained with the 6 m telescope of the Special Astrophysical Observatory (SAO). At a wavelength of λ = 2.12 μm the diffraction-limited resolution of 74 mas was attained. The reconstructed visibility reveals a spherically symmetric, circumstellar dust shell (CDS) surrounding the central star. The visibility function shows that the stellar contribution to the total flux at λ = 2.12 μm is less than ˜50%, indicating a rather large optical depth of the CDS. The azimuthally averaged 1-dimensional Gaussian visibility fit yields a diameter of 47 ± 3 mas (FHWM), which corresponds to 112 ± 13 AU for an adopted distance of D = 2.38 ± 0.24 kpc. To determine the structure and the properties of the CDS of OH 104.9+2.4, radiative transfer calculations using the code DUSTY were performed to simultaneously model its visibility and the spectral energy distribution (SED). We found that both the ISO spectrum and the visibility of OH 104.9+2.4 can be well reproduced by a radiative transfer model with an effective temperature Teff = 2500 ± 500 K of the central source, a dust temperature Tin = 1000 ± 200 K at the inner shell boundary Rin ≃ 9.1 R* = 25.4 AU, an optical depth τ2.2 μm = 6.5 ± 0.3, and dust g rain radii ranging from amin = 0.005 ± 0.003 μm to amax = 0.2 ± 0.02 μm with a power law n(a) ∝ a-3.5. It was found that even minor changes in amax have a major impact on both the slope and the curvature of the visibility function, while the SED shows only minor changes. Our detailed analysis demonstrates the potential of dust shell modeling constrained by both the SED and visibilities. Based on data collected at the 6 m BTA telescope of the Special Astrophysical Observatory in Russia.

  15. Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity.

    PubMed

    Lemmon, M T; Wolff, M J; Smith, M D; Clancy, R T; Banfield, D; Landis, G A; Ghosh, A; Smith, P H; Spanovich, N; Whitney, B; Whelley, P; Greeley, R; Thompson, S; Bell, J F; Squyres, S W

    2004-12-03

    A visible atmospheric optical depth of 0.9 was measured by the Spirit rover at Gusev crater and by the Opportunity rover at Meridiani Planum. Optical depth decreased by about 0.6 to 0.7% per sol through both 90-sol primary missions. The vertical distribution of atmospheric dust at Gusev crater was consistent with uniform mixing, with a measured scale height of 11.56 +/- 0.62 kilometers. The dust's cross section weighted mean radius was 1.47 +/- 0.21 micrometers (mm) at Gusev and 1.52 +/- 0.18 mm at Meridiani. Comparison of visible optical depths with 9-mm optical depths shows a visible-to-infrared optical depth ratio of 2.0 +/- 0.2 for comparison with previous monitoring of infrared optical depths.

  16. Global Albedo Variations on Mars from Recent MRO/MARCI and Other Space-Based Observations

    NASA Astrophysics Data System (ADS)

    Bell, J. F., III; Wellington, D. F.

    2017-12-01

    Dramatic changes in Mars surface albedo have been quantified by telescopic, orbital, and surface-based observations over the last 40 years. These changes provide important inputs for global and mesoscale climate models, enabling characterization of seasonal and secular variations in the distribution of mobile surface materials (dust, sand) in the planet's current climate regime. Much of the modern record of dust storms and albedo changes comes from synoptic-scale global imaging from the Viking Orbiter, Mars Global Surveyor (MGS), Hubble Space Telescope (HST), and Mars Reconnaissance Orbiter (MRO) missions, as well as local-scale observations from long-lived surface platforms like the Spirit and Opportunity rovers. Here we focus on the substantial time history of global-scale images acquired from the MRO Mars Color Imager (MARCI). MARCI is a wide-angle multispectral imager that acquires daily coverage of most of the surface at up to 1 km/pixel. MARCI has been in orbit since 2006, providing six Mars years of continuous surface and atmospheric observations, and building on the nearly five previous Mars years of global-scale imaging from the MGS Mars Orbiter Camera Wide Angle (MOC/WA) imager, which operated from 1997 to 2006. While many of the most significant MARCI-observed changes in the surface albedo are the result of large dust storms, other regions experience seasonal darkening events that repeat with different degrees of annual regularity. Some of these are associated with local dust storms, while for others, frequent surface changes take place with no associated evidence for dust storms, suggesting action by seasonally-variable winds and/or small-scale storms/dust devils too small to resolve. Discrete areas of dramatic surface changes across widely separated regions of Tharsis and in portions of Solis Lacus and Syrtis Major are among the regions where surface changes have been observed without a direct association to specific detectable dust storm events. Deposition following the annual southern summer dusty season plays a significant role in maintaining the cyclic nature of these changes. These and other historical observations also show that major regional or global-scale dust storms produce unique changes that may require several Mars years to reverse.

  17. Climatology and potential effects of an emergency outlet, Devils Lake Basin, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.; Vecchia, Aldo V.; Osborne, Leon; Fay, James T.

    2000-01-01

    The Devils Lake Basin is a 3,810-square-mile subbasin in the Red River of the North Basin.  At an elevation of about 1,447 feet above sea level, Devils Lake begins to spill into Stump Lake; and at an elevation of about 1,459 feet above sea level, the combined lakes begin to spill through Tolna Coulee into the Sheyenne River. Since the end of glaciation about 10,000 years ago, Devils Lake has fluctuated between spilling and being dry.  Research by the North Dakota Geological Survey indicates Devils Lake has overflowed into the Sheyenne River at least twice during the past 4,000 years and has spilled into the Stump Lakes several times (Bluemle, 1991; Murphy and others, 1997).  John Bluemle, North Dakota State Geologist, concluded the natural condition for Devils Lake is either rising or falling, and the lake should not be expected to remain at any elevation for a long period of time. Recent conditions indicate the lake is in a rising phase.  The lake rose 24.7 feet from February 1993 to August 1999, and flood damages in the Devils Lake Basin have exceeded $300 million.  These damages, and the potential for additional damages, have led to an effort to develop an outlet to help control lake levels.  Therefore, current and accurate climatologic and hydrologic data are needed to assess the viability of the various options to reduce flood damages at Devils Lake.

  18. Soyuz over Kitty Hawk

    NASA Image and Video Library

    2003-04-24

    ISS006-E-50419 (2003) --- This digital still camera image of Cape Hatteras and Cape Lookout, North Carolina, with a Soyuz vehicle docked to the orbital outpost in the foreground was taken by Expedition 6 crewmember Don Pettit during his 5 1/2 month stay on the International Space Station (ISS). The largest inland body of water is Pamlico Sound. Kitty Hawk, on North Carolina's Outer Banks is also visible. On Dec. 17, 2003, the world celebrates a century of human flight with the anniversary of the Wright Brothers' first flight at Kitty Hawk. The brothers used the Outer Banks' prevailing winds and a 90-foot hill (Kill Devil Hill) to successfully demonstrate powered flight.

  19. Calibration of GOES-VISSR, visible-band satellite data and its application to the analysis of a dust storm at Owens Lake, California

    USGS Publications Warehouse

    MacKinnon, D.J.; Chavez, P.S.; Fraser, R. S.; Niemeyer, T.C.; Gillette, Dale A.

    1996-01-01

    As part of a joint Russian/American dust-storm experiment, GOES-VISSR (Geostationary Operational Environmental Satellite, Visible-Infrared Spin-Scan Radiometer), data from a visible-band satellite image of a large dust storm emanating from Owens Lake, California were acquired on March 10 and 11, 1993. The satellite data were calibrated to targets of known ground reflectance factors and processed with radiative transfer techniques to yield aerosol (dust) optical depth at those stages of the dust storm when concurrent ground-based measurements of optical depth were made. Calibration of the satellite data is crucial for comparing surficial changes in remotely sensed data acquired over a period of time from the same area and for determining accurate concentrations of atmospheric aerosols using radiative transfer techniques. The calibration procedure forces the distribution of visible-band, DN (digital number) values, acquired on July 1, 1992, at 1731 GMT from the GOES-VISSR sensor over a large test area, to match the distribution of visible-band, DN values concurrently acquired from a Landsat MSS (Multispectral Scanner) sensor over the same test area; the Landsat MSS DN values were directly associated with reflectance factors measured from ground targets. The calibrated GOES-VISSR data for July 1, 1992, were then used to calibrate other GOES-VISSR data acquired on March 10 and 11, 1993, during the dust storm. Uncertainties in location of ground targets, bi-directional reflectance and atmospheric attenuation contribute an error of approximately ??0.02 in the satellite-inferred ground reflectance factors. On March 11 at 1031 PST the satellite-received radiances during the peak of the storm were 3 times larger than predicted by our radiative transfer model for a pure clay dust plume of infinite optical depth. This result supported ground-based measurements that the plume at that time was composed primarily of large salt grains, probably sodium sulfate, which could not be properly characterized in our radiative transfer model. Further, the satellite data showed that the salt fell out of the plume within 35 km from the source. Finer-grained, clay dust was observed to extend beyond the salt-laden plume and was the major component of the dust plume after 1131 PST, when erosion of the salt crust on Owens Lake ceased. By 1331 and 1401 PST satellite-inferred, optical depths compared favorably with measurements concurrently acquired at the ground. Uncertainties in bi-directional reflectance, atmospheric attenuation, and locating ground points in the satellite data manifest errors between the inferred and measured optical depths in the range of 20 to 50%; these errors would be much greater without the calibration of the GOES-VISSR data. Changes in satellite-inferred reflectance factors over the lake bed during the course of the storm showed that 76 km2 of the surface was disrupted during the March 11 storm, suggesting as much as 76 ?? 103 m3 of crustal material were displaced for each millimeter of several estimated to have been moved during the storm; an unknown fraction of the displaced material was suspended. The satellite data also showed dust fallout on mountain snowfields. Whereas fallout may have removed most of the salt, satellite data acquired at 1631 PST, when the plume had a large brightness contrast with the ground, showed that it covered over 2500 km2 and contained at least 1.6 ?? 109 g of sediment. For such a small source area, the dust represents a substantial contribution to the regional and global load of aerosols.

  20. Aerosol Radiative Forcing in Asian Continental Outflow

    NASA Technical Reports Server (NTRS)

    Pueschel, R.; Kinne, S.; Redemann, J.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    Aerosols in elevated layers were sampled with FSSP-probes and wire impactors over the Pacific ocean aboard the NASA DC-8 aircraft. Analyses of particle size and morphology identifies two distinctly different aerosol types for cases when the mid-visible extinctions exceed 0.2/km. Smaller sizes (effective radii of 0.2 um) and moderate absorption (mid-visible single scattering albedo of.935) are typical for urban-industrial pollution. Larger sizes (effective radii of 0.7 um) and weak absorption (mid-visible single scattering albedo of 0.985) identify dust. This aerosol classification is in agreement with its origin as determined by airmass back trajectory analysis. Based on lidar vertical profiling, aerosol dominated by dust and urban-industrial pollution above 3km were assigned mid-visible optical depths of 0.50 and 0.27, respectively. Radiative transfer simulations, considering a 50% cloud-cover below the aerosol layers, suggest (on a daily tP C)C> basis) small reductions (-4W/m2) to the energy budget at the top of the atmosphere for both aerosol types. For c' 0 dust, more backscattering of sunlight (weaker solar absorption) is compensated by a stronger greenhouse effect due to larger sizes. Forced reductions to the energy budget at the surface are 12W/m2 for both aerosol types. In contrast, impacts on heating rates within the aerosol layers are quite different: While urban-industrial aerosol warms the layer (at +0.6K/day as solar heating dominates), dust cools (at -0.5K/day as infrared cooling dominates). Sensitivity tests show the dependence of the aerosol climatic impact on the optical depth, particle size, absorptivity, and altitude of the layers, as well as clouds and surface properties. Climatic cooling can be eliminated (1) for the urban-industrial aerosol if absorption is increased to yield a mid-visible single scattering albedo of 0.89, or if the ocean is replaced by a land surface; (2) for the dust aerosol if the effective radius is increased from 0.7 to 1.2 um. The removal of low-level clouds doubles the cooling at the top of the atmosphere to about -8W/m2.

  1. The Martian Story Ares 4 Landing Site

    NASA Image and Video Library

    2015-10-05

    This image from the High Resolution Imaging Science Experiment (HiRISE) camera on NASA's Mars Reconnaissance Orbiter shows a location on Mars associated with the best-selling novel and Hollywood movie, "The Martian." It is the science-fiction tale's planned landing site for the Ares 4 mission. The novel placed the Ares 4 site on the floor of a very shallow crater in the southwestern corner of Schiaparelli Crater. This HiRISE image shows a flat region there entirely mantled by bright Martian dust. There are no color variations, just uniform reddish dust. A pervasive, pitted texture visible at full resolution is characteristic of many dust deposits on Mars. No boulders are visible, so the dust is probably at least a meter thick. Past Martian rover and lander missions from NASA have avoided such pervasively dust-covered regions for two reasons. First, the dust has a low thermal inertia, meaning that it gets extra warm in the daytime and extra cold at night, a thermal challenge to survival of the landers and rovers (and people). Second, the dust hides the bedrock, so little is known about the bedrock composition and whether it is of scientific interest. This view is one image product from HiRISE observation ESP_042014_1760, taken July 14, 2015, at 3.9 degrees south latitude, 15.2 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA19914

  2. Mid-infrared interferometry towards the massive young stellar object CRL 2136: inside the dust rim

    NASA Astrophysics Data System (ADS)

    de Wit, W. J.; Hoare, M. G.; Oudmaijer, R. D.; Nürnberger, D. E. A.; Wheelwright, H. E.; Lumsden, S. L.

    2011-02-01

    Context. Establishing the importance of circumstellar disks and their properties is crucial to fully understand massive star formation. Aims: We aim to spatially resolve the various components that make-up the accretion environment of a massive young stellar object (⪉100 AU), and reproduce the emission from near-infrared to millimeter wavelengths using radiative transfer codes. Methods: We apply mid-infrared spectro-interferometry to the massive young stellar object CRL 2136. The observations were performed with the Very Large Telescope Interferometer and the MIDI instrument at a 42 m baseline probing angular scales of 50 milli-arcseconds. We model the observed visibilities in parallel with diffraction-limited images at both 24.5 μm and in the N-band (with resolutions of 0.6´´and 0.3´´, respectively), as well as the spectral energy distribution. Results: The arcsec-scale spatial information reveals the well-resolved emission from the dusty envelope. By simultaneously modelling the spatial and spectral data, we find that the bulk of the dust emission occurs at several dust sublimation radii (approximately 170 AU). This reproduces the high mid-infrared fluxes and at the same time the low visibilities observed in the MIDI data for wavelengths longward of 8.5 μm. However, shortward of this wavelength the visibility data show a sharp up-turn indicative of compact emission. We discuss various potential sources of this emission. We exclude a dust disk being responsible for the observed spectral imprint on the visibilities. A cool supergiant star and an accretion disk are considered and both shown to be viable origins of the compact mid-infrared emission. Conclusions: We propose that CRL 2136 is embedded in a dusty envelope, which truncates at several times the dust sublimation radius. A dust torus is manifest in the equatorial region. We find that the spectro-interferometric N-band signal can be reproduced by either a gaseous disk or a bloated central star. If the disk extends to the stellar surface, it accretes at a rate of 3.0 × 10-3 M⊙ yr-1. Based on observations with the VLTI, proposal 381.C-0607.

  3. Sustainable synthesis of metals-doped ZnO nanoparticles from zinc-bearing dust for photodegradation of phenol.

    PubMed

    Wu, Zhao-Jin; Huang, Wei; Cui, Ke-Ke; Gao, Zhi-Fang; Wang, Ping

    2014-08-15

    A novel strategy of waste-cleaning-waste is proposed in the present work. A metals-doped ZnO (M-ZnO, M = Fe, Mg, Ca and Al) nanomaterial has been prepared from a metallurgical zinc-containing solid waste "fabric filter dust" by combining sulfolysis and co-precipitation processes, and is found to be a favorable photocatalyst for photodegradation of organic substances in wastewater under visible light irradiation. All the zinc and dopants (Fe, Mg, Ca and Al) for preparing M-ZnO are recovered from the fabric filter dust, without any addition of chemical as elemental source. The dust-derived M-ZnO samples deliver single phase indexed as the hexagonal ZnO crystal, with controllable dopants species. The photocatalytic activity of the dust-derived M-ZnO samples is characterized by photodegradation of phenol aqueous solution under visible light irradiation, giving more prominent photocatalytic behaviors than undoped ZnO. Such enhancements may be attributed to incorporation of the dust-derived metal elements (Fe, Mg, Ca and Al) into ZnO structure, which lead to the modification of band gap and refinement of grain size. The results show a feasibility to utilize the industrial waste as a resource of photodegradating organic substances in wastewater treatments. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. MGS TES Measurements of Dust and Ice Aerosol Behaviors

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2000-10-01

    The Thermal Emission Spectrometer (TES, Christensen et al., Science, v279, 1692-1697, 1998) on board the Mars Global Surveyor obtains simultaneous solar band and thermal IR spectral emission-phase-function (EPF) observations with global spatial coverage and continuous seasonal sampling. These measurements allow the first comprehensive study of the coupled visible scattering and thermal IR absorption properties of Mars atmospheric aerosols, a fundamental requirement towards defining opacities, particle sizes, and particle shapes for separable dust and water ice aerosol components. Furthermore, TES limb sounding at solar band and IR wavelengths may be analyzed in the context of these EPF column determinations to constrain the distinctive vertical profile behaviors of dust and ice clouds. We present initial radiative transfer analyses of TES visible and IR EPFs, which indicate surprisingly complex dust and ice aerosol behaviors over all latitudes and seasons. Distinctive backscattering peaks of variable intensity are observed for several types of water ice clouds, along with evidence for ice-coated dust aerosols. We will present a broad spatial and temporal sampling of solar band and spectral IR results for Mars atmospheric ice and dust aerosols observed over the 1998-2000 period. This research is supported by the MGS Participating Scientist and MED Science Data Analysis programs.

  5. Evolution of the dust and water ice plume components as observed by the LCROSS visible camera and UV-visible spectrometer

    NASA Astrophysics Data System (ADS)

    Heldmann, Jennifer L.; Lamb, Justin; Asturias, Daniel; Colaprete, Anthony; Goldstein, David B.; Trafton, Laurence M.; Varghese, Philip L.

    2015-07-01

    The LCROSS (Lunar Crater Observation and Sensing Satellite) impacted the Cabeus crater near the lunar South Pole on 9 October 2009 and created an impact plume that was observed by the LCROSS Shepherding Spacecraft. Here we analyze data from the ultraviolet-visible spectrometer and visible context camera aboard the spacecraft. We use these data to constrain a numerical model to understand the physical evolution of the resultant plume. The UV-visible light curve peaks in brightness 18 s after impact and then decreases in radiance but never returns to the pre-impact radiance value for the ∼4 min of observation by the Shepherding Spacecraft. The blue:red spectral ratio increases in the first 10 s, decreases over the following 50 s, remains constant for approximately 150 s, and then begins to increase again ∼180 s after impact. Constraining the modeling results with spacecraft observations, we conclude that lofted dust grains remained suspended above the lunar surface for the entire 250 s of observation after impact. The impact plume was composed of both a high angle spike and low angle plume component. Numerical modeling is used to evaluate the relative effects of various plume parameters to further constrain the plume properties when compared with the observational data. Dust particle sizes lofted above the lunar surface were micron to sub-micron in size. Water ice particles were also contained within the ejecta cloud and simultaneously photo-dissociated and sublimated after reaching sunlight.

  6. Devices for Deviling Classes in Theatre History.

    ERIC Educational Resources Information Center

    Bryan, George B.

    In addition to the use of the lecture-discussion method of teaching theatre history, the author contends that this approach can be augmented by the process of "deviling" (adding spice to) the learning situation. At the University of Vermont, theatre history courses have been taught with a variety of deviling exercises, which include: (1)…

  7. Multiplatform observations of dust vertical distribution during transport over northwest Iran in the summertime

    NASA Astrophysics Data System (ADS)

    Abdi Vishkaee, Farhad; Flamant, Cyrille; Cuesta, Juan; Flamant, Pierre; Khalesifard, Hamid R.

    2011-03-01

    Dynamical processes leading to dust emission over Iran and surrounding countries in the summer as well as the subsequent transport of dust toward northwest Iran are analyzed on the basis of two case studies using a suite of ground-based and spaceborne remote sensing platforms together with modeling tools. Ground-based lidar measurements acquired in Zanjan provide new insight into the vertical distribution of dust linked to transport over northwest Iran and highlight the importance of low-level transport of dust from both Iraq and Iran for air quality issues in Tehran. During the 3-5 August 2007 case, dust emission regions are located in Syria/Iraq and close to Qom, Iran, in a large intermittent salt lake in the western part of the Dasht-e Kavir desert. The visibility in Tehran associated with this event decreases significantly (reaching 7 km) on 5 August 2007 only. During the 11-13 September 2008 case, the dust transported to northwest Iran originates from Syria/Iraq only. The visibility in Tehran during this case is low throughout the period, sometimes less than 5 km due to the transport of dust at low levels. In both cases, emissions in Syria and Iraq occur in response to strong Shamal winds. However, transport of dust toward Iran takes place at different levels: above 700 hPa in August and below 700 hPa in September. This is found to be related to the presence of strong northeasterly winds over the Zagros Mountains as well as in its lee (south of the range) in the August case only. In August also, dust emissions in the Qom region results from strong winds blowing over the Dasht-e Kavir desert.

  8. How Warm is Mars?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This graph shows the predicted daily change in the atmospheric temperature one meter above the surface of Mars at Gusev Crater, the Mars Exploration Rover Spirit's landing site. The blue curve denotes predicted values for sol 1 (the first day of Spirit's mission) and the yellow for sol 100 (100 days into the mission). The light blue symbols represent temperatures for a total atmospheric dust abundance of 0.7 visible optical depth units, and the darker blue symbols for a total atmospheric dust abundance of 1.0 visible optical depth units. Scientists use this data to ensure that Spirit stays within the right temperature range.

  9. Water quality and the composition of fish and macroinvertebrate communities in the Devils and Pecos Rivers within and upstream from the Amistad National Recreation Area, Texas, 2005-7

    USGS Publications Warehouse

    Moring, J. Bruce

    2012-01-01

    The total number of fish species collected was the same in the Devils River and Pecos River, but the species found in the two rivers varied slightly. The number of fish species generally increased from the site farthest upstream to the site farthest downstream in the Devils River, and decreased between the site farthest upstream and site farthest downstream in the Pecos River. The redbreast sunfish was the most abundant species collected in the Devils River, and the blacktail shiner was the most abundant species collected in the Pecos River. Comparing the species from each river, the percentage of omnivorous fish species was larger at the more downstream sites closer to Amistad Reservoir, and the percentage of species tolerant of environmental stressors was larger in the Pecos River. The fish community, assessed on the basis of the number of shared species among the sites sampled, was more similar to the fish community at the other sites on the same river than it was to the fish community from any other site in the other river. More macroinvertebrate taxa were collected in the Devils River than in the Pecos River. The largest number of macroinvertebrate taxa were from the site second farthest downstream on the Devils River, and the smallest numbers of macroinvertebrate taxa were from the farthest downstream site on the Pecos River. Mayflies were more common in the Devils River, and caddisflies were less common than mayflies at most sites. Net-spinning caddisflies were more common at the Devils River sites. The combined percent of mayfly, caddisfly, and stonefly taxa was generally larger at the Pecos River sites. Riffle beetles were the most commonly collected beetle taxon among all sites, and water-penny beetles were only collected at the Pecos River sites. A greater number of true midge taxa were collected more than any other taxa at the genus and species taxonomic level. Non-insect macroinvertebrate taxa were more common at the Devils River sites. Corbicula sp. (presumably the introduced Asian clam) was found at sites in both rivers, and amphipods were more abundant in the Devils River. The Margalef species richness index, based on aquatic insect taxa only, was larger at the Devils River sites than at the Pecos River sites. The Hilsenhoff's biotic index was largest at the site farthest downstream in the Devils River and smallest at the site second farthest downstream in the Pecos River. Overall similarity among sites based on the number of shared macroinvertebrate taxa indicated that each site is more similar to other sites on the same river than to sites on the other river.

  10. Lake levels, streamflow, and surface-water quality in the Devils Lake area, North Dakota

    USGS Publications Warehouse

    Wiche, Gregg J.

    1996-01-01

    The Devils Lake Basin is a 3,810-square-mile (mi2) closed basin (fig. 1) in the Red River of the North Basin. About 3,320 mi2 of the total 3,810 mi2 is tributary to Devils Lake; the remainder is tributary to Stump Lake.Since glaciation, the lake level of Devils Lake has fluctuated from about 1,457 feet (ft) above sea level (asl), the natural spill elevation of the lake to the Sheyenne River, to 1,400 ft asl (Aronow, 1957). Although no documented records of lake levels are available before 1867, Upham (1895, p. 595), on the basis of tree-ring chronology, indicated that the lake level was 1,441 ft asl in 1830. Lake levels were recorded sporadically from 1867 to 1901 when the U.S. Geological Survey established a gaging station on Devils Lake. From 1867 to the present (1996), the lake level has fluctuated between a maximum of 1,438.4 ft asl in 1867 and a minimum of 1,400.9 ft asl in 1940 (fig. 2). On July 31, 1996, the lake level was 1,437.8 ft asl, about 15.2 ft higher than the level recorded in February 1993 and the highest level in about 120 years.Since 1993, the lake level of Devils Lake (fig. 2) has risen rapidly in response to above-normal precipitation from the summer of 1993 to the present, and 30,000 acres of land around the lake have been flooded. The above-normal precipitation also has caused flooding elsewhere in the Devils Lake Basin. State highways near Devils Lake are being raised, and some local roads have been closed because of flooding.In response to the flooding, the Devils Lake Basin Interagency Task Force, comprised of many State and Federal agencies, was formed in 1995 to find and propose intermediate (5 years or less) solutions to reduce the effects of high lake levels. In addition to various planning studies being conducted by Federal agencies, the North Dakota State Water Commission has implemented a project to store water on small tracts of land and in the chain of lakes (Sweetwater Lake, Morrison Lake, Dry Lake, Mikes Lake, Chain Lake, Lake Alice, and Lake Irvine). Most of the planning studies include options to store water in the Devils Lake Basin and to provide an outlet to the Sheyenne River via Devils Lake or the Stump Lakes. If an outlet is constructed, water-quantity and -quality issues will be considered in designing the operating plan. Therefore, current and accurate hydrologic information is needed to assess the viability of the various options to lower the level of Devils Lake.

  11. A Climatology of dust emission in northern Africa using surface observations from 1984-2012

    NASA Astrophysics Data System (ADS)

    Cowie, Sophie; Knippertz, Peter; Marsham, John

    2014-05-01

    The huge quantity of mineral dust emitted annually from northern Africa makes this area crucial to the global dust cycle. Once in the atmosphere, dust aerosols have a significant impact on the global radiation budget, clouds, the carbon cycle and can even act as a fertilizer to rain forests in South America. Current model estimates of dust production from northern Africa are uncertain. At the heart of this problem is insufficient understanding of key dust emitting processes such as haboobs (cold pools generated through evaporation of convective precipitation), low-level jets (LLJs) and dry convection (dust devils and dust plumes). Scarce observations in this region, in particular in the Sahara, make model evaluation difficult. This work uses long-term surface observations from 70 stations situated in the Sahara and Sahel to explore the diurnal, seasonal and geographical variations in dust emission events and thresholds. Quality flags are applied to each station to indicate a day-time bias or gaps in the time period 1984-2012. The frequency of dust emission (FDE) is calculated using the present weather codes (WW) of SYNOP reports, where WW = 07,08,09,30-35 and 98. Thresholds are investigated by estimating the wind speeds for which there is a 25%, 50% and 75% probability of dust emission. The 50% threshold is used to calculate strong wind frequency (SWF) and the diagnostic parameter dust uplift potential (DUP); a thresholded cubic function of wind-speed which quantifies the dust generating power of winds. Stations are grouped into 6 areas (North Algeria, Central Sahara, Egypt, West Sahel, Central Sahel and Sudan) for more in-depth analysis of these parameters. Spatially, thresholds are highest in northern Algeria and lowest in the Sahel around the latitude band 16N-21N. Annual mean FDE is anti-correlated with the threshold, showing the importance of spatial variations in thresholds for mean dust emission. The annual cycles of FDE and SWF for the 6 grouped areas are highly correlated (0.95 to 0.99). These correlations are barely reduced when annual-mean thresholds are used, showing that seasonal variations in thresholds are not the main control on the seasonal variations in FDE. Relationships between annual cycles in FDE and DUP are more complex than between FDE and SWF, reflecting the seasonal variations in the types and intensities of dust events. FDE is highest in spring north of 23N. South of this, where stations are directly influenced by the summer monsoon, the annual cycle in FDE is much more variable. Half of the total DUP occurs at wind-speeds greater than ~ 28 ms-1, which highlights the importance of rare high-energy wind events. The likely meteorological mechanisms generating these patterns are discussed.

  12. A Climatology of Dust-Emission Events over North Africa Based on 27 Years of Surface Observations

    NASA Astrophysics Data System (ADS)

    Cowie, S.; Knippertz, P.; Schepanski, K.

    2012-04-01

    The huge quantity of mineral dust emitted annually from North Africa makes this area crucial to the global dust cycle. Once in the atmosphere, dust aerosols have a significant impact on the global radiation budget, clouds, the carbon cycle and can even act as a fertilizer to rain forests in South America. Current model estimates of dust production from North Africa are uncertain. At the heart of this problem is insufficient understanding of key dust emitting processes such as haboobs (cold pools generated through evaporation of convective precipitation), low-level jets (LLJs), and dry convection (dust devils and dust plumes). Scarce observations in this region, in particular in the Sahara, make model evaluation difficult. This work uses long-term surface observations from the MIDAS data set (~120 stations in the arid part of North Africa) to explore the diurnal, seasonal, decadal and geographical variations in dust emission events and their associated wind thresholds. The threshold values are determined from probability density functions of observed 10-minute anemomenter wind speeds. Emission events are defined using the present weather codes (WW) of SYNOP reports. These codes represent events of smaller intensity such as "Dust or sand raised by wind" to severe dust storms. During the 27-year study period (1984-2011) stations are required to have a minimum of 1000 dust observations to be included in the analysis. Dust emission frequency (DEF) is calculated for different time intervals (e.g. monthly, 3-hourly) taking into account the different number of measurements available at each station. North of 25°N a maximum during March-May is evident and relatively consistent over the whole North African region. Wind-speed thresholds for dust emission north of 25°N are higher than south of 25°N in the Sahel, where station-to-station variability is larger, and enhanced DEF activity during February-March is observed. The variability in this region is closely linked to the advance and retreat of the summer monsoon. The diurnal cycle in DEF shows reflections of the individual emission mechanisms. At night, winds are usually light and dust emission is low. Many stations show a sharp increase in wind speed and DEF between 06 and 09 UTC, a probable result of the downward mixing of momentum from nocturnal LLJs. Peaks at both midday and 15 UTC are common in the diurnal cycles of both winds and DEF. Midday peaks are likely due to small scale dry convection, while the afternoon peaks may contain signals from both dry convection and gusty winds associated with haboob outflows. Into the evening and overnight the DEF signal gets smaller and is often caused by long-lived haboobs.

  13. Stellar Incubators Seen Cooking up Stars

    NASA Image and Video Library

    2005-01-12

    This image composite compares visible-light and infrared views from NASA's Spitzer Space Telescope of the glowing Trifid Nebula, a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. Visible-light images of the Trifid taken with NASA's Hubble Space Telescope, Baltimore, Md. (inside left, figure 1) and the National Optical Astronomy Observatory, Tucson, Ariz., (outside left, figure 1) show a murky cloud lined with dark trails of dust. Data of this same region from the Institute for Radioastronomy millimeter telescope in Spain revealed four dense knots, or cores, of dust (outlined by yellow circles), which are "incubators" for embryonic stars. Astronomers thought these cores were not yet ripe for stars, until Spitzer spotted the warmth of rapidly growing massive embryos tucked inside. http://photojournal.jpl.nasa.gov/catalog/PIA07226

  14. Dust control for Enabler

    NASA Technical Reports Server (NTRS)

    Hilton, Kevin; Karl, Chad; Litherland, Mark; Ritchie, David; Sun, Nancy

    1992-01-01

    The dust control group designed a system to restrict dust that is disturbed by the Enabler during its operation from interfering with astronaut or camera visibility. This design also considers the many different wheel positions made possible through the use of artinuation joints that provide the steering and wheel pitching for the Enabler. The system uses a combination of brushes and fenders to restrict the dust when the vehicle is moving in either direction and in a turn. This design also allows for each of maintenance as well as accessibility of the remainder of the vehicle.

  15. Dust control for Enabler

    NASA Technical Reports Server (NTRS)

    Hilton, Kevin; Karl, Chad; Litherland, Mark; Ritchie, David; Sun, Nancy

    1992-01-01

    The dust control group designed a system to restrict dust that is disturbed by the Enabler during its operation from interfering with astronaut or camera visibility. This design also considers the many different wheel positions made possible through the use of artinuation joints that provide the steering and wheel pitching for the Enabler. The system uses a combination of brushes and fenders to restrict the dust when the vehicle is moving in either direction and in a turn. This design also allows for ease of maintenance as well as accessibility of the remainder of the vehicle.

  16. Vincristine Chemotherapy Trials and Pharmacokinetics in Tasmanian Devils with Tasmanian Devil Facial Tumor Disease

    PubMed Central

    Phalen, David N.; Frimberger, Angela; Pyecroft, Stephen; Peck, Sarah; Harmsen, Colette; Lola, Suzanneth; de Mello Mattos, Beatriz; Li, Kong M.; McLachlan, Andrew J.; Moore, Antony

    2013-01-01

    Tasmanian Devil Facial Tumor Disease (DFTD) is a transmissible cancer threatening to cause the extinction of Tasmanian Devils in the wild. The aim of this study was to determine the susceptibility of the DFTD to vincristine. Escalating dosage rates of vincristine (0.05 to 0.136 mg/kg) were given to Tasmanian devils in the early stages of DFTD (n = 8). None of these dosage rates impacted the outcome of the disease. A dosage rate of 0.105 mg/kg, a rate significantly higher than that given in humans or domestic animals, was found to the highest dosage rate that could be administered safely. Signs of toxicity included anorexia, vomiting, diarrhea and neutropenia. Pharmacokinetic studies showed that, as with other species, there was a rapid drop in blood concentration following a rapid intravenous infusion with a high volume of distribution (1.96 L/kg) and a relatively long elimination half life (11 h). Plasma clearance (1.8 ml/min/kg) was slower in the Tasmanian devil than in humans, suggesting that pharmacodynamics and not pharmacokinetics explain the Tasmanian devil’s ability to tolerate high dosage rates of vincristine. While providing base-line data for the use of vincristine in Tasmanian devils and possibly other marsupials with vincristine susceptible cancers, these findings strongly suggest that vincristine will not be effective in the treatment of DFTD. PMID:23762298

  17. Atmospheric imaging results from the Mars Exploration Rovers

    NASA Astrophysics Data System (ADS)

    Lemmon, M.; Athena Science Team

    The Athena science payload of the Spirit and Opportunity Mars Exploration Rovers contains instruments capable of measuring radiometric properties of the Martian atmosphere in the visible and the thermal infrared. Remote sensing instruments include Pancam, a color panoramic camera covering 0.4-1.0 microns, and Mini-TES, a thermal infrared spectrometer covering 5-29 microns. Results from atmospheric imaging by Pancam will be covered here. Visible and near-infrared aerosol opacity is monitored by direct solar imaging. Early results show dust opacity near 1 when both rovers landed. Both Spirit and Opportunity have seen dust opacity fall with time, somewhat faster at Spirit's Gusev crater landing site. Diurnal variations are also being monitored at both sites. There is no direct probe of the dust's vertical distribution, but images of the Sun near the horizon and of the twilight will provide constraints on the dust distribution. Dust optical properties and a cross-section weighted aerosol size will be estimated from Pancam images of the sky at varying geometries and times of day. A series of sky imaging sequences has been run with varying illumination geometry. The observations are similar to those reported for Mars Pathfinder.

