Sample records for dust foreground diffuse

  1. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  2. Dust scattering from the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Narayan, Sathya; Murthy, Jayant; Karuppath, Narayanankutty

    2017-04-01

    We present an analysis of the diffuse ultraviolet emission near the Taurus Molecular Cloud based on observations made by the Galaxy Evolution Explorer. We used a Monte Carlo dust scattering model to show that about half of the scattered flux originates in the molecular cloud with 25 per cent arising in the foreground and 25 per cent behind the cloud. The best-fitting albedo of the dust grains is 0.3, but the geometry is such that we could not constrain the phase function asymmetry factor (g).

  3. The dust scattering halo of Cygnus X-3

    NASA Astrophysics Data System (ADS)

    Corrales, L. R.; Paerels, F.

    2015-10-01

    Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.

  4. A New Probe of Line-of-sight Magnetic Field Tangling

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2018-04-01

    The Galactic neutral hydrogen (H I ) sky at high Galactic latitudes is suffused with linear structure. Particularly prominent in narrow spectral intervals, these linear H I features are well aligned with the plane-of-sky magnetic field orientation as measured with optical starlight polarization and polarized thermal dust emission. We analyze the coherence of the orientation of these features with respect to line-of-sight velocity, and propose a new metric to quantify this H I coherence. We show that H I coherence is linearly correlated with the polarization fraction of 353 GHz dust emission. H I coherence constitutes a novel method for measuring the degree of magnetic field tangling along the line of sight in the diffuse interstellar medium. We propose applications of this property for H I -based models of the polarized dust emission in diffuse regions, and for studies of frequency decorrelation in the polarized dust foreground to the cosmic microwave background (CMB).

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imara, Nia; Loeb, Abraham, E-mail: nimara@cfa.harvard.edu

    Infrared emission from intergalactic dust might compromise the ability of future experiments to detect subtle spectral distortions in the Cosmic Microwave Background (CMB) from the early universe. We provide the first estimate of foreground contamination of the CMB signal due to diffuse dust emission in the intergalactic medium. We use models of the extragalactic background light to calculate the intensity of intergalactic dust emission and find that emission by intergalactic dust at z ≲ 0.5 exceeds the sensitivity of the planned Primordial Inflation Explorer to CMB spectral distortions by 1–3 orders of magnitude. In the frequency range ν = 150–2400more » GHz, we place an upper limit of 0.06% on the contribution to the far-infrared background from intergalactic dust emission.« less

  6. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission

    NASA Astrophysics Data System (ADS)

    Bennett, C. L.; Hill, R. S.; Hinshaw, G.; Nolta, M. R.; Odegard, N.; Page, L.; Spergel, D. N.; Weiland, J. L.; Wright, E. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.

    2003-09-01

    The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full-sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can be carried out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a maximum entropy method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to less than 1%, and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (βs~-2.5) near star-forming regions, especially in the plane, and steepest (βs~-3) in the halo. This is consistent with a picture of relativistic cosmic-ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to βs<-3. The modeled thermal dust spectral index is also steep in the WMAP bands, with βd~2.2. Our model is driven to these conclusions by the low level of total foreground contamination at ~60 GHz. Microwave and Hα measurements of the ionized gas agree well with one another at about the expected levels. Spinning dust emission is limited to <~5% of the Ka-band foreground emission, assuming a thermal dust distribution with a cold neutral medium spectrum and a monotonically decreasing synchrotron spectrum. A catalog of 208 point sources is presented. The reliability of the catalog is 98%; i.e., we expect five of the 208 sources to be statistically spurious. The mean spectral index of the point sources is α~0 (β~-2). Derived source counts suggest a contribution to the anisotropy power from unresolved sources of (15.0+/-1.4)×10-3 μK2 sr at Q band and negligible levels at V band and W band. The Sunyaev-Zeldovich effect is shown to be a negligible ``contamination'' to the maps. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  7. Testing the association between anomalous microwave emission and PAHs in the diffuse ISM

    NASA Astrophysics Data System (ADS)

    Berkeley, Matthew R.; Chuss, David; Kogut, Al

    2018-01-01

    Testing cosmic inflation is currently a primary focus of the Cosmology community. In order to verify the theory and to determine the energy scale of inflation, it is necessary to identify the characteristic B-mode polarization signal in the CMB. This signal, predicted by inflation theory, is expected to be very faint. It is therefore important to accurately characterize and remove foreground polarization components such as thermal dust and synchrotron emission.Some of these components have already been accurately characterized, but there are others that are not so well understood. In 1996, a new galactic foreground emission component was discovered. Dubbed 'anomalous microwave emission' (AME), this new foreground has yet to be identified. Though its physical origin remains uncertain, the leading hypothesis for the origin of this foreground proposes that the emission comes from rapidly rotating small dust grains called Polycyclic Aromatic Hydrocarbons (PAHs), or 'spinning dust'. PAHs are a family of hydrocarbon molecules with characteristic bending and stretching modes that have identifiable emission spectra in the mid-infrared region. The Wide-field Infrared Survey Explorer (WISE) is a satellite that was launched in 2010 into a polar orbit, enabling it to take images of the entire sky at four different mid-infrared wavelengths. These wavelengths cover the spectral region with the aforementioned PAH emission features in the mid-infrared. WISE archival data therefore makes it possible to construct a full-sky map of PAH emission.We present full sky maps using WISE data as a preliminary result towards creating a full sky PAH map.

  8. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Hill, R. S.; Hinshaw, G.; Nolta, M. R.; Odegard, N.; Page, L.; Spergel, D. N.; Weiland, J. L.; Wright, E. L.; Halpern, M.

    2003-01-01

    The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can became out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a Maximum Entropy Method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to less than 1% and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta(sub s) approx. -2.5) near star-forming regions, especially in the plane, and steepest (beta(sub s) approx. -3) in the halo. This is consistent with a picture of relativistic cosmic ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta(sub s) less than -3. The modeled thermal dust spectral index is also steep in the WMAP bands, with beta(sub d) approx. = 2.2. Our model is driven to these conclusions by the low level of total foreground contamination at approx. 60 GHz. Microwave and Ha measurements of the ionized gas agree well with one another at about the expected levels. Spinning dust emission is limited to less than 5% of the Ka-band foreground emission. A catalog of 208 point sources is presented. The reliability of the catalog is 98%, i.e., we expect five of the 208 sources to be statistically spurious. The mean spectral index of the point sources is alpha approx. 0(beta approx. -2). Derived source counts suggest a contribution to the anisotropy power from unresolved sources of (15.0 +/- 1.4) x 10(exp -3)micro sq K sr at Q-band and negligible levels at V-band and W-band. The Sunyaev-Zeldovich effect is shown to be a negligible "contamination" to the maps.

  9. A new model of the microwave polarized sky for CMB experiments

    NASA Astrophysics Data System (ADS)

    Hervías-Caimapo, Carlos; Bonaldi, Anna; Brown, Michael L.

    2016-10-01

    We present a new model of the microwave sky in polarization that can be used to simulate data from cosmic microwave background polarization experiments. We exploit the most recent results from the Planck satellite to provide an accurate description of the diffuse polarized foreground synchrotron and thermal dust emission. Our model can include the two mentioned foregrounds, and also a constructed template of Anomalous Microwave Emission. Several options for the frequency dependence of the foregrounds can be easily selected, to reflect our uncertainties and to test the impact of different assumptions. Small angular scale features can be added to the foreground templates to simulate high-resolution observations. We present tests of the model outputs to show the excellent agreement with Planck and Wilkinson Microwave Anisotropy Probe (WMAP) data. We determine the range within which the foreground spectral indices can be varied to be consistent with the current data. We also show forecasts for a high-sensitivity, high-resolution full-sky experiment such as the Cosmic ORigin Explorer. Our model is released as a PYTHON script that is quick and easy to use, available at http://www.jb.man.ac.uk/chervias.

  10. Dust in a compact, cold, high-velocity cloud: A new approach to removing foreground emission

    NASA Astrophysics Data System (ADS)

    Lenz, D.; Flöer, L.; Kerp, J.

    2016-02-01

    Context. Because isolated high-velocity clouds (HVCs) are found at great distances from the Galactic radiation field and because they have subsolar metallicities, there have been no detections of dust in these structures. A key problem in this search is the removal of foreground dust emission. Aims: Using the Effelsberg-Bonn H I Survey and the Planck far-infrared data, we investigate a bright, cold, and clumpy HVC. This cloud apparently undergoes an interaction with the ambient medium and thus has great potential to form dust. Methods: To remove the local foreground dust emission we used a regularised, generalised linear model and we show the advantages of this approach with respect to other methods. To estimate the dust emissivity of the HVC, we set up a simple Bayesian model with mildly informative priors to perform the line fit instead of an ordinary linear least-squares approach. Results: We find that the foreground can be modelled accurately and robustly with our approach and is limited mostly by the cosmic infrared background. Despite this improvement, we did not detect any significant dust emission from this promising HVC. The 3σ-equivalent upper limit to the dust emissivity is an order of magnitude below the typical values for the Galactic interstellar medium.

  11. SPIDER OPTIMIZATION. II. OPTICAL, MAGNETIC, AND FOREGROUND EFFECTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Dea, D. T.; Clark, C. N.; Contaldi, C. R.

    2011-09-01

    SPIDER is a balloon-borne instrument designed to map the polarization of the cosmic microwave background (CMB) with degree-scale resolution over a large fraction of the sky. SPIDER's main goal is to measure the amplitude of primordial gravitational waves through their imprint on the polarization of the CMB if the tensor-to-scalar ratio, r, is greater than 0.03. To achieve this goal, instrumental systematic errors must be controlled with unprecedented accuracy. Here, we build on previous work to use simulations of SPIDER observations to examine the impact of several systematic effects that have been characterized through testing and modeling of various instrumentmore » components. In particular, we investigate the impact of the non-ideal spectral response of the half-wave plates, coupling between focal-plane components and Earth's magnetic field, and beam mismatches and asymmetries. We also present a model of diffuse polarized foreground emission based on a three-dimensional model of the Galactic magnetic field and dust, and study the interaction of this foreground emission with our observation strategy and instrumental effects. We find that the expected level of foreground and systematic contamination is sufficiently low for SPIDER to achieve its science goals.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, R.; Ade, P. A. R.; Aghanim, N.

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this study we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra C ℓ EE and C ℓ BB over the multipole range 40 ℓ ∝ ℓ α, with exponents α EE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra.more » The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with β d = 1.59 and T d = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, C ℓ BB/C ℓ EE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no “clean” windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power D ℓ BB ≡ ℓ(ℓ+1)C ℓ BB/(2π) of 1.32 × 10 -2 μK CMB 2 over the multipole range of the primordial recombination bump (40 -2 μK CMB 2 and there is an additional uncertainty (+0.28, -0.24) × 10 -2 μK CMB 2 from the extrapolation. Finally, this level is the same magnitude as reported by BICEP2 over this ℓ range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky.« less

  13. Foreground Bias from Parametric Models of Far-IR Dust Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.

    2016-01-01

    We use simple toy models of far-IR dust emission to estimate the accuracy to which the polarization of the cosmic microwave background can be recovered using multi-frequency fits, if the parametric form chosen for the fitted dust model differs from the actual dust emission. Commonly used approximations to the far-IR dust spectrum yield CMB residuals comparable to or larger than the sensitivities expected for the next generation of CMB missions, despite fitting the combined CMB plus foreground emission to precision 0.1 percent or better. The Rayleigh-Jeans approximation to the dust spectrum biases the fitted dust spectral index by (Delta)(Beta)(sub d) = 0.2 and the inflationary B-mode amplitude by (Delta)(r) = 0.03. Fitting the dust to a modified blackbody at a single temperature biases the best-fit CMB by (Delta)(r) greater than 0.003 if the true dust spectrum contains multiple temperature components. A 13-parameter model fitting two temperature components reduces this bias by an order of magnitude if the true dust spectrum is in fact a simple superposition of emission at different temperatures, but fails at the level (Delta)(r) = 0.006 for dust whose spectral index varies with frequency. Restricting the observing frequencies to a narrow region near the foreground minimum reduces these biases for some dust spectra but can increase the bias for others. Data at THz frequencies surrounding the peak of the dust emission can mitigate these biases while providing a direct determination of the dust temperature profile.

  14. What can the occult do for you?

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Keel, W. C.

    2017-03-01

    Interstellar dust is still a dominant uncertainty in Astronomy, limiting precision in e.g., cosmological distance estimates and models of how light is re-processed within a galaxy. When a foreground galaxy serendipitously overlaps a more distant one, the latter backlights the dusty structures in the nearer foreground galaxy. Such an overlapping or occulting galaxy pair can be used to measure the distribution of dust in the closest galaxy with great accuracy. The STARSMOG program uses Hubble to map the distribution of dust in foreground galaxies in fine (<100 pc) detail. Integral Field Unit (IFU) observations will map the effective extinction curve, disentangling the role of fine-scale geometry and grain composition on the path of light through a galaxy. The overlapping galaxy technique promises to deliver a clear understanding of the dust in galaxies: geometry, a probability function of dimming as a function of galaxy mass and radius, and its dependence on wavelength.

  15. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission

    NASA Technical Reports Server (NTRS)

    Gold, B.; Bennett, C.L.; Larson, D.; Hill, R.S.; Odegard, N.; Weiland, J.L.; Hinshaw, G.; Kogut, A.; Wollack, E.; Page, L.; hide

    2008-01-01

    We present a new estimate of foreground emission in the WMAP data, using a Markov chain Monte Carlo (MCMC) method. The new technique delivers maps of each foreground component for a variety of foreground models, error estimates of the uncertainty of each foreground component, and provides an overall goodness-of-fit measurement. The resulting foreground maps are in broad agreement with those from previous techniques used both within the collaboration and by other authors. We find that for WMAP data, a simple model with power-law synchrotron, free-free, and thermal dust components fits 90% of the sky with a reduced X(sup 2) (sub v) of 1.14. However, the model does not work well inside the Galactic plane. The addition of either synchrotron steepening or a modified spinning dust model improves the fit. This component may account for up to 14% of the total flux at Ka-band (33 GHz). We find no evidence for foreground contamination of the CMB temperature map in the 85% of the sky used for cosmological analysis.

  16. Attenuation Modified by DIG and Dust as Seen in M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomičić, Neven; Kreckel, Kathryn; Schinnerer, Eva

    The spatial distribution of dust in galaxies affects the global attenuation, and hence inferred properties, of galaxies. We trace the spatial distribution of dust in five approximately kiloparsec fields of M31 by comparing optical attenuation with the total dust mass distribution. We measure the attenuation from the Balmer decrement using Integral Field Spectroscopy and the dust mass from Herschel far-IR observations. Our results show that M31's dust attenuation closely follows a foreground screen model, contrary to what was previously found in other nearby galaxies. By smoothing the M31 data, we find that spatial resolution is not the cause for thismore » difference. Based on the emission-line ratios and two simple models, we conclude that previous models of dust/gas geometry need to include a weakly or non-attenuated diffuse ionized gas (DIG) component. Due to the variation of dust and DIG scale heights with galactic radius, we conclude that different locations in galaxies will have different vertical distributions of gas and dust and therefore different measured attenuation. The difference between our result in M31 with that found in other nearby galaxies can be explained by our fields in M31 lying at larger galactic radii than the previous studies that focused on the centers of galaxies.« less

  17. Attenuation Modified by DIG and Dust as Seen in M31

    NASA Astrophysics Data System (ADS)

    Tomičić, Neven; Kreckel, Kathryn; Groves, Brent; Schinnerer, Eva; Sandstrom, Karin; Kapala, Maria; Blanc, Guillermo A.; Leroy, Adam

    2017-08-01

    The spatial distribution of dust in galaxies affects the global attenuation, and hence inferred properties, of galaxies. We trace the spatial distribution of dust in five approximately kiloparsec fields of M31 by comparing optical attenuation with the total dust mass distribution. We measure the attenuation from the Balmer decrement using Integral Field Spectroscopy and the dust mass from Herschel far-IR observations. Our results show that M31's dust attenuation closely follows a foreground screen model, contrary to what was previously found in other nearby galaxies. By smoothing the M31 data, we find that spatial resolution is not the cause for this difference. Based on the emission-line ratios and two simple models, we conclude that previous models of dust/gas geometry need to include a weakly or non-attenuated diffuse ionized gas (DIG) component. Due to the variation of dust and DIG scale heights with galactic radius, we conclude that different locations in galaxies will have different vertical distributions of gas and dust and therefore different measured attenuation. The difference between our result in M31 with that found in other nearby galaxies can be explained by our fields in M31 lying at larger galactic radii than the previous studies that focused on the centers of galaxies.

  18. Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vidal, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in Iν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H II regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the "Fermi bubble/microwave haze", making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. Finally, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.

  19. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-09-20

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the “Fermi bubble/microwave haze”, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. In conclusion, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.« less

  20. Planck 2015 results: XXV. Diffuse low-frequency Galactic foregrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    In this paper, we discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent withmore » a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in I ν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5–20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is associated with distinct large-scale loops and spurs, and we re-discuss their structure. We argue that nearly all the emission at 40deg > l > -90deg is part of the Loop I structure, and show that the emission extends much further in to the southern Galactic hemisphere than previously recognised, giving Loop I an ovoid rather than circular outline. However, it does not continue as far as the “Fermi bubble/microwave haze”, making it less probable that these are part of the same structure. We identify a number of new faint features in the polarized sky, including a dearth of polarized synchrotron emission directly correlated with a narrow, roughly 20deg long filament seen in Hα at high Galactic latitude. In conclusion, we look for evidence of polarized AME, however many AME regions are significantly contaminated by polarized synchrotron emission, and we find a 2σ upper limit of 1.6% in the Perseus region.« less

  1. Planck intermediate results: XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-02-09

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this study we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra C ℓ EE and C ℓ BB over the multipole range 40 ℓ ∝ ℓ α, with exponents α EE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra.more » The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with β d = 1.59 and T d = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, C ℓ BB/C ℓ EE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no “clean” windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power D ℓ BB ≡ ℓ(ℓ+1)C ℓ BB/(2π) of 1.32 × 10 -2 μK CMB 2 over the multipole range of the primordial recombination bump (40 -2 μK CMB 2 and there is an additional uncertainty (+0.28, -0.24) × 10 -2 μK CMB 2 from the extrapolation. Finally, this level is the same magnitude as reported by BICEP2 over this ℓ range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky.« less

  2. The albedo and scattering phase function of interstellar dust and the diffuse background at far-ultraviolet wavelengths.

    PubMed

    Hurwitz, M; Bowyer, S; Martin, C

    1991-05-01

    We have determined the scattering parameters of dust in the interstellar medium at far-ultraviolet (FUV) wavelengths (1415-1835 angstroms). Our results are based on spectra of the diffuse background taken with the Berkeley UVX spectrometer. The unique design of this instrument makes possible for the first time accurate determination of the background both at high Galactic latitude, where the signal is intrinsically faint, and at low Galactic latitude, where direct starlight has heretofore compromised measurements of the diffuse emission. Because the data are spectroscopic, the continuum can be distinguished from the atomic and molecular transition features which also contribute to the background. We find the continuum intensity to be well correlated with the Galactic neutral hydrogen column density until saturation at about 1200 photons cm-2 s-1 sr-1 angstrom-1 is reached where tau FUV approximately 1. Our measurement of the intensity where tau FUV > or = 1 is crucial to the determination of the scattering properties of the grains. We interpret the data with a detailed radiative transfer model and conclude that the FUV albedo of the grains is low (<25%) and that the grains scatter fairly isotropically. We evaluate models of dust composition and grain-size distribution and compare their predictions with these new results. We present evidence that, as the Galactic neutral hydrogen column density approaches zero, the FUV continuum background arises primarily from scattering by dust, which implies that dust may be present in virtually all view directions. A non-dust-scattering continuum component has also been identified, with an intensity (external to the foreground Galactic dust) of about 115 photons cm-2 s-1 angstrom-1. With about half this intensity accounted for by two-photon emission from Galactic ionized gas, we identify roughly 50 photons cm-2 s-1 sr-1 angstrom-1 as a true extragalactic component.

  3. Science Results From The ARCADE Open-Aperture Cryogenic Balloon Payload

    NASA Technical Reports Server (NTRS)

    Kogut, Alan J.

    2010-01-01

    The Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission (ARCADE) is a balloon-borne instrument to measure the frequency spectrum of the cosmic microwave background and diffuse Galactic foregrounds at centimeter wavelengths. ARCADE greatly reduces measurement uncertainties compared to previous balloon-borne or ground-based instrument using a double-nulled design that features fully cryogenic optics with no windows between the atmosphere and the 2.7 K instrument. A four-hour flight in 2006 achieved sensitivity comparable to the COBE/FIRAS satellite measurement while providing new insights for emission ranging from spinning dust in the interstellar medium to an unexpectedly bright extragalactic radio background. I will discuss scientific results from the ARCADE program and implications of the ARCADE cold optics for millimeter and sub-mm astronomy.

  4. ASSESSMENT OF MODELS OF GALACTIC THERMAL DUST EMISSION USING COBE /FIRAS AND COBE /DIRBE OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odegard, N.; Kogut, A.; Miller, N. J.

    2016-09-01

    Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for cosmic microwave background (CMB) measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE /FIRAS and COBE /DIRBE observations from 3 mm to 100 μ m and compare the quality of the fits. We consider the two-level systems (TLS) model because it provides a physically motivated explanation formore » the observed long wavelength flattening of the dust spectrum and the anti-correlation between emissivity index and dust temperature. We consider the model of Finkbeiner et al. because it has been widely used for CMB studies, and the generalized version of this model that was recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the other models. The Meisner and Finkbeiner model and the TLS model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have a sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.« less

  5. Assessment of Models of Galactic Thermal Dust Emission Using COBE/FIRAS and COBE/DIRBE Observations

    NASA Technical Reports Server (NTRS)

    Odegard, N.; Kogut, A.; Chuss, D. T.; Miller, N. J.

    2016-01-01

    Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for cosmic microwave background (CMB) measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE/FIRAS and COBE/DIRBE observations from 3 mm to 100m and compare the quality of the fits. We consider the two-level systems (TLS) model because it provides a physically motivated explanation for the observed long wavelength flattening of the dust spectrum and the anti-correlation between emissivity index and dust temperature. We consider the model of Finkbeiner et al. because it has been widely used for CMB studies, and the generalized version of this model that was recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two-graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the othermodels. The Meisner and Finkbeiner model and the TLS model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have a sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Mertsch, Philipp; Sarkar, Subir, E-mail: liuhao@nbi.dk

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation.

  7. Neutral Hydrogen Structures Trace Dust Polarization Angle: Implications for Cosmic Microwave Background Foregrounds.

    PubMed

    Clark, S E; Hill, J Colin; Peek, J E G; Putman, M E; Babler, B L

    2015-12-11

    Using high-resolution data from the Galactic Arecibo L-Band Feed Array HI (GALFA-Hi) survey, we show that linear structure in Galactic neutral hydrogen (Hi) correlates with the magnetic field orientation implied by Planck 353 GHz polarized dust emission. The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. At high Galactic latitudes, where the Planck data are noise dominated, the Hi data provide an independent constraint on the Galactic magnetic field orientation, and hence the local dust polarization angle. We detect strong cross-correlations between template maps constructed from estimates of dust intensity combined with either Hi-derived angles, starlight polarization angles, or Planck 353 GHz angles. The Hi data thus provide a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination.

  8. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power 𝒟ℓBB ≡ ℓ(ℓ+1)CℓBB/(2π) of 1.32 × 10-2 μKCMB2 over the multipole range of the primordial recombination bump (40 <ℓ< 120); the statistical uncertainty is ± 0.29 × 10-2 μKCMB2 and there is an additional uncertainty (+0.28, -0.24) × 10-2 μKCMB2 from the extrapolation. This level is the same magnitude as reported by BICEP2 over this ℓ range, which highlights the need for assessment of the polarized dust signal even in the cleanest windows of the sky.

  9. Interpreting the 10 micron Astronomical Silicate Feature

    NASA Astrophysics Data System (ADS)

    Bowey, Janet E.

    1998-11-01

    10micron spectra of silicate dust in the diffuse medium towards Cyg OB2 no. 12 and towards field and embedded objects in the Taurus Molecular Cloud (TMC) were obtained with CGS3 at the United Kingdom Infrared Telescope (UKIRT). Cold molecular-cloud silicates are sampled in quiescent lines of sight towards the field stars Taurus-Elias 16 and Elias 13, whilst observations of the embedded young stellar objects HL Tau, Taurus-Elias 7 (Haro6-10) and Elias 18 also include emission from heated dust. To obtain the foreground silicate absorption profiles, featureless continua are estimated using smoothed astronomical and laboratory silicate emissivities. TMC field stars and Cyg OB2 no. 12 are modelled as photospheres reddened by foreground continuum and silicate extinction. Dust emission in the non-photospheric continua of HL Tau and Elias 7 (Haro6-10) is distinguished from foreground silicate absorption using a 10micron disk model, based on the IR-submm model of T Tauri stars by Adams, Lada & Shu (1988), with terms added to represent the foreground continuum and silicate extinction. The absorption profiles of HL Tau and Elias 7 are similar to that of the field star Elias 16. Fitted temperature indices of 0.43 (HL Tau) and 0.33 (Elias 7) agree with Boss' (1996) theoretical models of the 200-300K region, but are lower than those of IR-submm disks (0.5-0.61; Mannings & Emerson 1994); the modelled 10micron emission of HL Tau is optically thin, that of Elias 7 is optically thick. A preliminary arcsecond-resolution determination of the 10micron emissivity near θ1 Ori D in the Trapezium region of Orion and a range of emission temperatures (225-310K) are derived from observations by T. L. Hayward; this Ney-Allen emissivity is 0.6micron narrower than the Trapezium emissivity obtained by Forrest et al. (1975) with a large aperture. Published interstellar grain models, elemental abundances and laboratory studies of Solar System silicates (IDPs, GEMS and meteorites), the 10micron spectra of comets, interstellar silicates, synthetic silicates and terrestrial minerals, and the effects of laboratory processing on the 10micron spectra of crystalline and amorphous silicates are reviewed to provide insight into the mineralogy of interstellar silicate dust. The wavelengths of the peaks of the 10micron silicate profiles decrease between circumstellar, diffuse medium and molecular-cloud environments, indicating (after Gürtler & Henning 1986) that the amorphous pyroxene content of initially olivine-rich interstellar dust increases with time. This is accompanied by an increase in the FWHM of the features which indicates an increase in grain size and/or an increasing fraction of chemically-varied crystalline pyroxene. Fine structure in the Cyg OB2 no. 12, Elias 16, Elias 7, HL Tau profiles indicate that hydrated layer silicates similar to terrestrial serpentines, clays and talc may be a ubiquitous component of interstellar dust. At 10microns the narrow bands of mixed crystalline pyroxenes blend, making their identification difficult. Since no fine structure is observed near 11.2microns, the fraction of crystalline olivine is small. In geology direct olivine-plus-SiO2 to pyroxene reactions occur only at high pressure within the terrestrial mantle. Therefore the fraction of amorphous pyroxene is probably increased by the hydration of Mg-rich olivine to form a serpentine-like hydrated silicate, which is subsequently annealed to form a mixture of amorphous pyroxene and olivine. Terrestrial and laboratory olivine samples are readily converted to serpentine in the presence of water, and (after extended annealing) the first crystalline band to appear is the 11.2micron olivine feature frequently observed in cometary spectra.

  10. COBE'S INFRARED VIEW OF THE UNIVERSE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These three pictures are maps of the full sky as seen in infrared light. The top two are composite images taken in wavelengths of 60, 100, and 240 micrometers. The 60-micrometer brightness is shown in blue, the 100- micrometer brightness in green, and the 240-micrometer brightness in red. The bottom image shows just the 240-micrometer brightness after foreground light from the solar system and Galaxy has been removed. The images were compiled from data taken between December 1989 and September 1990 by the Diffuse Infrared Background Experiment (DIRBE) on board NASA's Cosmic Background Explorer (COBE). They illustrate the steps scientists used to find the cosmic infrared background, which is a radiative fossil containing cumulative starlight which now appears in the infrared due to the cosmic redshift and by absorption and re-emission by dust in the universe since the Big Bang. The top picture represents the brightness of the full sky as seen in infrared light. The bright yellow-orange line across the center of the image arises from interstellar dust in the plane of our Milky Way Galaxy, with the center of the Galaxy at the center of the image. The red color above and below this line shows additional wispy clouds of interstellar dust. The blue S-shaped color arises from interplanetary dust in the solar system. The middle picture represents a view of the sky after the foreground glow of the solar system dust has been extracted. This image is dominated by emission from interstellar dust in the Milky Way Galaxy. The two bright objects in the center of the lower right quadrant are nearby galaxies, the Large and Small Magellanic Clouds. After the infrared light from our solar system and galaxy has been removed, what remains is a uniform cosmic infrared background. The line across the center is an artifact from removal of galactic light. The DIRBE team reports detection of this cosmic background light also at 140 micrometers, and has set limits to its brightness at eight other infrared wavelengths from 1.25 to 100 micrometers. Credits: Michael Hauser (Space Telescope Science Institute), the COBE/DIRBE Science Team, and NASA's Office of Space Science

  11. The State-of-Play of Anomalous Microwave Emission (AME) research

    NASA Astrophysics Data System (ADS)

    Dickinson, Clive; Ali-Haïmoud, Y.; Barr, A.; Battistelli, E. S.; Bell, A.; Bernstein, L.; Casassus, S.; Cleary, K.; Draine, B. T.; Génova-Santos, R.; Harper, S. E.; Hensley, B.; Hill-Valler, J.; Hoang, Thiem; Israel, F. P.; Jew, L.; Lazarian, A.; Leahy, J. P.; Leech, J.; López-Caraballo, C. H.; McDonald, I.; Murphy, E. J.; Onaka, T.; Paladini, R.; Peel, M. W.; Perrott, Y.; Poidevin, F.; Readhead, A. C. S.; Rubiño-Martín, J.-A.; Taylor, A. C.; Tibbs, C. T.; Todorović, M.; Vidal, Matias

    2018-02-01

    Anomalous Microwave Emission (AME) is a component of diffuse Galactic radiation observed at frequencies in the range ≈ 10-60 GHz. AME was first detected in 1996 and recognised as an additional component of emission in 1997. Since then, AME has been observed by a range of experiments and in a variety of environments. AME is spatially correlated with far-IR thermal dust emission but cannot be explained by synchrotron or free-free emission mechanisms, and is far in excess of the emission contributed by thermal dust emission with the power-law opacity consistent with the observed emission at sub-mm wavelengths. Polarization observations have shown that AME is very weakly polarized ( ≲ 1 %). The most natural explanation for AME is rotational emission from ultra-small dust grains ("spinning dust"), first postulated in 1957. Magnetic dipole radiation from thermal fluctuations in the magnetization of magnetic grain materials may also be contributing to the AME, particularly at higher frequencies ( ≳ 50 GHz). AME is also an important foreground for Cosmic Microwave Background analyses. This paper presents a review and the current state-of-play in AME research, which was discussed in an AME workshop held at ESTEC, The Netherlands, June 2016.

  12. The Implications of Interstellar Dust for the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Schmelz, Joan T.; Verschuur, Gerrit

    2018-01-01

    A detailed comparison of the full range of PLANCK and WMAP data for small (2 deg by 2 deg) areas of sky and the Cosmic Microwave Background (CMB) ILC maps reveals that the structure of foreground dust may be more complex than previously thought. If 857 and 353 GHz emission is dominated by galactic dust at a distance < few hundred light years, then it should not resemble the cosmological ILC structure originating at a distance ~13 billion light years. In some areas of sky, however, we find strong morphological correlations, forcing us to consider the possibility that the foreground subtraction is not complete. Our data also show that there is no single answer for the question, “To what extent does dust contaminate the cosmologically important 143 GHz data?” In some directions, the contamination appears to be quite strong, but in others, it is less of an issue. This complexity needs to be taken in account in order to derive an accurate foreground mask in the quest to understand the CMB small-scale structure. We hope that a continued investigation of these data will lead to a definitive answer to the question above and, possibly, to new scientific insights on interstellar matter, the CMB, or both.

  13. Measuring the Largest Angular Scale CMB B-mode Polarization with Galactic Foregrounds on a Cut Sky

    NASA Astrophysics Data System (ADS)

    Watts, Duncan J.; Larson, David; Marriage, Tobias A.; Abitbol, Maximilian H.; Appel, John W.; Bennett, Charles L.; Chuss, David T.; Eimer, Joseph R.; Essinger-Hileman, Thomas; Miller, Nathan J.; Rostem, Karwan; Wollack, Edward J.

    2015-12-01

    We consider the effectiveness of foreground cleaning in the recovery of Cosmic Microwave Background (CMB) polarization sourced by gravitational waves for tensor-to-scalar ratios in the range 0\\lt r\\lt 0.1. Using the planned survey area, frequency bands, and sensitivity of the Cosmology Large Angular Scale Surveyor (CLASS), we simulate maps of Stokes Q and U parameters at 40, 90, 150, and 220 GHz, including realistic models of the CMB, diffuse Galactic thermal dust and synchrotron foregrounds, and Gaussian white noise. We use linear combinations (LCs) of the simulated multifrequency data to obtain maximum likelihood estimates of r, the relative scalar amplitude s, and LC coefficients. We find that for 10,000 simulations of a CLASS-like experiment using only measurements of the reionization peak ({\\ell }≤slant 23), there is a 95% C.L. upper limit of r\\lt 0.017 in the case of no primordial gravitational waves. For simulations with r=0.01, we recover at 68% C.L. r={0.012}-0.006+0.011. The reionization peak corresponds to a fraction of the multipole moments probed by CLASS, and simulations including 30≤slant {\\ell }≤slant 100 further improve our upper limits to r\\lt 0.008 at 95% C.L. (r={0.010}-0.004+0.004 for primordial gravitational waves with r = 0.01). In addition to decreasing the current upper bound on r by an order of magnitude, these foreground-cleaned low multipole data will achieve a cosmic variance limited measurement of the E-mode polarization’s reionization peak.

  14. A New 3D Map of Milky Way Dust

    NASA Astrophysics Data System (ADS)

    Green, Gregory Maurice; Schlafly, Edward; Finkbeiner, Douglas

    2018-01-01

    Interstellar dust is an important foreground for observations across a wide range of wavelengths. Dust grains scatter and absorb UV, optical and near-infrared light. These processes heat dust grains, causing them to radiate in the far-infrared. As a tracer of mass in the interstellar medium, dust correlates strongly with diffuse gamma-ray emission generated by cosmic-ray pion production. Thus, while dust makes up just 1% of the mass of the interstellar medium, it plays an outsize role in our efforts to address questions as diverse as the chemical evolution of the Milky Way galaxy and the existence of primordial B-mode polarizations in the CMB.We present a new 3D map of Milky Way dust, covering three-quarters of the sky (δ > -30°). The map is based on high-quality photometry of more than 800 million stars observed by Pan-STARRS 1, with matched photometry from 2MASS for approximately 200 million stars. We infer the distribution of dust vs. distance along sightlines with a typical angular scale of 6'. Out of the midplane of the Galaxy, our map agrees well with 2D maps based on far-infrared dust emission. After accounting for a 15% difference in scale, we find a mean scatter of approximately 10% between our map and the Planck 2D dust map, out to a depth of 0.8 mag in E(r-z). Our map can be downloaded at http://argonaut.skymaps.info.In order to extend our map, we have surveyed the southern Galactic plane with DECam, which is mounted on the 4m Blanco telescope on Cerro Tololo. The resulting survey, the Dark Energy Camera Plane Survey (DECaPS), is now publicly available. See Edward Schlafly's poster for more information on DECaPS.

  15. A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.

  16. Magnetic Fields in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Clark, Susan

    2017-01-01

    The Milky Way is magnetized. Invisible magnetic fields thread the Galaxy on all scales and play a vital but still poorly understood role in regulating flows of gas in the interstellar medium and the formation of stars. I will present highlights from my thesis work on magnetic fields in the diffuse interstellar gas and in accretion disks. At high Galactic latitudes, diffuse neutral hydrogen is organized into an intricate network of slender linear features. I will show that these neutral hydrogen “fibers” are extremely well aligned with the ambient magnetic field as traced by both starlight polarization (Clark et al. 2014) and Planck 353 GHz polarized dust emission (Clark et al. 2015). The structure of the neutral interstellar medium is more tightly coupled to the magnetic field than previously known. Because the orientation of neutral hydrogen is an independent predictor of the local dust polarization angle, our work provides a new tool in the search for inflationary gravitational wave B-mode polarization in the cosmic microwave background, which is currently limited by dust foreground contamination. Magnetic fields also drive accretion in astrophysical disks via the magnetorotational instability (MRI). I analytically derive the behavior of this instability in the weakly nonlinear regime and show that the saturated state of the instability depends on the geometry of the background magnetic field. The analytical model describes the behavior of the MRI in a Taylor-Couette flow, a set-up used by experimentalists in the ongoing quest to observe MRI in the laboratory (Clark & Oishi 2016a, 2016b).

  17. EXTINCTION AND DUST GEOMETRY IN M83 H II REGIONS: AN HUBBLE SPACE TELESCOPE/WFC3 STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guilin; Calzetti, Daniela; Hong, Sungryong

    We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H II regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with A{sub V} values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H II regions. By comparing thesemore » observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground ''dust screen'' assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100-200 pc) scales, the extinction becomes consistent with a ''dust screen'', suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.« less

  18. The Complexities of Interstellar Dust and the Implications for the Small-scale Structure in the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Verschuur, G. L.; Schmelz, J. T.

    2018-02-01

    A detailed comparison of the full range of PLANCK and Wilkinson Microwave Anisotropy Probe data for small (2° × 2°) areas of sky and the Cosmic Microwave Background Internal Linear Combination (ILC) maps reveals that the structure of foreground dust may be more complex than previously thought. If 857 and 353 GHz emission is dominated by galactic dust at a distance < few hundred light years, then it should not resemble the cosmological ILC structure originating at a distance ∼13 billion light years. In some areas of sky, however, we find strong morphological correlations, forcing us to consider the possibility that the foreground subtraction is not complete. Our data also show that there is no single answer for the question: “to what extent does dust contaminate the cosmologically important 143 GHz data?” In some directions, the contamination appears to be quite strong, but in others, it is less of an issue. This complexity needs to be taken in account in order to derive an accurate foreground mask in the quest to understand the Cosmic Microwave Background small-scale structure. We hope that a continued investigation of these data will lead to a definitive answer to the question above and, possibly, to new scientific insights on interstellar matter, the Cosmic Microwave Background, or both.

  19. Herschel CHESS discovery of the fossil cloud that gave birth to the Trapezium and Orion KL

    NASA Astrophysics Data System (ADS)

    López-Sepulcre, A.; Kama, M.; Ceccarelli, C.; Dominik, C.; Caux, E.; Fuente, A.; Alonso-Albi, T.

    2013-01-01

    Context. The Orion A molecular complex is a nearby (420 pc), very well studied stellar nursery that is believed to contain examples of triggered star formation. Aims: As part of the Herschel guaranteed time key programme CHESS, we present the discovery of a diffuse gas component in the foreground of the intermediate-mass protostar OMC-2 FIR 4, located in the Orion A region. Methods: Making use of the full HIFI spectrum of OMC-2 FIR 4 obtained in CHESS, we detected several ground-state lines from OH+, H2O+, HF, and CH+, all of them seen in absorption against the dust continuum emission of the protostar's envelope. We derived column densities for each species, as well as an upper limit to the column density of the undetected H3O+. In order to model and characterise the foreground cloud, we used the Meudon PDR code to run a homogeneous grid of models that spans a reasonable range of densities, visual extinctions, cosmic ray ionisation rates and far-ultraviolet (FUV) radiation fields, and studied the implications of adopting the Orion Nebula extinction properties instead of the standard interstellar medium ones. Results: The detected absorption lines peak at a velocity of 9 km s-1, which is blue-shifted by 2 km s-1 with respect to the systemic velocity of OMC-2 FIR 4 (VLSR = 11.4 km s-1). The results of our modelling indicate that the foreground cloud is composed of predominantly neutral diffuse gas (nH = 100 cm-3) and is heavily irradiated by an external source of FUV that most likely arises from the nearby Trapezium OB association. The cloud is 6 pc thick and bears many similarities with the so-called C+ interface between Orion-KL and the Trapezium cluster, 2 pc south of OMC-2 FIR 4. Conclusions: We conclude that the foreground cloud we detected is an extension of the C+ interface seen in the direction of Orion KL, and interpret it to be the remains of the parental cloud of OMC-1, which extends from OMC-1 up to OMC-2.

  20. Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering.

    PubMed

    Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen

    2014-04-01

    In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.

  1. Planck intermediate results: XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2016-02-09

    The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. In this paper, we present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF),more » we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2° (corresponding to 3.5 pc in length for a typical distance of 100 pc). Thesefilaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C ℓ TE/C ℓ EE ratio, reported in the power spectra analysis of the Planck353 GHz polarization maps. Finally, future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.« less

  2. A likely detection of a local interplanetary dust cloud passing near the Earth in the AKARI mid-infrared all-sky map

    NASA Astrophysics Data System (ADS)

    Ishihara, D.; Kondo, T.; Kaneda, H.; Suzuki, T.; Nakamichi, K.; Takaba, S.; Kobayashi, H.; Masuda, S.; Ootsubo, T.; Pyo, J.; Onaka, T.

    2017-07-01

    Context. We are creating the AKARI mid-infrared all-sky diffuse maps. Through a foreground removal of the zodiacal emission, we serendipitously detected a bright residual component whose angular size is about 50° × 20° at a wavelength of 9 μm. Aims: We investigate the origin and the physical properties of the residual component. Methods: We measured the surface brightness of the residual component in the AKARI mid-infrared all-sky maps. Results: The residual component was significantly detected only in 2007 January, even though the same region was observed in 2006 July and 2007 July, which shows that it is not due to the Galactic emission. We suggest that this may be a small cloud passing near the Earth. By comparing the observed intensity ratio of I9 μm/I18 μm with the expected intensity ratio assuming thermal equilibrium of dust grains at 1 AU for various dust compositions and sizes, we find that dust grains in the moving cloud are likely to be much smaller than typical grains that produce the bulk of the zodiacal light. Conclusions: Considering the observed date and position, it is likely that it originates in the solar coronal mass ejection (CME) which took place on 2007 January 25.

  3. PIPER and Polarized Galactic Foregrounds

    NASA Technical Reports Server (NTRS)

    Chuss, David

    2009-01-01

    In addition to probing inflationary cosmology, PIPER will measure the polarized dust emission from the Galaxy. PIPER will be capable of full (I,0,U,V) measurement over four frequency bands ' These measurements will provide insight into the physics of dust grains and a probe of the Galactic magnetic field on large and intermediate scales.

  4. A 3D model of polarized dust emission in the Milky Way

    NASA Astrophysics Data System (ADS)

    Martínez-Solaeche, Ginés; Karakci, Ata; Delabrouille, Jacques

    2018-05-01

    We present a three-dimensional model of polarized galactic dust emission that takes into account the variation of the dust density, spectral index and temperature along the line of sight, and contains randomly generated small-scale polarization fluctuations. The model is constrained to match observed dust emission on large scales, and match on smaller scales extrapolations of observed intensity and polarization power spectra. This model can be used to investigate the impact of plausible complexity of the polarized dust foreground emission on the analysis and interpretation of future cosmic microwave background polarization observations.

  5. PILOT: optical performance and end-to-end characterisation

    NASA Astrophysics Data System (ADS)

    Longval, Y.; Misawa, R.; Ade, P.; André, Y.; de Bernardis, P.; Bousquet, F.; Bouzit, M.; Buttice, V.; Charra, M.; Crane, B.; Dubois, J. P.; Engel, C.; Griffin, M.; Hargrave, P.; Leriche, B.; Maestre, S.; Marty, C.; Marty, W.; Masi, S.; Mot, B.; Narbonne, J.; Pajot, F.; Pisano, G.; Ponthieu, N.; Ristorcelli, I.; Rodriguez, L.; Roudil, G.; Simonella, O.; Salatino, M.; Savini, G.; Tucker, C.; Bernard, J.-P.

    2017-11-01

    PILOT (Polarized Instrument for the Long-wavelength Observations of the Tenuous ISM), is a balloon-borne astronomy experiment dedicated to study the polarization of dust emission from the diffuse ISM in our Galaxy [1]. The observations of PILOT have two major scientific objectives. Firstly, they will allow us to constrain the large-scale geometry of the magnetic field in our Galaxy and to study in details the alignment properties of dust grains with respect to the magnetic field. In this domain, the measurements of PILOT will complement those of the Planck satellite at longer wavelengths. In particular, they will bring information at a better angular resolution, which is critical in crowded regions such as the Galactic plane. They will allow us to better understand how the magnetic field is shaping the ISM material on large scale in molecular clouds, and the role it plays in the gravitational collapse leading to star formation. Secondly, the PILOT observations will allow us to measure for the first time the polarized dust emission towards the most diffuse regions of the sky, where the measurements are the most easily interpreted in terms of the physics of dust. In this particular domain, PILOT will play a role for future CMB missions similar to that played by the Archeops experiment for Planck. The results of PILOT will allow us to gain knowledge about the magnetic properties of dust grains and about the structure of the magnetic field in the diffuse ISM that is necessary to a precise foreground subtraction in future polarized CMB measurements. The PILOT measurements, combined with those of Planck at longer wavelengths, will therefore allow us to further constrain the dust models. The outcome of such studies will likely impact the instrumental and technical choices for the future space missions dedicated to CMB polarization. The PILOT instrument will allow observations in two photometric channels at wavelengths 240 μm and 550 μm, with an angular resolution of a few arcminutes. We will make use of large format bolometer arrays, developed for the PACS instrument on board the Herschel satellite. With 1024 detectors per photometric channel and photometric band optimized for the measurement of dust emission, PILOT is likely to become the most sensitive experiment for this type of measurements. The PILOT experiment will take advantage of the large gain in sensitivity allowed by the use of large format, filled bolometer arrays at frequencies more favorable to the detection of dust emission. This paper presents the optical design, optical characterization and its performance. We begin with a presentation of the instrument and the optical system and then we summarise the main optical tests performed. In section III, we present preliminary end-to-end test results.

  6. STarlight Absorption Reduction through a Survey of Multiple Occulting Galaxies (STARSMOG)

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Dust absorption remains the poorest constrained parameter in both Cosmological distances and multi-wavelength studies of galaxy populations. A galaxy's dust distribution can be measured to great accuracy in the case of an overlapping pair of galaxies, i.e., when a foreground spiral galaxy accidentally overlaps a more distant, preferably elliptical galaxy. We have identified over 300 bona-fide overlapping pairs --well separated in redshift but close on the sky-- in the GAMA spectroscopic survey, taking advantage of its high completeness (98%) on small scales. We propose to map the fine-scale (~50pc) dust structure in these occulting galaxies, using HST/WFC3 SNAP observations. The resulting dust maps will (1) serve as an extinction probability for supernova lightcurve fits in similar type host galaxies, (2) strongly constrain the role of ISM structure in Spectral Energy Distribution models of spiral galaxies, and (3) map the level of ISM turbulence (through the spatial power-spectrum). We ask for SNAP observations with a parent list of 355 targets to ensure a complete and comprehensive coverage of each foreground galaxy mass, radius and inclination. The resulting extinction maps will serve as a library for SNIa measurements, galaxy SED modelling and ISM turbulence measurements.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. In this paper, we present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF),more » we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2° (corresponding to 3.5 pc in length for a typical distance of 100 pc). Thesefilaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the C ℓ TE/C ℓ EE ratio, reported in the power spectra analysis of the Planck353 GHz polarization maps. Finally, future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.« less

  8. Constraining Polarized Foregrounds for EoR Experiments. II. Polarization Leakage Simulations in the Avoidance Scheme

    NASA Astrophysics Data System (ADS)

    Nunhokee, C. D.; Bernardi, G.; Kohn, S. A.; Aguirre, J. E.; Thyagarajan, N.; Dillon, J. S.; Foster, G.; Grobler, T. L.; Martinot, J. Z. E.; Parsons, A. R.

    2017-10-01

    A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Array to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc-1 can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.

  9. Dust storm, northern Mexico

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This large dust storm along the left side of the photo, covers a large portion of the state of Coahuila, Mexico (27.5N, 102.0E). The look angle of this oblique photo is from the south to the north. In the foreground is the Sierra Madre Oriental in the states Coahuila and Nuevo Leon with the Rio Grande River, Amistad Reservoir and Texas in the background.

  10. Isotropy-violation diagnostics for B-mode polarization foregrounds to the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Rotti, Aditya; Huffenberger, Kevin

    2016-09-01

    Isotropy-violation statistics can highlight polarized galactic foregrounds that contaminate primordial B-modes in the Cosmic Microwave Background (CMB). We propose a particular isotropy-violation test and apply it to polarized Planck 353 GHz data, constructing a map that indicates B-mode foreground dust power over the sky. We build our main isotropy test in harmonic space via the bipolar spherical harmonic basis, and our method helps us to identify the least-contaminated directions. By this measure, there are regions of low foreground in and around the BICEP field, near the South Galactic Pole, and in the Northern Galactic Hemisphere. There is also a possible foreground feature in the BICEP field. We compare our results to those based on the local power spectrum, which is computed on discs using a version of the method of Planck Int. XXX (2016). The discs method is closely related to our isotropy-violation diagnostic. We pay special care to the treatment of noise, including chance correlations with the foregrounds. Currently we use our isotropy tool to assess the cleanest portions of the sky, but in the future such methods will allow isotropy-based null tests for foreground contamination in maps purported to measure primordial B-modes, particularly in cases of limited frequency coverage.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotti, Aditya; Huffenberger, Kevin, E-mail: adityarotti@gmail.com, E-mail: khuffenberger@fsu.edu

    Isotropy-violation statistics can highlight polarized galactic foregrounds that contaminate primordial B -modes in the Cosmic Microwave Background (CMB). We propose a particular isotropy-violation test and apply it to polarized Planck 353 GHz data, constructing a map that indicates B -mode foreground dust power over the sky. We build our main isotropy test in harmonic space via the bipolar spherical harmonic basis, and our method helps us to identify the least-contaminated directions. By this measure, there are regions of low foreground in and around the BICEP field, near the South Galactic Pole, and in the Northern Galactic Hemisphere. There is alsomore » a possible foreground feature in the BICEP field. We compare our results to those based on the local power spectrum, which is computed on discs using a version of the method of Planck Int. XXX (2016). The discs method is closely related to our isotropy-violation diagnostic. We pay special care to the treatment of noise, including chance correlations with the foregrounds. Currently we use our isotropy tool to assess the cleanest portions of the sky, but in the future such methods will allow isotropy-based null tests for foreground contamination in maps purported to measure primordial B -modes, particularly in cases of limited frequency coverage.« less

  12. Constraining Polarized Foregrounds for EoR Experiments. II. Polarization Leakage Simulations in the Avoidance Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunhokee, C. D.; Bernardi, G.; Foster, G.

    A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Arraymore » to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc{sup −1} can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.« less

  13. Earth observations during STS-68

    NASA Image and Video Library

    1998-04-14

    STS068-L158-000C (30 September-11 October 1994) --- This south-looking view shows most of the west end of snow-dusted ranges on the Tibetan Plateau. A major fault line separates the plateau from the low-lying Takla Makan Desert (foreground). The darker areas along two rivers (foreground) make up one of the largest agricultural regions in the Takla Makan Desert. The hazy atmosphere over India (top) contrasts with the thinner, clear air over the plateau. The Vale of Kashmir in northern India is the prominent valley within the first wall of the Himalayan Mountains.

  14. Statistical simulations of the dust foreground to cosmic microwave background polarization

    NASA Astrophysics Data System (ADS)

    Vansyngel, F.; Boulanger, F.; Ghosh, T.; Wandelt, B.; Aumont, J.; Bracco, A.; Levrier, F.; Martin, P. G.; Montier, L.

    2017-07-01

    The characterization of the dust polarization foreground to the cosmic microwave background (CMB) is a necessary step toward the detection of the B-mode signal associated with primordial gravitational waves. We present a method to simulate maps of polarized dust emission on the sphere that is similar to the approach used for CMB anisotropies. This method builds on the understanding of Galactic polarization stemming from the analysis of Planck data. It relates the dust polarization sky to the structure of the Galactic magnetic field and its coupling with interstellar matter and turbulence. The Galactic magnetic field is modeled as a superposition of a mean uniform field and a Gaussian random (turbulent) component with a power-law power spectrum of exponent αM. The integration along the line of sight carried out to compute Stokes maps is approximated by a sum over a small number of emitting layers with different realizations of the random component of the magnetic field. The model parameters are constrained to fit the power spectra of dust polarization EE, BB, and TE measured using Planck data. We find that the slopes of the E and B power spectra of dust polarization are matched for αM = -2.5, an exponent close to that measured for total dust intensity but larger than the Kolmogorov exponent - 11/3. The model allows us to compute multiple realizations of the Stokes Q and U maps for different realizations of the random component of the magnetic field, and to quantify the variance of dust polarization spectra for any given sky area outside of the Galactic plane. The simulations reproduce the scaling relation between the dust polarization power and the mean total dust intensity including the observed dispersion around the mean relation. We also propose a method to carry out multifrequency simulations, including the decorrelation measured recently by Planck, using a given covariance matrix of the polarization maps. These simulations are well suited to optimize component separation methods and to quantify the confidence with which the dust and CMB B-modes can be separated in present and future experiments. We also provide an astrophysical perspective on our phenomenological modeling of the dust polarization spectra.

  15. Determination of the Far-Infrared Cosmic Background Using COBE/DIRBE and WHAM Data

    NASA Technical Reports Server (NTRS)

    Odegard, N.; Arendt, R. G.; Dwek, E.; Haffner, L. M.; Hauser, M. G.; Reynolds, R. J.