  18. Episodic Dust Emission from Alpha Orionis

    NASA Astrophysics Data System (ADS)

    Danchi, W. C.; Greenhill, L. J.; Bester, M.; Degiacomi, C.; Townes, C. H.

    1993-05-01

    The spatial distribution of dust surrounding alpha Orionis has been observed with the Infrared Spatial Interferometer (ISI) operating at a wavelength of 11.15 microns. Radiative transfer modeling of the visibility curves obtained by the ISI has yielded estimates of the physical parameters of the dust surrounding the star and new details of the dust distribution. The visibility curves taken in 1992 can be fitted best by a model with two dust shells. One shell has an inner radius of 1.0+/- 0.1{ }('') , a thickness between 50-200 milliarcsec, and a temperature of about 380 K. The second shell has an inner radius of 2.0+/-0.1{ }('') , a thickness less than about 200 milliarcsec, and a temperature of 265 K. These results are consistent with the recent spatially resolved spectroscopy of alpha Orionis reported by Sloan et al. (1993, Ap.J., 404, 303). The dust was modelled with the MRN size distribution with radius varying from 0.005--0.25 microns. The star was assumed to be a blackbody with a temperature of 3500 K and angular radius of 21.8 milliarcsec, consistent with recent interferometric determinations of its diameter (cf. Dyck et al., 1992, A.J., 104, 1992). For an adopted distance of 150 pc, the model for the 1992 data was evolved backward in time for a comparison with previous visibility data of Sutton (1979, Ph.D. Thesis, U.C. Berkeley) and Howell et al. (1981, Ap.J., 251, L21). The velocities, 11 km \\ s(-1) and 18 km \\ s(-1) , were used for the first and second shells respectively, which are the CO velocities measured by Bernat et al. (1979, Ap.J.,233, L135). We find excellent agreement if the dust shells were at approximately 0.80{ }('') and 1.67{ }('') at the epoch of the previous measurements. The data are consistent with the hypothesis that inner dust shell was emitted during the unusual variations in radial velocity and visual magnitude in the early 1940's, described by Goldberg (1984, PASP, 96, 366).

  19. 9 CFR 319.761 - Potted meat food product and deviled meat food product.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food product...

  20. 9 CFR 319.761 - Potted meat food product and deviled meat food product.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food product...

  1. 9 CFR 319.761 - Potted meat food product and deviled meat food product.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food product...

  2. 9 CFR 319.761 - Potted meat food product and deviled meat food product.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Potted meat food product and deviled meat food product. 319.761 Section 319.761 Animals and Animal Products FOOD SAFETY AND INSPECTION... COMPOSITION Meat Salads and Meat Spreads § 319.761 Potted meat food product and deviled meat food product...

  3. Use of a two-dimensional hydrodynamic model to evaluate extreme flooding and transport of dissolved solids through Devils Lake and Stump Lake, North Dakota, 2006

    USGS Publications Warehouse

    Nustad, Rochelle A.; Wood, Tamara M.; Bales, Jerad D.

    2011-01-01

    The U.S. Geological Survey in cooperation with the North Dakota Department of Transportation, North Dakota State Water Commission, and U.S. Army Corps of Engineers, developed a two-dimensional hydrodynamic model of Devils Lake and Stump Lake, North Dakota to be used as a hydrologic tool for evaluating the effects of different inflow scenarios on water levels, circulation, and the transport of dissolved solids through the lake. The numerical model, UnTRIM, and data primarily collected during 2006 were used to develop and calibrate the Devils Lake model. Performance of the Devils Lake model was tested using 2009 data. The Devils Lake model was applied to evaluate the effects of an extreme flooding event on water levels and hydrological modifications within the lake on the transport of dissolved solids through Devils Lake and Stump Lake. For the 2006 calibration, simulated water levels in Devils Lake compared well with measured water levels. The maximum simulated water level at site 1 was within 0.13 feet of the maximum measured water level in the calibration, which gives reasonable confidence that the Devils Lake model is able to accurately simulate the maximum water level at site 1 for the extreme flooding scenario. The timing and direction of winddriven fluctuations in water levels on a short time scale (a few hours to a day) were reproduced well by the Devils Lake model. For this application, the Devils Lake model was not optimized for simulation of the current speed through bridge openings. In future applications, simulation of current speed through bridge openings could be improved by more accurate definition of the bathymetry and geometry of select areas in the model grid. As a test of the performance of the Devils Lake model, a simulation of 2009 conditions from April 1 through September 30, 2009 was performed. Overall, errors in inflow estimates affected the results for the 2009 simulation; however, for the rising phase of the lakes, the Devils Lake model accurately simulated the faster rate of rise in Devils Lake than in Stump Lake, and timing and direction of wind-driven fluctuations in water levels on a short time scale were reproduced well. To help the U.S. Army Corps of Engineers determine the elevation to which the protective embankment for the city of Devils Lake should be raised, an extreme flooding scenario based on an inflow of one-half the probable maximum flood was simulated. Under the conditions and assumptions of the extreme flooding scenario, the water level for both lakes reached a maximum water level around 1,461.9 feet above the National Geodetic Vertical Datum of 1929. One factor limiting the extent of pumping from the Devils Lake State Outlet is sulfate concentrations in West Bay. If sulfate concentrations can be reduced in West Bay, pumping from the Devils Lake State Outlet potentially can increase. The Devils Lake model was used to simulate the transport of dissolved solids using specific conductance data as a surrogate for sulfate. Because the transport of dissolved solids was not calibrated, results from the simulations were not actual expected concentrations. However, the effects of hydrological modifications on the transport of dissolved solids could be evaluated by comparing the effects of hydrological modifications relative to a baseline scenario in which no hydrological modifications were made. Four scenarios were simulated: (1) baseline condition (no hydrological modification), (2) diversion of Channel A, (3) reduction of the area of water exchange between Main Bay and East Bay, and (4) combination of scenarios 2 and 3. Relative to scenario 1, mean concentrations in West Bay for scenarios 2 and 4 were reduced by approximately 9 percent. Given that there is no change in concentration for scenario 3, but about a 9-percent reduction in concentration for scenario 4, the diversion of Channel A was the only hydrologic modification that appeared to have the potential to reduce sulfate c

  4. Middle Devonian to Early Carboniferous event stratigraphy of Devils Gate and Northern Antelope Range sections, Nevada, U.S.A

    USGS Publications Warehouse

    Sandberg, C.A.; Morrow, J.R.; Poole, F.G.; Ziegler, W.

    2003-01-01

    The classic type section of the Devils Gate Limestone at Devils Gate Pass is situated on the eastern slope of a proto-Antler forebulge that resulted from convergence of the west side of the North American continent with an ocean plate. The original Late Devonian forebulge, the site of which is now located between Devils Gate Pass and the Northern Antelope Range, separated the continental-rise to deep-slope Woodruff basin on the west from the backbulge Pilot basin on the east. Two connections between these basins are recorded by deeper water siltstone beds at Devils Gate; the older one is the lower tongue of the Woodruff Formation, which forms the basal unit of the upper member of the type Devils Gate, and the upper one is the overlying, thin lower member of the Pilot Shale. The forebulge and the backbulge Pilot basin originated during the middle Frasnian (early Late Devonian) Early hassi Zone, shortly following the Alamo Impact within the punctata Zone in southern Nevada. Evidence of this impact is recorded by coeval and reworked shocked quartz grains in the Northern Antelope Range and possibly by a unique bypass-channel or megatsunami-uprush sandy diamictite within carbonate-platform rocks of the lower member of the type Devils Gate Limestone. Besides the Alamo Impact and three regional events, two other important global events are recorded in the Devils Gate section. The semichatovae eustatic rise, the maximum Late Devonian flooding event, coincides with the sharp lithogenetic change at the discordant boundary above the lower member of the Devils Gate Limestone. Most significantly, the Devils Gate section contains the thickest and most complete rock record in North America across the late Frasnian linguiformis Zone mass extinction event. Excellent exposures include not only the extinction shale, but also a younger. Early triangularis Zone tsunamite breccia, produced by global collapse of carbonate platforms during a shallowing event that continued into the next younger Famennian Stage. The Northern Antelope Range section is located near the top of the west side of the proto-Antler forebulge. Because of its unusual, tectonically active location, unmatched at any other Nevada localities, this section records only four regional and global events during a timespan slightly longer than that of the Devils Gate section. The global semichatovae rise and late Frasnian mass extinction event are largely masked because of the depositional complexities resulting from this location.

  5. The devil is in the details: Transposable element analysis of the Tasmanian devil genome.

    PubMed

    Nilsson, Maria A

    2016-01-01

    The third marsupial genome was sequenced from the Tasmanian devil ( Sarcophilus harrisii ), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the L ong IN terspersed E lement 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the S hort IN terspersed E lements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome.

  6. The devil is in the details: Transposable element analysis of the Tasmanian devil genome

    PubMed Central

    Nilsson, Maria A.

    2016-01-01

    ABSTRACT The third marsupial genome was sequenced from the Tasmanian devil (Sarcophilus harrisii), a species that currently is driven to extinction by a rare transmissible cancer. The transposable element (TE) landscape of the Tasmanian devil genome revealed that the main driver of retrotransposition the Long INterspersed Element 1 (LINE1) seem to have become inactivated during the past 12 million years. Strangely, the Short INterspersed Elements (SINE), that normally hijacks the LINE1 retrotransposition system, became inactive prior to LINE1 at around 30 million years ago. The SINE inactivation was in vitro verified in several species. Here I discuss that the apparent LINE1 inactivation might be caused by a genome assembly artifact. The repetitive fraction of any genome is highly complex to assemble and the observed problems are not unique to the Tasmanian devil genome. PMID:27066301

  7. Simulation and analysis of synoptic scale dust storms over the Arabian Peninsula

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Temimi, Marouane; Ghedira, Hosni

    2018-01-01

    Dust storms are among the most severe environmental problems in arid and semi-arid regions of the world. The predictability of seven dust events, viz. D1: April 2-4, 2014; D2: February 23-24, 2015; D3: April 1-3, 2015; D4: March 26-28, 2016; D5: August 3-5, 2016; D6: March 13-14, 2017 and D7:March 19-21, 2017, are investigated over the Arabian Peninsula using a regionally adapted chemistry transport model CHIMERE coupled with the Weather Research and Forecast (WRF) model. The hourly forecast products of particulate matter concentrations (PM10) and aerosol optical depths (AOD) are compared against both satellite-based (MSG/SEVRI RGB dust, MODIS Deep Blue Aerosol Optical Depth: DB-AOD, Ozone Monitoring Instrument observed UV Aerosol Absorption Index: OMI-AI) and ground-based (AERONET AOD) remote sensing products. The spatial pattern and the time series of the simulations show good agreement with the observations in terms of the dust intensity as well as the spatiotemporal distribution. The causative mechanisms of these dust events are identified by the concurrent analyses of the meteorological data. From these seven storms, five are associated with synoptic scale meteorological processes, such as prefrontal storms (D1 and D7), postfrontal storms of short (D2), and long (D3) duration types, and a summer shamal storm (D6). However, the storms D4 and D6 are partly associated with mesoscale convective type dust episodes known as haboobs. The socio-economic impacts of the dust events have been assessed by estimating the horizontal visibility, air quality index (AQI), and the dust deposition flux (DDF) from the forecasted dust concentrations. During the extreme dust events, the horizontal visibility drops to near-zero values co-occurred withhazardous levels of AQI and extremely high dust deposition flux (250 μg cm- 2 day- 1).

  8. On the geological origin of Devils Tower (WY, USA)

    NASA Astrophysics Data System (ADS)

    Zavada, P.; Dedecek, P.; Holloway, S. D.; Chang, J. C.; Crain, K.; Keller, G. R.

    2011-12-01

    The Devils Tower is an exceptional igneous rock formation and a dominating landmark of the northern plains in Wyoming (USA). It rises 250 m above the surrounding sedimentary formations. Previous hypotheses suggested that the Devils Tower was originally part of a magmatic intrusion; volcanic conduit, magmatic stock or a laccolith. Our review of the geological evidence suggests that the Devils Tower is a remnant of an eroded lava lake that filled a broad phreatomagmatic volcano crater. Our hypothesis is based on a detailed study of a similar phonolite landmark in Czech Republic, called Boren, and analogue modeling, finite element numerical modeling of cooling for various shapes of volcanic bodies, and results of field and gravity surveys of the area. The Devils Tower together with a group of five phonolite bodies called Missouri Buttes, located 6 km NW from the Devils Tower, represent the easternmost products of the Tertiary tectonomagmatic events related to the lithospheric-scale uplift of the Black hills monocline. The phreatomagmatic deposits in the surroundings of the Missouri Buttes and the Devils Tower suggest that these phonolite bodies were originally emplaced into phreatomagmatic maar-diatreme volcanoes. To reveal the original shape of the Devils Tower, we employed the analogue modeling using plaster of Paris as analogue for phonolite magma to study internal fabrics and shapes of extrusive/intrusive magmatic bodies emplaced into the maar-diatreme volcanoes. Then, the resulting shapes of analogue magmatic bodies were used for the Finite Element thermal numerical models of their cooling using the thermophysical parameters of the phonolite magma and the rock units surrounding the Devils Tower and Missouri Buttes. Because the columnar joints grow perpendicular to the isotherms in cooling igneous and volcanic bodies, we analyzed the match between the thermal structure of the FE models and the columnar jointing pattern on the Devils Tower. The best fit of the thermal structure and the inverted fan columnar jointing pattern on Devils Tower was found for one of the models that produced a lava lake filling the entire maar crater of the phreatomagmatic volcano. The Devils Tower represents the central part of the lake just above the feeding conduit. After emplacement and solidification of the lava lake, erosion first removed the weakly consolidated phreatomagmatic deposits in the tuff ring around the lake. Then the lava body eroded laterally due to the formation of ice in the columnar joints, pushing columns away from the neighboring columns into the open space. The remnant of the solidified lake (Devils Tower) represents a structure, which is resistant to this kind of erosion, because its base is formed by columns that lean against each other and towards the center of the Tower. In contrast, the Missouri Buttes most probably represent a remnant of a branched intrusion producing several extrusive domes on the maar-crater periphery that can form by subsequent emplacement of different magma batches (e.g. from a stratified magma chamber), each with relatively lower yield strength owing to decreasing crystal content.

  9. 78 FR 1751 - Modification of VOR Federal Airway V-170 in the Vicinity of Devils Lake, ND

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-09

    ..., Devils Lake, ND, to support non- radar separation requirements when the restricted area is active. DATES...-radar separation and airway clearance from the newly established R-5402, Devils Lake, ND (77 FR 54860... greatest level of safety and efficiency in the vicinity of this area that has poor low altitude radar...

  10. The Gothic Folk Devils Strike Back! Theorizing Folk Devil Reaction in the Post-Columbine Era

    ERIC Educational Resources Information Center

    Griffiths, Richard

    2010-01-01

    Folk devils have to date been significantly overlooked in previous studies of moral panics. While several studies have called attention to this problematic (Thornton and McRobbie 1995, De Young 2004, Lumsden 2009), no specific theoretical framework has been proposed for reading this dimension of a moral panic. This paper argues that a moral panic…

  11. Differentiating Natural and Anthropogenic Groundwater-Level Changes in Critical Habitats: An Example from Devils Hole, Nevada

    NASA Astrophysics Data System (ADS)

    Halford, K. J.; Jackson, T.; Fenelon, J.

    2017-12-01

    Endangered species such as the Devils Hole pupfish can be affected by decadal groundwater-level changes of less than 1 ft. These relatively minor changes in long-term water levels primarily result from temporal variations in recharge and groundwater development. Natural groundwater-level changes are the summation of episodic rises from infrequent recharge events and steady declines from regional groundwater discharge. Rising water levels have been observed in Devils Hole and across southern Nevada in response to wetter conditions during 1970-2016 relative to the 1900-1970 period. Interpretation of water-level changes in Devils Hole were made tractable by differentiating naturally occurring rises from pumping effects with analytical water-level models. Effects of local and regional pumping on water-level changes in Devils Hole were differentiated easily with a calibrated groundwater-flow model after removing natural rising trends. Annual average water levels declined 2.3 ft from 1968-1972 in response to local pumping within 2 mi of Devils Hole and rose 1.7 ft from 1973-2016 in response to the cumulative effects of recharge, recovery from the cessation of local pumping, and long-term declines of regional pumping.

  12. What's "up" with God? Vertical space as a representation of the divine.

    PubMed

    Meier, Brian P; Hauser, David J; Robinson, Michael D; Friesen, Chris Kelland; Schjeldahl, Katie

    2007-11-01

    "God" and "Devil" are abstract concepts often linked to vertical metaphors (e.g., "glory to God in the highest," "the Devil lives down in hell"). It is unknown, however, whether these metaphors simply aid communication or implicate a deeper mode of concept representation. In 6 experiments, the authors examined the extent to which the vertical dimension is used in noncommunication contexts involving God and the Devil. Experiment 1 established that people have implicit associations between God-Devil and up-down. Experiment 2 revealed that people encode God-related concepts faster if presented in a high (vs. low) vertical position. Experiment 3 found that people's memory for the vertical location of God- and Devil-like images showed a metaphor-consistent bias (up for God; down for Devil). Experiments 4, 5a, and 5b revealed that people rated strangers as more likely to believe in God when their images appeared in a high versus low vertical position, and this effect was independent of inferences related to power and likability. These robust results reveal that vertical perceptions are invoked when people access divinity-related cognitions. (c) 2007 APA, all rights reserved.

  13. Fluid pressure responses for a Devil's Slide-like system: problem formulation and simulation

    USGS Publications Warehouse

    Thomas, Matthew A.; Loague, Keith; Voss, Clifford I.

    2015-01-01

    This study employs a hydrogeologic simulation approach to investigate subsurface fluid pressures for a landslide-prone section of the central California, USA, coast known as Devil's Slide. Understanding the relative changes in subsurface fluid pressures is important for systems, such as Devil's Slide, where slope creep can be interrupted by episodic slip events. Surface mapping, exploratory core, tunnel excavation records, and dip meter data were leveraged to conceptualize the parameter space for three-dimensional (3D) Devil's Slide-like simulations. Field observations (i.e. seepage meter, water retention, and infiltration experiments; well records; and piezometric data) and groundwater flow simulation (i.e. one-dimensional vertical, transient, and variably saturated) were used to design the boundary conditions for 3D Devil's Slide-like problems. Twenty-four simulations of steady-state saturated subsurface flow were conducted in a concept-development mode. Recharge, heterogeneity, and anisotropy are shown to increase fluid pressures for failure-prone locations by up to 18.1, 4.5, and 1.8% respectively. Previous estimates of slope stability, driven by simple water balances, are significantly improved upon with the fluid pressures reported here. The results, for a Devil's Slide-like system, provide a foundation for future investigations

  14. Sympathy for the devil: a conservation strategy for devil and manta rays

    PubMed Central

    Lawson, Julia M.; Fordham, Sonja V.; O’Malley, Mary P.; Davidson, Lindsay N.K.; Walls, Rachel H.L.; Heupel, Michelle R.; Stevens, Guy; Fernando, Daniel; Budziak, Ania; Simpfendorfer, Colin A.; Ender, Isabel; Francis, Malcolm P.; Notarbartolo di Sciara, Giuseppe

    2017-01-01

    Background International trade for luxury products, medicines, and tonics poses a threat to both terrestrial and marine wildlife. The demand for and consumption of gill plates (known as Peng Yu Sai, “Fish Gill of Mobulid Ray”) from devil and manta rays (subfamily Mobulinae, collectively referred to as mobulids) poses a significant threat to these marine fishes because of their extremely low productivity. The demand for these gill plates has driven an international trade supplied by largely unmonitored and unregulated catches from target and incidental fisheries around the world. Scientific research, conservation campaigns, and legal protections for devil rays have lagged behind those for manta rays despite similar threats across all mobulids. Methods To investigate the difference in attention given to devil rays and manta rays, we examined trends in the scientific literature and updated species distribution maps for all mobulids. Using available information on target and incidental fisheries, and gathering information on fishing and trade regulations (at international, national, and territorial levels), we examined how threats and protective measures overlap with species distribution. We then used a species conservation planning approach to develop the Global Devil and Manta Ray Conservation Strategy, specifying a vision, goals, objectives, and actions to advance the knowledge and protection of both devil and manta rays. Results and Discussion Our literature review revealed that there had been nearly 2.5-times more “manta”-titled publications, than “mobula” or “devil ray”-titled publications over the past 4.5 years (January 2012–June 2016). The majority of these recent publications were reports on occurrence of mobulid species. These publications contributed to updated Area of Occupancy and Extent of Occurrence maps which showed expanded distributions for most mobulid species and overlap between the two genera. While several international protections have recently expanded to include all mobulids, there remains a greater number of national, state, and territory-level protections for manta rays compared to devil rays. We hypothesize that there are fewer scientific publications and regulatory protections for devil rays due primarily to perceptions of charisma that favour manta rays. We suggest that the well-established species conservation framework used here offers an objective solution to close this gap. To advance the goals of the conservation strategy we highlight opportunities for parity in protection and suggest solutions to help reduce target and bycatch fisheries. PMID:28316882

  15. Sympathy for the devil: a conservation strategy for devil and manta rays.

    PubMed

    Lawson, Julia M; Fordham, Sonja V; O'Malley, Mary P; Davidson, Lindsay N K; Walls, Rachel H L; Heupel, Michelle R; Stevens, Guy; Fernando, Daniel; Budziak, Ania; Simpfendorfer, Colin A; Ender, Isabel; Francis, Malcolm P; Notarbartolo di Sciara, Giuseppe; Dulvy, Nicholas K

    2017-01-01

    International trade for luxury products, medicines, and tonics poses a threat to both terrestrial and marine wildlife. The demand for and consumption of gill plates (known as Peng Yu Sai , "Fish Gill of Mobulid Ray") from devil and manta rays (subfamily Mobulinae, collectively referred to as mobulids) poses a significant threat to these marine fishes because of their extremely low productivity. The demand for these gill plates has driven an international trade supplied by largely unmonitored and unregulated catches from target and incidental fisheries around the world. Scientific research, conservation campaigns, and legal protections for devil rays have lagged behind those for manta rays despite similar threats across all mobulids. To investigate the difference in attention given to devil rays and manta rays, we examined trends in the scientific literature and updated species distribution maps for all mobulids. Using available information on target and incidental fisheries, and gathering information on fishing and trade regulations (at international, national, and territorial levels), we examined how threats and protective measures overlap with species distribution. We then used a species conservation planning approach to develop the Global Devil and Manta Ray Conservation Strategy, specifying a vision, goals, objectives, and actions to advance the knowledge and protection of both devil and manta rays. Our literature review revealed that there had been nearly 2.5-times more "manta"-titled publications, than "mobula" or "devil ray"-titled publications over the past 4.5 years (January 2012-June 2016). The majority of these recent publications were reports on occurrence of mobulid species. These publications contributed to updated Area of Occupancy and Extent of Occurrence maps which showed expanded distributions for most mobulid species and overlap between the two genera. While several international protections have recently expanded to include all mobulids, there remains a greater number of national, state, and territory-level protections for manta rays compared to devil rays. We hypothesize that there are fewer scientific publications and regulatory protections for devil rays due primarily to perceptions of charisma that favour manta rays. We suggest that the well-established species conservation framework used here offers an objective solution to close this gap. To advance the goals of the conservation strategy we highlight opportunities for parity in protection and suggest solutions to help reduce target and bycatch fisheries.

  16. Visibility Modeling and Forecasting for Abu Dhabi using Time Series Analysis Method

    NASA Astrophysics Data System (ADS)

    Eibedingil, I. G.; Abula, B.; Afshari, A.; Temimi, M.

    2015-12-01

    Land-Atmosphere interactions-their strength, directionality and evolution-are one of the main sources of uncertainty in contemporary climate modeling. A particularly crucial role in sustaining and modulating land-atmosphere interaction is the one of aerosols and dusts. Aerosols are tiny particles suspended in the air ranging from a few nanometers to a few hundred micrometers in diameter. Furthermore, the amount of dust and fog in the atmosphere is an important measure of visibility, which is another dimension of land-atmosphere interactions. Visibility affects all form of traffic, aviation, land and sailing. Being able to predict the change of visibility in the air in advance enables relevant authorities to take necessary actions before the disaster falls. Time Series Analysis (TAS) method is an emerging technique for modeling and forecasting the behavior of land-atmosphere interactions, including visibility. This research assess the dynamics and evolution of visibility around Abu Dhabi International Airport (+24.4320 latitude, +54.6510 longitude, and 27m elevation) using mean daily visibility and mean daily wind speed. TAS has been first used to model and forecast the visibility, and then the Transfer Function Model has been applied, considering the wind speed as an exogenous variable. By considering the Akaike Information Criterion (AIC) and Mean Absolute Percentage Error (MAPE) as a statistical criteria, two forecasting models namely univarite time series model and transfer function model, were developed to forecast the visibility around Abu Dhabi International Airport for three weeks. Transfer function model improved the MAPE of the forecast significantly.

  17. High speed spectral measurements of IED detonation fireballs

    NASA Astrophysics Data System (ADS)

    Gordon, J. Motos; Spidell, Matthew T.; Pitz, Jeremey; Gross, Kevin C.; Perram, Glen P.

    2010-04-01

    Several homemade explosives (HMEs) were manufactured and detonated at a desert test facility. Visible and infrared signatures were collected using two Fourier transformspectrometers, two thermal imaging cameras, a radiometer, and a commercial digital video camera. Spectral emissions from the post-detonation combustion fireball were dominated by continuum radiation. The events were short-lived, decaying in total intensity by an order of magnitude within approximately 300ms after detonation. The HME detonation produced a dust cloud in the immediate area that surrounded and attenuated the emitted radiation from the fireball. Visible imagery revealed a dark particulate (soot) cloud within the larger surrounding dust cloud. The ejected dust clouds attenuated much of the radiation from the post-detonation combustion fireballs, thereby reducing the signal-to-noise ratio. The poor SNR at later times made it difficult to detect selective radiation from by-product gases on the time scale (~500ms) in which they have been observed in other HME detonations.

  18. WFIRST: CGI Detection and Characterization of Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Debes, John; Chen, Christine; Dawson, Bekki; Douglas, Ewan S.; Duchene, Gaspard; Jang-Condell, Hannah; hines, Dean C.; Lewis, Nikole K.; Macintosh, Bruce; Mazoyer, Johan; Meshkat, Tiffany; Nemati, Bijan; Patel, Rahul; Perrin, Marshall; Poteet, Charles; Pueyo, Laurent; Ren, Bin; Rizzo, Maxime; Roberge, Aki; Stark, Chris; Turnbull, Margaret

    2018-01-01

    The WFIRST Coronagraphic Instrument (CGI) will be capable of obtaining up to 5×10-9 contrast to an inner working angle of ~150 mas for a selection of medium band visible light filters using shaped pupil coronagraph and hybrid Lyot coronagraph designs. We present initial work at defining the scientific capabilities of the CGI with respect to different types of circumstellar disks, including warm exo-zodiacal disks, cold debris disks, and protoplanetary disks. With the above designs, CGI will be able to detect bright protoplanetary and debris disks with sizes of >100 AU beyond 500 pc. Additionally, it will be able to discover warm exozodiacal dust disks ten times more massive than that of the Solar System for over 100 nearby solar-type stars. Finally, it will be able to characterize resolved circumstellar dust disks in multiple filters of visible light, providing constraints on the size, shape, and composition of the dust.

  19. Measurement of Fugitive Dust Emissions and Visible Emissions.

    ERIC Educational Resources Information Center

    McKee, Herbert C.

    The method of measuring fugitive dust emission utilized by the Texas Air Control Board is described in this presentation for the 12th Conference on Methods in Air Pollution and Industrial Hygiene Studies, University of Southern California, April, 1971. The measuring procedure, precautions, expected results, and legal acceptance of the method are…

  20. Simulation of a dust episode over Eastern Mediterranean using a high-resolution atmospheric chemistry general circulation model

    NASA Astrophysics Data System (ADS)

    Abdel Kader, Mohamed; Zittis, Georgios; Astitha, Marina; Lelieveld, Jos; Tymvios, Fillipos

    2013-04-01

    An extended episode of low visibility took place over the Eastern Mediterranean in late September 2011, caused by a strong increase in dust concentrations, analyzed from observations of PM10 (Particulate Matter with <10μm in diameter). A high-resolution version of the atmospheric chemistry general circulation model EMAC (ECHAM5/Messy2.41 Atmospheric Chemistry) was used to simulate the emissions, transport and deposition of airborne desert dust. The model configuration involves the spectral resolution of T255 (0.5°, ~50Km) and 31 vertical levels in the troposphere and lower stratosphere. The model was nudged towards ERA40 reanalysis data to represent the actual meteorological conditions. The dust emissions were calculated online at each model time step and the aerosol microphysics using the GMXe submodel (Global Modal-aerosol eXtension). The model includes a sulphur chemistry mechanism to simulate the transformation of the dust particles from the insoluble (at emission) to soluble modes, which promotes dust removal by precipitation. The model successfully reproduces the dust distribution according to observations by the MODIS satellite instruments and ground-based AERONET stations. The PM10 concentration is also compared with in-situ measurements over Cyprus, resulting in good agreement. The model results show two subsequent dust events originating from the Negev and Sahara deserts. The first dust event resulted from the transport of dust from the Sahara on the 21st of September and lasted only briefly (hours) as the dust particles were efficiently removed by precipitation simulated by the model and observed by the TRMM (Tropical Rainfall Measuring Mission) satellites. The second event resulted from dust transport from the Negev desert to the Eastern Mediterranean during the period 26th - 30th September with a peak concentration at 2500m elevation. This event lasted for four days and diminished due to dry deposition. The observed reduced visibility over Cyprus resulted from the sedimentation of dust originating from the Negev, followed by dry deposition at the surface. The dust particles were both pristine and polluted (sulphate coated), and we evaluate the role of mixing in the duration and extent of the episodes.

  1. Mercury accumulation in Devils Lake, North Dakota effects of environmental variation in closed-basin lakes on mercury chronologies

    USGS Publications Warehouse

    Lent, R.M.; Alexander, C.R.

    1997-01-01

    Sediment cores were collected from lakes in the Devils Lake Basin in North Dakota to determine if mercury (Hg) accumulation chronologies from sediment-core data are good indicators of variations in Hg accumulation rates in saline lakes. Sediment cores from Creel Bay and Main Bay, Devils Lake were selected for detailed analysis and interpretation. The maximum Hg concentration in the Creel Bay core was 0.15 micrograms per gram at 8 to 9 centimeters. The maximum Hg concentration in the Main Bay core was 0.07 micrograms per gram at 5 to 7 centimeters. The general decreases in Hg concentrations with depth are attributed to historic variations in atmospheric Hg deposition rate. Hg stratigraphies combined with 210Pb and 137Cs dating analyses yield Hg chronologies that indicate a general increase in Hg accumulation rates in Devils Lake since the middle of the 19th century. Mean modern Hg accumulation rates in Creel Bay were 4.9 nanograms per square centimeter per year, and rates in Main Bay were 1.8 nanograms per square centimeter per year. Mean preindustrial Hg accumulation rates in Creel Bay were 1.2 nanograms per square centimeter per year, and rates in Main Bay were 1.6 nanograms per square centimeter per year. Relatively low Hg concentrations in recent sediments in the Devils Lake Basin, along with similarities in Hg accumulation rates between lakes in the Devils Lake Basin and other lakes in the northern interior of North America, indicate that local sources of Hg are not important sources of Hg. Results of the study indicate that accurate Hg chronologies are discernible in sediment cores collected from saline lakes. However, spatial and temporal variations in lake level and water chemistry common to saline lakes make interpretation of radioisotopic and geochemical chronologies difficult. Hg geochemistry in Devils Lake, and presumably in other saline lakes, is dynamic. The results of this study indicate that the absolute amount of sediment transported to Devils Lake, along with the associated Hg and total organic carbon, and the distribution of sedimentation patterns in Devils Lake may be affected by changing lake levels.

  2. Dust in Jupiter's magnetosphere. I - Physical processes. II - Origin of the ring. III - Time variations. IV - Effect on magnetospheric electrons and ions

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Johnson, T. V.

    1980-01-01

    The physical processes acting on charged microscopic dust grains in the Jovian atmosphere involve electromagnetic forces which dominate dust particle dynamics and diffusion across field lines resulting from random charge fluctuations of the dust grains. A model of the Jovian ring hypothesizes that the 'visible' ring particles are produced by erosive collisions between an assumed population of kilometer-sized parent bodies and submicron-sized magnetospheric dust particles. Fluctuations in the ring topology and intensity are determined over various time scales, showing that the ring is a quasipermanent and quasistable characteristic of the Jovian system. Finally, the interaction of the Jovian energetic belt electrons and the Jovian plasma with an ambient dust population is examined; the distribution of dust ejected from Io in the inner magnetosphere and losses of magnetospheric ions and electrons due to direct collisions with charged dust particles are calculated.

  3. Battlefield training in impaired visibility

    NASA Astrophysics Data System (ADS)

    Gammarino, Rudolph R.; Surhigh, James W.

    1991-04-01

    A laser training system entitled Shoot Through Obscuration MILES (STOM) is being developed to operate with Forward Looking InfraRed (FLIR) systems during battlefield exercises where visibility is impaired. The STOM system is capable of ranges in excess of 6 km and can penetrate battlefield obscurants such as fog-oil, smoke, dust, and rain.

  4. 40 CFR 49.124 - Rule for limiting visible emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...% opacity limit. (3) The visible emissions from an oil-fired boiler or solid fuel-fired boiler that..., fuel, fuel oil, fugitive dust, gaseous fuel, grate cleaning, marine vessel, mobile sources, motor..., PM10, PM2.5, reference method, refuse, Regional Administrator, residual fuel oil, smudge pot, solid...

  5. 40 CFR 49.124 - Rule for limiting visible emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...% opacity limit. (3) The visible emissions from an oil-fired boiler or solid fuel-fired boiler that..., fuel, fuel oil, fugitive dust, gaseous fuel, grate cleaning, marine vessel, mobile sources, motor..., PM10, PM2.5, reference method, refuse, Regional Administrator, residual fuel oil, smudge pot, solid...

  6. Yard Sale

    NASA Technical Reports Server (NTRS)

    2006-01-01

    17 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a bright plain west of Schiaparelli Crater, Mars, which is host to several features, some of them long-lived and others that are transient. The circular features scattered somewhat randomly throughout the scene are impact craters, all of which are in a variety of states of degradation. In the lower left (southwest) corner of the image, there is a small hill surrounded by ripples of windblown sediment, and near the center of the image, there is an active dust devil casting a shadow to the east as it makes its way across the plain.

    Location near: 5.9oS, 348.2oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Autumn

  7. The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment.

    PubMed

    Schofield, J T; Barnes, J R; Crisp, D; Haberle, R M; Larsen, S; Magalhães, J A; Murphy, J R; Seiff, A; Wilson, G

    1997-12-05

    The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment measured the vertical density, pressure, and temperature structure of the martian atmosphere from the surface to 160 km, and monitored surface meteorology and climate for 83 sols (1 sol = 1 martian day = 24.7 hours). The atmospheric structure and the weather record are similar to those observed by the Viking 1 lander (VL-1) at the same latitude, altitude, and season 21 years ago, but there are differences related to diurnal effects and the surface properties of the landing site. These include a cold nighttime upper atmosphere; atmospheric temperatures that are 10 to 12 degrees kelvin warmer near the surface; light slope-controlled winds; and dust devils, identified by their pressure, wind, and temperature signatures. The results are consistent with the warm, moderately dusty atmosphere seen by VL-1.

  8. Study of key factors influencing dust emission: An assessment of GEOS-Chem and DEAD simulations with observations

    NASA Astrophysics Data System (ADS)

    Bartlett, Kevin S.

    Mineral dust aerosols can impact air quality, climate change, biological cycles, tropical cyclone development and flight operations due to reduced visibility. Dust emissions are primarily limited to the extensive arid regions of the world, yet can negatively impact local to global scales, and are extremely complex to model accurately. Within this dissertation, the Dust Entrainment And Deposition (DEAD) model was adapted to run, for the first known time, using high temporal (hourly) and spatial (0.3°x0.3°) resolution data to methodically interrogate the key parameters and factors influencing global dust emissions. The dependence of dust emissions on key parameters under various conditions has been quantified and it has been shown that dust emissions within DEAD are largely determined by wind speeds, vegetation extent, soil moisture and topographic depressions. Important findings were that grid degradation from 0.3ºx0.3º to 1ºx1º, 2ºx2.5º, and 4°x5° of key meteorological, soil, and surface input parameters greatly reduced emissions approximately 13% and 29% and 64% respectively, as a result of the loss of sub grid detail within these key parameters at coarse grids. After running high resolution DEAD emissions globally for 2 years, two severe dust emission cases were chosen for an in-depth investigation of the root causes of the events and evaluation of the 2°x2.5° Goddard Earth Observing System (GEOS)-Chem and 0.3°x0.3° DEAD model capabilities to simulate the events: one over South West Asia (SWA) in June 2008 and the other over the Middle East in July 2009. The 2 year lack of rain over SWA preceding June 2008 with a 43% decrease in mean rainfall, yielded less than normal plant growth, a 28% increase in Aerosol Optical Depth (AOD), and a 24% decrease in Meteorological Aerodrome Report (METAR) observed visibility (VSBY) compared to average years. GEOS-Chem captured the observed higher AOD over SWA in June 2008. More detailed comparisons of GEOS-Chem predicted AOD and visibility over SWA with those observed at surface stations and from satellites revealed overall success of the model, although substantial regional differences exist. Within the extended drought, the study area was zoomed into the Middle East (ME) for July 2009 where multi-grid DEAD dust emissions using hourly CFSR meteorological input were compared with observations. The high resolution input yielded the best spatial and temporal dust patterns compared with Defense Meteorological Satellite Program (DMSP), Moderate Resolution Imaging Spectroradiometer (MODIS) and METAR VSBY observations and definitively revealed Syria as a major dust source for the region. The coarse resolution dust emissions degraded or missed daily dust emissions entirely. This readily showed that the spatial scale degradation of the input data can significantly impair DEAD dust emissions and offers a strong argument for adapting higher resolution dust emission schemes into future global models for improvements of dust simulations.

  9. Food preference of red devil (Amphilophus labiatus) in the Sermo Reservoir, Kulon Progo Regency

    NASA Astrophysics Data System (ADS)

    Ariasari, A.; Helmiati, S.; Setyobudi, E.

    2018-03-01

    Food preference is one of the important information that can be used to know the food chain in order to manage fisheries resources. This study aims to determine the food habits and preference of red devil (Amphilophus labiatus) in the Sermo Reservoir, Kulon Progo Regency. Samples were collected randomly each month from September 2013 to February 2014. Each sample collected was measured its total length, body weight, and determined sex, then dissected to measure the gut length and to observe gut contents. Results showed that red devil is omnivorous (relative gut length = 3.83) with food composition consisted of fish, crustaceans, detritus, phytoplankton, zooplankton, plants, insects, insect’s larvae, Chironomus sp., and annelids. A change occurred in the food preference of red devil, i.e. the young fish prefers to feed Chironomus sp. larvae (86.02 %) whereas the adult fish prefers fish/fish chunk (81.82 %). Trophic level status of red devil showed as carnivorous and niche overlapping between male and female of the adult.

  10. Optical properties of mineral dust aerosol including analysis of particle size, composition, and shape effects, and the impact of physical and chemical processing

    NASA Astrophysics Data System (ADS)

    Alexander, Jennifer Mary

    Atmospheric mineral dust has a large impact on the earth's radiation balance and climate. The radiative effects of mineral dust depend on factors including, particle size, shape, and composition which can all be extremely complex. Mineral dust particles are typically irregular in shape and can include sharp edges, voids, and fine scale surface roughness. Particle shape can also depend on the type of mineral and can vary as a function of particle size. In addition, atmospheric mineral dust is a complex mixture of different minerals as well as other, possibly organic, components that have been mixed in while these particles are suspended in the atmosphere. Aerosol optical properties are investigated in this work, including studies of the effect of particle size, shape, and composition on the infrared (IR) extinction and visible scattering properties in order to achieve more accurate modeling methods. Studies of particle shape effects on dust optical properties for single component mineral samples of silicate clay and diatomaceous earth are carried out here first. Experimental measurements are modeled using T-matrix theory in a uniform spheroid approximation. Previous efforts to simulate the measured optical properties of silicate clay, using models that assumed particle shape was independent of particle size, have achieved only limited success. However, a model which accounts for a correlation between particle size and shape for the silicate clays offers a large improvement over earlier modeling approaches. Diatomaceous earth is also studied as an example of a single component mineral dust aerosol with extreme particle shapes. A particle shape distribution, determined by fitting the experimental IR extinction data, used as a basis for modeling the visible light scattering properties. While the visible simulations show only modestly good agreement with the scattering data, the fits are generally better than those obtained using more commonly invoked particle shape distributions. The next goal of this work is to investigate if modeling methods developed in the studies of single mineral components can be generalized to predict the optical properties of more authentic aerosol samples which are complex mixtures of different minerals. Samples of Saharan sand, Iowa loess, and Arizona road dust are used here as test cases. T-matrix based simulations of the authentic samples, using measured particle size distributions, empirical mineralogies, and a priori particle shape models for each mineral component are directly compared with the measured IR extinction spectra and visible scattering profiles. This modeling approach offers a significant improvement over more commonly applied models that ignore variations in particle shape with size or mineralogy and include only a moderate range of shape parameters. Mineral dust samples processed with organic acids and humic material are also studied in order to explore how the optical properties of dust can change after being aged in the atmosphere. Processed samples include quartz mixed with humic material, and calcite reacted with acetic and oxalic acid. Clear differences in the light scattering properties are observed for all three processed mineral dust samples when compared to the unprocessed mineral dust or organic salt products. These interactions result in both internal and external mixtures depending on the sample. In addition, the presence of these organic materials can alter the mineral dust particle shape. Overall, however, these results demonstrate the need to account for the effects of atmospheric aging of mineral dust on aerosol optical properties. Particle shape can also affect the aerodynamic properties of mineral dust aerosol. In order to account for these effects, the dynamic shape factor is used to give a measure of particle asphericity. Dynamic shape factors of quartz are measured by mass and mobility selecting particles and measuring their vacuum aerodynamic diameter. From this, dynamic shape factors in both the transition and vacuum regime can be derived. The measured dynamic shape factors of quartz agree quite well with the spheroidal shape distributions derived through studies of the optical properties.

  11. A second transmissible cancer in Tasmanian devils

    PubMed Central

    Pye, Ruth J.; Pemberton, David; Tovar, Cesar; Tubio, Jose M. C.; Dun, Karen A.; Fox, Samantha; Darby, Jocelyn; Hayes, Dane; Knowles, Graeme W.; Kreiss, Alexandre; Siddle, Hannah V. T.; Swift, Kate; Lyons, A. Bruce; Murchison, Elizabeth P.; Woods, Gregory M.

    2016-01-01

    Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens. PMID:26711993

  12. A second transmissible cancer in Tasmanian devils.

    PubMed

    Pye, Ruth J; Pemberton, David; Tovar, Cesar; Tubio, Jose M C; Dun, Karen A; Fox, Samantha; Darby, Jocelyn; Hayes, Dane; Knowles, Graeme W; Kreiss, Alexandre; Siddle, Hannah V T; Swift, Kate; Lyons, A Bruce; Murchison, Elizabeth P; Woods, Gregory M

    2016-01-12

    Clonally transmissible cancers are somatic cell lineages that are spread between individuals via the transfer of living cancer cells. There are only three known naturally occurring transmissible cancers, and these affect dogs, soft-shell clams, and Tasmanian devils, respectively. The Tasmanian devil transmissible facial cancer was first observed in 1996, and is threatening its host species with extinction. Until now, this disease has been consistently associated with a single aneuploid cancer cell lineage that we refer to as DFT1. Here we describe a second transmissible cancer, DFT2, in five devils located in southern Tasmania in 2014 and 2015. DFT2 causes facial tumors that are grossly indistinguishable but histologically distinct from those caused by DFT1. DFT2 bears no detectable cytogenetic similarity to DFT1 and carries a Y chromosome, which contrasts with the female origin of DFT1. DFT2 shows different alleles to both its hosts and DFT1 at microsatellite, structural variant, and major histocompatibility complex (MHC) loci, confirming that it is a second cancer that can be transmitted between devils as an allogeneic, MHC-discordant graft. These findings indicate that Tasmanian devils have spawned at least two distinct transmissible cancer lineages and suggest that transmissible cancers may arise more frequently in nature than previously considered. The discovery of DFT2 presents important challenges for the conservation of Tasmanian devils and raises the possibility that this species is particularly prone to the emergence of transmissible cancers. More generally, our findings highlight the potential for cancer cells to depart from their hosts and become dangerous transmissible pathogens.

  13. Impacts of Recent Wetting on Snow Processes and Runoff Generation in a Terminal Lake Basin, Devils Lake, North Dakota.

    NASA Astrophysics Data System (ADS)

    Mahmood, T. H.; Van Hoy, D.

    2016-12-01

    The Devils Lake Basin, only terminal lake basin in North America, drains to a terminal lake called Devils Lake. Terminal lakes are susceptible to climate and land use changes as their water levels fluctuate to these changes. The streamflow from the headwater catchments of the Devils Lake basin exerts a strong control on the water level of the lake. Since, the mid-1980s, the Devils Lake Basin as well as other basins in the northern Great Plains have faced a large and abrupt surge in precipitation regime resulting in a series of wetter climatic condition and flooding around the Devils Lake area. Nevertheless, the impacts of the recent wetting on snow processes such as snow accumulations, blowing snow transport, in-transit sublimation, frozen soil infiltration and snowmelt runoff generations in a headwater catchment of the Devils Lake basin are poorly understood. In this study, I utilize a physically-based, distributed cold regions hydrological model to simulate the hydrological responses in the Mauvais Coulee basin that drains to Devils Lake. The Mauvais Coulee basin ( 1072 km2), located in the north-central North Dakota, is set in a gently rolling landscape with low relief ( 220 m) and an average elevation of 500 m. Major land covers are forest areas in turtle mountains ( 10%) and crops ( 86%), with wheat ( 25%) and canola ( 20%) as the major crops. The model set up includes ten sub-basins, each of which is divided into several hydrological response units (HRUs): riparian forest, river channel, reservoir, wheat, canola, other crops, and marsh. The model is parameterized using local and regional measurements and the findings from previous scientific studies. The model is evaluated against streamflow observations at the Mauvais Coulee gauge (USGS) during 1994-2013 periods using multiple performance criteria. Finally, the impacts of recent increases in precipitation on hydrologic responses are investigated using modeled hydrologic processes.

  14. Evidence that disease-induced population decline changes genetic structure and alters dispersal patterns in the Tasmanian devil

    PubMed Central

    Lachish, S; Miller, K J; Storfer, A; Goldizen, A W; Jones, M E

    2011-01-01

    Infectious disease has been shown to be a major cause of population declines in wild animals. However, there remains little empirical evidence on the genetic consequences of disease-mediated population declines, or how such perturbations might affect demographic processes such as dispersal. Devil facial tumour disease (DFTD) has resulted in the rapid decline of the Tasmanian devil, Sarcophilus harrisii, and threatens to cause extinction. Using 10 microsatellite DNA markers, we compared genetic diversity and structure before and after DFTD outbreaks in three Tasmanian devil populations to assess the genetic consequences of disease-induced population decline. We also used both genetic and demographic data to investigate dispersal patterns in Tasmanian devils along the east coast of Tasmania. We observed a significant increase in inbreeding (FIS pre/post-disease −0.030/0.012, P<0.05; relatedness pre/post-disease 0.011/0.038, P=0.06) in devil populations after just 2–3 generations of disease arrival, but no detectable change in genetic diversity. Furthermore, although there was no subdivision apparent among pre-disease populations (θ=0.005, 95% confidence interval (CI) −0.003 to 0.017), we found significant genetic differentiation among populations post-disease (θ=0.020, 0.010–0.027), apparently driven by a combination of selection and altered dispersal patterns of females in disease-affected populations. We also show that dispersal is male-biased in devils and that dispersal distances follow a typical leptokurtic distribution. Our results show that disease can result in genetic and demographic changes in host populations over few generations and short time scales. Ongoing management of Tasmanian devils must now attempt to maintain genetic variability in this species through actions designed to reverse the detrimental effects of inbreeding and subdivision in disease-affected populations. PMID:20216571

  15. Lack of genetic diversity across diverse immune genes in an endangered mammal, the Tasmanian devil (Sarcophilus harrisii).

    PubMed

    Morris, Katrina M; Wright, Belinda; Grueber, Catherine E; Hogg, Carolyn; Belov, Katherine

    2015-08-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction due to the spread of devil facial tumour disease. Polymorphisms in immune genes can provide adaptive potential to resist diseases. Previous studies in diversity at immune loci in wild species have almost exclusively focused on genes of the major histocompatibility complex (MHC); however, these genes only account for a fraction of immune gene diversity. Devils lack diversity at functionally important immunity loci, including MHC and Toll-like receptor genes. Whether there are polymorphisms at devil immune genes outside these two families is unknown. Here, we identify polymorphisms in a wide range of key immune genes, and develop assays to type single nucleotide polymorphisms (SNPs) within a subset of these genes. A total of 167 immune genes were examined, including cytokines, chemokines and natural killer cell receptors. Using genome-level data from ten devils, SNPs within coding regions, introns and 10 kb flanking genes of interest were identified. We found low polymorphism across 167 immune genes examined bioinformatically using whole-genome data. From this data, we developed long amplicon assays to target nine genes. These amplicons were sequenced in 29-220 devils and found to contain 78 SNPs, including eight SNPS within exons. Despite the extreme paucity of genetic diversity within these genes, signatures of balancing selection were exhibited by one chemokine gene, suggesting that remaining diversity may hold adaptive potential. The low functional diversity may leave devils highly vulnerable to infectious disease, and therefore, monitoring and preserving remaining diversity will be critical for the long-term management of this species. Examining genetic variation in diverse immune genes should be a priority for threatened wildlife species. This study can act as a model for broad-scale immunogenetic diversity analysis in threatened species. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  16. Why Devil's town has Devil's water

    NASA Astrophysics Data System (ADS)

    Jovic, Sladjana; Mitriceski, Bojana

    2015-04-01

    Why Devil's town has Devil's water In the south of Serbia, lies a first-class natural landmark "Devil's Town" at an altitude of 660-700 m. Earthen figures or "towers" as the locals call them, are located in the watershed between two gullies, whose sources joined together create a unique erosive formation, tremendously demolished by the erosive processes. The gullies also have strange names: "Devil's Gully" and "Hell's Gully". There are two rare natural phenomena at the same spot: 202 earthen figures of different shape and dimension, from 2 m to 15 m in height, and from 0.5 m to 3 m in width, with stone caps on the top. They are an outcome of a specific erosive process that lasts for centuries. When figures are formed, they grow, change, shorten, gradually (very slowly) disappear and reappear. The loose soil is dissolved and washed away by the rain. However, the material under the stone caps is protected from the "bombardment" of the rain drops and washout, and remains in place in the form of the rising earthen pillars - figures. Another natural rarity in "Devil's Town" are two springs of extraordinary properties "Devil's Water", which is located in vicinity of these earthen figures, is a cold and extremely acid spring (pH 1.5) of high mineral concentration (15 g/l of water), springing out in "Devil's Gully". In comparison to drinking water, it is 10 to 1000 times richer in minerals (aluminium, iron, potassium, copper, nickel, sulphur, and alaun). "Red Well" is another spring located downstream, in the alluvial plain, 400 m away from the first spring. Its water (pH 3.5) is less acid and has a lower general mineral concentration (4.372 mg/l of water). Due to the oxidation of iron, which is contained in water in large amounts, an attractive red terrace in the form of a fan is created. The main assessment for students is to take some examples of water from Devils Gully and the others from Red Well . Second part is to find out content of minerals in water examples and this part should be done in laboratory while measured of PH with PH meters should be done on the spot. At the same time students can analyze erosion process which is developed in this place. This type of public classes is very popular and teaching and learning process are taking place at the same time.

  17. Visible/near-infrared spectrogoniometric observations and modeling of dust-coated rocks

    USGS Publications Warehouse

    Johnson, J. R.; Grundy, W.M.; Shepard, M.K.

    2004-01-01

    Interpretations of visible/near-infrared reflectance spectra of Mars are often complicated by the effects of dust coatings that obscure the underlying materials of interest. The ability to separate the spectral reflectance signatures of coatings and substrates requires an understanding of how their individual and combined reflectance properties vary with phase angle. Toward this end, laboratory multispectral observations of rocks coated with different amounts of Mars analog dust were acquired under variable illumination and viewing geometries using the Bloomsburg University Goniometer (BUG). These bidirectional reflectance distribution function (BRDF) data were fit with a two-layer radiative transfer model, which replicated BUG observations of dust-coated basaltic andesite substrates relatively well. Derived single scattering albedo and phase function parameters for the dust were useful in testing the model's ability to derive the spectrum of a "blind" substrate (unknown to the modeler) coated with dust. Subsequent tests were run using subsets of the BUG data restricted by goniometric or coating thickness coverage. Using the entire data set provided the best constraints on model parameters, although some reductions in goniometric coverage could be tolerated without substantial degradation. Predictably, the most thinly coated samples provided the best information on the substrate, whereas the thickest coatings best replicated the dust. Dust zenith optical thickness values ???0.6-0.8 best constrain the substrate and coating simultaneously, particularly for large ranges of incidence or emission angles. The lack of sufficient angles can be offset by having a greater number and range of coatings thicknesses. Given few angles and thicknesses, few constraints can be placed concurrently on the spectral properties of the coating and substrate. ?? 2004 Elsevier Inc. All rights reserved.

  18. Incorporating the Wind Erosion Prediction System (WEPS) Into a Regional Air Quality Modeling System for the Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    In the Pacific Northwest, wind storms intermittently cause massive dust events that reduce visibility along roadways and jeopardize health as a result of extremely high concentrations of PM10 (particulate matter less than or equal to 10µm in diameter). An early warning dust forecast system is needed...

  19. A response to "Milankovitch theory viewed from Devils Hole" by J. Imbrie, A.C. Mix and D.G. Martinson

    USGS Publications Warehouse

    Winograd, I.J.; Landwehr, J.M.

    1993-01-01

    The detailed and well-dated 500,000-yr record of oxygen-18 variations found in vein calcite core DH-11 taken from Devils Hole in Nevada provides several challenges to the Milankovitch theory for the occurrence of Quaternary glaciations. A recent discussion paper (Imbrie and others, 1993) has dismissed the relevance of this well-dated core for determining the timing of global climatic fluctuations and, moreover, asserts that the Devils Hole record provides support for the Milankovitch theory. Upon analysis of the arguments found in this discussion, the authors found nothing to dissuade them from the original conclusion that the Devils Hole chronology does present a serious challenge to the Milankovitch theory.

  20. History of Martian Surface Changes Observed by Mars Global Surveyor

    NASA Astrophysics Data System (ADS)

    Geissler, P. E.; Enga, M.; Mukherjee, P.

    2009-12-01

    The changing appearance of Mars has fascinated observers for centuries, yet much is still unknown about the winds and sediments that alter the albedo of vast areas of the planet’s surface. A variety of aeolian processes contribute to the deposition and erosion of dust on Mars, with distinct causes and timescales that vary with season and location. Over decadal timescales, these processes act to alter the planetary albedo distribution enough to significantly impact the climate and global circulation of winds on Mars (Geissler, JGR 110, E02001, 2005; Fenton et al., Nature 446, 646, 2007). We are documenting the extent and frequency of Martian surface changes by analyzing the rich record of observations made by the Mars Global Surveyor mission. We are currently completing a time-series of global mosaics produced from wide angle MOC images showing in detail how the planet’s surface changed in appearance between early 1999 and late 2006, a period of 4 Martian years. The MOC mosaics reveal a surprising range of temporal behavior among variable features in different regions of Mars. Episodic dust deposition followed by episodic clearing can be seen in Syrtis Major. Gradual erosion by persistent seasonal winds can be seen in many equatorial areas such as southern Alcyonius. Gradual erosion by dust-devils is prevalent at higher latitudes and notably in Nilosyrtis, where the albedo boundary dividing the high albedo tropics from the dark terrain to the north is slowly advancing southwards onto brighter terrain. Solis Planum, a high plateau south of the Valles Marineris, changes on a nearly continuous basis. Many of the moving albedo boundaries (such as those at Oxia Palus and the Southern tropical dark band) display high albedo margins that may be aprons of dust swept away by the advancing erosion. The data also show clear evidence for dust deposition onto already dust-covered regions, a phenomenon that was suspected but not demonstrated by Geissler (2005). The final MOC images show significant brightening in Vastitas Borealis, continuing a trend that may have begun in the 1980s.

  1. Composition and Mineralogy of Martian Soils

    NASA Astrophysics Data System (ADS)

    Bell, J. F.

    2007-05-01

    The soils of Mars--the fine-grained, porous, uppermost layer of the planet's regolith--appear to have been created by a combination of physical and chemical weathering processes that can provide insights about the evolution of the martian surface and climate. Remote sensing and in situ measurements and analyses of soils from five different landing sites have revealed both surprising similarities and important (sometimes unexpected) differences among soils across the planet. Among the similarities are the ubiquitous presence and homogeneity of "dust" at widely-separated landing sites. Dust is the finest-grained (less than 5 microns) fraction of the soil, and the fact that it is easily suspended and transported by dust devils and dust storms explains its ubiquity. The reddish color and small size of dust particles had been cited as evidence for its origin as perhaps physically or chemically comminuted and heavily-oxidized (ferric) secondary weathering products. New results from the MER Sprit and Opportunity missions, however, indicate that dust grains may instead be volumetrically mostly unoxidized (ferrous) material, with visual color properties imparted by only a thin rind or coating of ferric oxides/oxyhydroxides. Another fine-grained global-scale unit is dark, silt- to sand-sized soils that occur in dunes, drifts, and ripples. Dark sands exhibit rather homogeneous composition and mineralogy (dominated by olivine and pyroxene) across the landing sites, suggesting that they, too, are globally-transported materials. Examples of the kinds of variability detected in martian soils are the hematite-rich spherules, sulfur/jarosite-rich outcrop- derived soils, and basaltic clastic fragments encountered in Meridiani Planum, the hematite, goethite, and ferric- sulfate bearing soils encountered in Gusev crater, and crusted/armored soils and rinds encountered at both Viking and both MER sites. Much of the observed martian soil variability may result from the action of local-scale weathering processes and/or reflect the diversity of local precursor bedrock sources. This presentation will provide an overview of what we know about the composition and mineralogy of martian soils, will review current models for martian soil formation in light of the currently-available data, and will describe ways that these models might be tested with ongoing and future Mars surface exploration missions.

  2. Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations

    NASA Astrophysics Data System (ADS)

    Ryder, C. L.; McQuaid, J. B.; Flamant, C.; Rosenberg, P. D.; Washington, R.; Brindley, H. E.; Highwood, E. J.; Marsham, J. H.; Parker, D. J.; Todd, M. C.; Banks, J. R.; Brooke, J. K.; Engelstaedter, S.; Estelles, V.; Formenti, P.; Garcia-Carreras, L.; Kocha, C.; Marenco, F.; Sodemann, H.; Allen, C. J. T.; Bourdon, A.; Bart, M.; Cavazos-Guerra, C.; Chevaillier, S.; Crosier, J.; Darbyshire, E.; Dean, A. R.; Dorsey, J. R.; Kent, J.; O'Sullivan, D.; Schepanski, K.; Szpek, K.; Trembath, J.; Woolley, A.

    2015-07-01

    The Fennec climate programme aims to improve understanding of the Saharan climate system through a synergy of observations and modelling. We present a description of the Fennec airborne observations during 2011 and 2012 over the remote Sahara (Mauritania and Mali) and the advances in the understanding of mineral dust and boundary layer processes they have provided. Aircraft instrumentation aboard the UK FAAM BAe146 and French SAFIRE (Service des Avions Français Instrumentés pour la Recherche en Environnement) Falcon 20 is described, with specific focus on instrumentation specially developed for and relevant to Saharan meteorology and dust. Flight locations, aims and associated meteorology are described. Examples and applications of aircraft measurements from the Fennec flights are presented, highlighting new scientific results delivered using a synergy of different instruments and aircraft. These include (1) the first airborne measurement of dust particles sizes of up to 300 microns and associated dust fluxes in the Saharan atmospheric boundary layer (SABL), (2) dust uplift from the breakdown of the nocturnal low-level jet before becoming visible in SEVIRI (Spinning Enhanced Visible Infra-Red Imager) satellite imagery, (3) vertical profiles of the unique vertical structure of turbulent fluxes in the SABL, (4) in situ observations of processes in SABL clouds showing dust acting as cloud condensation nuclei (CCN) and ice nuclei (IN) at -15 °C, (5) dual-aircraft observations of the SABL dynamics, thermodynamics and composition in the Saharan heat low region (SHL), (6) airborne observations of a dust storm associated with a cold pool (haboob) issued from deep convection over the Atlas Mountains, (7) the first airborne chemical composition measurements of dust in the SHL region with differing composition, sources (determined using Lagrangian backward trajectory calculations) and absorption properties between 2011 and 2012, (8) coincident ozone and dust surface area measurements suggest coarser particles provide a route for ozone depletion, (9) discrepancies between airborne coarse-mode size distributions and AERONET (AERosol Robotic NETwork) sunphotometer retrievals under light dust loadings. These results provide insights into boundary layer and dust processes in the SHL region - a region of substantial global climatic importance.

  3. Some Coolness on Martian Global Warming and Reflections on the Role of Surface Dust

    NASA Astrophysics Data System (ADS)

    Richardson, M. I.; Vasavada, A. R.

    2007-12-01

    Recent comparisons of global snap-shots of Mars' surface taken by the Viking and Mars Global Surveyor (MGS) cameras have been used to suggest that Mars has darkened, and hence has warmed, between the 1970's and 1990's. While this conclusion is not supported by more quantitative analysis of albedo data, the idea of Martian darkening and warming has found its way into the terrestrial climate change debate. Through blogs and other opinion pieces it has been used, both amusingly and disturbingly, to argue that Mars' apparent natural warming should alleviate our concerns about anthropomorphic climate change on Earth. Relating planetary research results to terrestrial analogs is instructive and promotes public understanding, but this example provides a cautionary tale of misinterpretation in this age of politicized science. The dust cycle is the dominant short-term component of the Martian climate. The atmosphere is strongly forced via dust's modification of atmospheric radiative heating rates, while dust loading displays dramatic interannual variability, from background opacity to aperiodic global dust storms. Until recently, the atmospheric component of the dust cycle was better documented than the surface component (which on Mars can be gauged via albedo). But now thanks to the combination of regional imaging, spot thermal infrared spectra, and spot short-wavelength photometry sampled at synoptic time and length scales by MGS, a rich new view of the relationship between specific meteorological phenomena and the patterns of surface dust is emerging. Seasonal cap winds, local, regional, and global dust storms, and monsoonal circulations all redistribute surface dust on large spatial scales, while dust devils are surprisingly shown to be insignificant. Rapid and widespread albedo modification is accomplished by storms that darken relatively bright regions through dust removal, and deposit dust upon largely dust free areas, brightening them. (It is not possible with existing data to infer dust deposition or erosion in perennially dusty areas.) However, most of the dust deposited on darker regions is removed within one Martian year. This rapid cleaning suggests that darker areas retain their dust-free albedo over decadal time scales because any dust deposited there can be eroded at commonly experienced wind speeds. Bright regions recover more slowly, sometimes requiring several martian years. The depletion of these dust sources in some years may play an important role in the interannual variability in dust storm occurrence and intensity by introducing a multiyear "memory" into the system. The observation of the 2001 global storm and its wake allows predictions to be made for the recovery following the 2007 global storm: the southern hemisphere should retain a transient brightening until after the seasonal cap has advanced and retreated. The MGS data show that albedo is a dynamic and evolving meteorologically and climatologically active variable, not a static boundary condition. Overall, the major story that albedo has to tell is one of major dust storms and recovery from them - not of secular changes - and that the changes are mostly cyclic such that surfaces tend to return to their pre-storm albedos. We speculate that this system of fine balances is dynamically controlled, such that interannual occurrence of dust storms and the partial dust coating of the surface should be robust against the expected large changes of orbital parameters throughout Martian geological history.

  4. Mid-Infrared Long-Baseline Interferometry of the Symbiotic Mira Star RX Pup with the VLTI/MIDI Instrument

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Schertl, D.; Weigelt, G.; Wittkowski, M.

    We present mid-infrared long-baseline interferometric observations of the symbiotic Mira star RX Pup obtained with the VLTI/MIDI instrument in prism mode within the framework of the Science Demonstration Time (SDT) program in Feb. 2004. Four visibility measurements have been carried out using the unit telescopes UT2 and UT3, with projected baseline lengths ranging from 34.7 to 46.5 m.As we show by means of radiative transfer modelin with the code DUSTY [3], the wavelength dependence of the visibility and the N-band spectrum measured with MIDI can be interpreted as thesignature of a circumstellar dust shell which is dominated by silicate dust.

  5. Effects of Atmospheric and Surface Dust on the Sublimation Rates of CO2 on Mars

    NASA Technical Reports Server (NTRS)

    Bonev, B. P.; James, P. B.; Bjorkman, J. E.; Hansen, G. B.; Wolff, M. J.

    2003-01-01

    We present an overview of our modeling work dedicated to study the effects of atmospheric dust on the sublimation of CO2 on Mars. The purpose of this study is to better understand the extent to which dust storm activity can be a root cause for interannual variability in the planetary CO2 seasonal cycle, through modifying the springtime regression rates of the south polar cap. We obtain calculations of the sublimation fluxes for various types of polar surfaces and different amounts of atmospheric dust. These calculations have been compared qualitatively with the regression patterns observed by Mars Global Surveyor (MGS) in both visible and infrared wavelengths, for two years of very different dust histories (1999, and 2001).

  6. Expansion of CORE-SINEs in the genome of the Tasmanian devil

    PubMed Central

    2012-01-01

    Background The genome of the carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii, Order: Dasyuromorphia), was sequenced in the hopes of finding a cure for or gaining a better understanding of the contagious devil facial tumor disease that is threatening the species’ survival. To better understand the Tasmanian devil genome, we screened it for transposable elements and investigated the dynamics of short interspersed element (SINE) retroposons. Results The temporal history of Tasmanian devil SINEs, elucidated using a transposition in transposition analysis, indicates that WSINE1, a CORE-SINE present in around 200,000 copies, is the most recently active element. Moreover, we discovered a new subtype of WSINE1 (WSINE1b) that comprises at least 90% of all Tasmanian devil WSINE1s. The frequencies of WSINE1 subtypes differ in the genomes of two of the other Australian marsupial orders. A co-segregation analysis indicated that at least 66 subfamilies of WSINE1 evolved during the evolution of Dasyuromorphia. Using a substitution rate derived from WSINE1 insertions, the ages of the subfamilies were estimated and correlated with a newly established phylogeny of Dasyuromorphia. Phylogenetic analyses and divergence time estimates of mitochondrial genome data indicate a rapid radiation of the Tasmanian devil and the closest relative the quolls (Dasyurus) around 14 million years ago. Conclusions The radiation and abundance of CORE-SINEs in marsupial genomes indicates that they may be a major player in the evolution of marsupials. It is evident that the early phases of evolution of the carnivorous marsupial order Dasyuromorphia was characterized by a burst of SINE activity. A correlation between a speciation event and a major burst of retroposon activity is for the first time shown in a marsupial genome. PMID:22559330

  7. Expansion of CORE-SINEs in the genome of the Tasmanian devil.

    PubMed

    Nilsson, Maria A; Janke, Axel; Murchison, Elizabeth P; Ning, Zemin; Hallström, Björn M

    2012-05-06

    The genome of the carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii, Order: Dasyuromorphia), was sequenced in the hopes of finding a cure for or gaining a better understanding of the contagious devil facial tumor disease that is threatening the species' survival. To better understand the Tasmanian devil genome, we screened it for transposable elements and investigated the dynamics of short interspersed element (SINE) retroposons. The temporal history of Tasmanian devil SINEs, elucidated using a transposition in transposition analysis, indicates that WSINE1, a CORE-SINE present in around 200,000 copies, is the most recently active element. Moreover, we discovered a new subtype of WSINE1 (WSINE1b) that comprises at least 90% of all Tasmanian devil WSINE1s. The frequencies of WSINE1 subtypes differ in the genomes of two of the other Australian marsupial orders. A co-segregation analysis indicated that at least 66 subfamilies of WSINE1 evolved during the evolution of Dasyuromorphia. Using a substitution rate derived from WSINE1 insertions, the ages of the subfamilies were estimated and correlated with a newly established phylogeny of Dasyuromorphia. Phylogenetic analyses and divergence time estimates of mitochondrial genome data indicate a rapid radiation of the Tasmanian devil and the closest relative the quolls (Dasyurus) around 14 million years ago. The radiation and abundance of CORE-SINEs in marsupial genomes indicates that they may be a major player in the evolution of marsupials. It is evident that the early phases of evolution of the carnivorous marsupial order Dasyuromorphia was characterized by a burst of SINE activity. A correlation between a speciation event and a major burst of retroposon activity is for the first time shown in a marsupial genome.