    2007-01-01

    Determination of the cosmic infrared background (CIB) at far infrared wavelengths using COBE/DIRBE data is limited by the accuracy to which foreground interplanetary and Galactic dust emission can be modeled and subtracted. Previous determinations of the far infrared CIB (e.g., Hauser et al. 1998) were based on the detection of residual isotropic emission in skymaps from which the emission from interplanetary dust and the neutral interstellar medium were removed. In this paper we use the Wisconsin H(alpha) Mapper (WHAM) Northern Sky Survey as a tracer of the ionized medium to examine the effect of this foreground component on determination of the CIB. We decompose the DIRBE far infrared data for five high Galactic latitude regions into HI- and H(alpha)- correlated components and a residual component. Eased on FUSE H2 absorption line observations, the contribution of a11 H2-correlated component is expected to he negligible. We find the H(alpha)-correlated component to be consistent with zero for each region, and we find that addition of an H(alpha)-correlated component in modeling the foreground emission has negligible effect on derived CIB results. Our CIB detections and 2(sigma) upper limits are essentially the same as those derived by Hauser et al. and are given by (nu)I(sub nu)(nW/sq m/sr) < 75, < 32, 25+/-8, and 13+/-3 at gamma = 60, 100, 140, and 240 microns, respectively. Our residuals have not been subjected to a detailed anisotropy test, so our CIB results do not supersede those of Hauser et al. Mie derive upper limits on the 100 micron emissivity of the ionized medium that are typically about 40% of the 100 micron emissivity of the neutral atomic medium. This low value may be caused in part by a lower dust-to-gas mass ratio in the ionized medium than in the neutral medium, and in part by a shortcoming of using H(alpha) intensity as a tracer of far infrared emission. If H(alpha) is not a reliable tracer, our analysis would underestimate the emissivity of the ionized medium, and both our analysis and the Hauser et al. analysis may slightly overestimate the CIB. We estimate the possible effect for the CIB to be only about 5%, which is much smaller than the quoted uncertainties. From a comparison of the Hauser et al. CIB results with the integrated galaxy brightness from Spitzer source counts, we obtain 2(sigma) upper limits on a possible diffuse CIB component that are 26 nW/sq m/sr at 140 microns and 8.5 nW/sq m/sr at 240 microns.

  16. An Instrument to Measure Polarized CMB Foregrounds at 10 and 15 GHz

    NASA Astrophysics Data System (ADS)

    O'Neill, Hugh

    New CMB experiments are being proposed and built with the goal of eventually resolving the B-mode polarization pattern imprinted in the CMB from a stochastic background of gravitional waves left over from an inflationary epoch in the very early universe. It has been widely acknowledged that the ability to resolve the B-mode polarization pattern in the CMB will require a more sophisticated understanding of the obscuring galactic foreground emission than what currently exists. Of the various galactic foregrounds, synchrotron radiation is identified as both the most polarized, and the most complicated in terms of spectral and spatial variability. The COsmic Foreground Explorer (COFE), described in this dissertation, is a NASA funded balloon borne mission to map polarized galactic foreground emission in two frequency bands, one centered at 10 GHz and the other at 15 GHz. These frequency bands make COFE particularly sensitive to polarized synchrotron radiation, and the separation between these two frequency bands facilitates the discrimination of the synchrotron component from the CMB and other foreground sourced such as free-free emission and spinning dust. COFE was successfully launched in September of 2011, and acquired data during a 22 hour flight. COFE is currently being reconfigured to acquire additional data from a high altitude, ground based observatory.

  17. 3. SIXTH FLOOR VIEW TO WEST, WITH FACE POWDER MAKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. SIXTH FLOOR VIEW TO WEST, WITH FACE POWDER MAKING UNIT: CHARGE HOPPER (CENTER FOREGROUND), PERFUME MIXER (LEFT), AND DUST COLLECTOR (REAR CENTER) - Colgate & Company Jersey City Plant, G Block, 81-95 Greene Street, Jersey City, Hudson County, NJ

  18. UV extinction properties of carina nebular dust

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1993-01-01

    I have performed an analysis of the UV extinction by dust along the line of sight to the young open cluster Tr 16. The observed curves are parameterized in order to extract quantitative information about the structure of the curves. Furthermore, by constructing differential extinction curves, obtained by differencing curves for stars which lie within a few arc seconds of each other on the sky, I was able to obtain a curve which is free of the effects of foreground extinction, and represents the extinction by the dust in the Tr 16 molecular cloud. I then show that this curve is nearly identical to one due to dust in the Orion molecular cloud. This result shows that dust in the Carina arm exhibits the same behavior as that in the local arm.

  19. Galactic foreground contributions to the 5-year Wilkinson Microwave Anisotropy Probe maps

    NASA Astrophysics Data System (ADS)

    Macellari, N.; Pierpaoli, E.; Dickinson, C.; Vaillancourt, J. E.

    2011-12-01

    We compute the cross-correlation between intensity and polarization from the 5-year Wilkinson Microwave Anisotropy Probe (WMAP5) data in different sky regions with respect to template maps for synchrotron, dust and free-free emission. We derive the frequency dependence and polarization fraction for all three components in 48 different sky regions of HEALPIX (Nside= 2) pixelization. The anomalous emission associated with dust is clearly detected in intensity over the entire sky at the K (23-GHz) and Ka (33-GHz) WMAP bands, and is found to be the dominant foreground at low Galactic latitudes, between b =-40° and +10°. The synchrotron spectral index obtained from the K and Ka WMAP bands from an all-sky analysis is βs=-3.32 ± 0.12 for intensity and βs=-3.01 ± 0.03 for polarized intensity. The polarization fraction of the synchrotron emission is constant in frequency and increases with latitude from ≈5 per cent near the Galactic plane up to ≈40 per cent in some regions at high latitudes; the average value for |b| < 20° is 8.6 ± 1.7 (stat) ± 0.5 (sys) per cent, while for |b| > 20°, it is 19.3 ± 0.8 (stat) ± 0.5 (sys) per cent. Anomalous dust and free-free emissions appear to be relatively unpolarized. Monte Carlo simulations showed that there were biases of the method due to cross-talk between the components, at up to ≈5 per cent in any given pixel, and ≈1.5 per cent on average, when the true polarization fraction is low (a few per cent or less). Nevertheless, the average polarization fraction of dust-correlated emission at the K band is 3.2 ± 0.9 (stat) ± 1.5 (sys) per cent or less than 5 per cent at 95 per cent confidence. When comparing real data with simulations, eight regions show a detected polarization above the 99th percentile of the distribution from simulations with no input foreground polarization, six of which are detected at above 2σ and display polarization fractions between 2.6 and 7.2 per cent, except for one anomalous region, which has 32 ± 12 per cent. The dust polarization values are consistent with the expectation from spinning dust emission, but polarized dust emission from magnetic-dipole radiation cannot be ruled out. Free-free emission was found to be unpolarized with an upper limit of 3.4 per cent at 95 per cent confidence.

  20. Planck 2015 results. X. Diffuse component separation: Foreground maps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.

  1. Planck 2015 results: X. Diffuse component separation: Foreground maps

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-09-20

    We report that Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps andmore » the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100–353 GHz bands on large angular scales in the form of temperature-to-polarization leakage, uncertainties in the analogue-to-digital conversion, and corrections for the very long time constant of the bolometer detectors, all of which are expected to improve in the near future.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Michelle; Page, Lyman; Dunkley, Joanna

    In 1969 Edward Conklin measured the anisotropy in celestial emission at 8 GHz with a resolution of 16.{sup 0}2 and used the data to report a detection of the cosmic microwave background dipole. Given the paucity of 8 GHz observations over large angular scales and the clear evidence for non-power-law Galactic emission near 8 GHz, a new analysis of Conklin's data is informative. In this paper, we compare Conklin's data to that from Haslam et al. (0.4 GHz), Reich and Reich (1.4 GHz), and the Wilkinson Microwave Anisotropy Probe (WMAP; 23-94 GHz). We show that the spectral index between Conklin'smore » data and the 23 GHz WMAP data is {beta} = -1.7 {+-} 0.1, where we model the emission temperature as T{proportional_to}{nu}{sup {beta}}. Free-free emission has {beta} Almost-Equal-To - 2.15 and synchrotron emission has {beta} Almost-Equal-To - 2.7 to -3. Thermal dust emission ({beta} Almost-Equal-To 1.7) is negligible at 8 GHz. We conclude that there must be another distinct non-power-law component of diffuse foreground emission that emits near 10 GHz, consistent with other observations in this frequency range. By comparing to the full complement of data sets, we show that a model with an anomalous emission component, assumed to be spinning dust, is preferred over a model without spinning dust at 5{sigma} ({Delta}{chi}{sup 2} = 31). However, the source of the new component cannot be determined uniquely.« less

  3. A determination of the spectra of Galactic components observed by the Wilkinson Microwave Anisotropy Probe

    NASA Astrophysics Data System (ADS)

    Davies, R. D.; Dickinson, C.; Banday, A. J.; Jaffe, T. R.; Górski, K. M.; Davis, R. J.

    2006-08-01

    Wilkinson Microwave Anisotropy Probe (WMAP) data when combined with ancillary data on free-free, synchrotron and dust allow an improved understanding of the spectrum of emission from each of these components. Here, we examine the sky variation at intermediate latitudes using a cross-correlation technique. In particular, we compare the observed emission in 15 selected sky regions to three `standard' templates. The free-free emission of the diffuse ionized gas is fitted by a well-known spectrum at K and Ka band, but the derived emissivity corresponds to a mean electron temperature of ~4000-5000 K. This is inconsistent with estimates from Galactic HII regions although a variation in the derived ratio of Hα to free-free intensity by a factor of ~2 is also found from region to region. The origin of the discrepancy is unclear. The anomalous emission associated with dust is clearly detected in most of the 15 fields studied. The anomalous emission correlates well with the Finkbeiner, Davis & Schlegel model 8 predictions (FDS8) at 94 GHz, with an effective spectral index between 20 and 60 GHz, of β ~ -2.85. Furthermore, the emissivity varies by a factor of ~2 from cloud to cloud. A modestly improved fit to the anomalous dust at K band is provided by modulating the template by an estimate of the dust colour temperature, specifically FDS8 × Tn. We find a preferred value n ~ 1.6, although there is a scatter from region to region. Nevertheless, the preferred index drops to zero at higher frequencies where the thermal dust emission dominates. The synchrotron emission steepens between GHz frequencies and the WMAP bands. There are indications of spectral index variations across the sky but the current data are not precise enough to accurately quantify this from region to region. Our analysis of the WMAP data indicates strongly that the dust-correlated emission at the low WMAP frequencies has a spectrum which is compatible with spinning dust; we find no evidence for a synchrotron component correlated with dust. The importance of these results for the correction of cosmic microwave background data for Galactic foreground emission is discussed.

  4. Fine structure of Galactic foreground ISM towards high-redshift AGN - utilizing Herschel PACS and SPIRE data

    NASA Astrophysics Data System (ADS)

    Perger, K.; Pinter, S.; Frey, S.; Tóth, L. V.

    2018-05-01

    One of the most certain ways to determine star formation rate in galaxies is based on far infrared (FIR) measurements. To decide the origin of the observed FIR emission, subtracting the Galactic foreground is a crucial step. We utilized Herschel photometric data to determine the hydrogen column densities in three galactic latitude regions, at b = 27°, 50° and -80°. We applied a pixel-by-pixel fit to the spectral energy distribution (SED) for the images aquired from parallel PACS-SPIRE observations in all three sky areas. We determined the column densities with resolutions 45'' and 6', and compared the results with values estimated from the IRAS dust maps. Column densities at 27° and 50° galactic latitudes determined from the Herschel data are in a good agreement with the literature values. However, at the highest galactic latitude we found that the column densities from the Herschel data exceed those derived from the IRAS dust map.

  5. Dust Storm, Sahara Desert, Algeria/Niger Border, Africa

    NASA Image and Video Library

    1992-05-16

    STS049-92-071 (13 May 1992) --- The STS-49 crew aboard the Earth-orbiting Space Shuttle Endeavour captured this Saharan dust storm on the Algeria-Niger border. The south-looking, late-afternoon view shows one of the best examples in the Shuttle photo data base of a dust storm. A series of gust fronts, caused by dissipating thunderstorms have picked up dust along the outflow boundaries. Small cumulus clouds have formed over the most vigorously ascending parts of the dust front, enhancing the visual effect of the front. The storm is moving roughly north-northwest, at right angles to the most typical path for dust storms in this part of the Sahara (shown by lines of sand on the desert surface in the foreground). Storms such as this can move out into the Atlantic, bringing dust even as far as the Americas on some occasions. A crewmember used a 70mm handheld Hasselblad camera with a 100mm lens to record the frame.

  6. Cosmic microwave background science at commercial airline altitudes

    NASA Astrophysics Data System (ADS)

    Feeney, Stephen M.; Gudmundsson, Jon E.; Peiris, Hiranya V.; Verde, Licia; Errard, Josquin

    2017-07-01

    Obtaining high-sensitivity measurements of degree-scale cosmic microwave background (CMB) polarization is the most direct path to detecting primordial gravitational waves. Robustly recovering any primordial signal from the dominant foreground emission will require high-fidelity observations at multiple frequencies, with excellent control of systematics. We explore the potential for a new platform for CMB observations, the Airlander 10 hybrid air vehicle, to perform this task. We show that the Airlander 10 platform, operating at commercial airline altitudes, is well suited to mapping frequencies above 220 GHz, which are critical for cleaning CMB maps of dust emission. Optimizing the distribution of detectors across frequencies, we forecast the ability of Airlander 10 to clean foregrounds of varying complexity as a function of altitude, demonstrating its complementarity with both existing (Planck) and ongoing (C-BASS) foreground observations. This novel platform could play a key role in defining our ultimate view of the polarized microwave sky.

  7. No evidence for dust B -mode decorrelation in Planck data

    DOE PAGES

    Sheehy, Christopher; Slosar, Anze

    2018-02-20

    Constraints on inflationary B modes using cosmic microwave background polarization data commonly rely on either template cleaning or cross-spectra between maps at different frequencies to disentangle Galactic foregrounds from the cosmological signal. Assumptions about how the foregrounds scale with frequency are therefore crucial to interpreting the data. Recent results from the Planck satellite collaboration claim significant evidence for a decorrelation in the polarization signal of the spatial pattern of Galactic dust between 217 and 353 GHz. Such a decorrelation would suppress power in the cross-spectrum between high-frequency maps, where the dust is strong, and lower-frequency maps, where the sensitivity tomore » cosmological B modes is strongest. Alternatively, it would leave residuals in lower-frequency maps cleaned with a template derived from the higher-frequency maps. If not accounted for, both situations would result in an underestimate of the dust contribution and thus an upward bias on measurements of the tensor-to-scalar ratio, r. In this paper, we revisit this measurement and find that the no-decorrelation hypothesis cannot be excluded with the Planck data. There are three main reasons for this: (i) There is significant noise bias in cross-spectra between Planck data splits that needs to be accounted for. (ii) There is strong evidence for unknown instrumental systematics, the amplitude of which we estimate using alternative Planck data splits. (iii) There are significant correlations between measurements in different sky patches that need to be taken into account when assessing the statistical significance. Finally, between ℓ = 55-90 and over 72% of the sky, the dust BB correlation between 217 and 353 GHz is 1.001 +.004/.021 -.004/.000 (68% stat/syst.) and shows no significant trend with the sky fraction.« less

  8. No evidence for dust B -mode decorrelation in Planck data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheehy, Christopher; Slosar, Anze

    Constraints on inflationary B modes using cosmic microwave background polarization data commonly rely on either template cleaning or cross-spectra between maps at different frequencies to disentangle Galactic foregrounds from the cosmological signal. Assumptions about how the foregrounds scale with frequency are therefore crucial to interpreting the data. Recent results from the Planck satellite collaboration claim significant evidence for a decorrelation in the polarization signal of the spatial pattern of Galactic dust between 217 and 353 GHz. Such a decorrelation would suppress power in the cross-spectrum between high-frequency maps, where the dust is strong, and lower-frequency maps, where the sensitivity tomore » cosmological B modes is strongest. Alternatively, it would leave residuals in lower-frequency maps cleaned with a template derived from the higher-frequency maps. If not accounted for, both situations would result in an underestimate of the dust contribution and thus an upward bias on measurements of the tensor-to-scalar ratio, r. In this paper, we revisit this measurement and find that the no-decorrelation hypothesis cannot be excluded with the Planck data. There are three main reasons for this: (i) There is significant noise bias in cross-spectra between Planck data splits that needs to be accounted for. (ii) There is strong evidence for unknown instrumental systematics, the amplitude of which we estimate using alternative Planck data splits. (iii) There are significant correlations between measurements in different sky patches that need to be taken into account when assessing the statistical significance. Finally, between ℓ = 55-90 and over 72% of the sky, the dust BB correlation between 217 and 353 GHz is 1.001 +.004/.021 -.004/.000 (68% stat/syst.) and shows no significant trend with the sky fraction.« less

  9. No evidence for dust B -mode decorrelation in Planck data

    NASA Astrophysics Data System (ADS)

    Sheehy, Christopher; Slosar, Anže

    2018-02-01

    Constraints on inflationary B modes using cosmic microwave background polarization data commonly rely on either template cleaning or cross-spectra between maps at different frequencies to disentangle Galactic foregrounds from the cosmological signal. Assumptions about how the foregrounds scale with frequency are therefore crucial to interpreting the data. Recent results from the Planck satellite collaboration claim significant evidence for a decorrelation in the polarization signal of the spatial pattern of Galactic dust between 217 and 353 GHz. Such a decorrelation would suppress power in the cross-spectrum between high-frequency maps, where the dust is strong, and lower-frequency maps, where the sensitivity to cosmological B modes is strongest. Alternatively, it would leave residuals in lower-frequency maps cleaned with a template derived from the higher-frequency maps. If not accounted for, both situations would result in an underestimate of the dust contribution and thus an upward bias on measurements of the tensor-to-scalar ratio, r . In this paper, we revisit this measurement and find that the no-decorrelation hypothesis cannot be excluded with the Planck data. There are three main reasons for this: (i) There is significant noise bias in cross-spectra between Planck data splits that needs to be accounted for. (ii) There is strong evidence for unknown instrumental systematics, the amplitude of which we estimate using alternative Planck data splits. (iii) There are significant correlations between measurements in different sky patches that need to be taken into account when assessing the statistical significance. Between ℓ=55 - 90 and over 72% of the sky, the dust B B correlation between 217 and 353 GHz is 1.001-.004/.000 +.004 /.021 (68 % stat /syst .) and shows no significant trend with the sky fraction.

  10. The peculiar extinction of Herschel 36

    NASA Technical Reports Server (NTRS)

    Donn, B.; Hecht, J. H.; Helfer, H. L.; Wolf, J.; Pipher, J. L.

    1982-01-01

    The extinction of Herschel 36 was measured and found to be peculiar in the same sense as that observed in Orion. Following the treatment of Mathis and Wallenhorst, this can be explained by the presence of large silicate and graphite grains than are normally found in the interstellar medium. Correcting the stellar flux for foreground extinction results in a residual extinction curve for the associated dust cloud, with an unusually small normalized extinction (less than 1.0) at 1500 A. This low UV extinction may be due to the effects of scattering by the dust cloud material.

  11. E and B families of the Stokes parameters in the polarized synchrotron and thermal dust foregrounds

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Creswell, James; Naselsky, Pavel

    2018-05-01

    Better understanding of Galactic foregrounds is one of the main obstacles to detection of primordial gravitational waves through measurement of the B mode in the polarized microwave sky. We generalize the method proposed in [1] and decompose the polarization signals into the E and B families directly in the domain of the Stokes Q, U parameters as (Q,U)≡(QE, UE)+(QB,UB). This also enables an investigation of the morphology and the frequency dependence of these two families, which has been done in the WMAP K, Ka (tracing synchrotron emission) and Planck 2015 HFI maps (tracing thermal dust). The results reveal significant differences in spectra between the E and B families. The spectral index of the E family fluctuates less across the sky than that of the B family, and the same tendency occurs for the polarization angles of the dust and synchrotron channels. The new insight from WMAP and Planck data on the North Polar Spur and BICEP2 zones through our method clearly indicates that these zones are characterized by very low polarization intensity of the B family compared to the E family. We have detected global structure of the B family polarization angles at high Galactic latitudes which cannot be attributed to the cosmic microwave background or instrumental noise. However, we cannot exclude instrumental systematics as a partial contributor to these anomalies.

  12. STS-65 Earth observation of dust plumes from Rio Grande in Southern Bolivia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of dust plumes from the Rio Grande in Southern Bolivia. A series of dust plumes can be seen rising from sand banks in the Rio Grande of southern Bolivia, bottom right of this northeast-looking view. The Rio Grande brings sediment from the Andes (foothills visible in the foreground, bottom left) and flows across the flat country of the northern Chaco plain. During the low-flow season, sand banks of this sediment are exposed to northerly winds which often blow dust into the surrounding forest. One of the significances of the dust plumes is that dust acts as a source of nutrient for the local soils. This is the most impressive example of dust ever recorded on Shuttle photography from this river. Such plumes have been seen on photographs from four previous missions (STS-31, STS-47, STS-48, STS-51I) emanating from the Rio Grande. The plumes are regularly space because the sand is blown only from those reaches of th

  13. Bayesian power spectrum inference with foreground and target contamination treatment

    NASA Astrophysics Data System (ADS)

    Jasche, J.; Lavaux, G.

    2017-10-01

    This work presents a joint and self-consistent Bayesian treatment of various foreground and target contaminations when inferring cosmological power spectra and three-dimensional density fields from galaxy redshift surveys. This is achieved by introducing additional block-sampling procedures for unknown coefficients of foreground and target contamination templates to the previously presented ARES framework for Bayesian large-scale structure analyses. As a result, the method infers jointly and fully self-consistently three-dimensional density fields, cosmological power spectra, luminosity-dependent galaxy biases, noise levels of the respective galaxy distributions, and coefficients for a set of a priori specified foreground templates. In addition, this fully Bayesian approach permits detailed quantification of correlated uncertainties amongst all inferred quantities and correctly marginalizes over observational systematic effects. We demonstrate the validity and efficiency of our approach in obtaining unbiased estimates of power spectra via applications to realistic mock galaxy observations that are subject to stellar contamination and dust extinction. While simultaneously accounting for galaxy biases and unknown noise levels, our method reliably and robustly infers three-dimensional density fields and corresponding cosmological power spectra from deep galaxy surveys. Furthermore, our approach correctly accounts for joint and correlated uncertainties between unknown coefficients of foreground templates and the amplitudes of the power spectrum. This effect amounts to correlations and anti-correlations of up to 10 per cent across wide ranges in Fourier space.

  14. The Herschel Virgo Cluster Survey. XX. Dust and gas in the foreground Galactic cirrus

    NASA Astrophysics Data System (ADS)

    Bianchi, S.; Giovanardi, C.; Smith, M. W. L.; Fritz, J.; Davies, J. I.; Haynes, M. P.; Giovanelli, R.; Baes, M.; Bocchio, M.; Boissier, S.; Boquien, M.; Boselli, A.; Casasola, V.; Clark, C. J. R.; De Looze, I.; di Serego Alighieri, S.; Grossi, M.; Jones, A. P.; Hughes, T. M.; Hunt, L. K.; Madden, S.; Magrini, L.; Pappalardo, C.; Ysard, N.; Zibetti, S.

    2017-01-01

    We study the correlation between far-infrared/submm dust emission and atomic gas column density in order to derive the properties of the high Galactic latitude, low density, Milky Way cirrus in the foreground of the Virgo cluster of galaxies. Dust emission maps from 60 to 850 μm are obtained from observations with the Spectral and Photometric Imaging Receiver (SPIRE) and carried out within the Herschel Virgo Cluster Survey (HeViCS); these are complemented by IRAS and Planck maps. Data from the Arecibo legacy Fast ALFA Survey is used to derive atomic gas column densities for two broad velocity components: low and intermediate velocity clouds. Dust emissivities are derived for each gas component and each far-infrared/submm band. For the low velocity clouds, we measure an average emissivity ɛLVCν = (0.79 ± 0.08) × 10-20 MJy sr-1 cm2 at 250 μm. After fitting a modified blackbody to the available bands, we estimated a dust absorption cross section of τLVCν/NH I = (0.49 ± 0.13) × 10-25 cm2 H-1 at 250 μm (with dust temperature T = 20.4 ± 1.5 K and spectral index β = 1.53 ± 0.17). The results are in excellent agreement with those obtained by Planck over a much larger coverage of the high Galactic latitude cirrus (50% of the sky versus 0.2% in our work). For dust associated with intermediate velocity gas, we confirm earlier Planck results and find a higher temperature and lower emissivity and cross section. After subtracting the modeled components, we find regions at scales smaller than 20' in which the residuals deviate significantly from the average scatter, which is dominated by cosmic infrared background. These large residuals are most likely due to local variations in the cirrus dust properties or to high-latitude molecular clouds with average NH2 ≲ 1020 cm-2. We find no conclusive evidence for intracluster dust emission in Virgo. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Final reduced data (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A130

  15. The Galactic interstellar medium: foregrounds and star formation

    NASA Astrophysics Data System (ADS)

    Miville-Deschênes, Marc-Antoine

    2018-05-01

    This review presents briefly two aspects of Galactic interstellar medium science that seem relevant for studying EoR. First, we give some statistical properties of the Galactic foreground emission in the diffuse regions of the sky. The properties of the emission observed in projection on the plane of the sky are then related to how matter is organised along the line of sight. The diffuse atomic gas is multi-phase, with dense filamentary structures occupying only about 1% of the volume but contributing to about 50% of the emission. The second part of the review presents aspect of structure formation in the Galactic interstellar medium that could be relevant for the subgrid physics used to model the formation of the first stars.

  16. ON THE ORIGINS OF THE DIFFUSE H{alpha} EMISSION: IONIZED GAS OR DUST-SCATTERED H{alpha} HALOS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seon, Kwang-Il; Witt, Adolf N., E-mail: kiseon@kasi.re.kr

    2012-10-20

    It is known that the diffuse H{alpha} emission outside of bright H II regions not only are very extended, but also can occur in distinct patches or filaments far from H II regions, and the line ratios of [S II] {lambda}6716/H{alpha} and [N II] {lambda}6583/H{alpha} observed far from bright H II regions are generally higher than those in the H II regions. These observations have been regarded as evidence against the dust-scattering origin of the diffuse H{alpha} emission (including other optical lines), and the effect of dust scattering has been neglected in studies on the diffuse H{alpha} emission. In thismore » paper, we reexamine the arguments against dust scattering and find that the dust-scattering origin of the diffuse H{alpha} emission cannot be ruled out. As opposed to the previous contention, the expected dust-scattered H{alpha} halos surrounding H II regions are, in fact, in good agreement with the observed H{alpha} morphology. We calculate an extensive set of photoionization models by varying elemental abundances, ionizing stellar types, and clumpiness of the interstellar medium (ISM) and find that the observed line ratios of [S II]/H{alpha}, [N II]/H{alpha}, and He I {lambda}5876/H{alpha} in the diffuse ISM accord well with the dust-scattered halos around H II regions, which are photoionized by late O- and/or early B-type stars. We also demonstrate that the H{alpha} absorption feature in the underlying continuum from the dust-scattered starlight ({sup d}iffuse galactic light{sup )} and unresolved stars is able to substantially increase the [S II]/H{alpha} and [N II]/H{alpha} line ratios in the diffuse ISM.« less

  17. COSMIC MICROWAVE BACKGROUND POLARIZATION AND TEMPERATURE POWER SPECTRA ESTIMATION USING LINEAR COMBINATION OF WMAP 5 YEAR MAPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samal, Pramoda Kumar; Jain, Pankaj; Saha, Rajib

    We estimate cosmic microwave background (CMB) polarization and temperature power spectra using Wilkinson Microwave Anisotropy Probe (WMAP) 5 year foreground contaminated maps. The power spectrum is estimated by using a model-independent method, which does not utilize directly the diffuse foreground templates nor the detector noise model. The method essentially consists of two steps: (1) removal of diffuse foregrounds contamination by making linear combination of individual maps in harmonic space and (2) cross-correlation of foreground cleaned maps to minimize detector noise bias. For the temperature power spectrum we also estimate and subtract residual unresolved point source contamination in the cross-power spectrummore » using the point source model provided by the WMAP science team. Our TT, TE, and EE power spectra are in good agreement with the published results of the WMAP science team. We perform detailed numerical simulations to test for bias in our procedure. We find that the bias is small in almost all cases. A negative bias at low l in TT power spectrum has been pointed out in an earlier publication. We find that the bias-corrected quadrupole power (l(l + 1)C{sub l} /2{pi}) is 532 {mu}K{sup 2}, approximately 2.5 times the estimate (213.4 {mu}K{sup 2}) made by the WMAP team.« less

  18. Self-diffusion in a stochastically heated two-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2016-09-01

    Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust-dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.

  19. AzTEC Survey of the Central Molecular Zone: Modeling Dust SEDs and N-PDF with Hierarchical Bayesian Analysis

    NASA Astrophysics Data System (ADS)

    Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark

    2018-01-01

    We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.

  20. Earth Observation

    NASA Image and Video Library

    2012-07-15

    ISS032-E-008976 (15 July 2012) --- Saharan dust reaching the Americas is featured in this image photographed by an Expedition 32 crew member on the International Space Station. Weather satellites frequently document major dust palls blowing from the Sahara Desert westward from Africa out into the tropical Atlantic Ocean. Space station crew members frequently see these Saharan dust masses as very widespread atmospheric haze. Dust palls blowing from Africa can be transported right across the Atlantic Ocean. It takes about a week to reach either North America (in northern hemisphere summer) or South America (in northern hemisphere winter). This puts the Caribbean basin on the receiving end of many of these events. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The margin of the hazy air in this image reaches as far as Haiti (top center) and the nearby Turks and Caicos Islands (top left) ? but the eastern tip of Cuba in the foreground remains in the clear air.

  1. Statistical properties of Galactic CMB foregrounds: dust and synchrotron

    NASA Astrophysics Data System (ADS)

    Kandel, D.; Lazarian, A.; Pogosyan, D.

    2018-07-01

    Recent Planck observations have revealed some of the important statistical properties of synchrotron and dust polarization, namely, the B to E mode power and temperature-E (TE) mode cross-correlation. In this paper, we extend our analysis in Kandel et al. that studied the B to E mode power ratio for polarized dust emission to include TE cross-correlation and develop an analogous formalism for synchrotron signal, all using a realistic model of magnetohydrodynamical turbulence. Our results suggest that the Planck results for both synchrotron and dust polarization can be understood if the turbulence in the Galaxy is sufficiently sub-Alfvénic. Making use of the observed poor magnetic field-density correlation, we show that the observed positive TE correlation for dust corresponds to our theoretical expectations. We also show how the B to E ratio as well as the TE cross-correlation can be used to study media magnetization, compressibility, and level of density-magnetic field correlation.

  2. Far-infrared Extinction Mapping of Infrared Dark Clouds

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Tan, Jonathan C.

    2014-01-01

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e., dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of near-infrared and, more recently, mid-infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at far-infrared (FIR) wavelengths as long as ~100 μm! Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, Σ. The method builds on that developed for MIR extinction mapping by Butler & Tan, in particular involving a search for independently saturated, i.e., very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in the Infrared Dark Cloud (IRDC) G028.37+00.07, deriving mass surface density maps from 3.5 to 70 μm. A by-product of this analysis is the measurement of the spectral energy distribution of the diffuse foreground emission. The lower opacity at 70 μm allows us to probe to higher Σ values, up to ~1 g cm-2 in the densest parts of the core/clumps. Comparison of the Σ maps at different wavelengths constrains the shape of the MIR-FIR dust opacity law in IRDCs. We find that it is most consistent with the thick ice mantle models of Ossenkopf & Henning. There is tentative evidence for grain ice mantle growth as one goes from lower to higher Σ regions.

  3. Probing the Interstellar Dust towards the Galactic Centre using X-ray Dust Scattering Halos

    NASA Astrophysics Data System (ADS)

    Jin, C.; Ponti, G.; Haberl, F.; Smith, R.

    2017-10-01

    Dust scattering creates an X-ray halo that contains abundant information about the interstellar dust along the source's line-of-sight (LOS), and is most prominent when the LOS nH is high. In this talk, I will present results from our latest study of a bright dust scattering halo around an eclipsing X-ray binary at 1.45 arcmin away from Sgr A*, namely AX J1745.6-2901. This study is based on a large set of XMM-Newton and Chandra observations, and is so-far the best dust scattering halo study of a X-ray transient in the Galactic centre (GC). I will show that the foreground dust of AX J1745.6-2901 can be decomposed into two major thick dust layers. One layer contains (66-81)% of the total LOS dust and is several kpc away from the source, and so is most likely to reside in the Galactic disc. The other layer is local to the source. I will also show that the dust scattering halo can cause the source spectrum to severely depend on the source extraction region. Such spectral bias can be corrected by our new Xspec model, which is likely to be applicable to Sgr A* and other GC sources as well.

  4. The ultraviolet attenuation law in backlit spiral galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keel, William C.; Manning, Anna M.; Holwerda, Benne W.

    The effective extinction law (attenuation behavior) in galaxies in the emitted ultraviolet (UV) regime is well known only for actively star-forming objects and combines effects of the grain properties, fine structure in the dust distribution, and relative distributions of stars and dust. We use Galaxy Evolution Explorer, XMM Optical Monitor, and Hubble Space Telescope (HST) data to explore the UV attenuation in the outer parts of spiral disks which are backlit by other UV-bright galaxies, starting with the candidate list of pairs provided by Galaxy Zoo participants. New optical images help to constrain the geometry and structure of the targetmore » galaxies. Our analysis incorporates galaxy symmetry, using non-overlapping regions of each galaxy to derive error estimates on the attenuation measurements. The entire sample has an attenuation law across the optical and UV that is close to the Calzetti et al. form; the UV slope for the overall sample is substantially shallower than found by Wild et al., which is a reasonable match to the more distant galaxies in our sample but not to the weighted combination including NGC 2207. The nearby, bright spiral NGC 2207 alone gives an accuracy almost equal to the rest of our sample, and its outer arms have a very low level of foreground starlight. Thus, this widespread, fairly 'gray' law can be produced from the distribution of dust alone, without a necessary contribution from differential escape of stars from dense clouds. Our results indicate that the extrapolation needed to compare attenuation between backlit galaxies at moderate redshifts from HST data, and local systems from Sloan Digital Sky Survey and similar data, is mild enough to allow the use of galaxy overlaps to trace the cosmic history of dust in galaxies. For NGC 2207, HST data in the near-UV F336W band show that the covering factor of clouds with small optical attenuation becomes a dominant factor farther into the UV, which opens the possibility that widespread diffuse dust dominates over dust in star-forming regions deep into the UV. Comparison with published radiative-transfer models indicates that the role of dust clumping dominates over differences in grain populations at this coarse spatial resolution.« less

  5. Planck early results. XVII. Origin of the submillimetre excess dust emission in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bot, C.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Fukui, Y.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Kawamura, A.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Madden, S.; Maffei, B.; Mandolesi, N.; Mann, R.; Maris, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Onishi, T.; Osborne, S.; Pajot, F.; Paladini, R.; Paradis, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    The integrated spectral energy distributions (SED) of the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC) appear significantly flatter than expected from dust models based on their far-infrared and radio emission. The still unexplained origin of this millimetre excess is investigated here using the Planck data. The integrated SED of the two galaxies before subtraction of the foreground (Milky Way) and background (CMB fluctuations) emission are in good agreement with previous determinations, confirming the presence of the millimetre excess. In the context of this preliminary analysis we do not propose a full multi-component fitting of the data, but instead subtract contributions unrelated to the galaxies and to dust emission. The background CMB contribution is subtracted using an internal linear combination (ILC) method performed locally around the galaxies. The foreground emission from the Milky Way is subtracted as a Galactic Hi template, and the dust emissivity is derived in a region surrounding the two galaxies and dominated by Milky Way emission. After subtraction, the remaining emission of both galaxies correlates closely with the atomic and molecular gas emission of the LMC and SMC. The millimetre excess in the LMC can be explained by CMB fluctuations, but a significant excess is still present in the SMC SED. The Planck and IRAS-IRIS data at 100 μm are combined to produce thermal dust temperature and optical depth maps of the two galaxies. The LMC temperature map shows the presence of a warm inner arm already found with the Spitzer data, but which also shows the existence of a previously unidentified cold outer arm. Several cold regions are found along this arm, some of which are associated with known molecular clouds. The dust optical depth maps are used to constrain the thermal dust emissivity power-law index (β). The average spectral index is found to be consistent with β = 1.5 and β = 1.2 below 500μm for the LMC and SMC respectively, significantly flatter than the values observed in the Milky Way. Also, there is evidence in the SMC of a further flattening of the SED in the sub-mm, unlike for the LMC where the SED remains consistent with β = 1.5. The spatial distribution of the millimetre dustexcess in the SMC follows the gas and thermal dust distribution. Different models are explored in order to fit the dust emission in the SMC. It is concluded that the millimetre excess is unlikely to be caused by very cold dust emission and that it could be due to a combination of spinning dust emission and thermal dust emission by more amorphous dust grains than those present in our Galaxy. Corresponding author: J.-P. Bernard, e-mail: jean-philippe.bernard@cesr.fr

  6. THE ABUNDANCE, ORTHO/PARA RATIO, AND DEUTERATION OF WATER IN THE HIGH-MASS STAR-FORMING REGION NGC 6334 I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emprechtinger, M.; Lis, D. C.; Monje, R. R.

    2013-03-01

    We present Herschel/HIFI observations of 30 transitions of water isotopologues toward the high-mass star-forming region NGC 6334 I. The line profiles of H{sup 16} {sub 2}O, H{sup 17} {sub 2}O, H{sup 18} {sub 2}O, and HDO show a complex pattern of emission and absorption components associated with the embedded hot cores, a lower-density envelope, two outflow components, and several foreground clouds, some associated with the NGC 6334 complex, others seen in projection against the strong continuum background of the source. Our analysis reveals an H{sub 2}O ortho/para ratio of 3 {+-} 0.5 in the foreground clouds, as well as themore » outflow. The water abundance varies from {approx}10{sup -8} in the foreground clouds and the outer envelope to {approx}10{sup -6} in the hot core. The hot core abundance is two orders of magnitude below the chemical model predictions for dense, warm gas, but within the range of values found in other Herschel/HIFI studies of hot cores and hot corinos. This may be related to the relatively low gas and dust temperature ({approx}100 K), or time-dependent effects, resulting in a significant fraction of water molecules still locked up in dust grain mantles. The HDO/H{sub 2}O ratio in NGC 6334 I, {approx}2 Multiplication-Sign 10{sup -4}, is also relatively low, but within the range found in other high-mass star-forming regions.« less

  7. Improved Diffuse Foreground Subtraction with the ILC Method: CMB Map and Angular Power Spectrum Using Planck and WMAP Observations

    NASA Astrophysics Data System (ADS)

    Sudevan, Vipin; Aluri, Pavan K.; Yadav, Sarvesh Kumar; Saha, Rajib; Souradeep, Tarun

    2017-06-01

    We report an improved technique for diffuse foreground minimization from Cosmic Microwave Background (CMB) maps using a new multiphase iterative harmonic space internal-linear-combination (HILC) approach. Our method nullifies a foreground leakage that was present in the old and usual iterative HILC method. In phase 1 of the multiphase technique, we obtain an initial cleaned map using the single iteration HILC approach over the desired portion of the sky. In phase 2, we obtain a final CMB map using the iterative HILC approach; however, now, to nullify the leakage, during each iteration, some of the regions of the sky that are not being cleaned in the current iteration are replaced by the corresponding cleaned portions of the phase 1 map. We bring all input frequency maps to a common and maximum possible beam and pixel resolution at the beginning of the analysis, which significantly reduces data redundancy, memory usage, and computational cost, and avoids, during the HILC weight calculation, the deconvolution of partial sky harmonic coefficients by the azimuthally symmetric beam and pixel window functions, which in a strict mathematical sense, are not well defined. Using WMAP 9 year and Planck 2015 frequency maps, we obtain foreground-cleaned CMB maps and a CMB angular power spectrum for the multipole range 2≤slant {\\ell }≤slant 2500. Our power spectrum matches the published Planck results with some differences at different multipole ranges. We validate our method by performing Monte Carlo simulations. Finally, we show that the weights for HILC foreground minimization have the intrinsic characteristic that they also tend to produce a statistically isotropic CMB map.

  8. High Resolution IRAS Maps and IR Emission of M31 -- II. Diffuse Component and Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Xu, C.; Helou, G.

    1995-01-01

    Large-scale dust heating and cooling in the diffuse medium of M31 is studied using the high resolution (HiRes) IRAS maps in conjunction with UV, optical (UBV), and the HI maps. A dust heating/cooling model is developed based on a radiative transfer model which assumes a 'Sandwich' configuration of dust and stars takes account of the effect of dust grain scattering.

  9. Galactic neutral hydrogen and the magnetic ISM foreground

    NASA Astrophysics Data System (ADS)

    Clark, S. E.

    2018-05-01

    The interstellar medium is suffused with magnetic fields, which inform the shape of structures in the diffuse gas. Recent high-dynamic range observations of Galactic neutral hydrogen, combined with novel data analysis techniques, have revealed a deep link between the morphology of neutral gas and the ambient magnetic field. At the same time, an observational revolution is underway in low-frequency radio polarimetry, driven in part by the need to characterize foregrounds to the cosmological 21-cm signal. A new generation of experiments, capable of high angular and Faraday depth resolution, are revealing complex filamentary structures in diffuse polarization. The relationship between filamentary structures observed in radio-polarimetric data and those observed in atomic hydrogen is not yet well understood. Multiwavelength observations will enable new insights into the magnetic interstellar medium across phases.

  10. The diffuse infrared background - COBE and other observations

    NASA Technical Reports Server (NTRS)

    Hauser, M. G.; Kelsall, T.; Moseley, S. H., Jr.; Silverberg, R. F.; Murdock, T.; Toller, G.; Spiesman, W.; Weiland, J.

    1991-01-01

    The Diffuse Infrared Background Experiment (DIRBE) on the Cosmic Background Explorer (COBE) satellite is designed to conduct a sensitive search for an isotropic cosmic infrared background radiation over the spectral range from 1 to 300 micrometers. The cumulative emissions of pregalactic, protogalactic, and evolving galactic systems are expected to be recorded in this background. The DIRBE instrument, a 10 spectral band absolute photometer with an 0.7 deg field of view, maps the full sky with high redundancy at solar elongation angles ranging from 64 to 124 degrees to facilitate separation of interplanetary, Galactic, and extragalactic sources of emission. Initial sky maps show the expected character of the foreground emissions, with relative minima at wavelengths of 3.4 micrometers and longward of 100 micrometers. Extensive modelling of the foregrounds, just beginning, will be required to isolate the extragalactic component. In this paper, we summarize the status of diffuse infrared background observations from the DIRBE, and compare preliminary results with those of recent rocket and satellite instruments.

  11. Micro-scale pollution mechanism of dust diffusion in a blasting driving face based on CFD-DEM coupled model.

    PubMed

    Yu, Haiming; Cheng, Weimin; Xie, Yao; Peng, Huitian

    2018-05-23

    In order to investigate the diffuse pollution mechanisms of high-concentration dusts in the blasting driving face, the airflow-dust coupled model was constructed based on CFD-DEM coupled model; the diffusion rules of the dusts with different diameters at microscopic scale were analyzed in combination with the field measured results. The simulation results demonstrate that single-exhaust ventilation exhibited more favorable dust suppression performance than single-forced ventilation. Under single-exhaust ventilation condition, the motion trajectories of the dusts with the diameter smaller than 20 μm were close to the airflow streamline and these dusts were mainly distributed near the footway walls; by contrast, under single-forced ventilation condition, the motion trajectories of the dust particles with a diameter range of 20~40 μm were close to the airflow streamlines, and a large number of dusts with the diameter smaller than 20 μm accumulated in the regions 5 m and 17~25 m away from the head-on section. Moreover, under the single-exhaust ventilation, the relationship between dust diameter D and negative-pressured-induced dust emission ratio P can be expressed as P = - 25.03ln(D) + 110.39, and the dust emission ratio was up to 74.36% for 7-μm dusts, and the path-dependent settling behaviors of the dusts mainly occurred around the head-on section; under single-forced ventilation condition, the z value of the dusts with the diameter over 20 μm decreased and the dusts with a diameter smaller than 7 μm are particularly harmful to human health, but their settling ratios were below 22.36%. Graphical abstract The airflow-dust CFD-DEM coupling model was established. The numerical simulation results were verified. The migration laws of airflow field were obtained in a blasting driving face. The diffusion laws of dusts were obtained after blasting.

  12. Interstellar matter in Shapley-Ames elliptical galaxies. IV. A diffusely distributed component of dust and its effect on colour gradients.

    NASA Astrophysics Data System (ADS)

    Goudfrooij, P.; de Jong, T.

    1995-06-01

    We have investigated IRAS far-infrared observations of a complete, blue magnitude limited sample of 56 elliptical galaxies selected from the Revised Shapley-Ames Catalog. Data from a homogeneous optical CCD imaging survey as well as published X-ray data from the EINSTEIN satellite are used to constrain the infrared data. Dust masses as determined from the IRAS flux densities are found to be roughly an order of magnitude higher than those determined from optical extinction values of dust lanes and patches, in strong contrast with the situation in spiral galaxies. This "mass discrepancy" is found to be independent of the (apparent) inclination of the dust lanes. To resolve this dilemma we postulate that the majority of the dust in elliptical galaxies exists as a diffusely distributed component of dust which is undetectable at optical wavelengths. Using observed radial optical surface brightness profiles, we have systematically investigated possible heating mechanisms for the dust within elliptical galaxies. We find that heating of the dust in elliptical galaxies by the interstellar radiation field is generally sufficient to account for the dust temperatures as indicated by the IRAS flux densities. Collisions of dust grains with hot electrons in elliptical galaxies which are embedded in a hot, X-ray-emitting gas is found to be another effective heating mechanism for the dust. Employing model calculations which involve the transfer of stellar radiation in a spherical distribution of stars mixed with a diffuse distribution of dust, we show that the observed infrared luminosities imply total dust optical depths of the postulated diffusely distributed dust component in the range 0.1<~τ_V_<~0.7 and radial colour gradients 0.03<~{DELTA}(B-I)/{DELTA}log r<~0.25. The observed IRAS flux densities can be reproduced within the 1σ uncertainties in virtually all ellipticals in this sample by this newly postulated dust component, diffusely distributed over the inner few kpc of the galaxies, and heated by optical photons and/or hot electrons. The radial colour gradients implied by the diffuse dust component are found to be smaller than or equal to the observed colour gradients. Thus, we argue that the effect of dust extinction should be taken seriously in the interpretation of colour gradients in elliptical galaxies. We show that the amount of dust observed in luminous elliptical galaxies is generally higher than that expected from production by mass loss of stars within elliptical galaxies and destruction by sputtering in hot gas. This suggests that most of the dust in elliptical galaxies generally has an external origin.

  13. Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System

    NASA Astrophysics Data System (ADS)

    Begum, M.; Das, N.

    2018-01-01

    The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.

  14. Ultraviolet photometry from the orbiting astronomical observatory. XXX - The Orion reflection nebulosity

    NASA Technical Reports Server (NTRS)

    Witt, A. N.; Lillie, C. F.

    1978-01-01

    Surface-brightness measurements are presented that cover the region of Orion in nine intermediate-width bandpasses ranging from 4250 to 1550 A. The existence of an extended ultraviolet reflection nebulosity in this area is confirmed, and the characteristics of its spectrum and spatial distribution are derived. The observations are consistent with a model in which the dense molecular cloud complex in Orion is illuminated by the foreground Orion aggregate of early-type stars. The interpretation is complicated by the fact that foreground dust may contribute to the observed scattered light. The scattering particles in the cloud appear to exhibit a wavelength-dependent albedo similar to that found for interstellar grains in general, with a strong indication that the phase function changes to a less forward-scattering form in the ultraviolet.

  15. Modelling the diffuse dust emission around Orion

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti

    2018-06-01

    We have studied the diffuse radiation in the surroundings of M42 using photometric data from the Galaxy Evolution Explorer (GALEX) in the far-ultraviolet (FUV) and infrared observations of the AKARI space telescope. The main source of the FUV diffuse emission is the starlight from the Trapezium stars scattered by dust in front of the nebula. We initially compare the diffuse FUV with the far-infrared (FIR) observations at the same locations. The FUV-IR correlations enable us to determine the type of dust contributing to this emission. We then use an existing model for studying the FUV dust scattering in Orion to check if it can be extended to regions away from the centre in a 10 deg radius. We obtain an albedo, α = 0.7 and scattering phase function asymmetry factor, g = 0.6 as the median values for our dust locations on different sides of the central Orion region. We find a uniform value of optical parameters across our sample of locations with the dust properties varying significantly from those at the centre of the nebula.

  16. Extracting foreground-obscured μ-distortion anisotropies to constrain primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Remazeilles, M.; Chluba, J.

    2018-07-01

    Correlations between cosmic microwave background (CMB) temperature, polarization, and spectral distortion anisotropies can be used as a probe of primordial non-Gaussianity. Here, we perform a reconstruction of μ-distortion anisotropies in the presence of Galactic and extragalactic foregrounds, applying the so-called Constrained ILC component separation method to simulations of proposed CMB space missions (PIXIE, LiteBIRD, CORE, and PICO). Our sky simulations include Galactic dust, Galactic synchrotron, Galactic free-free, thermal Sunyaev-Zeldovich effect, as well as primary CMB temperature and μ-distortion anisotropies, the latter being added as correlated field. The Constrained ILC method allows us to null the CMB temperature anisotropies in the reconstructed μ-map (and vice versa), in addition to mitigating the contaminations from astrophysical foregrounds and instrumental noise. We compute the cross-power spectrum between the reconstructed (CMB-free) μ-distortion map and the (μ-free) CMB temperature map, after foreground removal and component separations. Since the cross-power spectrum is proportional to the primordial non-Gaussianity parameter, fNL, on scales k˜eq 740 Mpc^{-1}, this allows us to derive fNL-detection limits for the aforementioned future CMB experiments. Our analysis shows that foregrounds degrade the theoretical detection limits (based mostly on instrumental noise) by more than one order of magnitude, with PICO standing the best chance at placing upper limits on scale-dependent non-Gaussianity. We also discuss the dependence of the constraints on the channel sensitivities and chosen bands. Like for B-mode polarization measurements, extended coverage at frequencies ν ≲ 40 GHz and ν ≳ 400 GHz provides more leverage than increased channel sensitivity.

  17. Extracting foreground-obscured μ-distortion anisotropies to constrain primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Remazeilles, M.; Chluba, J.

    2018-04-01

    Correlations between cosmic microwave background (CMB) temperature, polarization and spectral distortion anisotropies can be used as a probe of primordial non-Gaussianity. Here, we perform a reconstruction of μ-distortion anisotropies in the presence of Galactic and extragalactic foregrounds, applying the so-called Constrained ILC component separation method to simulations of proposed CMB space missions (PIXIE, LiteBIRD, CORE, PICO). Our sky simulations include Galactic dust, Galactic synchrotron, Galactic free-free, thermal Sunyaev-Zeldovich effect, as well as primary CMB temperature and μ-distortion anisotropies, the latter being added as correlated field. The Constrained ILC method allows us to null the CMB temperature anisotropies in the reconstructed μ-map (and vice versa), in addition to mitigating the contaminations from astrophysical foregrounds and instrumental noise. We compute the cross-power spectrum between the reconstructed (CMB-free) μ-distortion map and the (μ-free) CMB temperature map, after foreground removal and component separation. Since the cross-power spectrum is proportional to the primordial non-Gaussianity parameter, fNL, on scales k˜eq 740 Mpc^{-1}, this allows us to derive fNL-detection limits for the aforementioned future CMB experiments. Our analysis shows that foregrounds degrade the theoretical detection limits (based mostly on instrumental noise) by more than one order of magnitude, with PICO standing the best chance at placing upper limits on scale-dependent non-Gaussianity. We also discuss the dependence of the constraints on the channel sensitivities and chosen bands. Like for B-mode polarization measurements, extended coverage at frequencies ν ≲ 40 GHz and ν ≳ 400 GHz provides more leverage than increased channel sensitivity.

  18. Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Fanciullo, L.; Guillet, V.; Aniano, G.; Jones, A. P.; Ysard, N.; Miville-Deschênes, M.-A.; Boulanger, F.; Köhler, M.

    2015-08-01

    Aims: We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. Methods: We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS, and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. Results: We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor ~2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Conclusions: Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the V band extinction cross-section presents variations of the order of ~20% (40-50% in extreme cases), while ISRF intensity varies by ~30% (~60% in extreme cases). This must be accounted for in future modelling. Appendices are available in electronic form at http://www.aanda.org

  19. Exploring cosmic origins with CORE: B-mode component separation

    NASA Astrophysics Data System (ADS)

    Remazeilles, M.; Banday, A. J.; Baccigalupi, C.; Basak, S.; Bonaldi, A.; De Zotti, G.; Delabrouille, J.; Dickinson, C.; Eriksen, H. K.; Errard, J.; Fernandez-Cobos, R.; Fuskeland, U.; Hervías-Caimapo, C.; López-Caniego, M.; Martinez-González, E.; Roman, M.; Vielva, P.; Wehus, I.; Achucarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banerji, R.; Bartlett, J.; Bartolo, N.; Baumann, D.; Bersanelli, M.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Burigana, C.; Buzzelli, A.; Cai, Z.-Y.; Calvo, M.; Carvalho, C.-S.; Castellano, G.; Challinor, A.; Chluba, J.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; de Bernardis, P.; de Gasperis, G.; Diego, J.-M.; Di Valentino, E.; Feeney, S.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Genova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernandez-Monteagudo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Lewis, A.; Liguori, M.; Lindholm, V.; Luzzi, G.; Maffei, B.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melin, J.-B.; Melchiorri, A.; Molinari, D.; Monfardini, A.; Natoli, P.; Negrello, M.; Notari, A.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Quartin, M.; Rubino-Martin, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Trombetti, T.; Tucker, C.; Valiviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vittorio, N.; Young, K.; Zannoni, M.

    2018-04-01

    We demonstrate that, for the baseline design of the CORE satellite mission, the polarized foregrounds can be controlled at the level required to allow the detection of the primordial cosmic microwave background (CMB) B-mode polarization with the desired accuracy at both reionization and recombination scales, for tensor-to-scalar ratio values of rgtrsim 5× 10‑3. We consider detailed sky simulations based on state-of-the-art CMB observations that consist of CMB polarization with τ=0.055 and tensor-to-scalar values ranging from r=10‑2 to 10‑3, Galactic synchrotron, and thermal dust polarization with variable spectral indices over the sky, polarized anomalous microwave emission, polarized infrared and radio sources, and gravitational lensing effects. Using both parametric and blind approaches, we perform full component separation and likelihood analysis of the simulations, allowing us to quantify both uncertainties and biases on the reconstructed primordial B-modes. Under the assumption of perfect control of lensing effects, CORE would measure an unbiased estimate of r=(5 ± 0.4)× 10‑3 after foreground cleaning. In the presence of both gravitational lensing effects and astrophysical foregrounds, the significance of the detection is lowered, with CORE achieving a 4σ-measurement of r=5× 10‑3 after foreground cleaning and 60% delensing. For lower tensor-to-scalar ratios (r=10‑3) the overall uncertainty on r is dominated by foreground residuals, not by the 40% residual of lensing cosmic variance. Moreover, the residual contribution of unprocessed polarized point-sources can be the dominant foreground contamination to primordial B-modes at this r level, even on relatively large angular scales, l ~ 50. Finally, we report two sources of potential bias for the detection of the primordial B-modes by future CMB experiments: (i) the use of incorrect foreground models, e.g. a modelling error of Δβs = 0.02 on the synchrotron spectral indices may result in an excess in the recovered reionization peak corresponding to an effective Δ r > 10‑3 (ii) the average of the foreground line-of-sight spectral indices by the combined effects of pixelization and beam convolution, which adds an effective curvature to the foreground spectral energy distribution and may cause spectral degeneracies with the CMB in the frequency range probed by the experiment.