  8. GETTING TO THE HEART OF A GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This collage of images in visible and infrared light reveals how the barred spiral galaxy NGC 1365 is feeding material into its central region, igniting massive star birth and probably causing its bulge of stars to grow. The material also is fueling a black hole in the galaxy's core. A galaxy's bulge is a central, football-shaped structure composed of stars, gas, and dust. The black-and-white image in the center, taken by a ground-based telescope, displays the entire galaxy. But the telescope's resolution is not powerful enough to reveal the flurry of activity in the galaxy's hub. The blue box in the galaxy's central region outlines the area observed by the NASA Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The red box pinpoints a narrower view taken by the Hubble telescope's infrared camera, the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). A barred spiral is characterized by a lane of stars, gas, and dust slashing across a galaxy's central region. It has a small bulge that is dominated by a disk of material. The spiral arms begin at both ends of the bar. The bar is funneling material into the hub, which triggers star formation and feeds the bulge. The visible-light picture at upper left is a close-up view of the galaxy's hub. The bright yellow orb is the nucleus. The dark material surrounding the orb is gas and dust that is being funneled into the central region by the bar. The blue regions pinpoint young star clusters. In the infrared image at lower right, the Hubble telescope penetrates the dust seen in the WFPC2 picture to reveal more clusters of young stars. The bright blue dots represent young star clusters; the brightest of the red dots are young star clusters enshrouded in dust and visible only in the infrared image. The fainter red dots are older star clusters. The WFPC2 image is a composite of three filters: near-ultraviolet (3327 Angstroms), visible (5552 Angstroms), and near-infrared (8269 Angstroms). The NICMOS image, taken at a wavelength of 16,000 Angstroms, was combined with the visible and near-infrared wavelengths taken by WFPC2. The WFPC2 image was taken in January 1996; the NICMOS data were taken in April 1998. Credits for the ground-based image: Allan Sandage (The Observatories of the Carnegie Institution of Washington) and John Bedke (Computer Sciences Corporation and the Space Telescope Science Institute) Credits for the WFPC2 image: NASA and John Trauger (Jet Propulsion Laboratory) Credits for the NICMOS image: NASA, ESA, and C. Marcella Carollo (Columbia University)

  9. Mesoscale and Synoptic Summertime Circulations and Their Impact on Visibility in the Arabian Gulf

    NASA Astrophysics Data System (ADS)

    Eleuterio, D. P.; Walker, A. L.

    2005-12-01

    Although frequently characterized as a region of relatively persistent northwesterly winds, often referred to as the 40-day shamal, several researchers have recognized significant temporal and spatial variability in the summer low level winds in the Arabian Gulf. In addition to the synoptically driven gradient between the subtropical high to the north and the monsoon trough across the Gulf of Oman and Northern Arabian Sea, there are complex interactions between the Saudi Arabian and Pakistani heat lows, land-sea breeze circulations, and coastal terrain influence due to the proximity of the Zagros Mountains. These interactions frequently result in several distinct wind regimes within the Arabian Gulf, to include weak thermally and dynamically forced southerlies in the southern Gulf, a diurnally varying region of convergence/ divergence across the central Gulf, and northwesterly shamal type flow in the northern Gulf. The relative orientation and strength of these wind regimes and the strength of the subsidence inversion at the top of the marine boundary layer greatly impact the aerosol loading over water and resulting visibility due to wind-blown sand, dust, and smoke. Several case studies are examined to explore the interaction between mesoscale and synoptic forcing and the resulting spatial and temporal variability in visibility and aerosol optical depth. Conditions range from two to three day periods of rapid and persistent regional clearing with freshening northwesterly winds, to persistent periods of moderate to poor visibility in marine haze under light winds, to large scale events that create a distinct wind and dust front, severely reducing visibility through much of Iraq, Kuwait, and Saudi Arabia, and extending well into the Arabian Gulf. These strong, widespread events may be correlated with synoptically forced conditions farther north. Alternatively, smaller scale regional plumes of mobilized dust are often created by mesoscale events which, in conjunction with oil smoke and industrial pollution, can rapidly reduce visibility in localized regions for periods of 1-2 days and are relatively difficult to forecast because of their mesoscale nature.

  10. Mid-Infrared Spectrally-Dispersed Visibilities of Massive Stars Observed with the MIDI Instrument on the VLTI

    NASA Astrophysics Data System (ADS)

    Wallace, D. J.; Rajagopal, J.; Barry, R.; Richardson, L. J.; Lopez, B.; Chesneau, O.; Danchi, W. C.

    The mechanism driving dust production in massive stars remains somewhat mysterious. However, recent aperture-masking and interferometric observations of late-type WC Wolf-Rayet (WR) stars strongly support the theory that dust formation in these objects is a result of colliding winds in binaries. Consistent with this theory, there is also evidence that suggests the prototypical Luminous Blue Variable (LBV) star, Eta Carinae, is a binary. To explore and quantify this possible explanation, we have conducted a high resolution interferometric survey of late-type massive stars utilizing the VLTI, Keck, and IOTA interferometers. We present here the motivation for this study as well as the first results from the MIDI instrument on the VLTI. (Details of the Keck Interferometer and IOTA interferometer observations are discussed in this workshop by Rajagopal et al.). Our VLTI study is aimed primarily at resolving and characterizing the dust around the WC9 star WR 85a and the LBV WR 122, both dust-producing but at different phases of massive star evolution. The pectrally-dispersed visibilities obtained with the MIDI observations will provide the first steps towards answering many outstanding issues in our understanding of this critical phase of massive star evolution

  11. Solar Storms, Devils, Dunes, and Gullies

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Released 12 December 2003

    Man, there sure is a lot going on here! This image was acquired during the peak of the late October record breaking solar storm outbursts. The white dots in this image were in fact caused when the charged particles from the sun hit our camera. One can also see the enigmatic gullies, dark barchan sand dunes and numerous dust devil tracks. This image is in the Noachis region of the heavily cratered southern hemisphere.

    Image information: VIS instrument. Latitude -42.1, Longitude 328.2 East (31.8 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  12. Use of a Reflective Ultraviolet Imaging System (RUVIS) on Two-Dimensional Dust Impressions Created with Footwear on Multiple Substrates

    NASA Astrophysics Data System (ADS)

    Engelson, Brian Aaron

    Footwear impression evidence in dust is often difficult to locate in ambient light and is a fragile medium that both collection and enhancement techniques can destroy or distort. The collection of footwear impression evidence always begins with non-destructive photographic techniques; however, current methods are limited to oblique lighting of the impression followed by an attempt to photograph in situ. For the vast majority of footwear impressions, an interactive collection method, and thus a potentially destructive procedure, is subsequently carried out to gather the evidence. Therefore, alternative non-destructive means for the preservation and enhancement of footwear impressions in dust merits further attention. Previous research performed with reflected ultraviolet (UV) photography and reflected ultraviolet imaging systems (RUVIS) has shown that there are additional non-destructive methodologies that can be applied to the search for and documentation of footwear impressions in dust. Unfortunately, these prior studies did not include robust comparisons to traditional oblique white light, instead choosing to focus on different UV wavelengths. This study, however, seeks to evaluate the use of a RUVIS device paired with a 254 nanometer (nm) UV light source to locate 2-D footwear impressions in dust on multiple substrates against standard oblique white light techniques and assess the visibility of the impression and amount of background interference present. The optimal angle of incident UV light for each substrate was also investigated. Finally, this study applied an image enhancement technique in order to evaluate its usefulness when looking at the visibility of a footwear impression and the amount of background interference present for enhanced white light and RUVIS pictures of footwear impressions in dust. A collection of eight different substrate types was gathered for investigation, including vinyl composition tile (VCT), ceramic tile, marble tile, magazine paper, steel sheet metal, vinyl flooring, wood flooring, and carpet. Heel impressions were applied to the various substrates utilizing vacuum collected dust and normal walking pressure. Each substrate was then explored and photographed in ambient fluorescent light, oblique white light at 0°, 15°, 30°, and 0° with the light source below the surface plane of the substrate, and 254 nm UV light at 0°, 15°, 30°, 45°, 60°, 75°, 90° and 0° with the light source below the surface plane of the substrate. All pictures were evaluated for clarity and visible detail of the footwear impression and the amount of background interference present, selecting for the best images within a lighting condition group. Additional intra- and intergroup comparisons were carried out to explore differences created by the various lighting conditions. Enhanced images were then created with the best scored pictures and evaluated for additional modifications in impression visibility and background interference. Photographs of footwear impressions in dust illuminated with ambient fluorescent light proved to be the most difficult conditions under which a footwear impression could be visualized. However, both oblique white light and 254 nm UV light lighting conditions showed improvements in either visualization or background dropout, or both, over ambient light conditions. An assessment of the white light and 254 nm UV light RUVIS images also demonstrated that the best angles for the light source for all substrates were oblique 0 and oblique 0° below the surface plane of the substrate lighting. It was found that white light photographs generally provided higher visibility ratings, while RUVIS 254 nm UV light photographs provided better grades for reducing background interference. Enhanced images of white light conditions provided generally poorer quality and quantity of details, while enhanced RUVIS images seemed to improve upon these areas. The use of a RUVIS to capture photographs of footwear impression evidence in dust was found to be a successful secondary non-destructive technique that can be paired with traditional oblique white light procedures. Additionally, the use of below the surface plane of the substrate lighting techniques were found to improve either visibility or background dropout, or both, over standard 0 oblique lighting, depending on the light source, and should be employed, when applicable. Finally, further investigation into digital photo-editing enhancement techniques for footwear impression evidence in dust is needed.

  13. Recommended metric for tracking visibility progress in the Regional Haze Rule.

    PubMed

    Gantt, Brett; Beaver, Melinda; Timin, Brian; Lorang, Phil

    2018-05-01

    For many national parks and wilderness areas with special air quality protections (Class I areas) in the western United States (U.S.), wildfire smoke and dust events can have a large impact on visibility. The U.S. Environmental Protection Agency's (EPA) 1999 Regional Haze Rule used the 20% haziest days to track visibility changes over time even if they are dominated by smoke or dust. Visibility on the 20% haziest days has remained constant or degraded over the last 16 yr at some Class I areas despite widespread emission reductions from anthropogenic sources. To better track visibility changes specifically associated with anthropogenic pollution sources rather than natural sources, the EPA has revised the Regional Haze Rule to track visibility on the 20% most anthropogenically impaired (hereafter, most impaired) days rather than the haziest days. To support the implementation of this revised requirement, the EPA has proposed (but not finalized) a recommended metric for characterizing the anthropogenic and natural portions of the daily extinction budget at each site. This metric selects the 20% most impaired days based on these portions using a "delta deciview" approach to quantify the deciview scale impact of anthropogenic light extinction. Using this metric, sulfate and nitrate make up the majority of the anthropogenic extinction in 2015 on these days, with natural extinction largely made up of organic carbon mass in the eastern U.S. and a combination of organic carbon mass, dust components, and sea salt in the western U.S. For sites in the western U.S., the seasonality of days selected as the 20% most impaired is different than the seasonality of the 20% haziest days, with many more winter and spring days selected. Applying this new metric to the 2000-2015 period across sites representing Class I areas results in substantial changes in the calculated visibility trend for the northern Rockies and southwest U.S., but little change for the eastern U.S. Changing the approach for tracking visibility in the Regional Haze Rule allows the EPA, states, and the public to track visibility on days when reductions in anthropogenic emissions have the greatest potential to improve the view. The calculations involved with the recommended metric can be incorporated into the routine IMPROVE (Interagency Monitoring of Protected Visual Environments) data processing, enabling rapid analysis of current and future visibility trends. Natural visibility conditions are important in the calculations for the recommended metric, necessitating the need for additional analysis and potential refinement of their values.

  14. The Mars atmosphere as seen from Curiosity

    NASA Astrophysics Data System (ADS)

    Mischna, Michael

    Study of the Mars atmosphere by the Mars Science Laboratory (MSL) has been ongoing since immediately after landing on August 6, 2012 (UTC) at the bottom of Gale Crater. The MSL Rover Environmental Monitoring Station (REMS) has been the primary payload for atmospheric monitoring, while additional observations from the ChemCam, Mastcam, Navcam and Sample Analysis at Mars (SAM) instruments have augmented our understanding of the local martian environment at Gale. The REMS instrument consists of six separate sensor types, observing air and ground temperature, near-surface winds, relative humidity, surface pressure and UV radiation. The standard cadence of REMS observations consists of five-minute observations of 1 Hz frequency at the top of each hour, augmented by several one-hour “extended blocks” each sol, also at 1 Hz frequency, together yielding one of the most richly diverse and detailed samplings of the martian atmosphere. Among the intriguing atmospheric phenomena observed during the first 359 sols of the mission is a substantially greater (˜12% of the diurnal mean) diurnal pressure cycle than found in previous surface measurements by Viking at a similar season (˜3-4%), likely due to the topography of the crater environment. Measurements of air and ground temperature by REMS are seen to reflect both changes in atmospheric opacity as well as transitions in the surface geology (and surface thermal properties) along the rover’s traverse. The REMS UV sensor has provided the first measurements of ultraviolet flux at the martian surface, and identified dust events that reduce solar insolation at the surface. The REMS RH sensor has observed a seasonal change in humidity in addition to the expected diurnal variations in relative humidity; however, no surface frost has been detected through the first 360 sols of the mission. With a weekly cadence, Navcam images the local zenith for purposes of tracking cloud motion and wind direction, and likewise observes the horizon to search (thus far unsuccessfully) for visible dust devil activity. The Mastcam operates with a similar observing frequency for quantifying atmospheric opacity, while ChemCam is used in its ‘passive’ mode, while pointed at the sky, to measure atmospheric water vapor abundance. Lastly, the SAM suite has provided information about atmospheric composition, including trace species abundances and isotopic ratios, which may be used to infer the history and evolution of the martian atmosphere.

  15. Types, Sizes, Shapes and Distributions of Mars Ice and Dust Aerosols from the MGS TES Emission Phase Function Observations

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2001-12-01

    A full Mars year (1999-2001) of emission phase function (EPF observations from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) provide the most complete study of Mars dust and ice aerosol properties to date. TES visible (solar band average) and infrared spectral (6-30 micron, 10 invcm res) EPF sequences are analyzed self-consistently with detailed multiple scattering radiative transfer (RT) codes to obtain first-time seasonal/latitudinal distributions of aerosol visible optical depths, particle sizes, and single scattering phase functions. As a consequence of the combined angular and wavelength coverage, we are able to define two distinct ice cloud types at 45S-45N latitudes on Mars. Type 1 ice clouds exhibit small particle sizes (1-2 micron radii), as well as a broad, deep minimum in side scattering indicative of aligned ice grains (see Wolff et al., 2001). Type 1 ice aerosols are most prevalent in the southern hemisphere during Mars aphelion, but also appear more widely distributed in season and latitude as topographic and high altitude (above 20 km) ice hazes. Type 2 ice clouds exhibit larger particle sizes (2-4 microns) and a much narrower side-scattering minimum, indicative of poorer grain alignment or a change in particle shape relative to the type 1 ice clouds (see Wolff et al., 2001). Type 2 ice clouds appear most prominently in the northern subtropical aphelion cloud belt, where relatively low altitudes of water vapor saturation (10 km) coincide with strong advective transport (Clancy et al., 1996). Retrieved dust particle radii of 1.5-1.8 micron are consistent with Pathfinder (Tomasko et al., 1999) and recent Viking/Mariner 9 reanalyses (e.g., size distribution B of Clancy et al., 1995). Detailed spectral modeling of the solar passband also implies agreement of EPF-derived dust single scattering albedos (ssa) with the ssa results from Tomasko et al.(table 8 therein). Spatial and seasonal changes in the dust ssa (0.92-0.95, solar band average) and phase functions suggest possible dust property variations, but may also be a consequence of variable high altitude ice hazes. The annual variations of both dust and ice clouds at 45S-45N latitudes are predominately orbital rather than seasonal in character and have shown close repeatability during the portions of first two Mars years observed by MGS (i.e., prior to the July 2001 global dust storm which began at Ls=185, a most striking departure from the previous two Mars years observed). Minimum visible dust opacities of 0.05-0.10 occur at southern latitudes in aphelion, maximum dust opacities of 1.0-1.5 at northern latitudes after Ls=200 (and greater than 3 in the 2001 global dust storm). Type 2 ice clouds abruptly disappear at Ls=145, as does the widespread occurrence of type 1 clouds in the southern hemisphere. Dust loading in the southern hemisphere increases at this time, but does not do so in the northern hemisphere. A comparison of dust solar band to thermal infrared optical depth ratios also provides strong evidence for non-uniform vertical mixing of the dust loading. A large fraction of the dust column (20-50 percent) appears to be concentrated in the lower boundary layer of the Mars atmosphere, particularly during conditions of low-to-moderate dust loading.

  16. Dust emission and transport over Iraq associated with the summer Shamal winds

    NASA Astrophysics Data System (ADS)

    Karam Francis, Diana Bou; Flamant, Cyrille; Chaboureau, Jean-Pierre; Banks, Jamie

    2016-04-01

    In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model Meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a Meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source. Keywords: Dust, Low Level Jet, Shamal winds, Middle East, dust sources.

  17. Analysis of the Variability of Poor Visibility Events in North and Central United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Aldababseh, Amal; Temimi, Marouane

    2016-12-01

    Good visibility is essential for the safety of ground transportation and aviation sectors. Degradation in visibility can occur during wet or dry conditions and can therefore be a proxy for air pollution and atmospheric conditions. Moreover, visibility indicates the long-term impact on human health and climate and the relationship with local atmospheric pollution. The major factors triggering the degradation of visibility can be inferred by analyzing visibility long-term trends. In the UAE, we expect that the unprecedented growth in urban development and the aviation sector has impacted visibility records. This study is the first attempt to thoroughly investigate temporal and spatial variations in poor visibility measurements in the UAE and at four different visibility observation levels; less than 5000m, 2500m, 1000m and 100m, as well as to analyze the correlation between poor visibility measurements and different meteorological parameters (relative humidity, air temperature, wind direction and speed) under two weather conditions; wet and dry. Results show that eliminating all meteorological conditions (fog, mist, haze, and precipitation and dust) does not change the overall decreasing trend in visibility, this suggests that the changes in the air quality might be responsible for the long-term visibility degradation. The decreasing trends in visibility vary from the different major cities in the UAE. All the meteorological parameters studied are significantly related to visibility, indicating the existence of complex mechanisms (physical and chemical) that affect the visibility in the atmosphere. Visibility is positively correlated to relative humidity and wind direction, however, it is negatively correlated with temperature, wind speed and dew point. This is possibly related to the weather systems in summer and winter. In summer the presence of synoptic systems along with the very high temperature, low pressure, very high humidity, and very high wind speed due to the Shamal often lead to low visibility, whereas in winter the relatively high wind speed suggests more efficient diffusion conditions and dilutes pollutions and dust particulates to low concentration, with lower temperature and limited precipitation favors high visibility.

  18. STS-57 Earth observation of the Eastern Mediterranean, Nile River, Asia Minor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation of the Eastern Mediterranean. From a high vantage point over the Nile River, this north-looking view shows the eastern Mediterranean and the entire landmass of Asia Minor, with the Black Sea dimly visible at the horizon. Many of the Greek islands can be seen in the Aegean Sea (top left), off the coast of Asia Minor. Cyprus is visible under atmospheric dust in the northeastern corner of the Mediterranean. The dust cloud covers the east end of the Mediterranean, its western edge demarcated by a line that cuts the center of the Nile Delta. This dust cloud originated far to the west, in Algeria, and moved northeast. A gyre of clouds in the southeast corner of the Mediterranean indicates a complementary counterclockwise (cyclonic) circulation of air. The Euphrates River appears as a thin green line (upper right) in the yellow Syrian desert just south of the mountains of Turkey. The Dead Sea (lower right) lies in a rift valley which extends north into Turkey and sout

  19. Ecology: 'Devil's gardens' bedevilled by ants.

    PubMed

    Frederickson, Megan E; Greene, Michael J; Gordon, Deborah M

    2005-09-22

    'Devil's gardens' are large stands of trees in the Amazonian rainforest that consist almost entirely of a single species, Duroia hirsuta, and, according to local legend, are cultivated by an evil forest spirit. Here we show that the ant Myrmelachista schumanni, which nests in D. hirsuta stems, creates devil's gardens by poisoning all plants except its host plants with formic acid. By killing these other plants, M. schumanni provides its colonies with abundant nest sites--a long-lasting benefit as colonies can live for 800 years.

  20. Global dust sources detection using MODIS Deep Blue Collection 6 aerosol products

    NASA Astrophysics Data System (ADS)

    Pérez García-Pando, C.; Ginoux, P. A.

    2015-12-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Remote sensing sensors are the most useful tool to locate dust sources. These sensors include microwaves, visible channels, and lidar. On the global scale, major dust source regions have been identified using polar orbiting satellite instruments. The MODIS Deep Blue algorithm has been particularly useful to detect small-scale sources such as floodplains, alluvial fans, rivers, and wadis , as well as to identify anthropogenic sources from agriculture. The recent release of Collection 6 MODIS aerosol products allows to extend dust source detection to the entire land surfaces, which is quite useful to identify mid to high latitude dust sources and detect not only dust from agriculture but fugitive dust from transport and industrial activities. This presentation will overview the advantages and drawbacks of using MODIS Deep Blue for dust detection, compare to other instruments (polar orbiting and geostationary). The results of Collection 6 with a new dust screening will be compared against AERONET. Applications to long range transport of anthropogenic dust will be presented.

  1. Baby Picture of our Solar System

    NASA Technical Reports Server (NTRS)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Click on image for Poster VersionClick on image for Visible Light ImageClick on image for Animation

    A rare, infrared view of a developing star and its flaring jets taken by NASA's Spitzer Space Telescope shows us what our own solar system might have looked like billions of years ago. In visible light, this star and its surrounding regions are completely hidden in darkness.

    Stars form out of spinning clouds, or envelopes, of gas and dust. As the envelopes flatten and collapse, jets of gas stream outward and a swirling disk of planet-forming material takes shape around the forming star. Eventually, the envelope and jets disappear, leaving a newborn star with a suite of planets. This process takes millions of years.

    The Spitzer image shows a developing sun-like star, called L1157, that is only thousands of years old (for comparison, our solar system is around 4.5 billion years old). Why is the young system only visible in infrared light? The answer has to do with the fact that stars are born in the darkest and dustiest corners of space, where little visible light can escape. But the heat, or infrared light, of an object can be detected through the dust.

    In Spitzer's infrared view of L1157, the star itself is hidden but its envelope is visible in silhouette as a thick black bar. While Spitzer can peer through this region's dust, it cannot penetrate the envelope itself. Hence, the envelope appears black. The thickest part of the envelope can be seen as the black line crossing the giant jets. This L1157 portrait provides the first clear look at stellar envelope that has begun to flatten.

    The color white shows the hottest parts of the jets, with temperatures around 100 degrees Celsius (212 degrees Fahrenheit). Most of the material in the jets, seen in orange, is roughly zero degrees on the Celsius and Fahrenheit scales.

    The reddish haze all around the picture is dust. The white dots are other stars, mostly in the background.

    L1157 is located 800 light-years away in the constellation Cepheus.

    This image was taken by Spitzer's infrared array camera. Infrared light of 8 microns is colored red; 4.5-micron infrared light is green; and 3.6-micron infrared light is blue.

    The visible-light picture is from the Palomar Observatory-Space Telescope Science Institute Digitized Sky Survey. Blue visible light is blue; red visible light is green, and near-infrared light is red.

    The artist's animation begins by showing a dark and dusty corner of space where little visible light can escape. The animation then transitions to the infrared view taken by NASA's Spitzer Space Telescope, revealing the embryonic star and its dramatic jets.

  2. DNS of helicity-induced stratified turbulent flow

    NASA Astrophysics Data System (ADS)

    Chandy, Abhilash J.; Rahimi, Abbas

    2013-11-01

    Helical flows undergoing density stratification have wide applications in meteorological phenomena such as dust devils, tornadoes, and hurricanes due to the complexity and disasters caused by them. Direct numerical simulations (DNS) of transition to turbulence in a stably stratified Boussinesq fluid are presented for different rotation and stratification intensities. In order to understand the effect of velocity on the energy cascade, comparisons are made between helicity initiated and non-helical flows. Results show that stratification decelerates the helicity decay and causes velocity and vorticity to align with each other. With respect to the helical and non-helical flow comparisons, the total energy in the presence of stratification decays faster with helicity. In addition, the behavior of length scales were examined by comparing temporal variations of the vertical shearing of velocities. Results showed a growing asymmetry with time in the case of helical flow, while non-helical flow stayed close to begin symmetric.

  3. Evolution of secondary whirls in thermoconvective vortices: Strengthening, weakening, and disappearance in the route to chaos

    NASA Astrophysics Data System (ADS)

    Castaño, D.; Navarro, M. C.; Herrero, H.

    2016-01-01

    The appearance, evolution, and disappearance of periodic and quasiperiodic dynamics of fluid flows in a cylindrical annulus locally heated from below are analyzed using nonlinear simulations. The results reveal a route of the transition from a steady axisymmetric vertical vortex to a chaotic flow. The chaotic flow regime is reached after a sequence of successive supercritical Hopf bifurcations to periodic, quasiperiodic, and chaotic flow regimes. A scenario similar to the Ruelle-Takens-Newhouse scenario is verified in this convective flow. In the transition to chaos we find the appearance of subvortices embedded in the primary axisymmetric vortex, flows where the subvortical structure strengthens and weakens, that almost disappears before reforming again, leading to a more disorganized flow to a final chaotic regime. Results are remarkable as they connect to observations describing formation, weakening, and virtual disappearance before revival of subvortices in some atmospheric swirls such as dust devils.

  4. Dust Devil Passes Near Martian Sand Dune

    NASA Image and Video Library

    2017-02-27

    This image from an animation shows effects of one Martian day of wind blowing sand underneath NASA's Curiosity Mars rover on a non-driving day for the rover. Each image was taken just after sundown by the rover's downward-looking Mars Descent Imager (MARDI). The area of ground shown in the images spans about 3 feet (about 1 meter) left-to-right. The first image was taken on Jan. 23, 2017, during the 1,587th Martian day, or sol, of Curiosity's work on Mars. Figure 1 above is the image with a scale bar in centimeters. The second was taken on Jan. 24, 2017 (Sol 1588). The day-apart images by MARDI were taken as a part of investigation of wind's effects during Martian summer, the windiest time of year in Gale Crater. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21143

  5. Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission

    NASA Astrophysics Data System (ADS)

    Haberle, R. M.; Gómez-Elvira, J.; Torre Juárez, M.; Harri, A.-M.; Hollingsworth, J. L.; Kahanpää, H.; Kahre, M. A.; Lemmon, M.; Martín-Torres, F. J.; Mischna, M.; Moores, J. E.; Newman, C.; Rafkin, S. C. R.; Rennó, N.; Richardson, M. I.; Rodríguez-Manfredi, J. A.; Vasavada, A. R.; Zorzano-Mier, M.-P.

    2014-03-01

    We provide a preliminary interpretation of the Rover Environmental Monitoring Station (REMS) pressure data from the first 100 Martian solar days (sols) of the Mars Science Laboratory mission. The pressure sensor is performing well and has revealed the existence of phenomena undetected by previous missions that include possible gravity waves excited by evening downslope flows, relatively dust-free convective vortices analogous in structure to dust devils, and signatures indicative of the circulation induced by Gale Crater and its central mound. Other more familiar phenomena are also present including the thermal tides, generated by daily insolation variations, and the CO2 cycle, driven by the condensation and sublimation of CO2 in the polar regions. The amplitude of the thermal tides is several times larger than those seen by other landers primarily because Curiosity is located where eastward and westward tidal modes constructively interfere and also because the crater circulation amplifies the tides to some extent. During the first 100 sols tidal amplitudes generally decline, which we attribute to the waning influence of the Kelvin wave. Toward the end of the 100 sol period, tidal amplitudes abruptly increased in response to a nearby regional dust storm that did not expand to global scales. Tidal phases changed abruptly during the onset of this storm suggesting a change in the interaction between eastward and westward modes. When compared to Viking Lander 2 data, the REMS daily average pressures show no evidence yet for the 1-20 Pa increase expected from the possible loss of CO2 from the south polar residual cap.

  6. WMO SDS-WAS NAMEE Regional Center: Towards continuous evaluation of dust models in Northern Africa

    NASA Astrophysics Data System (ADS)

    Basart, Sara; García-Castillo, Gerardo; Cuevas, Emilio; Terradellas, Enric

    2016-04-01

    One of the most important activities of the Regional Center for Northern Africa, Middle East and Europe of the World Meteorological Organization's Sand and Dust Storm Warning Advisory and Assessment System (WMO SDS-WAS, http://sds-was.aemet.es) is the dust model intercomparison and forecast evaluation, which is deemed an indispensable service to the users and an invaluable tool to assess model skills. Currently, the Regional Center collects daily dust forecasts from models run by nine partners (BSC, ECMWF, NASA, NCEP, SEEVCCC, EMA, CNR-ISAC, NOA and UK Met Office). A multi-model ensemble has also been set up in an effort to provide added-value products to the users. The first problem to address the dust model evaluation is the scarcity of suitable routine observations near the Sahara, the world's largest source of mineral dust. The present contribution presents preliminary results of dust model evaluation using new observational datasets. The current routine evaluation of dust predictions is focused on total-column dust optical depth (DOD) and uses remote-sensing retrievals from sun-photometric (AERONET) and satellite (MODIS) measurements. However, most users of dust forecasts are interested in the concentration near the surface (in the air we breathe) rather than in the total column content. Therefore, evaluation of the predicted surface concentration is also necessary. In this context, the initiative of the African Monsoon Interdisciplinary Analysis (AMMA) International Program to establish permanent measuring stations in the Sahel is extremely important. Tapered Element Oscillating Microbalance (TEOM) monitors continuously record PM10 in M'Bour (Senegal); Cinzana (Mali) and Banizoumbou (Niger). This surface model evaluation is complemented with the PM10 observation from the Air Quality Control and Monitoring Network (AQCMN) of the Canary Islands (Spain). The region, located in the sub-tropical Eastern Atlantic (roughly 100 km west of the Moroccan coast), is frequently affected by intrusions of Saharan dust. Regional Node are evaluated during two years (2013-2014) with observations recorded in the Sahelian region and Canary Islands. Additionally, since the data sets of weather records have an excellent spatial and temporal coverage, observations of horizontal visibility included in meteorological reports are used as an alternative way to monitor dust events in near-real-time (NRT). Recently, a new visibility product that includes more than 1,500 METAR stations has implemented in the SDS-WAS NAMEE Regional Center. The present contribution also will demonstrate how the visibility can complement the information provided by other observing systems (air quality monitoring stations, sun photometers, vertical profilers or satellite products) and numerical simulations presenting its application in tracking several dust episodes. Otherwise, the vertical distribution of aerosol also influences the radiative effect at the top of the atmosphere, especially when aerosols have strong absorption of shortwave radiation. The free troposphere contribution to aerosol optical depth (AOD) and the altitude of lofted layers are provided thanks to the vertical profiling capability of the lidar/ceilomenter technique. Currently, a lidar located in Dakar (Senegal) and a ceilometer in Santa Cruz de Tenerife (Canary Islands, Spain) provide near-real-time (NRT) vertical profiles of aerosols, which are compared with those simulated by models.

  7. Sources and cycling of major ions and nutrients in Devils Lake, North Dakota

    USGS Publications Warehouse

    Lent, R.M.

    1994-01-01

    Devils Lake is a saline lake in a large, closed drainage basin in northeastern North Dakota. Previous studies determined that major-ion and nutrient concentrations in Devils Lake are strongly affected by microbially mediated sulfate reduction and dissolution of sulfate and carbonate minerals in the bottom sediments. These studies documented substantial spatial variability in the magnitude of calculated benthic fluxes coincident with the horizontal salinity gradient in Devils Lake. The purpose of the present study is to evaluate seasonal variability in benthic-flux rates, and to understand the effect of these fluxes on the major-ion and nutrient chemistries in Devils Lake between May and October 1991. During the study period, the water column was well mixed, and specific conductance, pH, and temperature did not vary with depth. Dissolved oxygen was enriched near the lake surface due to photosynthesis. Major-ion concentrations and nutrient concentrations did not vary with depth. Because the water-quality data were obtained during open-water periods, the vertical profiles reflect well-mixed conditions. However, the first and last profiles for the study period did document near-bottom maxima of major cations. Secchi-disk depth varied from 0.82 meter on May 7,1991, to 2.13 meters on June 5, 1991. The mean Secchi-disk depth during the study period was 1.24 meters. Seasonal variations in Secchi-disk depths were attributed to variations in primary productivity and phytoplankton communities. Nutrient cycles in Devils Lake were evaluated using gross primary productivity rate data, sediment trap data, and major-ion and nutrient benthic-flux rate data. Gross primary productivity rate was smallest in May (0.076 gram of carbon per square meter per day) and largest in September (1.8 grams of carbon per square meter per day). Average gross primary productivity for the study period was 0.87 gram of carbon per square meter per day. Average gross primary productivity is consistent with historic data from Devils Lake and with data from other eutrophic lakes.The average flux of organic carbon for the study period was 12 grams per square meter per day. The calculated carbon to nitrogen to phosphorus ratio (317:25:1) is similar to the Redfield ratio (106:16:1); therefore, most organic matter probably is derived from lacustrine phytoplankton.Calculated benthic-flux rates indicated that bottom sediments are important sources of majorions and nutrients to Devils Lake. Only one of the cores collected during this study indicated a net sulfate flux from the lake into the sediments. Seasonal variations in major-ion and nutrient benthic fluxes generally were small. However, there were important differences between the calculated benthic fluxes for this study and the calculated benthic fluxes for 1990. Calculated benthic fluxes of bicarbonate, ammonia, and phosphorus for this study were smaller than calculated benthic fluxes for 1990. The large differences between fluxes for 1990 and 1991 were attributed to calm, stratified water-column conditions in 1990 and well-mixed water-column conditions in 1991.The role of benthic fluxes in the chemical mass balances in Devils Lake was evaluated by calculating response times for major ions and nutrients in Devils Lake. The calculated response times for major ions in Devils Lake ranged from 6.7 years for bicarbonate to 34 years for sulfur (as 804). The response times for major ions are significantly shorter than previous estimates that did not include benthic fluxes. In addition, the relatively short response times for nitrogen (4.2 years) and phosphorus (0.95 year) indicate that nutrients are recycled rapidly between bottom sediments and the lake. During the study period, benthic fluxes were the dominant source of major ions and nutrients to Devils Lake and greatly reduced the response times of all major ions and nutrients for Devils Lake. As a result, bottom-sediment processes appear to buffer major-ion and nutrient concentrations in the lake. Any future attempt to evaluate water quality in Devils Lake should include the effects of bottom-sediment processes.

  8. ARC-1986-A86-7041

    NASA Image and Video Library

    1986-01-24

    Range : 236,000 km. ( 147,000 mi. ) Resolution : 33 km. ( 20 mi. ) P-29525B/W This Voyager 2 image reveals a contiuos distribution of small particles throughout the Uranus ring system. This unigue geometry, the highest phase angle at which Voyager imaged the rings, allows us to see lanes of fine dust particles not visible from other viewing angles. All the previously known rings are visible. However, some of the brightest features in the image are bright dust lanes not previously seen. the combination of this unique geometry and a long, 96 second exposure allowed this spectacular observation, acquired through the clear filter if Voyager 2's wide angle camera. the long exposure produced a noticable, non-uniform smear, as well as streaks due to trailed stars.

  9. Fugitive Dust Emissions: Development of a Real-time Monitor

    DTIC Science & Technology

    2011-10-01

    the mechanical disturbance of soils which injects particles into the air. Common sources of FD include vehicles driving on unpaved roads...agricultural tilling, and heavy construction operations. For these sources the dust-generation process is caused by two basic physical phenomena...visibility, source apportionment , etc. The PM10 standard set by the U.S. Environmental Protection Agency in 1987 is an example of size-selective

  10. Blowing Dust on Highway Safety: Characterizing and Modeling of Dust Emission Hot Spots in the Southern Plains

    NASA Astrophysics Data System (ADS)

    Blackwell, J., III; Li, J. J.; Kandakji, T.; Collins, J. D., Jr.; Lee, J.; Gill, T. E.

    2016-12-01

    Blowing dust and highway safety have become increasingly prevalent problems concerning human safety and welfare. Two factors precipitate wind-blown dust accidents: sudden loss of visibility, and loss of traction due to soil particles on the road surface. The project, using remote sensing and in situ measurements of surface and subsurface characteristics, will identify the location of dust emission "hotspots" and associated geomorphic features within the southwest region and panhandle (New Mexico, Texas, and Oklahoma), measure the threshold shear velocity and vegetative cover and model the results. The results of this study will provide critical information for land managers, policy makers, and highway authorities when making timely and informed potentially life-saving decisions and modifications here, in the southwest region and panhandle, as well as, anywhere else in the world where blowing dust is a hazard to highway safety.

  11. Mid-Infrared Interferometry on Spectral Lines. II. Continuum (Dust) Emission Around IRC +10216 and VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Monnier, J. D.; Danchi, W. C.; Hale, D. S.; Lipman, E. A.; Tuthill, P. G.; Townes, C. H.

    2000-11-01

    The University of California Berkeley Infrared Spatial Interferometer has measured the mid-infrared visibilities of the carbon star IRC +10216 and the red supergiant VY CMa. The dust shells around these sources have been previously shown to be time variable, and these new data are used to probe the evolution of the dust shells on a decade timescale, complementing contemporaneous studies at other wavelengths. Self-consistent, spherically symmetric models at maximum and minimum light both show the inner radius of the IRC +10216 dust shell to be much larger (150 mas) than expected from the dust-condensation temperature, implying that dust production has slowed or stopped in recent years. Apparently, dust does not form every pulsational cycle (638 days), and these mid-infrared results are consistent with recent near-infrared imaging, which indicates little or no new dust production in the last 3 yr. Spherically symmetric models failed to fit recent VY CMa data, implying that emission from the inner dust shell is highly asymmetric and/or time variable.

  12. Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude

    NASA Astrophysics Data System (ADS)

    Clancy, R. Todd; Wolff, Michael J.; Christensen, Philip R.

    2003-09-01

    Emission phase function (EPF) observations taken in 1999-2001 by Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) support the broadest study of Martian aerosol properties to date. TES solar band and infrared (IR) spectral EPF sequences are analyzed to obtain first-time seasonal/latitudinal distributions of visible optical depths, particle sizes, and single scattering phase functions. This combined angular and wavelength coverage enables identification of two distinct ice cloud types over 45°S-45°N. Type 1 ice clouds exhibit small particle sizes (reff = 1-2 μm) and a distinctive backscattering increase. They are most prevalent in the southern hemisphere during aphelion, but also appear more widely distributed in season and latitude as topographic and high-altitude (>=20 km) ice hazes. Type 2 ice clouds exhibit larger particle sizes (reff = 3-4 μm), a distinct side-scattering minimum at 90-100° phase angles (characteristic of a change in particle shape relative to the type 1), and appear most prominently in the northern subtropical aphelion cloud belt. The majority of retrieved dust visible-to-IR optical depth ratios are indicative of reff = 1.5 +/- 0.1 μm, consistent with Pathfinder and Viking/Mariner 9 reanalyses. However, increased ratios (2.7 versus 1.7) appear frequently in the northern hemisphere over LS = 50-200°, indicating substantially smaller dust particles sizes (reff = 1.0 +/- 0.2 μm) at this time. In addition, larger (reff = 1.8-2.5 μm) dust particles were observed locally in the southern hemisphere during the peak of the 2001 global dust storm. Detailed spectral modeling of the TES visible band pass indicates agreement of EPF-derived dust single scattering albedos (0.92-0.94) with the spectrally resolved results from Pathfinder observations.

  13. Ultraviolet Imaging Telescope images of the reflection nebula NGC 7023 - Derivation of ultraviolet scattering properties of dust grains

    NASA Technical Reports Server (NTRS)

    Witt, Adolf N.; Petersohn, Jens K.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    The Ultraviolet Imaging Telescope as part of the Astro-1 mission, was used to obtain high-resolution surface brightness distribution data in six ultraviolet wavelength bands for the bright reflection nebula NGC 7023. From the quantitative comparison of the measured surface brightness gradients ratios of nebular to stellar flux, and detail radial surface brightness profiles with corresponding data from the visible, two major conclusions results: (1) the scattering in the near- and far-ultraviolet in this nebula is more strongly forward-directed than in the visible; (2) the dust albedo in the ultraviolet for wavelengths not less than 140 nm is identical to that in the visible, with the exception of the 220 nm bump in the extinction curve. In the wavelengths region of the bump, the albedo is reduced by 25 to 30 percent in comparison with wavelengths regions both shorter and longer. This lower albedo is expected, if the bump is a pure absorption feature.

  14. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil)

    PubMed Central

    Miller, Webb; Hayes, Vanessa M.; Ratan, Aakrosh; Petersen, Desiree C.; Wittekindt, Nicola E.; Miller, Jason; Walenz, Brian; Knight, James; Qi, Ji; Zhao, Fangqing; Wang, Qingyu; Bedoya-Reina, Oscar C.; Katiyar, Neerja; Tomsho, Lynn P.; Kasson, Lindsay McClellan; Hardie, Rae-Anne; Woodbridge, Paula; Tindall, Elizabeth A.; Bertelsen, Mads Frost; Dixon, Dale; Pyecroft, Stephen; Helgen, Kristofer M.; Lesk, Arthur M.; Pringle, Thomas H.; Patterson, Nick; Zhang, Yu; Kreiss, Alexandre; Woods, Gregory M.; Jones, Menna E.; Schuster, Stephan C.

    2011-01-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction because of a contagious cancer known as Devil Facial Tumor Disease. The inability to mount an immune response and to reject these tumors might be caused by a lack of genetic diversity within a dwindling population. Here we report a whole-genome analysis of two animals originating from extreme northwest and southeast Tasmania, the maximal geographic spread, together with the genome from a tumor taken from one of them. A 3.3-Gb de novo assembly of the sequence data from two complementary next-generation sequencing platforms was used to identify 1 million polymorphic genomic positions, roughly one-quarter of the number observed between two genetically distant human genomes. Analysis of 14 complete mitochondrial genomes from current and museum specimens, as well as mitochondrial and nuclear SNP markers in 175 animals, suggests that the observed low genetic diversity in today's population preceded the Devil Facial Tumor Disease disease outbreak by at least 100 y. Using a genetically characterized breeding stock based on the genome sequence will enable preservation of the extant genetic diversity in future Tasmanian devil populations. PMID:21709235

  15. Genomic Restructuring in the Tasmanian Devil Facial Tumour: Chromosome Painting and Gene Mapping Provide Clues to Evolution of a Transmissible Tumour

    PubMed Central

    Pearse, Anne-Maree; Rens, Willem; O'Brien, Patricia C. M.; Ferguson-Smith, Malcolm A.; Cheng, Yuanyuan; Morris, Katrina; Taylor, Robyn; Stuart, Andrew; Belov, Katherine; Amemiya, Chris T.; Murchison, Elizabeth P.; Papenfuss, Anthony T.; Marshall Graves, Jennifer A.

    2012-01-01

    Devil facial tumour disease (DFTD) is a fatal, transmissible malignancy that threatens the world's largest marsupial carnivore, the Tasmanian devil, with extinction. First recognised in 1996, DFTD has had a catastrophic effect on wild devil numbers, and intense research efforts to understand and contain the disease have since demonstrated that the tumour is a clonal cell line transmitted by allograft. We used chromosome painting and gene mapping to deconstruct the DFTD karyotype and determine the chromosome and gene rearrangements involved in carcinogenesis. Chromosome painting on three different DFTD tumour strains determined the origins of marker chromosomes and provided a general overview of the rearrangement in DFTD karyotypes. Mapping of 105 BAC clones by fluorescence in situ hybridisation provided a finer level of resolution of genome rearrangements in DFTD strains. Our findings demonstrate that only limited regions of the genome, mainly chromosomes 1 and X, are rearranged in DFTD. Regions rearranged in DFTD are also highly rearranged between different marsupials. Differences between strains are limited, reflecting the unusually stable nature of DFTD. Finally, our detailed maps of both the devil and tumour karyotypes provide a physical framework for future genomic investigations into DFTD. PMID:22359511

  16. Fingerprints in the Dust

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These MISR nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a spectacularly dusty spring view from April 7, 2001 (middle). The left-hand and middle images are from Terra orbits 2967 and 6928, respectively, and extend from central Manchuria near the top to portions of North and South Korea at the bottom. They are approximately 380 kilometers in width.

    Asia's desert areas are prone to soil erosion, as underground water tables are lowered by prolonged drought and by industrial and agricultural water use. Heavy winds blowing eastward across the arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the April 2001 storm blew across the Pacific Ocean and were carried as far as North America. The minerals transported in this manner are believed to provide nutrients for both oceanic and land ecosystems.

    According to the Xinhua News Agency in China, nearly one million tons of Gobi Desert dust blow into Beijing each year. During a similar dust outbreak last year, the Associated Press reported that the visibility in Beijing had been reduced the point where buildings were barely visible across city streets, and airline schedules were significantly disrupted. The dust has also been implicated in adverse health effects such as respiratory discomfort and eye irritation.

    The image on the right is a higher resolution MISR nadir-camera view of a portion of the April 7, 2001 dust cloud. It covers an area roughly 250 kilometers wide by 470 kilometers high. When viewed at full magnification, a number of atmospheric wave features, like the ridges and valleys of a fingerprint, are apparent. These are probably induced by surface topography, which can disturb the wind flow. A few small cumulus clouds are also visible, and are casting shadows on the thick lower dust layer.

    Analyses of images such as these constitute one phase of MISR's participation in the Asian-Pacific Regional Aerosol Characterization Experiment, an international campaign aimed at studying the offshore transport of airborne particles from the Asian continent. For more about this international endeavor, see http://saga.pmel.noaa.gov/aceasia/.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  17. On the visibility of airborne volcanic ash and mineral dust

    NASA Astrophysics Data System (ADS)

    Weinzierl, B.; Sauer, D. N.; Minikin, A.; Reitebuch, O.; Dahlkötter, F.; Mayer, B. C.; Emde, C.; Tegen, I.; Gasteiger, J.; Petzold, A.; Veira, A.; Kueppers, U.; Schumann, U.

    2012-12-01

    After the eruption of the Eyjafjalla volcano (Iceland) in April 2010 which caused the most extensive restrictions of the airspace over Europe since the end of World War II, the aviation safety concept of avoiding "visible ash", i.e. volcanic ash that can be seen by the human eye, was recommended. However so far, no clear definition of "visible ash" and no relation between the visibility of an aerosol layer and related aerosol mass concentrations are available. The goal of our study is to assess whether it is possible from the pilot's perspective in flight to detect the presence of volcanic ash and to distinguish between volcanic ash and other aerosol layers just by sight. In our presentation, we focus the comparison with other aerosols on aerosol types impacting aviation: Besides volcanic ash, dust storms are known to be avoided by aircraft. We use in-situ and lidar data as well photographs taken onboard the DLR research aircraft Falcon during the Saharan Mineral Dust Experiments (SAMUM) in 2006 and 2008 and during the Eyjafjalla volcanic eruption in April/May 2010. We complement this analysis with numerical modelling, using idealized radiative transfer simulations with the 3D Monte Carlo radiative transfer code MYSTIC for a variety of selected viewing geometries. Both aerosol types, Saharan mineral dust and volcanic ash, show an enhanced coarse mode (> 1 μm) aerosol concentration, but volcanic ash aerosol additionally contains a significant number of Aitken mode particles (< 150 nm). Volcanic ash is slightly more absorbing than mineral dust, and the spectral behaviour of the refractive index is slightly different. According to our simulations, these differences are not detectable just by human eye. Furthermore, our data show, that it is difficult to define a lower threshold for the visibility of an aerosol layer because the visual detectability depends on many parameters, including the thickness of the aerosol layer, the brightness and color contrast between the airborne aerosol layer and the background, the illumination, the particle size distribution and mass concentration, the wavelength-dependent light scattering and absorption by the aerosol layer, the human perception, etc. In addition, the optical depth along the line of sight through an aerosol layer is more important than just the (vertical) optical depth, which is measured, for example, by sun photometers or satellites. The results of our study are in particular interesting for the question on the visibility of volcanic ash. Our analyses of "visible ash" demonstrate that under clear sky conditions volcanic ash is visible already at concentrations far below what is currently considered as the upper limit for safe operation of an aircraft engine (2 mg m-3). The presence of a grayish-brown layer in the atmosphere does not unambiguously indicate the presence of volcanic ash. An uninformed observer is unlikely to identify an aged volcanic ash layer in his field of view without further information. The presence of clouds would make it even more complicated to visually detect volcanic ash. In regions with high background aerosol loading in the atmosphere from natural or anthropogenic influences, such as seen in large parts of Asia, the visual detection of volcanic ash as an additional contaminant will be substantially more difficult.

  18. Large-scale Desert Dust Deposition on the Himalayan Snow Cover: A Climatological Perspective from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Gautam, R.; Hsu, N. C.; Lau, W. K.

    2013-12-01

    The Himalaya-Tibetan Plateau (HTP) has a profound influence on the Asian climate. The HTP are also among the largest snow/ice-covered regions on the Earth and provide major freshwater resource to the downstream densely-populated regions of Asia. Recent studies indicate climate warming over the HTP amplified by atmospheric heating and deposition of absorbing aerosols (e.g. dust and soot) over the HTP snowpack and glaciers. Recently, greater attention has focused on the effects of soot deposition on accelerated snowmelt and glacier retreat in the HTP, associated with increasing anthropogenic emissions in Asia. On the other hand, the role of transported dust affecting snow albedo/melt is not well understood over the HTP, in spite of the large annual cycle of mineral dust loading, particularly over the northern parts of south Asia during pre-monsoon season. This study addresses the large-scale effects of dust deposition on snow albedo in the elevated HTP from a satellite observational perspective. Dust aerosol transport, from southwest Asian arid regions, is observed in satellite imagery as darkening of the Himalayan snowpack. Additionally, multi-year spaceborne lidar observations, from CALIPSO, also show dust advected to elevated altitudes (~5km) over the Himalayan foothills, and episodically reaching the top of the western Himalaya. Spectral surface reflectance analysis of dust-laden snow cover (from MODIS) indicates enhanced absorption in the shorter visible wavelengths, yielding a significant gradient in the visible-nearIR reflectance spectrum. While soot in snow is difficult to distinguish from remote sensing, our spectral reflectance analysis of dust detection in the snowpack is consistent with theoretical simulations of snow darkening due to dust impurity. We find that the western HTP, in general, is influenced by enhanced dust deposition due to its proximity to major dust sources (and prevailing dust transport pathways), compared to the eastern HTP. Coinciding with the snowmelt period, dust deposition appears to further cause snow reflectance reduction, i.e. snow darkening, from spring to summer months. Among the entire HTP, we show that the western Himalaya and the Hindu-Kush snowpack are subjected to greater dust deposition and snow albedo reduction. Thus, our satellite-based observational study addresses the spatial variability of large-scale dust deposition on snow cover in the extensive HTP. A climatological and inter-annual perspective of the spatial variability of dust-induced snow darkening over the HTP will be presented, using ~10 years of MODIS spectral reflectance data (at high spatial resolution of ~1km). Results from this study provide insight into the particular role of desert dust towards accelerated seasonal snowmelt in the HTP.

  19. Adapting MODIS Dust Mask Algorithm to Suomi NPP VIIRS for Air Quality Applications

    NASA Astrophysics Data System (ADS)

    Ciren, P.; Liu, H.; Kondragunta, S.; Laszlo, I.

    2012-12-01

    Despite pollution reduction control strategies enforced by the Environmental Protection Agency (EPA), large regions of the United States are often under exceptional events such as biomass burning and dust outbreaks that lead to non-attainment of particulate matter standards. This has warranted the National Weather Service (NWS) to provide smoke and dust forecast guidance to the general public. The monitoring and forecasting of dust outbreaks relies on satellite data. Currently, Aqua/MODIS (MODerate resolution Imaging Spectrometer) and Terra/MODIS provide measurements needed to derive dust mask and Aerosol Optical Thickness (AOT) products. The newly launched Suomi NPP VIIRS (Visible/Infrared Imaging Radiometer Suite) instrument has a Suspended Matter (SM) product that indicates the presence of dust, smoke, volcanic ash, sea salt, and unknown aerosol types in a given pixel. The algorithm to identify dust is different over land and ocean but for both, the information comes from AOT retrieval algorithm. Over land, the selection of dust aerosol model in the AOT retrieval algorithm indicates the presence of dust and over ocean a fine mode fraction smaller than 20% indicates dust. Preliminary comparisons of VIIRS SM to CALIPSO Vertical Feature Mask (VFM) aerosol type product indicate that the Probability of Detection (POD) is at ~10% and the product is not mature for operational use. As an alternate approach, NESDIS dust mask algorithm developed for NWS dust forecast verification that uses MODIS deep blue, visible, and mid-IR channels using spectral differencing techniques and spatial variability tests was applied to VIIRS radiances. This algorithm relies on the spectral contrast of dust absorption at 412 and 440 nm and an increase in reflectivity at 2.13 μm when dust is present in the atmosphere compared to a clear sky. To avoid detecting bright desert surface as airborne dust, the algorithm uses the reflectances at 1.24 μm and 2.25 μm to flag bright pixels. The algorithm flags pixels that fall into the glint region so sun glint is not picked up as dust. The algorithm also has a spatial variability test that uses reflectances at 0.86 μm to screen for clouds over water. Analysis of one granule for a known dust event on May 2, 2012 shows that the agreement between VIIRS and MODIS is 82% and VIIRS and CALIPSO is 71%. The probability of detection for VIIRS when compared to MODIS and CALIPSO is 53% and 45% respectively whereas the false alarm ratio for VIIRS when compared to MODIS and CALIPSO is 20% and 37% respectively. The algorithm details, results from the test cases, and the use of the dust flag product in NWS applications will be presented.

  20. Fast camera imaging of dust in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Yu, J. H.; Rudakov, D. L.; Pigarov, A. Yu.; Smirnov, R. D.; Brooks, N. H.; Muller, S. H.; West, W. P.

    2009-06-01

    Naturally occurring and injected dust particles are observed in the DIII-D tokamak in the outer midplane scrape-off-layer (SOL) using a visible fast-framing camera, and the size of dust particles is estimated using the observed particle lifetime and theoretical ablation rate of a carbon sphere. Using this method, the lower limit of detected dust radius is ˜3 μm and particles with inferred radius as large as ˜1 mm are observed. Dust particle 2D velocities range from approximately 10 to 300 m/s with velocities inversely correlated with dust size. Pre-characterized 2-4 μm diameter diamond dust particles are introduced at the lower divertor in an ELMing H-mode discharge using the divertor materials evaluation system (DiMES), and these particles are found to be at the lower size limit of detection using the camera with resolution of ˜0.2 cm 2 per pixel and exposure time of 330 μs.

  1. The Devil We Don't Know: Investigating Habitat and Abundance of Endangered Giant Devil Rays in the North-Western Mediterranean Sea

    PubMed Central

    Notarbartolo di Sciara, Giuseppe; Lauriano, Giancarlo; Pierantonio, Nino; Cañadas, Ana; Donovan, Greg; Panigada, Simone

    2015-01-01

    The giant devil ray Mobula mobular, the only Mediterranean mobulid, is subject to mortality caused by directed and accidental captures in fisheries throughout the region. Whilst the combination of human impacts, limited range and a low reproductive potential is not inconsistent with its endangered listing, there are insufficient data to enable a quantitative assessment of trends. Without this, it is difficult to assess and prioritise threats and develop effective conservation actions. Using results from aerial surveys conducted between 2009 and 2014 over the Ligurian, Corsican, Sardinian, northern and central Tyrrhenian seas (626,228 km2), this study provides the first quantitative information on giant devil ray abundance and habitat choice in the western Mediterranean. Devil rays were observed in all seasons except winter, with their estimated abundance in the study area peaking in summer. The overall uncorrected mean density in the study area during summer was estimated at 0.0257 individuals km-2 (range: 0.017–0.044), resulting in a total abundance estimate of 6,092 (12.7%CV) individuals at the surface; once corrected for availability bias, this estimate indicates a summer presence of >12,700 devil rays in the study area. Rays were mostly observed alone even if occasionally, larger aggregations up to a maximum of 18 individuals were observed. Although observed throughout the study area, spatial modelling identified their preferred habitat to be over a broad strip connecting the Tuscan Archipelago to Eastern Sardinia, over a wide range of water depths ranging from 10 to 2000m. The observed seasonal changes in giant devil ray distribution in this study, combined with similar evidence from other areas in the Mediterranean, support the hypothesis that the species undertakes latitudinal migrations across the region, taking advantage of highly productive waters in the north during summer, and warmer southern waters during winter. PMID:26580814

  2. Trophic cascades following the disease-induced decline of an apex predator, the Tasmanian devil.

    PubMed

    Hollings, Tracey; Jones, Menna; Mooney, Nick; McCallum, Hamish

    2014-02-01

    As apex predators disappear worldwide, there is escalating evidence of their importance in maintaining the integrity and diversity of the ecosystems they inhabit. The largest extant marsupial carnivore, the Tasmanian devil (Sarcophilus harrisii) is threatened with extinction from a transmissible cancer, devil facial tumor disease (DFTD). The disease, first observed in 1996, has led to apparent population declines in excess of 95% in some areas and has spread to more than 80% of their range. We analyzed a long-term Tasmania-wide data set derived from wildlife spotlighting surveys to assess the effects of DFTD-induced devil decline on populations of other mammals and to examine the relative strength of top-down and bottom-up control of mesopredators between 2 regions with different environmental conditions. Collection of the data began >10 years before DFTD was first observed. A decrease in devil populations was immediate across diseased regions following DFTD arrival, and there has been no indication of population recovery. Feral cats (Felis catus) increased in areas where the disease was present the longest, and feral cat occurrence was significantly and negatively associated with devils. The smallest mesopredator, the eastern quoll (Dasyurus viverrinus), declined rapidly following DFTD arrival. This result suggests the species was indirectly protected by devils through the suppression of larger predators. Rainfall deficiency was also a significant predictor of their decline. Environmental variables determined the relative importance of top-down control in the population regulation of mesopredators. In landscapes of low rainfall and relatively higher proportions of agriculture and human settlement, top-down forces were dampened and bottom-up forces had the most effect on mesopredators. For herbivore prey species, there was evidence of population differences after DFTD arrival, but undetected environmental factors had greater effects. The unique opportunity to assess population changes over extensive temporal and spatial scales following apex predator loss further demonstrated their role in structuring ecosystems and of productivity in determining the strength of top-down control. © 2013 Society for Conservation Biology.

  3. LADEE UVS (UltraViolet Visible Spectrometer) and the Search for Lunar Exospheric Dust: A Detailed Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Wooden, Diane H.; Cook, Amanda; Colaprete, Anthony; Shirley, Mark; Vargo, Kara; Elphic, Richard C.; Hermalyn, Brendan; Stubbs, Timothy John; Glenar, David A.

    2014-01-01

    The Lunar Atmosphere and Dust Environment Explorer (LADEE) executed science observations in lunar orbit spanning 2013-Oct-16- 2014-04-18 UT. LADEE's Ultraviolet/Visible Spectrometer (UVS) studies the composition and temporal variations of the tenuous lunar exosphere and dust environment, utilizing two sets of optics: a limb-viewing telescope, and a solar-viewer. The limb-viewing telescope observes illuminated dust and emitting gas species while the Sun is just behind the lunar limb. The solar viewer, with its diffuser, allows UVS to also stare directly at the solar disk as it approaches the limb, sampling progressively lower exosphere altitudes. Solar viewer "Occultation" activities occur at the lunar sunrise limb, as the LADEE spacecraft passes into the lunar night side, facing the Sun (the spacecraft orbit is near-equatorial retrograde). A loss of transmission of sunlight occurs by the occultation of dust grains along the line-of-sight. So-called "Inertial Limb" activities have the limb-viewing telescope pointed at the lit exosphere just after the Sun has set. Inertial Limb activities follow a similar progression of diminishing sampling altitudes but hold the solar elongation angle constant so the zodiacal light contribution remains constant while seeking to observe the weak lunar horizon glow. On the dark side of the moon, "Sodium Tail" activities pointed the limb-viewing telescope in the direction of the Moon's sodium tail (similar to anti-sunward), during different lunar phases. Of the UVS data sets, these show the largest excess of scattered blue light, indicative of the presence of small (approximately 100 nm) dust grains in the tail. Correlations are sought between dust in the sodium tail and meteor streams and magnetotail crossings to investigate impact- versus electrostatic-lofting. Once lofted, nanoparticles can become charged and picked up by the solar wind. The LADEE UVS Occultation, Inertial Limb, and Sodium Tail spectral datasets provide evidence of a lunar dust exosphere.

  4. A simplified Suomi NPP VIIRS dust detection algorithm

    NASA Astrophysics Data System (ADS)

    Yang, Yikun; Sun, Lin; Zhu, Jinshan; Wei, Jing; Su, Qinghua; Sun, Wenxiao; Liu, Fangwei; Shu, Meiyan

    2017-11-01

    Due to the complex characteristics of dust and sparse ground-based monitoring stations, dust monitoring is facing severe challenges, especially in dust storm-prone areas. Aim at constructing a high-precision dust storm detection model, a pixel database, consisted of dusts over a variety of typical feature types such as cloud, vegetation, Gobi and ice/snow, was constructed, and their distributions of reflectance and Brightness Temperatures (BT) were analysed, based on which, a new Simplified Dust Detection Algorithm (SDDA) for the Suomi National Polar-Orbiting Partnership Visible infrared Imaging Radiometer (NPP VIIRS) is proposed. NPP VIIRS images covering the northern China and Mongolian regions, where features serious dust storms, were selected to perform the dust detection experiments. The monitoring results were compared with the true colour composite images, and results showed that most of the dust areas can be accurately detected, except for fragmented thin dusts over bright surfaces. The dust ground-based measurements obtained from the Meteorological Information Comprehensive Analysis and Process System (MICAPS) and the Ozone Monitoring Instrument Aerosol Index (OMI AI) products were selected for comparison purposes. Results showed that the dust monitoring results agreed well in the spatial distribution with OMI AI dust products and the MICAPS ground-measured data with an average high accuracy of 83.10%. The SDDA is relatively robust and can realize automatic monitoring for dust storms.

  5. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Zhang, Z.; Sun, A.; Save, H.; Mueller Schmied, H.; Wada, Y.; Doll, P. M.; Eisner, S.

    2016-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.

  6. Evaluating Capability of Devils Lake Emergency Outlets in Lowering Lake Water Levels While Controlling flooding Damage to Downstream

    NASA Astrophysics Data System (ADS)

    Shabani, A.; Zhang, X.

    2017-12-01

    Devils Lake is an endorheic lake locate in the Red River of the North Basin with a natural outlet at a level of 444.7 meters above the sea level flowing into the Sheyenne River. Historical accumulation of salts has dramatically increased the concentration of salts in the lake, particularly of the sulfates, that are much greater than the surrounding water bodies. Since 1993, the lake water level has risen by nearly 10 meters and caused extensive flooding in the surrounding area, and greatly increased the chance of natural spillage to the Sheyenne River. To mitigate Devils Lake flooding and to prevent its natural spillage, two outlets were constructed at the west and east sides of the lake to drain the water to the Sheyenne River in a controlled fashion. However, pumping water from Devils Lake has degraded water quality of the Sheyenne River. In an earlier study, we coupled Soil and Water Assessment Tools (SWAT) and CE-QUAL-W2 models to investigate the changes of sulfate distribution as the lake water level rises. We found that, while operating the two outlets has lowered Devils Lake water level by 0.7 meter, it has also significantly impaired the Sheyenne River water quality, increasing the Sheyenne River average sulfate concentration from 105 to 585 mg l-1 from 2012 to 2014 In this study, we investigate the impact of the outlets on the Sheyenne River floodplain by coupling SWAT and HEC-RAS model. The SWAT model performed well in simulating daily streamflow in the Sheyenne River with R2>0.56 and ENS > 0.52. The simulated water depths and floodplain by HEC-RAS model for the Sheyenne River agreed well with observations. Operating the outlets from April to October can draw down the Devil Lake water level by 0.45 m, but the drained water would almost double the extension of the Sheyenne River floodplain and elevate the sulfate concentration in the Sheyenne River above the 450 mg l-1 North Dakota sulfate concentration standard for stream class I. Operating the outlets is a wicked problem solving Devils Lake flooding leads to extra discharge and water quality degradation in the Sheyenne River. Solving this problem requires trade of between Devils Lake flood control and the Sheyenne River water quality preservation.

  7. Observations and Measurements of Dust Transport from the Patagonia Desert into the South Atlantic Ocean in 2004 and 2005

    NASA Astrophysics Data System (ADS)

    Gasso, S.; Gaiero, D. M.; Villoslada, B.; Liske, E.

    2005-12-01

    The largest continental landmass south of the 40-degree parallel and potentially one of the largest sources of dust into the Southern Ocean (SO) is the Patagonia desert. Most of the estimates of dust outflow and deposition from this region into the South Atlantic Ocean are based on model simulations. However, there are very few measurements available that can corroborate these estimates. Satellite assessments of dust activity offer conflicting views. For example, monthly time series of satellite-derived (e.g. AVHRR and MODIS) aerosol optical depth (AOD) indicate that dust activity is minimal. However, a study with the TOMS Aerosol Index (Prospero et al., 2002) showed that the frequency of dust events is in the range of 7-14 days/month during the years 1978 through 1993. In addition, surface visibility observations along the Patagonian coast confirm that ocean-going dust events do occur during the summer and spring months. These discrepancies indicate fundamental uncertainties regarding the frequency and extent of dust activity in Patagonia. Given that the SO is the largest high-chlorophyll, low-nutrient area in the world and that the flux of nutrient-rich dust has the potential to modify biological activity with possible climatic consequences, it is of interest to have a better understanding of how often and intense are dust events in the Patagonia region. We surveyed the reports of dust activity from surface weather stations in the Patagonia region during the period June, 2004 to April, 2005. These observations were compared with simultaneous MODIS true color pictures and the corresponding aerosol retrievals. In addition, measurements of vertical and horizontal dust flux were collected by dust samplers at four sites along the coast. The horizontal flux measurements were compared with the same estimates derived from MODIS. According to the true color pictures and confirmed by the surface visibility observations, we recorded at least 16 ocean-going dust events. The scale of the events varied from small (single dust plumes along the coast) to large (dust front extending ~600 km). Most of the large events occurred during the late summer. Due to the presence of sun glint, cloud obstruction, or coastal sediments, the MODIS automatic aerosol algorithm did not derive AODs in many instances and, as result, many events were not recorded in the MODIS monthly database. Dust sources are numerous and dust plumes outflow at any place along the coastline (> 1000 km) including some very active sources as far south as in the Tierra del Fuego Island (54S). The main sources identified are coastal saltbeds, inland deflation hollows and receding shores of large lakes. Although some of major emitting points have been included as sources in dust models, there are some notable exceptions, for example most of the coastal sources. We note, in addition, that the scale and diversity of the different sources pose significant challenges with respect to parameterization in global models of dust dispersion.

  8. The GEM-Mars general circulation model for Mars: Description and evaluation

    NASA Astrophysics Data System (ADS)

    Neary, L.; Daerden, F.

    2018-01-01

    GEM-Mars is a gridpoint-based three-dimensional general circulation model (GCM) of the Mars atmosphere extending from the surface to approximately 150 km based on the GEM (Global Environmental Multiscale) model, part of the operational weather forecasting and data assimilation system for Canada. After the initial modification for Mars, the model has undergone considerable changes. GEM-Mars is now based on GEM 4.2.0 and many physical parameterizations have been added for Mars-specific atmospheric processes and surface-atmosphere exchange. The model simulates interactive carbon dioxide-, dust-, water- and atmospheric chemistry cycles. Dust and water ice clouds are radiatively active. Size distributed dust is lifted by saltation and dust devils. The model includes 16 chemical species (CO2, Argon, N2, O2, CO, H2O, CH4, O3, O(1D), O, H, H2, OH, HO2, H2O2 and O2(a1Δg)) and has fully interactive photochemistry (15 reactions) and gas-phase chemistry (31 reactions). GEM-Mars provides a good simulation of the water and ozone cycles. A variety of other passive tracers can be included for dedicated studies, such as the emission of methane. The model has both a hydrostatic and non-hydrostatic formulation, and together with a flexible grid definition provides a single platform for simulations on a variety of horizontal scales. The model code is fully parallelized using OMP and MPI. Model results are evaluated by comparison to a selection of observations from instruments on the surface and in orbit, relating to atmosphere and surface temperature and pressure, dust and ice content, polar ice mass, polar argon, and global water and ozone vertical columns. GEM-Mars will play an integral part in the analysis and interpretation of data that is received by the NOMAD spectrometer on the ESA-Roskosmos ExoMars Trace Gas Orbiter. The present paper provides an overview of the current status and capabilities of the GEM-Mars model and lays the foundations for more in-depth studies in support of the NOMAD mission.

  9. Changes in blast zone albedo patterns around new martian impact craters

    NASA Astrophysics Data System (ADS)

    Daubar, I. J.; Dundas, C. M.; Byrne, S.; Geissler, P.; Bart, G. D.; McEwen, A. S.; Russell, P. S.; Chojnacki, M.; Golombek, M. P.

    2016-03-01

    "Blast zones" (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506-516. http://dx.doi.org/10.1016/j.icarus.2013.04.009) does not suffer significantly from overall under-sampling due to blast zones fading before new impact sites can be initially discovered. However, the prevalence of changes seen around smaller craters may explain in part their shallower size frequency distribution.

  10. Changes in blast zone albedo patterns around new martian impact craters

    USGS Publications Warehouse

    Daubar, Ingrid J.; Dundas, Colin; Byrne, Shane; Geissler, Paul; Bart, Gwen; McEwen, Alfred S.; Russell, Patrick; Chojnacki, Matthew; Golombek, M.P.