  20. FAR-INFRARED EXTINCTION MAPPING OF INFRARED DARK CLOUDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Wanggi; Tan, Jonathan C.

    Progress in understanding star formation requires detailed observational constraints on the initial conditions, i.e., dense clumps and cores in giant molecular clouds that are on the verge of gravitational instability. Such structures have been studied by their extinction of near-infrared and, more recently, mid-infrared (MIR) background light. It has been somewhat more of a surprise to find that there are regions that appear as dark shadows at far-infrared (FIR) wavelengths as long as ∼100 μm! Here we develop analysis methods of FIR images from Spitzer-MIPS and Herschel-PACS that allow quantitative measurements of cloud mass surface density, Σ. The method buildsmore » on that developed for MIR extinction mapping by Butler and Tan, in particular involving a search for independently saturated, i.e., very opaque, regions that allow measurement of the foreground intensity. We focus on three massive starless core/clumps in the Infrared Dark Cloud (IRDC) G028.37+00.07, deriving mass surface density maps from 3.5 to 70 μm. A by-product of this analysis is the measurement of the spectral energy distribution of the diffuse foreground emission. The lower opacity at 70 μm allows us to probe to higher Σ values, up to ∼1 g cm{sup –2} in the densest parts of the core/clumps. Comparison of the Σ maps at different wavelengths constrains the shape of the MIR-FIR dust opacity law in IRDCs. We find that it is most consistent with the thick ice mantle models of Ossenkopf and Henning. There is tentative evidence for grain ice mantle growth as one goes from lower to higher Σ regions.« less

  1. Composition, structure and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Allamandola, Louis J.

    1986-01-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.

  2. Dust Wind Tails Around Rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image was taken by the Sojourner rover's left front camera on Sol 32. The Pathfinder lander is at right and is about 9 meters away. Wind tails of dust are clearly seen extending from the left side of many of the small rocks in the foreground. The large rocks on the horizon at left center are the next goal of Sojourner as it continues our exploration of Mars.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and managed the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  3. Payload bay and ODS after undocking with Mir

    NASA Image and Video Library

    1996-09-24

    STS079-808-008 (16-26 Sept. 1996) --- In this 70mm frame from the space shuttle Atlantis, the Nile River wanders through the eastern Sahara Desert of Sudan and Egypt. In the foreground is a great bend of the Nile from north to south past the Fourth Cataract at Merowe (an ancient Sudanese dynastic capitol), then north past Dongola and the Third Cararact, to Lake Nasser in Egypt. Prominent sand streaks display a north-south alignment. North of the first great bend a thick dust storm completely obscures the land surface, near Merowe thinner dust creates a hazy look. In the distance the Red Sea stretches from Suez to southern Arabia.

  4. Perils at the heart of the Milky Way: Systematic effects for studying low-luminosity accretion onto Sgr A*

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Mon, Brayden; Haggard, Daryl; Baganoff, Frederick K.; Garmire, Gordon; Degenaar, Nathalie; Reynolds, Mark

    2017-08-01

    The supermassive black hole at the center of our galaxy, Sgr A*, is surprisingly under-luminous. This problem has motivated a host of theoretical models to explain low-level radiatively inefficient accretion flows onto compact objects. We discuss how the Galactic Center sight line, which is optically thick to the scattering of soft X-rays (tau ~ 5), affects high resolution studies of the accretion flow around Sgr A*. X-ray light from compact objects in the dense GC environment is scattered by foreground dust, producing scattering echoes that are time delayed relative to the X-ray source's light curve. We discuss the scattering halo of SWIFT J174540.7-290015, which underwent the brightest X-ray outburst within 30’' of Sgr A*. Preliminary fits to the scattering halo suggest that a small amount of foreground dust, within 250 pc of the GC, affects the X-ray surface brightness profile within 10’' of any GC point source. The associated time delay is on the order of several hours, which is important for understanding the quiescent accretion flow of Sgr A*. We take advantage of the Chandra Galactic Center XVP dataset to explore the effect of the interstellar medium on the inferred characteristics of Sgr A*.

  5. eGSM: A extended Sky Model of Diffuse Radio Emission

    NASA Astrophysics Data System (ADS)

    Kim, Doyeon; Liu, Adrian; Switzer, Eric

    2018-01-01

    Both cosmic microwave background and 21cm cosmology observations must contend with astrophysical foreground contaminants in the form of diffuse radio emission. For precise cosmological measurements, these foregrounds must be accurately modeled over the entire sky Ideally, such full-sky models ought to be primarily motivated by observations. Yet in practice, these observations are limited, with data sets that are observed not only in a heterogenous fashion, but also over limited frequency ranges. Previously, the Global Sky Model (GSM) took some steps towards solving the problem of incomplete observational data by interpolating over multi-frequency maps using principal component analysis (PCA).In this poster, we present an extended version of GSM (called eGSM) that includes the following improvements: 1) better zero-level calibration 2) incorporation of non-uniform survey resolutions and sky coverage 3) the ability to quantify uncertainties in sky models 4) the ability to optimally select spectral models using Bayesian Evidence techniques.

  6. Planck 2015 results: XXII. A map of the thermal Sunyaev-Zeldovich effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghanim, N.; Arnaud, M.; Ashdown, M.

    In this article, we have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angularmore » power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20« less

  7. Planck 2015 results: XXII. A map of the thermal Sunyaev-Zeldovich effect

    DOE PAGES

    Aghanim, N.; Arnaud, M.; Ashdown, M.; ...

    2016-09-20

    In this article, we have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angularmore » power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20« less

  8. The effect of catastrophic collisional fragmentation and diffuse medium accretion on a computational interstellar dust system

    NASA Technical Reports Server (NTRS)

    Liffman, Kurt

    1990-01-01

    The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion.

  9. New Spectral Evidence of an Unaccounted Component of the Near-infrared Extragalactic Background Light from the CIBER

    NASA Astrophysics Data System (ADS)

    Matsuura, Shuji; Arai, Toshiaki; Bock, James J.; Cooray, Asantha; Korngut, Phillip M.; Kim, Min Gyu; Lee, Hyung Mok; Lee, Dae Hee; Levenson, Louis R.; Matsumoto, Toshio; Onishi, Yosuke; Shirahata, Mai; Tsumura, Kohji; Wada, Takehiko; Zemcov, Michael

    2017-04-01

    The extragalactic background light (EBL) captures the total integrated emission from stars and galaxies throughout the cosmic history. The amplitude of the near-infrared EBL from space absolute photometry observations has been controversial and depends strongly on the modeling and subtraction of the zodiacal light (ZL) foreground. We report the first measurement of the diffuse background spectrum at 0.8-1.7 μm from the CIBER experiment. The observations were obtained with an absolute spectrometer over two flights in multiple sky fields to enable the subtraction of ZL, stars, terrestrial emission, and diffuse Galactic light. After subtracting foregrounds and accounting for systematic errors, we find the nominal EBL brightness, assuming the Kelsall ZL model, is {42.7}-10.6+11.9 nW m-2 sr-1 at 1.4 μm. We also analyzed the data using the Wright ZL model, which results in a worse statistical fit to the data and an unphysical EBL, falling below the known background light from galaxies at λ < 1.3 μm. Using a model-independent analysis based on the minimum EBL brightness, we find an EBL brightness of {28.7}-3.3+5.1 nWm-2 sr-1 at 1.4 μm. While the derived EBL amplitude strongly depends on the ZL model, we find that we cannot fit the spectral data to ZL, Galactic emission, and EBL from solely integrated galactic light from galaxy counts. The results require a new diffuse component, such as an additional foreground or an excess EBL with a redder spectrum than that of ZL.

  10. Object detectability at increased ambient lighting conditions.

    PubMed

    Pollard, Benjamin J; Chawla, Amarpreet S; Delong, David M; Hashimoto, Noriyuki; Samei, Ehsan

    2008-06-01

    Under typical dark conditions encountered in diagnostic reading rooms, a reader's pupils will contract and dilate as the visual focus intermittently shifts between the high luminance display and the darker background wall, resulting in increased visual fatigue and the degradation of diagnostic performance. A controlled increase of ambient lighting may, however, reduce the severity of these pupillary adjustments by minimizing the difference between the luminance level to which the eyes adapt while viewing an image (L(adp)) and the luminance level of diffusely reflected light from the area surrounding the display (L(s)). Although ambient lighting in reading rooms has conventionally been kept at a minimum to maintain the perceived contrast of film images, proper Digital Imaging and Communications in Medicine (DICOM) calibration of modern medical-grade liquid crystal displays can compensate for minor lighting increases with very little loss of image contrast. This paper describes two psychophysical studies developed to evaluate and refine optimum reading room ambient lighting conditions through the use of observational tasks intended to simulate real clinical practices. The first study utilized the biologic contrast response of the human visual system to determine a range of representative L(adp) values for typical medical images. Readers identified low contrast horizontal objects in circular foregrounds of uniform luminance (5, 12, 20, and 30 cd/m2) embedded within digitized mammograms. The second study examined the effect of increased ambient lighting on the detection of subtle objects embedded in circular foregrounds of uniform luminance (5, 12, and 35 cd/m2) centered within a constant background of 12 cd/m2 luminance. The images were displayed under a dark room condition (1 lux) and an increased ambient lighting level (50 lux) such that the luminance level of the diffusely reflected light from the background wall was approximately equal to the image L(adp) value of 12 cd/m2. Results from the first study demonstrated that observer true positive and false positive detection rates and true positive detection times were considerably better while viewing foregrounds at 12 and 20 cd/m2 than at the other foreground luminance levels. Results from the second study revealed that under increased room illuminance, the average true positive detection rate improved a statistically significant amount from 39.3% to 55.6% at 5 cd/m2 foreground luminance. Additionally, the true positive rate increased from 46.4% to 56.6% at 35 cd/m2 foreground luminance, and decreased slightly from 90.2% to 87.5% at 12 cd/m2 foreground luminance. False positive rates at all foreground luminance levels remained approximately constant with increased ambient lighting. Furthermore, under increased room illuminance, true positive detection times declined at every foreground luminance level, with the most considerable decrease (approximately 500 ms) at the 5 cd/m2 foreground luminance. The first study suggests that L(adp) of typical mammograms lies between 12 and 20 cd/m2, leading to an optimum reading room illuminance of approximately 50-80 lux. Findings from the second study provide psychophysical evidence that ambient lighting may be increased to a level within this range, potentially improving radiologist comfort, without deleterious effects on diagnostic performance.

  11. African Dust Blows over the Caribbean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shuttle astronauts frequently track Saharan dust storms as they blow from north Africa across the Atlantic Ocean. Dust palls blowing from Africa take about a week to cross the Atlantic. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The top photograph, a classic image showing African dust over the Caribbean, was taken at a time when few scientists had considered the possibility. The image was taken by Space Shuttle astronauts on July 11, 1994 (STS065-75-47). This photograph looks southwest over the northern edge of a large trans-Atlantic dust plume that blew off the Sahara desert in Africa. In this view, Caicos Island in the Bahamas and the mountainous spines of Haiti are partly obscured by the dust. Closer to the foreground, (about 26 degrees north latitude), the skies are clear. The lower photograph (STS105-723-7) was taken by Space Shuttle astronauts while docked to the International Space Station on August 19, 2001. The spacecraft is over the Atlantic Ocean at roughly 45oN, 60oW. The astronauts were looking obliquely to the south; the boundaries of the dust plumes can be traced visually by the abrupt change from clear to hazy atmosphere-the hazy line marks the northern edge of the dust pall near the Caribbean. Images provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  12. The Spectrum of Isotropic Diffuse Gamma-Ray Emission Between 100 Mev and 820 Gev

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Brandt, T. J.; Hays, E.; hide

    2014-01-01

    The gamma-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse gamma-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission, and a longer data accumulation of 50 months, allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature, and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 plus or minus 0.02 and a break energy of (279 plus or minus 52) GeV using our baseline diffuse Galactic emission model. The total intensity attributed to the IGRB is (7.2 plus or minus 0.6) x 10(exp -6) cm(exp -2) s(exp -1) sr(exp -1) above 100 MeV, with an additional +15%/-30% systematic uncertainty due to the Galactic diffuse foregrounds.

  13. PySM: Python Sky Model

    NASA Astrophysics Data System (ADS)

    Thorne, Ben; Alonso, David; Naess, Sigurd; Dunkley, Jo

    2017-04-01

    PySM generates full-sky simulations of Galactic foregrounds in intensity and polarization relevant for CMB experiments. The components simulated are thermal dust, synchrotron, AME, free-free, and CMB at a given Nside, with an option to integrate over a top hat bandpass, to add white instrument noise, and to smooth with a given beam. PySM is based on the large-scale Galactic part of Planck Sky Model code and uses some of its inputs

  14. The Mass Surface Density Distribution of a High-Mass Protocluster forming from an IRDC and GMC

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Tan, Jonathan C.; Kainulainen, Jouni; Ma, Bo; Butler, Michael

    2016-01-01

    We study the probability distribution function (PDF) of mass surface densities of infrared dark cloud (IRDC) G028.36+00.07 and its surrounding giant molecular cloud (GMC). Such PDF analysis has the potential to probe the physical processes that are controlling cloud structure and star formation activity. The chosen IRDC is of particular interest since it has almost 100,000 solar masses within a radius of 8 parsecs, making it one of the most massive, dense molecular structures known and is thus a potential site for the formation of a high-mass, "super star cluster". We study mass surface densities in two ways. First, we use a combination of NIR, MIR and FIR extinction maps that are able to probe the bulk of the cloud structure that is not yet forming stars. This analysis also shows evidence for flattening of the IR extinction law as mass surface density increases, consistent with increasing grain size and/or growth of ice mantles. Second, we study the FIR and sub-mm dust continuum emission from the cloud, especially utlizing Herschel PACS and SPIRE images. We first subtract off the contribution of the foreground diffuse emission that contaminates these images. Next we examine the effects of background subtraction and choice of dust opacities on the derived mass surface density PDF. The final derived PDFs from both methods are compared, including also with other published studies of this cloud. The implications for theoretical models and simulations of cloud structure, including the role of turbulence and magnetic fields, are discussed.

  15. Simulations of Galactic polarized synchrotron emission for Epoch of Reionization observations

    NASA Astrophysics Data System (ADS)

    Spinelli, M.; Bernardi, G.; Santos, M. G.

    2018-06-01

    The detection of the redshifted cosmological 21 cm line signal requires the removal of the Galactic and extragalactic foreground emission, which is orders of magnitude brighter anywhere in the sky. Foreground cleaning methods currently used are efficient in removing spectrally smooth components. However, they struggle in the presence of not spectrally smooth contamination that is, therefore, potentially the most dangerous one. An example of this is the polarized synchrotron emission, which is Faraday rotated by the interstellar medium and leaks into total intensity due to instrumental imperfections. In this work we present new full-sky simulations of this polarized synchrotron emission in the 50 - 200 MHz range, obtained from the observed properties of diffuse polarized emission at low frequencies. The simulated polarized maps are made publicly available, aiming to provide more realistic templates to simulate the effect of instrumental leakage and the effectiveness of foreground separation techniques.

  16. Far-Infrared sources and diffuse emission in M31

    NASA Technical Reports Server (NTRS)

    Xu, Cong; Helou, George

    1994-01-01

    A study on the far-infrared (FIR) emission of M31 has been carried out with the High Resolution (HiRes) maps (approx. 1 min) derived from IRAS data. Sixty-eight FIR sources are detected in M31, which in general coincide with optical HII regions, and contribute 15, 23, 29, and 23 percent to the fluxes in 12, 25, 60, and 100 micron bands, respectively. The remaining diffuse emission, which dominates the FIR emission of M31, is studied using a dust heating model which utilizes the UV and optical photometry maps and the HI maps available in the literature. It is found that the global dust-to-gas ratio in M31 disk is 6.5 10(exp -3), very close to the dust-to-gas ratio in the solar neighborhood. There is a significant galactocentric gradient of the dust-to-HI-gas ratio, with an e-folding scale length of 9 kpc. The diffuse dust correlates tightly with the HI gas. The model indicates that the non-ionizing UV (913-4000A) radiation from massive and intermediate massive stars contributes only about 30 percent of the heating of the diffuse dust, while the optical-NIR (4000-9000A) radiation from the old stellar population is responsible for the most of the heating.

  17. Exploring a Massive Starburst in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Marrone, Daniel; Aravena, M.; Chapman, S.; De Breuck, C.; Gonzalez, A.; Hezavehe, S.; Litke, K.; Ma, J.; Malkan, M.; Spilker, J.; Stalder, B.; Stark, D.; Strandet, M.; Tang, M.; Vieira, J.; Weiss, A.; Welikala, N.

    2016-08-01

    We request deep multi-band imaging of a unique dusty galaxy in the Epoch of Reionization (EoR), selected via its millimeter-wavelength dust emission in the 2500-square-degree South Pole Telescope survey. Spectroscopically confirmed to lie at z=6.900, this galaxy has a large dust mass and is likely one of the most rapidly star-forming objects in the EoR. Using Gemini-S, we have identified z-band emission from this object that could be UV continuum emission at z=6.9 or from a foreground lens. Interpretation of this object, and a complete understanding of its meaning for the census of star formation in the EoR, requires that we establish the presence or absence of gravitational lensing. The dust mass observed in this source is also unexpectedly large for its era, and measurements of the assembled stellar population, through the UV-continuum slope and restframe optical color, will help characterize the stellar mass and dust properties in this very early galaxy, the most spectacular galaxy yet discovered by the SPT.

  18. Temperature Map, "Bonneville Crater" (1:35 p.m.)

    NASA Image and Video Library

    2004-05-17

    Rates of change in surface temperatures during a martian day indicate differences in particle size in and near "Bonneville Crater." This image is the third in a series of five with color-coded temperature information from different times of day. This one is from 1:35 p.m. local solar time at the site where NASA's Mars Exploration Rover Spirit is exploring Mars. Temperature information from Spirit's miniature thermal emission spectrometer is overlaid onto a view of the site from Spirit's panoramic camera. In this color-coded map, quicker reddening during the day suggests sand or dust. (Red is about 270 Kelvin or 27 degrees Fahrenheit.) An example of this is in the shallow depression in the right foreground. Areas that stay blue longer into the day have larger rocks. (Blue indicates about 230 Kelvin or minus 45 Degrees F.) An example is the rock in the left foreground. http://photojournal.jpl.nasa.gov/catalog/PIA05930

  19. The Advanced ACTPol 27/39 GHz Array

    NASA Astrophysics Data System (ADS)

    Simon, S. M.; Beall, J. A.; Cothard, N. F.; Duff, S. M.; Gallardo, P. A.; Ho, S. P.; Hubmayr, J.; Koopman, B. J.; McMahon, J. J.; Nati, F.; Niemack, M. D.; Staggs, S. T.; Vavagiakis, E. M.; Wollack, E. J.

    2018-05-01

    Advanced ACTPol (AdvACT) will observe the temperature and polarization of the cosmic microwave background (CMB) at multiple frequencies and high resolution to place improved constraints on inflation, dark matter, and dark energy. Foregrounds from synchrotron and dust radiation are a source of contamination that must be characterized and removed across a wide range of frequencies. AdvACT will thus observe at five frequency bands from 27 to 230 GHz. We discuss the design of the pixels and feedhorns for the 27/39 GHz multichroic array for AdvACT, which will target the synchrotron radiation that dominates at these frequencies. To gain 35% in mapping speed in the 39 GHz band where the foreground signals are faintest, the pixel number was increased through reducing the pixel diameter to 1.08λ at the lowest frequency, which represents a 22% decrease in size compared to our previously most tightly packed pixels.

  20. All-Sky Observational Evidence for An Inverse Correlation Between Dust Temperature and Emissivity Spectral Index

    NASA Technical Reports Server (NTRS)

    Liang, Z.; Fixsen, D. J.; Gold, B.

    2012-01-01

    We show that a one-component variable-emissivity-spectral-index model (the free- model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed- models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100-240 micrometer maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-alpha model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (T(sub dust)) to be 13.7-22.7 (plus or minus 1.3) K, the emissivity spectral index (alpha) to be 1.2-3.1 (plus or minus 0.3) and the optical depth (tau) to range 0.6-46 x 10(exp -5) with a 23 per cent uncertainty. Using these estimates, we present all-sky evidence for an inverse correlation between the emissivity spectral index and dust temperature, which fits the relation alpha = 1/(delta + omega (raised dot) T(sub dust) with delta = -.0.510 plus or minus 0.011 and omega = 0.059 plus or minus 0.001. This best model will be useful to cosmic microwave background experiments for removing foreground dust contamination and it can serve as an all-sky extended-frequency reference for future higher resolution dust models.

  1. Coal Mine Dust Desquamative Chronic Interstitial Pneumonia: A Precursor of Dust-Related Diffuse Fibrosis and of Emphysema.

    PubMed

    Jelic, Tomislav M; Estalilla, Oscar C; Sawyer-Kaplan, Phyllis R; Plata, Milton J; Powers, Jeremy T; Emmett, Mary; Kuenstner, John T

    2017-07-01

    Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. To identify the precursor of dust-related diffuse fibrosis and emphysema. Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Coal miners had 331 birefringent particles/high power field while smokers had 4 (p<0.001). Every coal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.

  2. The spectral energy distribution of the scattered light from dark clouds

    NASA Technical Reports Server (NTRS)

    Mattila, Kalevi; Schnur, G. F. O.

    1989-01-01

    A dark cloud is exposed to the ambient radiation field of integrated starlight in the Galaxy. Scattering of starlight by the dust particles gives rise to a diffuse surface brightness of the dark nebula. The intensity and the spectrum of this diffuse radiation can be used to investigate, e.g., the scattering parameters of the dust, the optical thickness of the cloud, and as a probe of the ambient radiation field at the location of the cloud. An understanding of the scattering process is also a prerequisite for the isolation of broad spectral features due to fluorescence or to any other non-scattering origin of the diffuse light. Model calculations are presented for multiple scattering in a spherical cloud. These calculations show that the different spectral shapes of the observed diffuse light can be reproduced with standard dust parameters. The possibility to use the observed spectrum as a diagnostic tool for analyzing the thickness of the cloud and the dust particle is discussed.

  3. Interpreting The Unresolved Intensity Of Cosmologically Redshifted Line Radiation

    NASA Technical Reports Server (NTRS)

    Switzer, E. R.; Chang, T.-C.; Masui, K. W.; Pen, U.-L.; Voytek, T. C.

    2016-01-01

    Intensity mapping experiments survey the spectrum of diffuse line radiation rather than detect individual objects at high signal-to-noise ratio. Spectral maps of unresolved atomic and molecular line radiation contain three-dimensional information about the density and environments of emitting gas and efficiently probe cosmological volumes out to high redshift. Intensity mapping survey volumes also contain all other sources of radiation at the frequencies of interest. Continuum foregrounds are typically approximately 10(sup 2)-10(Sup 3) times brighter than the cosmological signal. The instrumental response to bright foregrounds will produce new spectral degrees of freedom that are not known in advance, nor necessarily spectrally smooth. The intrinsic spectra of fore-grounds may also not be well known in advance. We describe a general class of quadratic estimators to analyze data from single-dish intensity mapping experiments and determine contaminated spectral modes from the data themselves. The key attribute of foregrounds is not that they are spectrally smooth, but instead that they have fewer bright spectral degrees of freedom than the cosmological signal. Spurious correlations between the signal and foregrounds produce additional bias. Compensation for signal attenuation must estimate and correct this bias. A successful intensity mapping experiment will control instrumental systematics that spread variance into new modes, and it must observe a large enough volume that contaminant modes can be determined independently from the signal on scales of interest.

  4. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. VIII. A WIDE-AREA, HIGH-RESOLUTION MAP OF DUST EXTINCTION IN M31

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor ofmore » ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.« less

  5. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant.

    PubMed

    Camplani, M; Malizia, A; Gelfusa, M; Barbato, F; Antonelli, L; Poggi, L A; Ciparisse, J F; Salgado, L; Richetta, M; Gaudio, P

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  6. Image computing techniques to extrapolate data for dust tracking in case of an experimental accident simulation in a nuclear fusion plant

    NASA Astrophysics Data System (ADS)

    Camplani, M.; Malizia, A.; Gelfusa, M.; Barbato, F.; Antonelli, L.; Poggi, L. A.; Ciparisse, J. F.; Salgado, L.; Richetta, M.; Gaudio, P.

    2016-01-01

    In this paper, a preliminary shadowgraph-based analysis of dust particles re-suspension due to loss of vacuum accident (LOVA) in ITER-like nuclear fusion reactors has been presented. Dust particles are produced through different mechanisms in nuclear fusion devices, one of the main issues is that dust particles are capable of being re-suspended in case of events such as LOVA. Shadowgraph is based on an expanded collimated beam of light emitted by a laser or a lamp that emits light transversely compared to the flow field direction. In the STARDUST facility, the dust moves in the flow, and it causes variations of refractive index that can be detected by using a CCD camera. The STARDUST fast camera setup allows to detect and to track dust particles moving in the vessel and then to obtain information about the velocity field of dust mobilized. In particular, the acquired images are processed such that per each frame the moving dust particles are detected by applying a background subtraction technique based on the mixture of Gaussian algorithm. The obtained foreground masks are eventually filtered with morphological operations. Finally, a multi-object tracking algorithm is used to track the detected particles along the experiment. For each particle, a Kalman filter-based tracker is applied; the particles dynamic is described by taking into account position, velocity, and acceleration as state variable. The results demonstrate that it is possible to obtain dust particles' velocity field during LOVA by automatically processing the data obtained with the shadowgraph approach.

  7. Anomalous diffusion due to the non-Markovian process of the dust particle velocity in complex plasmas

    NASA Astrophysics Data System (ADS)

    Ghannad, Z.; Hakimi Pajouh, H.

    2017-12-01

    In this work, the motion of a dust particle under the influence of the random force due to dust charge fluctuations is considered as a non-Markovian stochastic process. Memory effects in the velocity process of the dust particle are studied. A model is developed based on the fractional Langevin equation for the motion of the dust grain. The fluctuation-dissipation theorem for the dust grain is derived from this equation. The mean-square displacement and the velocity autocorrelation function of the dust particle are obtained in terms of the Mittag-Leffler functions. Their asymptotic behavior and the dust particle temperature due to charge fluctuations are studied in the long-time limit. As an interesting result, it is found that the presence of memory effects in the velocity process of the dust particle as a non-Markovian process can cause an anomalous diffusion in dusty plasmas. In this case, the velocity autocorrelation function of the dust particle has a power-law decay like t - α - 2, where the exponent α take values 0 < α < 1.

  8. Bridging the gap: New ALMA observations of lensed dusty galaxies in the Frontier Fields

    NASA Astrophysics Data System (ADS)

    Kearney, Zoe; Pope, Alexandra; Aretxaga, Itziar; Hughes, David; Marchesini, Danilo; Montana, Alfredo; Murphy, Eric Joseph; Wilson, Grant; Yun, Min

    2018-01-01

    During much of cosmic time, most star formation activity in galaxies is obscured by dust. In order to complete the census of star formation, we must bridge the gap between optical and infrared galaxy populations. With AzTEC on the Large Millimeter Telescope (LMT), we surveyed two of the HST Frontier Fields in order to exploit the gravitational lensing from foreground clusters to study dust-obscured in galaxies below the nominal confusion limit. We detect millimeter galaxies with magnifications ranging from 1.1-8, allowing us to detect dust-obscured star formation rates in galaxies as low as ~10 Msun/year. We present new observations with ALMA in order to localize the millimeter emission of the AzTEC/LMT sources and make unambiguous associations with the optical galaxies in the deep HST images. We investigate the issue of multiplicity within our sample. We discuss the multi-wavelength counterparts of our faint millimeter sources and how they relate to brighter dusty galaxies from previous surveys.

  9. The impacts of the axial-to-radial airflow quantity ratio and suction distance on air curtain dust control in a fully mechanized coal face.

    PubMed

    Wang, Hao; Cheng, Weimin; Sun, Biao; Yu, Haiming; Jin, Hu

    2018-03-01

    To understand the impacts of the axial-to-radial airflow quantity ratio (denoted as R) and the suction distance (denoted as D s ) on air curtain dust control in a fully mechanized coal face, the 3 down 610 coal face in Jiangzhuang coal mine was numerically simulated in this study. A mathematic model was established to describe the airflow migration and dust diffusion in a coal face, and a scaled physical model was constructed. The comparison between simulation results and field measurements validated the model and the parameter settings. Furthermore, the airflow migration and dust diffusion at various R and D s are analyzed using Ansys CFD. The results show that a reduction of R and D s is conducive to the formation of an effective axial dust control air curtain; the dust diffusion distance decreases with the decrease of both R and D s . By analyzing the simulation results, the optimal parameter for air curtain dust control in the 3 down 610 coal face and those faces with similar production conditions is determined as R = 1/9 and D s  = 2 m. Under the optimal parameter condition, the high-concentration dust can be confined in front of the mining driver within a space 5.8 m away from the coal face.

  10. Knowledge Theories Can Inform Evaluation Practice: What Can a Complexity Lens Add?

    ERIC Educational Resources Information Center

    Hawe, Penelope; Bond, Lyndal; Butler, Helen

    2009-01-01

    Programs and policies invariably contain new knowledge. Theories about knowledge utilization, diffusion, implementation, transfer, and knowledge translation theories illuminate some mechanisms of change processes. But more often than not, when it comes to understanding patterns about change processes, "the foreground" is privileged more…

  11. Heating of Dust in Gamma-Ray Burst Environments

    NASA Astrophysics Data System (ADS)

    Hackett, Brianne; Updike, A. C.; Hartmann, D. H.

    2010-01-01

    We report observations in the R-band of the afterglow of GRB 090618 with the SARA 0.9m telescope at Kitt Peak National Observatory. The lightcurve can be fit with a broken power law, with a possible jet break at t j ˜ 0.74 days. The foreground extinction to this burst is A R = 0.036 while the extinction in the host galaxy is undetermined. We also carry out a study of dust destruction due to heating by the prompt and early afterglow emission from the gamma-ray bursts. Dust can be destroyed to distances of several parsecs, so that the local environment of a GRB may not contribute significantly to the possible obscuration. While multiband photometry of GRB afterglows offers a powerful probe of dust evolution to large redshifts, the effects of the intense GRB radiation on dust in its vicinity must be taken into account. This project was funded by a partnership between the National Science Foundation (NSF AST-0552798), Research Experiences for Undergraduates (REU), and the Department of Defense (DoD) ASSURE (Awards to Stimulate and Support Undergraduate Research Experiences) programs. We thank S. Brittain, A. Colson, J. Lewis, and M. Kronberg for obtaining the CCD images with the SARA telescope. This project has also benefited from discussions with Renata Cumbee and Shanna Estes.

  12. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  13. Selective mode excitation in finite size plasma crystals by diffusely reflected laser light

    NASA Astrophysics Data System (ADS)

    Schablinski, Jan; Block, Dietmar

    2015-02-01

    The possibility to use diffuse reflections of a laser beam to exert a force on levitating dust particles is studied experimentally. Measurements and theoretical predictions are found to be in good agreement. Further, the method is applied to test the selective excitation of breathing-like modes in finite dust clusters.

  14. Experimental observation of self excited co-rotating multiple vortices in a dusty plasma with inhomogeneous plasma background

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2017-03-01

    We report an experimental observation of multiple co-rotating vortices in an extended dust column in the background of an inhomogeneous diffused plasma. An inductively coupled rf discharge is initiated in the background of argon gas in the source region. This plasma was later found to diffuse into the main experimental chamber. A secondary DC glow discharge plasma is produced to introduce dust particles into the plasma volume. These micron-sized poly-disperse dust particles get charged in the background of the DC plasma and are transported by the ambipolar electric field of the diffused plasma. These transported particles are found to be confined in an electrostatic potential well, where the resultant electric field due to the diffused plasma (ambipolar E-field) and glass wall charging (sheath E-field) holds the micron-sized particles against the gravity. Multiple co-rotating (anti-clockwise) dust vortices are observed in the dust cloud for a particular discharge condition. The transition from multiple vortices to a single dust vortex is observed when input rf power is lowered. The occurrence of these vortices is explained on the basis of the charge gradient of dust particles, which is orthogonal to the ion drag force. The charge gradient is a consequence of the plasma inhomogeneity along the dust cloud length. The detailed nature and the reason for multiple vortices are still under investigation through further experiments; however, preliminary qualitative understanding is discussed based on the characteristic scale length of the dust vortex. There is a characteristic size of the vortex in the dusty plasma; therefore, multiple vortices could possibly be formed in an extended dusty plasma with inhomogeneous plasma background. The experimental results on the vortex motion of particles are compared with a theoretical model and are found to be in close agreement.

  15. SWIFT ULTRAVIOLET OBSERVATIONS OF SUPERNOVA 2014J IN M82: LARGE EXTINCTION FROM INTERSTELLAR DUST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Peter J.; Smitka, Michael T.; Wang, Lifan

    We present optical and ultraviolet (UV) photometry and spectra of the very nearby and highly reddened supernova (SN) 2014J in M82 obtained with the Swift Ultra-Violet/Optical Telescope (UVOT). Comparison of the UVOT grism spectra of SN 2014J with Hubble Space Telescope observations of SN2011fe or UVOT grism spectra of SN 2012fr are consistent with an extinction law with a low value of R{sub V} ∼1.4. The high reddening causes the detected photon distribution in the broadband UV filters to have a much longer effective wavelength than for an unreddened SN. The light curve evolution is consistent with this shift andmore » does not show a flattening due to photons being scattered back into the line of sight (LOS). The light curve shapes and color evolution are inconsistent with a contribution scattered into the LOS by circumstellar dust. We conclude that most or all of the high reddening must come from interstellar dust. We show that even for a single dust composition, there is not a unique reddening law caused by circumstellar scattering. Rather, when considering scattering from a time-variable source, we confirm earlier studies that the reddening law is a function of the dust geometry, column density, and epoch. We also show how an assumed geometry of dust as a foreground sheet in mixed stellar/dust systems will lead to a higher inferred R{sub V}. Rather than assuming the dust around SNe is peculiar, SNe may be useful probes of the interstellar reddening laws in other galaxies.« less

  16. Interstellar Silicon Depletion and the Ultraviolet Extinction

    NASA Astrophysics Data System (ADS)

    Mishra, Ajay; Li, Aigen

    2018-01-01

    Spinning small silicate grains were recently invoked to account for the Galactic foreground anomalous microwave emission. These grains, if present, will absorb starlight in the far ultraviolet (UV). There is also renewed interest in attributing the enigmatic 2175 Å interstellar extinction bump to small silicates. To probe the role of silicon in the UV extinction, we explore the relations between the amount of silicon required to be locked up in silicates [Si/H]dust and the 2175 Å bump or the far-UV extinction rise, based on an analysis of the extinction curves along 46 Galactic sightlines for which the gas-phase silicon abundance [Si/H]gas is known. We derive [Si/H]dust either from [Si/H]ISM - [Si/H]gas or from the Kramers- Kronig relation which relates the wavelength-integrated extinction to the total dust volume, where [Si/H]ISM is the interstellar silicon reference abundance and taken to be that of proto-Sun or B stars. We also derive [Si/H]dust from fi�tting the observed extinction curves with a mixture of amorphous silicates and graphitic grains. We fi�nd that in all three cases [Si/H]dust shows no correlation with the 2175 Å bump, while the carbon depletion [C/H]dust tends to correlate with the 2175 Å bump. This supports carbon grains instead of silicates as the possible carrier of the 2175 Å bump. We also �find that neither [Si/H]dust nor [C/H]dust alone correlates with the far-UV extinction, suggesting that the far-UV extinction is a combined effect of small carbon grains and silicates.

  17. Interstellar Silicon Depletion and the Ultraviolet Extinction

    NASA Astrophysics Data System (ADS)

    Mishra, Ajay; Li, Aigen

    2017-12-01

    Spinning small silicate grains were recently invoked to account for the Galactic foreground anomalous microwave emission. These grains, if present, will absorb starlight in the far-ultraviolet (UV). There is also renewed interest in attributing the enigmatic 2175 \\mathringA interstellar extinction bump to small silicates. To probe the role of silicon in the UV extinction, we explore the relations between the amount of silicon required to be locked up in silicates {[{Si}/{{H}}]}{dust} and the 2175 \\mathringA bump or the far-UV extinction rise, based on an analysis of the extinction curves along 46 Galactic sightlines for which the gas-phase silicon abundance {[{Si}/{{H}}]}{gas} is known. We derive {[{Si}/{{H}}]}{dust} either from {[{Si}/{{H}}]}{ISM}‑{[{Si}/{{H}}]}{gas} or from the Kramers–Kronig relation, which relates the wavelength-integrated extinction to the total dust volume, where {[{Si}/{{H}}]}{ISM} is the interstellar silicon reference abundance and taken to be that of proto-Sun or B stars. We also derive {[{Si}/{{H}}]}{dust} from fitting the observed extinction curves with a mixture of amorphous silicates and graphitic grains. We find that in all three cases {[{Si}/{{H}}]}{dust} shows no correlation with the 2175 \\mathringA bump, while the carbon depletion {[{{C}}/{{H}}]}{dust} tends to correlate with the 2175 \\mathringA bump. This supports carbon grains instead of silicates as the possible carriers of the 2175 \\mathringA bump. We also find that neither {[{Si}/{{H}}]}{dust} nor {[{{C}}/{{H}}]}{dust} alone correlates with the far-UV extinction, suggesting that the far-UV extinction is a combined effect of small carbon grains and silicates.

  18. Dust lanes in backlit galaxies: first results from the STARSMOG survey

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Bradford, Sarah; Holwerda, Benne; Conselice, Christopher; Baldry, Ivan; Bland-Hawthorn, Jonathan; Driver, Simon P.; Dunne, Loretta; Liske, Jochen; Robotham, Aaron; Tuffs, Richard

    2017-01-01

    STARSMOG is an HST WFC3 snapshot survey of dust attenuation in overlapping backlit galaxies, planned to span the range of morphological type and luminosity of dust-rich galaxies. The target list came from the Galaxy Zoo and GAMA catalogs, imposing a minimum redshift difference to guarantee large line-of-sight separations, virtually eliminating scattering corrections and avoiding potentially distorted interacting systems. These include the first flocculent spirals studied with the occulting-galaxy approach. We present results from the geometrically most favorable subset of 9 pairs from the 54 observed STARSMOG systems. The data quality and intensity of background light let us map dust features with attenuations of only a few per cent in the red F606W band. Organized dust lanes show sharp outer boundaries in disks, and are absent in galaxies of late Hubble type. Many Sb-Sc disks show a dusty web of criss-crossing lanes, some nearly at right angles to the overall spiral pattern. Particularly favorable cases constraint the scale height of starlight in the foreground disks, through comparison of the light loss in regions with and without background light. The covering fraction of dust at various attenuation levels is consistent between barred and nonbarred spirals, although dust features may be more concentrated in azimuth when a bar is present (and concentrated in an annulus when a stellar resonance ring is seen). Together with our previous data on much more limited samples or at lower resolution,these results add to a picture where galaxies of similar morphology may have quite different attenuation patterns with radius for both arm and interarm dust.

  19. ASSOCIATIONS BETWEEN SMALL-SCALE STRUCTURE IN LOCAL GALACTIC NEUTRAL HYDROGEN AND IN THE COSMIC MICROWAVE BACKGROUND OBSERVED BY PLANCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verschuur, Gerrit L., E-mail: gverschu@naic.edu

    High-resolution galactic neutral hydrogen (HI) data obtained with the Green Bank Telescope (GBT) over 56 square degrees of sky around l = 132°, b = 25° are compared with small-scale structure in the Cosmic Microwave Background observed by PLANCK, specifically at 143 and 857 GHz, as well as with 100 μm observations from the IRIS survey. The analysis uses data in 13 2° × 2° sub-areas found in the IRSA database at IPAC. The results confirm what has been reported previously; nearby galactic HI features and high-frequency continuum sources believed to be cosmological are in fact clearly associated. While severalmore » attempts strongly suggest that the associations are statistically significant, the key to understanding the phenomenon lies in the fact that in any given area HI is associated with cirrus dust at certain HI velocities and with 143 GHz features at different velocities. At the same time, for the 13 sub-areas studied, there is very little overlap between the dust and 143 GHz features. The data do not imply that the HI itself gives rise to the high-frequency continuum emission. Rather, they appear to indicate undiagnosed brightness enhancements indirectly associated with the HI. If low density interstellar electrons concentrated into clumps, or observed in directions where their integrated line-of-sight column densities are greater than the background in a manner similar to the phenomena that give rise to structure in diffuse HI structure, they will profoundly affect attempts to create a foreground electron mask used for processing PLANCK as well as WMAP data.« less

  20. Infrared Extinction and Stellar Populations in the Milky Way Midplane

    NASA Astrophysics Data System (ADS)

    Zasowski, Gail; Majewski, S. R.; Benjamin, R. A.; Nidever, D. L.; Skrutskie, M. F.; Indebetouw, R.; Patterson, R. J.; Meade, M. R.; Whitney, B. A.; Babler, B.; Churchwell, E.; Watson, C.

    2012-01-01

    The primary laboratory for developing and testing models of galaxy formation, structure, and evolution is our own Milky Way, the closest large galaxy and the only one in which we can resolve large numbers of individual stars. The recent availability of extensive stellar surveys, particularly infrared ones, has enabled precise, contiguous measurement of large-scale Galactic properties, a major improvement over inferences based on selected, but scattered, sightlines. However, our ability to fully exploit the Milky Way as a galactic laboratory is severely hampered by the fact that its midplane and central bulge -- where most of the Galactic stellar mass lies -- is heavily obscured by interstellar dust. Therefore, proper consideration of the interstellar extinction is crucial. This thesis describes a new extinction-correction method (the RJCE method) that measures the foreground extinction towards each star and, in many cases, enables recovery of its intrinsic stellar type. We have demonstrated the RJCE Method's validity and used it to produce new, reliable extinction maps of the heavily-reddened Galactic midplane. Taking advantage of the recovered stellar type information, we have generated maps probing the extinction at different heliocentric distances, thus yielding information on the elusive three-dimensional distribution of the interstellar dust. We also performed a study of the interstellar extinction law itself which revealed variations previously undetected in the diffuse ISM and established constraints on models of ISM grain formation and evolution. Furthermore, we undertook a study of large-scale stellar structure in the inner Galaxy -- the bar(s), bulge(s), and inner spiral arms. We used observed and extinction-corrected infrared photometry to map the coherent stellar features in these heavily-obscured parts of the Galaxy, placing constraints on models of the central stellar mass distribution.

  1. Drifts of Dust or Something Else?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    While the interior and far walls of the crater dubbed 'Bonneville' can be seen in the background, the dominant foreground features in this 180-degree navigation camera mosaic are the wind-deposited drifts of dust or sand. NASA's Mars Exploration Rover Spirit completed this mosaic on sol 71, March 15, 2004, from its newest location at the rim of 'Bonneville' crater.

    Scientists are interested in these formations in part because they might give insight into the processes that formed some of the material within the crater. Thermal emission measurements by the rover indicate that the dark material just below the far rim of this crater is spectrally similar to rocks that scientists have analyzed along their journey to this location. They want to know why this soil-like material has a spectrum that more closely resembles rocks rather than other soils examined so far. The drifts seen in the foreground of this mosaic might have the answer. Scientists hypothesize that these drifts might consist of wind-deposited particles that are the same as the dark material found against the back wall of the crater. If so, Spirit may spend time studying the material and help scientists understand why it is different from other fine-grained material seen at Gusev.

    The drifts appear to be lighter in color than the dark material deposited on the back wall of the crater. They might be covered by a thin deposit of martian dust, or perhaps the drift is like other drifts seen during Spirit's journey and is just a collection of martian dust.

    To find out, Spirit will spend some of sol 72 digging its wheels into the drift to uncover its interior. After backing up a bit, Spirit will use the panoramic camera and miniature thermal emission spectrometer to analyze the scuffed area. If the interior material has a similar spectrum to the dark deposit in the crater, then Spirit will most likely stay here a little longer to study the drift with the instruments on its robotic arm. If the material is uniform - that is, dusty all the way down, Spirit will most likely move off to another target.

  2. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral/carbonaceous matrix, without organic refractory mantles, in between the ices. Unfortunately, they may be significantly processed by chemical processes accompanying the warming (over the 10 K of the dark cloud cores) which occurs in the outer solar system. Evidence of this processing is the chemical anomalies present in interplanetary dust particles collected in the stratosphere, which may be the most primitive materials we have obtained to date. The comet return mission would greatly clarify the situation, and probably provide samples of genuine interstellar grains.

  3. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2015-01-19

    We present that the γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy rangemore » between 200 MeV and 100 GeV. Improvements in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. In conclusion, the total intensity attributed to the IGRB is (7.2 ± 0.6) × 10 –6 cm –2 s –1 sr –1 above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.« less

  4. THE SPECTRUM OF ISOTROPIC DIFFUSE GAMMA-RAY EMISSION BETWEEN 100 MeV AND 820 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; Buehler, R.; Ajello, M.

    2015-01-20

    The γ-ray sky can be decomposed into individually detected sources, diffuse emission attributed to the interactions of Galactic cosmic rays with gas and radiation fields, and a residual all-sky emission component commonly called the isotropic diffuse γ-ray background (IGRB). The IGRB comprises all extragalactic emissions too faint or too diffuse to be resolved in a given survey, as well as any residual Galactic foregrounds that are approximately isotropic. The first IGRB measurement with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope (Fermi) used 10 months of sky-survey data and considered an energy range between 200 MeV and 100 GeV. Improvementsmore » in event selection and characterization of cosmic-ray backgrounds, better understanding of the diffuse Galactic emission (DGE), and a longer data accumulation of 50 months allow for a refinement and extension of the IGRB measurement with the LAT, now covering the energy range from 100 MeV to 820 GeV. The IGRB spectrum shows a significant high-energy cutoff feature and can be well described over nearly four decades in energy by a power law with exponential cutoff having a spectral index of 2.32 ± 0.02 and a break energy of (279 ± 52) GeV using our baseline DGE model. The total intensity attributed to the IGRB is (7.2 ± 0.6) × 10{sup –6} cm{sup –2} s{sup –1} sr{sup –1} above 100 MeV, with an additional +15%/–30% systematic uncertainty due to the Galactic diffuse foregrounds.« less

  5. Separation of irradiance and reflectance from observed color images by logarithmical nonlinear diffusion process

    NASA Astrophysics Data System (ADS)

    Saito, Takahiro; Takahashi, Hiromi; Komatsu, Takashi

    2006-02-01

    The Retinex theory was first proposed by Land, and deals with separation of irradiance from reflectance in an observed image. The separation problem is an ill-posed problem. Land and others proposed various Retinex separation algorithms. Recently, Kimmel and others proposed a variational framework that unifies the previous Retinex algorithms such as the Poisson-equation-type Retinex algorithms developed by Horn and others, and presented a Retinex separation algorithm with the time-evolution of a linear diffusion process. However, the Kimmel's separation algorithm cannot achieve physically rational separation, if true irradiance varies among color channels. To cope with this problem, we introduce a nonlinear diffusion process into the time-evolution. Moreover, as to its extension to color images, we present two approaches to treat color channels: the independent approach to treat each color channel separately and the collective approach to treat all color channels collectively. The latter approach outperforms the former. Furthermore, we apply our separation algorithm to a high quality chroma key in which before combining a foreground frame and a background frame into an output image a color of each pixel in the foreground frame are spatially adaptively corrected through transformation of the separated irradiance. Experiments demonstrate superiority of our separation algorithm over the Kimmel's separation algorithm.

  6. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  7. Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Melin, J.-B.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Sauvé, A.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We have constructed all-sky Compton parameters maps, y-maps, of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterized in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales, and cosmic infrared background and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks, we compute the y-map angular power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20 <ℓ< 600. We compare the measured tSZ power spectrum and higher order statistics to various physically motivated models and discuss the implications of our results in terms of cluster physics and cosmology.

  8. Measurement of the cosmic optical background using the long range reconnaissance imager on New Horizons

    PubMed Central

    Zemcov, Michael; Immel, Poppy; Nguyen, Chi; Cooray, Asantha; Lisse, Carey M.; Poppe, Andrew R.

    2017-01-01

    The cosmic optical background is an important observable that constrains energy production in stars and more exotic physical processes in the universe, and provides a crucial cosmological benchmark against which to judge theories of structure formation. Measurement of the absolute brightness of this background is complicated by local foregrounds like the Earth's atmosphere and sunlight reflected from local interplanetary dust, and large discrepancies in the inferred brightness of the optical background have resulted. Observations from probes far from the Earth are not affected by these bright foregrounds. Here we analyse the data from the Long Range Reconnaissance Imager (LORRI) instrument on NASA's New Horizons mission acquired during cruise phase outside the orbit of Jupiter, and find a statistical upper limit on the optical background's brightness similar to the integrated light from galaxies. We conclude that a carefully performed survey with LORRI could yield uncertainties comparable to those from galaxy counting measurements. PMID:28397781

  9. The Reddening law outside the local group galaxies: The case of NGC 7552 and NGC 5236

    NASA Technical Reports Server (NTRS)

    Kinney, Anne L.; Calzetti, Daniela; Bica, Eduardo; Storchi-Bergmann, Thaisa

    1994-01-01

    The dust reddening law from the UV to the near-IR for the extended regions of galaxies is here derived from the spectral distributions of the starburst spiral galaxies NGC 7552 and NGC 5236. The centers of these galaxies have similar absorption and emission line spectra, differing only if the strength of their interstellar lines and in the continuum distribution, with NGC 7552 appearing more reddened than NGC 5236. The disk of NGC 7552 is more inclined, and there is evidence that its center is observed through additional foreground dust and gas clouds, as compared to the center of NGC 5236. While the galaxies can be expected to have similar dust content, they are known to have different dust path lengths to our line of sight. Therefore, differences in the shape of the spectra can be attributed mainly to the effects of dust, allowing us to probe for the first time the properties of the reddening law outside the local group of galaxies. We derive the reddening law based on the optical depth of the emission line of H Alpha and H Beta and also based on the continuum distribtuion. We find that the optical depth from the emission line regions are about twice the optical depth of the continuum regions. Thus, dereddening a starburst galaxy by scaling the Milky Way reddening laws to optical depths obtained from the H Alpha/H Beta line ratio overcompensates for the effect of dust.

  10. Recent Hubble Space Telescope Imaging of the Light Echoes of Supernova 2014J in M 82 and Supernova 2016adj in Centaurus A

    NASA Astrophysics Data System (ADS)

    Lawrence, Stephen S.; Hyder, Ali; Sugerman, Ben; Crotts, Arlin P. S.

    2017-06-01

    We report on our ongoing use of Hubble Space Telescope (HST) imaging to monitor the scattered light echoes of recent heavily-extincted supernovae in two nearby, albeit unusual, galaxies.Supernova 2014J was a highly-reddened Type Ia supernova that erupted in the nearby irregular star-forming galaxy M 82 in 2014 January. It was discovered to have light echo by Crotts (2016) in early epoch HST imaging and has been further described by Yang, et al. (2017) based on HST imaging through late 2014. Our ongoing monitoring in the WFC3 F438W, F555W, and F814W filters shows that, consistent with Crotts (2106) and Yang, et al. (2017), throughout 2015 and 2016 the main light echo arc expanded through a dust complex located approximately 230 pc in the foreground of the supernova. This main light echo has, however, faded dramatically in our most recent HST imaging from 2017 March. The supernova itself has also faded to undetectable levels by 2017 March.Supernova 2016adj is a highly-reddened core-collapse supernova that erupted inside the unusual dust lane of the nearby giant elliptical galaxy Centaurus A (NGC 5128) in 2016 February. It was discovered to have a light echo by Sugerman & Lawrence (2016) in early epoch HST imaging in 2016 April. Our ongoing monitoring in the WFC3 F438W, F547M, and F814W filters shows a slightly elliptical series of light echo arc segments hosted by a tilted dust complex ranging approximately 150--225 pc in the foreground of the supernova. The supernova itself has also faded to undetectable levels by 2017 April.References: Crotts, A. P. S., ApJL, 804, L37 (2016); Yang et al., ApJ, 834, 60 (2017); Sugerman, B. and Lawrence, S., ATel #8890 (2016).

  11. Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl

    2017-12-01

    We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.

  12. The dwarf spheroidal galaxy in Draco. I - New BV photometry. II - Galactic foreground reddening

    NASA Technical Reports Server (NTRS)

    Stetson, P. B.

    1979-01-01

    BV photoelectric photometry for 39 stars and BV photographic photometry for 514 stars in the field of the Draco dwarf spheroidal galaxy are presented. The color-magnitude diagram for 512 of these field stars is found to display a well-defined red horizontal branch as well as a red giant branch whose observed width is comparable to the accidental photometric error. The results also indicate that a more diffuse sequence of stars lies about 0.1 mag to the blue of the giant branch and that an upper horizontal branch of more massive core helium-burning stars may also be present. The foreground reddening toward Draco is then determined by narrow-band uvby-beta photometry of galactic B-A-F stars.

  13. Probing the infrared counterparts of diffuse far-ultraviolet sources in the Galaxy

    NASA Astrophysics Data System (ADS)

    Saikia, Gautam; Shalima, P.; Gogoi, Rupjyoti; Pathak, Amit

    2017-12-01

    Recent availability of high quality infrared (IR) data for diffuse regions in the Galaxy and external galaxies have added to our understanding of interstellar dust. A comparison of ultraviolet (UV) and IR observations may be used to estimate absorption, scattering and thermal emission from interstellar dust. In this paper, we report IR and UV observations for selective diffuse sources in the Galaxy. Using archival mid-infrared (MIR) and far-infrared (FIR) observations from Spitzer Space Telescope, we look for counterparts of diffuse far-ultraviolet (FUV) sources observed by the Voyager, Far Ultraviolet Spectroscopic Explorer (FUSE) and Galaxy Evolution Explorer (GALEX) telescopes in the Galaxy. IR emission features at 8 μm are generally attributed to Polycyclic Aromatic Hydrocarbon (PAH) molecules, while emission at 24 μm are attributed to Very Small Grains (VSGs). The data presented here is unique and our study tries to establish a relation between various dust populations. By studying the FUV-IR correlations separately at low and high latitude locations, we have identified the grain component responsible for the diffuse FUV emission.