    2016-01-01

    “Blast zones” (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506–516. http://dx.doi.org/10.1016/j.icarus.2013.04.009) does not suffer significantly from overall under-sampling due to blast zones fading before new impact sites can be initially discovered. However, the prevalence of changes seen around smaller craters may explain in part their shallower size frequency distribution.

  11. Walkingstick

    Treesearch

    Louis F. Wilson

    1964-01-01

    The walkingstick, Diapheromera femorata (Say), is a defoliator of deciduous trees in North America. Because of its shape, this insect is also commonly called the stickbug, specter, stick insect, prairie alligator, devil's horse, witch's horse, devil's darning needle, thick- thighed walkingstick, or northern walkingstick, depending on locality.

  12. Water storage capacity of natural wetland depressions in the Devils Lake basin of North Dakota

    USGS Publications Warehouse

    Ludden, A.P.; Frink, D.L.; Johnson, D.H.

    1983-01-01

    Photogrammetric mapping techniques were used to derive the water storage capacities of natural wetland depressions other than lakes in the Devils Lake Basin of North Dakota. Results from sample quarter-section areas were expanded to the entire basin. Depressions in the Devils Lake Basin have a maximum storage capacity of nearly 811,000 cubic dekameters (657,000 acre-feet). The depressions store about 72 percent of the total runoff volume from a 2-year-frequency runoff and about 41 percent of the total runoff volume from a 100-year-frequency runoff.

  13. Chemical quality of surface waters in Devils Lake basin North Dakota, 1952-60

    USGS Publications Warehouse

    Mitten, Hugh T.; Scott, C.H.; Rosene, Philip G.

    1968-01-01

    Above-normal precipitation in 1954, 1956, and 1957 caused the water surface of Devils Lake to rise to an altitude of 1,419.3 feet, its highest in 40 years. Nearly all the water entering the lake flowed through Big Coulee, and about three-fourths of that inflow was at rates greater than 100 cubic feet per second. At these rates, the inflow contained less than 600 ppm (parts per million) dissolved solids and was of the calcium bicarbonate type.Because the inflow was more dilute than the lake water, the dissolved solids in the lake decreased from 8,680 ppm in 1952 to about 6,000 ppm in 1956 and 1957. Subsequently, however, they increased to slightly more than 8,000 ppm and averaged 6,800 ppm for the 1954-60 period. Sodium and sulfate were the principal dissolved constituents in the lake water. Although the concentration of dissolved solids varied significantly from time to time, the relative proportions of the chief constituents remained nearly the same.Water flowed from Devils Lake to Mission Bay in 1956,1957, and 1958, and some flowed from Mission Bay into East Bay. However, no water moved between East Devils Lake, western Stump Lake, and eastern Stump Lake during 1952-60; these lakes received only local runoff, and the variations in their water volume caused only minor variations in dissolved solids. For the periods sampled, concentrations averaged 60,700 ppm for East Devils Lake, 23,100 ppm for western Stump Lake, and 127,000 ppm for eastern Stump Lake.Sodium and sulfate were the chief dissolved constituents in all the lakes of the Devils Lake chain. Water in eastern Stump Lake was saturated with sodium sulfate and precipitated large quantities of granular, hydrated sodium sulfate crystals on the lakebed and shore in fall and winter. A discontinuous layer of consolidated sodium sulfate crystals formed a significant part of the bed throughout the year.Measured concentrations! of zinc, iron, manganese, fluoride, arsenic, boron, copper, and lead were not high enough to harm fish. Data on alpha and beta particle activities in Devils Lake were insufficient to determine if present activities are less than, equal to, or more than activities before nuclear tests began.Miscellaneous surface waters not in the Devils Lake chain contained dissolved solids that ranged from 239 to 61,200 ppm. The lakes that spill infrequently and have little or no ground-water inflow and outflow generally contain high concentrations of dissolved solids.Salt balance computations for Devils Lake for 1952-60 indicate that a net of as much as 89,000 tons of salts was removed from the bed by the water in some years and as much as 35,000 tons was added to the bed in other years. For the 9-year period, the tons removed exceeded the tons added; the net removed averaged 2.7 tons per acre per year. Pickup of these salts from the bed increased the dissolved solids in the lake water an average of 193 ppni per year. Between 1952 and 1960, 201,000 tons of salt was added to the bed of East Devils Lake, 15,100 tons to the bed of western Stump Lake, and 421,000 tons to the bed of eastern Stump Lake.Laboratory examination of shore and bed material indicated that the shore contained less weight of salt per unit weight of dry, inorganic material than the bed. Calcium and bicarbonate were the chief constituents dissolved from bed material of Devils Lake, whereas sodium and sulfate were the chief constituents dissolved from bed material of East Bay, East Devils Lake, and eastern and western Stump Lakes. Generally, calcium and bicarbonate were the chief constitutents dissolved from shore material of all these lakes.Evidence indicates that not more than 20 percent of the salt that "disappeared" from the water of Devils Lake west of State Route 20 as the lake altitudes decreased years ago will redissolve if the lake altitude is restored.

  14. Visible-NIR Spectroscopic Evidence for the Composition of Low-Albedo Altered Soils on Mars

    NASA Astrophysics Data System (ADS)

    Murchie, S.; Merenyi, E.; Singer, R.; Kirkland, L.

    1996-03-01

    Spectroscopic studies of altered Martian soils at visible and at NIR wavelengths have generally supported the canonical model of the surface layer as consisting mostly of 2 components, bright red hematite-containing dust and dark gray pyroxene-containing sand. However several of the studies have also provided tantalizing evidence for distinct 1 micrometer Fe absorptions in discrete areas, particularly dark red soils which are hypothesized to consist of duricrust. These distinct absorptions have been proposed to originate from one or more non-hematitic ferric phases. We have tested this hypothesis by merging high spatial resolution visible- and NIR-wavelength data to synthesize composite 0.44-3.14 1lm spectra for regions of western Arabia and Margaritifer Terra. The extended wavelength coverage allows more complete assessment of ferric, ferrous, and H2O absorptions in both wavelength ranges. The composite data show that, compared to nearby bright red soil in Arabia, dark red soil in Oxia has a lower albedo, a more negative continuum slope, and a stronger 3 micrometer H2O absorption . However Fe absorptions are closely similar in position and depth. These results suggest that at least some dark red soils may differ from "normal" dust and mafic sand more in texture than in Fe mineralogy, although there appears to be enrichment in a water-containing phase and/or a dark, spectrally neutral phase. In contrast, there is clear evidence for enrichment of a low-albedo ferric mineral in dark gray soils composing Sinus Meridiani. These have visible- and NIR-wavelength absorptions consistent with crystalline hematite with relatively little pyroxene, plus a very weak 3 micrometer H2O absorption. These properties suggest a Ethology richer in crystalline hematite and less hydrated than both dust and mafic-rich sand.

  15. 'Nuisance Dust' - a Case for Recalibration?

    NASA Astrophysics Data System (ADS)

    Datson, Hugh; Marker, Brian

    2013-04-01

    This paper considers the case for a review and recalibration of limit values and acceptability criteria for 'nuisance dust', a widely encountered but poorly defined and regulated aspect of particulate matter pollution. Specific dust fractions such as PM10 and asbestiforms are well characterised and have limit values enshrined in legislation. National, and international, limit values for acceptable concentrations of PM10 and other fractions of particulate matter have been defined and agreed. In the United Kingdom (UK), these apply to both public and workplace exposures. By contrast, there is no standard definition or universal criteria against which acceptable levels for 'nuisance dust' can be assessed. This has implications for land-use planning and resource utilisation. Without meaningful limit values, inappropriate development might take place too near to residential dwellings or land containing economically important mineral resources may be effectively sterilised. Furthermore, the expression 'nuisance dust' is unhelpful in that 'nuisance' has a specific meaning in environmental law whilst 'nuisance dust' is often taken to mean 'generally visible particulate matter'. As such, it is associated with the social and broader environmental impacts of particulate matter. PM10 concentrations are usually expressed as a mass concentration over time. These can be determined using a range of techniques. While results from different instruments are generally comparable, data obtained from alternative methods for measuring 'nuisance dust' are rarely interchangeable. In the UK, many of the methods typically used are derived from approaches developed under the HMIP (Her Majesty's Inspectorate of Pollution) regime in the 1960s onwards. Typical methods for 'nuisance dust' sampling focus on measurement of dust mass (from the weight of dust collected in an open container over time) or dust soiling (from loss of reflectance and or obscuration of a surface discoloured by dust over time). 'Custom and practice' acceptance criteria for dust samples obtained by mass or soiling techniques have been developed and are widely applied even though they were not necessarily calibrated thoroughly and have not been reviewed recently. Furthermore, as sampling techniques have evolved, criteria developed for one method have been adapted for another. Criteria and limit values have sometimes been based on an insufficient knowledge of sampler characteristics. Ideally, limit values should be calibrated for the locality to take differences in dust density and visibility into account. Work is needed on the definition of criteria and limit values, and sampling practices for coarse dust fractions, followed by discussion of good practices for securing effective monitoring that is proportionate and fit for purpose. With social changes and the evolution of environmental controls since the 1960s, the public perception of 'nuisance dust' has changed and needs to be addressed by reviewing existing thresholds in relation to the range of monitoring devices currently in use.

  16. iss012e21250

    NASA Image and Video Library

    2006-03-21

    ISS012-E-21250 (2 March 2006) --- Dust and smog in northeast China are featured in this image photographed by an Expedition 12 crewmember on the International Space Station. Much of the land surface is obscured in this oblique image of the North China Plain and parts of Inner Mongolia. In the center of the view a mass of gray smog—mainly industrial pollution and smoke from domestic burning—obscures Beijing and surrounding cities. Numerous plumes with their source points appear within the mass. Beijing suffers some of the worst air pollution in the world from these chronic sources, and the characteristic colors and textures of the smog can be easily seen through windows of the International Space Station. The coastline of Bo Hai Bay, 300 kilometers east of Beijing, is visible at left. The light brown material in Bo Hai Bay is sediment from the Yellow and other rivers. Separated from the smog mass by a band of puffy, white cumulus clouds is a light brown plume of dust. The line of white cloud has developed along the escarpment that separates the heavily populated North China Plain – location of the largest population agglomeration on Earth – and the sparsely populated semi-desert plains of Inner Mongolia. Observers saw a number of dust events in most Northern Hemisphere deserts in the spring of 2006, and the Gobi and the Takla Makan deserts of western China were no exception. Dust plumes originating in these deserts typically extend eastward hundreds of kilometers, regularly depositing dust on Beijing, the Korean peninsula and Japan. Some plumes even extend over the Pacific Ocean. In extreme cases, visible masses of Gobi-derived dust have reached North America.

  17. Ultraviolet interstellar linear polarization. I - Applicability of current dust grain models

    NASA Technical Reports Server (NTRS)

    Wolff, Michael J.; Clayton, Geoffrey C.; Meade, Marilyn R.

    1993-01-01

    UV spectropolarimetric observations yielding data on the wavelength-dependence of interstellar polarization along eight lines of sight facilitate the evaluation of dust grain models previously used to fit the extinction and polarization in the visible and IR. These models pertain to bare silicate/graphite grains, silicate cores with organic refractory mantles, silicate cores with amorphous carbon mantles, and composite grains. The eight lines-of-sight show three different interstellar polarization dependences.

  18. Evolutionary Histories of Transposable Elements in the Genome of the Largest Living Marsupial Carnivore, the Tasmanian Devil

    PubMed Central

    Gallus, Susanne; Hallström, Björn M; Kumar, Vikas; Dodt, William G; Janke, Axel; Schumann, Gerald G; Nilsson, Maria A

    2015-01-01

    The largest living carnivorous marsupial, the Tasmanian devil (Sarcophilus harrisii), is the sole survivor of a lineage originating about 12 Ma. We set out to investigate the spectrum of transposable elements found in the Tasmanian devil genome, the first high-coverage genome of an Australian marsupial. Marsupial genomes have been shown to have the highest amount of transposable elements among vertebrates. We analyzed the horizontally transmitted DNA transposons OC1 and hAT-1_MEu in the Tasmanian devil genome. OC1 is present in all carnivorous marsupials, while having a very limited distribution among the remaining Australian marsupial orders. In contrast, hAT-1_MEu is present in all Australian marsupial orders, and has so far only been identified in a few placental mammals. We screened 158 introns for phylogenetically informative retrotransposons in the order Dasyuromorphia, and found that the youngest SINE (Short INterspersed Element), WSINE1, is no longer active in the subfamily Dasyuridae. The lack of detectable WSINE1 activity in this group may be due to a retrotransposon inactivation event approximately 30 Ma. We found that the Tasmanian devil genome contains a relatively low number of continuous full-length LINE-1 (Long INterspersed Element 1, L1) retrotransposons compared with the opossum genome. Furthermore, all L1 elements in the Tasmanian devil appeared to be nonfunctional. Hidden Markov Model approaches suggested that other potential sources of functional reverse transcriptase are absent from the genome. We discuss the issues associated with assembling long, highly similar L1 copies from short read Illumina data and describe how assembly artifacts can potentially lead to erroneous conclusions. PMID:25633377

  19. Chemistry and mineralogy of Martian dust: An explorer's primer

    NASA Technical Reports Server (NTRS)

    Gooding, James L.

    1991-01-01

    A summary of chemical and mineralogical properties of Martian surface dust is offered for the benefit of engineers or mission planners who are designing hardware or strategies for Mars surface exploration. For technical details and specialized explanations, references should be made to literature cited. Four sources used for information about Martian dust composition: (1) Experiments performed on the Mars surface by the Viking Landers 1 and 2 and Earth-based lab experiments attempting to duplicate these results; (2) Infrared spectrophotometry remotely performed from Mars orbit, mostly by Mariner 9; (3) Visible and infrared spectrophotometry remotely performed from Earth; and (4) Lab studies of the shergottite nakhlite chassignite (SNC) clan of meteorites, for which compelling evidence suggests origin on Mars. Source 1 is limited to fine grained sediments at the surface whereas 2 and 3 contain mixed information about surface dust (and associated rock) and atmospheric dust. Source 4 has provided surprisingly detailed information but investigations are still incomplete.

  20. Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.

    2003-01-01

    A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.

  1. A Cloudy Day on Mars

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 23 April 2002) The Science This image, centered near 49.7 N and 43.0 W (317.0 E), displays splotchy water ice clouds that obscure the surface. Most of Mars was in a relatively clear period when this image was acquired, which is why many of the other THEMIS images acquired during the same period do not have obvious signs of atmospheric dust or water ice clouds. This image is far enough north to catch the edge of the north polar hood that develops during the northern winter. This is a cap of water ice and CO2 ice clouds that form over the Martian north pole. Mars has a number of interesting atmospheric phenomena which THEMIS will be able to view in addition to water ice clouds, including dust devils, dust storms, and tracking atmospheric temperatures with the infrared camera. The Story Anyone who's been on an airplane in a storm knows how clouds on Earth can block the view below. The thin water ice clouds on Mars might make things slightly blurry, but at least we can still see the surface. While the surface features may not be as clear in this image, it's actually kind of fascinating to see clouds at work, because we can get a sense of how the north pole on Mars influences the weather and the climate. In this image, the north pole is responsible for the presence of the clouds. Made of water ice and carbon dioxide, these clouds 'mist out' in a atmospheric 'hood' that caps the surface during the northern Martian winter, hiding it from full view of eager observers here on Earth.

  2. Lunar and Planetary Science XXXVI, Part 6

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Contents include the following: A Model for Multiple Populations of Presolar Diamonds. Characterization of Martian North Polar Geologic Units Using Mars Odyssey THEMIS Data. Effect of Flow on the Internal Structure of the Martian North Polar Layered Deposits. Elemental Abundance Distributions in Basalt Clays and Meteorites: Is It a Biosignature? Early Results on the Saturn System from the Composite Infrared Spectrometer. NanoSIMS D/H Imaging of Isotopically Primitive Interplanetary Dust Particles. Presolar (Circumstellar and Interstellar) Phases in Renazzo: The Effects of Parent Body Processing. Catastrophic Disruption of Hydrated Targets: Implications for the Hydrated Asteroids and for the Production of Interplanetary Dust Particles. Chemical and Mineralogical Analyses of Particles from the Stratospheric Collections Coinciding with the 2002 Leonid Storm and the 2003 Comet Grigg-Skjellerup Trail Passage. An Analysis of the Solvus in the CaS-MnS System. ESA s SMART-1 Mission at the Moon: First Results, Status and Next Steps. Europa Analog Ice-splitting Measurements and Experiments with Ice-Hunveyor on the Frozen Balaton-Lake, Hungary. Chromium on Eros: Further Evidence of Ordinary Chondrite Composition. Dust Devil Tracks on Mars: Observation and Analysis from Orbit and the Surface. Spatial Variation of Methane and Other Trace Gases Detected on Mars: Interpretation with a General Circulation Model. Mars Water Ice and Carbon Dioxide Seasonal Polar Caps: GCM Modeling and Comparison with Mars Express Omega Observations. Component Separation of OMEGA Spectra with ICA. Clathrate Formation in the Near-Surface Environment of Titan. Space Weathering: A Proposed Laboratory Approach to Explaining the Sulfur Depletion on Eros. Sample Collection from Small Airless Bodies: Examination of Temperature Constraints for the TGIP. Sample Collector for the Hera Near-Earth Asteroid Sample Return Mission. A Rugged Miniature Mass-Spectrometer for Measuring Aqueous Geochemistry on Mars. Martian and Lunar Pyroxene Microstructures Studied by Single-Crystal X-Ray Diffraction.

  3. Determining Size Distribution at the Phoenix Landing Site

    NASA Astrophysics Data System (ADS)

    Mason, E. L.; Lemmon, M. T.

    2016-12-01

    Dust aerosols play a crucial role in determining atmospheric radiative heating on Mars through absorption and scattering of sunlight. How dust scatters and absorbs light is dependent on size, shape, composition, and quantity. Optical properties of the dust have been well constrained in the visible and near infrared wavelengths using various methods [Wolff et al. 2009, Lemmon et al. 2004]. In addition, the dust is nonspherical, and irregular shapes have shown to work well in determining effective particle size [Pollack et al. 1977]. Variance of the size distribution is less constrained but constitutes an important parameter in fully describing the dust. The Phoenix Lander's Surface Stereo Imager performed several cross-sky brightness surveys to determine the size distribution and scattering properties of dust in the wavelength range of 400 to 1000 nm. In combination with a single-layer radiative transfer model, these surveys can be used to help constrain variance of the size distribution. We will present a discussion of seasonal size distribution as it pertains to the Phoenix landing site.

  4. Digibaro pressure instrument onboard the Phoenix Lander

    NASA Astrophysics Data System (ADS)

    Harri, A.-M.; Polkko, J.; Kahanpää, H. H.; Schmidt, W.; Genzer, M. M.; Haukka, H.; Savijarv1, H.; Kauhanen, J.

    2009-04-01

    The Phoenix Lander landed successfully on the Martian northern polar region. The mission is part of the National Aeronautics and Space Administration's (NASA's) Scout program. Pressure observations onboard the Phoenix lander were performed by an FMI (Finnish Meteorological Institute) instrument, based on a silicon diaphragm sensor head manufactured by Vaisala Inc., combined with MDA data processing electronics. The pressure instrument performed successfully throughout the Phoenix mission. The pressure instrument had 3 pressure sensor heads. One of these was the primary sensor head and the other two were used for monitoring the condition of the primary sensor head during the mission. During the mission the primary sensor was read with a sampling interval of 2 s and the other two were read less frequently as a check of instrument health. The pressure sensor system had a real-time data-processing and calibration algorithm that allowed the removal of temperature dependent calibration effects. In the same manner as the temperature sensor, a total of 256 data records (8.53 min) were buffered and they could either be stored at full resolution, or processed to provide mean, standard deviation, maximum and minimum values for storage on the Phoenix Lander's Meteorological (MET) unit.The time constant was approximately 3s due to locational constraints and dust filtering requirements. Using algorithms compensating for the time constant effect the temporal resolution was good enough to detect pressure drops associated with the passage of nearby dust devils.

  5. The Dust Cycle Observed by Pathfinder

    NASA Astrophysics Data System (ADS)

    Smith, P. H.; Lemmon, M. T.; Tomasko, M. G.

    1998-09-01

    The Imager for Mars Pathfinder observed the Sun through special filters nearly every sol throughout the 83 sol mission; a total of 1733 images of the Sun have been obtained. Optical depths at four wavelengths (450, 670, 883, and 989 nm) steadily increased from 0.4 to 0.6 during the mission (Ls 145-185). Comparing observations taken in the morning to those from the afternoon shows a general variability with the morning haze being somewhat thicker by 0.1 optical depths. Typically, the trend is more pronounced in the blue wavelength band; we interpret this to be the influence of a high level haze of water ice crystals that forms in the early morning and evaporates during the day. Small, Rayleigh scattering crystals explains the spectral signature that we measure. It may be that this upper haze layer is associated with the small, ice crystals seen by Mariner 9, the Viking orbiters, and the Phobos orbiter. UV images taken by HST show strong limb brightening that can be explained by this high level ice. Calculations of the haze lifetimes given the sedimentation rates measured from the Rover's solar panels and the magnetic targets, suggest that the haze should completely deposit onto the surface within 120 days. A primary mechanism for replenishing the haze may be the dust devils that were observed during the sol 11 gallery pan.

  6. Mitogen-induced responses in lymphocytes from platypus, the Tasmanian devil and the eastern barred bandicoot.

    PubMed

    Stewart, N J; Bettiol, S S; Kreiss, A; Fox, N; Woods, G M

    2008-10-01

    As the platypus (Ornithorhynchus anatinus), the Tasmanian devil (Sarcophilus harrisi) and the eastern barred bandicoot (Perameles gunni) are currently at risk of serious population decline or extinction from fatal diseases in Tasmania, the goal of the present study was to describe the normal immune response of these species to challenge using the lymphocyte proliferation assay, to give a solid basis for further studies. For this preliminary study, we performed lymphocyte proliferation assays on peripheral blood mononuclear cells (PBMC) from the three species. We used the common mitogens phytohaemagglutinin (PHA), concanavalin A (ConA), lipopolysaccharide (LPS) and pokeweed mitogen (PWM). All three species recorded the highest stimulation index (SI) with the T-cell mitogens PHA and ConA. Tasmanian devils and bandicoots had greater responses than platypuses, although variability between individual animals was high. For the first time, we report the normal cellular response of the platypus, the Tasmanian devil and the eastern barred bandicoot to a range of commonly used mitogens.

  7. Dust emission and transport over Iraq associated with the summer Shamal winds

    NASA Astrophysics Data System (ADS)

    Bou Karam Francis, D.; Flamant, C.; Chaboureau, J.-P.; Banks, J.; Cuesta, J.; Brindley, H.; Oolman, L.

    2017-02-01

    In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source.

  8. Distribution of dust during two dust storms in Iceland

    NASA Astrophysics Data System (ADS)

    Ösp Magnúsdóttir, Agnes; Dagsson-Waldhauserova, Pavla; Arnalds, Ólafur; Ólafsson, Haraldur

    2017-04-01

    Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 ?g?m?3 (PM10 = 7 to 583 ?g?m?3). The mean PM1 concentrations were 97-241 ?g?m?3 with a maximum of 261 ?g?m?3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34-0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  9. PD-L1 Is Not Constitutively Expressed on Tasmanian Devil Facial Tumor Cells but Is Strongly Upregulated in Response to IFN-γ and Can Be Expressed in the Tumor Microenvironment

    PubMed Central

    Flies, Andrew S.; Lyons, A. Bruce; Corcoran, Lynn M.; Papenfuss, Anthony T.; Murphy, James M.; Knowles, Graeme W.; Woods, Gregory M.; Hayball, John D.

    2016-01-01

    The devil facial tumor disease (DFTD) is caused by clonal transmissible cancers that have led to a catastrophic decline in the wild Tasmanian devil (Sarcophilus harrisii) population. The first transmissible tumor, now termed devil facial tumor 1 (DFT1), was first discovered in 1996 and has been continually transmitted to new hosts for at least 20 years. In 2015, a second transmissible cancer [devil facial tumor 2 (DFT2)] was discovered in wild devils, and the DFT2 is genetically distinct and independent from the DFT1. Despite the estimated 136,559 base pair substitutions and 14,647 insertions/deletions in the DFT1 genome as compared to two normal devil reference genomes, the allograft tumors are not rejected by the host immune system. Additionally, genome sequencing of two sub-strains of DFT1 detected greater than 15,000 single-base substitutions that were found in only one of the DFT1 sub-strains, demonstrating the transmissible tumors are evolving and that generation of neoantigens is likely ongoing. Recent evidence in human clinical trials suggests that blocking PD-1:PD-L1 interactions promotes antitumor immune responses and is most effective in cancers with a high number of mutations. We hypothesized that DFTD cells could exploit the PD-1:PD-L1 inhibitory pathway to evade antitumor immune responses. We developed recombinant proteins and monoclonal antibodies (mAbs) to provide the first demonstration that PD-1 binds to both PD-L1 and PD-L2 in a non-placental mammal and show that PD-L1 is upregulated in DFTD cells in response to IFN-γ. Immunohistochemistry showed that PD-L1 is rarely expressed in primary tumor masses, but low numbers of PD-L1+ non-tumor cells were detected in the microenvironment of several metastatic tumors. Importantly, in vitro testing suggests that PD-1 binding to PD-L1 and PD-L2 can be blocked by mAbs, which could be critical to understanding how the DFT allografts evade the immune system. PMID:28018348

  10. A GRAND VIEW OF THE BIRTH OF 'HEFTY' STARS - 30 DORADUS NEBULA DETAILS

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These are two views of a highly active region of star birth located northeast of the central cluster, R136, in 30 Doradus. The orientation and scale are identical for both views. The top panel is a composite of images in two colors taken with the Hubble Space Telescope's visible-light camera, the Wide Field and Planetary Camera 2 (WFPC2). The bottom panel is a composite of pictures taken through three infrared filters with Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS). In both cases the colors of the displays were chosen to correlate with the nebula's and stars' true colors. Seven very young objects are identified with numbered arrows in the infrared image. Number 1 is a newborn, compact cluster dominated by a triple system of 'hefty' stars. It has formed within the head of a massive dust pillar pointing toward R136. The energetic outflows from R136 have shaped the pillar and triggered the collapse of clouds within its summit to form the new stars. The radiation and outflows from these new stars have in turn blown off the top of the pillar, so they can be seen in the visible-light as well as the infrared image. Numbers 2 and 3 also pinpoint newborn stars or stellar systems inside an adjacent, bright-rimmed pillar, likewise oriented toward R136. These objects are still immersed within their natal dust and can be seen only as very faint, red points in the visible-light image. They are, however, among the brightest objects in the infrared image, since dust does not block infrared light as much as visible light. Thus, numbers 2 and 3 and number 1 correspond respectively to two successive stages in the birth of massive stars. Number 4 is a very red star that has just formed within one of several very compact dust clouds nearby. Number 5 is another very young triple-star system with a surrounding cluster of fainter stars. They also can be seen in the visible-light picture. Most remarkable are the glowing patches numbered 6 and 7, which astronomers have interpreted as 'impact points' produced by twin jets of material slamming into surrounding dust clouds. These 'impact points' are perfectly aligned on opposite sides of number 5 (the triple-star system), and each is separated from the star system by about 5 light-years. The jets probably originate from a circumstellar disk around one of the young stars in number 5. They may be rotating counterclockwise, thus producing moving, luminous patches on the surrounding dust, like a searchlight creating spots on clouds. These infrared patches produced by jets from a massive, young star are a new astronomical phenomenon. Credits for NICMOS image: NASA/Nolan Walborn (Space Telescope Science Institute, Baltimore, Md.) and Rodolfo Barba' (La Plata Observatory, La Plata, Argentina) Credits for WFPC2 image: NASA/John Trauger (Jet Propulsion Laboratory, Pasadena, Calif.) and James Westphal (California Institute of Technology, Pasadena, Calif.)

  11. Dynamics of plankton populations in upwelling areas

    NASA Technical Reports Server (NTRS)

    Szekielda, K. (Principal Investigator)

    1972-01-01

    There are no author-identified significant results in this report. Repeated coverage over the test site along the northwest coast of Africa showed that the structure of chlorophyll distribution is much more complicated than expected from continuous recordings. ERTS-1 data showed a very fast change in the chlorophyll distribution and it seems that also the concentration changes quickly. ERTS-1 showed on some frames offshore transportation of dust from the Sahara. All frames from Channel 7 will be arranged as a montage to derive the transportation pattern of dust. This step is important in biological aspects of interpreting ERTS-1 data, because the dissolution kinetics of eolian dust particles may influence significantly the chemistry of the surface water. Since visibility and the biochemistry of the test site off Africa are influenced by the dust transport, dust collection will be included in the ground truth program. Besides chlorophyll and other hydrographical parameters, the dust load in the test area will be measured. The collection plan is discussed along with a description of the high volume air sampler and the Anderson particle sizing head sampler to be used for the dust measurements.

  12. STS-65 Earth observation of dust plumes from Rio Grande in Southern Bolivia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of dust plumes from the Rio Grande in Southern Bolivia. A series of dust plumes can be seen rising from sand banks in the Rio Grande of southern Bolivia, bottom right of this northeast-looking view. The Rio Grande brings sediment from the Andes (foothills visible in the foreground, bottom left) and flows across the flat country of the northern Chaco plain. During the low-flow season, sand banks of this sediment are exposed to northerly winds which often blow dust into the surrounding forest. One of the significances of the dust plumes is that dust acts as a source of nutrient for the local soils. This is the most impressive example of dust ever recorded on Shuttle photography from this river. Such plumes have been seen on photographs from four previous missions (STS-31, STS-47, STS-48, STS-51I) emanating from the Rio Grande. The plumes are regularly space because the sand is blown only from those reaches of th

  13. Interannual variability of dust-mass loading and composition of dust deposited on snow cover in the San Juan Mountains, CO, USA: Insights into effects on snow melt

    NASA Astrophysics Data System (ADS)

    Goldstein, H. L.; Reynolds, R. L.; Derry, J.; Kokaly, R. F.; Moskowitz, B. M.

    2017-12-01

    Dust deposited on snow cover (DOS) in the American West can enhance snow-melt rates and advance the timing of melting, which together can result in earlier-than-normal runoff and overall smaller late-season water supplies. Understanding DOS properties and how they affect the absorption of solar radiation can lead to improved snow-melt models by accounting for important dust components. Here, we report on the interannual variability of DOS-mass loading, particle size, organic matter, and iron mineralogy, and their correspondences to laboratory-measured reflectance of samples from the Swamp Angel Study Plot in the San Juan Mountains, Colorado, USA. Samples were collected near the end of spring in water year 2009 (WY09) and from WY11-WY16, when dust layers deposited throughout the year had merged into one layer at the snow surface. Dust-mass loading on snow ranged 2-64 g/m2, mostly as particles with median sizes of 13-33 micrometers. Average reflectance values of DOS varied little across total (0.4 to 2.50 µm) and visible (0.4 to 0.7 µm) wavelengths at 0.30-0.45 and 0.19-0.27, respectively. Reflectance values lacked correspondence to particle-size. Total reflectance values inversely corresponded to concentrations of (1) organic matter content (4-20 weight %; r2 = 0.71) that included forms of black carbon and locally derived material such as pollen, and (2) magnetite (0.05 to 0.13 weight %; r2 = 0.44). Magnetite may be a surrogate for related dark, light-absorbing minerals. Concentrations of crystalline ferric oxide minerals (hematite+goethite) based on magnetic properties at room-temperature did not show inverse association to visible reflectance values. These ferric oxide measures, however, did not account for the amounts of nano-sized ferric oxides known to exist in these samples. Quantification of such nano-sized particles is required to evaluate their possible effects on visible reflectance. Nonetheless, our results emphasize that reflectance values of year-end DOS layers at this site do not appear to be highly sensitive to variations in some measured DOS properties. These preliminary results cannot be broadly applied to other DOS sites in the American West on the basis of previous and ongoing studies.

  14. Mid-Infrared Long-Baseline Interferometry of the Symbiotic Mira Star RX Pup with the VLTI/MIDI Instrument

    NASA Astrophysics Data System (ADS)

    Driebe, T.; Hofmann, K.-H.; Ohnaka, K.; Schertl, D.; Weigelt, G.

    2007-11-01

    We present mid-infrared long-baseline interferometric observations of the symbiotic Mira star RX Pup obtained with the VLTI/MIDI instrument within the framework of the Science Demonstration Time (SDT) program in February 2004. Four visibility measurements have been carried out using the unit telescopes UT2 and UT3, with projected baseline lengths ranging from 34.7 to 46.5 m. All visibility measurements show a distinct wavelength dependence: a rather steep decrease between 8 and 10 μm, and a shallower monotonic increase longward of 10 μm. For the corresponding uniform disk diameter, this visibility shape translates into a diameter increase by a factor of 2 from 25 to 50 mas between 8 and 10 μm and an almost wavelength-independent diameter between 10 and 13 μm. As we show by means of radiative transfer modeling with the code dusty, this wavelength dependence measured with VLTI/MIDI can be interpreted as the mid-infrared signature of a circumstellar dust shell which is dominated by silicate dust.

  15. LADEE Science Results and Implications for Exploration

    NASA Technical Reports Server (NTRS)

    Elphic, R. C.; M. Horanyi; Colaprete, A.; Benna; Mahaffy, P.; Delory, G. T.; Noble, S. K.; Halekas, J. S.; Hurley, D. M.; Stubbs, T. J.; hide

    2015-01-01

    NASA's Lunar Atmosphere and Dust Environment Explorer, LADEE, concluded a fully successful investigation of the Moon's tenuous gas and dust atmosphere on April 18, 2014. LADEE hosted three science instruments to address atmospheric and dust objectives, and a technology demonstration of deep-space optical communication. The three science instruments were an ultraviolet-visible spectrometer (UVS), a neutral mass spectrometer (NMS), and a lunar dust experiment (LDEX). All data acquired by these instruments have been submitted to the Planetary Data System. A mission overview and science instrument descriptions are readily available. LADEE inserted into a low-altitude, retrograde lunar orbit optimized for observations at the sunrise terminator, where surface temperatures rise abruptly. LADEE also carried out observations over a wide range of local times and altitudes. Here we describe some of the initial results.

  16. New Views of a Familiar Beauty

    NASA Image and Video Library

    2005-01-12

    This image composite compares the well-known visible-light picture of the glowing Trifid Nebula (left panel) with infrared views from NASA's Spitzer Space Telescope (remaining three panels). The Trifid Nebula is a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius. The false-color Spitzer images reveal a different side of the Trifid Nebula. Where dark lanes of dust are visible trisecting the nebula in the visible-light picture, bright regions of star-forming activity are seen in the Spitzer pictures. All together, Spitzer uncovered 30 massive embryonic stars and 120 smaller newborn stars throughout the Trifid Nebula, in both its dark lanes and luminous clouds. These stars are visible in all the Spitzer images, mainly as yellow or red spots. Embryonic stars are developing stars about to burst into existence. Ten of the 30 massive embryos discovered by Spitzer were found in four dark cores, or stellar "incubators," where stars are born. Astronomers using data from the Institute of Radioastronomy millimeter telescope in Spain had previously identified these cores but thought they were not quite ripe for stars. Spitzer's highly sensitive infrared eyes were able to penetrate all four cores to reveal rapidly growing embryos. http://photojournal.jpl.nasa.gov/catalog/PIA07225

  17. Humanizing folk devils using ethnography.

    PubMed

    Myers, Peter L

    2018-01-01

    The sociological concepts of the "moral panic" and the deviant "folk devil" apply to the drug panics in the United States over methamphetamine, heroin, and crack cocaine. Mothers or pregnant women who smoke crack cocaine, and their babies, are assigned exaggerated "demonic" attributes that result in stigma and societal rejection. Otherwise, ethnographic studies of drug users demonstrate realities that are other than what might be considered were one to merely look at their use and the consequences. These considerations are examined with respect to the image of folk devils, methadone program attendees, smokers of "blunts," opium den habitués, and others grouped together as negative influences as a result of their drug habits.