  14. Finding A Planet Through the Dust

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-05-01

    Finding planets in the crowded galactic center is a difficult task, but infrared microlensing surveys give us a fighting chance! Preliminary results from such a study have already revealed a new exoplanet lurking in the dust of the galactic bulge.Detection BiasesUKIRT-2017 microlensing survey fields (blue), plotted over a map showing the galactic-plane dust extinction. The location of the newly discovered giant planet is marked with blue crosshairs. [Shvartzvald et al. 2018]Most exoplanets weve uncovered thus far were found either via transits dips in a stars light as the planet passes in front of its host star or via radial velocity wobbles of the star as the orbiting planet tugs on it. These techniques, while highly effective, introduce a selection bias in the types of exoplanets we detect: both methods tend to favor discovery of close-in, large planets orbiting small stars; these systems produce the most easily measurable signals on short timescales.For this reason, microlensing surveys for exoplanets have something new to add to the field.Search for a LensIn gravitational microlensing, we observe a background star as it is briefly magnified by a passing foreground star acting as a lens. If that foreground star hosts a planet, we observe a characteristic shape in the observed brightening of the background star, and the properties of that shape can reveal information about the foreground planet.A diagram of how planets are detected via gravitational microlensing. The detectable planet is in orbit around the foreground lens star. [NASA]This technique for planet detection is unique in its ability to explore untapped regions of exoplanet parameter space with microlensing, we can survey for planets around all different types of stars (rather than primarily small, dim ones), planets of all masses near the further-out snowlines where gas and ice giants are likely to form, and even free-floating planets.In a new study led by a Yossi Shvartzvald, a NASA postdoctoral fellow at the Jet Propulsion Laboratory (JPL), a team of scientists now presents preliminary results from a near-infrared microlensing survey conducted with the United Kingdom Infrared Telescope (UKIRT) in Hawaii. Though the full study has not yet been published, the team reports on their first outcome: the detection of a giant planet in the galactic bulge.Giant Planet FoundThe light curve of UKIRT-2017-BLG-001. The inset shows a close-up of the anomaly in the curve, produced by the presence of the planet. [Shvartzvald et al. 2018]UKIRT-2017-BLG-001 is a giant planet detected at an angle of just 0.35 from the dusty, crowded Galactic center. It suffers from a high degree of extinction, implying that this planet could only have been detected via a near-infrared survey. The mass ratio of UKIRT-2017-BLG-001 to its host star is about 1.5 times that of Jupiter to the Sun, and its host star appears to be about 80% the mass of the Sun.The starplanet pair is roughly 20,500 light-years from us, which likely places it in the galactic bulge. Intriguingly, evidence suggests that the source star the star that the foreground starplanet lensed lies in the far galactic disk. If this is true, this would be the first source star of a microlensing event to be identified as belonging to the far disk.Artists impression of the WFIRST mission. [NASA]Looking AheadWhats next for microlensing exoplanet studies? The goal of the UKIRT near-infrared microlensing survey isnt just to discover planets its to characterize the exoplanet occurrence rates in different parts of the galaxy to inform future surveys.In particular, the UKIRT survey explored potential fields for the upcoming Wide Field Infrared Survey Telescope (WFIRST) mission, slated to launch in the mid-2020s. This powerful space telescope stands to vastly expand the reach of infrared microlensing detection, broadly surveying our galaxy for planets hiding in the dust.CitationY. Shvartzvald et al 2018 ApJL 857 L8. doi:10.3847/2041-8213/aab71b

  15. Measurements of the Activation Energies for Atomic Hydrogen Diffusion on Pure Solid CO

    NASA Astrophysics Data System (ADS)

    Kimura, Y.; Tsuge, M.; Pirronello, V.; Kouchi, A.; Watanabe, N.

    2018-05-01

    The diffusion of hydrogen atoms on dust grains is a key process in the formation of interstellar H2 and some hydrogenated molecules such as formaldehyde and methanol. We investigate the adsorption and diffusion of H atoms on pure solid CO as an analog of dust surfaces observed toward some cold interstellar regions. Using a combination of photostimulated desorption and resonance-enhanced multiphoton ionization methods to detect H atoms directly, the relative adsorption probabilities and diffusion coefficients of the H atoms are measured on pure solid CO at 8, 12, and 15 K. There is little difference between the diffusion coefficients of the hydrogen and deuterium atoms, indicating that the diffusion is limited by thermal hopping. The activation energies controlling the H-atom diffusion depend on the surface temperature, and values of 22, 30, and ∼37 meV were obtained for 8, 12, and 15 K, respectively.

  16. Empowering line intensity mapping to study early galaxies

    NASA Astrophysics Data System (ADS)

    Comaschi, P.; Ferrara, A.

    2016-12-01

    Line intensity mapping is a superb tool to study the collective radiation from early galaxies. However, the method is hampered by the presence of strong foregrounds, mostly produced by low-redshift interloping lines. We present here a general method to overcome this problem which is robust against foreground residual noise and based on the cross-correlation function ψαL(r) between diffuse line emission and Lyα emitters (LAE). We compute the diffuse line (Lyα is used as an example) emission from galaxies in a (800 Mpc)3 box at z = 5.7 and 6.6. We divide the box in slices and populate them with 14 000(5500) LAEs at z = 5.7(6.6), considering duty cycles from 10-3 to 1. Both the LAE number density and slice volume are consistent with the expected outcome of the Subaru Hyper Suprime Cam survey. We add Gaussian random noise with variance σN up to 100 times the variance of the Lyα emission, σα, to simulate residual foregrounds and compute ψαL(r). We find that the signal-to-noise ratio of the observed ψαL(r) does not change significantly if σN ≤ 10σα and show that in these conditions the mean line intensity, ILyα, can be precisely recovered independently of the LAE duty cycle. Even if σN = 100σα, Iα can be constrained within a factor 2. The method works equally well for any other line (e.g. [C II], He II) used for the intensity-mapping experiment.

  17. Effects of interstellar dust scattering on the X-ray eclipses of the LMXB AX J1745.6-2901 in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall; Valencic, Lynne

    2018-07-01

    AX J1745.6-2901 is an eclipsing low-mass X-ray binary in the Galactic Centre (GC). It shows significant X-ray excess emission during the eclipse phase, and its eclipse light curve shows an asymmetric shape. We use archival XMM-Newton and Chandra observations to study the origin of these peculiar X-ray eclipsing phenomena. We find that the shape of the observed X-ray eclipse light curves depends on both photon energy and the shape of the source extraction region, and also shows differences between the two instruments. By performing detailed simulations for the time-dependent X-ray dust-scattering halo, as well as directly modelling the observed eclipse and non-eclipse halo profiles of AX J1745.6-2901, we obtained solid evidence that its peculiar eclipse phenomena are indeed caused by the X-ray dust scattering in multiple foreground dust layers along the line of sight (LOS). The apparent dependence on the instruments is caused by different instrumental point spread functions. Our results can be used to assess the influence of dust-scattering in other eclipsing X-ray sources, and raise the importance of considering the timing effects of dust-scattering halo when studying the variability of other X-ray sources in the GC, such as Sgr A⋆. Moreover, our study of halo eclipse reinforces the existence of a dust layer local to AX J1745.6-2901 as reported by Jin et al. (2017), as well as identifying another dust layer within a few hundred parsecs to the Earth, containing up to several tens of percent LOS dust, which is likely to be associated with the molecular clouds in the Solar neighbourhood. The remaining LOS dust is likely to be associated with the molecular clouds located in the Galactic disc in-between.

  18. Clustering of the Diffuse Infrared Light from the COBE DIRBE Maps. 3; Power Spectrum Analysis and Excess Isotropic Component of Fluctuations

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Mather, J. C.; Odenwald, S.

    1999-01-01

    The cosmic infrared background (CIB) radiation is the cosmic repository for energy release throughout the history of the universe. The spatial fluctuations of the CIB resulting from galaxy clustering are expected to be at least a few percent on scales of a degree, depending on the luminosity and clustering history of the early universe. Using the all-sky data from the COBE DIRBE instrument at wavelengths 1.25 - 100 microns we attempt to measure the CIB fluctuations. In the near-IR, foreground emission is dominated by small scale structure due to stars in the Galaxy. There we find a strong correlation between the amplitude of the fluctuations and Galactic latitude after removing bright foreground stars. Using data outside the Galactic plane (absolute value of b > 20 deg) and away from the center (90 deg < l < 270 deg) we extrapolate the amplitude of the fluctuations to cosec absolute value of b = 0. We find a positive intercept of delta.F(sub rms) = 15.5(sup +3.7, sub -7.0), 5.9(sup +1.6, sub -3.7), 2.4(sup +0.5, sub -0.9), 2.0(sup +0.25, sub -0.5) nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively, where the errors are the range of 92% confidence limits. For color subtracted maps between band 1 and 2 we find the isotropic part of the fluctuations at 7.6(sup +1.2, sub -2.4) nW/sq m.sr. Based on detailed numerical and analytic models, this residual is not likely to originate from the Galaxy, our clipping algorithm, or instrumental noise. We demonstrate that the residuals from the fit used in the extrapolation are distributed isotropically and suggest that this extra variance may result from structure in the CIB. We also obtain a positive intercept from a linear combination of maps at 1.25 and 2.2 microns. For 2 deg < theta < 15 deg, a power-spectrum analysis yields limits of (theta/5 deg) x delta.F(sub rms)(theta) < 6, 2.5, 0.8, 0.5 nW/sq m.sr at 1.25, 2.2, 3.5 and 4.9 microns respectively. From 10 - 100 microns, the dominant foregrounds are emission by dust in the Solar system and the Galaxy. There the upper limits on the CIB fluctuations are below 1 nW/sq m.sr and are lowest (< equal 0.5 nW/sq m.sr) at 25 microns.

  19. Nepheline rock dust pneumoconiosis. A report of 2 cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olscamp, G.; Herman, S.J.; Weisbrod, G.L.

    1982-01-01

    Two cases of nepheline rock dust pneumoconiosis are presented. Radiologically, this is seen as a diffuse increase in interstitial lung markings, lymphadenopathy, air-space disease, and atelectasis secondary to extrinsic compression by enlarged hilar lymph nodes. Major differential diagnoses include carcinoma of the lung, sarcoidosis, and interstitial lung disease caused by other inorganic dusts. Nepheline rock dust pneumoconiosis should be considered when the above radiological changes are observed and an occupational exposure to inorganic dust is documented.

  20. Nepheline rock dust pneumoconiosis: a report of 2 cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olscamp, G.; Herman, S.J.; Weisbrod, G.L.

    1982-01-01

    Two cases of nepheline rock dust pneumoconiosis are presented. Radiologically, this is seen as a diffuse increase in interstitial lung markings, lymphadenopathy air-space disease, and atelectasis secondary to extrinsic compression by enlarged hilar lymph nodes. Major differential diagnoses include carcinoma of the lung, sarcoidosis, and interstitial lung disease caused by other inorganic dusts. Nepheline rock dust pneumoconiosis should be considered when the above radiological changes are observed and an occupational exposure to inorganic dust is documented.

  1. Dust variations in the diffuse interstellar medium: constraints on Milky Way dust from Planck-HFI observations

    NASA Astrophysics Data System (ADS)

    Ysard, N.; Köhler, M.; Jones, A.; Miville-Deschênes, M.-A.; Abergel, A.; Fanciullo, L.

    2015-05-01

    Context. The Planck-HFI all-sky survey from 353 to 857 GHz combined with the IRAS data at 100 μm (3000 GHz, IRIS version of the data) show that the dust properties vary from line of sight to line of sight in the diffuse interstellar medium (ISM) at high Galactic latitude (1019 ≤ NH ≤ 2.5 × 1020 H/cm2, for a sky coverage of ~12%). Aims: These observations contradict the usual thinking of uniform dust properties, even in the most diffuse areas of the sky. Thus, our aim is to explain these variations with changes in the ISM properties and with evolution of the grain properties. Methods: Our starting point is the latest core-mantle dust model. This model consists of small aromatic-rich carbon grains, larger amorphous carbonaceous grains with an aliphatic-rich core and an aromatic-rich mantle, and amorphous silicates (mixture of olivine and pyroxene types) with Fe/FeS nano-inclusions covered by aromatic-rich carbon mantles. We explore whether variations in the radiation field or in the gas density distribution in the diffuse ISM could explain the observed variations. The dust properties are also varied in terms of their mantle thickness, metallic nano-inclusions, carbon abundance locked in the grains, and size distributions. Results: We show that variations in the radiation field intensity and gas density distribution cannot explain variations observed with Planck-HFI but that radiation fields harder than the standard ISRF may participate in creating part of the observed variations. We further show that variations in the mantle thickness on the grains coupled with changes in their size distributions can reproduce most of the observations. We concurrently put a limit on the mantle thickness of the silicates, which should not exceed ~ 10 to 15 nm, and find that aromatic-rich mantles are definitely needed for the carbonaceous grain population with a thickness of at least 5 to 7.5 nm. We also find that changes in the carbon cosmic abundance included in the grains could explain part of the variations in dust observations. Finally, we show that varying the composition of metallic nano-inclusions in the silicates cannot account for the variations, at the same time showing that the amount of FeS they contain cannot be > 50% by volume. Conclusions: With small variations in the dust properties, we are able to explain most of the variations in the dust emission observed by Planck-HFI in the diffuse ISM. We also find that the small realistic changes in the dust properties that we consider almost perfectly match the anti-correlation and scatter in the observed β - T relation.

  2. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir; Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir

    2015-11-15

    In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  3. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    NASA Astrophysics Data System (ADS)

    Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.

    2015-11-01

    In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  4. Chemical desorption and diffusive dust chemistry

    NASA Astrophysics Data System (ADS)

    Dulieu, Francois; Pirronello, Valerio; Minissale, Marco; Congiu, Emanuele; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Accolla, Mario; Cazaux, Stephanie; Manicò, Giulio

    In molecular clouds, gaseous species can accrete efficiently on the cold surfaces of dust grains. As for radical-radical reactions, the surface of the grains acts as a third body, and changes dramatically the efficiency of the reactions (i.e., H2 formation), or lowers considerably the barrier to formation (i.e., H2O synthesis) in comparison with gas phase reaction processes. These properties make dust grains efficient catalytic templates. However, the chemical role of dust grains depends on the diffusive properties of the reactive partners. Over the last years, we have developed experimental tools and methods to explore the chemistry occurring on cold (6-50K) surfaces. We have obtained some hints about the diffusivity of H on amorphous ice, and studied in detail the diffusion of O atoms. The latter species appears to have a hopping rate in the range 0.01-100 hops/sec. The diffusion rate of O atoms is dependent on the surface morphology and on the surface temperature. The diffusion law is compatible with a diffusion dominated by quantum tunnelling rather than classical thermal hopping. Using H, O, N atoms and, indirectly, OH and HCO radicals, we have begun to explore many chemical reactive networks. In this presentation, I will focus on the formation of H2O and CO2, and will propose many possible formation routes to obtain these chemical traps. The molecules formed on surfaces have a certain probability of desorbing upon their formation. This non-thermal desorption mechanism, or chemical desorption, has been proposed to explain why some molecules can be detected in the gas phase of those region where they were believed to be part of the icy mantles covering dust grains. We have shown that this process can be very efficient, but is very sensitive to the substrate and the surroundings of the reaction site, is dependent on the kind of molecule formed and its chemical pathway. In my presentation I will present how the surface coverage and the type of reaction can play a major role in the chemical desorption process. I will discuss of possible key parameters that rule this process.

  5. Characterizing the Dust-Correlated Anomalous Emission in LDN 1622

    NASA Astrophysics Data System (ADS)

    Cleary, Kieran; Casassus, Simon; Dickinson, Clive; Lawrence, Charles; Sakon, Itsuki

    2008-03-01

    The search for 'dust-correlated microwave emission' was started by the surprising excess correlation of COBE-DMR maps, at 31.5, 53 and 91GHz, with DIRBE dust emission at 140 microns. It was first thought to be Galactic free-free emission from the Warm Ionized Medium (WIM). However, Leitch et al. (1997) ruled out a link with free-free by comparing with Halpha templates and first confirmed the anomalous nature of this emission. Since then, this emission has been detected by a number of experiments in the frequency range 5-60 GHz. The most popular explanation is emission from ultra-small spinning dust grains (first postulated by Erickson, 1957), which is expected to have a spectrum that is highly peaked at about 20 GHz. Spinning dust models appear to be broadly consistent with microwave data at high latitudes, but the data have not been conclusive, mainly due to the difficulty of foreground separation in CMB data. LDN 1622 is a dark cloud that lies within the Orion East molecular cloud at a distance of 120 pc. Recent cm-wave observations, in combination with WMAP data, have verified the detection of anomalous dust-correlated emission in LDN 1622. This mid-IR-cm correlation in LDN 1622 is currently the only observational evidence that very small grains VSG emit at GHz frequencies. We propose a programme of spectroscopic observations of LDN 1622 with Spitzer IRS to address the following questions: (i) Are the IRAS 12 and 25 microns bands tracing VSG emission in LDN 1622? (ii) What Mid-IR features and continuum bands best correlate with the cm-wave emission? and (iii) How do the dust properties vary with the cm-wave emission? These questions have important implications for high-sensitivity CMB experiments.

  6. Inner Disk Structure and Transport Mechanisms in the Transitional Disk around T Cha

    NASA Astrophysics Data System (ADS)

    Brown, Alexander

    2017-08-01

    To better understand how Earth-like planets form around low-mass stars, we propose to study the UV (HST), X-ray (XMM), and optical (LCOGT) variability of the young star T Cha. This variability is caused by obscuration of the star by clumpy material in the rim of its inner disk. Changing sight lines through the disk allow measurement of the temperature and column density of both molecular and atomic gas and the physical properties of the dust grains in the well-mixed inner disk, as well as determining the gas-to-dust ratio. The gas-to-dust ratio affects planetesimal growth and disk stability but is difficult to measure in local regions of disks. Three 5 orbit visits, separated by 3-7 days, are required for use of analysis techniques comprising both differential pair-method comparison of spectra with differing A_v (particularly important for determining the dust extinction curve, A_lambda, where removal of the foreground extinction requires multiple epochs) and detailed spectral fitting of gas absorption features at each epoch. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. Characterizing the high energy (UV/X-ray) radiation field is also essential for in-depth studies of the disk in other spectral regions. Results from these observations will have wide relevance to the modeling and understanding of protoplanetary disk structure and evolution, and the complex gas and dust physics and chemistry in disk surface layers.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyra, Wladimir; Lin, Min-Kai, E-mail: wlyra@caltech.edu, E-mail: mklin924@cita.utoronto.ca

    The Atacama Large Millimeter Array has returned images of transitional disks in which large asymmetries are seen in the distribution of millimeter sized dust in the outer disk. The explanation in vogue borrows from the vortex literature and suggests that these asymmetries are the result of dust trapping in giant vortices, excited via Rossby wave instabilities at planetary gap edges. Due to the drag force, dust trapped in vortices will accumulate in the center and diffusion is needed to maintain a steady state over the lifetime of the disk. While previous work derived semi-analytical models of the process, in thismore » paper we provide analytical steady-steady solutions. Exact solutions exist for certain vortex models. The solution is determined by the vortex rotation profile, the gas scale height, the vortex aspect ratio, and the ratio of dust diffusion to gas-dust friction. In principle, all of these quantities can be derived from observations, which would validate the model and also provide constrains on the strength of the turbulence inside the vortex core. Based on our solution, we derive quantities such as the gas-dust contrast, the trapped dust mass, and the dust contrast at the same orbital location. We apply our model to the recently imaged Oph IRS 48 system, finding values within the range of the observational uncertainties.« less

  8. Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, Viktor; Dwek, Eli; Arendt, Richard G.

    2004-01-01

    We present new interstellar dust models which have been derived by simultaneously fitting the far ultraviolet to near infrared extinction, the diffuse infrared emission, and, unlike previous models, the elemental abundances in dust for the diffuse interstellar medium. We found that dust models consisting of a mixture of spherical graphite and silicate grains, polycyclic aromatic hydrocarbon (PAH) molecules, in addition to porous composite particles containing silicate, organic refractory, and water ice, provide an improved .t to the UV-to-infrared extinction and infrared emission measurements, while consuming the amounts of elements well within the uncertainties of adopted interstellar abundances, including B star abundances. These models are a signi.cant improvement over the recent Li & Draine (2001, ApJ, 554, 778) model which requires an excessive amount of silicon to be locked up in dust: 48 ppm (atoms per million of H atoms), considerably more than the solar abundance of 34 ppm or the B star abundance of 19 ppm.

  9. COSMOG: Cosmology Oriented Sub-mm Modeling of Galactic Foregrounds

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Leisawitz, D.

    2004-01-01

    With upcoming missions in mid- and far-Infrared there is a need for software packages to reliably simulate the planned observations. This would help in both planning the observation and scanning strategy and in developing the concepts of the far-off missions. As this workshop demonstrated, many of the new missions are to be in the far-IR range of the electromagnetic spectrum and at the same time will map the sky with a sub-arcsec angular resolution. We present here a computer package for simulating foreground maps for the planned sub-mm and far-IR missions. such as SPECS. The package allows to study confusion limits and simulate cosmological observations for specified sky location interactively and in real time. Most of the emission at wavelengths long-ward of approximately 50 microns is dominated by Galactic cirrus and Zodiacal dust emission. Stellar emission at these wavelengths is weak and is for now neglected. Cosmological sources (distant and not-so-distant) galaxies for specified cosmologies will be added. Briefly, the steps that the algorithm goes through is described.

  10. Martian Dust Devil Movie, Phoenix Sol 104

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west of the lander in four frames shot about 50 seconds apart from each other between 11:53 a.m. and 11:56 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The dust devil visible in this sequence was about 1,000 meters (about 3,300 feet) from the lander when the first frame was taken, and had moved to about 1,700 meters (about 5,600 feet) away by the time the last frame was taken about two and a half minutes later. The dust devil was moving westward at an estimated speed of 5 meters per second (11 miles per hour), which is similar to typical late-morning wind speed and direction indicated by the telltale wind gauge on Phoenix.

    This dust devil is about 5 meters (16 feet) in diameter. This is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those..

    The image has been enhanced to make the dust devil easier to see. Some of the frame-to-frame differences in the appearance of foreground rocks is because each frame was taken through a different color filter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data

    NASA Astrophysics Data System (ADS)

    Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masui, K. W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.; Yadav, J.

    2017-02-01

    We present the first application of a new foreground removal pipeline to the current leading H I intensity mapping data set, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h-field data of the GBT observations previously presented in Mausui et al. and Switzer et al., covering about 41 deg2 at 0.6 < z < 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point-source contamination using an independent component analysis technique (FASTICA), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that FASTICA is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps are dominated by instrumental noise on small scales which FASTICA, as a conservative subtraction technique of non-Gaussian signals, cannot mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the singular value decomposition (SVD) method, and confirm that foreground subtraction with FASTICA is robust against 21 cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and FASTICA are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping data sets.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, C.; Hanany, S.; Baccigalupi, C.

    We extend a general maximum likelihood foreground estimation for cosmic microwave background (CMB) polarization data to include estimation of instrumental systematic effects. We focus on two particular effects: frequency band measurement uncertainty and instrumentally induced frequency dependent polarization rotation. We assess the bias induced on the estimation of the B-mode polarization signal by these two systematic effects in the presence of instrumental noise and uncertainties in the polarization and spectral index of Galactic dust. Degeneracies between uncertainties in the band and polarization angle calibration measurements and in the dust spectral index and polarization increase the uncertainty in the extracted CMBmore » B-mode power, and may give rise to a biased estimate. We provide a quantitative assessment of the potential bias and increased uncertainty in an example experimental configuration. For example, we find that with 10% polarized dust, a tensor to scalar ratio of r = 0.05, and the instrumental configuration of the E and B experiment balloon payload, the estimated CMB B-mode power spectrum is recovered without bias when the frequency band measurement has 5% uncertainty or less, and the polarization angle calibration has an uncertainty of up to 4°.« less

  13. Azimuthally averaged radial S(sub 100 microns)/S(sub 60 microns) dust color temperatures in spiral galaxies

    NASA Technical Reports Server (NTRS)

    Devereux, Nick A.

    1994-01-01

    The IRAS S(sub 100 micron)/S(sub 60 micron) dust color temperature profiles are presented for two nearby spiral galaxies M 101 and M 81. The radial dust temperature profiles provided an important constraint on the origin of the far-infrared luminosity. The observed dust temperature is compared with that expected for diffuse interstellar dust heated by the general interstellar radiation field within each galaxy. The implications for the contribution of cirrus to the far-infrared luminosity of M 101 and M 81 are discussed.

  14. Fugitive dust from vehicles traveling on unpaved roads

    Treesearch

    Thomas A. Cuscino; Robert Jennings Heinsohn; Clotworthy, Jr. Birnie

    1977-01-01

    A model has been developed for estimating concentrations of fugitive dust downwind of an unpaved road within a factor of 2 for most cases. The model allows for winds oblique to the road and also for extraction of fugitive dust from the plume as it diffuses to the ground. Experiments were performed to determine the accuracy of the model in estimating downwind...

  15. Spitzer Imaging of Strongly lensed Herschel-selected Dusty Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C.; Baes, M.; Chapman, S.; Dannerbauer, H.; da Cunha, E.; De Zotti, G.; Dunne, L.; Farrah, D.; Fu, Hai; Gonzalez-Nuevo, J.; Magdis, G.; Michałowski, M. J.; Oteo, I.; Riechers, D. A.; Scott, D.; Smith, M. W. L.; Wang, L.; Wardlow, J.; Vaccari, M.; Viaene, S.; Vieira, J. D.

    2015-11-01

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 1010-4 × 1011 M⊙ and star formation rates of around 100 M⊙ yr-1. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  16. ON THE IONIZATION OF LUMINOUS WMAP SOURCES IN THE GALAXY: CONSTRAINTS FROM He RECOMBINATION LINE OBSERVATIONS WITH THE GBT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roshi, D. Anish; Plunkett, Adele; Rosero, Viviana

    2012-04-10

    Murray and Raham used the Wilkinson Microwave Anisotropy Probe (WMAP) free-free foreground emission map to identify diffuse ionized regions (DIRs) in the Galaxy. It has been found that the 18 most luminous WMAP sources produce more than half of the total ionizing luminosity of the Galaxy. We observed radio recombination lines (RRLs) toward the luminous WMAP source G49.75-0.45 with the Green Bank Telescope near 1.4 GHz. Hydrogen RRL is detected toward the source but no helium line is detected, implying that n{sub He{sup +}}/n{sub H{sup +}}< 0.024. This limit puts severe constraint on the ionizing spectrum. The total ionizing luminositymore » of G49 (3.05 Multiplication-Sign 10{sup 51} s{sup -1}) is {approx}2.8 times the luminosity of all radio H II regions within this DIR and this is generally the case for other WMAP sources. Murray and Rahman propose that the additional ionization is due to massive clusters ({approx}7.5 Multiplication-Sign 10{sup 3} M{sub Sun} for G49) embedded in the WMAP sources. Such clusters should produce enough photons with energy {>=}24.6 eV to fully ionize helium in the DIR. Our observations rule out a simple model with G49 ionized by a massive cluster. We also considered 'leaky' H II region models for the ionization of the DIR, suggested by Lockman and Anantharamaiah, but these models also cannot explain our observations. We estimate that the helium ionizing photons need to be attenuated by {approx}>10 times to explain the observations. If selective absorption of He ionizing photons by dust is causing this additional attenuation, then the ratio of dust absorption cross sections for He and H ionizing photons should be {approx}>6.« less

  17. M33: A Close Neighbor Reveals its True Size and Splendor (3-color composite)

    NASA Technical Reports Server (NTRS)

    2009-01-01

    One of our closest galactic neighbors shows its awesome beauty in this new image from NASA's Spitzer Space Telescope. M33, also known as the Triangulum Galaxy, is a member of what's known as our Local Group of galaxies. Along with our own Milky Way, this group travels together in the universe, as they are gravitationally bound. In fact, M33 is one of the few galaxies that is moving toward the Milky Way despite the fact that space itself is expanding, causing most galaxies in the universe to grow farther and farther apart.

    When viewed with Spitzer's infrared eyes, this elegant spiral galaxy sparkles with color and detail. Stars appear as glistening blue gems (several of which are actually foreground stars in our own galaxy), while dust rich in organic molecules glows green. The diffuse orange-red glowing areas indicate star-forming regions, while small red flecks outside the spiral disk of M33 are most likely distant background galaxies. But not only is this new image beautiful, it also shows M33 to be surprising large bigger than its visible-light appearance would suggest. With its ability to detect cold, dark dust, Spitzer can see emission from cooler material well beyond the visible range of M33's disk. Exactly how this cold material moved outward from the galaxy is still a mystery, but winds from giant stars or supernovas may be responsible.

    M33 is located about 2.9 million light-years away in the constellation Triangulum. This is a three-color composite image showing infrared observations from two of Spitzer instruments. Blue represents combined 3.6- and 4.5-micron light and green shows light of 8 microns, both captured by Spitzer's infrared array camera. Red is 24-micron light detected by Spitzer's multiband imaging photometer.

  18. Is the Eagle Nebula powered by a hidden supernova remnant ?

    NASA Astrophysics Data System (ADS)

    Boulanger, Francois

    2008-10-01

    Spitzer observations of the Eagle nebula (M16) reveal the presence of a large (8 pc diameter) shell of dust heated to anomalously high temperatures. Modeling of dust excitation shows that the shell emission cannot be powered by the cluster UV radiation but that it can be accounted for by collisionally heated dust in a young (a few 1000 yrs) supernova remnant. We have re-analyzed deep Chandra observations that show diffuse emission consistent with this hypothesis, but also with galactic ridge emission. We propose a 50 ksec XMM observation to probe the spatial extent of the diffuse X-ray emission beyond the Spitzer shell. Absence of emission outside of this shell will strongly support the supernova remnant interpretation

  19. A CMB foreground study in WMAP data: Extragalactic point sources and zodiacal light emission

    NASA Astrophysics Data System (ADS)

    Chen, Xi

    The Cosmic Microwave Background (CMB) radiation is the remnant heat from the Big Bang. It serves as a primary tool to understand the global properties, content and evolution of the universe. Since 2001, NASA's Wilkinson Microwave Anisotropy Probe (WMAP) satellite has been napping the full sky anisotropy with unprecedented accuracy, precision and reliability. The CMB angular power spectrum calculated from the WMAP full sky maps not only enables accurate testing of cosmological models, but also places significant constraints on model parameters. The CMB signal in the WMAP sky maps is contaminated by microwave emission from the Milky Way and from extragalactic sources. Therefore, in order to use the maps reliably for cosmological studies, the foreground signals must be well understood and removed from the maps. This thesis focuses on the separation of two foreground contaminants from the WMAP maps: extragalactic point sources and zodiacal light emission. Extragalactic point sources constitute the most important foreground on small angular scales. Various methods have been applied to the WMAP single frequency maps to extract sources. However, due to the limited angular resolution of WMAP, it is possible to confuse positive CMB excursions with point sources or miss sources that are embedded in negative CMB fluctuations. We present a novel CMB-free source finding technique that utilizes the spectrum difference of point sources and CMB to form internal linear combinations of multifrequency maps to suppress the CMB and better reveal sources. When applied to the WMAP 41, 64 and 94 GHz maps, this technique has not only enabled detection of sources that are previously cataloged by independent methods, but also allowed disclosure of new sources. Without the noise contribution from the CMB, this method responds rapidly with the integration time. The number of detections varies as 0( t 0.72 in the two-band search and 0( t 0.70 in the three-band search from one year to five years, separately, in comparison to t 0.40 from the WMAP catalogs. Our source catalogs are a good supplement to the existing WMAP source catalogs, and the method itself is proven to be both complementary to and competitive with all the current source finding techniques in WMAP maps. Scattered light and thermal emission from the interplanetary dust (IPD) within our Solar System are major contributors to the diffuse sky brightness at most infrared wavelengths. For wavelengths longer than 3.5 mm, the thermal emission of the IPD dominates over scattering, and the emission is often referred to as the Zodiacal Light Emission (ZLE). To set a limit of ZLE contribution to the WMAP data, we have performed a simultaneous fit of the yearly WMAP time-ordered data to the time variation of ZLE predicted by the DIRBE IPD model (Kelsallet al. 1998) evaluated at 240 mm, plus [cursive l] = 1 - 4 CMB components. It is found that although this fitting procedure can successfully recover the CMB dipole to a 0.5% accuracy, it is not sensitive enough to determine the ZLE signal nor the other multipole moments very accurately.

  20. Spectrum of the isotropic diffuse gamma-ray emission derived from first-year Fermi Large Area Telescope data.

    PubMed

    Abdo, A A; Ackermann, M; Ajello, M; Atwood, W B; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Baughman, B M; Bechtol, K; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Burnett, T H; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Celik, O; Charles, E; Chekhtman, A; Cheung, C C; Chiang, J; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L R; Conrad, J; Cutini, S; Dermer, C D; de Angelis, A; de Palma, F; Digel, S W; Di Bernardo, G; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Dubois, R; Dumora, D; Farnier, C; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fukazawa, Y; Funk, S; Fusco, P; Gaggero, D; Gargano, F; Gasparrini, D; Gehrels, N; Germani, S; Giebels, B; Giglietto, N; Giommi, P; Giordano, F; Glanzman, T; Godfrey, G; Grenier, I A; Grondin, M-H; Grove, J E; Guillemot, L; Guiriec, S; Gustafsson, M; Hanabata, Y; Harding, A K; Hayashida, M; Hughes, R E; Itoh, R; Jackson, M S; Jóhannesson, G; Johnson, A S; Johnson, R P; Johnson, T J; Johnson, W N; Kamae, T; Katagiri, H; Kataoka, J; Kawai, N; Kerr, M; Knödlseder, J; Kocian, M L; Kuehn, F; Kuss, M; Lande, J; Latronico, L; Lemoine-Goumard, M; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Madejski, G M; Makeev, A; Mazziotta, M N; McConville, W; McEnery, J E; Meurer, C; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Omodei, N; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Parent, D; Pelassa, V; Pepe, M; Pesce-Rollins, M; Piron, F; Porter, T A; Rainò, S; Rando, R; Razzano, M; Reimer, A; Reimer, O; Reposeur, T; Ritz, S; Rochester, L S; Rodriguez, A Y; Roth, M; Ryde, F; Sadrozinski, H F-W; Sanchez, D; Sander, A; Saz Parkinson, P M; Scargle, J D; Sellerholm, A; Sgrò, C; Shaw, M S; Siskind, E J; Smith, D A; Smith, P D; Spandre, G; Spinelli, P; Starck, J-L; Strickman, M S; Strong, A W; Suson, D J; Tajima, H; Takahashi, H; Takahashi, T; Tanaka, T; Thayer, J B; Thayer, J G; Thompson, D J; Tibaldo, L; Torres, D F; Tosti, G; Tramacere, A; Uchiyama, Y; Usher, T L; Vasileiou, V; Vilchez, N; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Ylinen, T; Ziegler, M

    2010-03-12

    We report on the first Fermi Large Area Telescope (LAT) measurements of the so-called "extragalactic" diffuse gamma-ray emission (EGB). This component of the diffuse gamma-ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic gamma-ray emission, the detected LAT sources, and the solar gamma-ray emission. We find the spectrum of the EGB is consistent with a power law with a differential spectral index gamma = 2.41 +/- 0.05 and intensity I(>100 MeV) = (1.03 +/- 0.17) x 10(-5) cm(-2) s(-1) sr(-1), where the error is systematics dominated. Our EGB spectrum is featureless, less intense, and softer than that derived from EGRET data.

  1. Properties and evolution of dust in the interstellar medium.

    NASA Astrophysics Data System (ADS)

    Flagey, N.

    2007-10-01

    My thesis is dedicated to the properties and evolution of the dust in the Galactic interstellar medium (ISM), particularly the small sizes end of the dust size distribution. Throughout these three years, new infrared (IR) observations provided by the Spitzer Space Telescope helped me to bring my own contribution to the knowledge of the dust lifecycle. In order to get a view as global as possible, I have studied three different interstellar environments : the diffuse Galactic medium, a molecular cloud and a star forming region. I analyzed one line of sight that points towards the diffuse Galactic ISM, away from bright star forming regions. Combining spectroscopic and photometric data, I have built a mean Galactic near to mid IR spectrum of the dust, that I have afterwards used as a reference. The Polycyclic Aromatic Hydrocarbons (PAHs) bands are present on top of a continuum. In order to interpret the band intensity ratios in terms of PAHs size and ionization state, I have updated our dust model so that it takes into account the size dependent ionization state of the PAHs. The diffuse ISM spectrum is fit for a PAH mean size of about 60 carbon atoms and a cation fraction of about 40%. Molecular size and charged PAHs are thus present within the diffuse medium. A 3-5 μm continuum, first detected in reflection nebulae, is observed to be present in the diffuse ISM emission. This continuum accounts for 70% of the emission in the Spitzer/IRAC 3.6μm filter. Its origin is still unknown. I show that it is neither scattered light nor PAH fluorescence, as this process would require a photon conversion efficiency above 100%. I used Spitzer observations to quantify spatial variations of PAHs properties across the galaxy and on small scales within the Taurus molecular cloud. Analysis of a set of Galactic diffuse ISM sight lines show that the PAHs mean size exhibits significant dispersion, from 40 to 80 carbon atoms, while their ionization fraction stays constant within error bars. I have also analyzed mid and far-IR Spitzer images of the Taurus Molecular Cloud. Each dust component (PAHs, VSGs for Very Small Grains and BGs for Big Grains) can be related to one Spitzer channel (IRAC 8, MIPS 24 and MIPS 160 microns). A first difficulty was to obtain images of the low brightness diffuse emission across the entire cloud. I worked with Spitzer Science Center (SSC) experts to produce the IRAC 8 and MIPS 24 images. For the MIPS 160 I used an inversion algorithm developed to destripe the data. I validated the photometry of each image. The observations show that PAHs are present within a surface layer thinn! er than that penetrated by ultraviolet photons and that of VSGs emission. Such variations cannot be only explained by the extinction and must thus trace real PAH depletion within dense gas where the smallest dust particles may stick on large grains and/or coagulate. During my PhD thesis, I applied for a SSC Visiting Graduate Student grant in order to study the Eagle Nebula (M16), the object that made me decide to do astrophysics, more than ten years ago, when the Hubble Space Telescope imaged the iconic Pillars of Creation. My application was accepted and I spent 6 months within the MIPSGAL Science Team. My aim was to combine IRAC and MIPS data of M16 in order to analyze the properties of the dust within the dusty and gaseous structures, while being involved in the data processing enhancement. The MIPS 24 microns image defines a shell-like structure within the nebula while the pillars are observed at other wavelengths. M16 is a massive star forming region where the dust emission is expected to be powered by the massive stars radiation. However, we show that the UV field is one order of magnitude too small to account for the shell dust temperature. For comparison we analyzed several other Galactic shells. The M16 nebula stands out for having unusually high far-IR color temperature.We considered an alternative interpretation where the dust is heated by gas grain collisions. This interpretation would imply that the shell is a supernova remnant (SNR) about 3000 years old. If confirmed, the Eagle SNR would be the first one detected through dust emission and within a stellar cradle. Moreover, it would illustrate the importance of dust infrared emission within energetics of SNRs. At last, but not at least, the question of the formation and/or destruction of the iconic Pillars of Creation would be (re)opened.

  2. Interstellar dust and related topics; Proceedings of the Symposium, State University of New York, Albany, N.Y., May 29-June 2, 1972

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M. (Editor); Van De Hulst, H. C.

    1973-01-01

    Theoretical studies and observations of interstellar dust are described in papers dealing with the passive properties of dust grains, their physical and chemical activities in the interstellar medium, and their interactions in association with stars. The papers are grouped according to the principal topics of (1) extinction and polarization, (2) diffuse interstellar features, (3) dust around and in close association with stars, (4) reflection nebulae and other aspects of dust scattering properties, (5) alignment mechanisms, (6) distribution of molecules and processes of molecule formation, (7) radiation effects on dust, (8) physical and chemical interactions of dust with the ambient medium, and (9) gas and dust in H II regions. Individual items are announced in this issue.

  3. Southeastern Mediterranean Panorama

    NASA Image and Video Library

    1991-06-14

    STS040-152-180 (5-24 June 1991) --- The Sinai Peninsula dominates this north-looking, oblique view. According to NASA photo experts studying the STS 40 imagery, the Red Sea in the foreground is clear of river sediment because of the prevailing dry climate of the Middle East. The great rift of the Gulf of Aqaba extends northward to Turkey (top right) through the Dead Sea. The international boundary between Israel and Egypt, reflecting different rural landscapes, stands out clearly. The Nile River runs through the frame. NASA photo experts believe the haze over the Mediterranean to be wind-borne dust. The photo was taken with an Aero-Linhof large format camera.

  4. Martian Surface at an Angle

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This latest color 'postcard from Mars,' taken on Sol 5 by the panoramic camera on the Mars Exploration Rover Spirit, looks to the north. The apparent slope of the horizon is due to the several-degree tilt of the lander deck. On the left, the circular topographic feature dubbed Sleepy Hollow can be seen along with dark markings that may be surface disturbances caused by the airbag-encased lander as it bounced and rolled to rest. A dust-coated airbag is prominent in the foreground, and a dune-like object that has piqued the interest of the science team with its dark, possibly armored top coating, can be seen on the right.

  5. Martian Surface Beneath Phoenix

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This is an image of the Martian surface beneath NASA's Phoenix Mars Lander. The image was taken by Phoenix's Robotic Arm Camera (RAC) on the eighth Martian day of the mission, or Sol 8 (June 2, 2008). The light feature in the middle of the image below the leg is informally called 'Holy Cow.' The dust, shown in the dark foreground, has been blown off of 'Holy Cow' by Phoenix's thruster engines.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  6. Erasing the Milky Way: New Cleaning Technique Applied to GBT Intensity Mapping Data

    NASA Technical Reports Server (NTRS)

    Wolz, L.; Blake, C.; Abdalla, F. B.; Anderson, C. J.; Chang, T.-C.; Li, Y.-C.; Masi, K.W.; Switzer, E.; Pen, U.-L.; Voytek, T. C.; hide

    2016-01-01

    We present the first application of a new foreground removal pipeline to the current leading HI intensity mapping dataset, obtained by the Green Bank Telescope (GBT). We study the 15- and 1-h field data of the GBT observations previously presented in Masui et al. (2013) and Switzer et al. (2013), covering about 41 square degrees at 0.6 less than z is less than 1.0, for which cross-correlations may be measured with the galaxy distribution of the WiggleZ Dark Energy Survey. In the presented pipeline, we subtract the Galactic foreground continuum and the point source contamination using an independent component analysis technique (fastica), and develop a Fourier-based optimal estimator to compute the temperature power spectrum of the intensity maps and cross-correlation with the galaxy survey data. We show that fastica is a reliable tool to subtract diffuse and point-source emission through the non-Gaussian nature of their probability distributions. The temperature power spectra of the intensity maps is dominated by instrumental noise on small scales which fastica, as a conservative sub-traction technique of non-Gaussian signals, can not mitigate. However, we determine similar GBT-WiggleZ cross-correlation measurements to those obtained by the Singular Value Decomposition (SVD) method, and confirm that foreground subtraction with fastica is robust against 21cm signal loss, as seen by the converged amplitude of these cross-correlation measurements. We conclude that SVD and fastica are complementary methods to investigate the foregrounds and noise systematics present in intensity mapping datasets.

  7. On the source of the dust extinction in type Ia supernovae and the discovery of anomalously strong Na I absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M. M.; Morrell, Nidia; Hsiao, E. Y.

    High-dispersion observations of the Na I D λλ5890, 5896 and K I λλ7665, 7699 interstellar lines, and the diffuse interstellar band at 5780 Å in the spectra of 32 Type Ia supernovae are used as an independent means of probing dust extinction. We show that the dust extinction of the objects where the diffuse interstellar band at 5780 Å is detected is consistent with the visual extinction derived from the supernova colors. This strongly suggests that the dust producing the extinction is predominantly located in the interstellar medium of the host galaxies and not in circumstellar material associated with themore » progenitor system. One quarter of the supernovae display anomalously large Na I column densities in comparison to the amount of dust extinction derived from their colors. Remarkably, all of the cases of unusually strong Na I D absorption correspond to 'Blueshifted' profiles in the classification scheme of Sternberg et al. This coincidence suggests that outflowing circumstellar gas is responsible for at least some of the cases of anomalously large Na I column densities. Two supernovae with unusually strong Na I D absorption showed essentially normal K I column densities for the dust extinction implied by their colors, but this does not appear to be a universal characteristic. Overall, we find the most accurate predictor of individual supernova extinction to be the equivalent width of the diffuse interstellar band at 5780 Å, and provide an empirical relation for its use. Finally, we identify ways of producing significant enhancements of the Na abundance of circumstellar material in both the single-degenerate and double-degenerate scenarios for the progenitor system.« less

  8. A comparison of two laboratories for the measurement of wood dust using button sampler and diffuse reflection infrared Fourier-transform spectroscopy (DRIFTS).

    PubMed

    Chirila, Madalina M; Sarkisian, Khachatur; Andrew, Michael E; Kwon, Cheol-Woong; Rando, Roy J; Harper, Martin

    2015-04-01

    The current measurement method for occupational exposure to wood dust is by gravimetric analysis and is thus non-specific. In this work, diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) for the analysis of only the wood component of dust was further evaluated by analysis of the same samples between two laboratories. Field samples were collected from six wood product factories using 25-mm glass fiber filters with the Button aerosol sampler. Gravimetric mass was determined in one laboratory by weighing the filters before and after aerosol collection. Diffuse reflection mid-infrared spectra were obtained from the wood dust on the filter which is placed on a motorized stage inside the spectrometer. The metric used for the DRIFTS analysis was the intensity of the carbonyl band in cellulose and hemicellulose at ~1735 cm(-1). Calibration curves were constructed separately in both laboratories using the same sets of prepared filters from the inhalable sampling fraction of red oak, southern yellow pine, and western red cedar in the range of 0.125-4 mg of wood dust. Using the same procedure in both laboratories to build the calibration curve and analyze the field samples, 62.3% of the samples measured within 25% of the average result with a mean difference between the laboratories of 18.5%. Some observations are included as to how the calibration and analysis can be improved. In particular, determining the wood type on each sample to allow matching to the most appropriate calibration increases the apparent proportion of wood dust in the sample and this likely provides more realistic DRIFTS results. Published by Oxford University Press on behalf of the British Occupational Hygiene Society 2014.

  9. Positive column of a glow discharge in neon with charged dust grains (a review)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M.

    The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in amore » discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.« less

  10. Diffuse spreading of inhomogeneities in the ionospheric dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shalimov, S. L., E-mail: pmsk7@mail.ru; Kozlovsky, A.

    2015-08-15

    According to results of sounding of the lower ionosphere at altitudes of about 100 km, the duration of radio reflections from sufficiently dense ionized meteor trails, which characterizes their lifetime, can reach a few tens of seconds to several tens of minutes. This is much longer than the characteristic spreading time (on the order of fractions of a second to several seconds) typical in meteor radar measurements. The presence of dust in the lower ionosphere is shown to affect the ambipolar diffusion coefficient, which determines the spreading of plasma inhomogeneities. It is found that the diffusion coefficient depends substantially onmore » the charge and size of dust grains, which allows one to explain the results of ionospheric sounding.« less

  11. QUASARS PROBING QUASARS. IV. JOINT CONSTRAINTS ON THE CIRCUMGALACTIC MEDIUM FROM ABSORPTION AND EMISSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hennawi, Joseph F.; Prochaska, J. Xavier, E-mail: xavier@ucolick.org

    2013-03-20

    We have constructed a sample of 29 close projected quasar pairs where the background quasar spectrum reveals absorption from optically thick H I gas associated with the foreground quasar. These unique sightlines allow us to study the quasar circumgalactic medium (CGM) in absorption and emission simultaneously, because the background quasar pinpoints large concentrations of gas where Ly{alpha} emission, resulting from quasar-powered fluorescence, resonant Ly{alpha} scattering, and/or cooling radiation, is expected. A sensitive search (1{sigma} surface-brightness limits of SB{sub Ly{alpha}}{approx_equal}3 Multiplication-Sign 10{sup -18} erg s{sup -1} cm{sup -2} arcsec{sup -2}) for diffuse Ly{alpha} emission in the environments of the foreground (predominantlymore » radio-quiet) quasars is conducted using Gemini/GMOS and Keck/LRIS slit spectroscopy. We fail to detect large-scale {approx}100 kpc Ly{alpha} emission, either at the location of the optically thick absorbers or in the foreground quasar halos, in all cases except a single system. We interpret these non-detections as evidence that the gas detected in absorption is shadowed from the quasar UV radiation due to obscuration effects, which are frequently invoked in unified models of active galactic nuclei. Small-scale R {approx}< 50 kpc extended Ly{alpha} nebulosities are detected in 34% of our sample, which are likely the high-redshift analogs of the extended emission-line regions (EELRs) commonly observed around low-redshift (z < 0.5) quasars. This may be fluorescent recombination radiation from a population of very dense clouds with a low covering fraction illuminated by the quasar. We also detect a compact high rest-frame equivalent width (W{sub Ly{alpha}} > 50 A) Ly{alpha}-emitter with luminosity L{sub Ly{alpha}} = 2.1 {+-} 0.32 Multiplication-Sign 10{sup 41} erg s{sup -1} at small impact parameter R = 134 kpc from one foreground quasar, and argue that it is more likely to result from quasar-powered fluorescence, than simply be a star-forming galaxy clustered around the quasar. Our observations imply that much deeper integrations with upcoming integral-field spectrometers such as MUSE and KCWI will be able to routinely detect a diffuse Ly{alpha} glow around bright quasars on scales R {approx} 100 kpc and thus directly image the CGM.« less

  12. The Spectral Energy Distribution of the Hyperluminous, Hot Dust-obscured Galaxy W2246–0526

    NASA Astrophysics Data System (ADS)

    Fan, Lulu; Gao, Ying; Knudsen, Kirsten K.; Shu, Xinwen

    2018-02-01

    Hot dust-obscured galaxies (Hot DOGs) are a luminous, dust-obscured population recently discovered in the WISE All-Sky survey. Multiwavelength follow-up observations suggest that they are mainly powered by accreting supermassive black holes (SMBHs), lying in dense environments, and being in the transition phase between extreme starburst and UV-bright quasars. Therefore, they are good candidates for studying the interplay between SMBHs, star formation, and environment. W2246‑0526 (hereafter, W2246), a Hot DOG at z ∼ 4.6, has been taken as the most luminous galaxy known in the universe. Revealed by the multiwavelength images, the previous Herschel SPIRE photometry of W2246 is contaminated by a foreground galaxy (W2246f), resulting in an overestimation of its total IR luminosity by a factor of about two. We perform the rest-frame UV/optical-to-far-IR spectral energy distribution (SED) analysis with SED3FIT and re-estimate its physical properties. The derived stellar mass {M}\\star =4.3× {10}11 {M}ȯ makes it among the most massive galaxies with spectroscopic redshift z > 4.5. Its structure is extremely compact and requires an effective mechanism to puff-up. Most of (>95%) its IR luminosity is from AGN torus emission, revealing the rapid growth of the central SMBH. We also predict that W2246 may have a significant molecular gas reservoir based on the dust mass estimation.

  13. The Chandra Dust-scattering Halo of Galactic Center Transient Swift J174540.7–290015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corrales, L. R.; Mon, B.; Haggard, D.

    We report the detection of a dust-scattering halo around a recently discovered X-ray transient, Swift J174540.7–290015, which in early 2016 February underwent one of the brightest outbursts ( F {sub X} ≈ 5 × 10{sup −10} erg cm{sup −2} s{sup −1}) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pile-up, we construct a point-spread function for each observation and compare it to the GC field before the outburst. Wemore » find residual surface brightness around Swift J174540.7–290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L {sub X} ∼ 10{sup 36} erg s{sup −1}. This behavior is consistent with the hypothesis that the object is a low-mass X-ray binary in the Galactic Center.« less

  14. MIRIS observation of near-infrared diffuse Galactic light

    NASA Astrophysics Data System (ADS)

    Onishi, Yosuke; Sano, Kei; Matsuura, Shuji; Jeong, Woong-Seob; Pyo, Jeonghyun; Kim, Il-Jong; Seo, Hyun Jong; Han, Wonyong; Lee, DaeHee; Moon, Bongkon; Park, Wonkee; Park, Younsik; Kim, MinGyu; Matsumoto, Toshio; Matsuhara, Hideo; Nakagawa, Takao; Tsumura, Kohji; Shirahata, Mai; Arai, Toshiaki; Ienaka, Nobuyuki

    2018-06-01

    We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at 1.1 and 1.6 μm with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR 100 μm map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to-date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with and without μm-sized very large grains and predict the DGL spectra, taking into account the reddening effect of the interstellar radiation field. The result shows that the observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to the low density of its interstellar medium.