  18. 9 CFR 319.760 - Deviled ham, deviled tongue, and similar products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... similar products. 319.760 Section 319.760 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Meat... a semiplastic cured meat food product made from finely comminuted ham and containing condiments...

  19. 9 CFR 319.760 - Deviled ham, deviled tongue, and similar products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... similar products. 319.760 Section 319.760 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE... AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Meat... a semiplastic cured meat food product made from finely comminuted ham and containing condiments...

  20. The Devil and Daniel's Spreadsheet

    ERIC Educational Resources Information Center

    Burke, Maurice J.

    2012-01-01

    "When making mathematical models, technology is valuable for varying assumptions, exploring consequences, and comparing predictions with data," notes the Common Core State Standards Initiative (2010, p. 72). This exploration of the recursive process in the Devil and Daniel Webster problem reveals that the symbolic spreadsheet fits this bill.…

  1. Stellar 'Incubators' Seen Cooking up Stars

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 2Figure 3Figure 4Figure 5

    This image composite compares visible-light and infrared views from NASA's Spitzer Space Telescope of the glowing Trifid Nebula, a giant star-forming cloud of gas and dust located 5,400 light-years away in the constellation Sagittarius.

    Visible-light images of the Trifid taken with NASA's Hubble Space Telescope, Baltimore, Md. (inside left, figure 1) and the National Optical Astronomy Observatory, Tucson, Ariz., (outside left, figure 1) show a murky cloud lined with dark trails of dust. Data of this same region from the Institute for Radioastronomy millimeter telescope in Spain revealed four dense knots, or cores, of dust (outlined by yellow circles), which are 'incubators' for embryonic stars. Astronomers thought these cores were not yet ripe for stars, until Spitzer spotted the warmth of rapidly growing massive embryos tucked inside.

    These embryos are indicated with arrows in the false-color Spitzer picture (right, figure 1), taken by the telescope's infrared array camera. The same embryos cannot be seen in the visible-light pictures (left, figure 1). Spitzer found clusters of embryos in two of the cores and only single embryos in the other two. This is one of the first times that multiple embryos have been observed in individual cores at this early stage of stellar development.

  2. Synoptic characteristics of dust over the southwest of Iran

    NASA Astrophysics Data System (ADS)

    Katiraie-Boroujerdy, P.; Ghahri, F.; Ranjbar Saadatabadi, A.

    2012-12-01

    Iran is frequently affected by dust events because it is located in arid and semiarid belt of the world. As Khozestan province is in the vicinity of large deserts and also due to especial atmospheric conditions the frequency of dust in this area is increased in the recent years. Therefore it has the destructive affect on the healthcare, economy, social and etc. The study is based on the, sea level, 850 mb and 500 mb weather charts, surface wind field and observations weather data during the period of 1968-2008. By numerical simulation with WRF modeling it has tried to high light provide an answer to how this event produced and reached to Ahwaz. It has been shown in this 40 years, dust events by high strength and frequency occur in July in Ahwaz. Synoptic patterns revealed that for making sever dust event Persian Gulf thermal trough extends to the north west of Iraq and European ridge extends over the Black sea and large part of the Turkey by passing waves of middle level Mediterranean trough from northwest of Iraq and east of Syria. Numerical simulation shows strong surface flow over source regions in northwest of Iraq and east of Syria, creation westerly low level jet in low-lying areas and the increase in friction velocity in the source regions. In the deserts of Iraq and north east of Syria increase in friction velocity to its highest value (approx 0.6 m/s) causes reduction in visibility and by decrease to lowest value (approx 0.4 m/s) visibility reaches up to 600 meters in Ahwaz.

  3. Silica Aerogel Captures Cosmic Dust Intact

    NASA Technical Reports Server (NTRS)

    Tsou, P.

    1994-01-01

    The mesostructure of silica aerogel resembles stings of grapes, ranging in size from 10 to 100 angstrom. This fine mesostructure transmits nearly 90 percent of incident light in the visible, while providing sufficiently gentle dissipation of the kinetric energy of hypervelocity cosmic dust particles to permit their intact capture. We introduced silica aerogel in 1987 as capture medium to take advantage of its low density, fine mesostruicture and most importantly, its transparency, allowing optical location of captured micron sized particles.

  4. Devils Hole, Nevada, δ18O record extended to the mid-Holocene

    USGS Publications Warehouse

    Winograd, Isaac J.; Landwehr, Jurate M.; Coplen, Tyler B.; Sharp, Warren D.; Riggs, Alan C.; Ludwig, Kenneth R.; Kolesar, Peter T.

    2006-01-01

    The mid-to-late Pleistocene Devils Hole δ18O record has been extended from 60,000 to 4500 yr ago. The new δ18O time series, in conjunction with the one previously published, is shown to be a proxy of Pacific Ocean sea surface temperature (SST) off the coast of California. During marine oxygen isotope stages (MIS) 2 and 6, the Devil Hole and SST time series exhibit a steady warming that began 5000 to > 10,000 yr prior to the last and penultimate deglaciations. Several possible proximate causes for this early warming are evaluated. The magnitude of the peak δ18O or SST during the last interglacial (LIG) is significantly greater (1 per mill and 2 to 3°C, respectively) than the peak value of these parameters for the Holocene; in contrast, benthic δ18O records of ice volume show only a few tenths per mill difference in the peak value for these interglacials. Statistical analysis provides an estimate of the large shared information (variation) between the Devils Hole and Eastern Pacific SST time series from ∼ 41 to ∼ 2°N and enforces the concept of a common forcing among all of these records. The extended Devils Hole record adds to evidence of the importance of uplands bordering the eastern Pacific as a source of archives for reconstructing Pacific climate variability.

  5. Visually observed mold and moldy odor versus quantitatively measured microbial exposure in homes

    PubMed Central

    Reponen, Tiina; Singh, Umesh; Schaffer, Chris; Vesper, Stephen; Johansson, Elisabet; Adhikari, Atin; Grinshpun, Sergey A.; Indugula, Reshmi; Ryan, Patrick; Levin, Linda; LeMasters, Grace

    2010-01-01

    The main study objective was to compare different methods for assessing mold exposure in conjunction with an epidemiologic study on the development of children’s asthma. Homes of 184 children were assessed for mold by visual observations and dust sampling at child’s age 1 (Year 1). Similar assessment supplemented with air sampling was conducted in Year 7. Samples were analyzed for endotoxin, (1–3)-β-D-glucan, and fungal spores. The Mold Specific Quantitative Polymerase Chain Reaction assay was used to analyze 36 mold species in dust samples, and the Environmental Relative Moldiness Index (ERMI) was calculated. Homes were categorized based on three criteria: 1) visible mold damage, 2) moldy odor, and 3) ERMI. Even for homes where families had not moved, Year 7 endotoxin and (1–3)-β-D-glucan exposures were significantly higher than those in Year 1 (p<0.001), whereas no difference was seen for ERMI (p=0.78). Microbial concentrations were not consistently associated with visible mold damage categories, but were consistently higher in homes with moldy odor and in homes that had high ERMI. Low correlations between results in air and dust samples indicate different types or durations of potential microbial exposures from dust vs. air. Future analysis will indicate which, if any, of the assessment methods is associated with the development of asthma. PMID:20810150

  6. X-Ray Scattering Echoes and Ghost Halos from the Intergalactic Medium: Relation to the Nature of AGN Variability

    NASA Astrophysics Data System (ADS)

    Corrales, Lia

    2015-05-01

    X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 μ m, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ∼ 1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (≳ 3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: {{N}ech}∼ {{10}3}({{ν }fb}/y{{r}-1}), where {{ν }fb} is the characteristic frequency of feedback events capable of dimming an AGN quickly.

  7. Dust storm events over Delhi: verification of dust AOD forecasts with satellite and surface observations

    NASA Astrophysics Data System (ADS)

    Singh, Aditi; Iyengar, Gopal R.; George, John P.

    2016-05-01

    Thar desert located in northwest part of India is considered as one of the major dust source. Dust storms originate in Thar desert during pre-monsoon season, affects large part of Indo-Gangetic plains. High dust loading causes the deterioration of the ambient air quality and degradation in visibility. Present study focuses on the identification of dust events and verification of the forecast of dust events over Delhi and western part of IG Plains, during the pre-monsoon season of 2015. Three dust events have been identified over Delhi during the study period. For all the selected days, Terra-MODIS AOD at 550 nm are found close to 1.0, while AURA-OMI AI shows high values. Dust AOD forecasts from NCMRWF Unified Model (NCUM) for the three selected dust events are verified against satellite (MODIS) and ground based observations (AERONET). Comparison of observed AODs at 550 nm from MODIS with NCUM predicted AODs reveals that NCUM is able to predict the spatial and temporal distribution of dust AOD, in these cases. Good correlation (~0.67) is obtained between the NCUM predicted dust AODs and location specific observations available from AERONET. Model under-predicted the AODs as compared to the AERONET observations. This may be mainly because the model account for only dust and no anthropogenic activities are considered. The results of the present study emphasize the requirement of more realistic representation of local dust emission in the model both of natural and anthropogenic origin, to improve the forecast of dust from NCUM during the dust events.

  8. Dust around the Cool Component of D-Type Symbiotic Binaries

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2018-04-01

    D type symbiotic binaries are an excellent astrophysical laboratory for investigation of the dust properties and dust formation under the influence of theMira stellar wind and nova activity and of the mass loss and mass transfer between components in such a widely separated system. We present a study of the properties of circumstellar dust in symbiotic Miras by use of long-term near-IR photometry and colour indices. The published JHKL magnitudes of o Ceti, RX Pup, KM Vel, V366 Car, V835 Cen, RR Tel, HM Sge and R Aqr have been collected, analyzed and corrected for short-term variations caused by Mira pulsations. Assuming spherical temperature distribution of the dust in the close neighbourhood of the Mira, the DUSTY code was used to solve the radiative transfer in order to determine the dust temperature and its properties in each particular case. Common dust properties of the symbiotic Miras have been found, suggesting similar conditions in the condensation region of the studied symbiotic Miras. Silicate dust with the inner dust shell radius determined by the dust condensation and with the dust temperature of 900-1200 K can fully explain the observed colour indices. R Aqr is an exception and showed lower dust temperature of 650 K. Obscuration events visible in light curves can be explained by variable dust optical depth with minimal variations of other dust properties. More active symbioticMiras that underwent recent nova outbursts showed higher dust optical depths and larger maximum grain sizes of the order of μm, which means that the post-nova activity could stimulate the dust formation and the grain growth. Optically thicker dust shells and higher dust condensation temperatures have been found in symbiotic Miras compared to their single counterparts, suggesting different conditions for dust production.

  9. Climate simulation and flood risk analysis for 2008-40 for Devils Lake, North Dakota

    USGS Publications Warehouse

    Vecchia, Aldo V.

    2008-01-01

    Devils Lake and Stump Lake in northeastern North Dakota receive surface runoff from a 3,810-square-mile drainage basin, and evaporation provides the only major water loss unless the lakes are above their natural spill elevation to the Sheyenne River. In September 2007, flow from Devils Lake to Stump Lake had filled Stump Lake and the two lakes consisted of essentially one water body with an elevation of 1,447.1 feet, about 3 feet below the existing base flood elevation (1,450 feet) and about 12 feet below the natural outlet elevation to the Sheyenne River (1,459 feet).Devils Lake could continue to rise, causing extensive additional flood damages in the basin and, in the event of an uncontrolled natural spill, downstream in the Red River of the North Basin. This report describes the results of a study conducted by the U.S. Geological Survey, in cooperation with the Federal Emergency Management Agency, to evaluate future flood risk for Devils Lake and provide information for developing updated flood-insurance rate maps and planning flood-mitigation activities such as raising levees or roads.In about 1980, a large, abrupt, and highly significant increase in precipitation occurred in the Devils Lake Basin and elsewhere in the Northern Great Plains, and wetter-than-normal conditions have persisted through the present (2007). Although future precipitation is impossible to predict, paleoclimatic evidence and recent research on climate dynamics indicate the current wet conditions are not likely to end anytime soon. For example, there is about a 72-percent chance wet conditions will last at least 10 more years and about a 37-percent chance wet conditions will last at least 30 more years.A stochastic simulation model for Devils Lake and Stump Lake developed in a previous study was updated and used to generate 10,000 potential future realizations, or traces, of precipitation, evaporation, inflow, and lake levels given existing conditions on September 30, 2007, and randomly generated future duration of the current wet period. On the basis of the simulations, and assuming ice-free conditions and calm wind, the Devils Lake flood elevation for an annualized flood risk of 1 percent (analogous to a “100-year” riverine flood) was estimated to be 1,454.6 feet for a 10-year time horizon (2008­­­–17). Therefore, without adjusting for wind or ice, a residence near Devils Lake at elevation 1,454.6 feet has the same chance of being flooded sometime during the next 10 years as a residence at the edge of the 100-year flood plain along a river. Adjusting for the effects of wind or ice, which will increase the flood elevations for many locations near the lakes, was not within the scope of this study.

  10. Using Angels and Devils: A Board Game Developed for Play in Nursing Homes.

    ERIC Educational Resources Information Center

    Corbin, Sandra; Nelson, Thomas M.

    1980-01-01

    Studied effects on nursing home residents playing a discussion-stimulating board game called "Angels and Devils." Results indicate a high incidence of sensory deprivation and social isolation effects. These do not correlate with length of institutionalization, amount of social contact, or degree of medical restriction. (Author)

  11. Escaping Devil's Island: Confronting Racism, Learning History

    ERIC Educational Resources Information Center

    Grant, Carl A.

    2011-01-01

    This article argues that African Americans, especially males living in urban areas, are physically and mentally trapped on a Devil's Island. The penal colony on the coast of French Guiana is a metaphor for the boundaries and constraints that close off opportunities and constrain African American historical knowledge. The article argues that…

  12. Air Quality at Devils Postpile National Monument, Sierra Nevada Mountains, California, USA

    Treesearch

    Joel D. Burley; Andrzej Bytnerowicz; Monica Buhler; Barbara Zielinska; Donald Schweizer; Ricardo Cisneros; Susan Schilling; Jennifer Chapman Varela; Mark McDaniel; Michelle Horn; Deanna Dulen

    2016-01-01

    Ambient concentrations of O3, PM2.5, NH3, NO, NO2, HNO3, SO2 and VOCs were measured at Devils Postpile National Monument (DEPO) during the summer seasons of 2013 and 2014. The measurements were impacted by the Aspen and Rim Fires in...

  13. An Investigation of Dust Storms Observed with the Mars Color Imager

    NASA Technical Reports Server (NTRS)

    Guzewich, Scott D.; Toigo, Anthony D.; Wang, Huiqun

    2017-01-01

    Daily global imaging by the Mars Color Imager (MARCI) continues the record of the Mars Orbiter Camera (MOC) and has allowed creation of a long-duration record of Martian dust storms. We observe dust storms over the first two Mars years of the MARCI record, including tracking individual storms over multiple sols, as well as tracking the growth and recession of the seasonal polar caps. Using the combined 6 Mars year record of textured dust storms (storms with visible textures on the observed dust cloud tops), we study the relationship between textured dust storm activity and meteorology (as simulated by the MarsWRF general circulation model) and surface properties. We find that textured dust storms preferentially occur in places and seasons with above average surface wind stress. Textured dust storm occurrence also has a modest linear anti-correlation with surface albedo (0.43) and topography (0.40). Lastly, we perform an empirical orthogonal function (EOF) analysis on the distribution of occurrence of textured dust storms and find that over 50 of the variance in textured dust storm activity can be explained by two EOF modes. We associate the first EOF mode with cap-edge storms just before Ls = 180deg and the second EOF mode with flushing dust storms that occur from Ls = 180-210deg and again near Ls = 320deg.

  14. Performance evaluation of CESM in simulating the dust cycle

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z. L.; Kocurek, G.; Lawrence, D. M.

    2014-12-01

    Mineral dust in the atmosphere has implications for Earth's radiation budget, biogeochemical cycles, hydrological cycles, human health and visibility. Mineral dust is injected into the atmosphere during dust storms when the surface winds are sufficiently strong and the land surface conditions are favorable. Dust storms are very common in specific regions of the world including the Middle East and North Africa (MENA) region, which contains more than 50% of the global dust sources. In this work, we present simulation of the dust cycle under the framework of CESM1.2.2 and evaluate how well the model captures the spatio-temporal characteristics of dust sources, transport and deposition at global scale, especially in dust source regions. We conducted our simulations using two existing erodibility maps (geomorphic and topographic) and a new erodibility map, which is based on the correlation between observed wind and dust. We compare the simulated results with MODIS satellite data, MACC reanalysis data, and AERONET station data. Comparison with MODIS satellite data and MACC reanalysis data shows that all three erodibility maps generally reproduce the spatio-temporal characteristics of dust optical depth globally. However, comparison with AERONET station data shows that the simulated dust optical depth is generally overestimated for all erodibility maps. Results vary greatly by region and scale of observational data. Our results also show that the simulations forced by reanalysis meteorology capture the overall dust cycle more realistically compared to the simulations done using online meteorology.

  15. VISTA Captures Celestial Cat's Hidden Secrets

    NASA Astrophysics Data System (ADS)

    2010-04-01

    The Cat's Paw Nebula, NGC 6334, is a huge stellar nursery, the birthplace of hundreds of massive stars. In a magnificent new ESO image taken with the Visible and Infrared Survey Telescope for Astronomy (VISTA) at the Paranal Observatory in Chile, the glowing gas and dust clouds obscuring the view are penetrated by infrared light and some of the Cat's hidden young stars are revealed. Towards the heart of the Milky Way, 5500 light-years from Earth in the constellation of Scorpius (the Scorpion), the Cat's Paw Nebula stretches across 50 light-years. In visible light, gas and dust are illuminated by hot young stars, creating strange reddish shapes that give the object its nickname. A recent image by ESO's Wide Field Imager (WFI) at the La Silla Observatory (eso1003) captured this visible light view in great detail. NGC 6334 is one of the most active nurseries of massive stars in our galaxy. VISTA, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope (eso0949). It works at infrared wavelengths, seeing right through much of the dust that is such a beautiful but distracting aspect of the nebula, and revealing objects hidden from the sight of visible light telescopes. Visible light tends to be scattered and absorbed by interstellar dust, but the dust is nearly transparent to infrared light. VISTA has a main mirror that is 4.1 metres across and it is equipped with the largest infrared camera on any telescope. It shares the spectacular viewing conditions with ESO's Very Large Telescope (VLT), which is located on the nearby summit. With this powerful instrument at their command, astronomers were keen to see the birth pains of the big young stars in the Cat's Paw Nebula, some nearly ten times the mass of the Sun. The view in the infrared is strikingly different from that in visible light. With the dust obscuring the view far less, they can learn much more about how these stars form and develop in their first few million years of life. VISTA's very wide field of view allows the whole star-forming region to be imaged in one shot with much greater clarity than ever before. The VISTA image is filled with countless stars of our Milky Way galaxy overlaid with spectacular tendrils of dark dust that are seen here fully for the first time. The dust is sufficiently thick in places to block even the near-infrared radiation to which VISTA's camera is sensitive. In many of the dusty areas, such as those close to the centre of the picture, features that appear orange are apparent - evidence of otherwise hidden active young stars and their accompanying jets. Further out though, slightly older stars are laid bare to VISTA's vision, revealing the processes taking them from their first nuclear fusion along the unsteady path of the first few million years of their lives. The VISTA telescope is now embarking on several big surveys of the southern sky that will take years to complete. The telescope's large mirror, high quality images, sensitive camera and huge field of view make it by far the most powerful infrared survey telescope on Earth. As this striking image shows, VISTA will keep astronomers busy analysing data they could not have otherwise acquired. This cat is out of the bag. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  16. Spitzer Makes 'Invisible' Visible

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion).

    New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud.

    The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon.

  17. Devil's staircases and continued fractions in Josephson junctions

    NASA Astrophysics Data System (ADS)

    Shukrinov, Yu. M.; Medvedeva, S. Yu.; Botha, A. E.; Kolahchi, M. R.; Irie, A.

    2013-12-01

    Detailed numerical simulations of the IV characteristics of a Josephson junction under external electromagnetic radiation show the devil's staircase within different bias current intervals. We have found that the observed steps form very precisely continued fractions. Increase of the amplitude of the radiation shifts the devil's staircase to higher Shapiro steps. An algorithm for the appearance and detection of subharmonics with increasing radiation amplitude is proposed. We demonstrate that the subharmonic steps registered in the well-known experiments by Dayem and Wiegand [Phys. Rev. 155, 419 (1967), 10.1103/PhysRev.155.419] and Clarke [Phys. Rev. B 4, 2963 (1971), 10.1103/PhysRevB.4.2963] also form continued fractions.

  18. Lesser devil rays Mobula cf. hypostoma from Venezuela are almost twice their previously reported maximum size and may be a new sub-species.

    PubMed

    Ehemann, N R; González-González, L V; Trites, A W

    2017-03-01

    Three rays opportunistically obtained near Margarita Island, Venezuela, were identified as lesser devil rays Mobula cf. hypostoma, but their disc widths were between 207 and 230 cm, which is almost double the reported maximum disc width of 120 cm for this species. These morphometric data suggest that lesser devil rays are either larger than previously recognized or that these specimens belong to an unknown sub-species of Mobula in the Caribbean Sea. Better data are needed to describe the distribution, phenotypic variation and population structure of this poorly known species. © 2017 The Fisheries Society of the British Isles.

  19. Volcanic Plume from Mt. Unzen, Dust Cloud, cloud Vortices

    NASA Image and Video Library

    1991-12-01

    Stable, south flowing air over the western Pacific Ocean (26.0N, 131.0E) is disturbed by islands south of Korea, resulting in sinuous clouds known as von Karman vortices. The smoke plume from Japan's Mount Unzen Volcano on Kyushu, is visible just west of the large cloud mass and extending southward. A very large, purple tinged dust pall, originating in Mongolia, can be seen on the Earth's Limb, covering eastern China and extending into the East China Sea.

  20. Herschel View of G49 Filament

    NASA Image and Video Library

    2015-05-28

    New images of huge filamentary structures of gas and dust from ESA's Herschel space observatory reveal how matter is distributed across our Milky Way galaxy. Long and flimsy threads emerge from a twisted mix of material, taking on complex shapes. This image shows a filament called G49, which contains 80,000 suns' worth of mass. This huge but slender structure of gas and dust extends about 280 light-years in length, while its diameter is only about 5 light-years across. In this image, longer-wavelength light has been assigned visible colors. Light with wavelengths of 70 microns is blue; 160-micron light is green; and 350-micron light is red. Cooler gas and dust are seen in red and yellow, with temperatures as low as minus 421 degrees Fahrenheit (minus 252 degrees Celsius). In the densest and coolest clumps, the seeds of new generations of stars are taking shape. A brighter clump of matter is visible at the left tip of the wispy thread. This filament is about 18,000 light-years away. The image is oriented with northeast toward the left of the image and southwest toward the right. http://photojournal.jpl.nasa.gov/catalog/PIA19340

  1. MRO Mars Color Imager (MARCI) Investigation Primary Mission Results

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Cantor, B. A.; Malin, M. C.; Science; Operations Teams, M.

    2008-12-01

    The Mars Reconnaissance Orbiter (MRO) Mars Color Imager (MARCI) investigation was designed to recover the wide angle camera science objectives of the Mars Climate Orbiter MARCI which was destroyed upon arrival at Mars in 1999 and extend the daily meteorological coverage of the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) wide angle investigation that was systematically conducted from March 1999 to October 2006. MARCI consists of two wide angle cameras, each with a 180° field of view. The first acquires data in 5 visible wavelength channels (420, 550, 600, 650, 720 nm), the second in 2 UV channels (260, 320 nm). Data have been acquired daily, except during spacecraft upsets, since 24 September 2006. From the MRO 250 to 315 km altitude orbit, inclined 93 degrees, visible wavelength images usually have a pixel scale of about 1 km at nadir and the UV data are at about 8 km per pixel. Data are obtained during every orbit on the day side of the planet from terminator to terminator. These provide a nearly continuous record of meteorological events and changes in surface frost and albedo patterns that span more than 1 martian year and extend the daily global record of such events documented by the MGS MOC. For a few weeks in September and October 2006, both camera systems operated simultaneously, providing views of weather events at about 1400 local time (MOC) and an hour later at about 1500 (MARCI). The continuous meteorological record, now spanning more than 5 Mars years, shows very repeatable weather from year to year with cloud and dust-raising events occurring in the same regions within about 2 weeks of their prior occurrence in previous years. This provides a measure of predictability ideal for assessing future landing sites, orbiter aerobraking plans, and conditions to be encountered by the current landed spacecraft on Mars. However, less predictable are planet-encircling dust events. MOC observed one in 2001, the next was observed by MARCI in 2007. These occurred at different times of year. While popularly known as global dust storms, the nomenclature is misleading, as in each case a storm did not raise dust nor saltate sand on a global basis. Instead, multiple regional storms created a dust haze which obscured much of the martian surface from viewpoints above the lower atmosphere, but in each case the dust opacity was never so high that one could not determine where dust was being raised and where it was not. Within weeks of the end of the 2001 and 2007 global dust events, martian weather returned to its normal, repeatable pattern, with one exception: occasionally thereafter, dust storms were observed in regions where dust-raising had not been seen in the previous years. In these cases, winds capable of raising dust likely occurred at that location every year, but only became visible following a planet-encircling dust event and deposition of dust on a surface that previously did not have sufficient dust to raise. Other MARCI results center on seasonal monitoring of water vapor in the atmosphere, particularly by taking advantage of the anti-correlation between ozone (observable using the UV channels) and water vapor. Owing to their higher spatial resolution than the MOC daily global coverage, details of seasonal polar cap retreat became more apparent, as with these data it is now possible to separate surface frost from ground-hugging fog which forms along the retreating cap edge. MARCI images and meteorological observations are posted weekly on the Internet for public consumption, and the data are archived every 6 months with the NASA Planetary Data System.

  2. IR photometry results and dust envelope model for symbiotic Mira star candidate V 335 Vul

    NASA Astrophysics Data System (ADS)

    Bogdanov, M. B.; Taranova, O. G.; Shenavrin, V. I.

    2017-10-01

    We present the results of JHKLM-photometry for the symbiotic Mira star candidate V 335 Vul. Based on the average flux data, supplemented by IRAS, MSX, AKARI, and WISE mid-IR observations, we calculated a model of a spherically symmetric dust envelope of the star, made up of amorphous carbon and silicon carbide particles. The optical depth of the envelope in the visible range with a dust temperature at the inner boundary of T 1 = 1300 K is τ V = 0.58. For an envelope expansion velocity of 26.5 km s-1, the estimated mass loss rate is equal to 5.7 × 10-7 M ⊙ yr-1.

  3. Classification of 3 DES supernova with OzDES and DEVILS

    NASA Astrophysics Data System (ADS)

    Davies, L. J. M.; Driver, S. P.; Hashemizadeh, A.; Kushan, S. l.; Lidman, C.; Mannering, E.; Panther, F.; Sharp, R.; Sommer, N. E.; Tucker, B. E.; Zhang, B.; Mudd, D.; Swann, E. S.; Wiseman, P.; King, A.; Mould, J. R.; Calcino, J.; Bolejko, K.; Papadopoulos, A.; Morganson, E.; Desai, S.; Paech, K.; Smith, R. C.; Schubnell, M.; Moller, A.; Yuan, F.; Davis, T. M.; Hinton, S.; Asorey, J.; Lewis, G. F.; Muthukrishna, D.; Uddin, S.; Kessler, R.; Lasker, J.; Scolnic, D.; Brout, D. J.; D'Andrea, C.; Gladney, L.; March, M.; Sako, M.; Wolf, R. C.; Brown, P. J.; Krisciunas, K.; Suntzeff, N.; Macaulay, E.; Nichol, R.; Maartens, R.; Childress, M.; Prajs, S.; Smith, M.; Sullivan, M.; Kovacs, E.; Kuhlmann, S.; Spinka, H.; Ahn, E.; Finley, D. A.; Frieman, J.; Marriner, J.; Wester, W.; Aldering, G.; Gupta, R.; Kim, A. G.; Thomas, R. C.; Barbary, K.; Bloom, J. S.; Goldstein, D.; Nugent, P.; Perlmutter, S.; Foley, R. J.; Pan, Y.-C.; Casas, R.; Castander, F. J.

    2018-06-01

    We report new spectroscopic classifications by OzDES and DEVILS of supernovae discovered by the Dark Energy Survey (ATEL #4668). The spectra (370-885nm) were obtained with the AAOmega Spectrograph (Saunders et al. 2004, SPIE, 5492, 389) and the 2dF fibre positioner at the Anglo-Australian Telescope (AAT).

  4. Protecting Sacred Sites on Public Land: Religion and Alliances in the Mato Tipila-Devils Tower Litigation

    ERIC Educational Resources Information Center

    Freedman, Eric

    2007-01-01

    This article traces the Devils Tower litigation in the context of the "Bear Lodge" alliance's theoretical underpinnings, particularly the interrelationship among culture, geographic place, and religion, as well as the institutional mechanisms that regulate litigation alliances in the U.S. judicial system. It discusses principal factors…

  5. The circumbinary dusty disk around the hydrogen-deficient binary star υ Sagittarii

    NASA Astrophysics Data System (ADS)

    Netolický, M.; Bonneau, D.; Chesneau, O.; Harmanec, P.; Koubský, P.; Mourard, D.; Stee, P.

    2009-06-01

    Aims: The aim of this paper is to determine the properties of the dusty environment of the hydrogen-deficient binary system υ Sgr, whose binary properties and other characteristics are poorly known. Methods: We obtained the first mid-IR interferometric observations of υ Sgr using the instrument MIDI of the VLTI used with different pairs of 1.8 m and 8 m telescopes. The calibrated visibilities, the N band spectrum, and the SED were compared with disk models computed with the MC3D code to determine the geometry and chemical composition of the envelope. Results: υ Sgr is unresolved with an 8 m telescope at 8.7 μm. We propose a disk model that agrees with the measured visibilities and the SED, consisting of a geometrically thin disk with an inner radius R_in = 6.0+0.5-1.5 AU and a scale height h100 = 3.5+2.0-1.5 AU. The chemical composition of the dust is approximately 60% of carbon dust and 40% of silicate dust, as a consequence of several episodes of mass transfers, whose chemistry was imprinted in the dust composition. We also constrain the inclination of the disk i = 50°+10°-20° and its orientation position angle PA = 80°+10°-5°. Conclusions: The mid-infrared interferometric observations of the binary star υ Sgr allowed us to constrain the geometry of the circumbinary dusty envelope. By defining the inclination and PA of the system with better accuracy than before, these observations restrict the parameter space for the orbital parameters and thus the nature of the stars orbiting in this system. Based on observations made with the Very Large Telescope Interferometer at Paranal Observatory under program 079.D-0115. Visibility data are only available in electronic form at the CDS website.

  6. Dark Reflections in the Southern Cross

    NASA Image and Video Library

    2010-10-27

    NASA Wide-field Infrared Survey Explorer captured this colorful image of the reflection nebula IRAS 12116-6001. This cloud of interstellar dust cannot be seen directly in visible light, but WISE detectors observed the nebula at infrared wavelengths.

  7. Whirlpool Galaxy

    NASA Image and Video Library

    1999-12-04

    The image from NASA Hubble Telescope shows spiral arms and dust clouds in the nearby Whirlpool galaxy. Visible starlight and light from the emission of glowing hydrogen is seen, which is associated with the most luminous young stars in the spiral arms.

  8. The Immunomodulatory Small Molecule Imiquimod Induces Apoptosis in Devil Facial Tumour Cell Lines.

    PubMed

    Patchett, Amanda L; Darby, Jocelyn M; Tovar, Cesar; Lyons, A Bruce; Woods, Gregory M

    2016-01-01

    The survival of the Tasmanian devil (Sarcophilus harrisii) is threatened by devil facial tumour disease (DFTD). This transmissible cancer is usually fatal, and no successful treatments have been developed. In human studies, the small immunomodulatory molecule imiquimod is a successful immunotherapy, activating anti-tumour immunity via stimulation of toll-like receptor-7 (TLR7) signaling pathways. In addition, imiquimod is a potent inducer of apoptosis in human tumour cell lines via TLR7 independent mechanisms. Here we investigate the potential of imiquimod as a DFTD therapy through analysis of treated DFTD cell lines and Tasmanian devil fibroblasts. WST-8 proliferation assays and annexin V apoptosis assays were performed to monitor apoptosis, and changes to the expression of pro- and anti-apoptotic genes were analysed using qRT-PCR. Our results show that DFTD cell lines, but not Tasmanian devil fibroblasts, are sensitive to imiquimod-induced apoptosis in a time and concentration dependent manner. Induction of apoptosis was accompanied by down-regulation of the anti-apoptotic BCL2 and BCLXL genes, and up-regulation of the pro-apoptotic BIM gene. Continuous imiquimod treatment was required for these effects to occur. These results demonstrate that imiquimod can deregulate DFTD cell growth and survival in direct and targeted manner. In vivo, this may increase DFTD vulnerability to imiquimod-induced TLR7-mediated immune responses. Our findings have improved the current knowledge of imiquimod action in tumour cells for application to both DFTD and human cancer therapy.

  9. Progress report: chemical character of surface waters in the Devils Lake Basin, North Dakota

    USGS Publications Warehouse

    Swenson, Herbert A.

    1950-01-01

    Devils Lake in northeastern North Dakota was at one time the most popular summer resort in the state. With decline in lake level the lake has become a shallow body pf vary saline water, which scenic value and recreational appeal completely destroyed. Under the Missouri River development program, it is proposed to restore the lake level to an altitude of 1,425 feet by diversion of Missouri River water. The chemical character of the water in Devils Lake and in other surface bodies in Devils Lake Basin is determined from the analyses of 95 samples. The physical and chemical properties of lake bed deposits are also shown. Lake water in the basin vary considerable in both concentration and composition, ranging from fresh bicarbonate waters of 300 parts per million dissolved solids to sulfate waters of over 100,000 parts per million of soluble salts. Twenty-four samples indicates the chemical character of water in the Red River of the North and its tributaries. The probable concentration of dissolved solids in water of Devils Lake at altitude 1,425 feet has been estimated as ranging from 3,000 to 7,600 parts per million. Final concentration will largely depend upon the percentage of deposited salts reentering solution and the quality of the inflow water. The possible effects of lake effluents on downstream developments, with particular reference to sanitation and pollution problems, are also discussed in this report.