  15. Planck early results. XXV. Thermal dust in nearby molecular clouds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Dobashi, K.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Verstraete, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    Planck allows unbiased mapping of Galactic sub-millimetre and millimetre emission from the most diffuse regions to the densest parts of molecular clouds. We present an early analysis of the Taurus molecular complex, on line-of-sight-averaged data and without component separation. The emission spectrum measured by Planck and IRAS can be fitted pixel by pixel using a single modified blackbody. Some systematic residuals are detected at 353 GHz and 143 GHz, with amplitudes around -7% and +13%, respectively, indicating that the measured spectra are likely more complex than a simple modified blackbody. Significant positive residuals are also detected in the molecular regions and in the 217 GHz and 100 GHz bands, mainly caused by the contribution of the J = 2 → 1 and J = 1 → 0 12CO and 13CO emission lines. We derive maps of the dust temperature T, the dust spectral emissivity index β, and the dust optical depth at 250 μm τ250. The temperature map illustrates the cooling of the dust particles in thermal equilibrium with the incident radiation field, from 16 - 17 K in the diffuse regions to 13 - 14 K in the dense parts. The distribution of spectral indices is centred at 1.78, with a standard deviation of 0.08 and a systematic error of 0.07. We detect a significant T - β anti-correlation. The dust optical depth map reveals the spatial distribution of the column density of the molecular complex from the densest molecular regions to the faint diffuse regions. We use near-infrared extinction and Hi data at 21-cm to perform a quantitative analysis of the spatial variations of the measured dust optical depth at 250 μm per hydrogen atom τ250/NH. We report an increase of τ250/NH by a factor of about 2 between the atomic phase and the molecular phase, which has a strong impact on the equilibrium temperature of the dust particles. Corresponding author: A. Abergel, e-mail: alain.abergel@ias.u-psud.fr

  16. Perpendicular diffusion of a dilute beam of charged particles in the PK-4 dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, John

    2015-09-01

    We study the random walk of a dilute beam of projectile dust particles that drift through a target dusty plasma. This random walk is a diffusion that occurs mainly due to Coulomb collisions with target particles that have a different size. In the direction parallel to the drift, projectiles exhibit mobility-limited motion with a constant average velocity. We use a 3D molecular dynamics (MD) simulation of the dust particle motion to determine the diffusion and mobility coefficients for the dilute beam. The dust particles are assumed to interact with a shielded Coulomb repulsion. They also experience gas drag. The beam particles are driven by a prescribed net force that is not applied to the target particles; in the experiments this net force is due to an imbalance of the electric and ion drag forces. This simulation is motivated by microgravity experiments, with the expectation that the scattering of projectiles studied here will be observed in upcoming PK-4 experiments on the International Space Station. Supported by NASA and DOE.

  17. Soft X-ray observation of the Rho Ophiuchus dark cloud region

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.; Hayakawa, S.; Hearn, D. R.

    1979-01-01

    Soft X-rays (0.1-0.8 keV) from the region including the Rho Oph dark cloud were observed with the SAS-3 low-energy X-ray telescope. No X-ray absorption by the cloud was observed. This indicates that the diffuse component of soft X-rays in this region is mostly from the foreground of the Rho Oph cloud which is located at a distance of 160-200 pc.

  18. Discovery of small-scale-structure in the large molecule/dust distribution in the diffuse ISM

    NASA Astrophysics Data System (ADS)

    Cordiner, Martin A.; Fossey, Stephen J.; Sarre, Peter J.

    There is mounting evidence that far from being homogeneously distributed, interstellar matter can have a clumpy or filamentary structure on the scale of 10s to a few 1000s of AU and which is commonly described as small scale structure (SSS). Initially confined to VLBI HI observations and HI observations of high-velocity pulsars, evidence for SSS has also come indirectly from molecular radio studies of e.g. HCO+ and infrared absorption by H3+. Much of the recent data on SSS has been obtained through optical/UV detection of atomic and diatomic molecular lines. Is there small scale structure in the large molecule/dust distribution? While this question could in principle be explored by measuring differences in the interstellar extinction towards the components of binary stars, in practice this would be difficult. Rather we chose to investigate this by recording very high signal-to-noise spectra of diffuse interstellar absorption bands. Although the carriers remain unidentified, the diffuse bands are generally considered to be tracers of the large molecule/dust distribution and scale well with reddening. Using the Anglo-Australian Telescope we have made UCLES observations of pairs of stars with separations ranging between 500 and 30000 AU. The signal-to-noise achieved was up to 2000, thus allowing variations in central depth of less than a few tenths of a percent to be discernible. Striking differences in diffuse band strengths for closely spaced lines of sight are found showing clearly that there exists small-scale-structure in the large molecule/dust distribution. For example, in the Ophiuchus star-formation region the central depths for the λ6614 diffuse band towards the ρ Oph stars A, B, C and D/E all differ and range between 0.966 and 0.930. Further interesting behaviour is found when comparing the relative strengths of diffuse bands between closely parallel lines of sight. Taking again the ρ Oph group, for λ5797 the strengths follow the order DE > B > C > A whereas the λ5850 band, which has been associated with λ5797 as a member of the same 'family', follows a very different intensity pattern with C > B > A > DE. This opens a new avenue of diffuse band research in its own right and provides a rigorous test for models and theories of diffuse band carrier structure and behaviour.

  19. Dust Abundance Variations in the Magellanic Clouds: Probing the Life-cycle of Metals with All-sky Surveys

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia; Bot, Caroline; Chastenet, Jeremy; Gordon, Karl

    2017-06-01

    Observations and modeling suggest that dust abundance (gas-to-dust ratio, G/D) depends on (surface) density. Variations of the G/D provide timescale constraints for the different processes involved in the life cycle of metals in galaxies. Recent G/D measurements based on Herschel data suggest a factor of 5-10 decrease in dust abundance between the dense and diffuse interstellar media (ISM) in the Magellanic Clouds. However, the relative nature of the Herschel measurements precludes definitive conclusions as to the magnitude of those variations. We investigate variations of the dust abundance in the LMC and SMC using all-sky far-infrared surveys, which do not suffer from the limitations of Herschel on their zero-point calibration. We stack the dust spectral energy distribution (SED) at 100, 350, 550, and 850 microns from IRAS and Planck in intervals of gas surface density, model the stacked SEDs to derive the dust surface density, and constrain the relation between G/D and gas surface density in the range 10-100 M ⊙ pc-2 on ˜80 pc scales. We find that G/D decreases by factors of 3 (from 1500 to 500) in the LMC and 7 (from 1.5× {10}4 to 2000) in the SMC between the diffuse and dense ISM. The surface-density-dependence of G/D is consistent with elemental depletions, and with simple modeling of the accretion of gas-phase metals onto dust grains. This result has important implications for the sub-grid modeling of galaxy evolution, and for the calibration of dust-based gas-mass estimates, both locally and at high redshift.

  20. Desquamative interstitial pneumonia associated with chrysotile asbestos fibres.

    PubMed Central

    Freed, J A; Miller, A; Gordon, R E; Fischbein, A; Kleinerman, J; Langer, A M

    1991-01-01

    The drywall construction trade has in the past been associated with exposure to airborne asbestos fibres. This paper reports a drywall construction worker with 32 years of dust exposure who developed dyspnoea and diminished diffusing capacity, and showed diffuse irregular opacities on chest radiography. He did not respond to treatment with corticosteroids. Open lung biopsy examination showed desquamative interstitial pneumonia. Only a single ferruginous body was seen on frozen section, but tissue examination by electron microscopy showed an extraordinary pulmonary burden of mineral dust with especially high concentrations of chrysotile asbestos fibres. This report emphasises the need to consider asbestos fibre as an agent in the aetiology of desquamative interstitial pneumonia. The coexistent slight interstitial fibrosis present in this case is also considered to have resulted from exposure to mineral dust, particularly ultramicroscopic asbestos fibres. Images PMID:1645584

  1. Developing ISM Dust Grain Models with Precision Elemental Abundances from IXO

    NASA Technical Reports Server (NTRS)

    Valencic, L. A.; Smith, R. K.; Juet, A.

    2009-01-01

    The exact nature of interstellar dust grains in the Galaxy remains mysterious, despite their ubiquity. Many viable models exist, based on available IR-UV data and assumed elemental abundances. However, the abundances, which are perhaps the most stringent constraint, are not well known: modelers must use proxies in the absence of direct measurements for the diffuse interstellar medium (ISM). Recent revisions of these proxy values have only added to confusion over which is the best representative for the diffuse ISM, and highlighted the need for direct, high signal-to-noise measurements from the ISM itself. The International X-ray Observatory's superior facilities will enable high-precision elemental abundance measurements. We ill show how these results will measure both the overall ISM abundances and challenge dust models, allowing us to construct a more realistic picture of the ISM.

  2. Spectroscopic Infrared Extinction Mapping as a Probe of Grain Growth in IRDCs

    NASA Astrophysics Data System (ADS)

    Lim, Wanggi; Carey, Sean J.; Tan, Jonathan C.

    2015-11-01

    We present spectroscopic tests of MIR to FIR extinction laws in IRDC G028.36+00.07, a potential site of massive star and star cluster formation. Lim & Tan developed methods of FIR extinction mapping of this source using Spitzer-MIPS 24 μm and Herschel-PACS 70 μm images, and by comparing to MIR Spitzer-IRAC 3-8 μm extinction maps, found tentative evidence for grain growth in the highest mass surface density regions. Here we present results of spectroscopic infrared extinction mapping using Spitzer-IRS (14-38 μm) data of the same Infrared dark cloud (IRDC). These methods allow us to first measure the SED of the diffuse Galactic interstellar medium that is in the foreground of the IRDC. We then carry out our primary investigation of measuring the MIR to FIR opacity law and searching for potential variations as a function of mass surface density within the IRDC. We find relatively flat, featureless MIR-FIR opacity laws that lack the ˜12 and ˜35 μm features associated with the thick water ice mantle models of Ossenkopf & Henning. Their thin ice mantle models and the coagulating aggregate dust models of Ormel et al. are a generally better match to the observed opacity laws. We also find evidence for generally flatter MIR to FIR extinction laws as mass surface density increases, strengthening the evidence for grain and ice mantle growth in higher density regions.

  3. Astronomers Go Behind The Milky Way To Solve X-Ray Mystery

    NASA Astrophysics Data System (ADS)

    2001-08-01

    Through layers of gas and dust that stretch for more than 30,000 light years, astronomers using NASA's Chandra X-ray Observatory have taken a long, hard look at the plane of the Milky Way galaxy and found that its X-ray glow comes from hot and diffuse gas. The findings, published in the August 10 issue of Science, help to settle a long-standing mystery about the source of the X-ray emission from the galactic plane. Scientists have debated whether the Milky Way plane's X-ray emission was diffuse light or from individual stars. Armed with Chandra, an international team led Dr. Ken Ebisawa of NASA's Goddard Space Flight Center, Greenbelt, MD zoomed in on a tiny region of the galactic plane in the constellation Scutum. "The point sources we saw in the galactic plane were actually active galaxies with bright cores millions of light years behind our galaxy," said Ebisawa. "The number of these sources is consistent with the expected number of extragalactic sources in the background sky. We saw few additional point sources within our Galaxy." The observation marks the deepest X-ray look at the so-called "zone of avoidance" -- a region of space behind which no optical observation has ever been taken because thick dust and gas in the spiral arms of the Milky Way galaxy block out visible radiation. Infrared, radio, and X-rays, however, can penetrate this dust and gas. Detection of diffuse X rays emanating from the Galactic plane, what we call the "Milky Way" in visible light, indicates the presence of plasma gas with temperatures of tens of millions of degrees Celsius. Smoothed X-ray Image of the Galactic Plane Smoothed X-ray Image of the Galactic Plane Gas this hot would escape the gravitational confines of the Milky Way galaxy under normal circumstances. The fact that it still lingers within the Galactic plane is the next mystery to solve. One possibility, suggested by Ebisawa is that hot plasma may be confined to the Milky Way by magnetic fields. The Chandra observation, conducted in February 2000, lasted 28 hours. The team observed what was known to be a "blank" region of the galactic plane where the Japanese X-ray satellite ASCA had previously observed but found no individual X-ray sources. The team also discovered 36 bright distant galaxies lurking in the background of this section of the galactic plane, while the foreground was devoid of stars or other individual objects emitting X-rays. Chandra, and now the European XMM-Newton satellite, are at long last beginning to collect light from behind our galaxy. X-radiation from the 36 newly discovered galaxies passes through the Milky Way on its journey towards Earth. This light, therefore, carries the imprint of all that it passes through and will allow astronomers to measure the distribution and physical condition of matter in our Galaxy. Participating in the Chandra observation and Science article are Yoshitomo Maeda of Pennsylvania State University; Hidehiro Kaneda of the Institute of Space and Astronautical Science in Japan; and Shigeo Yamauchi of Iwate University in Japan. Chandra observed the galactic plane with its Advanced CCD Imaging Spectrometer (ACIS) instrument, which was developed for NASA by Pennsylvania State University, University Park, and Massachusetts Institute of Technology, Cambridge. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program, and TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA.

  4. Dust in Jupiter's magnetosphere. I - Physical processes. II - Origin of the ring. III - Time variations. IV - Effect on magnetospheric electrons and ions

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Gruen, E.; Johnson, T. V.

    1980-01-01

    The physical processes acting on charged microscopic dust grains in the Jovian atmosphere involve electromagnetic forces which dominate dust particle dynamics and diffusion across field lines resulting from random charge fluctuations of the dust grains. A model of the Jovian ring hypothesizes that the 'visible' ring particles are produced by erosive collisions between an assumed population of kilometer-sized parent bodies and submicron-sized magnetospheric dust particles. Fluctuations in the ring topology and intensity are determined over various time scales, showing that the ring is a quasipermanent and quasistable characteristic of the Jovian system. Finally, the interaction of the Jovian energetic belt electrons and the Jovian plasma with an ambient dust population is examined; the distribution of dust ejected from Io in the inner magnetosphere and losses of magnetospheric ions and electrons due to direct collisions with charged dust particles are calculated.

  5. Respiratory Diseases Caused by Coal Mine Dust

    PubMed Central

    Laney, A. Scott; Weissman, David N.

    2015-01-01

    Objective To provide an update on respiratory diseases caused by coal mine dust. Methods This article presents the results of a literature review initially performed for an International Conference on Occupational and Environmental Lung Disease held in summer 2013. Results Coal mine dust causes a spectrum of lung diseases collectively termed coal mine dust lung disease (CMDLD). These include Coal Workers’ Pneumoconiosis, silicosis, mixed dust pneumoconiosis, dust-related diffuse fibrosis (which can be mistaken for idiopathic pulmonary fibrosis), and chronic obstructive pulmonary disease. CMDLD continues to be a problem in the United States, particularly in the central Appalachian region. Treatment of CMDLD is symptomatic. Those with end-stage disease are candidates for lung transplantation. Because CMDLD cannot be cured, prevention is critical. Conclusions Coal mine dust remains a relevant occupational hazard and miners remain at risk for CMDLD. PMID:25285970

  6. Planck early results. XXIV. Dust in the diffuse interstellar medium and the Galactic halo

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Abergel, A.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Blagrave, K.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Chiang, C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Jaffe, A. H.; Joncas, G.; Jones, A.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; Lockman, F. J.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Osborne, S.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pinheiro Gonçalves, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800 deg2 at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2 × 1020 cm-2 is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the Hi-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average Hi column density greater than 2 × 1020 cm-2, show significant excess dust emission compared to the Hi column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher Hi column density fields the excess emission at 857 GHz is about 40% of that coming from the Hi, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes. Corresponding author: M.-A. Miville-Deschênes, e-mail: mamd@ias.u-psud.fr

  7. Charged dust in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Mendis, D. A.; Hill, J. R.; Houpis, H. L. F.

    1983-01-01

    The overall distribution of fine dust in the Saturnian magnetosphere, its behavior, the cosmogony of the Saturnian ring system, and observations of the magnetosphere and ring system are synthesized and explained using gravito-electrodynamics. Among the phenomena discussed are the formation of waves in the F-ring, the cause of eccentricities of certain isolated ringlets, and the origin and morphology of the broad diffuse E-ring. Magnetogravitational resonance of charged dust with nearby satellites, gyro-orbital resonances, and magnetogravitational capture of exogenic dust by the magnetosphere are used to explain individual observations. The effect of a ring current associated with the charged dust is evaluated. Finally, the cosmogonic implications of the magnetogravitational theory are discussed.

  8. The Marriage of Gas and Dust

    NASA Astrophysics Data System (ADS)

    Price, D. J.; Laibe, G.

    2015-10-01

    Dust-gas mixtures are the simplest example of a two fluid mixture. We show that when simulating such mixtures with particles or with particles coupled to grids a problem arises due to the need to resolve a very small length scale when the coupling is strong. Since this is occurs in the limit when the fluids are well coupled, we show how the dust-gas equations can be reformulated to describe a single fluid mixture. The equations are similar to the usual fluid equations supplemented by a diffusion equation for the dust-to-gas ratio or alternatively the dust fraction. This solves a number of numerical problems as well as making the physics clear.

  9. Broad-bandwidth Metamaterial Antireflection Coatings for Sub-Millimeter Astronomy and CMB Foreground Removal

    NASA Astrophysics Data System (ADS)

    McMahon, Jeff

    Sub-millimeter observations are crucial for answering questions about star and galaxy formation; understanding galactic dust foregrounds; and for removing these foregrounds to detect the faint signature of inflationary gravitational waves in the polarization of the Cosmic Microwave Background (CMB). Achieving these goals requires improved, broad-band antireflection coated lenses and half-wave plates (HWPs). These optical elements will significantly boost the sensitivity and capability of future sub-millimeter and CMB missions. We propose to develop wide-bandwidth metamaterial antireflection coatings for silicon lenses and sapphire HWPs with 3:1 ratio bandwidth that are scalable across the sub-millimeter band from 300 GHz to 3 THz. This is an extension of our successful work on saw cut metamaterial AR coatings for silicon optics at millimeter wave lengths. These, and the proposed coatings consist of arrays of sub-wavelength scale features cut into optical surfaces that behave like simple dielectrics. We have demonstrated saw cut 3:1 bandwidth coatings on silicon lenses, but these coatings are limited to the millimeter wave band by the limitations of dicing saw machining. The crucial advance needed to extend these broad band coatings throughout the sub-millimeter band is the development of laser cut graded index metamaterial coatings. The proposed work includes developing the capability to fabricate these coatings, optimizing the design of these metamaterials, fabricating and testing prototype lenses and HWPs, and working with the PIPER collaboration to achieve a sub-orbital demonstration of this technology. The proposed work will develop potentially revolutionary new high performance coatings for the sub-millimeter bands, and cary this technology to TRL 7 paving the way for its use in space. We anticipate that there will be a wide range of applications for these coatings on future NASA balloons and satellites.

  10. ExtLaw_H18: Extinction law code

    NASA Astrophysics Data System (ADS)

    Hosek, Matthew W., Jr.; Lu, Jessica R.; Anderson, Jay; Do, Tuan; Schlafly, Edward F.; Ghez, Andrea M.; Clarkson, William I.; Morris, Mark R.; Albers, Saundra M.

    2018-03-01

    ExtLaw_H18 generates the extinction law between 0.8 - 2.2 microns. The law is derived using the Westerlund 1 (Wd1) main sequence (A_Ks 0.6 mag) and Arches cluster field Red Clump at the Galactic Center (A_Ks 2.7 mag). To derive the law a Wd1 cluster age of 5 Myr is assumed, though changing the cluster age between 4 Myr - 7 Myr has no effect on the law. This extinction law can be applied to highly reddened stellar populations that have similar foreground material as Wd1 and the Arches RC, namely dust from the spiral arms of the Milky Way in the Galactic Plane.

  11. Full-sky, High-resolution Maps of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron Michael

    We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining our WISE 12 micron dust map and Planck dust model to create a next-generation, full-sky dust extinction map with angular resolution several times better than Schlegel et al. (1998).

  12. Spectrum of the Isotropic Diffuse Gamma-Ray Emission Derived from First-Year Fermi Large Area Telescope Data

    DOE PAGES

    Abdo, A. A.

    2010-03-08

    Here, we report on the first Fermi Large Area Telescope (LAT) measurements of the so-called “extragalactic” diffuse γ -ray emission (EGB). This component of the diffuse γ -ray emission is generally considered to have an isotropic or nearly isotropic distribution on the sky with diverse contributions discussed in the literature. The derivation of the EGB is based on detailed modeling of the bright foreground diffuse Galactic γ -ray emission, the detected LAT sources, and the solar γ -ray emission. We also find the spectrum of the EGB is consistent with a power law with a differential spectral index γ =more » 2.41 ± 0.05 and intensity I ( > 100 MeV ) = ( 1.03 ± 0.17 ) × 10 - 5 cm -2 s - 1 sr - 1 , where the error is systematics dominated. The EGB spectrum, presented here, is featureless, less intense, and softer than that derived from EGRET data.« less

  13. Lifetime Occupational Exposure to Dusts, Gases and Fumes Is Associated with Bronchitis Symptoms and Higher Diffusion Capacity in COPD Patients

    PubMed Central

    Rodríguez, Esther; Ferrer, Jaume; Zock, Jan-Paul; Serra, Ignasi; Antó, Josep M.; de Batlle, Jordi; Kromhout, Hans; Vermeulen, Roel; Donaire-González, David; Benet, Marta; Balcells, Eva; Monsó, Eduard; Gayete, Angel; Garcia-Aymerich, Judith

    2014-01-01

    Background Occupational exposure to dusts, gases and fumes has been associated with reduced FEV1 and sputum production in COPD patients. The effect of occupational exposure on other characteristics of COPD, especially those reflecting emphysema, has not been studied in these patients. Methods We studied 338 patients hospitalized for a first exacerbation of COPD in 9 Spanish hospitals, obtaining full occupational history in a face-to-face interview; job codes were linked to a job exposure matrix for semi-quantitative estimation of exposure to mineral/biological dust, and gases/fumes for each job held. Patients underwent spirometry, diffusing capacity testing and analysis of gases in stable conditions. Quality of life, dyspnea and chronic bronchitis symptoms were determined with a questionnaire interview. A high- resolution CT scan was available in 133 patients. Results 94% of the patients included were men, with a mean age of 68(8.5) years and a mean FEV1% predicted 52 (16). High exposure to gases or fumes was associated with chronic bronchitis, and exposure to mineral dust and gases/fumes was associated with higher scores for symptom perception in the St. George’s questionnaire. No occupational agent was associated with a lower FEV1. High exposure to all occupational agents was associated with better lung diffusion capacity, in long-term quitters. In the subgroup with CT data, patients with emphysema had 18% lower DLCO compared to those without emphysema. Conclusions In our cohort of COPD patients, high exposure to gases or fumes was associated with chronic bronchitis, and high exposure to all occupational agents was consistently associated with better diffusion capacity in long-term quitters. PMID:24516659

  14. Blowing in the Wind: I. Velocities of Chondrule-sized Particles in a Turbulent Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Cuzzi, Jeffrey N.; Hogan, Robert C.; Fonda, Mark (Technical Monitor)

    2003-01-01

    Small but macroscopic particles - chondrules, higher temperature mineral inclusions, metal grains, and their like - dominate the fabric of primitive meteorites. The properties of these constituents, and their relationship to the fine dust grains which surround them, suggest that they led an extended existence in a gaseous protoplanetary nebula prior to their incorporation into their parent primitive bodies. In this paper we explore in some detail the velocities acquired by such particles in a turbulent nebula. We treat velocities in inertial space (relevant to diffusion), velocities relative to the gas and entrained microscopic dust (relevant to accretion of dust rims), and velocities relative to each other (relevant to collisions). We extend previous work by presenting explicit, closed-form solutions for the magnitude and size dependence of these velocities in this important particle size regime, and compare these expressions with new numerical calculations. The magnitude and size dependence of these velocities have immediate applications to chondrule and CAI rimming by fine dust, and to their diffusion in the nebula, which we explore separately.

  15. Hubble space telescope imaging of decoupled dust clouds in the ram pressure stripped Virgo spirals NGC 4402 and NGC 4522

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abramson, Anne; Kenney, Jeffrey D. P., E-mail: anne.abramson@yale.edu, E-mail: jeff.kenney@yale.edu

    We present the highest-resolution study to date of the interstellar medium (ISM) in galaxies undergoing ram pressure stripping, using Hubble Space Telescope BVI imaging of NGC 4522 and NGC 4402, Virgo Cluster spirals that are well known to be experiencing intracluster medium (ICM) ram pressure. We find that throughout most of both galaxies, the main dust lane has a fairly well-defined edge, with a population of giant molecular cloud (GMC) sized (tens- to hundreds-of-pc scale), isolated, highly extincting dust clouds located up to ∼1.5 kpc radially beyond it. Outside of these dense clouds, the area has little or no diffusemore » dust extinction, indicating that the clouds have decoupled from the lower-density ISM material that has already been stripped. Several of the dust clouds have elongated morphologies that indicate active ram pressure, including two large (kpc scale) filaments in NGC 4402 that are elongated in the projected ICM wind direction. We calculate a lower limit on the H I + H{sub 2} masses of these clouds based on their dust extinctions and find that a correction factor of ∼10 gives cloud masses consistent with those measured in CO for clouds of similar diameters, probably due to the complicating factors of foreground light, cloud substructure, and resolution limitations. Assuming that the clouds' actual masses are consistent with those of GMCs of similar diameters (∼10{sup 4}-10{sup 5} M {sub ☉}), we estimate that only a small fraction (∼1%-10%) of the original H I + H{sub 2} remains in the parts of the disks with decoupled clouds. Based on Hα images, a similar fraction of star formation persists in these regions, 2%-3% of the estimated pre-stripping star formation rate. We find that the decoupled cloud lifetimes may be up to 150-200 Myr.« less

  16. Curiosity Observes Whirlwinds Carrying Martian Dust

    NASA Image and Video Library

    2017-02-27

    Dust devils dance in the distance in this frame from a sequence of images taken by the Navigation Camera on NASA's Curiosity Mars rover on Feb. 12, 2017, during the summer afternoon of the rover's 1,607th Martian day, or sol. Within a broader context view, the rectangular area outlined in black was imaged multiple times over a span of several minutes to check for dust devils. Images from the period with most activity are shown in the inset area. The images are in pairs that were taken about 12 seconds apart, with an interval of about 90 seconds between pairs. Timing is accelerated and not fully proportional in this animation. One dust devil appears at the right edge of the inset -- toward the south from the rover -- in the first few frames. Another appears on the left -- toward south-southeast -- later in the sequence. Contrast has been modified to make frame-to-frame changes easier to see. A black frame is added between repeats of the sequence. Portions of Curiosity are visible in the foreground. The cylindrical UHF (ultra-high frequency) antenna on the left is used for sending data to Mars orbiters, which relay the data to Earth. The angled planes to the right of this antenna are fins of the rover's radioisotope thermoelectric generator, which provides the vehicle's power. The post with a knob on top at right is a low-gain, non-directional antenna that can be used for receiving transmissions from Earth, as backup to the main high-gain antenna (not shown here) used for that purpose. On Mars as on Earth, dust devils are whirlwinds that result from sunshine warming the ground, prompting convective rising of air that has gained heat from the ground. Observations of Martian dust devils provide information about wind directions and interaction between the surface and the atmosphere. An animation is available at http://photojournal.jpl.nasa.gov/catalog/PIA21482

  17. Vacuum ultraviolet photolysis of hydrogenated amorphous carbons. III. Diffusion of photo-produced H2 as a function of temperature

    NASA Astrophysics Data System (ADS)

    Martín-Doménech, R.; Dartois, E.; Muñoz Caro, G. M.

    2016-06-01

    Context. Hydrogenated amorphous carbon (a-C:H) has been proposed as one of the carbonaceous solids detected in the interstellar medium. Energetic processing of the a-C:H particles leads to the dissociation of the C-H bonds and the formation of hydrogen molecules and small hydrocarbons. Photo-produced H2 molecules in the bulk of the dust particles can diffuse out to the gas phase and contribute to the total H2 abundance. Aims: We have simulated this process in the laboratory with plasma-produced a-C:H and a-C:D analogs under astrophysically relevant conditions to investigate the dependence of the diffusion as a function of temperature. Methods: Experimental simulations were performed in a high-vacuum chamber, with complementary experiments carried out in an ultra-high-vacuum chamber. Plasma-produced a-C:H and a-C:D analogs were UV-irradiated using a microwave-discharged hydrogen flow lamp. Molecules diffusing to the gas-phase were detected by a quadrupole mass spectrometer, providing a measurement of the outgoing H2 or D2 flux. By comparing the experimental measurements with the expected flux from a one-dimensional diffusion model, a diffusion coefficient D could be derived for experiments carried out at different temperatures. Results: Dependence on the diffusion coefficient D with the temperature followed an Arrhenius-type equation. The activation energy for the diffusion process was estimated (ED(H2) = 1660 ± 110 K, ED(D2) = 2090 ± 90 K), as well as the pre-exponential factor (D0(H2) = 0.0007 cm2 s-1, D0(D2) = 0.0045 cm2 s-1). Conclusions: The strong decrease of the diffusion coefficient at low dust particle temperatures exponentially increases the diffusion times in astrophysical environments. Therefore, transient dust heating by cosmic rays needs to be invoked for the release of the photo-produced H2 molecules in cold photon-dominated regions, where destruction of the aliphatic component in hydrogenated amorphous carbons most probably takes place.

  18. Agglomeration of dust in convective clouds initialized by nuclear bursts

    NASA Astrophysics Data System (ADS)

    Bacon, D. P.; Sarma, R. A.

    Convective clouds initialized by nuclear bursts are modeled using a two-dimensional axisymmetric cloud model. Dust transport through the atmosphere is studied using five different sizes ranging from 1 to 10,000 μm in diameter. Dust is transported in the model domain by advection and sedimentation. Water is allowed to condense onto dust particles in regions of supersaturation in the cloud. The agglomeration of dust particles resulting from the collision of different size dust particles is modeled. The evolution of the dust mass spectrum due to agglomeration is modeled using a numerical scheme which is mass conserving and has low implicit diffusion. Agglomeration moves mass from the small particles with very small fall velocity to the larger sizes which fall to the ground more readily. Results indicate that the dust fallout can be increased significantly due to this process. In preliminary runs using stable and unstable environmental soundings, at 30 min after detonation the total dust in the domain was 11 and 30%, respectively, less than a control case without agglomeration.

  19. Large Interstellar Polarisation Survey. II. UV/optical study of cloud-to-cloud variations of dust in the diffuse ISM

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.; Cami, J.; Peest, C.

    2018-03-01

    It is well known that the dust properties of the diffuse interstellar medium exhibit variations towards different sight-lines on a large scale. We have investigated the variability of the dust characteristics on a small scale, and from cloud-to-cloud. We use low-resolution spectro-polarimetric data obtained in the context of the Large Interstellar Polarisation Survey (LIPS) towards 59 sight-lines in the Southern Hemisphere, and we fit these data using a dust model composed of silicate and carbon particles with sizes from the molecular to the sub-micrometre domain. Large (≥6 nm) silicates of prolate shape account for the observed polarisation. For 32 sight-lines we complement our data set with UVES archive high-resolution spectra, which enable us to establish the presence of single-cloud or multiple-clouds towards individual sight-lines. We find that the majority of these 35 sight-lines intersect two or more clouds, while eight of them are dominated by a single absorbing cloud. We confirm several correlations between extinction and parameters of the Serkowski law with dust parameters, but we also find previously undetected correlations between these parameters that are valid only in single-cloud sight-lines. We find that interstellar polarisation from multiple-clouds is smaller than from single-cloud sight-lines, showing that the presence of a second or more clouds depolarises the incoming radiation. We find large variations of the dust characteristics from cloud-to-cloud. However, when we average a sufficiently large number of clouds in single-cloud or multiple-cloud sight-lines, we always retrieve similar mean dust parameters. The typical dust abundances of the single-cloud cases are [C]/[H] = 92 ppm and [Si]/[H] = 20 ppm.

  20. The angular power spectrum measurement of the Galactic synchrotron emission using the TGSS survey

    NASA Astrophysics Data System (ADS)

    Choudhuri, Samir; Bharadwaj, Somnath; Ali, Sk. Saiyad; Roy, Nirupam; Intema, H. T.; Ghosh, Abhik

    2018-05-01

    Characterizing the diffuse Galactic synchrotron emission (DGSE) at arcminute angular scales is needed to remove this foregrounds in cosmological 21-cm measurements. Here, we present the angular power spectrum (Cl) measurement of the diffuse Galactic synchrotron emission using two fields observed by the TIFR GMRT Sky Survey (TGSS). We apply 2D Tapered Gridded Estimator (TGE) to estimate the Cl from the visibilities. We find that the residual data after subtracting the point sources is likely dominated by the diffuse Galactic synchrotron radiation across the angular multipole range 240 <= l <~ 500. We fit a power law to the measured Cl over this l range. We find that the slopes in both fields are consistent with earlier measurements. For the second field, however, we interpret the measured Cl as an upper limit for the DGSE as there is an indication of a significant residual point source contribution.

  1. The Python Sky Model: software for simulating the Galactic microwave sky

    NASA Astrophysics Data System (ADS)

    Thorne, B.; Dunkley, J.; Alonso, D.; Næss, S.

    2017-08-01

    We present a numerical code to simulate maps of Galactic emission in intensity and polarization at microwave frequencies, aiding in the design of cosmic microwave background experiments. This python code builds on existing efforts to simulate the sky by providing an easy-to-use interface and is based on publicly available data from the WMAP (Wilkinson Microwave Anisotropy Probe) and Planck satellite missions. We simulate synchrotron, thermal dust, free-free and anomalous microwave emission over the whole sky, in addition to the cosmic microwave background, and include a set of alternative prescriptions for the frequency dependence of each component, for example, polarized dust with multiple temperatures and a decorrelation of the signals with frequency, which introduce complexity that is consistent with current data. We also present a new prescription for adding small-scale realizations of these components at resolutions greater than current all-sky measurements. The usefulness of the code is demonstrated by forecasting the impact of varying foreground complexity on the recovered tensor-to-scalar ratio for the LiteBIRD satellite. The code is available at: https://github.com/bthorne93/PySM_public.

  2. STS-57 OV-105's payload bay (PLB) with Earth observation of Namib Desert

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation taken aboard Endeavour, Orbiter Vehicle (OV) 105, is of the coast of the Namib Desert. This northeast-looking view shows the distinctive yellow, parallel dunes of the Namib Sand Sea in the foreground under OV-105's tail. The largest harbor on the Atlantic coast is Walvis Bay. A small piece of south African territory surrounded by the newly independent country, Walvis Bay is Namibia's major port. On the dune-free flats directly inland from Walvis Bay, large reserves of near-surface uranium have been discovered. The world's largest open-pit uranium mine, the Rossing Mine, has attracted workers from all parts of Namibia. Of special interest for this mission is the unusual occurrence of blowing dust offshore (orange patch over the sea). In what was a mission dominated by episodes of blowing dust, this is another example showing how windy the Earth is at present. This large view from a higher-than-usual altitude includes the large oval patch of the Etosha dry lake n

  3. Recombination of H atoms on the dust in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir; Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir

    2015-07-15

    We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H{sub 2} on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.

  4. Sunlight Transmission through Desert Dust and Marine Aerosols: Diffuse Light Corrections to Sun Photometry and Pyrheliometry

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Dubovik, O.; Ramirez, S. A.; Wang, J.; Redemann, J.; Schmid, B.; Box, M.; Holben, B. N.

    2003-01-01

    Desert dust and marine aerosols are receiving increased scientific attention because of their prevalence on intercontinental scales and their potentially large effects on Earth radiation and climate, as well as on other aerosols, clouds, and precipitation. The relatively large size of desert dust and marine aerosols produces scattering phase functions that are strongly forward- peaked. Hence, Sun photometry and pyrheliometry of these aerosols are more subject to diffuse-light errors than is the case for smaller aerosols. Here we quantify these diffuse-light effects for common Sun photometer and pyrheliometer fields of view (FOV), using a data base on dust and marine aerosols derived from (1) AERONET measurements of sky radiance and solar beam transmission and (2) in situ measurements of aerosol layer size distribution and chemical composition. Accounting for particle non-sphericity is important when deriving dust size distribution from both AERONET and in situ aerodynamic measurements. We express our results in terms of correction factors that can be applied to Sun photometer and pyrheliometer measurements of aerosol optical depth (AOD). We find that the corrections are negligible (less than approximately 1% of AOD) for Sun photometers with narrow FOV (half-angle eta less than degree), but that they can be as large as 10% of AOD at 354 nm wavelength for Sun photometers with eta = 1.85 degrees. For pyrheliometers (which can have eta up to approximately 2.8 degrees), corrections can be as large as 16% at 354 nm. We find that AOD correction factors are well correlated with AOD wavelength dependence (hence Angstrom exponent). We provide best-fit equations for determining correction factors from Angstrom exponents of uncorrected AOD spectra, and we demonstrate their application to vertical profiles of multiwavelength AOD.

  5. A Bayesian analysis of redshifted 21-cm H I signal and foregrounds: simulations for LOFAR

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhik; Koopmans, Léon V. E.; Chapman, E.; Jelić, V.

    2015-09-01

    Observations of the epoch of reionization (EoR) using the 21-cm hyperfine emission of neutral hydrogen (H I) promise to open an entirely new window on the formation of the first stars, galaxies and accreting black holes. In order to characterize the weak 21-cm signal, we need to develop imaging techniques that can reconstruct the extended emission very precisely. Here, we present an inversion technique for LOw Frequency ARray (LOFAR) baselines at the North Celestial Pole (NCP), based on a Bayesian formalism with optimal spatial regularization, which is used to reconstruct the diffuse foreground map directly from the simulated visibility data. We notice that the spatial regularization de-noises the images to a large extent, allowing one to recover the 21-cm power spectrum over a considerable k⊥-k∥ space in the range 0.03 Mpc-1 < k⊥ < 0.19 Mpc-1 and 0.14 Mpc-1 < k∥ < 0.35 Mpc-1 without subtracting the noise power spectrum. We find that, in combination with using generalized morphological component analysis (GMCA), a non-parametric foreground removal technique, we can mostly recover the spherical average power spectrum within 2σ statistical fluctuations for an input Gaussian random root-mean-square noise level of 60 mK in the maps after 600 h of integration over a 10-MHz bandwidth.

  6. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more detail to gain additional information on the trigger of the enhanced ice nucleation activity of soil dust. References Rogers (1988): Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies Steinke et al. (In preparation for submission): Ice nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina and Germany

  7. Anomalous transport of charged dust grains in a magnetized collisional plasma: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bezbaruah, Pratikshya; Das, Nilakshi

    2018-05-01

    Anomalous diffusion of charged dust grains immersed in a plasma in the presence of strong ion-neutral collision, flowing ions, and a magnetic field has been observed. Molecular Dynamics simulation confirms the deviation from normal diffusion in an ensemble of dust grains probed in laboratory plasma chambers. Collisional effects are significant in governing the nature of diffusion. In order to have a clear idea on the transport of particles in a real experimental situation, the contribution of streaming ions and the magnetic field along with collision is considered through the relevant interaction potential. The nonlinear evolution of Mean Square Displacement is an indication of the modification in particle trajectories due to several effects as mentioned above. It is found that strong collision and ion flow significantly affect the interparticle interaction potential in the presence of the magnetic field and lead to the appearance of the asymmetric type of Debye Hückel (D H) potential. Due to the combined effect of the magnetic field, ion flow, and collision, dusty plasma exhibits a completely novel behavior. The coupling parameter Γ enhances the asymmetric D H type potential arising due to ion flow, and this may drive the system to a disordered state.

  8. Tracing the First Stars with Fluctuations of the Cosmic Infrared Background

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Arendt, R. G.; Mather, J.; Moseley, S. H.

    2005-01-01

    The deepest space- and ground-based observations find metal-enriched galaxies at cosmic times when the Universe was less than 1 Gyr old. These stellar populations had to be preceded by the metal-free first stars, known as 'population III'. Recent cosmic microwave background polarization measurements indicate that stars started forming early-when the Universe was 5200 Myr old. It is now thought that population III stars were significantly more massive than the present metal-rich stellar populations. Although such sources will not be individually detectable by existing or planned telescopes, they would have produced significant cosmic infrared background radiation in the near-infrared, whose fluctuations reflect the conditions in the primordial density field. Here we report a measurement of diffuse flux fluctuations after removing foreground stars and galaxies. The anisotropies exceed the instrument noise and the more local foregrounds; they can be attributed to emission from population III stars, at an era dominated by these objects.

  9. Magnification of photometric LRGs by foreground LRGs and clusters in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Bauer, Anne H.; Gaztañaga, Enrique; Martí, Pol; Miquel, Ramon

    2014-06-01

    The magnification effect of gravitational lensing is a powerful probe of the distribution of matter in the universe, yet it is frequently overlooked due to the fact that its signal-to-noise ratio is smaller than that of lensing shear. Because its systematic errors are quite different from those of shear, magnification is nevertheless an important approach with which to study the distribution of large-scale structure. We present lensing mass profiles of spectroscopic luminous red galaxies (LRGs) and galaxy clusters determined through measurements of the weak lensing magnification of photometric LRGs in their background. We measure the change in detected galaxy counts as well as the increased average galaxy flux behind the lenses. In addition, we examine the average change in source colour due to extinction by dust in the lenses. By simultaneously fitting these three probes we constrain the mass profiles and dust-to-mass ratios of the lenses in six bins of lens richness. For each richness bin we fit a Navarro-Frenk-White halo mass, brightest cluster galaxy mass, second halo term, and dust-to-mass ratio. The resulting mass-richness relation is consistent with previous analyses of the catalogues, and limits on the dust-to-mass ratio in the lenses are in agreement with expectations. We explore the effects of including the (low signal-to-noise ratio) flux magnification and reddening measurements in the analysis compared to using only the counts magnification data; the additional probes significantly improve the agreement between our measured mass-richness relation and previous results.

  10. Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Errard, Josquin; Feeney, Stephen M.; Jaffe, Andrew H.

    2016-03-01

    Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3more » and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)∼1.3×10{sup −4}, σ(n{sub t})∼0.03, σ( n{sub s} )∼1.8×10{sup −3}, σ(α{sub s})∼1.7×10{sup −3}, σ( M{sub ν} )∼31 meV, σ( w )∼0.09, σ( w{sub 0} )∼ 0.25, 0σ( w{sub a} )∼ 0.5, σ( N{sub eff} )∼0.024 and σ( Ω{sub k} )∼1.5×10{sup −3}, after component separation and iterative delensing.« less

  11. Large-scale magnetic field in the accretion discs of young stars: the influence of magnetic diffusion, buoyancy and Hall effect

    NASA Astrophysics Data System (ADS)

    Khaibrakhmanov, S. A.; Dudorov, A. E.; Parfenov, S. Yu.; Sobolev, A. M.

    2017-01-01

    We investigate the fossil magnetic field in the accretion and protoplanetary discs using the Shakura and Sunyaev approach. The distinguishing feature of this study is the accurate solution of the ionization balance equations and the induction equation with Ohmic diffusion, magnetic ambipolar diffusion, buoyancy and the Hall effect. We consider the ionization by cosmic rays, X-rays and radionuclides, radiative recombinations, recombinations on dust grains and also thermal ionization. The buoyancy appears as the additional mechanism of magnetic flux escape in the steady-state solution of the induction equation. Calculations show that Ohmic diffusion and magnetic ambipolar diffusion constraint the generation of the magnetic field inside the `dead' zones. The magnetic field in these regions is quasi-vertical. The buoyancy constraints the toroidal magnetic field strength close to the disc inner edge. As a result, the toroidal and vertical magnetic fields become comparable. The Hall effect is important in the regions close to the borders of the `dead' zones because electrons are magnetized there. The magnetic field in these regions is quasi-radial. We calculate the magnetic field strength and geometry for the discs with accretion rates (10^{-8}-10^{-6}) {M}_{⊙} {yr}^{-1}. The fossil magnetic field geometry does not change significantly during the disc evolution while the accretion rate decreases. We construct the synthetic maps of dust emission polarized due to the dust grain alignment by the magnetic field. In the polarization maps, the `dead' zones appear as the regions with the reduced values of polarization degree in comparison to those in the adjacent regions.

  12. SPIDER: probing the early Universe with a suborbital polarimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fraisse, A.A.; Chiang, H.C.; Ade, P.A.R.

    2013-04-01

    We evaluate the ability of SPIDER, a balloon-borne polarimeter, to detect a divergence-free polarization pattern (B-modes) in the cosmic microwave background (CMB). In the inflationary scenario, the amplitude of this signal is proportional to that of the primordial scalar perturbations through the tensor-to-scalar ratio r. We show that the expected level of systematic error in the SPIDER instrument is significantly below the amplitude of an interesting cosmological signal with r = 0.03. We present a scanning strategy that enables us to minimize uncertainty in the reconstruction of the Stokes parameters used to characterize the CMB, while accessing a relatively widemore » range of angular scales. Evaluating the amplitude of the polarized Galactic emission in the SPIDER field, we conclude that the polarized emission from interstellar dust is as bright or brighter than the cosmological signal at all SPIDER frequencies (90 GHz, 150 GHz, and 280 GHz), a situation similar to that found in the ''Southern Hole.'' We show that two ∼ 20-day flights of the SPIDER instrument can constrain the amplitude of the B-mode signal to r < 0.03 (99% CL) even when foreground contamination is taken into account. In the absence of foregrounds, the same limit can be reached after one 20-day flight.« less

  13. Characterization of the OPAL LiDAR under controlled obscurant conditions

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoying; Church, Philip; Matheson, Justin

    2016-05-01

    Neptec Technologies' OPAL-120 3D LiDAR is optimized for obscurant penetration. The OPAL-120 uses a scanning mechanism based on the Risley prism pair. The scan patterns are created by rotating two prisms under independent motor control. The geometry and material properties of the prisms define the conical field-of-view of the sensor, which can be built to between 60 to 120 degrees. The OPAL-120 was recently evaluated using a controlled obscurant chamber capable of generating clouds of obscurants over a depth of 22m. Obscurants used in this investigation include: Arizona road dust, water fog, and fog-oil. The obscurant cloud optical densities were monitored with a transmissometer. Optical depths values ranged from an upper value of 6 and progressively decreased to 0. Targets were positioned at the back of the obscurant chamber at a distance of 60m from the LiDAR. The targets are made of a foreground array of equally spaced painted wood stripes in front of a solid background. Reflectivity contrasts were achieved with foreground/background combinations of white/white, white/black and black/white. Data analysis will be presented on the effect of optical densities on range and cross-range resolution, and accuracy. The analysis includes the combinations of all obscurant types and target reflectivity contrasts.

  14. Why Are Galaxies So Smooth?

    NASA Image and Video Library

    2009-04-30

    This image from NASA's Spitzer Space Telescope shows the spiral galaxy NGC 2841, located about 46 million light-years from Earth in the constellation Ursa Major. The galaxy is helping astronomers solve one of the oldest puzzles in astronomy: Why do galaxies look so smooth, with stars sprinkled evenly throughout? An international team of astronomers has discovered that rivers of young stars flow from their hot, dense stellar nurseries, dispersing out to form large, smooth distributions. This image is a composite of three different wavelengths from Spitzer's infrared array camera. The shortest wavelengths are displayed inblue, and mostly show the older stars in NGC 2841, as well as foreground stars in our own Milky Way galaxy. The cooler areas are highlighted in red, and show the dusty, gaseous regions of the galaxy. Blue shows infrared light of 3.6 microns, green represents 4.5-micron light and red, 8.0-micron light. The contribution from starlight measured at 3.6 microns has been subtracted from the 8.0-micron data to enhance the visibility of the dust features.The shortest wavelengths are displayed inblue, and mostly show the older stars in NGC 2841, as well as foreground stars in our own Milky Way galaxy. http://photojournal.jpl.nasa.gov/catalog/PIA12001

  15. Investigation of dust transport on the lunar surface in laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Wang, X.; Horanyi, M.; Robertson, S. H.

    2009-12-01

    There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.

  16. Integrating Windblown Dust Forecasts with Public Safety and Health Systems

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2014-12-01

    Experiments in real-time prediction of desert dust emissions and downstream plume concentrations (~ 3.5 km near-surface spatial resolution) succeed to the point of challenging public safety and public health services to beta test a dust storm warning and advisory system in lowering risks of highway and airline accidents and illnesses such as asthma and valley fever. Key beta test components are: high-resolution models of dust emission, entrainment and diffusion, integrated with synoptic weather observations and forecasts; satellite-based detection and monitoring of soil properties on the ground and elevated above; high space and time resolution for health surveillance and transportation advisories.

  17. Hubble's Wide View of 'Mystic Mountain' in Infrared

    NASA Image and Video Library

    2010-04-23

    NASA image release April 22, 2010 This is a NASA Hubble Space Telescope near-infrared-light image of a three-light-year-tall pillar of gas and dust that is being eaten away by the brilliant light from nearby stars in the tempestuous stellar nursery called the Carina Nebula, located 7,500 light-years away in the southern constellation Carina. The image marks the 20th anniversary of Hubble's launch and deployment into an orbit around Earth. The image reveals a plethora of stars behind the gaseous veil of the nebula's wall of hydrogen, laced with dust. The foreground pillar becomes semi-transparent because infrared light from background stars penetrates through much of the dust. A few stars inside the pillar also become visible. The false colors are assigned to three different infrared wavelength ranges. Hubble's Wide Field Camera 3 observed the pillar in February and March 2010. Object Names: HH 901, HH 902 Image Type: Astronomical Credit: NASA, ESA, and M. Livio and the Hubble 20th Anniversary Team (STScI) To read learn more about this image go to: www.nasa.gov/mission_pages/hubble/science/hubble20th-img.... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  18. A-3 Test Stand construction update

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.

  19. A-3 Test Stand construction update

    NASA Image and Video Library

    2007-12-18

    The concrete foundation placed Dec. 18 (foreground) for Stennis Space Center's future A-3 Test Stand has almost completely cured by early January, according to Bo Clarke, NASA's contracting officer technical representative for the foundation contract. By late December, construction on foundations for many of the test stand's support structures - diffuser, liquid oxygen, isopropyl alcohol and water tanks and gaseous nitrogen bottle battery - had begun with the installation of (background) `mud slabs.' The slabs provide a working surface for the reinforcing steel and foundation forms.

  20. Special report, diffuse reflectivity of the lunar surface

    NASA Technical Reports Server (NTRS)

    Fastie, W. G.

    1972-01-01

    The far ultraviolet diffuse reflectivity of samples of lunar dust material is determined. Equipment for measuring the diffuse reflectivity of materials (e.g. paint samples) is already in existence and requires only minor modification for the proposed experiment which will include the measurement of the polarizing properties of the lunar samples. Measurements can be made as a function of both illumination angle and angle of observation.

  1. Atomic Oxygen Abundance in Molecular Clouds: Absorption Toward Sagittarius B2

    NASA Technical Reports Server (NTRS)

    Lis, D. C.; Keene, Jocelyn; Phillips, T. G.; Schilke, P.; Werner, M. W.; Zmuidzinas, J.

    2001-01-01

    We have obtained high-resolution (approximately 35 km/s) spectra toward the molecular cloud Sgr B2 at 63 micrometers, the wavelength of the ground-state fine-structure line of atomic oxygen (O(I)), using the ISO-LWS instrument. Four separate velocity components are seen in the deconvolved spectrum, in absorption against the dust continuum emission of Sgr B2. Three of these components, corresponding to foreground clouds, are used to study the O(I) content of the cool molecular gas along the line of sight. In principle, the atomic oxygen that produces a particular velocity component could exist in any, or all, of three physically distinct regions: inside a dense molecular cloud, in the UV illuminated surface layer (PDR) of a cloud, and in an atomic (H(I)) gas halo. For each of the three foreground clouds, we estimate, and subtract from the observed O(I) column density, the oxygen content of the H(I) halo gas, by scaling from a published high-resolution 21 cm spectrum. We find that the remaining O(I) column density is correlated with the observed (13)CO column density. From the slope of this correlation, an average [O(I)]/[(13)CO] ratio of 270 +/- 120 (3-sigma) is derived, which corresponds to [O(I)]/[(13)CO] = 9 for a CO to (13)CO abundance ratio of 30. Assuming a (13)CO abundance of 1x10(exp -6) with respect to H nuclei, we derive an atomic oxygen abundance of 2.7x10(exp -4) in the dense gas phase, corresponding to a 15% oxygen depletion compared to the diffuse ISM in our Galactic neighborhood. The presence of multiple, spectrally resolved velocity components in the Sgr B2 absorption spectrum allows, for the first time, a direct determination of the PDR contribution to the O(I) column density. The PDR regions should contain O(I) but not (13)CO, and would thus be expected to produce an offset in the O(I)-(13)CO correlation. Our data do not show such an offset, suggesting that within our beam O(I) is spatially coexistent with the molecular gas, as traced by (13)CO. This may be a result of the inhomogeneous nature of the clouds.

  2. Magnetorotational instability in protoplanetary discs: the effect of dust grains

    NASA Astrophysics Data System (ADS)

    Salmeron, Raquel; Wardle, Mark

    2008-08-01

    We investigate the linear growth and vertical structure of the magnetorotational instability (MRI) in weakly ionized, stratified protoplanetary discs. The magnetic field is initially vertical and dust grains are assumed to be well mixed with the gas over the entire vertical dimension of the disc. For simplicity, all the grains are assumed to have the same radius (a = 0.1,1 or 3μm) and constitute a constant fraction (1 per cent) of the total mass of the gas. Solutions are obtained at representative radial locations (R = 5 and 10 au) from the central protostar for a minimum-mass solar nebula model and different choices of the initial magnetic field strength, configuration of the diffusivity tensor and grain sizes. We find that when no grain are present, or they are >~1μm in radius, the mid-plane of the disc remains magnetically coupled for field strengths up to a few gauss at both radii. In contrast, when a population of small grains (a = 0.1μm) is mixed with the gas, the section of the disc within two tidal scaleheights from the mid-plane is magnetically inactive and only magnetic fields weaker than ~50 mG can effectively couple to the fluid. At 5 au, Ohmic diffusion dominates for z/H <~ 1 when the field is relatively weak (B <~ a few milligauss), irrespective of the properties of the grain population. Conversely, at 10 au this diffusion term is unimportant in all the scenarios studied here. High above the mid-plane (z/H >~ 5), ambipolar diffusion is severe and prevents the field from coupling to the gas for all B. Hall diffusion is dominant for a wide range of field strengths at both radii when dust grains are present. The growth rate, wavenumber and range of magnetic field strengths for which MRI-unstable modes exist are all drastically diminished when dust grains are present, particularly when they are small (a ~ 0.1μm). In fact, MRI perturbations grow at 5 au (10 au) for B <~ 160 mG (130 mG) when 3μm grains are mixed with the gas. This upper limit on the field strength is reduced to only ~16 mG (10 mG) when the grain size is reduced to 0.1μm. In contrast, when the grains are assumed to have settled, MRI-unstable modes are found for B <~ 800 mG at 5 au and 250 mG at 10 au. Similarly, as the typical size of the dust grains diminishes, the vertical extent of the dead zone increases, as expected. For 0.1μm grains, the disc is magnetically inactive within two scaleheights of the mid-plane at both radii, but perturbations grow over the entire section of the disc for grain sizes of 1μm or larger. When dust grains are mixed with the gas, perturbations that incorporate Hall diffusion grow faster, and are active over a more extended cross-section of the disc, than those obtained under the ambipolar diffusion approximation. Note that the stabilizing effect of small dust grains (e.g. a = 0.1μm) is not strong enough to completely suppress the perturbations. We find, in fact, that even in this scenario, the magnetic field is able to couple to the gas and shear over a range of fluid conditions. Despite the low-magnetic coupling, MRI modes grow for a range of magnetic field strengths and Hall diffusion largely determines the properties of the perturbations in the inner regions of the disc.

  3. Planck intermediate results: L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghanim, N.; Ashdown, M.; Aumont, J.

    The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B-modes in the polarized microwave sky. In this paper, we make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the C BB ℓ angular power spectra between themore » 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. In conclusion, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.« less

  4. Planck intermediate results. L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Comis, B.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Dusini, S.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Helou, G.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Levrier, F.; Liguori, M.; Lilje, P. B.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Naselsky, P.; Nørgaard-Nielsen, H. U.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Patrizii, L.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Sirri, G.; Stanco, L.; Suur-Uski, A.-S.; Tauber, J. A.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Vansyngel, F.; Van Tent, F.; Vielva, P.; Wandelt, B. D.; Wehus, I. K.; Zacchei, A.; Zonca, A.

    2017-03-01

    The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B-modes in the polarized microwave sky. We make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the angular power spectra between the 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. Finally, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.

  5. Planck intermediate results: L. Evidence of spatial variation of the polarized thermal dust spectral energy distribution and implications for CMB B-mode analysis

    DOE PAGES

    Aghanim, N.; Ashdown, M.; Aumont, J.; ...

    2017-02-28

    The characterization of the Galactic foregrounds has been shown to be the main obstacle in thechallenging quest to detect primordial B-modes in the polarized microwave sky. In this paper, we make use of the Planck-HFI 2015 data release at high frequencies to place new constraints on the properties of the polarized thermal dust emission at high Galactic latitudes. Here, we specifically study the spatial variability of the dust polarized spectral energy distribution (SED), and its potential impact on the determination of the tensor-to-scalar ratio, r. We use the correlation ratio of the C BB ℓ angular power spectra between themore » 217 and 353 GHz channels as a tracer of these potential variations, computed on different high Galactic latitude regions, ranging from 80% to 20% of the sky. The new insight from Planck data is a departure of the correlation ratio from unity that cannot be attributed to a spurious decorrelation due to the cosmic microwave background, instrumental noise, or instrumental systematics. The effect is marginally detected on each region, but the statistical combination of all the regions gives more than 99% confidence for this variation in polarized dust properties. In addition, we show that the decorrelation increases when there is a decrease in the mean column density of the region of the sky being considered, and we propose a simple power-law empirical model for this dependence, which matches what is seen in the Planck data. We explore the effect that this measured decorrelation has on simulations of the BICEP2-Keck Array/Planck analysis and show that the 2015 constraints from these data still allow a decorrelation between the dust at 150 and 353 GHz that is compatible with our measured value. In conclusion, using simplified models, we show that either spatial variation of the dust SED or of the dust polarization angle are able to produce decorrelations between 217 and 353 GHz data similar to the values we observe in the data.« less

  6. Determination of the Cosmic Infrared Background from COBE/FIRAS and Planck HFI Data

    NASA Astrophysics Data System (ADS)

    Kogut, Alan

    Current determinations of the cosmic infrared background (CIB) at far-infrared to millimeter wavelengths have large uncertainties, on the order of 30%. We propose to make new, more accurate determinations of the CIB at these wavelengths using COBE /FIRAS and Planck High Frequency Instrument (HFI) Data. This work will enable a factor of two improvement in our understanding of the CIB. Planck was not designed to measure the monopole component of sky brightness, so the FIRAS data will be used to recalibrate the zero level of the HFI maps. Correlation of the recalibrated HFI maps with Galactic H I 21-cm line emission will be used to separate the Galactic foreground emission and determine the CIB in the HFI bands from 217 to 857 GHz, or 1380 to 350 microns. The high angular resolution and sensitivity of the HFI data will allow the correlations with H I to be established more accurately and to lower H I column density than is possible with the 7± resolution FIRAS data, resulting in significant improvement in the accuracy of the derived CIB. Correlations of the CIB-subtracted 857 GHz map with FIRAS maps averaged over broad frequency bins will then be used to determine CIB values at frequencies not observed by Planck. Uncertainties in the CIB results are expected to be as low as 14% for the HFI 857 GHz band. Our results will allow more accurate determination of the fraction of the CIB that is resolved by deep source surveys, and a tighter limit to be placed on the contribution to the CIB of any diffuse emission such as emission from intergalactic dust. Possible gray extinction by intergalactic dust may produce significant systematic error in determinations of dark energy parameters from type Ia supernova measurements, and our results will be important for placing a tighter upper limit on such extinction. Our CIB results will also provide tighter constraints on models of the evolution of star-forming galaxies, and will be important in constraining the evolution in density and luminosity of ultraluminous starburst galaxies at high redshift.

  7. Thin film surface treatments for lowering dust adhesion on Mars Rover calibration targets

    NASA Astrophysics Data System (ADS)

    Sabri, F.; Werhner, T.; Hoskins, J.; Schuerger, A. C.; Hobbs, A. M.; Barreto, J. A.; Britt, D.; Duran, R. A.

    The current generation of calibration targets on Mars Rover serve as a color and radiometric reference for the panoramic camera. They consist of a transparent silicon-based polymer tinted with either color or grey-scale pigments and cast with a microscopically rough Lambertian surface for a diffuse reflectance pattern. This material has successfully withstood the harsh conditions existent on Mars. However, the inherent roughness of the Lambertian surface (relative to the particle size of the Martian airborne dust) and the tackiness of the polymer in the calibration targets has led to a serious dust accumulation problem. In this work, non-invasive thin film technology was successfully implemented in the design of future generation calibration targets leading to significant reduction of dust adhesion and capture. The new design consists of a μm-thick interfacial layer capped with a nm-thick optically transparent layer of pure metal. The combination of these two additional layers is effective in burying the relatively rough Lambertian surface while maintaining diffuse properties of the samples which is central to the correct operation as calibration targets. A set of these targets are scheduled for flight on the Mars Phoenix mission.

  8. Numerical Simulation on Smoke Spread and Temperature Distribution in a Corn Starch Explosion

    NASA Astrophysics Data System (ADS)

    Lin, CherngShing; Hsu, JuiPei

    2018-01-01

    It is discovered from dust explosion accidents in recent years that deep causes of the accidents lies in insufficient cognition of dust explosion danger, and no understanding on danger and information of the dust explosion. In the study, Fire Dynamics Simulator (FDS) evaluation tool is used aiming at Taiwan Formosa Fun Coast explosion accidents. The calculator is used for rebuilding the explosion situation. The factors affecting casualties under explosion are studied. The injured personnel participating in the party are evaluated according to smoke diffusion and temperature distribution for numerical simulation results. Some problems noted in the fire disaster after actual explosion are proposed, rational site analysis is given, thereby reducing dust explosion risk grade.

  9. The Stellar Populations of Two Ultra-diffuse Galaxies from Optical and Near-infrared Photometry

    NASA Astrophysics Data System (ADS)

    Pandya, Viraj; Romanowsky, Aaron J.; Laine, Seppo; Brodie, Jean P.; Johnson, Benjamin D.; Glaccum, William; Villaume, Alexa; Cuillandre, Jean-Charles; Gwyn, Stephen; Krick, Jessica; Lasker, Ronald; Martín-Navarro, Ignacio; Martinez-Delgado, David; van Dokkum, Pieter

    2018-05-01

    We present observational constraints on the stellar populations of two ultra-diffuse galaxies (UDGs) using optical through near-infrared (NIR) spectral energy distribution (SED) fitting. Our analysis is enabled by new Spitzer-IRAC 3.6 and 4.5 μm imaging, archival optical imaging, and the prospector fully Bayesian SED fitting framework. Our sample contains one field UDG (DGSAT I), one Virgo cluster UDG (VCC 1287), and one Virgo cluster dwarf elliptical for comparison (VCC 1122). We find that the optical–NIR colors of the three galaxies are significantly different from each other. We infer that VCC 1287 has an old (≳7.7 Gyr) and surprisingly metal-poor ([Z/Z ⊙] ≲ ‑1.0) stellar population, even after marginalizing over uncertainties on diffuse interstellar dust. In contrast, the field UDG DGSAT I shows evidence of being younger than the Virgo UDG, with an extended star formation history and an age posterior extending down to ∼3 Gyr. The stellar metallicity of DGSAT I is sub-solar but higher than that of the Virgo UDG, with [Z/{Z}ȯ ]=-{0.63}-0.62+0.35; in the case of exactly zero diffuse interstellar dust, DGSAT I may even have solar metallicity. With VCC 1287 and several Coma UDGs, a general picture is emerging where cluster UDGs may be “failed” galaxies, but the field UDG DGSAT I seems more consistent with a stellar feedback-induced expansion scenario. In the future, our approach can be applied to a large and diverse sample of UDGs down to faint surface brightness limits, with the goal of constraining their stellar ages, stellar metallicities, and circumstellar and diffuse interstellar dust content.

  10. IN-SYNC. IV. The Young Stellar Population in the Orion A Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; Tan, Jonathan C.; Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Cullen, Nicholas C.; Tobin, John J.; Kim, Jinyoung S.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Chojnowski, S. Drew; Flaherty, Kevin M.; Majewski, Steve; Skrutskie, Michael F.; Zasowski, Gail; Pan, Kaike

    2016-02-01

    We present the results of the Sloan Digital Sky Survey APOGEE INfrared Spectroscopy of Young Nebulous Clusters program (IN-SYNC) survey of the Orion A molecular cloud. This survey obtained high-resolution near-infrared spectroscopy of about 2700 young pre-main-sequence stars on a ˜ 6^\\circ field of view. We have measured accurate stellar parameters ({T}{{eff}}, {log}g, v{sin}I) and extinctions and placed the sources in the Hertzsprung-Russel diagram (HRD). We have also extracted radial velocities for the kinematic characterization of the population. We compare our measurements with literature results to assess the performance and accuracy of the survey. Source extinction shows evidence for dust grains that are larger than those in the diffuse interstellar medium: we estimate an average RV = 5.5 in the region. Importantly, we find a clear correlation between HRD inferred ages and spectroscopic surface-gravity-inferred ages and between extinction and disk presence; this strongly suggests a real spread of ages larger than a few Myr. Focusing on the young population around NGC 1980/ι Ori, which has previously been suggested to be a separate, foreground, older cluster, we confirm its older (˜5 Myr) age and low AV, but considering that its radial velocity distribution is indistinguishable from Orion A’s population, we suggest that NGC 1980 is part of Orion A’s star formation activity. Based on their stellar parameters and kinematic properties, we identify 383 new candidate members of Orion A, most of which are diskless sources in areas of the region poorly studied by previous works.

  11. SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogerty, S.; Forrest, W.; Watson, D. M.

    2016-10-20

    The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth alongmore » lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.« less

  12. Photoemission of Single Dust Grains for Heliospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  13. Dust trap formation in a non-self-sustained discharge with external gas ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filippov, A. V., E-mail: fav@triniti.ru; Babichev, V. N.; Pal’, A. F.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. Themore » interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.« less

  14. The interstellar C-H stretching band near 3.4 microns - Constraints on the composition of organic material in the diffuse interstellar medium

    NASA Technical Reports Server (NTRS)

    Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Pendleton, Y.; Sellgren, K.

    1991-01-01

    The composition and history of dust in the diffuse ISM was studied using 3600-2700/cm absorption spectra of objects which have widely varying amounts of visual extinctions along different lines of sight. The 3300/cm and 2950/cm features are attributed to O-H and C-H stretching vibrations, respectively. The O-H feature in OH 32.8-0.3 is suggestive of circumstellar water ice and is probably not due to material in the diffuse ISM. The features in the 3100-2700/cm region are attributed either to C-H vibrations or to M stars. The spectra of the latter show a series of narrow features in this region that are identified with photospheric OH. Objects in which these bands are seen include OH 01-477, T629-5, and the Galactic center source IRS 7. The C-H stretch feature of diffuse ISM dust has subpeaks which fall within 5/cm of C-H stretching vibrations in the -CH2- and -CH3 groups of saturated aliphatic hydrocarbons.

  15. First Observation of the Submillimeter Polarization Spectrum in a Translucent Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Ashton, Peter C.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fissel, Laura M.; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan D.; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2018-04-01

    Polarized emission from aligned dust is a crucial tool for studies of magnetism in the ISM, but a troublesome contaminant for studies of cosmic microwave background polarization. In each case, an understanding of the significance of the polarization signal requires well-calibrated physical models of dust grains. Despite decades of progress in theory and observation, polarized dust models remain largely underconstrained. During its 2012 flight, the balloon-borne telescope BLASTPol obtained simultaneous broadband polarimetric maps of a translucent molecular cloud at 250, 350, and 500 μm. Combining these data with polarimetry from the Planck 850 μm band, we have produced a submillimeter polarization spectrum, the first for a cloud of this type. We find the polarization degree to be largely constant across the four bands. This result introduces a new observable with the potential to place strong empirical constraints on ISM dust polarization models in a previously inaccessible density regime. Compared to models by Draine & Fraisse, our result disfavors two of their models for which all polarization arises due only to aligned silicate grains. By creating simple models for polarized emission in a translucent cloud, we verify that extinction within the cloud should have only a small effect on the polarization spectrum shape, compared to the diffuse ISM. Thus, we expect the measured polarization spectrum to be a valid check on diffuse ISM dust models. The general flatness of the observed polarization spectrum suggests a challenge to models where temperature and alignment degree are strongly correlated across major dust components.

  16. Probing cosmic strings with satellite CMB measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, E.; Baccigalupi, Carlo; Smoot, G.F., E-mail: ehjeong@sissa.it, E-mail: bacci@sissa.it, E-mail: gfsmoot@lbl.gov

    2010-09-01

    We study the problem of searching for cosmic string signal patterns in the present high resolution and high sensitivity observations of the Cosmic Microwave Background (CMB). This article discusses a technique capable of recognizing Kaiser-Stebbins effect signatures in total intensity anisotropy maps from isolated strings. We derive the statistical distributions of null detections from purely Gaussian fluctuations and instrumental performances of the operating satellites, and show that the biggest factor that produces confusion is represented by the acoustic oscillation features of the scale comparable to the size of horizon at recombination. Simulations show that the distribution of null detections convergesmore » to a χ{sup 2} distribution, with detectability threshold at 99% confidence level corresponding to a string induced step signal with an amplitude of about 100 μK which corresponds to a limit of roughly Gμ ∼ 1.5 × 10{sup −6}. We implement simulations for deriving the statistics of spurious detections caused by extra-Galactic and Galactic foregrounds. For diffuse Galactic foregrounds, which represents the dominant source of contamination, we construct sky masks outlining the available region of the sky where the Galactic confusion is sub-dominant, specializing our analysis to the case represented by the frequency coverage and nominal sensitivity and resolution of the Planck experiment. As for other CMB measurements, the maximum available area, corresponding to 7%, is reached where the foreground emission is expected to be minimum, in the 70–100 GHz interval.« less

  17. How gravitational lensing helps γ-ray photons avoid γ – γ absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnacka, Anna; Böttcher, Markus; Sushch, Iurii, E-mail: abarnacka@cfa.harvard.edu, E-mail: Markus.Bottcher@nwu.ac.za

    2014-08-01

    We investigate potential γ – γ absorption of γ-ray emission from blazars arising from inhomogeneities along the line of sight, beyond the diffuse Extragalactic Background Light (EBL). As plausible sources of excess γ – γ opacity, we consider (1) foreground galaxies, including cases in which this configuration leads to strong gravitational lensing, (2) individual stars within these foreground galaxies, and (3) individual stars within our own galaxy, which may act as lenses for microlensing events. We found that intervening galaxies close to the line of sight are unlikely to lead to significant excess γ – γ absorption. This opens upmore » the prospect of detecting lensed gamma-ray blazars at energies above 10 GeV with their gamma-ray spectra effectively only affected by the EBL. The most luminous stars located either in intervening galaxies or in our galaxy provide an environment in which these gamma-rays could, in principle, be significantly absorbed. However, despite a large microlensing probability due to stars located in intervening galaxies, γ-rays avoid absorption by being deflected by the gravitational potentials of such intervening stars to projected distances ({sup i}mpact parameters{sup )} where the resulting γ – γ opacities are negligible. Thus, neither of the intervening excess photon fields considered here, provide a substantial source of excess γ – γ opacity beyond the EBL, even in the case of very close alignments between the background blazar and a foreground star or galaxy.« less

  18. Improved Constraints on Cosmology and Foregrounds from BICEP2 and Keck Array Cosmic Microwave Background Data with Inclusion of 95 GHz Band.

    PubMed

    Ade, P A R; Ahmed, Z; Aikin, R W; Alexander, K D; Barkats, D; Benton, S J; Bischoff, C A; Bock, J J; Bowens-Rubin, R; Brevik, J A; Buder, I; Bullock, E; Buza, V; Connors, J; Crill, B P; Duband, L; Dvorkin, C; Filippini, J P; Fliescher, S; Grayson, J; Halpern, M; Harrison, S; Hilton, G C; Hui, H; Irwin, K D; Karkare, K S; Karpel, E; Kaufman, J P; Keating, B G; Kefeli, S; Kernasovskiy, S A; Kovac, J M; Kuo, C L; Leitch, E M; Lueker, M; Megerian, K G; Netterfield, C B; Nguyen, H T; O'Brient, R; Ogburn, R W; Orlando, A; Pryke, C; Richter, S; Schwarz, R; Sheehy, C D; Staniszewski, Z K; Steinbach, B; Sudiwala, R V; Teply, G P; Thompson, K L; Tolan, J E; Tucker, C; Turner, A D; Vieregg, A G; Weber, A C; Wiebe, D V; Willmert, J; Wong, C L; Wu, W L K; Yoon, K W

    2016-01-22

    We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_{0.05}<0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.

  19. Recent Hubble Space Telescope Imaging of the Light Echoes of Supernova 2016adj in Centaurus A

    NASA Astrophysics Data System (ADS)

    Hyder, Ali; Lawrence, Stephen; Sugerman, Ben

    2018-01-01

    Light echoes are one of the most powerful and efficient probes of the structure and composition of dust in circumstellar and interstellar environments. Observations of light echoes provide exact three dimensional (3-D) positions of dust while constraining its density, grain-size and chemical make-up. These can be used to study the evolutionary history of supernova (SN) progenitors, produce high-resolution maps of the structure and composition of interstellar media (ISM), and geometrically measure extragalactic distances. Here we report on our progress with analyzing our ongoing campaign of Hubble Space Telescope (HST) observations of the light echoes of SN 2016adj in Centaurus A. SN 2016adj was discovered on 08 Feb 2016 and identified as a core-collapse SN of either Type Ib or Type IIb. All observers agreed the SN was highly reddened, suffering A_V =2–4 mags of extinction, which is consistent with its location within the famous dust lane of its elliptical host galaxy. Tthe light echo first reported by Sugerman & Lawrence (2016) from the earliest epoch of WFC3 imaging with marked N-S asymmetry has expanded into a complete ring that is fairly well-centered on the SN. The ring is azimuthally non-uniform in brightness, but less dramatically so than at early times. By day 395 it has expanded to radii ranging from 0.62”(NW)—0.76”(SE). Adopting a distance of 3.42 Mpc, this indicates a sheet of ISM dust at foreground distances of 160—240 pc. These observations and analysis are supported by STScI grants 14146, 14487 and 14700.

  20. Studying Dust Scattering Halos with Galactic X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Beeler, Doreen; Corrales, Lia; Heinz, Sebastian

    2018-01-01

    Dust is an important part of the interstellar medium (ISM) and contributes to the formation of stars and planets. Since the advent of modern X-ray telescopes, Galactic X-ray point sources have permitted a closer look at all phases of the ISM. Interstellar metals from oxygen to iron — in both gas and dust form — are responsible for absorption and scattering of X-ray light. Dust scatters the light in a forward direction and creates a diffuse halo image surrounding many bright Galactic X-ray binaries. We use all the bright X-ray point sources available in the Chandra HETG archive to study dust scattering halos from the local ISM. We have described a data analysis pipeline using a combination of the data reduction software CIAO and Python. We compare our results from Chandra HETG and ACIS-I observations of a well studied dust scattering halo around GX 13+1, in order to characterize any systematic errors associated with the HETG data set. We describe how our data products will be used to measure ISM scaling relations for X-ray extinction, dust abundance, and dust-to-metal ratios.

  1. CORRELATION ANALYSIS BETWEEN TIBET AS-γ TeV COSMIC RAY AND WMAP NINE-YEAR DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Qian-Qing; Zhang, Shuang-Nan, E-mail: zhangsn@ihep.ac.cn

    2015-08-01

    The WMAP team subtracted template-based foreground models to produce foreground-reduced maps, and masked point sources and uncertain sky regions directly; however, whether foreground residuals exist in the WMAP foreground-reduced maps is still an open question. Here, we use Pearson correlation coefficient analysis with AS-γ TeV cosmic ray (CR) data to probe possible foreground residuals in the WMAP nine-year data. The correlation results between the CR and foreground-contained maps (WMAP foreground-unreduced maps, WMAP template-based, and Maximum Entropy Method foreground models) suggest that: (1) CRs can trace foregrounds in the WMAP data; (2) at least some TeV CRs originate from the Milkymore » Way; (3) foregrounds may be related to the existence of CR anisotropy (loss-cone and tail-in structures); (4) there exist differences among different types of foregrounds in the decl. range of <15°. Then, we generate 10,000 mock cosmic microwave background (CMB) sky maps to describe the cosmic variance, which is used to measure the effect of the fluctuations of all possible CMB maps to the correlations between CR and CMB maps. Finally, we do correlation analysis between the CR and WMAP foreground-reduced maps, and find that: (1) there are significant anticorrelations; and (2) the WMAP foreground-reduced maps are credible. However, the significant anticorrelations may be accidental, and the higher signal-to-noise ratio Planck SMICA map cannot reject the hypothesis of accidental correlations. We therefore can only conclude that the foreground residuals exist with ∼95% probability.« less

  2. Formation of dust grains with impurities in red giant winds

    NASA Technical Reports Server (NTRS)

    Dominik, Carsten

    1994-01-01

    Among the several proposed carriers of diffuse interstellar bands (DIB's) are impurities in small dust grains, especially in iron oxide grains (Huffman 1977) and silicate grains (Huffman 1970). Most promising are single ion impurities since they can reproduce the observed band widths (Whittet 1992). These oxygen-rich grains are believed to originate mostly in the mass flows from red giants and in supernovae ejecta (e.g. Gehrz 1989). A question of considerable impact for the origin of DIB's is therefore, whether these grains are produced as mainly clean crystals or as some dirty materials. A formalism has been developed that allows tracking of the heterogeneous growth of a dust grain and its internal structure during the dust formation process. This formalism has been applied to the dust formation in the outflow from a red giant star.

  3. Origin, Emission, and Propagation of P-H Pulses

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    2007-05-01

    Origin, Emission, and Propagation of P-H Pulses H. Kikuchi Institute for Environmental Electromagnetics 3-8-18, Komagome, Toshima-ku, Tokyo 170, Japan e-mail: hkikuchi@mars.dti.ne.jp Abstract According to Pulinets, characters of P-H pulses is following. The registered emission has not continuous but pulsed character and has very wide frequency spectrum from kHz to more than hundred MHz. These two facts imply that should be the electric discharge-like emission similar to thunderstorm flashes emission. The emission is connected in some way with seismic activity and the emission intensity increases 12-24 hour before the seismic shock. Another intriguing factor is that emission is registered at large distances up to 500 km (some witness claim up to 1500 km). Taking into account that emission is registered at VHF band also, the source of emission cannot be situated on the ground. This paper puts forwards a model of P-H pulses generation based on "dust dynamics". Rotating ions ascending, for instance erupped metalic ions in the earth's crust into the atmosphere incorporating aerosols might be captured by diffuse dust layers which may exist below or beyond the electric mirror point produced by quadrupole-like thunder- cloud configurations or even form a portion of dust layers and could be a source-origin of P-H pulses that might be emitted by local electric discharges within diffuse dust layers somewhat similar to thundercloud discharges, though emission frequencies and characters are quite different, namely P-H pulses are over a wide range of frequencies, say from kHz to more than hundred MHz with pulsed character in contrast to lightning emission with more continuous character whose frequencies are 1 to 10 kHz. Such diffuse dust layers could be formed over a wide range of height in the troposphere, stratosphere, mesosphere and the thermosphere. Propagation distance of P-H pulses are very large up to 500-1500 km.

  4. Fractional Dynamics of Single File Diffusion in Dusty Plasma Ring

    NASA Astrophysics Data System (ADS)

    Muniandy, S. V.; Chew, W. X.; Asgari, H.; Wong, C. S.; Lim, S. C.

    2011-11-01

    Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-dimensional channel such that the particles are unable to pass each other. Possible SFD of charged dust confined in biharmonic annular potential well with screened Coulomb interaction is investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent may occur in strongly interacting systems. A phenomenological model based on fractional Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring.

  5. DIBS independent of accretion in T Tauri stars

    NASA Technical Reports Server (NTRS)

    Ghandour, Louma; Jenniskens, Peter; Hartigan, P.

    1994-01-01

    The examination of high resolution spectra (5200 - 7000 Angstroms) of 36 T Tauri stars ranging in accretion rates was performed. Only the lambda lambda 5780, 5797, and 6613 bands were found detectable to within an equivalent width of 10 micro Angstroms. They are strongest in DG Tau, DR Tau, Dl Tau, and AS 353A. DR Tau was monitored over the course of four years; during this time, the accretion rate varied by a factor of five, but the equivalent widths of the DIB's (Diffuse Interstellar Bands) remained constant. The lack of correlation of the strength of the bands with the accretion rates implies that the bands are not directly produced by UV radiation from the accretion process. The bands have line strengths and ratios characteristic of the diffuse interstellar medium, from which we conclude that the diffuse interstellar bands seen in the spectra of T Tauri stars do not originate in the stars' immediate environment. Instead, they are part of a foreground extinction, probably due to the parent molecular cloud.

  6. The GeV Excess Shining Through: Background Systematics for the Inner Galaxy Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calore, Francesca; Cholis, Ilias; Weniger, Christoph

    2015-02-10

    Recently, a spatially extended excess of gamma rays collected by the Fermi-LAT from the inner region of the Milky Way has been detected by different groups and with increasingly sophisticated techniques. Yet, any final conclusion about the morphology and spectral properties of such an extended diffuse emission are subject to a number of potentially critical uncertainties, related to the high density of cosmic rays, gas, magnetic fields and abundance of point sources. We will present a thorough study of the systematic uncertainties related to the modelling of diffuse background and to the propagation of cosmic rays in the inner partmore » of our Galaxy. We will test a large set of models for the Galactic diffuse emission, generated by varying the propagation parameters within extreme conditions. By using those models in the fit of Fermi-LAT data as Galactic foreground, we will show that the gamma-ray excess survives and we will quantify the uncertainties on the excess emission morphology and energy spectrum.« less

  7. VizieR Online Data Catalog: DIB in VLT-FLAMES Tarantula Survey (van Loon+, 2013)

    NASA Astrophysics Data System (ADS)

    van Loon, J. T.; Bailey, M.; Tatton, B. L.; Maíz Apellániz, J.; Crowther, P. A.; de Koter, A.; Evans, C. J.; Henault-Brunet, V.; Howarth, I. D.; Richter, P.; Sana, H.; Simon-Diaz, S.; Taylor, W.; Walborn, N. R.

    2012-11-01

    Equivalent widths of the 4428, 5780, 5797 and 6614 Diffuse Interstellar Bands (DIBs) were measured for up to 800 OB-type stars in the Tarantula Nebula (30 Doradus, containing the massive compact star cluster R136) in the Large Magellanic Cloud (LMC). The Galactic foreground and LMC components were fitted simultaneously, with Lorentzians for the 4428 DIB and Gaussians for the other DIBs. All fits were inspected by eye, and a flag was reset to zero if the fit was rejected. (3 data files).

  8. Short-Wavelength Infrared Views of Messier 81

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The magnificent spiral arms of the nearby galaxy Messier 81 are highlighted in this NASA Spitzer Space Telescope image. Located in the northern constellation of Ursa Major (which also includes the Big Dipper), this galaxy is easily visible through binoculars or a small telescope. M81 is located at a distance of 12 million light-years from Earth.

    Because of its proximity, M81 provides astronomers with an enticing opportunity to study the anatomy of a spiral galaxy in detail. The unprecedented spatial resolution and sensitivity of Spitzer at infrared wavelengths show a clear separation between the several key constituents of the galaxy: the old stars, the interstellar dust heated by star formation activity, and the embedded sites of massive star formation. The infrared images also permit quantitative measurements of the galaxy's overall dust content, as well as the rate at which new stars are being formed.

    The infrared image was obtained by Spitzer's infrared array camera. It is a four-color composite of invisible light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (yellow) and 8.0 microns (red). Winding outward from the bluish-white central bulge of the galaxy, where old stars predominate and there is little dust, the grand spiral arms are dominated by infrared emission from dust. Dust in the galaxy is bathed by ultraviolet and visible light from the surrounding stars. Upon absorbing an ultraviolet or visible-light photon, a dust grain is heated and re-emits the energy at longer infrared wavelengths. The dust particles, composed of silicates (which are chemically similar to beach sand) and polycyclic aromatic hydrocarbons, trace the gas distribution in the galaxy. The well-mixed gas (which is best detected at radio wavelengths) and dust provide a reservoir of raw materials for future star formation.

    The infrared-bright clumpy knots within the spiral arms denote where massive stars are being born in giant H II (ionized hydrogen) regions. The 8-micron emission traces the regions of active star formation in the galaxy. Studying the locations of these regions with respect to the overall mass distribution and other constituents of the galaxy (e.g., gas) will help identify the conditions and processes needed for star formation. With the Spitzer observations, this information comes to us without complications from absorption by cold dust in the galaxy, which makes interpretation of visible-light features uncertain.

    The white stars scattered throughout the field of view are foreground stars within our own Milky Way galaxy.

  9. Analysis of a dusty wall jet

    NASA Technical Reports Server (NTRS)

    Lim, Hock-Bin; Roberts, Leonard

    1991-01-01

    An analysis is given for the entrainment of dust into a turbulent radial wall jet. Equations are solved based on incompressible flow of a radial wall jet into which dust is entrained from the wall and transported by turbulent diffusion and convection throughout the flow. It is shown that the resulting concentration of dust particles in the flow depends on the difference between the applied shear stress at the surface and the maximum level of shear stress that the surface can withstand (varies as rho(sub d)a(sub g)D) i.e., the pressure due to the weight of a single layer of dust. The analysis is expected to have application to the downflow that results from helicopter and VTOL aircraft.

  10. Coma morphology of comet 67P controlled by insolation over irregular nucleus

    NASA Astrophysics Data System (ADS)

    Shi, X.; Hu, X.; Mottola, S.; Sierks, H.; Keller, H. U.; Rose, M.; Güttler, C.; Fulle, M.; Fornasier, S.; Agarwal, J.; Pajola, M.; Tubiana, C.; Bodewits, D.; Barbieri, C.; Lamy, P. L.; Rodrigo, R.; Koschny, D.; Barucci, M. A.; Bertaux, J.-L.; Bertini, I.; Boudreault, S.; Cremonese, G.; Da Deppo, V.; Davidsson, B.; Debei, S.; De Cecco, M.; Deller, J.; Groussin, O.; Gutiérrez, P. J.; Hviid, S. F.; Ip, W.-H.; Jorda, L.; Knollenberg, J.; Kovacs, G.; Kramm, J.-R.; Kührt, E.; Küppers, M.; Lara, L. M.; Lazzarin, M.; Lopez-Moreno, J. J.; Marzari, F.; Naletto, G.; Oklay, N.; Toth, I.; Vincent, J.-B.

    2018-05-01

    While the structural complexity of cometary comae is already recognizable from telescopic observations1, the innermost region, within a few radii of the nucleus, was not resolved until spacecraft exploration became a reality2,3. The dust coma displays jet-like features of enhanced brightness superposed on a diffuse background1,4,5. Some features can be traced to specific areas on the nucleus, and result conceivably from locally enhanced outgassing and/or dust emission6-8. However, diffuse or even uniform activity over topographic concavity can converge to produce jet-like features9,10. Therefore, linking observed coma morphology to the distribution of activity on the nucleus is difficult11,12. Here, we study the emergence of dust activity at sunrise on comet 67P/Churyumov-Gerasimenko using high-resolution, stereo images from the OSIRIS camera onboard the Rosetta spacecraft, where the sources and formation of the jet-like features are resolved. We perform numerical simulations to show that the ambient dust coma is driven by pervasive but non-uniform water outgassing from the homogeneous surface layer. Physical collimations of gas and dust flows occur at local maxima of insolation and also via topographic focusing. Coma structures are projected to exhibit jet-like features that vary with the perspective of the observer. For an irregular comet such as 67P/Churyumov-Gerasimenko, near-nucleus coma structures can be concealed in the shadow of the nucleus, which further complicates the picture.

  11. FAR-ULTRAVIOLET OBSERVATION OF THE AQUILA RIFT WITH FIMS/SPEAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, S.-J.; Min, K.-W.; Seon, K.-I.

    2012-07-20

    We present the results of far ultraviolet (FUV) observations of the broad region around the Aquila Rift including the Galactic plane. As compared with various wavelength data sets, dust scattering is found to be the major origin of the diffuse FUV continuum in this region. The FUV intensity clearly correlates with the dust extinction level for E(B - V) < 0.2, while this correlation disappears for E(B - V) > 0.2 due to heavy dust extinction combined with the effect of nonuniform interstellar radiation fields. The FUV intensity also correlates well with H{alpha} intensity, implying that at least some fractionmore » of the observed H{alpha} emission could be the dust-scattered light of H{alpha} photons originating elsewhere in the Galaxy. Most of the Aquila Rift region is seen devoid of diffuse FUV continuum due to heavy extinction while strong emission is observed in the surrounding regions. Molecular hydrogen fluorescent emission lines are clearly seen in the spectrum of 'Aquila-Serpens', while 'Aquila-East' does not show any apparent line features. CO emission intensity is also found to be higher in the 'Aquila-Serpens' region than in the 'Aquila-East' region. In this regard, we note that regions of star formation have been found in 'Aquila-Serpens' but not in 'Aquila-East'.« less

  12. Revealing H I gas in emission and absorption on pc to kpc scales in a galaxy at z ˜ 0.017

    NASA Astrophysics Data System (ADS)

    Gupta, N.; Srianand, R.; Farnes, J. S.; Pidopryhora, Y.; Vivek, M.; Paragi, Z.; Noterdaeme, P.; Oosterloo, T.; Petitjean, P.

    2018-05-01

    We present a detailed study of the quasar-galaxy pair: J1243+4043-UGC 07904. The sight line of the background quasar ( zq = 1.5266) passes through a region of the galaxy (zg = 0.0169) at an impact parameter of 6.9 kpc with high metallicity (0.5 Z⊙) and negligible dust extinction. We detect H I 21-cm absorption from the foreground galaxy at arcsecond and milliarcsecond scales. For typical cold neutral medium (CNM) temperatures in the Milky Way, this 21-cm absorber can be classified as a damped Lyα absorber (DLA). We infer the harmonic mean spin temperature of the gas to be ˜400 K and for a simple two-phase medium we estimate the CNM fraction to be fCNM = 0.27. This is remarkably consistent with the CNM fraction observed in the Galaxy and less than that of high-redshift DLAs. The quasar exhibits a core-jet morphology on milliarcsecond scales, corresponding to an overall extent of ˜9 pc at zg. We show that the size of CNM absorbing clouds associated with the foreground galaxy is >5 pc and they may be part of cold gas structures that extend beyond ˜35 pc. Interestingly, the rotation measure of quasar J1243+4043 is higher than any other source in samples of quasars with high-z DLAs. However, we do not find any detectable differences in rotation measures and polarization fraction of sight lines with or without high-z (z ≥ 2) DLAs or low-z (z ≤ 0.3) 21-cm absorbers. Finally, the foreground galaxy UGC 07904 is also part of a galaxy group. We serendipitously detect H I 21-cm emission from four members of the group, and an ˜80 kpc long H I bridge connecting two of the other members. The latter, together with the properties of the group members, suggests that the group is a highly interactive environment.

  13. Continuum Foreground Polarization and Na I Absorption in Type Ia SNe

    NASA Astrophysics Data System (ADS)

    Zelaya, P.; Clocchiatti, A.; Baade, D.; Höflich, P.; Maund, J.; Patat, F.; Quinn, J. R.; Reilly, E.; Wang, L.; Wheeler, J. C.; Förster, F.; González-Gaitán, S.

    2017-02-01

    We present a study of the continuum polarization over the 400-600 nm range of 19 SNe Ia obtained with FORS at the VLT. We separate them into those that show Na I D lines at the velocity of their hosts and those that do not. Continuum polarization of the sodium sample near maximum light displays a broad range of values, from extremely polarized cases like SN 2006X to almost unpolarized ones like SN 2011ae. The non-sodium sample shows, typically, smaller polarization values. The continuum polarization of the sodium sample in the 400-600 nm range is linear with wavelength and can be characterized by the mean polarization ({P}{mean}). Its values span a wide range and show a linear correlation with color, color excess, and extinction in the visual band. Larger dispersion correlations were found with the equivalent width of the Na I D and Ca II H and K lines, and also a noisy relation between {P}{mean} and R V , the ratio of total to selective extinction. Redder SNe show stronger continuum polarization, with larger color excesses and extinctions. We also confirm that high continuum polarization is associated with small values of R V . The correlation between extinction and polarization—and polarization angles—suggest that the dominant fraction of dust polarization is imprinted in interstellar regions of the host galaxies. We show that Na I D lines from foreground matter in the SN host are usually associated with non-galactic ISM, challenging the typical assumptions in foreground interstellar polarization models. Based on observations made with ESO Telescopes at the Paranal Observatory under programs 068.D-0571(A), 069.D-0438(A), 070.D-0111(A), 076.D-0178(A), 079.D-0090(A), 080.D-0108(A), 081.D-0558(A), 085.D-0731(A), and 086.D-0262(A). Also based on observations collected at the German-Spanish Astronomical Center, Calar Alto (Spain).

  14. Mars Science Laboratory CHIMRA/IC/DRT Flight Software for Sample Acquisition and Processing

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Leger, Chris; Carsten, Joseph; Helmick, Daniel; Kuhn, Stephen; Redick, Richard; Trujillo, Diana

    2013-01-01

    The design methodologies of using sequence diagrams, multi-process functional flow diagrams, and hierarchical state machines were successfully applied in designing three MSL (Mars Science Laboratory) flight software modules responsible for handling actuator motions of the CHIMRA (Collection and Handling for In Situ Martian Rock Analysis), IC (Inlet Covers), and DRT (Dust Removal Tool) mechanisms. The methodologies were essential to specify complex interactions with other modules, support concurrent foreground and background motions, and handle various fault protections. Studying task scenarios with multi-process functional flow diagrams yielded great insight to overall design perspectives. Since the three modules require three different levels of background motion support, the methodologies presented in this paper provide an excellent comparison. All three modules are fully operational in flight.

  15. On the Chemistry of Hydrides of N Atoms and O+ Ions

    NASA Astrophysics Data System (ADS)

    Awad, Zainab; Viti, Serena; Williams, David A.

    2016-08-01

    Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H2 formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O+ ions detected by Herschel/HIFI that are present along many sight lines in the Galaxy. The O+ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

  16. Discernment of synergism in pyrolysis of biomass blends using thermogravimetric analysis.

    PubMed

    Mallick, Debarshi; Poddar, Maneesh Kumar; Mahanta, Pinakeswar; Moholkar, Vijayanand S

    2018-08-01

    This study reports pyrolysis kinetics of biomass blends using isoconversional methods, viz. Friedman, FWO and KAS. Blends of three biomasses, viz. saw dust, bamboo dust and rice husk, were used. Extractives and volatiles in biomass and minerals in ash had marked influence on enhancement of reaction kinetics during co-pyrolysis, as indicated by reduction in activation energy and increase in decomposition intensity. Pyrolysis kinetics of saw dust and rice husk accelerated (positive synergy), while that of bamboo dust decelerated after blending (negative synergy). Predominant reaction mechanism of all biomass blends was 3-D diffusion in lower conversion range (α ≤ 0.5), while for α ≥ 0.5 pyrolysis followed random nucleation (or nucleation and growth mechanism). Higher reaction order for pyrolysis of blends of rice husk with saw dust and bamboo dust was attributed to catalytic effect of minerals in ash. Positive ΔH and ΔG was obtained for pyrolysis of all biomass blends. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Unveiling the Gamma-Ray Source Count Distribution Below the Fermi Detection Limit with Photon Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza

    The source-count distribution as a function of their flux, dN/dS, is one of the main quantities characterizing gamma-ray source populations. In this paper, we employ statistical properties of the Fermi Large Area Telescope (LAT) photon counts map to measure the composition of the extragalactic gamma-ray sky at high latitudes (|b| greater-than or slanted equal to 30°) between 1 and 10 GeV. We present a new method, generalizing the use of standard pixel-count statistics, to decompose the total observed gamma-ray emission into (a) point-source contributions, (b) the Galactic foreground contribution, and (c) a truly diffuse isotropic background contribution. Using the 6more » yr Fermi-LAT data set (P7REP), we show that the dN/dS distribution in the regime of so far undetected point sources can be consistently described with a power law with an index between 1.9 and 2.0. We measure dN/dS down to an integral flux of ~2 x 10 -11cm -2s -1, improving beyond the 3FGL catalog detection limit by about one order of magnitude. The overall dN/dS distribution is consistent with a broken power law, with a break at 2.1 +1.0 -1.3 x 10 -8cm -2s -1. The power-law index n 1 = 3.1 +0.7 -0.5 for bright sources above the break hardens to n 2 = 1.97 ± 0.03 for fainter sources below the break. A possible second break of the dN/dS distribution is constrained to be at fluxes below 6.4 x 10 -11cm -2s -1 at 95% confidence level. Finally, the high-latitude gamma-ray sky between 1 and 10 GeV is shown to be composed of ~25% point sources, ~69.3% diffuse Galactic foreground emission, and ~6% isotropic diffuse background.« less

  18. Unveiling the Gamma-Ray Source Count Distribution Below the Fermi Detection Limit with Photon Statistics

    DOE PAGES

    Zechlin, Hannes-S.; Cuoco, Alessandro; Donato, Fiorenza; ...

    2016-07-26

    The source-count distribution as a function of their flux, dN/dS, is one of the main quantities characterizing gamma-ray source populations. In this paper, we employ statistical properties of the Fermi Large Area Telescope (LAT) photon counts map to measure the composition of the extragalactic gamma-ray sky at high latitudes (|b| greater-than or slanted equal to 30°) between 1 and 10 GeV. We present a new method, generalizing the use of standard pixel-count statistics, to decompose the total observed gamma-ray emission into (a) point-source contributions, (b) the Galactic foreground contribution, and (c) a truly diffuse isotropic background contribution. Using the 6more » yr Fermi-LAT data set (P7REP), we show that the dN/dS distribution in the regime of so far undetected point sources can be consistently described with a power law with an index between 1.9 and 2.0. We measure dN/dS down to an integral flux of ~2 x 10 -11cm -2s -1, improving beyond the 3FGL catalog detection limit by about one order of magnitude. The overall dN/dS distribution is consistent with a broken power law, with a break at 2.1 +1.0 -1.3 x 10 -8cm -2s -1. The power-law index n 1 = 3.1 +0.7 -0.5 for bright sources above the break hardens to n 2 = 1.97 ± 0.03 for fainter sources below the break. A possible second break of the dN/dS distribution is constrained to be at fluxes below 6.4 x 10 -11cm -2s -1 at 95% confidence level. Finally, the high-latitude gamma-ray sky between 1 and 10 GeV is shown to be composed of ~25% point sources, ~69.3% diffuse Galactic foreground emission, and ~6% isotropic diffuse background.« less

  19. Laboratory Investigations of the Physical and Optical Properties of the Analogs of Individual Cosmic Dust Grains

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.

    2005-01-01

    Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.

  20. New Interstellar Dust Models Consistent with Interstellar Extinction, Emission and Abundances Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, V.; Dwek, E.; Arendt, R. G.; Oegerle, William (Technical Monitor)

    2001-01-01

    We present new interstellar dust models that are consistent with both, the FUV to near-IR extinction and infrared (IR) emission measurements from the diffuse interstellar medium. The models are characterized by different dust compositions and abundances. The problem we solve consists of determining the size distribution of the various dust components of the model. This problem is a typical ill-posed inversion problem which we solve using the regularization approach. We reproduce the Li Draine (2001, ApJ, 554, 778) results, however their model requires an excessive amount of interstellar silicon (48 ppM of hydrogen compared to the 36 ppM available for an ISM of solar composition) to be locked up in dust. We found that dust models consisting of PAHs, amorphous silicate, graphite, and composite grains made up from silicates, organic refractory, and water ice, provide an improved fit to the extinction and IR emission measurements, while still requiring a subsolar amount of silicon to be in the dust. This research was supported by NASA Astrophysical Theory Program NRA 99-OSS-01.

  1. DUST AND GAS IN THE MAGELLANIC CLOUDS FROM THE HERITAGE HERSCHEL KEY PROJECT. II. GAS-TO-DUST RATIO VARIATIONS ACROSS INTERSTELLAR MEDIUM PHASES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roman-Duval, Julia; Gordon, Karl D.; Meixner, Margaret

    2014-12-20

    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Hα observations. In the diffuse atomic interstellar medium (ISM), we derive the GDR as the slope of the dust-gas relation and find GDRs of 380{sub −130}{sup +250} ± 3 in the LMC, and 1200{sub −420}{sup +1600} ± 120 in the SMC, not including helium. The atomic-to-molecular transition is locatedmore » at dust surface densities of 0.05 M {sub ☉} pc{sup –2} in the LMC and 0.03 M {sub ☉} pc{sup –2} in the SMC, corresponding to A {sub V} ∼ 0.4 and 0.2, respectively. We investigate the range of CO-to-H{sub 2} conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on X {sub CO} to be 6 × 10{sup 20} cm{sup –2} K{sup –1} km{sup –1} s in the LMC (Z = 0.5 Z {sub ☉}) at 15 pc resolution, and 4 × 10{sup 21} cm{sup –2} K{sup –1} km{sup –1} s in the SMC (Z = 0.2 Z {sub ☉}) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ∼2, even after accounting for the effects of CO-dark H{sub 2} in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H{sub 2}. Within the expected 5-20 times Galactic X {sub CO} range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling and observations are required to break the degeneracy between dust grain coagulation, accretion, and CO-dark H{sub 2}. Our analysis demonstrates that obtaining robust ISM masses remains a non-trivial endeavor even in the local Universe using state-of-the-art maps of thermal dust emission.« less

  2. Dust deposition on the Mars Exploration Rover Panoramic Camera (Pancam) calibration targets

    USGS Publications Warehouse

    Kinch, K.M.; Sohl-Dickstein, J.; Bell, J.F.; Johnson, J. R.; Goetz, W.; Landis, G.A.

    2007-01-01

    The Panoramic Camera (Pancam) on the Mars Exploration Rover mission has acquired in excess of 20,000 images of the Pancam calibration targets on the rovers. Analysis of this data set allows estimates of the rate of deposition and removal of aeolian dust on both rovers. During the first 150-170 sols there was gradual dust accumulation on the rovers but no evidence for dust removal. After that time there is ample evidence for both dust removal and dust deposition on both rover decks. We analyze data from early in both rover missions using a diffusive reflectance mixing model. Assuming a dust settling rate proportional to the atmospheric optical depth, we derive spectra of optically thick layers of airfall dust that are consistent with spectra from dusty regions on the Martian surface. Airfall dust reflectance at the Opportunity site appears greater than at the Spirit site, consistent with other observations. We estimate the optical depth of dust deposited on the Spirit calibration target by sol 150 to be 0.44 ?? 0.13. For Opportunity the value was 0.39 ?? 0.12. Assuming 80% pore space, we estimate that the dust layer grew at a rate of one grain diameter per ???100 sols on the Spirit calibration target. On Opportunity the rate was one grain diameter per ???125 sols. These numbers are consistent with dust deposition rates observed by Mars Pathfinder taking into account the lower atmospheric dust optical depth during the Mars Pathfinder mission. Copyright 2007 by the American Geophysical Union.

  3. The origin and evolution of dust in interstellar and circumstellar environments

    NASA Technical Reports Server (NTRS)

    Whittet, Douglas C. B.; Leung, Chun M.

    1993-01-01

    This status report covers the period from the commencement of the research program on 1 Jul. 1992 through 30 Apr. 1993. Progress is reported for research in the following areas: (1) grain formation in circumstellar envelopes; (2) photochemistry in circumstellar envelopes; (3) modeling ice features in circumstellar envelopes; (4) episodic dust formation in circumstellar envelopes; (5) grain evolution in the diffuse interstellar medium; and (6) grain evolution in dense molecular clouds.

  4. Foreground Mitigation in the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Chapman, Emma

    2018-05-01

    The EoR foregrounds can be up to three magnitudes greater than the cosmological signal we wish to detect. Multiple methods have been developed in order to extract the cosmological signal, falling roughly into three categories: foreground removal, foreground suppression and foreground avoidance. These main approaches are briefly discussed in this review and consideration taken to the future application of these methods as a multi-layered approach.

  5. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples

    PubMed Central

    Miller, Arthur L.; Murphy, Nathaniel C.; Bayman, Sean J.; Briggs, Zachary P.; Kilpatrick, Andrew D.; Quinn, Courtney A.; Wadas, Mackenzie R.; Cauda, Emanuele G.; Griffiths, Peter R.

    2015-01-01

    The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers’ pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100–600 μg and 600–5300 μg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of −log R correlate linearly with known amounts of quartz on filters, with R2 values of approximately 0.99 and 0.94, respectively, for samples loaded up to ~4000 μg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is “free,” as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive interference, making quartz quantification impossible. It was concluded that, while the DR/FT-IR method is potentially useful for on-filter measurement of quartz in dust samples, the use of PVC filters produced the most accurate results. PMID:25636081

  6. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples.

    PubMed

    Miller, Arthur L; Murphy, Nathaniel C; Bayman, Sean J; Briggs, Zachary P; Kilpatrick, Andrew D; Quinn, Courtney A; Wadas, Mackenzie R; Cauda, Emanuele G; Griffiths, Peter R

    2015-01-01

    The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers' pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100-600 μg and 600-5300 μg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of -log R correlate linearly with known amounts of quartz on filters, with R(2) values of approximately 0.99 and 0.94, respectively, for samples loaded up to ∼4000 μg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is "free," as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive interference, making quartz quantification impossible. It was concluded that, while the DR/FT-IR method is potentially useful for on-filter measurement of quartz in dust samples, the use of PVC filters produced the most accurate results.

  7. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Astrophysics Data System (ADS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-12-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The AV/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous materials in the DISM may be physically correlated and (2) there is either dust compositional variation in the galaxy or galactic variation in the grain population density distribution. We also note a possible absorption feature near 3050/cm (3.28 micrometers), a wavelength position that is characteristic of polycyclic aromatic hydrocarbons (PAHs).

  8. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Sandford, S. A.; Allamandola, L. J.; Tielens, A. G. G. M.; Sellgren, K.

    1994-01-01

    We present new 3600 - 2700/cm (2.8 - 3.7 micrometer) spectra of objects whose extinction is dominated by dust in the diffuse interstellar medium. The observations presented here augment an ongoing study of the organic component of the diffuse interstellar medium. These spectra contain a broad feature centered near 3300/cm (3.0 micrometers) and/or a feature with a more complex profile near 2950/cm (3.4 micrometers), the latter of which is attributed to saturated aliphatic hydrocarbons in interstellar grains and is the primary interest of this paper. As in our earlier work, the similarity of the absorption bands near 2950/cm (3.4 micrometers) along different lines of sight and the correlation of these features with interstellar extinction reveal that the carrier of this band lies in the dust in the diffuse interstellar medium (DISM). At least 2.5% of the cosmic carbon in the local interstellar medium and 4% toward the Galactic center is tied up in the carrier of the 2950/cm (3.4 micrometer) band. The spectral structure of the diffuse dust hydrocarbon C-H stretch absorption features is reasonably similar to UV photolyzed laboratory ice residues and is quite similar to the carbonaceous component of the Murchison meteorite. The similarity between the DISM and the meteoritic spectrum suggests that some of the interstellar material originally incorporated into the solar nebula may have survived relatively untouched in primitive solar system bodies. Comparisons of the DISM spectrum to hydrogenated amorphous carbon and quenched carbonaceous composite are also presented. The A(sub V)/tau ratio for the 2950/cm (3.4 micrometer) feature is lower toward the Galactic center than toward sources in the local solar neighborhood (approximately 150 for the Galactic center sources vs. approximately 250 for the local ISM sources). A similar trend has been observed previously for silicates in the diffuse medium by Roche & Aitken, suggesting that (1) the silicate and carbonaceous materials in the DISM may be physically correlated and (2) there is either dust compositional variation in the galaxy or galactic variation in the grain population density distribution. We also note a possible absorption feature near 3050/cm (3.28 micrometers), a wavelength position that is characteristic of polycyclic aromatic hydrocarbons (PAHs).

  9. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM. II. SEARCH FOR COLD GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe, E-mail: wreach@sofia.usra.edu

    2017-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M {sub ⊙} in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that theremore » is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.« less

  10. Observational evidence of dust evolution in galactic extinction curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cecchi-Pestellini, Cesare; Casu, Silvia; Mulas, Giacomo

    Although structural and optical properties of hydrogenated amorphous carbons are known to respond to varying physical conditions, most conventional extinction models are basically curve fits with modest predictive power. We compare an evolutionary model of the physical properties of carbonaceous grain mantles with their determination by homogeneously fitting observationally derived Galactic extinction curves with the same physically well-defined dust model. We find that a large sample of observed Galactic extinction curves are compatible with the evolutionary scenario underlying such a model, requiring physical conditions fully consistent with standard density, temperature, radiation field intensity, and average age of diffuse interstellar clouds.more » Hence, through the study of interstellar extinction we may, in principle, understand the evolutionary history of the diffuse interstellar clouds.« less

  11. Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; Bloom, E. D.; hide

    2012-01-01

    We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+/e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.

  12. EGRET Diffuse Gamma Ray Maps Between 30 MeV and 10 GeV

    NASA Technical Reports Server (NTRS)

    Cillis, A, N.; Hartman, R. C.