  10. Wet Dust Deposition Across Texas, USA

    NASA Astrophysics Data System (ADS)

    Collins, J. D., Jr.; Ponette-González, A.; Gill, T. E.; Glass, G. A.; Weathers, K. C.

    2016-12-01

    Atmospheric dust deposition is of critical importance in terrestrial biogeochemical cycles, supplying essential limiting nutrients, such as calcium and phosphorus as well as pollutants, such as lead, to ecosystems. Dust particles are delivered to terrestrial ecosystems directly as dry deposition or in precipitation (wet deposition) as a result of rainout (particles incorporated into cloud droplets) and washout (particles that collide with raindrops as they fall). Compared to dry deposition, wet dust deposition (dissolved + particulate) is a poorly understood yet potentially significant pathway for dust input, especially in humid regions. We quantified wet dust deposition to two National Atmospheric Deposition Monitoring (NADP) sites across Texas-one in west (Guadalupe Mountains) and one in east (near Houston) Texas-with contrasting climate/dust regimes and land cover. We focused on 2012 during one of the most severe droughts in Texas since 1895. Dust event days (DEDs) were identified using meteorological data for stations within 150 km of the NADP sites where wet deposition was sampled weekly. DEDs were defined using the following criteria: visibility <10 km, <30% relative humidity, and wind speed >50 km, supplemented with other Saharan dust incursion and dust observations. A total of 34 DEDs (20 sample weeks) were identified for the west and 5 DEDs (4 sample weeks) for the east Texas sites. Bulk elemental composition of washout particles is analyzed using Particle Induced X-ray Emission (PIXE) spectroscopy and X-ray Fluorescence (XRF) spectroscopy. Using these data, we will examine differences in the chemical composition of rainwater and aerosol particles filtered from rain samples for dust versus non-dust event days at each study site. Deposition fluxes for dust and non-dust event weeks are also compared. Quantifying the magnitude of wet dust deposition is necessary to improve evaluation of dust impacts on biogeochemical cycles.

  11. Patterns of Detection and Capture Are Associated with Cohabiting Predators and Prey

    PubMed Central

    Lazenby, Billie T.; Dickman, Christopher R.

    2013-01-01

    Avoidance behaviour can play an important role in structuring ecosystems but can be difficult to uncover and quantify. Remote cameras have great but as yet unrealized potential to uncover patterns arising from predatory, competitive or other interactions that structure animal communities by detecting species that are active at the same sites and recording their behaviours and times of activity. Here, we use multi-season, two-species occupancy models to test for evidence of interactions between introduced (feral cat Felis catus) and native predator (Tasmanian devil Sarcophilus harrisii) and predator and small mammal (swamp rat Rattus lutreolus velutinus) combinations at baited camera sites in the cool temperate forests of southern Tasmania. In addition, we investigate the capture rates of swamp rats in traps scented with feral cat and devil faecal odours. We observed that one species could reduce the probability of detecting another at a camera site. In particular, feral cats were detected less frequently at camera sites occupied by devils, whereas patterns of swamp rat detection associated with devils or feral cats varied with study site. Captures of swamp rats were not associated with odours on traps, although fewer captures tended to occur in traps scented with the faecal odour of feral cats. The observation that a native carnivorous marsupial, the Tasmanian devil, can suppress the detectability of an introduced eutherian predator, the feral cat, is consistent with a dominant predator – mesopredator relationship. Such a relationship has important implications for the interaction between feral cats and the lower trophic guilds that form their prey, especially if cat activity increases in places where devil populations are declining. More generally, population estimates derived from devices such as remote cameras need to acknowledge the potential for one species to change the detectability of another, and incorporate this in assessments of numbers and survival. PMID:23565172

  12. Response of Water Levels in Devils Hole, Death Valley National Park, Nevada, to Atmospheric Loading, Earth Tides, and Earthquakes

    NASA Astrophysics Data System (ADS)

    Cutillo, P. A.; Ge, S.

    2004-12-01

    Devils Hole, home to the endangered Devils Hole pupfish (Cyprinodon diabolis) in Death Valley National Park, Nevada, is one of about 30 springs and the largest collapse depression in the Ash Meadows area. The small pool leads to an extensive subterranean cavern within the regional Paleozoic carbonate-rock aquifer. Previous work has established that the pool level fluctuates in response to changes in barometric pressure, Earth tides and earthquakes. Analyses of these fluctuations indicate that the formation is a sensitive indicator of crustal strain, and provide important information regarding the material properties of the surrounding aquifer. Over ten years of hourly water-level measurements were analyzed for the effects of atmospheric loading and Earth tides. The short-term water-level fluctuations caused by these effects were found to be on the order of millimeters to centimeters, indicating relatively low matrix compressibility. Accordingly, the Devils Hole water-level record shows strong responses to the June 28, 1992 Landers/Little Skull Mountain earthquake sequence and to the October 16, 1999 Hector Mine earthquake. A dislocation model was used to calculate volumetric strain for each earthquake. The sensitivity of Devils Hole to strain induced by the solid Earth tide was used to constrain the modeling. Water-level decreases observed following the 1992 and 1999 earthquakes were found to be consistent with areas of crustal expansion predicted by the dislocation model. The magnitude of the water-level changes was also found to be proportional to the predicted coseismic volumetric strain. Post-seismic pore-pressure diffusion, governed by the hydraulic diffusivity of the aquifer, was simulated with a numerical model using the coseismic change in pore pressure as an initial condition. Results of the numerical model indicate that factors such as fault-plane geometry and aquifer heterogeneity may play an important role in controlling pore pressure diffusion in the Devils Hole area.

  13. The Atlantic Richfield Company Black Thunder mine haul road dust study. [Wyoming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, D.R.; Hormel, T.R.; Ives, J.A.

    An examination of the effectiveness of various haul road dust control measures was performed at ARCO's Black Thunder Mine near Wright, Wyoming by evaluating both visible observations and quantitative measurements of particle concentrations. In order to evaluate dust control effectiveness both a 300 foot (91.5 meter) and 175 foot (53.4 meter) section of the main coal haul road was selected for testing. The test sections were separated by a 200 foot (61 meter) buffer zone. Each test section was relatively straight and away from interferences from other mine sources. The five haul road treatment test sequences evaluated for control measuremore » effectiveness were: an untreated road segment; water treatment two times per hour; water treatment four times per hour; previously chemically treated segment of haul road (ARCO 2400 dust suppressant); and testing after application of Coherex (10% dilution). By comparing uncontrolled situations with various controlled situations, an estimate of the control efficiency of the dust control measures was determined. Based upon the results of the study a fugitive dust control scheme was selected considering control effectiveness, economics and operational efficiency.« less

  14. Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease

    PubMed Central

    Flies, Andrew S.; Blackburn, Nicholas B.; Lyons, Alan Bruce; Hayball, John D.; Woods, Gregory M.

    2017-01-01

    Immune checkpoint molecules function as a system of checks and balances that enhance or inhibit immune responses to infectious agents, foreign tissues, and cancerous cells. Immunotherapies that target immune checkpoint molecules, particularly the inhibitory molecules programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have revolutionized human oncology in recent years, yet little is known about these key immune signaling molecules in species other than primates and rodents. The Tasmanian devil facial tumor disease is caused by transmissible cancers that have resulted in a massive decline in the wild Tasmanian devil population. We have recently demonstrated that the inhibitory checkpoint molecule PD-L1 is upregulated on Tasmanian devil (Sarcophilus harrisii) facial tumor cells in response to the interferon-gamma cytokine. As this could play a role in immune evasion by tumor cells, we performed a thorough comparative analysis of checkpoint molecule protein sequences among Tasmanian devils and eight other species. We report that many of the key signaling motifs and ligand-binding sites in the checkpoint molecules are highly conserved across the estimated 162 million years of evolution since the last common ancestor of placental and non-placental mammals. Specifically, we discovered that the CTLA-4 (MYPPPY) ligand-binding motif and the CTLA-4 (GVYVKM) inhibitory domain are completely conserved across all nine species used in our comparative analysis, suggesting that the function of CTLA-4 is likely conserved in these species. We also found that cysteine residues for intra- and intermolecular disulfide bonds were also highly conserved. For instance, all 20 cysteine residues involved in disulfide bonds in the human 4-1BB molecule were also present in devil 4-1BB. Although many key sequences were conserved, we have also identified immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based switch motifs (ITSMs) in genes and protein domains that have not been previously reported in any species. This checkpoint molecule analysis and review of salient features for each of the molecules presented here can serve as road map for the development of a Tasmanian devil facial tumor disease immunotherapy. Finally, the strategies can be used as a guide for veterinarians, ecologists, and other researchers willing to venture into the nascent field of wild immunology. PMID:28515726

  15. Remote sensing and modelling analysis of the extreme dust storm hitting the Middle East and eastern Mediterranean in September 2015

    NASA Astrophysics Data System (ADS)

    Solomos, Stavros; Ansmann, Albert; Mamouri, Rodanthi-Elisavet; Binietoglou, Ioannis; Patlakas, Platon; Marinou, Eleni; Amiridis, Vassilis

    2017-03-01

    The extreme dust storm that affected the Middle East and the eastern Mediterranean in September 2015 resulted in record-breaking dust loads over Cyprus with aerosol optical depth exceeding 5.0 at 550 nm. We analyse this event using profiles from the European Aerosol Research Lidar Network (EARLINET) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), geostationary observations from the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI), and high-resolution simulations from the Regional Atmospheric Modeling System (RAMS). The analysis of modelling and remote sensing data reveals the main mechanisms that resulted in the generation and persistence of the dust cloud over the Middle East and Cyprus. A combination of meteorological and surface processes is found, including (a) the development of a thermal low in the area of Syria that results in unstable atmospheric conditions and dust mobilization in this area, (b) the convective activity over northern Iraq that triggers the formation of westward-moving haboobs that merge with the previously elevated dust layer, and (c) the changes in land use due to war in the areas of northern Iraq and Syria that enhance dust erodibility.

  16. Enhancing weak transient signals in SEVIRI false color imagery: Application to dust source detection in southern Africa

    NASA Astrophysics Data System (ADS)

    Murray, J. E.; Brindley, H. E.; Bryant, R. G.; Russell, J. E.; Jenkins, K. F.; Washington, R.

    2016-09-01

    A method is described to significantly enhance the signature of dust events using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI). The approach involves the derivation of a composite clear-sky signal for selected channels on an individual time step and pixel basis. These composite signals are subtracted from each observation in the relevant channels to enhance weak transient signals associated with either (a) low levels of dust emission or (b) dust emissions with high salt or low quartz content. Different channel combinations, of the differenced data from the steps above, are then rendered in false color imagery for the purpose of improved identification of dust source locations and activity. We have applied this clear-sky difference (CSD) algorithm over three (globally significant) source regions in southern Africa: the Makgadikgadi Basin, Etosha Pan, and the Namibian and western South African coast. Case study analyses indicate three notable advantages associated with the CSD approach over established image rendering methods: (i) an improved ability to detect dust plumes, (ii) the observation of source activation earlier in the diurnal cycle, and (iii) an improved ability to resolve and pinpoint dust plume source locations.

  17. A Bubble Bursts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars.

    The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top.

    NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.

  18. Global Distribution of Dust, Smoke, Volcanic Ash, and Pollutant Aerosols Seen from Space

    NASA Technical Reports Server (NTRS)

    Herman, Jay R.; Hsu, Christina; Krotkov, Nickolay; Torres, Omar

    1998-01-01

    New technique for observing aerosols from space, using ultraviolet (UV) wavelengths, have been developed during the past three years. The chief benefit from observing aerosols in the UV is that they are easily visible over both land and water. While there is presently more than one satellite that can observe aerosols in the UV, only Total Ozone Mapping Spectrometer (TOMS) has a long-term record (since 1979) and adequate spatial resolutions (50 to 100 km) to observe the seasonal and interannual variations, and to locate some of the land sources of dust, smoke, volcanic ash and sulfate pollutants. The data has been assembled into daily images of the atmospheric aerosol loading in terms of optical depth and UV transmittance. For the major sources of aerosols, it is common for at least 50% of the total UV to be absorbed underneath aerosol plumes. This is particularly true for the spectacular smoke plumes originating from the recent Indonesian and Mexican fires, as well as under the huge African dust plumes. The sulfate pollutants are mostly present in the Northern Hemisphere and are associated with regions of high industrial activity. The location and seasonal dependence of these aerosol plumes over Europe and North America will be contrasted with the relatively clean Southern Hemisphere. Because of the success of this technique, it has formed the basis for a new generation of space-borne aerosol detection instruments. These new instruments combine the UV observations with the more traditional visible-wavelength data to obtain a more comprehensive characterization of aerosols that is possible with either UV or visible techniques by themselves.

  19. Modelling of mid-infrared interferometric signature of hot exozodiacal dust emission

    NASA Astrophysics Data System (ADS)

    Kirchschlager, Florian; Wolf, Sebastian; Brunngräber, Robert; Matter, Alexis; Krivov, Alexander V.; Labdon, Aaron

    2018-01-01

    Hot exozodiacal dust emission was detected in recent surveys around two dozen main-sequence stars at distances of less than 1 au using the H- and K-band interferometry. Due to the high contrast as well as the small angular distance between the circumstellar dust and the star, direct observation of this dust component is challenging. An alternative way to explore the hot exozodiacal dust is provided by mid-infrared interferometry. We analyse the L, M and N bands interferometric signature of this emission in order to find stronger constraints for the properties and the origin of the hot exozodiacal dust. Considering the parameters of nine debris disc systems derived previously, we model the discs in each of these bands. We find that the M band possesses the best conditions to detect hot dust emission, closely followed by L and N bands. The hot dust in three systems - HD 22484 (10 Tau), HD 102647 (β Leo) and HD 177724 (ζ Aql) - shows a strong signal in the visibility functions, which may even allow one to constrain the dust location. In particular, observations in the mid-infrared could help to determine whether the dust piles up at the sublimation radius or is located at radii up to 1 au. In addition, we explore observations of the hot exozodiacal dust with the upcoming mid-infrared interferometer Multi AperTure mid-Infrared SpectroScopic Experiment (MATISSE) at the Very Large Telescope Interferometer.

  20. CSM interaction and dust formation in SN 2010jl .

    NASA Astrophysics Data System (ADS)

    Krafton, K.; Clayton, G. C.

    The origin of dust in galaxies >1 Gyr old has remained an unsolved mystery for over a decade. One proposed solution is dust produced by core collapse supernovae (CCSNe). Theorists have shown that 0.1-1 M⊙ of dust must be produced per supernova for this to work as an explanation for the dust in young galaxies. SN 1987A has produced ˜1 M⊙ of dust since its detonation. However, most supernovae have been found to only produce 10-4 - 10-2 M⊙ of dust. The energetic type IIn SN 2010jl is located in UGC 5189, in a dense shell of CSM. As dust condenses in the SN ejecta, we see, (1) a sudden decrease in continuum brightness in the visible due to increased dust extinction, (2) the development of an infrared excess in the SN light curve arising from dust grains absorbing high-energy photons and re-emitting them in the infrared, and (3) the development of asymmetric, blue-shifted emission-line profiles, caused by dust forming in the ejecta, and preferentially extinguishing redshifted emission. A dense circumstellar material (CSM) may increase the dust production by supernovae. We observe signs of strong interaction between the SN ejecta and a dense CSM in SN 2010jl. SN 2010jl has been a source of much debate in the CCSN community, particularly over when and how much dust it formed. The light curve shows strong signs of dust formation after 260 days. Arguments over these subjects have been based on the evolution of the light curve and spectra. We present new optical and IR photometry, as well as optical spectroscopy, of SN 2010jl over 2000 days. We estimate dust masses using the DAMOCLES and MOCASSIN radiative transfer codes.

  1. The Devil's Hole Is In The Details

    NASA Astrophysics Data System (ADS)

    Wallace, M. G.

    2012-12-01

    As the granularity of Quaternary paleoclimatic proxy signatures from continental and oceanic sources continues to resolve, increasingly integrated studies such as Shakun et. al. (2012), and Kohfeld and Ridgewell (2009) have emerged, with far-reaching but sometimes conflicting paleo-global climate interpretations. Accordingly, none of the competing empirical and phenomenological narratives regarding the time series of Quaternary temperature patterns fit with sufficient fidelity to the observational record. Among other examples, the Shakun et al. study reviewed and processed 80 proxy sites worldwide for paleotemperature reconstruction, but left out the premier Devil's Hole poxy site in the continental Southwestern U.S. The Devil's Hole site presents a nominally earlier record of an interglacial warming signal (Landwehr and Winograd 2012). Both cite similar data (NOAA, 2005) as confirmation of their competing interpretations. Clearly both cannot be right. Epistemic origins of this apparent conflict may be rooted on the ongoing controversy concerning the importance of orbital forcings to the 100K year Quaternary glacial oscillations. Orbital forcings had been intrinsically posited as the only possible extraterrestrial driver of global temperature cycles over the Quaternary time frame. Yet other extraterrestrial climate forcing parameters are now conceivable. This paper reexamines past 3He marine core measurements conducted on two oceans and two hemispheres, and alternatives to the associated interpretations of researchers Patterson and Farley (1998). This study includes a new phenomenological and empirical exploration of an alternate extraterrestrial Quaternary global climate forcing model. This new interpretation is possible based on improved mapping of the Local Interstellar Medium (ISM), as documented in recent works such as those by Frisch and Mueller (2011). References: Frisch, P.C., and HR Mueller, 2011, Time-Variability in the Interstellar Boundary Conditions of the Heliosphere: Effect of the Solar Journey on the Galactic Cosmic Ray Flux at Earth. Space Science Review DOI 10.1007/s11214-011-9766-x. Kohfeld, Karen E., and Andy Ridgewell, 2009, "Glacial-Interglacial Variability in Atmospheric CO2", Surface Ocean-Lower Atmosphere Processes Geophysical Research Series 187, pp. 251-286. Landwehr, J.M., Sharp, W.D., Coplen, T.B., Ludwig, K.R., and Winograd, I.J., 2011, "The chronology for the δ18O record from Devil's Hole, Nevada, extended into the mid-Holocene: U.S. Geological Survey Open-File Report 2011-1082, 5 p. NOAA Paleoclimatology Program - Paleocean Site Data. tr163-19_ssts-fwc.txt # SST data only # File Created: 19-Jan-2005. ftp://ftp.ncdc.noaa.gov/pub/data/paleo/paleocean/sediment_files/sst/tr163-19_ssts-fwc.txt. Patterson, DB, and Farley, KA (1998): Extraterrestrial 3He in seafloor sediments: Evidence for correlated 100 kyr periodicity in the accretion rate of interplanetary dust, orbital parameters, and Quaternary climate. Geochimica et Cosmochimica Acta, 62(23-24), 3669-3682. Shakun, Jeremy D. , Peter U. Clark, Feng He, Shaun A. Marcott, Alan C. Mix, Zhengyu Liu, Bette Otto-Bliesner, Andreas Schmittner & Edouard Bard, 2012, "Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation" Nature Vol 484. pp 49-55.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieman-Sifry, Jesse; Hughes, A. Meredith; Flaherty, Kevin M.

    We present a CO(2-1) and 1240 μ m continuum survey of 23 debris disks with spectral types B9-G1, observed at an angular resolution of 0.″5–1″ with the Atacama Large Millimeter/Submillimeter Array (ALMA). The sample was selected for large infrared excess and age ∼10 Myr, to characterize the prevalence of molecular gas emission in young debris disks. We identify three CO-rich debris disks, plus two additional tentative (3 σ) CO detections. Twenty disks were detected in the continuum at the >3 σ level. For the 12 disks in the sample that are spatially resolved by our observations, we perform an independentmore » analysis of the interferometric continuum visibilities to constrain the basic dust disk geometry, as well as a simultaneous analysis of the visibilities and broadband spectral energy distribution to constrain the characteristic grain size and disk mass. The gas-rich debris disks exhibit preferentially larger outer radii in their dust disks, and a higher prevalence of characteristic grain sizes smaller than the blowout size. The gas-rich disks do not exhibit preferentially larger dust masses, contrary to expectations for a scenario in which a higher cometary destruction rate would be expected to result in a larger mass of both CO and dust. The three debris disks in our sample with strong CO detections are all around A stars: the conditions in disks around intermediate-mass stars appear to be the most conducive to the survival or formation of CO.« less

  3. Surface ozone at the Devils Postpile National Monument receptor site during low and high wildland fire years

    Treesearch

    Andrzej Bytnerowicz; Joel D. Burley; Ricardo Cisneros; Haiganoush K. Preisler; Susan Schilling; Donald Schweizer; John Ray; Deanna Dulen; Christopher Beck; Bianca Auble

    2013-01-01

    Surface ozone (O3) was measured at the Devils Postpile National Monument (DEPO), eastern Sierra Nevada Mountains, California, during the 2007 (low-fire) and 2008 (high-fire) summer seasons. While mean and median values of O3 concentrations for the 2007 and 2008 summer seasons were similar, maximum O3...

  4. The Draft National Curriculum for Primary Mathematics

    ERIC Educational Resources Information Center

    Thompson, Ian

    2012-01-01

    Draft curriculum documents offer a glimpse of the future. They demand a response as all too often the devil is in the detail. What are the devils and maybe demons that await primary mathematics? This forensic consideration of the content of the draft curriculum for primary mathematics catalogues a lack of evidence to underpin proposals. Is the…

  5. Instructional Note: Using "The Devil's Dictionary" to Teach Definitions

    ERIC Educational Resources Information Center

    Lane, Mary T.

    2004-01-01

    Known as Bitter Bierce, the writer Ambrose Bierce spent years ironically redefining the terms for a host of people, things, actions, and concepts, compiling his redefinitions into the "The Devil's Dictionary." In this article, the author describes how she uses this caustic work as a model for an exercise when her developmental writing class begins…

  6. Speak Truth and Shame the Devil: An Ethnodrama in Response to Racism in the Academy

    ERIC Educational Resources Information Center

    Ward Randolph, Adah; Weems, Mary E.

    2010-01-01

    This ethnodrama examines how two African American women experience racism in the academe. Both scholars examine the social/political context of racism in higher education and its manifestation in institutional practices. Both authors seek to "speak truth and shame the devil" by examining institutional responses to the racism they encounter in…

  7. Maps showing mines, quarries, prospects, and exposures in the Devils Fork Roadless Area, Scott County, Virginia

    USGS Publications Warehouse

    Behum, Paul T.

    1984-01-01

    The Devils Fork Roadless Area is located at the eastern edge of the Appalachian coal region and is within the Cumberland Mountain section of the Appalachian Plateau physiographic province. Most of the area is drained by Devil Fork and its tributaries. Clinch Rock Branch of Straight Creek, Roddy Branch of Valley Creek, and Stinking Creek, all tributary to the Clinch River, drain small fringe tracts. Altitudes range from about 1,550 ft on the lower part of Straight Fork to about 3,490 ft at Cox Place on Little Mountain. Vegetation varies from mixed hardwoods in the uplands to thickets of conifer, rhododendron, and laurel in moist protected areas, as in coves along drainage courses.

  8. Inhibitory effects of devil's claw (secondary root of Harpagophytum procumbens) extract and harpagoside on cytokine production in mouse macrophages.

    PubMed

    Inaba, Kazunori; Murata, Kazuya; Naruto, Shunsuke; Matsuda, Hideaki

    2010-04-01

    Successive oral administration (50 mg/kg) of a 50% ethanolic extract (HP-ext) of devil's claw, the secondary root of Harpagophytum procumbens, showed a significant anti-inflammatory effect in the rat adjuvant-induced chronic arthritis model. HP-ext dose-dependently suppressed the lipopolysaccharide (LPS)-induced production of inflammatory cytokines [interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)] in mouse macrophage cells (RAW 264.7). Harpagoside, a major iridoid glycoside present in devil's claw, was found to be one of the active agents in HP-ext and inhibited the production of IL-1beta, IL-6, and TNF-alpha by RAW 264.7.

  9. 77 FR 30953 - Approval and Promulgation of State Implementation Plans; State of Wyoming; Regional Haze Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... the problem of visibility impairment in Class I areas, states need to develop strategies in... air corridors (CACs), mobile sources, and wind-blown dust, among other things. The EPA codified these...

  10. 77 FR 36043 - Approval and Promulgation of State Implementation Plans; New Mexico; Regional Haze Rule...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    .... Therefore, to address effectively the problem of visibility impairment in Class I areas, states need to... development; and provisions to manage clean air corridors, mobile sources, and wind-blown dust, among other...

  11. 77 FR 24767 - Approval and Promulgation of State Implementation Plans; City of Albuquerque-Bernalillo County...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... of kilometers. Therefore, to address effectively the problem of visibility impairment in Class I... sources, and wind-blown dust, among other things. The EPA codified these recommendations as part of the...

  12. A Moment Frozen in Time

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On May 19th, 2005, NASA's Mars Exploration Rover Spirit captured this stunning view as the Sun sank below the rim of Gusev crater on Mars. This Panoramic Camera (Pancam) mosaic was taken around 6:07 in the evening of the rover's 489th martian day, or sol. Spirit was commanded to stay awake briefly after sending that sol's data to the Mars Odyssey orbiter just before sunset. This small panorama of the western sky was obtained using Pancam's 750-nanometer, 530-nanometer and 430-nanometer color filters. This filter combination allows false color images to be generated that are similar to what a human would see, but with the colors slightly exaggerated. In this image, the bluish glow in the sky above the Sun would be visible to us if we were there, but an artifact of the Pancam's infrared imaging capabilities is that with this filter combination the redness of the sky farther from the sunset is exaggerated compared to the daytime colors of the martian sky. Because Mars is farther from the Sun than the Earth is, the Sun appears only about two-thirds the size that it appears in a sunset seen from the Earth. The terrain in the foreground is the rock outcrop 'Jibsheet,' a feature that Spirit has been investigating for several weeks (rover tracks are dimly visible leading up to 'Jibsheet'). The floor of Gusev crater is visible in the distance, and the Sun is setting behind the wall of Gusev some 80 km (50 miles) in the distance.

    This mosaic is yet another example from MER of a beautiful, sublime martian scene that also captures some important scientific information. Specifically, sunset and twilight images are occasionally acquired by the science team to determine how high into the atmosphere the martian dust extends, and to look for dust or ice clouds. Other images have shown that the twilight glow remains visible, but increasingly fainter, for up to two hours before sunrise or after sunset. The long martian twilight (compared to Earth's) is caused by sunlight scattered around to the night side of the planet by abundant high altitude dust. Similar long twilights or extra-colorful sunrises and sunsets sometimes occur on Earth when tiny dust grains that are erupted from powerful volcanoes scatter light high in the atmosphere.

  13. Spitzer Makes Invisible Visible

    NASA Image and Video Library

    2004-04-13

    Hidden behind a shroud of dust in the constellation Cygnus is a stellar nursery called DR21, which is giving birth to some of the most massive stars in our galaxy. Visible light images reveal no trace of this interstellar cauldron because of heavy dust obscuration. In fact, visible light is attenuated in DR21 by a factor of more than 10,000,000,000,000,000,000,000,000,000,000,000,000,000 (ten thousand trillion heptillion). New images from NASA's Spitzer Space Telescope allow us to peek behind the cosmic veil and pinpoint one of the most massive natal stars yet seen in our Milky Way galaxy. The never-before-seen star is 100,000 times as bright as the Sun. Also revealed for the first time is a powerful outflow of hot gas emanating from this star and bursting through a giant molecular cloud. The colorful image is a large-scale composite mosaic assembled from data collected at a variety of different wavelengths. Views at visible wavelengths appear blue, near-infrared light is depicted as green, and mid-infrared data from the InfraRed Array Camera (IRAC) aboard NASA's Spitzer Space Telescope is portrayed as red. The result is a contrast between structures seen in visible light (blue) and those observed in the infrared (yellow and red). A quick glance shows that most of the action in this image is revealed to the unique eyes of Spitzer. The image covers an area about two times that of a full moon. http://photojournal.jpl.nasa.gov/catalog/PIA05734

  14. Pollination Services at Risk: Asian Dust Poses a Threat on Pollinators' Navigation

    NASA Astrophysics Data System (ADS)

    Cho, Y.

    2016-12-01

    Beijing was hit by a massive sandstorm, which is known as Asian dust or Yellow sand phenomenon in April 2015. The city was enveloped by sand, and the reported visibility was less than 1 km. People could neither work outside nor drive. But can bees forage for their food in this sandy air? The hypothesis in this proposed study is as follows: honey bee (Apis mellifera)'s foraging activity is impeded when Asian dust is severe since the particulate matters dusted on flowers prevent the bees from noticing the ultraviolet marking of the flowers. In an experimental study, flowers dusted with PM 10 showed no specific ultraviolet nectar guides as they do in clear weather. The transport of sand and dust by wind is a powerful erosional force, fills the atmosphere with suspended dust aerosols. The dust, in the atmospheric science, generally refers to solid inorganic particles that can be readily suspended by wind. Once the bees fail to forage as this study hypothesized, they will starve to death, then plant-pollinator interaction will be threatened. Failure of bees' activity can result in loss of pollination services which could significantly affect the maintenance of the ecosystem stability as a whole. Though this research specifically studies the Asian phenomenon, it should be understood in a global context since the dust is believed to be transported one full circuit around the globe.

  15. Debilitating lung disease among surface coal miners with no underground mining tenure.

    PubMed

    Halldin, Cara N; Reed, William R; Joy, Gerald J; Colinet, Jay F; Rider, James P; Petsonk, Edward L; Abraham, Jerrold L; Wolfe, Anita L; Storey, Eileen; Laney, A Scott

    2015-01-01

    To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner's lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor.

  16. Debilitating Lung Disease Among Surface Coal Miners With No Underground Mining Tenure

    PubMed Central

    Halldin, Cara N.; Reed, William R.; Joy, Gerald J.; Colinet, Jay F.; Rider, James P.; Petsonk, Edward L.; Abraham, Jerrold L.; Wolfe, Anita L.; Storey, Eileen; Laney, A. Scott

    2015-01-01

    Objective To characterize exposure histories and respiratory disease among surface coal miners identified with progressive massive fibrosis from a 2010 to 2011 pneumoconiosis survey. Methods Job history, tenure, and radiograph interpretations were verified. Previous radiographs were reviewed when available. Telephone follow-up sought additional work and medical history information. Results Among eight miners who worked as drill operators or blasters for most of their tenure (median, 35.5 years), two reported poor dust control practices, working in visible dust clouds as recently as 2012. Chest radiographs progressed to progressive massive fibrosis in as few as 11 years. One miner’s lung biopsy demonstrated fibrosis and interstitial accumulation of macrophages containing abundant silica, aluminum silicate, and titanium dust particles. Conclusions Overexposure to respirable silica resulted in progressive massive fibrosis among current surface coal miners with no underground mining tenure. Inadequate dust control during drilling/blasting is likely an important etiologic factor. PMID:25563541

  17. Dust Mantle Near Pavonis Mons

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-356, 10 May 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a thick mantle of dust covering lava flows north of Pavonis Mons so well that the flows are no longer visible. Flows are known to occur here because of the proximity to the volcano, and such flows normally have a very rugged surface. Fine dust, however, has settled out of the atmosphere over time and obscured the flows from view. The cliff at the top of the image faces north (up), the cliff in the middle of the image faces south (down), and the rugged slope at the bottom of the image faces north (up). The dark streak at the center-left was probably caused by an avalanche of dust sometime in the past few decades. The image is located near 4.1oN, 111.3oW. Sunlight illuminates the scene from the right/lower right.

  18. Mars dust and cloud opacities and scattering properties

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, S. W.

    1992-01-01

    We have recently completed an analysis of the visible emission-phase function (EPF) sequences obtained with the solar-band channel of the Infrared Thermal Mapping (IRTM) instrument onboard the two Viking Orbiters. Roughly 100 of these EPF sequences were gathered during the 1977-1980 period, in which the total broadband (.3-3.0 microns) reflectances of the atmosphere/surface above specific locations on Mars were measured versus emission angle as the spacecraft passed overhead. A multiple scattering radiative transfer program was employed to model the EPF observations in terms of the optical depths of dust/clouds, their single scattering albedos and phase functions, and the Lambert albedos and phase coefficient of the underlying surfaces. Due to the predominance of atmospheric scattering at large atmospheric pathlengths and/or large dust opacities, we were able to obtain strong constraints on the scattering properties of dust/clouds and their opacities for a wide range of latitudes, longitudes, and seasons on Mars.

  19. VARIABLE WINDS AND DUST FORMATION IN R CORONAE BOREALIS STARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Geoffrey C.; Zhang Wanshu; Geballe, T. R., E-mail: gclayton@fenway.phys.lsu.edu, E-mail: wzhan21@lsu.edu, E-mail: tgeballe@gemini.edu

    2013-08-01

    We have observed P-Cygni and asymmetric, blue-shifted absorption profiles in the He I {lambda}10830 lines of 12 R Coronae Borealis stars over short (1 month) and long (3 yr) timescales to look for variations linked to their dust-formation episodes. In almost all cases, the strengths and terminal velocities of the line vary significantly and are correlated with dust formation events. Strong absorption features with blue-shifted velocities {approx}400 km s{sup -1} appear during declines in visible brightness and persist for about 100 days after recovery to maximum brightness. Small residual winds of somewhat lower velocity are present outside of the declinemore » and recovery periods. The correlations support models in which recently formed dust near the star is propelled outward at high speed by radiation pressure and drags the gas along with it.« less

  20. Deposition Rates and Characterization of Arabian Mineral Dust

    NASA Astrophysics Data System (ADS)

    Puthan Purakkal, J.; Stenchikov, G. L.; Engelbrecht, J. P.

    2015-12-01

    Airborne mineral dust directly and indirectly impacts on global climate, continental and marine biochemistry, human and animal health, agriculture, equipment, and visibility. Annual global dust emissions are poorly known with estimates differing by a factor of at least two. Local dust emission and deposition rates are even less quantified. Dust deposition rate is a key parameter, which helps to constrain the modeled dust budget of the atmosphere. However, dust deposition remains poorly known, due to the limited number of reliable measurements. Simulations and satellite observations suggest that coastal dusts contribute substantially to the total deposition flux into the Red Sea. Starting December 2014, deposition samplers, both the "frisbee" type, and passive samplers for individual particle scanning electron microscopy were deployed at King Abdullah University of Science and Technology (KAUST), along the Red Sea in Saudi Arabia. Sampling periods of one month were adopted. The deposition rates range from 3 g m-2 month-1 for fair weather conditions to 23 g m-2 month-1 for high dust events. The X-ray diffraction (XRD) analyses of deposited dust samples show mineralogical compositions different from any of the parent soils, the former consisting mainly of gypsum, calcite, and smaller amounts of albite, montmorillonite, chlorite, quartz and biotite. The deposited dust samples on the other hand contain more gypsum and less quartz than the previously collected soil samples. This presentation discusses the results from XRD, chemical analysis and SEM-based individual particle analysis of the soils and the deposited dust samples. The monthly dust accumulation rates and their seasonal and spatial variability are compared with the regional model predictions. Data from this study provide an observational basis for validating the regional dust mass balance along the Arabian Red Sea coastal plain.

Top