    2004-01-01

    This paper presents all-sky maps of diffuse gamma radiation in various energy ranges between 30 MeV and 10 GeV, based on data collected by the EGRET instrument on the Compton Gamma Ray Observatory. Although the maps can be used for a variety of applications. the immediate goal is the generation of diffuse gamma-ray maps which can be used as a diffuse background/foreground for point source analysis of the data to be obtained from new high-energy gamma-ray missions like GLAST and AGILE. To generate the diffuse gamma maps from the raw EGRET maps, the point sources in the Third EGRET Catalog were subtracted out using the appropriate point spread function for each energy range. After that, smoothing was performed to minimize the effects of photon statistical noise. A smoothing length of 1 deg vas used for the Galactic plane maps. For the all-sky maps, a procedure was used which resulted in a smoothing length roughly equivalent to 4 deg. The result of this work is 16 maps of different energy intervals for absolute value of b < or equal to 20 deg, and 32 all-sky maps, 16 in equatorial coordinates (J2000) and 16 in Galactic coordinates.

  13. EGRET Diffuse Gamma Ray Maps Between 30 MeV and 10 GeV

    NASA Technical Reports Server (NTRS)

    Cillis, A. N.; Hartman, R. C.

    2004-01-01

    This paper presents all-sky maps of diffuse gamma radiation in various energy ranges between 30 MeV and 10 GeV, based on data collected by the EGRET instrument on the Compton Gamma Ray Observatory. Although the maps can be used for a variety of applications, the immediate goal is the generation of diffuse gamma-ray maps which can be used as a diffuse background/foreground for point source analysis of the data to be obtained from new high-energy gamma-ray missions like GLAST and AGILE. To generate the diffuse gamma maps from the raw EGRET maps, the point sources in the Third EGRET Catalog were subtracted out using the appropriate point spread function for each energy range. After that, smoothing was performed to minimize the effects of photon statistical noise. A smoothing length of 1deg was used for the Galactic plane maps. For the all-sky maps, a procedure was used which resulted in a smoothing length roughly equivalent to 4deg. The result of this work is 16 maps of different energy intervals for [b]less than or equal to 20deg, and 32 all-sky maps, 16 in equatorial coordinates (J2000) and 16 in Galactic coordinates.

  14. Dust particle radial confinement in a dc glow discharge.

    PubMed

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2013-01-01

    A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.

  15. Three decades of Martian surface changes

    USGS Publications Warehouse

    Geissler, P.E.

    2005-01-01

    The surface of Mars has changed dramatically during the three decades spanned by spacecraft exploration. Comparisons of Mars Global Surveyor images with Viking and Mariner 9 pictures suggest that more than one third of Mars' surface area has brightened or darkened by at least 10%. Such albedo changes could produce significant effects on solar heating and the global circulation of winds across the planet. All of the major changes took place in areas of moderate to high thermal inertia and rock abundance, consistent with burial of rocky surfaces by thin dust layers deposited during dust storms and subsequent exposure of the rocky surfaces by aeolian erosion. Several distinct mechanisms contribute to aeolian erosion on Mars. Prevailing winds dominate erosion at low latitudes, producing diffuse albedo boundaries and elongated wind streaks generally oriented in the direction of southern summer winds. Dust devils darken the mid to high latitudes from 45 to 70 degrees during the summer seasons, forming irregular albedo patterns consisting of dark linear tracks. Dust storms produce regional albedo variations with distinct but irregular margins. Dark sand duties in southern high latitudes appear to be associated with regional darkening that displays diffuse albedo boundaries. No surface changes were observed to repeat regularly on an annual basis, but many of the changes took place in areas that alternate episodically between high- and low-albedo states as thin mantles of dust are deposited and later stripped off. Hence the face of Mars remains recognizable after a century of telescopic observations, in spite of the enormous extent of alteration that has taken place during the era of spacecraft exploration.

  16. The unusual ISM in Blue and Dusty Gas Rich Galaxies (BADGRS).

    NASA Astrophysics Data System (ADS)

    Dunne, L.; Zhang, Z.; De Vis, P.; Clark, C. J. R.; Oteo, I.; Maddox, S. J.; Cigan, P.; de Zotti, G.; Gomez, H. L.; Ivison, R. J.; Rowlands, K.; Smith, M. W. L.; van der Werf, P.; Vlahakis, C.; Millard, J. S.

    2018-06-01

    The Herschel-ATLAS unbiased survey of cold dust in the local Universe is dominated by a surprising population of very blue (FUV - K < 3.5), dust-rich galaxies with high gas fractions ({f_{HI}=M_{HI}/({ M_{\\ast }}+M_{HI})}>0.5). Dubbed `Blue and Dusty Gas Rich Sources' (BADGRS) they have cold diffuse dust temperatures, and the highest dust-to-stellar mass ratios of any galaxies in the local Universe. Here, we explore the molecular ISM in a representative sample of BADGRS, using very deep {CO(J_{up}=1,2,3)} observations across the central and outer disk regions. We find very low CO brightnesses (Tp = 5 - 30 mK), despite the bright far-infrared emission and metallicities in the range 0.5 < Z/Z⊙ < 1.0. The CO line ratios indicate a range of conditions with R_{21}={T_b^{21}/T_b^{10}=0.6-2.1} and R_{31}={T_b^{32}/T_b^{10}=0.2-1.2}. Using a metallicity dependent conversion from CO luminosity to molecular gas mass we find M_{H2}/{M_d}˜ 7-27 and Σ _{H2} = 0.5-6 M_{⊙} {pc^{-2}}, around an order of magnitude lower than expected. The BADGRS have lower molecular gas depletion timescales (τd ˜ 0.5 Gyr) than other local spirals, lying offset from the Kennicutt-Schmidt relation by a similar factor to Blue Compact Dwarf galaxies. The cold diffuse dust temperature in BADGRS (13-16 K) requires an interstellar radiation field 10-20 times lower than that inferred from their observed surface brightness. We speculate that the dust in these sources has either a very clumpy geometry or a very different opacity in order to explain the cold temperatures and lack of CO emission. BADGRS also have low UV attenuation for their UV colour suggestive of an SMC-type dust attenuation curve, different star formation histories or different dust/star geometry. They lie in a similar part of the IRX-β space as z ˜ 5 galaxies and may be useful as local analogues for high gas fraction galaxies in the early Universe.

  17. Coronet: A Star-Formation Neighbor

    NASA Image and Video Library

    2007-09-13

    This composite image shows the Coronet in X-rays from Chandra and infrared from NASA Spitzer Space Telescope orange, green, and cyan. The Spitzer data show young stars plus diffuse emission from dust.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moultaka, J.; Eckart, A.; Muzic, K., E-mail: jihane.moultaka@irap.omp.eu, E-mail: eckart@ph1.uni-koeln.de

    The close environment of the central supermassive black hole of our Galaxy has been studied thoroughly for decades in order to shed light on the behavior of the central regions of galaxies in general and of active galaxies in particular. The Galactic center (GC) has shown a wealth of structures on different scales with a complicated mixture of early- and late-type stars, ionized and molecular gas, dust, and winds. Here we aim to study the distribution of water-ices and hydrocarbons in the central parsec, as well as along the line of sight. This study is made possible thanks to L-band spectroscopy.more » This spectral band, from 2.8 to 4.2 μm, hosts important signatures of the circumstellar medium and interstellar dense and diffuse media among which deep absorption features are attributed to water-ices and hydrocarbons. We observed the GC in the L band of the ISAAC spectrograph located on the UT1/VLT ESO telescope. By mapping the central half parsec using 27 slit positions, we were able to build the first data cube of the region in this wavelength domain. Thanks to a calibrator spectrum of the foreground extinction in the L band derived in a previous paper, we corrected our data cube for the line-of-sight extinction and validated our calibrator spectrum. The data show that a residual absorption due to water-ices and hydrocarbons is present in the corrected data cube. This suggests that the features are produced in the local environment of the GC, implying very low temperatures well below 80 K. This is in agreement with our finding of local CO ices in the central parsec described in Moultaka et al.« less

  19. Selections from 2016: Hidden Galaxies Found Behind the Milky Way

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-01-01

    Editors note:In these last two weeks of 2016, well be looking at a few selections that we havent yet discussed on AAS Nova from among the most-downloaded paperspublished in AAS journals this year. The usual posting schedule will resume after the AAS winter meeting.The Parkes H I Zone of Avoidance SurveyPublished February2016Main takeaway:883 galaxies have been discoveredwithin a few hundredmillion light-years of us, hiding behind the Milky Way. The galaxies were found by a team led by Lister Staveley-Smith (International Center for Radio Astronomy Research, University of Western Australia) using the 64-m Parkes radio telescope in Australia.Distribution of the galaxies discovered in the Zone of Avoidance. Radial distance is measured by the recessional velocities of the galaxies. [Staveley-Smith et al. 2016]Why its interesting:These new galaxies were discovered in whats known as the Zone of Avoidance, a gap that extends roughly 5 above and 5 below the galactic plane. The Zone of Avoidance has been excluded from many past surveys because the stars and dust of the Milky Way prevent us from being able to identify background galaxies in this region. But the Parkes radio telescope equipped with an innovative new receiver was able to peer through the foreground of the Milky Way to detect the hidden galaxies behind it.What this could teach us:The discovery of hundreds of new galaxies may help explain the gravitational anomaly known as the Great Attractor region, a diffuse concentration of mass roughly 250 million light-years away that is pulling the Milky Way and hundreds of thousands of other galaxies toward it.CitationL. Staveley-Smith et al 2016 AJ 151 52. doi:10.3847/0004-6256/151/3/52

  20. Critical role of foreground stimuli in perceiving visually induced self-motion (vection).

    PubMed

    Nakamura, S; Shimojo, S

    1999-01-01

    The effects of a foreground stimulus on vection (illusory perception of self-motion induced by a moving background stimulus) were examined in two experiments. The experiments reveal that the presentation of a foreground pattern with a moving background stimulus may affect vection. The foreground stimulus facilitated vection strength when it remained stationary or moved slowly in the opposite direction to that of the background stimulus. On the other hand, there was a strong inhibition of vection when the foreground stimulus moved slowly with, or quickly against, the background. These results suggest that foreground stimuli, as well as background stimuli, play an important role in perceiving self-motion.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.

    In this paper, we present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Σ Md, the dust optical extinction A V, and the starlight intensity heatingmore » the bulk of the dust, parametrized by U min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction A V for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 × 10 5 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL A V estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U min. The DL fitting parameter U min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit A V, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL A V estimate, dependent of U min, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the A V estimates towards QSOs, also brings into agreement the DL A V estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey (2MASS). The DL model and the QSOs data are also used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per A V, parameterized by U min, which may be used to test and empirically calibrate dust models. Finally, the family of SEDs and the maps generated with the DL model are made public in the Planck Legacy Archive.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loyalka, Sudarshan

    High and Very High Temperatures Gas Reactors (HTGRs/VHTRs) have five barriers to fission product (FP) release: the TRISO fuel coating, the fuel elements, the core graphite, the primary coolant system, and the reactor building. This project focused on measurements and computations of FP diffusion in graphite, FP adsorption on graphite and FP interactions with dust particles of arbitrary shape. Diffusion Coefficients of Cs and Iodine in two nuclear graphite were obtained by the release method and use of Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS) and Instrumented Neutron Activation Analysis (INAA). A new mathematical model for fission gas release from nuclear fuelmore » was also developed. Several techniques were explored to measure adsorption isotherms, notably a Knudsen Effusion Mass Spectrometer (KEMS) and Instrumented Neutron Activation Analysis (INAA). Some of these measurements are still in progress. The results will be reported in a supplemental report later. Studies of FP interactions with dust and shape factors for both chain-like particles and agglomerates over a wide size range were obtained through solutions of the diffusion and transport equations. The Green's Function Method for diffusion and Monte Carlo technique for transport were used, and it was found that the shape factors are sensitive to the particle arrangements, and that diffusion and transport of FPs can be hindered. Several journal articles relating to the above work have been published, and more are in submission and preparation.« less

  3. Chemical and isotopic fractionations by evaporation and their cosmochemical implications

    NASA Astrophysics Data System (ADS)

    Ozawa, Kazuhito; Nagahara, Hiroko

    2001-07-01

    A kinetic model for evaporation of a multi-component condensed phase with a fixed rate constant of the reaction is developed. A binary system with two isotopes for one of the components undergoing simple thermal histories (e.g., isothermal heating) is investigated in order to evaluate the extent of isotopic and chemical fractionations during evaporation. Diffusion in the condensed phase and the effect of back reaction from ambient gas are taken into consideration. Chemical and isotopic fractionation factors and the Péclet number for evaporation are the three main parameters that control the fractionation. Dust enrichment factor (η), the ratio of the initial dust quantity to that required for attainment of gas-dust equilibrium, is critical when back reactions become significant. Dust does not reach equilibrium with gas at η < 1. Notable chemical and isotopic fractionations usually take place under these conditions. There are two circumstances in which isotopic fractionation of a very volatile element does not accompany chemical fractionation during isothermal heating. One is free evaporation when diffusion in the condensed phase is very slow (η = 0), and the other is evaporation in the presence of ambient gas (η > 0). In the former case, a quasi-steady state in the diffusion boundary layer is maintained for isotopic fractionation but not for chemical fractionation. In the latter case, the back reaction brings the strong isotopic fractionation generated in the earlier stage of evaporation back to a negligibly small value in the later stage before complete evaporation. The model results are applied to cosmochemical fractionation of volatile elements during evaporation from a condensed phase that can be regarded as a binary solution phase. The wide range of potassium depletion without isotopic fractionation in various types of chondrules (Alexander et al., 2000) is explained by instantaneous heating followed by cooling in a closed system with various degrees of dust enrichment (η = 0.001-10) and cooling rates of less than ˜5°C/min. The extent of decoupling between isotopic and chemical fractionations of various elements in chondrules and matrix minerals may constrain the time scale and the conditions of heating and cooling processes in the early solar nebula.

  4. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    PubMed

    Fuente, Asunción; Baruteau, Clément; Neri, Roberto; Carmona, Andrés; Agúndez, Marcelino; Goicoechea, Javier R; Bachiller, Rafael; Cernicharo, José; Berné, Olivier

    2017-09-01

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0".58×0".78 ≈ 80×110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthal variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.

  5. Dwarf Galaxies Swimming in Tidal Tails

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This false-color infrared image from NASA's Spitzer Space Telescope shows little 'dwarf galaxies' forming in the 'tails' of two larger galaxies that are colliding together. The big galaxies are at the center of the picture, while the dwarfs can be seen as red dots in the red streamers, or tidal tails. The two blue dots above the big galaxies are stars in the foreground.

    Galaxy mergers are common occurrences in the universe; for example, our own Milky Way galaxy will eventually smash into the nearby Andromeda galaxy. When two galaxies meet, they tend to rip each other apart, leaving a trail, called a tidal tail, of gas and dust in their wake. It is out of this galactic debris that new dwarf galaxies are born.

    The new Spitzer picture demonstrates that these particular dwarfs are actively forming stars. The red color indicates the presence of dust produced in star-forming regions, including organic molecules called polycyclic aromatic hydrocarbons. These carbon-containing molecules are also found on Earth, in car exhaust and on burnt toast, among other places. Here, the molecules are being heated up by the young stars, and, as a result, shine in infrared light.

    This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). Starlight has been subtracted from the orange and red channels in order to enhance the dust features.

  6. ISM DUST GRAINS AND N-BAND SPECTRAL VARIABILITY IN THE SPATIALLY RESOLVED SUBARCSECOND BINARY UY Aur

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.

    2010-03-10

    The 10 {mu}m silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries ({approx}<3''; {approx}< 420 AU) at the distances of the nearest star-forming regions ({approx}140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0.''88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR,more » and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk.« less

  7. Scientific results from COBE

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Boggess, N. W.; Cheng, E. S.; Hauser, M. G.; Kelsall, T.; Mather, J. C.; Moseley, S. H., Jr.; Murdock, T. L.; Shafer, R. A.; Silverberg, R. F.

    1993-01-01

    NASA's Cosmic Background Explorer (COBE) carries three scientific instruments to make precise measurements of the spectrum and anisotropy of the cosmic microwave background (CMB) radiation on angular scales greater than 7 deg and to conduct a search for a diffuse cosmic infrared background (CIB) radiation with 0.7 deg angular resolution. Data from the Far-Infrared Absolute Spectrophotometer (FIRAS) show that the spectrum of the CMB is that of a blackbody of temperature T = 2.73 +/- 0.06 K, with no deviation from a blackbody spectrum greater than 0.25% of the peak brightness. The first year of data from the Differential Microwave Radiometers (DMR) show statistically significant CMB anisotropy. The anisotropy is consistent with a scale invariant primordial density fluctuation spectrum. Infrared sky brightness measurements from the Diffuse Infrared Background Experiment (DIRBE) provide new conservative upper limits to the CIB. Extensive modeling of solar system and galactic infrared foregrounds is required for further improvement in the CIB limits.

  8. Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.

    2008-01-01

    A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.

  9. Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M.G.

    2008-01-01

    A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10-8 Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust stimulant processing capabilities: heating and cooling while stirring in order to degas and remove absorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions, and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples

  10. Large Interstellar Polarisation Survey:The Dust Elongation When Combining Optical-Submm Polarisation

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, Ralf; Voschinnikov, N.; Bagnulo, S.; Cox, N.; Cami, J.

    2017-10-01

    The Planck mission has shown that dust properties of the diffuse ISM varies on a large scale and we present variability on a small scales. We present FORS spectro-polarimetry obtained by the Large Interstellar Polarisation Survey along 60 sight-lines. We fit these combined with extinction data by a silicate and carbon dust model with grain sizes ranging from the molecular to the sub-mic. domain. Large silicates of prolate shape account for the observed polarisation. For 37 sight-lines we complement our data set with UVES high-resolution spectra that establish the presence of single or multiple clouds along individual sight-lines. We find correlations between extinction and Serkowski parameters with the dust model and that the presence of multiple clouds depolarises the incoming radiation. However, there is a degeneracy in the dust model between alignment efficiency and the elongation of the grains. This degeneracy can be broken by combining polarization data in the optical-to-submm. This is of wide general interest as it improves the accuracy of deriving dust masses. We show that a flat IR/submm polarisation spectrum with substantial polarisation is predicted from dust models.

  11. Grain Temperature and Infrared Emission from Carbon Dust of Mixed Composition

    NASA Astrophysics Data System (ADS)

    Bartlett, S.; Duley, W. W.

    1996-06-01

    The equilibrium temperature of carbonaceous dust grains whose composition is consistent with IR spectra of diffuse cloud and dense cloud dust has been calculated using random covalent network (RCN) solutions for amorphous dust having a mixed graphite, diamond, and polymeric hydrocarbon composition. An effective medium approximation has been adopted to describe optical and thermal constants for dust compositions consistent with IR absorption spectra. A small amount of sp2 hybridized carbon in the form of aromatic rings is found to have a significant effect in reducing equilibrium temperature in dust with high diamond/polymer content. This formalism has also been used to calculate nonequilibrium emission spectra of very small grains (VSGs) subjected to stochastic heating in the interstellar radiation field. Such grains are found to emit strongly in sharp IR bands associated with C-H bonds at 3.4 μm and longer wavelengths. The effect of varying graphite/diamond/hydrocarbon composition on nonequilibrium emission by VSGs can also be described using this formalism. The ratio of emission at 12 and 25 μm is found to be high for VSGs with a large fraction of diamond or polymeric hydrocarbon but decreases dramatically for dust with a large sp2 aromatic component.

  12. Hst Measurements Of Main Belt Comet 300163

    NASA Astrophysics Data System (ADS)

    Jewitt, David; Weaver, H.; Agarwal, J.; Mutchler, M.; Larson, S.

    2012-10-01

    Asteroid 300163 (semimajor axis 3.05 AU, eccentricity 0.20, inclination 3 deg., Tisserand parameter 3.20) is a source of dust, giving it the dual cometary designation P/2006 VW139. It satisfies the definition of a main-belt comet (MBC) by having the orbital character of a main-belt asteroid but the diffuse appearance of a comet. We obtained Hubble Space Telescope observations of this object in December 2011 in order to study the morphology of the ejected dust at the highest angular resolution and to determine the cause of the mass loss from the nucleus. One of the two HST observing epochs was carefully timed to coincide with the Earth's crossing of the orbital plane (out of plane angle 0.01 deg.) to obtain a measure of the vertical velocity dispersion free from the effects of projection. We find an extraordinarily thin dust sheet and infer a sub-meter per second dust ejection velocity. Observations at the second epoch show a change in the near-nucleus dust morphology that indicates continuing ejection (i.e. the dust emission is not impulsive). We use the low velocity ejection, coupled with the absence of an observable coma, to help constrain the possible source mechanisms for the dust.

  13. Extraction of Thermal Performance Values from Samples in the Lunar Dust Adhesion Bell Jar

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Siamidis, John; Larkin, Elizabeth M. G.

    2010-01-01

    A simulation chamber has been developed to test the performance of thermal control surfaces under dusty lunar conditions. The lunar dust adhesion bell jar (LDAB) is a diffusion pumped vacuum chamber (10(exp -8) Torr) built to test material samples less than about 7 cm in diameter. The LDAB has the following lunar dust simulant processing capabilities: heating and cooling while stirring in order to degas and remove adsorbed water; RF air-plasma for activating the dust and for organic contaminant removal; RF H/He-plasma to simulate solar wind; dust sieving system for controlling particle sizes; and a controlled means of introducing the activated dust to the samples under study. The LDAB is also fitted with an in situ Xe arc lamp solar simulator, and a cold box that can reach 30 K. Samples of thermal control surfaces (2.5 cm diameter) are introduced into the chamber for calorimetric evaluation using thermocouple instrumentation. The object of this paper is to present a thermal model of the samples under test conditions and to outline the procedure to extract the absorptance, emittance, and thermal efficiency from the pristine and sub-monolayer dust covered samples.

  14. How Phoenix Looks Under Itself

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation

    This is an animation of NASA's Phoenix Mars Lander reaching with its Robotic Arm and taking a picture of the surface underneath the lander. The image at the conclusion of the animation was taken by Phoenix's Robotic Arm Camera (RAC) on the eighth Martian day of the mission, or Sol 8 (June 2, 2008). The light feature in the middle of the image below the leg is informally called 'Holy Cow.' The dust, shown in the dark foreground, has been blown off of 'Holy Cow' by Phoenix's thruster engines.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  15. Correlation properties of interstellar dust: Diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Somerville, W. B.

    1989-01-01

    Results are presented from a research program in which an attempt was made to establish the physical nature of the interstellar grains, and the carriers of the diffuse interstellar bands, by comparing relations between different observed properties; the properties used include the extinction in the optical and ultraviolet (including wavelength 2200 and the far-UV rise), cloud density, atomic depletions, and strengths of the diffuse bands. Observations and also data from literature were used, selecting particularly sight-lines where some observed property was found to have anomalous behavior.

  16. Diffuse interstellar bands in reflection nebulae

    NASA Technical Reports Server (NTRS)

    Fischer, O.; Henning, Thomas; Pfau, Werner; Stognienko, R.

    1994-01-01

    A Monte Carlo code for radiation transport calculations is used to compare the profiles of the lambda lambda 5780 and 6613 Angstrom diffuse interstellar bands in the transmitted and the reflected light of a star embedded within an optically thin dust cloud. In addition, the behavior of polarization across the bands were calculated. The wavelength dependent complex indices of refraction across the bands were derived from the embedded cavity model. In view of the existence of different families of diffuse interstellar bands the question of other parameters of influence is addressed in short.

  17. Resolving the structure of the Galactic foreground using Herschel measurements and the Kriging technique

    NASA Astrophysics Data System (ADS)

    Pinter, S.; Bagoly, Z.; Balázs, L. G.; Horvath, I.; Racz, I. I.; Zahorecz, S.; Tóth, L. V.

    2018-05-01

    Investigating the distant extragalactic Universe requires a subtraction of the Galactic foreground. One of the major difficulties deriving the fine structure of the galactic foreground is the embedded foreground and background point sources appearing in the given fields. It is especially so in the infrared. We report our study subtracting point sources from Herschel images with Kriging, an interpolation method where the interpolated values are modelled by a Gaussian process governed by prior covariances. Using the Kriging method on Herschel multi-wavelength observations the structure of the Galactic foreground can be studied with much higher resolution than previously, leading to a better foreground subtraction at the end.

  18. The origin of the diffuse galactic IR/submm emission: Revisited after IRAS

    NASA Technical Reports Server (NTRS)

    Cox, P.; Mezger, P. G.

    1987-01-01

    Balloon observations are compared with Infrared Astronomy Satellite observations. There was good agreement for the longitudinal profiles. However, the dust emission observed by IRAS, contrary to the balloon observations which show dust emission only within the absolute value of b is equal to or less than 3 degrees, extends all the way to the galactic pole. The model fits were repeated using more recent parameters for the distribution of interstellar matter in the galactic disk and central region. The IR luminosities are derived for the revised galactic distance scale of solar radius - 8.5 Kpc. A total IR luminosity of 1.2 E10 solar luminosity is obtained, which is about one third of the estimated stellar luminosity of the Galaxy. The dust emission spectrum lambdaI(sub lambda) attains it maximum at 100 microns. A secondary maximum in the dust emission spectrum occurs at 10 microns, which contains 15% of the total IR luminosity of the Galaxy. The galactic dust emission spectrum was compared with the dust emission spectra of external IRAS galaxies. The warm dust luminosity relates to the present OB star formation rate, while flux densities observed at longer submm wavelengths are dominated by cold dust emission and thus can be used to estimate gas masses.

  19. Sparse estimation of model-based diffuse thermal dust emission

    NASA Astrophysics Data System (ADS)

    Irfan, Melis O.; Bobin, Jérôme

    2018-03-01

    Component separation for the Planck High Frequency Instrument (HFI) data is primarily concerned with the estimation of thermal dust emission, which requires the separation of thermal dust from the cosmic infrared background (CIB). For that purpose, current estimation methods rely on filtering techniques to decouple thermal dust emission from CIB anisotropies, which tend to yield a smooth, low-resolution, estimation of the dust emission. In this paper, we present a new parameter estimation method, premise: Parameter Recovery Exploiting Model Informed Sparse Estimates. This method exploits the sparse nature of thermal dust emission to calculate all-sky maps of thermal dust temperature, spectral index, and optical depth at 353 GHz. premise is evaluated and validated on full-sky simulated data. We find the percentage difference between the premise results and the true values to be 2.8, 5.7, and 7.2 per cent at the 1σ level across the full sky for thermal dust temperature, spectral index, and optical depth at 353 GHz, respectively. A comparison between premise and a GNILC-like method over selected regions of our sky simulation reveals that both methods perform comparably within high signal-to-noise regions. However, outside of the Galactic plane, premise is seen to outperform the GNILC-like method with increasing success as the signal-to-noise ratio worsens.

  20. A deep look at the nuclear region of UGC 5101 through high angular resolution mid-IR data with GTC/CanariCam

    NASA Astrophysics Data System (ADS)

    Martínez-Paredes, M.; Alonso-Herrero, A.; Aretxaga, I.; Ramos Almeida, C.; Hernán-Caballero, A.; González-Martín, O.; Pereira-Santaella, M.; Packham, C.; Asensio Ramos, A.; Díaz-Santos, T.; Elitzur, M.; Esquej, P.; García-Bernete, I.; Imanishi, M.; Levenson, N. A.; Rodríguez Espinosa, J. M.

    2015-12-01

    We present an analysis of the nuclear infrared (IR, 1.6-18 μm) emission of the ultraluminous IR galaxy UGC 5101 to derive the properties of its active galactic nucleus (AGN) and its obscuring material. We use new mid-IR high angular resolution (0.3-0.5 arcsec) imaging using the Si-2 filter (λC = 8.7 μm) and 7.5-13 μm spectroscopy taken with CanariCam (CC) on the 10.4 m Gran Telescopio CANARIAS. We also use archival Hubble Space Telescope/NICMOS and Subaru/COMICS imaging and Spitzer/IRS spectroscopy. We estimate the near- and mid-IR unresolved nuclear emission by modelling the imaging data with GALFIT. We decompose the Spitzer/IRS and CC spectra using a power-law component, which represents the emission due to dust heated by the AGN, and a starburst component, both affected by foreground extinction. We model the resulting unresolved near- and mid-IR, and the starburst subtracted CC spectrum with the CLUMPY torus models of Nenkova et al. The derived geometrical properties of the torus, including the large covering factor and the high foreground extinction needed to reproduce the deep 9.7 μm silicate feature, are consistent with the lack of strong AGN signatures in the optical. We derive an AGN bolometric luminosity Lbol ˜ 1.9 × 1045 erg s-1 that is in good agreement with other estimates in the literature.

  1. Foreground mitigation strategy for measuring the 21 cm-LAE cross-correlation

    NASA Astrophysics Data System (ADS)

    Yoshiura, Shintaro; Line, Jack L. B.; Kubota, Kenji; Hasegawa, Kenji; Takahashi, Keitaro

    2018-05-01

    The cross power spectrum of the 21 cm signal and Lyman-α emitters (LAEs) is a probe of the Epoch of Reionization. Astrophysical foregrounds do not correlate with the LAE distribution, though the foregrounds contribute to the error. To study the impact of foregrounds on the measurement, we assume realistic observation by the Murchison Widefield Array using a catalogue of radio galaxies, a LAE survey by the Subaru Hyper Supreme-Cam and the redshift of LAEs is determined by the Prime Focus Spectrograph. The HI distribution is estimated from a radiative transfer simulation with models based on results of radiation hydrodynamics simulation. Using these models, we found that the error of cross power spectrum is dominated by foreground terms. Furthermore, we estimate the effects of foreground removal, and find 99% of the foreground removal is required to detect the 21 cm-LAE signal at k ~ 0.4 h Mpc-1.

  2. Joint Estimation of the Epoch of Reionization Power Spectrum and Foregrounds

    NASA Astrophysics Data System (ADS)

    Sims, Peter; Pober, Jonathan

    2018-01-01

    Bright astrophysical foregrounds present a significant impediment to the detection of redshifted 21-cm emission from the Epoch of Reionization on large spatial scales. In this talk I present a framework for the joint modeling of the power spectral contamination by astrophysical foregrounds and the power spectrum of the Epoch of Reionization. I show how informative priors on the power spectral contamination by astrophysical foregrounds at high redshifts, where emission from both the Epoch of Reionization and its foregrounds is present in the data, can be obtained through analysis of foreground-only emission at lower redshifts. Finally, I demonstrate how, by using such informative foreground priors, joint modeling can be employed to mitigate bias in estimates of the power spectrum of the Epoch of Reionization signal and, in particular, to enable recovery of more robust power spectral estimates on large spatial scales.

  3. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  4. Instrumental and Calibration Advancements for the Dark Ages Radio Explorer (DARE)

    NASA Astrophysics Data System (ADS)

    Monsalve, Raul A.; Burns, Jack O.; Bradley, Richard F.; Tauscher, Keith; Nhan, Bang; Bowman, Judd D.; Purcell, William R.; Newell, David; Draper, David

    2017-01-01

    The Dark Ages Radio Explorer (DARE) is a space mission concept proposed to NASA to measure with high precision the monopole component of the redshifted 21-cm signal from neutral hydrogen originated during cosmic dawn at redshifts 35 > z > 11. For the 21-cm line, these high redshifts correspond to the frequency range 40-120 MHz. Through its spectral features, this signal will provide a wealth of information about the large-scale physics of the first stars, galaxies and black holes. The signal is expected to have an absolute amplitude below 200 mK, which is five orders of magnitude smaller than the diffuse foregrounds dominated by Galactic synchrotron radiation. In order to avoid the impact of the Earth’s ionosphere, which corrupts low-frequency radio waves through refraction, absorption, and emission, this measurement is conducted from orbit above the far side of the Moon. This location is ideal because it enables the Moon to shield the spacecraft from Solar radiation and terrestrial radio-frequency interference. The DARE instrument is designed around a dual-polarization, widefield, wideband, biconical antenna, which provides full-Stokes capabilities in order to measure and remove the low-level polarized component of the foregrounds. The spacecraft is rotated about its boresight axis at 1 RPM to modulate the foregrounds and separate them from the spatially uniform cosmological signal. The instrument requires exquisite calibration to reach a sensitivity of a few mK in the presence of strong foregrounds. For this purpose, the frequency-dependent antenna beam is characterized to 20 ppm. This is accomplished through a combination of electromagnetic simulations, anechoic chamber measurements, and on-orbit mapping using a calibrated high-power ground-based source. The DARE front-end receiver is characterized on the ground in terms of its input impedance, gain, noise properties, and stability. Its performance is verified when operating on-orbit at a fixed temperature, through bidirectional injection of pilot frequency tones that also allow to verify the stability of the antenna. All these instrumental and calibration advancements allow to precisely measure and characterize a wide range cosmological models.

  5. Connecting the Interstellar Gas and Dust Properties in Distant Galaxies Using Quasar Absorption Systems

    NASA Technical Reports Server (NTRS)

    Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim; hide

    2016-01-01

    Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.

  6. Behind the dust curtain: the spectacular case of GRB 160623A

    NASA Astrophysics Data System (ADS)

    Pintore, F.; Tiengo, A.; Mereghetti, S.; Vianello, G.; Salvaterra, R.; Esposito, P.; Costantini, E.; Giuliani, A.; Bosnjak, Z.

    2017-12-01

    We report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM-Newton observation carried out ∼2 d after the burst, we found evidence of at least six rings, with angular size expanding between ∼2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ± 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 1020-1.5 × 1022 cm-2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.

  7. Planck intermediate results: XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; ...

    2016-02-09

    In this paper, we present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density Σ Md, the dust optical extinction A V, and the starlight intensity heatingmore » the bulk of the dust, parametrized by U min. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction A V for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 × 10 5 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL A V estimates are larger than those determined towards QSOs by a factor of about 2, which depends on U min. The DL fitting parameter U min, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit A V, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL A V estimate, dependent of U min, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the A V estimates towards QSOs, also brings into agreement the DL A V estimates with those derived for molecular clouds from the near-IR colours of stars in the 2 micron all sky survey (2MASS). The DL model and the QSOs data are also used to compress the spectral information in the Planck and IRAS observations for the diffuse ISM to a family of 20 SEDs normalized per A V, parameterized by U min, which may be used to test and empirically calibrate dust models. Finally, the family of SEDs and the maps generated with the DL model are made public in the Planck Legacy Archive.« less

  8. Polarization of the diffuse galactic light.

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.; Ney, E. P.

    1972-01-01

    Polarization measurements made from the satellite OSO-5 show that the polarized intensity in the direction of the Scutum arm of the Galaxy is different in intensity and direction of the polarization from that observed due to the zodiacal light. The observations are consistent with polarized diffuse galactic light superposed on the zodiacal light. The results are interpreted in terms of a model in which the galactic starlight is scattered by interstellar dust.

  9. Small Airway Dysfunction and Abnormal Exercise Responses

    PubMed Central

    Petsonk, Edward L.; Stansbury, Robert C.; Beeckman-Wagner, Lu-Ann; Long, Joshua L.; Wang, Mei Lin

    2016-01-01

    Rationale Coal mine dust exposure can cause symptoms and loss of lung function from multiple mechanisms, but the roles of each disease process are not fully understood. Objectives We investigated the implications of small airway dysfunction for exercise physiology among a group of workers exposed to coal mine dust. Methods Twenty coal miners performed spirometry, first breathing air and then helium-oxygen, single-breath diffusing capacity, and computerized chest tomography, and then completed cardiopulmonary exercise testing. Measurements and Main Results Six participants meeting criteria for small airway dysfunction were compared with 14 coal miners who did not. At submaximal workload, miners with small airway dysfunction used a higher proportion of their maximum voluntary ventilation and had higher ventilatory equivalents for both O2 and CO2. Regression modeling indicated that inefficient ventilation was significantly related to small airway dysfunction but not to FEV1 or diffusing capacity. At the end of exercise, miners with small airway dysfunction had 27% lower O2 consumption. Conclusions Small airway abnormalities may be associated with important inefficiency of exercise ventilation. In dust-exposed individuals with only mild abnormalities on resting lung function tests or chest radiographs, cardiopulmonary exercise testing may be important in defining causes of exercise intolerance. PMID:27073987

  10. DUST IN ACTIVE GALACTIC NUCLEI: ANOMALOUS SILICATE TO OPTICAL EXTINCTION RATIOS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyu, Jianwei; Hao, Lei; Li, Aigen, E-mail: haol@shao.ac.cn

    Dust plays a central role in the unification theory of active galactic nuclei (AGNs). However, little is known about the nature (e.g., size, composition) of the dust that forms a torus around the AGN. In this Letter, we report a systematic exploration of the optical extinction (A{sub V} ) and the silicate absorption optical depth (Δτ{sub 9.7}) of 110 type 2 AGNs. We derive A{sub V} from the Balmer decrement based on the Sloan Digital Sky Survey data, and Δτ{sub 9.7} from the Spitzer/InfraRed Spectrograph data. We find that with a mean ratio of (A{sub V} /Δτ{sub 9.7}) ≲ 5.5, themore » optical-to-silicate extinction ratios of these AGNs are substantially lower than that of the Galactic diffuse interstellar medium (ISM) for which A{sub V} /Δτ{sub 9.7} ≈ 18.5. We argue that the anomalously low A{sub V} /Δτ{sub 9.7} ratio could be due to the predominance of larger grains in the AGN torus compared to that in the Galactic diffuse ISM.« less

  11. Infrared Coronet Cluster

    NASA Image and Video Library

    2007-09-13

    This image from NASA Spitzer Space Telescope shows young stars plus diffuse emission from dust. The Corona Australis region containing, at its heart, the Coronet cluster is one of the nearest and most active regions of ongoing star formation.

  12. 3D modelling of HCO+ and its isotopologues in the low-mass proto-star IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Bottinelli, S.; Caux, E.; Wakelam, V.

    2018-07-01

    Ions and electrons play an important role in various stages of the star formation process. By following the magnetic field of their environment and interacting with neutral species, they slow down the gravitational collapse of the proto-star envelope. This process (known as ambipolar diffusion) depends on the ionization degree, which can be derived from the HCO+ abundance. We present a study of HCO+ and its isotopologues (H13CO+ , HC18O+ , DCO+ , and D13CO+) in the low-mass proto-star IRAS16293-2422. The structure of this object is complex, and the HCO+emission arises from the contribution of a young NW-SE outflow, the proto-stellar envelope, and the foreground cloud. We aim at constraining the physical parameters of these structures using all the observed transitions. For the young NW-SE outflow, we derive Tkin= 180-220 K and n(H2) = (4-7)× 106 cm-3 with an HCO+abundance of (3-5)× 10-9. Following previous studies, we demonstrate that the presence of a cold (Tkin≤ 30 K) and low density [n(H2) ≤ 1 × 104 cm-3] foreground cloud is also necessary to reproduce the observed line profiles. We have used the gas-grain chemical code NAUTILUS to derive the HCO+ abundance profile across the envelope and the external regions where X(HCO+) ≳ 1 × 10-9 dominate the envelope emission. From this, we derive an ionization degree of 10-8.9 ≲ x( e) ≲ 10-7.9. The ambipolar diffusion time-scale is ˜5 times the free-fall time-scale, indicating that the magnetic field starts to support the source against gravitational collapse and the magnetic field strength is estimated to be 6-46μG.

  13. 3D modelling of HCO+ and its isotopologues in the low-mass proto-star IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Quénard, D.; Bottinelli, S.; Caux, E.; Wakelam, V.

    2018-04-01

    Ions and electrons play an important role in various stages of the star formation process. By following the magnetic field of their environment and interacting with neutral species, they slow down the gravitational collapse of the proto-star envelope. This process (known as ambipolar diffusion) depends on the ionisation degree, which can be derived from the HCO+abundance. We present a study of HCO+and its isotopologues (H13CO+, HC18O+, DCO+, and D13CO+) in the low-mass proto-star IRAS16293-2422. The structure of this object is complex, and the HCO+emission arises from the contribution of a young NW-SE outflow, the proto-stellar envelope and the foreground cloud. We aim at constraining the physical parameters of these structures using all the observed transitions. For the young NW-SE outflow, we derive Tkin = 180 - 220 K and n(H2) = (4 - 7) × 106 cm-3 with an HCO+abundance of (3 - 5) × 10-9. Following previous studies, we demonstrate that the presence of a cold (Tkin≤30 K) and low density (n(H2) ≤ 1 × 104 cm-3) foreground cloud is also necessary to reproduce the observed line profiles. We have used the gas-grain chemical code NAUTILUS to derive the HCO+abundance profile across the envelope and the external regions where X(HCO+)≳ 1 × 10-9 dominate the envelope emission. From this, we derive an ionisation degree of 10-8.9 ≲ x(e) ≲ 10-7.9. The ambipolar diffusion timescale is ˜5 times the free-fall timescale, indicating that the magnetic field starts to support the source against gravitational collapse and the magnetic field strength is estimated to be 6 - 46 μG.

  14. Determination of the mass function of extra-galactic GMCs via NIR color maps. Testing the method in a disk-like geometry

    NASA Astrophysics Data System (ADS)

    Kainulainen, J.; Juvela, M.; Alves, J.

    2007-06-01

    The giant molecular clouds (GMCs) of external galaxies can be mapped with sub-arcsecond resolution using multiband observations in the near-infrared. However, the interpretation of the observed reddening and attenuation of light, and their transformation into physical quantities, is greatly hampered by the effects arising from the unknown geometry and the scattering of light by dust particles. We examine the relation between the observed near-infrared reddening and the column density of the dust clouds. In this paper we particularly assess the feasibility of deriving the mass function of GMCs from near-infrared color excess data. We perform Monte Carlo radiative transfer simulations with 3D models of stellar radiation and clumpy dust distributions. We include the scattered light in the models and calculate near-infrared color maps from the simulated data. The color maps are compared with the true line-of-sight density distributions of the models. We extract clumps from the color maps and compare the observed mass function to the true mass function. For the physical configuration chosen in this study, essentially a face-on geometry, the observed mass function is a non-trivial function of the true mass function with a large number of parameters affecting its exact form. The dynamical range of the observed mass function is confined to 103.5dots 105.5 M_⊙ regardless of the dynamical range of the true mass function. The color maps are more sensitive in detecting the high-mass end of the mass function, and on average the masses of clouds are underestimated by a factor of ˜ 10 depending on the parameters describing the dust distribution. A significant fraction of clouds is expected to remain undetected at all masses. The simulations show that the cloud mass function derived from JHK color excess data using simple foreground screening geometry cannot be regarded as a one-to-one tracer of the underlying mass function.

  15. On the impact of large angle CMB polarization data on cosmological parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lattanzi, Massimiliano; Mandolesi, Nazzareno; Natoli, Paolo

    We study the impact of the large-angle CMB polarization datasets publicly released by the WMAP and Planck satellites on the estimation of cosmological parameters of the ΛCDM model. To complement large-angle polarization, we consider the high resolution (or 'high-ℓ') CMB datasets from either WMAP or Planck as well as CMB lensing as traced by Planck 's measured four point correlation function. In the case of WMAP, we compute the large-angle polarization likelihood starting over from low resolution frequency maps and their covariance matrices, and perform our own foreground mitigation technique, which includes as a possible alternative Planck 353 GHz datamore » to trace polarized dust. We find that the latter choice induces a downward shift in the optical depth τ, roughly of order 2σ, robust to the choice of the complementary high resolution dataset. When the Planck 353 GHz is consistently used to minimize polarized dust emission, WMAP and Planck 70 GHz large-angle polarization data are in remarkable agreement: by combining them we find τ = 0.066 {sup +0.012}{sub −0.013}, again very stable against the particular choice for high-ℓ data. We find that the amplitude of primordial fluctuations A {sub s} , notoriously degenerate with τ, is the parameter second most affected by the assumptions on polarized dust removal, but the other parameters are also affected, typically between 0.5 and 1σ. In particular, cleaning dust with Planck 's 353 GHz data imposes a 1σ downward shift in the value of the Hubble constant H {sub 0}, significantly contributing to the tension reported between CMB based and direct measurements of the present expansion rate. On the other hand, we find that the appearance of the so-called low ℓ anomaly, a well-known tension between the high- and low-resolution CMB anisotropy amplitude, is not significantly affected by the details of large-angle polarization, or by the particular high-ℓ dataset employed.« less

  16. Towards a Full-sky, High-resolution Dust Extinction Map with WISE and Planck

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, D. P.

    2014-01-01

    We have recently completed a custom processing of the entire WISE 12 micron All-sky imaging data set. The result is a full-sky map of diffuse, mid-infrared Galactic dust emission with angular resolution of 15 arcseconds, and with contaminating artifacts such as compact sources removed. At the same time, the 2013 Planck HFI maps represent a complementary data set in the far-infrared, with zero-point relatively immune to zodiacal contamination and angular resolution superior to previous full-sky data sets at similar frequencies. Taken together, these WISE and Planck data products present an opportunity to improve upon the SFD (1998) dust extinction map, by virtue of enhanced angular resolution and potentially better-controlled systematics on large scales. We describe our continuing efforts to construct and test high-resolution dust extinction and temperature maps based on our custom WISE processing and Planck HFI data.

  17. Decoding IR Spectra of Cosmic Ices and Organics in the Laboratory

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.

    2006-01-01

    Tremendous strides have been made in our understanding of interstellar material over the past twenty-five years thanks to significant developments in observational IR astronomy and dedicated laboratory experiments. Twenty-five years ago the composition of interstellar dust was largely guessed at. Today the composition of interstellar dust is reasonably well understood. In the diffuse interstellar medium (ISM) the dust population is mainly comprised of small grains of silicates and amorphous carbon. In dark molecular clouds, the birthplace of stars and planets, these cold refractory dust particles are coated with mixed molecular ices whose composition is reasonably well constrained. Lastly, the signature of carbon-rich polycyclic aromatic hydrocarbons (PAHs), shockingly large molecules by early interstellar chemistry standards, is widespread throughout the Universe. This extraordinary progress has been made possible by the close collaboration of laboratory experimentalists and theoreticians with IR astronomers using groundbased, air-borne, and orbiting telescopes.

  18. 4. Log chicken house (far left foreground), log bunkhouse (far ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Log chicken house (far left foreground), log bunkhouse (far left background), one-room log cabin (left of center background), log root cellar (center), post-and-beam center in foreground, and blacksmith shop (far right foreground). View to southeast. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  19. Cosmic rays, gas and dust in nearby anticentre clouds. I. CO-to-H2 conversion factors and dust opacities

    NASA Astrophysics Data System (ADS)

    Remy, Q.; Grenier, I. A.; Marshall, D. J.; Casandjian, J. M.

    2017-05-01

    Aims: We aim to explore the capabilities of dust emission and γ rays for probing the properties of the interstellar medium in the nearby anti-centre region, using γ-ray observations with the Fermi Large Area Telescope (LAT), and the thermal dust optical depth inferred from Planck and IRAS observations. We also aim to study massive star-forming clouds including the well known Taurus, Auriga, Perseus, and California molecular clouds, as well as a more diffuse structure which we refer to as Cetus. In particular, we aim at quantifying potential variations in cosmic-ray density and dust properties per gas nucleon across the different gas phases and different clouds, and at measuring the CO-to-H2 conversion factor, XCO, in different environments. Methods: We have separated six nearby anti-centre clouds that are coherent in velocities and distances, from the Galactic-disc background in H I 21-cm and 12CO 2.6-mm line emission. We have jointly modelled the γ-ray intensity recorded between 0.4 and 100 GeV, and the dust optical depth τ353 at 353 GHz as a combination of H I-bright, CO-bright, and ionised gas components. The complementary information from dust emission and γ rays was used to reveal the gas not seen, or poorly traced, by H I, free-free, and 12CO emissions, namely (I) the opaque H iand diffuse H2 present in the Dark Neutral Medium at the atomic-molecular transition, and (II) the dense H2 to be added where 12CO lines saturate. Results: The measured interstellar γ-ray spectra support a uniform penetration of the cosmic rays with energies above a few GeV through the clouds, from the atomic envelopes to the 12CO-bright cores, and with a small ± 9% cloud-to-cloud dispersion in particle flux. We detect the ionised gas from the H iiregion NGC 1499 in the dust and γ-ray emissions and measure its mean electron density and temperature. We find a gradual increase in grain opacity as the gas (atomic or molecular) becomes more dense. The increase reaches a factor of four to six in the cold molecular regions that are well shielded from stellar radiation. Consequently, the XCO factor derived from dust is systematically larger by 30% to 130% than the γ-ray estimate. We also evaluate the average γ-ray XCO factor for each cloud, and find that XCO tends to decrease from diffuse to more compact molecular clouds, as expected from theory. We find XCO factors in the anti-centre clouds close to or below 1020 cm-2 K-1 km-1 s, in agreement with other estimates in the solar neighbourhood. Together, they confirm the long-standing unexplained discrepancy, by a factor of two, between the mean XCO values measured at parsec scales in nearby clouds and those obtained at kiloparsec scale in the Galaxy. Our results also highlight large quantitative discrepancies in 12CO intensities between simulations and observations at low molecular gas densities.

  20. Constraints on the Galactic Halo Dark Matter From FERMI-LAT Diffuse Measurements

    DOE PAGES

    Ackermann, M.; Ajello, M.; Atwood, W. B.; ...

    2012-11-28

    For this study, we have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope (LAT) in the Milky Way halo region, searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e +/e – produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limitsmore » is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum, and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. In conclusion, the resulting limits impact the range of particle masses over which dark matter thermal production in the early universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as the annihilation of dark matter.« less

  1. Probing the Cold Dust Emission in the AB Aur Disk: A Dust Trap in a Decaying Vortex?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuente, Asunción; Bachiller, Rafael; Baruteau, Clément

    One serious challenge for planet formation is the rapid inward drift of pebble-sized dust particles in protoplanetary disks. Dust trapping at local maxima in the disk gas pressure has received much theoretical attention but still lacks observational support. The cold dust emission in the AB Aur disk forms an asymmetric ring at a radius of about 120 au, which is suggestive of dust trapping in a gas vortex. We present high spatial resolution (0.″58 × 0.″78 ≈ 80 × 110 au) NOEMA observations of the 1.12 mm and 2.22 mm dust continuum emission from the AB Aur disk. Significant azimuthalmore » variations of the flux ratio at both wavelengths indicate a size segregation of the large dust particles along the ring. Our continuum images also show that the intensity variations along the ring are smaller at 2.22 mm than at 1.12 mm, contrary to what dust trapping models with a gas vortex have predicted. Our two-fluid (gas+dust) hydrodynamical simulations demonstrate that this feature is well explained if the gas vortex has started to decay due to turbulent diffusion, and dust particles are thus losing the azimuthal trapping on different timescales depending on their size. The comparison between our observations and simulations allows us to constrain the size distribution and the total mass of solid particles in the ring, which we find to be of the order of 30 Earth masses, enough to form future rocky planets.« less

  2. Tracing gas and magnetic field with dust : lessons from Planck & Herschel

    NASA Astrophysics Data System (ADS)

    Guillet, Vincent

    2015-08-01

    Dust emission is a powerful tool to measure the gas mass. Its polarization also traces the magnetic field structure. With the Planck and Herschel multi-wavelength observations, we are now able to trace the gas and magnetic field over the full sky, with a large spectrum of scales, and up to high optical depths. But a question arises : is dust a reliable tracer ?I will present the statistical properties of the dust polarized emission as observed by Planck HFI over the full sky, and show how this compares to ancillary measures of starlight polarization in the optical, and to MHD simulations. I will distinguish between what is related to the 3D structure of the magnetic field, and what is related to dust (alignement efficiency, grain shape). I will show that the main features of dust polarization observed by Planck can be explained by the magnetic field structure on the line of sight, without any need for a variation of dust alignment efficiency up to an Av of 5 to 10. Dust polarization is therefore a good and reliable tracer of the magnetic field, at least at moderate extinction.I will also discuss the caveats in deriving the gas mass or dust extinction from a fit to the dust spectral energy distribution : 1) the dust far-infrared opacity is not uniform but varies accross the diffuse ISM, and increases inside star-forming regions; 2) Radiation transfer effects must be taken into account at high optical depths. I will present estimates for the systematic errors that are made when these effects are ignored.

  3. Dust and Gas in Different Galactic Environments

    NASA Astrophysics Data System (ADS)

    Goncalves, Daniela Catarina Pinheiro

    2014-01-01

    This thesis encompasses the study of the mid-infrared (IR) dust properties in diffuse high latitude cirrus and in the dense environments of supernova remnants (SNRs) in the plane of our Galaxy. Unlike the well known emission properties of dust grains in the diffuse ISM in the far-IR and submillimeter, the mid-IR spectrum is still relatively unconstrained. We extend the correlation of dust emission with H I column densities to mid-IR wavelengths and look for evidence of variations in the emissivity of dust associated with local and halo gas. This is accomplished by spatially correlating the IR maps from the IRIS/IRAS survey at 12, 25, 60 and 100 μm with H I column density maps inferred from 21-cm line emission observations obtained with the GBT (at a 9' resolution). We find that IVCs (halo clouds thought to be part of the Galactic fountain) show color ratios consistent with a dust evolution scenario in which large dust grains are shattered into smaller ones (VSGs). The low 12 μm emission found suggests a reduced abundance of PAHs in IVCs. We also address the IR extragalactic emission seen in our residual maps and quantify its power spectrum behaviour. Continuing with the mid-IR theme, we conducted a comprehensive study of the morphology and energetics of SNRs in the plane of our Galaxy. We make use of the Spitzer MIPSGAL (at 24 and 70 μm) and GLIMPSE (at 8 μm) surveys to detected infrared counterparts to SNR candidates in Green's catalog. We find that a third of the sample shows IR emission and calculate the corresponding fluxes. We explore the relation between IR colors to place constraints on the different IR SNRs emission mechanisms. Aided by archival radio data, we find that most candidates detected show IR-to-radio ratios consistent with SNRs with a few exceptions displaying ratios seen in H II regions. Finally, we explore the connection between the IR and the high-energy X-ray emission of SNRs and find a good morphological association between the 24 μm emission and the X-ray features in younger remnants. The IR power is often greater.

  4. Dust spectral energy distributions of nearby galaxies: an insight from the Herschel Reference Survey

    NASA Astrophysics Data System (ADS)

    Ciesla, L.; Boquien, M.; Boselli, A.; Buat, V.; Cortese, L.; Bendo, G. J.; Heinis, S.; Galametz, M.; Eales, S.; Smith, M. W. L.; Baes, M.; Bianchi, S.; De Looze, I.; di Serego Alighieri, S.; Galliano, F.; Hughes, T. M.; Madden, S. C.; Pierini, D.; Rémy-Ruyer, A.; Spinoglio, L.; Vaccari, M.; Viaene, S.; Vlahakis, C.

    2014-05-01

    Although it accounts only for a small fraction of the baryonic mass, dust has a profound impact on the physical processes at play in galaxies. Thus, to understand the evolution of galaxies, it is essential not only to characterize dust properties per se, but also in relation to global galaxy properties. To do so, we derive the dust properties of galaxies in a volume limited, K-band selected sample, the Herschel Reference Survey (HRS). We gather infrared photometric data from 8 μm to 500 μm from Spitzer, WISE, IRAS, and Herschel for all of the HRS galaxies. Draine & Li (2007, ApJ, 663, 866) models are fit to the data from which the stellar contribution has been carefully removed. We find that our photometric coverage is sufficient to constrain all of the parameters of the Draine & Li models and that a strong constraint on the 20-60 μm range is mandatory to estimate the relative contribution of the photo-dissociation regions to the infrared spectral energy distribution (SED). The SED models tend to systematically underestimate the observed 500 μm flux densities, especially for low-mass systems. We provide the output parameters for all of the galaxies, i.e., the minimum intensity of the interstellar radiation field, the fraction of polycyclic aromatic hydrocarbon (PAH), the relative contribution of PDR and evolved stellar population to the dust heating, the dust mass, and the infrared luminosity. For a subsample of gas-rich galaxies, we analyze the relations between these parameters and the main integrated properties of galaxies, such as stellar mass, star formation rate, infraredluminosity, metallicity, Hα and H-band surface brightness, and the far-ultraviolet attenuation. A good correlation between the fraction of PAH and the metallicity is found, implying a weakening of the PAH emission in galaxies with low metallicities and, thus, low stellar masses. The intensity of the diffuse interstellar radiation field and the H-band and Hα surface brightnesses are correlated, suggesting that the diffuse dust component is heated by both the young stars in star-forming regions and the diffuse evolved population. We use these results to provide a new set of infrared templates calibrated with Herschel observations on nearby galaxies and a mean SED template to provide the z = 0 reference for cosmological studies. For the same purpose, we place our sample on the SFR - M∗ diagram. The templates are compared to the most popular infrared SED libraries, enlightening a large discrepancy between all of them in the 20-100 μm range. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Table 4 and appendices are available in electronic form at http://www.aanda.org

  5. Chemical Evolution of Interstellar Dust into Planetary Materials

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Comets are believed to retain some interstellar materials, stored in fairly pristine conditions since-their formation. The composition and properties of cometary dust grains should reflect those of grains in the outer part of the protosolar nebula which, at least in part, were inherited from the presolar molecular cloud. However, infrared emission features in comets differ from their interstellar counterparts. These differences imply processing of interstellar material on its way to incorporation in comets, but C and N appear to be retained. Overall dust evolution from the interstellar medium (ISM) to planetary materials is accompanied by an increase in proportion of complex organics and a decrease in pure carbon phases. The composition of cometary dust grains was measured in situ during fly-by missions to comet Halley in 1986. The mass spectra of about 5000 cometary dust grains with masses of 5 x 10(exp -17) - 5 x 10(exp -12) g provide data about the presence and relative abundances of the major elements H, C, N, O,Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Fe, Ni. The bulk abundances of major rock-forming elements integrated over all spectra were found to be solar within a factor of 2, while the volatile elements H, C, N, O in dust are depleted in respect to their total cosmic abundances. The abundances of C and N in comet dust are much closer to interstellar than to meteoritic and are higher than those of dust in the diffuse ISM. In dense molecular clouds dust grains are covered by icy mantles, the average composition of which is estimated to be H:C:N:O = 96:14:1:34. Up to 40% of elemental C and O may be sequestered in mantles. If we use this upper limit to add H, C, N and O as icy mantle material to the abundances residing in dust in the diffuse ISM, then the resulting values for H. C, and N match cometary abundances. Thus, ice mantles undergoing chemical evolution on grains in the dense ISM appear to have been transformed into less volatile and more complex organic residues wherein the H, C and N are largely retained and ultimately accreted in cometary dust. The abundance of O is about the same for cometary dust, meteorites and interstellar dust. In all these samples, most of O in a solid phase is bonded to silicates. In dense molecular clouds, the abundance of O in dust+mantles is significantly higher then in cometary dust. This difference may reflect the greater lability of oxygenated species toward astrophysical processing. Laboratory studies show that O-bearing functional groups in organic compounds tend to be relatively easily removed by heating and/or UV and particle irradiation . In Halley's coma, O-containing organic grains, being unstable, were located closest to the nucleus. The decomposition of the organic grain component in the coma provided a significant extended source contribution to O-containing gaseous species such as CO and H2CO.

  6. Design considerations for Mars photovoltaic power systems

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Appelbaum, Joseph

    1990-01-01

    Considerations for operation of a photovoltaic power system on Mars are discussed with reference to Viking Lander data. The average solar insolation at Mars is 590 W/sq m, which is reduced yet further by atmospheric dust. Of major concern are dust storms, which have been observed to occur on local as well as on global scales, and their effect on solar array output. While atmospheric opacity may rise to values ranging from 3 to 9, depending on storm severity, there is still an appreciable large diffuse illumination, even at high opacities, so that photovoltaic operation is still possible. If the power system is to continue to generate power even on high-optical-opacity (i.e., dusty atmosphere) days, it is important that the photovoltaic system be designed to collect diffuse irradiance as well as direct. Energy storage will be required for operation during the night. Temperature and wind provide additional considerations for array design.

  7. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, J.

    2014-06-01

    The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.

  8. Infrared dust bubble CS51 and its interaction with the surrounding interstellar medium

    NASA Astrophysics Data System (ADS)

    Das, Swagat R.; Tej, Anandmayee; Vig, Sarita; Liu, Hong-Li; Liu, Tie; Ishwara Chandra, C. H.; Ghosh, Swarna K.

    2017-12-01

    A multiwavelength investigation of the southern infrared dust bubble CS51 is presented in this paper. We probe the associated ionized, cold dust, molecular and stellar components. Radio continuum emission mapped at 610 and 1300 MHz, using the Giant Metrewave Radio Telescope, India, reveals the presence of three compact emission components (A, B, and C) apart from large-scale diffuse emission within the bubble interior. Radio spectral index map shows the co-existence of thermal and non-thermal emission components. Modified blackbody fits to the thermal dust emission using Herschel Photodetector Array Camera and Spectrometer and Spectral and Photometric Imaging Receiver data is performed to generate dust temperature and column density maps. We identify five dust clumps associated with CS51 with masses and radius in the range 810-4600 M⊙ and 1.0-1.9 pc, respectively. We further construct the column density probability distribution functions of the surrounding cold dust which display the impact of ionization feedback from high-mass stars. The estimated dynamical and fragmentation time-scales indicate the possibility of collect and collapse mechanism in play at the bubble border. Molecular line emission from the Millimeter Astronomy Legacy Team 90 GHz survey is used to understand the nature of two clumps which show signatures of expansion of CS51.

  9. Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project

    NASA Astrophysics Data System (ADS)

    Camps, Peter; Trčka, Ana; Trayford, James; Baes, Maarten; Theuns, Tom; Crain, Robert A.; McAlpine, Stuart; Schaller, Matthieu; Schaye, Joop

    2018-02-01

    We present dust-attenuated and dust emission fluxes for sufficiently resolved galaxies in the EAGLE suite of cosmological hydrodynamical simulations, calculated with the SKIRT radiative transfer code. The post-processing procedure includes specific components for star formation regions, stellar sources, and diffuse dust and takes into account stochastic heating of dust grains to obtain realistic broadband fluxes in the wavelength range from ultraviolet to submillimeter. The mock survey includes nearly half a million simulated galaxies with stellar masses above {10}8.5 {M}ȯ across six EAGLE models. About two-thirds of these galaxies, residing in 23 redshift bins up to z = 6, have a sufficiently resolved metallic gas distribution to derive meaningful dust attenuation and emission, with the important caveat that the same dust properties were used at all redshifts. These newly released data complement the already publicly available information about the EAGLE galaxies, which includes intrinsic properties derived by aggregating the properties of the smoothed particles representing matter in the simulation. We further provide an open-source framework of Python procedures for post-processing simulated galaxies with the radiative transfer code SKIRT. The framework allows any third party to calculate synthetic images, spectral energy distributions, and broadband fluxes for EAGLE galaxies, taking into account the effects of dust attenuation and emission.

  10. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  11. Iron Mineralogy and Speciation in Clay-Sized Fractions of Chinese Desert Sediments

    NASA Astrophysics Data System (ADS)

    Lu, Wanyi; Zhao, Wancang; Balsam, William; Lu, Huayu; Liu, Pan; Lu, Zunli; Ji, Junfeng

    2017-12-01

    Iron released from Asian desert dust may be an important source of bioavailable iron for the North Pacific Ocean and thereby may stimulate primary productivity. However, the Fe species of the fine dusts from this source region are poorly characterized. Here we investigate iron species and mineralogy in the clay-sized fractions (<2 μm), the size fraction most prone to long-distance transport as dust. Samples were analyzed by sequential chemical extraction, X-ray diffraction, and diffuse reflectance spectrometry. Our results show that Fe dissolved from easily reducible iron phases (ferrihydrite and lepidocrocite) and reducible iron oxides (dominated by goethite) are 0.81 wt % and 2.39 wt %, respectively, and Fe dissolved from phyllosilicates extracted by boiling HCl (dominated by chlorite) is 3.15 wt %. Dusts originating from deserts in northwestern China, particularly the Taklimakan desert, are relatively enriched in easily reducible Fe phases, probably due to abundant Fe contained in fresh weathering products resulting from the rapid erosion associated with active uplift of mountains to the west. Data about Fe speciation and mineralogy in Asian dust sources will be useful for improving the quantification of soluble Fe supplied to the oceans, especially in dust models.

  12. Extragalactic optical and near-infrared foregrounds to 21-cm epoch of reionisation experiments

    NASA Astrophysics Data System (ADS)

    Jarvis, Matt J.; Bowler, Rebecca A. A.; Hatfield, Peter W.

    2018-05-01

    Foreground contamination is one of the most important limiting factors in detecting the neutral hydrogen in the epoch of reionisation. These foregrounds can be roughly split into galactic and extragalactic foregrounds. In these proceedings we highlight information that can be gleaned from multi-wavelength extragalactic surveys in order to overcome this issue. We discuss how clustering information from the lower-redshift, foreground galaxies, can be used as additional information in accounting for the noise associated with the foregrounds. We then go on to highlight the expected contribution of future optical and near-infrared surveys for detecting the galaxies responsible for ionising the Universe. We suggest that these galaxies can also be used to reduce the systematics in the 21-cm epoch of reionisation signal through cross-correlations if enough common area is surveyed.

  13. Behind the dust curtain: the spectacular case of GRB 160623A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pintore, F.; Tiengo, A.; Mereghetti, S.

    Here, we report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM–Newton observation carried out ~2 d after the burst, we found evidence of at least six rings, with angular size expanding between ~2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ±more » 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 10 20–1.5 × 10 22 cm –2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.« less

  14. Behind the dust curtain: the spectacular case of GRB 160623A

    DOE PAGES

    Pintore, F.; Tiengo, A.; Mereghetti, S.; ...

    2017-08-14

    Here, we report on the X-ray dust-scattering features observed around the afterglow of the gamma-ray burst GRB 160623A. With an XMM–Newton observation carried out ~2 d after the burst, we found evidence of at least six rings, with angular size expanding between ~2 and 9 arcmin, as expected for X-ray scattering of the prompt gamma-ray burst (GRB) emission by dust clouds in our Galaxy. From the expansion rate of the rings, we measured the distances of the dust layers with extraordinary precision: 528.1 ± 1.2, 679.2 ± 1.9, 789.0 ± 2.8, 952 ± 5, 1539 ± 20 and 5079 ±more » 64 pc. A spectral analysis of the ring spectra, based on an appropriate dust-scattering model (BARE-GR-B) and the estimated burst fluence, allowed us to derive the column density of the individual dust layers, which are in the range 7 × 10 20–1.5 × 10 22 cm –2. The farthest dust layer (i.e. the one responsible for the smallest ring) is also the one with the lowest column density and it is possibly very extended, indicating a diffuse dust region. The properties derived for the six dust layers (distance, thickness and optical depth) are generally in good agreement with independent information on the reddening along this line of sight and on the distribution of molecular and atomic gas.« less

  15. KSC-98pc1352

    NASA Image and Video Library

    1998-10-16

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (foreground) and the Mars Polar Lander are on display for the media. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, aboard a Boeing Delta II rocket. It is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface

  16. KSC-98pc1081

    NASA Image and Video Library

    1998-09-14

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket

  17. The Mars Climate Orbiter is prepared for launch

    NASA Technical Reports Server (NTRS)

    1998-01-01

    In the Spacecraft Assembly and Encapsulation Facility-2 (SAEF-2), the Mars Climate Orbiter (background) is moved toward the workstand being readied by technicians (foreground). The Mars Climate Orbiter is heading for Mars where it will primarily support its companion Mars Polar Lander spacecraft, planned for launch on Jan. 3, 1999. After that, the Mars Climate Orbiter's instruments will monitor the Martian atmosphere and image the planet's surface on a daily basis for one Martian year (two Earth years). It will observe the appearance and movement of atmospheric dust and water vapor, as well as characterize seasonal changes on the surface. The detailed images of the surface features will provide important clues to the planet's early climate history and give scientists more information about possible liquid water reserves beneath the surface. The scheduled launch date for the Mars Climate Orbiter is Dec. 10, 1998, on a Boeing Delta II 7425 rocket.

  18. Planck View of the Whole Sky

    NASA Image and Video Library

    2010-07-06

    This image of the microwave sky was synthesized using data spanning the range of light frequencies detected by ESA Planck. A vast portion of the sky is dominated by the diffuse emission from gas and dust in our Milky Way galaxy.

  19. Sub-Fickean Diffusion in a One-Dimensional Plasma Ring

    NASA Astrophysics Data System (ADS)

    Theisen, W. L.

    2013-12-01

    A one-dimensional dusty plasma ring is formed in a strongly-coupled complex plasma. The dust particles in the ring can be characterized as a one-dimensional system where the particles cannot pass each other. The particles perform random walks due to thermal motions. This single-file self diffusion is characterized by the mean-squared displacement (msd) of the individual particles which increases with time t. Diffusive processes that follow Ficks law predict that the msd increases as t, however, single-file diffusion is sub-Fickean meaning that the msd is predicted to increase as t^(1/2). Particle position data from the dusty plasma ring is analyzed to determine the scaling of the msd with time. Results are compared with predictions of single-file diffusion theory.

  20. Far-infrared and dust properties of present-day galaxies in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Camps, Peter; Trayford, James W.; Baes, Maarten; Theuns, Tom; Schaller, Matthieu; Schaye, Joop

    2016-10-01

    The Evolution and Assembly of GaLaxies and their Environments (EAGLE) cosmological simulations reproduce the observed galaxy stellar mass function and many galaxy properties. In this work, we study the dust-related properties of present-day EAGLE galaxies through mock observations in the far-infrared and submm wavelength ranges obtained with the 3D dust radiative transfer code SKIRT. To prepare an EAGLE galaxy for radiative transfer processing, we derive a diffuse dust distribution from the gas particles and we re-sample the star-forming gas particles and the youngest star particles into star-forming regions that are assigned dedicated emission templates. We select a set of redshift-zero EAGLE galaxies that matches the K-band luminosity distribution of the galaxies in the Herschel Reference Survey (HRS), a volume-limited sample of about 300 normal galaxies in the Local Universe. We find overall agreement of the EAGLE dust scaling relations with those observed in the HRS, such as the dust-to-stellar mass ratio versus stellar mass and versus NUV-r colour relations. A discrepancy in the f250/f350 versus f350/f500 submm colour-colour relation implies that part of the simulated dust is insufficiently heated, likely because of limitations in our sub-grid model for star-forming regions. We also investigate the effect of adjusting the metal-to-dust ratio and the covering factor of the photodissociation regions surrounding the star-forming cores. We are able to constrain the important dust-related parameters in our method, informing the calculation of dust attenuation for EAGLE galaxies in the UV and optical domain.

  1. TOWER, WEST ELEVATION, SHOWING CONNECTION PIPES FOR TURNOUTS 22 (FOREGROUND) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOWER, WEST ELEVATION, SHOWING CONNECTION PIPES FOR TURNOUTS 22 (FOREGROUND) AND 24. NOTE “LAZY JACK” TEMPERATURE COMPENSATOR IN FOREGROUND. - Baltimore & Ohio Railroad, Z Tower, State Route 46, Keyser, Mineral County, WV

  2. ALMA Imaging and Gravitational Lens Models of South Pole Telescope—Selected Dusty, Star-Forming Galaxies at High Redshifts

    NASA Astrophysics Data System (ADS)

    Spilker, J. S.; Marrone, D. P.; Aravena, M.; Béthermin, M.; Bothwell, M. S.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; de Breuck, C.; Fassnacht, C. D.; Gonzalez, A. H.; Greve, T. R.; Hezaveh, Y.; Litke, K.; Ma, J.; Malkan, M.; Rotermund, K. M.; Strandet, M.; Vieira, J. D.; Weiss, A.; Welikala, N.

    2016-08-01

    The South Pole Telescope has discovered 100 gravitationally lensed, high-redshift, dusty, star-forming galaxies (DSFGs). We present 0.″5 resolution 870 μ {{m}} Atacama Large Millimeter/submillimeter Array imaging of a sample of 47 DSFGs spanning z=1.9{--}5.7, and construct gravitational lens models of these sources. Our visibility-based lens modeling incorporates several sources of residual interferometric calibration uncertainty, allowing us to properly account for noise in the observations. At least 70% of the sources are strongly lensed by foreground galaxies ({μ }870μ {{m}}\\gt 2), with a median magnification of {μ }870μ {{m}}=6.3, extending to {μ }870μ {{m}}\\gt 30. We compare the intrinsic size distribution of the strongly lensed sources to a similar number of unlensed DSFGs and find no significant differences in spite of a bias between the magnification and intrinsic source size. This may indicate that the true size distribution of DSFGs is relatively narrow. We use the source sizes to constrain the wavelength at which the dust optical depth is unity and find this wavelength to be correlated with the dust temperature. This correlation leads to discrepancies in dust mass estimates of a factor of two compared to estimates using a single value for this wavelength. We investigate the relationship between the [C II] line and the far-infrared luminosity and find that the same correlation between the [C II]/{L}{{FIR}} ratio and {{{Σ }}}{{FIR}} found for low-redshift star-forming galaxies applies to high-redshift galaxies and extends at least two orders of magnitude higher in {{{Σ }}}{{FIR}}. This lends further credence to the claim that the compactness of the IR-emitting region is the controlling parameter in establishing the “[C II] deficit.”

  3. ISM Dust Grains and N-band Spectral Variability in the Spatially Resolved Subarcsecond Binary UY Aur

    NASA Astrophysics Data System (ADS)

    Skemer, Andrew J.; Close, Laird M.; Hinz, Philip M.; Hoffmann, William F.; Greene, Thomas P.; Males, Jared R.; Beck, Tracy L.

    2010-03-01

    The 10 μm silicate feature is an essential diagnostic of dust-grain growth and planet formation in young circumstellar disks. The Spitzer Space Telescope has revolutionized the study of this feature, but due to its small (85 cm) aperture, it cannot spatially resolve small/medium-separation binaries (lsim3''; <~ 420 AU) at the distances of the nearest star-forming regions (~140 pc). Large, 6-10 m ground-based telescopes with mid-infrared instruments can resolve these systems. In this paper, we spatially resolve the 0farcs88 binary, UY Aur, with MMTAO/BLINC-MIRAC4 mid-infrared spectroscopy. We then compare our spectra to Spitzer/IRS (unresolved) spectroscopy, and resolved images from IRTF/MIRAC2, Keck/OSCIR, and Gemini/Michelle, which were taken over the past decade. We find that UY Aur A has extremely pristine, interstellar medium (ISM)-like grains and that UY Aur B has an unusually shaped silicate feature, which is probably the result of blended emission and absorption from foreground extinction in its disk. We also find evidence for variability in both UY Aur A and UY Aur B by comparing synthetic photometry from our spectra with resolved imaging from previous epochs. The photometric variability of UY Aur A could be an indication that the silicate emission itself is variable, as was recently found in EX Lupi. Otherwise, the thermal continuum is variable, and either the ISM-like dust has never evolved, or it is being replenished, perhaps by UY Aur's circumbinary disk. The observations reported here were partially obtained at the Infrared Telescope Facility, which is operated by the University of Hawaii under Cooperative Agreement no. NCC 5-538 with the National Aeronautics and Space Administration, Science Mission Directorate, Planetary Astronomy Program.

  4. The viability of photovoltaics on the Martian surface

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Perez-Davis, Marla E.

    1994-01-01

    The viability of photovoltaics (PV) on the Martian surface may be determined by their ability to withstand significant degradation in the Martian environment. Probably the greatest threat is posed by fine dust particles which are continually blown about the surface of the planet. In an effort to determine the extent of the threat, and to investigate some abatement strategies, a series of experiments were conducted in the Martian Surface Wind Tunnel (MARSWIT) at NASA Ames Research Center. The effects of dust composition, particle size, wind velocity, angle of attack, and protective coatings on the transmittance of light through PV coverglass were determined. Both initially clear and initially dusted samples were subjected both to clear winds and simulated dust storms in the MARSWIT. It was found that wind velocity, particle size, and angle of attack are important parameters affecting occlusion of PV surfaces, while dust composition and protective coatings were not. Neither induced turbulence nor direct current biasing up to 200 volts were effective abatement techniques. Abrasion diffused the light impinging on the PV cells, but did not reduce total coverglass transmittance by more than a few percent.

  5. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    NASA Technical Reports Server (NTRS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; hide

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36< or = z< or = 1.5 with H(alpha) SNR > or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  6. Foreground effect on the J-factor estimation of ultra-faint dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    Ichikawa, Koji; Horigome, Shun-ichi; Ishigaki, Miho N.; Matsumoto, Shigeki; Ibe, Masahiro; Sugai, Hajime; Hayashi, Kohei

    2018-05-01

    Dwarf spheroidal galaxies (dSphs) are promising targets for the gamma-ray dark matter (DM) search. In particular, DM annihilation signal is expected to be strong in some of the recently discovered nearby ultra-faint dSphs, which potentially give stringent constraints on the O(1) TeV WIMP DM. However, various non-negligible systematic uncertainties complicate the estimation of the astrophysical factors relevant for the DM search in these objects. Among them, the effects of foreground stars particularly attract attention because the contamination is unavoidable even for the future kinematical survey. In this article, we assess the effects of the foreground contamination on the astrophysical J-factor estimation by generating mock samples of stars in the four ultra-faint dSphs and using a model of future spectrographs. We investigate various data cuts to optimize the quality of the data and apply a likelihood analysis which takes member and foreground stellar distributions into account. We show that the foreground star contaminations in the signal region (the region of interest) and their statistical uncertainty can be estimated by interpolating the foreground star distribution in the control region where the foreground stars dominate the member stars. Such regions can be secured at future spectroscopic observations utilizing a multiple object spectrograph with a large field of view; e.g. the Prime Focus Spectrograph mounted on Subaru Telescope. The above estimation has several advantages: The data-driven estimation of the contamination makes the analysis of the astrophysical factor stable against the complicated foreground distribution. Besides, foreground contamination effect is considered in the likelihood analysis.

  7. SECTION 29 (FOREGROUND), WITH 14TH NEW HAMPSHIRE REGIMENT MONUMENT IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECTION 29 (FOREGROUND), WITH 14TH NEW HAMPSHIRE REGIMENT MONUMENT IN CENTER FOREGROUND AND 114TH NEW YORK VOLUNTEERS MONUMENT IN CENTER BACKGROUND. VIEW TO NORTHWEST. - Winchester National Cemetery, 401 National Avenue, Winchester, Winchester, VA

  8. 2. VIEW SHOWING SOUTHWEST FACE OF BATTERY OFFICES FOREGROUND, DIRECTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SHOWING SOUTHWEST FACE OF BATTERY OFFICES FOREGROUND, DIRECTOR PIT LEFT MIDDLE-GROUND. AND HEIGHT FINDER RIGHT FOREGROUND, LOOKING NORTHEAST - Fort Cronkhite, Anti-Aircraft Battery No. 1, Battery Offices, Wolf Ridge, Sausalito, Marin County, CA

  9. Diamond, aromatic, aliphatic components of interstellar dust grains: Random covalent networks in carbonaceous grains

    NASA Astrophysics Data System (ADS)

    Duley, W. W.

    1995-05-01

    A formalism based on the theory of random covalent networks (RCNs) in amorphous solids is developed for carbonaceous dust grains. RCN solutions provide optimized structures and relative compositions for amorphous materials. By inclusion of aliphatic, aromatic, and diamond clusters, solutions specific to interstellar materials can be obtained and compared with infrared spectral data. It is found that distinct RCN solutions corresponding to diffuse cloud and molecular cloud materials are possible. Specific solutions are derived for three representative objects: VI Cyg No. 12, NGC 7538 (IRS 9), and GC IRS 7. While diffuse cloud conditions with a preponderance of sp2 and sp3 bonded aliphatic CH species can be reproduced under a variety of RCN conditions, the presence of an abundant tertiary CH or diamond component is highly constrained. These solutions are related quantitatively to carbon depletions and can be used to provide a quantitative estimate of carbon in these various dust components. Despite the abundance of C6 aromatic rings in many RCN solutions, the infrared absorption due to the aromatic stretch at approximately 3.3 micrometers is weak under all conditions. The RCN formalism is shown to provide a useful method for tracing the evolutionary properties of interstellar carbonaceous grains.

  10. Dust Accumulation and Solar Panel Array Performance on the Mars Exploration Rover (MER) Project

    NASA Technical Reports Server (NTRS)

    Turgay, Eren H.

    2004-01-01

    One of the most fundamental design considerations for any space vehicle is its power supply system. Many options exist, including batteries, fuel cells, nuclear reactors, radioisotopic thermal generators (RTGs), and solar panel arrays. Solar arrays have many advantages over other types of power generation. They are lightweight and relatively inexpensive, allowing more mass and funding to be allocated for other important devices, such as scientific instruments. For Mars applications, solar power is an excellent option, especially for long missions. One might think that dust storms would be a problem; however, while dust blocks some solar energy, it also scatters it, making it diffuse rather than beamed. Solar cells are still able to capture this diffuse energy and convert it into substantial electrical power. For these reasons, solar power was chosen to be used on the 1997 Mars Pathfinder mission. The success of this mission set a precedent, as NASA engineers have selected solar power as the energy system of choice for all future Mars missions, including the Mars Exploration Rover (MER) Project. Solar sells have their drawbacks, however. They are difficult to manufacture and are relatively fragile. In addition, solar cells are highly sensitive to different parts of the solar spectrum, and finding the correct balance is crucial to the success of space missions. Another drawback is that the power generated is not a constant with respect to time, but rather changes with the relative angle to the sun. On Mars, dust accumulation also becomes a factor. Over time, dust settles out of the atmosphere and onto solar panels. This dust blocks and shifts the frequency of the incoming light, degrading solar cell performance. My goal is to analyze solar panel telemetry data from the two MERs (Spirit and Opportunity) in an effort to accurately model the effect of dust accumulation on solar panels. This is no easy process due to the large number of factors involved. Changing solar flux (the amount of solar energy reaching the planet), solar spectrum, solar angle, rover tilt, and optical depth (the opacity of the atmosphere due to dust) were the most significant. Microsoft Excel and Visual Basic are used for data analysis. The results of this work will be used to improve the dust accumulation and atmosphere effects model that was first created after the Mars Pathfinder mission. This model will be utilized and applied when considering the design of solar panel array systems on future Mars projects. Based on this data, and depending upon the tenure and application of the mission, designers may also elect to employ special tools to abate dust accumulation, or decide that the expected level of accumulation is acceptable.

  11. AN INFRARED DIFFUSE CIRCUMSTELLAR BAND? THE UNUSUAL 1.5272 μm DIB IN THE RED SQUARE NEBULA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zasowski, G.; Chojnowski, S. Drew; Whelan, D. G.

    The molecular carriers of the ubiquitous absorption features called the diffuse interstellar bands (DIBs) have eluded identification for many decades, in part because of the enormous parameter space spanned by the candidates and the limited set of empirical constraints afforded by observations in the diffuse interstellar medium. Detection of these features in circumstellar regions, where the environmental properties are more easily measured, is thus a promising approach to understanding the chemical nature of the carriers themselves. Here, using high-resolution spectra from the Apache Point Observatory Galactic Evolution Experiment survey, we present an analysis of the unusually asymmetric 1.5272 μm DIBmore » feature along the sightline to the Red Square Nebula (RSN) and demonstrate the likely circumstellar origin of about half of the DIB absorption in this line of sight. This interpretation is supported both by the velocities of the feature components and by the ratio of foreground to total reddening along the line of sight. The RSN sightline offers the unique opportunity to study the behavior of DIB carriers in a constrained environment and thus to shed new light on the carriers themselves.« less

  12. GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND CENTER, REDSTONE TEST STAND FOREGROUND RIGHT, SATURN I C TEST STAND BACKGROUND LEFT. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  13. FERMI BUBBLES AND BUBBLE-LIKE EMISSION FROM THE GALACTIC PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Boer, Wim; Weber, Markus, E-mail: wim.de.boer@kit.edu, E-mail: markus.weber2@kit.edu

    2014-10-10

    The diffuse gamma-ray sky revealed ''bubbles'' of emission above and below the Galactic plane, symmetric around the center of the Milky Way, with a height of 10 kpc in both directions. At present, there is no convincing explanation for the origin. To understand the role of the Galactic center, one has to study the bubble spectrum inside the disk, a region that has been excluded from previous analyses because of the large foreground. From a novel template fit, which allows a simultaneous determination of the signal and foreground in any direction, we find that bubble-like emission is not only found inmore » the halo, but in the Galactic plane as well, with a width in latitude coinciding with the molecular clouds. The longitude distribution has a width corresponding to the Galactic bar with an additional contribution from the Scutum-Centaurus arm. The energy spectrum of the bubbles coincides with the predicted contribution from CRs trapped in sources (SCRs). Also, the energetics fits well. Hence, we conclude that the bubble-like emission has a hadronic origin that arises from SCRs, and the bubbles in the halo arise from hadronic interactions in advected gas. Evidence for advection is provided by the ROSAT X-rays of hot gas in the bubble region.« less

  14. Laboratory and observational study of the interrelation of the carbonaceous component of interstellar dust and solar system materials

    NASA Technical Reports Server (NTRS)

    Allamandola, L. J.; Sanford, S. A.; Schutte, W. A.; Tielens, A. G. G. M.

    1991-01-01

    By studying the chemical and isotopic composition of interstellar ice and dust, one gains insight into the composition and chemical evolution of the solid bodies in the solar nebula and the nature of the material subsequently brought into the inner part of the solar system by comets and meteorites. It is now possible to spectroscopically probe the composition of interstellar ice and dust in the mid-infrared, the spectral range which is most diagnostic of fundamental molecular vibrations. We can compare these spectra of various astronomical objects (including the diffuse and dense interstellar medium, comets, and the icy outer planets and their satellites) with the spectra of analogs we produce in the laboratory under conditions which mimic those in these different objects. In this way one can determine the composition and abundances of the major constituents of the various ices and place general constraints on the types of organics coating the grains in the diffuse interstellar medium. In particular we have shown the ices in the dense clouds contain H2O, CH3OH, CO, perhaps some NH3 and H2CO, we well as nitriles and ketones or esters. Furthermore, by studying the photochemistry of these ice analogs in the laboratory, one gains insight into the chemistry which takes place in interstellar/precometary ices. Chemical and spectroscopic studies of photolyzed analogs (including deuterated species) are now underway. The results of some of these studies will be presented and implications for the evolution of the biogenic elements in interstellar dust and comets will be discussed.

  15. The importance of both geological and pedological processes in control of grain size and sedimentation rates in Peoria Loess

    USGS Publications Warehouse

    Wang, Hongfang; Mason, J.A.; Balsam, W.L.

    2006-01-01

    The loess-paleosol succession in the Peoria Loess in southern Illinois is characterized as alternating loess layers and weathering bands, known as paleosol A horizons. The fast loess accumulation during the late Wisconsin glaciation interacted with the incipient pedogenesis and caused unclear boundaries of loess-paleosol alternations in soil horizonation and mineralogy. Parameters of grain size distribution, sedimentation rate, matrix carbonate content and diffuse reflectance (i.e. soil colors and iron oxides) are used in this paper to discuss the geological and pedological influences for the Peoria Loess in Keller Farm section in southern Illinois. The multi-proxy analysis revealed that many paleosol A horizons, defined by the diffuse reflectance variability, contain finer-grained materials with a relatively higher sedimentation rate. It suggests that glaciofluvial sediments were available in the source areas for uploading eolian dust during the temporary ice sheet retreats. The denser vegetation and wetter surface soils on the loess deposit area could increase the dust trapping efficiency and caused a greater accumulation rate of loess deposits. The coarser-grained materials and slower sedimentation rate are often found in loess layers. It suggests that strong surface winds transported the coarser-grained materials from local dust sources and sparse vegetation and dry surface soils reduced the dust trapping efficiency during the ice sheet readvance. The strong interactions between the geological and pedological processes played an important role on the loess-paleosol alternations in southern Illinois during the late Wisconsin glaciation. ?? 2006 Elsevier B.V. All rights reserved.

  16. Epoch of reionization window. II. Statistical methods for foreground wedge reduction

    NASA Astrophysics Data System (ADS)

    Liu, Adrian; Parsons, Aaron R.; Trott, Cathryn M.

    2014-07-01

    For there to be a successful measurement of the 21 cm epoch of reionization (EoR) power spectrum, it is crucial that strong foreground contaminants be robustly suppressed. These foregrounds come from a variety of sources (such as Galactic synchrotron emission and extragalactic point sources), but almost all share the property of being spectrally smooth and, when viewed through the chromatic response of an interferometer, occupy a signature "wedge" region in cylindrical k⊥k∥ Fourier space. The complement of the foreground wedge is termed the "EoR window" and is expected to be mostly foreground-free, allowing clean measurements of the power spectrum. This paper is a sequel to a previous paper that established a rigorous mathematical framework for describing the foreground wedge and the EoR window. Here, we use our framework to explore statistical methods by which the EoR window can be enlarged, thereby increasing the sensitivity of a power spectrum measurement. We adapt the Feldman-Kaiser-Peacock approximation (commonly used in galaxy surveys) for 21 cm cosmology and also compare the optimal quadratic estimator to simpler estimators that ignore covariances between different Fourier modes. The optimal quadratic estimator is found to suppress foregrounds by an extra factor of ˜105 in power at the peripheries of the EoR window, boosting the detection of the cosmological signal from 12σ to 50σ at the midpoint of reionization in our fiducial models. If numerical issues can be finessed, decorrelation techniques allow the EoR window to be further enlarged, enabling measurements to be made deep within the foreground wedge. These techniques do not assume that foreground is Gaussian distributed, and we additionally prove that a final round of foreground subtraction can be performed after decorrelation in a way that is guaranteed to have no cosmological signal loss.

  17. Corneal permeability for cement dust: prognosis for occupational safety

    NASA Astrophysics Data System (ADS)

    Kalmykov, R. V.; Popova, D. V.; Kamenskikh, T. G.; Genina, E. A.; Tuchin, V. V.; Bashkatov, A. N.

    2018-02-01

    The high dust content in air of a working zone causes prevalence of pathologies of the anterior segment of the eye of workers of cement production. Therefore, studying of features of cement dust impact on structure of a cornea and development of ways of eye protection from this influence is relevant. In this work experimental studies were carried out with twenty eyes of ten rabbits. OCTtomography was used to monitor the light attenuation coefficient of the cornea in vitro during the permeability of cement dust and/or keratoprotector (Systein Ultra). The permeability coefficients of the cornea for water, cement dust and keratoprotector were measured. A computer model allowing one to analyze the diffusion of these substances in the eye cornea was developed. It was shown that 1) the cement dust falling on the eye cornea caused pronounced dehydration of the tissue (thickness decreasing) and led to the increase of the attenuation coefficient, which could affect the deterioration of the eyesight of workers in the conditions of cement production; 2) the application of the keratoprotector to the eye cornea when exposed by cement dust, slowed significantly the dehydration process and did not cause the increase of the attenuation coefficient that characterized the stabilization of visual functions. At this, the keratoprotector itself did not cause dehydration and led to the decrease of the attenuation coefficient, which could allow it to be used for a long time in the order to protect the organ of vision from the negative effects of cement dust.

  18. Planck 2013 results. XV. CMB power spectra and likelihood

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz, separating the cosmological CMB signal from diffuse Galactic foregrounds through a physically motivated Bayesian component separation technique. At ℓ ≥ 50, we employ a correlated Gaussian likelihood approximation based on a fine-grained set of angular cross-spectra derived from multiple detector combinations between the 100, 143, and 217 GHz frequency channels, marginalising over power spectrum foreground templates. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the spectral index of scalar perturbations, for which we report a 5.4σ deviation from scale invariance, ns = 1. Increasing the multipole range beyond ℓ ≃ 1500 does not increase our accuracy for the ΛCDM parameters, but instead allows us to study extensions beyond the standard model. We find no indication of significant departures from the ΛCDM framework. Finally, we report a tension between the Planck best-fit ΛCDM model and the low-ℓ spectrum in the form of a power deficit of 5-10% at ℓ ≲ 40, with a statistical significance of 2.5-3σ. Without a theoretically motivated model for this power deficit, we do not elaborate further on its cosmological implications, but note that this is our most puzzling finding in an otherwise remarkably consistent data set.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Zhaohuan; Dong Ruobing; Nelson, Richard P.

    By carrying out two-dimensional two-fluid global simulations, we have studied the response of dust to gap formation by a single planet in the gaseous component of a protoplanetary disk-the so-called dust filtration mechanism. We have found that a gap opened by a giant planet at 20 AU in an {alpha} = 0.01, M-dot =10{sup -8} M{sub Sun} yr{sup -1} disk can effectively stop dust particles larger than 0.1 mm drifting inward, leaving a submillimeter (submm) dust cavity/hole. However, smaller particles are difficult to filter by a gap induced by a several M{sub J} planet due to (1) dust diffusion andmore » (2) a high gas accretion velocity at the gap edge. Based on these simulations, an analytic model is derived to understand what size particles can be filtered by the planet-induced gap edge. We show that a dimensionless parameter T{sub s} /{alpha}, which is the ratio between the dimensionless dust stopping time and the disk viscosity parameter, is important for the dust filtration process. Finally, with our updated understanding of dust filtration, we have computed Monte Carlo radiative transfer models with variable dust size distributions to generate the spectral energy distributions of disks with gaps. By comparing with transitional disk observations (e.g., GM Aur), we have found that dust filtration alone has difficulties depleting small particles sufficiently to explain the near-IR deficit of moderate M-dot transitional disks, except under some extreme circumstances. The scenario of gap opening by multiple planets studied previously suffers the same difficulty. One possible solution is to invoke both dust filtration and dust growth in the inner disk. In this scenario, a planet-induced gap filters large dust particles in the disk, and the remaining small dust particles passing to the inner disk can grow efficiently without replenishment from fragmentation of large grains. Predictions for ALMA have also been made based on all these scenarios. We conclude that dust filtration with planet(s) in the disk is a promising mechanism to explain submm observations of transitional disks but it may need to be combined with other processes (e.g., dust growth) to explain the near-IR deficit of some systems.« less

  20. Migration of Organophorus Flame Retardants From Closed cell form to Settled Dust

    EPA Science Inventory

    Many industrial and consumer products, such as electrical and electronic products, furniture, plastics, textile, and building materials are manufactured with organophosphorus flame retardants (OPFRs). OPFRs can leach or diffuse out of the products and are released to the surround...

  1. Migration of Organophosphate Flame Retardants from Closed Cell Foam to Settled Dust

    EPA Science Inventory

    Many industrial and consumer products, such as electrical and electronic products, furniture, plastics, textile, and building materials are manufactured with organophosphorus flame retardants (OPFRs). OPFRs can leach or diffuse out of the products and are released to the surround...

  2. Rethinking CMB foregrounds: systematic extension of foreground parametrizations

    NASA Astrophysics Data System (ADS)

    Chluba, Jens; Hill, James Colin; Abitbol, Maximilian H.

    2017-11-01

    Future high-sensitivity measurements of the cosmic microwave background (CMB) anisotropies and energy spectrum will be limited by our understanding and modelling of foregrounds. Not only does more information need to be gathered and combined, but also novel approaches for the modelling of foregrounds, commensurate with the vast improvements in sensitivity, have to be explored. Here, we study the inevitable effects of spatial averaging on the spectral shapes of typical foreground components, introducing a moment approach, which naturally extends the list of foreground parameters that have to be determined through measurements or constrained by theoretical models. Foregrounds are thought of as a superposition of individual emitting volume elements along the line of sight and across the sky, which then are observed through an instrumental beam. The beam and line-of-sight averages are inevitable. Instead of assuming a specific model for the distributions of physical parameters, our method identifies natural new spectral shapes for each foreground component that can be used to extract parameter moments (e.g. mean, dispersion, cross terms, etc.). The method is illustrated for the superposition of power laws, free-free spectra, grey-body and modified blackbody spectra, but can be applied to more complicated fundamental spectral energy distributions. Here, we focus on intensity signals but the method can be extended to the case of polarized emission. The averaging process automatically produces scale-dependent spectral shapes and the moment method can be used to propagate the required information across scales in power spectrum estimates. The approach is not limited to applications to CMB foregrounds, but could also be useful for the modelling of X-ray emission in clusters of galaxies.

  3. Inorganic particulates in pneumoconiotic lungs of hard metal grinders.

    PubMed Central

    Rüttner, J R; Spycher, M A; Stolkin, I

    1987-01-01

    Data from the analysis of lung dust in 16 metal grinders who had been exposed to hard metals between five and 44 years is reported. The mean latent time between the first exposure and analysis in biopsy or necropsy specimens was 33.6 years. Mineralogical and elementary analysis by a variety of techniques showed small or trace amounts of hard metal in all lungs. Many specimens, however, did not contain all hard metal components, cobalt, for example, being detected in four cases only. All the lungs contained quartz and silicates and in most of the necropsy cases carborundum and corundum could also be shown. Histologically no specific pattern was found. The appearances included mixed dust nodular pneumoconiosis, diffuse interstitial lung fibrosis, and foreign body and sarcoid like granulomatous changes. In view of the mixed dust exposure of the hard metal grinders and the variable histological appearance we think that the term "mixed dust pneumoconiosis in hard metal grinders" is more appropriate than "hard metal lung" to describe this condition. PMID:3676118

  4. Molecular clouds in galaxies with different Z - Fragmentation of diffuse clouds driven by opacity

    NASA Technical Reports Server (NTRS)

    Franco, Jose; Cox, Donald P.

    1986-01-01

    Molecular clouds are formed from diffuse interstellar clouds when the external ultraviolet radiation field is prevented from penetrating into the cloud. The opacity is provided mainly by dust grains and the required column density to the cloud center is larger than about 5 x 10 to the 20th (solar Z/Z)/sq cm. This high-opacity criterion could have a significant impact on the radial trends observed in spiral galaxies, and on the distinctions between spiral and dwarf irregular galaxies.

  5. Direct Measurements of Dust Attenuation in z ~ 1.5 Star-forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    NASA Astrophysics Data System (ADS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B.; Conroy, Charlie; Förster Schreiber, Natascha M.; Franx, Marijn; Fumagalli, Mattia; Lundgren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Skelton, Rosalind E.; van Dokkum, Pieter G.; Whitaker, Katherine E.; Wuyts, Stijn

    2014-06-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust around star-forming regions (A V, H II ) and the integrated dust content (A V, star). We select a sample of 163 galaxies between 1.36 <= z <= 1.5 with Hα signal-to-noise ratio >=5 and measure Balmer decrements from stacked spectra to calculate A V, H II . First, we stack spectra in bins of A V, star, and find that A V, H II = 1.86 A V, star, with a significance of σ = 1.7. Our result is consistent with the two-component dust model, in which galaxies contain both diffuse and stellar birth cloud dust. Next, we stack spectra in bins of specific star formation rate (log SSFR), star formation rate (log SFR), and stellar mass (log M *). We find that on average A V, H II increases with SFR and mass, but decreases with increasing SSFR. Interestingly, the data hint that the amount of extra attenuation decreases with increasing SSFR. This trend is expected from the two-component model, as the extra attenuation will increase once older stars outside the star-forming regions become more dominant in the galaxy spectrum. Finally, using Balmer decrements we derive dust-corrected Hα SFRs, and find that stellar population modeling produces incorrect SFRs if rapidly declining star formation histories are included in the explored parameter space.

  6. The impacts of the dust radiative effect on vegetation growth in the Sahel

    NASA Astrophysics Data System (ADS)

    Evans, S. M.; Shevliakova, E.; Malyshev, S.; Ginoux, P. A.

    2017-12-01

    Many studies have been conducted on the effects of dust on rainfall in the Sahel, and generally show that African dust weakens the West African Monsoon, drying the region. This drying is often assumed to reduce vegetation cover for the region, providing a positive feedback with dust emission. There are, however, other competing effects of dust that are also important to plant growth, including a reduction in surface temperature, a reduction in downwelling solar radiation, and an increase in the diffuse fraction of that solar radiation. Using the NOAA/GFDL CM3 model coupled to the dynamic vegetation model LM3, we demonstrate that the combined effect of all these processes is to decrease the vegetation coverage and productivity of the Sahel and West Africa. We accomplish this by comparing experiments with radiatively active dust to experiments with radiatively invisible dust. We find that in modern conditions, the dust radiative effect reduces the net primary productivity of West Africa and the Sahel by up to 30% locally, and when summed over the region accounts for a difference of approximately 0.4 GtC per year. Experiments where the vegetation experiences preindustrial rather than modern CO2 levels show that without carbon fertilization, this loss of productivity would be approximately 10% stronger. In contrast, during preindustrial conditions the vegetation response is less than half as strong, despite the dust induced rainfall and temperature anomalies being similar. We interpret this as the vegetation being less susceptible to drought in a less evaporative climate. These changes in vegetation create the possibility of a dust-vegetation feedback loop whose strength varies with the mean state of the climate, and which may grow stronger in the future.

  7. Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: A large-eddy simulation study

    NASA Astrophysics Data System (ADS)

    Zhang, Yangyue; Hu, Ruifeng; Zheng, Xiaojing

    2018-04-01

    Dust particles can remain suspended in the atmospheric boundary layer, motions of which are primarily determined by turbulent diffusion and gravitational settling. Little is known about the spatial organizations of suspended dust concentration and how turbulent coherent motions contribute to the vertical transport of dust particles. Numerous studies in recent years have revealed that large- and very-large-scale motions in the logarithmic region of laboratory-scale turbulent boundary layers also exist in the high Reynolds number atmospheric boundary layer, but their influence on dust transport is still unclear. In this study, numerical simulations of dust transport in a neutral atmospheric boundary layer based on an Eulerian modeling approach and large-eddy simulation technique are performed to investigate the coherent structures of dust concentration. The instantaneous fields confirm the existence of very long meandering streaks of dust concentration, with alternating high- and low-concentration regions. A strong negative correlation between the streamwise velocity and concentration and a mild positive correlation between the vertical velocity and concentration are observed. The spatial length scales and inclination angles of concentration structures are determined, compared with their flow counterparts. The conditionally averaged fields vividly depict that high- and low-concentration events are accompanied by a pair of counter-rotating quasi-streamwise vortices, with a downwash inside the low-concentration region and an upwash inside the high-concentration region. Through the quadrant analysis, it is indicated that the vertical dust transport is closely related to the large-scale roll modes, and ejections in high-concentration regions are the major mechanisms for the upward motions of dust particles.

  8. Foreground-background segmentation and attention: a change blindness study.

    PubMed

    Mazza, Veronica; Turatto, Massimo; Umiltà, Carlo

    2005-01-01

    One of the most debated questions in visual attention research is what factors affect the deployment of attention in the visual scene? Segmentation processes are influential factors, providing candidate objects for further attentional selection, and the relevant literature has concentrated on how figure-ground segmentation mechanisms influence visual attention. However, another crucial process, namely foreground-background segmentation, seems to have been neglected. By using a change blindness paradigm, we explored whether attention is preferentially allocated to the foreground elements or to the background ones. The results indicated that unless attention was voluntarily deployed to the background, large changes in the color of its elements remained unnoticed. In contrast, minor changes in the foreground elements were promptly reported. Differences in change blindness between the two regions of the display indicate that attention is, by default, biased toward the foreground elements. This also supports the phenomenal observations made by Gestaltists, who demonstrated the greater salience of the foreground than the background.

  9. HIGH-ENERGY ELECTRON IRRADIATION OF INTERSTELLAR CARBONACEOUS DUST ANALOGS: COSMIC-RAY EFFECTS ON THE CARRIERS OF THE 3.4 μ m ABSORPTION BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maté, Belén; Molpeceres, Germán; Jiménez-Redondo, Miguel

    2016-11-01

    The effects of cosmic rays on the carriers of the interstellar 3.4 μ m absorption band have been investigated in the laboratory. This band is attributed to stretching vibrations of CH{sub 3} and CH{sub 2} in carbonaceous dust. It is widely observed in the diffuse interstellar medium, but disappears in dense clouds. Destruction of CH{sub 3} and CH{sub 2} by cosmic rays could become relevant in dense clouds, shielded from the external ultraviolet field. For the simulations, samples of hydrogenated amorphous carbon (a-C:H) have been irradiated with 5 keV electrons. The decay of the band intensity versus electron fluence reflectsmore » a-C:H dehydrogenation, which is well described by a model assuming that H{sub 2} molecules, formed by the recombination of H atoms liberated through CH bond breaking, diffuse out of the sample. The CH bond destruction rates derived from the present experiments are in good accordance with those from previous ion irradiation experiments of HAC. The experimental simplicity of electron bombardment has allowed the use of higher-energy doses than in the ion experiments. The effects of cosmic rays on the aliphatic components of cosmic dust are found to be small. The estimated cosmic-ray destruction times for the 3.4 μ m band carriers lie in the 10{sup 8} yr range and cannot account for the disappearance of this band in dense clouds, which have characteristic lifetimes of 3 × 10{sup 7} yr. The results invite a more detailed investigation of the mechanisms of CH bond formation and breaking in the intermediate region between diffuse and dense clouds.« less

  10. Changes of Dust Opacity with Density in the Orion A Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Roy, Arabindo; Martin, Peter G.; Polychroni, Danae; Bontemps, Sylvain; Abergel, Alain; André, Philippe; Arzoumanian, Doris; Di Francesco, James; Hill, Tracey; Konyves, Vera; Nguyen-Luong, Quang; Pezzuto, Stefano; Schneider, Nicola; Testi, Leonardo; White, Glenn

    2013-01-01

    We have studied the opacity of dust grains at submillimeter wavelengths by estimating the optical depth from imaging at 160, 250, 350, and 500 μm from the Herschel Gould Belt Survey and comparing this to a column density obtained from the Two Micron All Sky Survey derived color excess E(J - K s). Our main goal was to investigate the spatial variations of the opacity due to "big" grains over a variety of environmental conditions and thereby quantify how emission properties of the dust change with column (and volume) density. The central and southern areas of the Orion A molecular cloud examined here, with N H ranging from 1.5 × 1021 cm-2 to 50 × 1021 cm-2, are well suited to this approach. We fit the multi-frequency Herschel spectral energy distributions (SEDs) of each pixel with a modified blackbody to obtain the temperature, T, and optical depth, τ1200, at a fiducial frequency of 1200 GHz (250 μm). Using a calibration of N H/E(J - Ks ) for the interstellar medium (ISM) we obtained the opacity (dust emission cross-section per H nucleon), σe(1200), for every pixel. From a value ~1 × 10-25 cm2 H-1 at the lowest column densities that is typical of the high-latitude diffuse ISM, σe(1200) increases as N 0.28 H over the range studied. This is suggestive of grain evolution. Integrating the SEDs over frequency, we also calculated the specific power P (emission power per H) for the big grains. In low column density regions where dust clouds are optically thin to the interstellar radiation field (ISRF), P is typically 3.7 × 10-31 W H-1, again close to that in the high-latitude diffuse ISM. However, we find evidence for a decrease of P in high column density regions, which would be a natural outcome of attenuation of the ISRF that heats the grains, and for localized increases for dust illuminated by nearby stars or embedded protostars.

  11. General view of buildings: Building No. 6 with smokestack (left ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of buildings: Building No. 6 with smokestack (left foreground); Building No. 5 (left background); Base of Water Tower (right foreground); Buildings 4, 3, 2, 1 (center foreground to background) - Thomas A. Edison Laboratories, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  12. The physical and compositional properties of dust: what do we really know?

    NASA Astrophysics Data System (ADS)

    Jones, A.

    Many things in current interstellar dust studies are taken as well understood givens by much of the community. For example, it is widely held that interstellar dust is made up of only three components, i.e., “astronomical silicates”, graphite and polycyclic aromatic hydrocarbons, and that our understanding of these is now complete and sufficient enough to interpret astronomical observations of dust in galaxies. To zeroth order this is a reasonable approximation. However, while these “three pillars” of dust modelling have been useful in advancing our understanding over the last few decades, it is now apparent that they are insufficient to explain the observed evolution of the dust properties from one region to another. Thus, it is time to abandon the “three pillars” approach and to seek more physically-realistic interstellar dust analogues. The analysis of the pre-solar grains extracted from meteorites, interplanetary dust particles and from the Stardust mission, and the interpretation of x-ray scattering and absorption observations, supports the view that our current view of the interstellar dust composition(s) is indeed too naïve. The aim of this review is to point out where our current views are rather secure and, perhaps more importantly, where they are far from secure and we must re-think our ideas. To this aim ten aspects of interstellar dust will be scrutinised and re-evaluated in terms of their validity within the current observational, experimental, modelling and theoretical constraints. It is concluded from this analysis that we really do need to re-assess many of the fundamental assumptions relating to what we think we really do ‘know’ about interstellar dust. In particular, it is clear that unravelling the nature dust evolution in the interstellar medium is perhaps the key to significantly advancing our current understanding of interstellar dust. For example, the dust in the diffuse interstellar medium, molecular clouds, photo-dissociation regions and HII regions is not exactly the same but exhibits important evolution within and between these different regions. An understanding of these evolutionary and regional variations exhibited by dust is now critical.

  13. Overview of major hazards. Part 2: Source term; dispersion; combustion; blast, missiles, venting; fire; radiation; runaway reactions; toxic substances; dust explosions

    NASA Astrophysics Data System (ADS)

    Vilain, J.

    Approaches to major hazard assessment and prediction are reviewed. Source term: (phenomenology/modeling of release, influence on early stages of dispersion); dispersion (atmospheric advection, diffusion and deposition, emphasis on dense/cold gases); combustion (flammable clouds and mists covering flash fires, deflagration, transition to detonation; mostly unconfined/partly confined situations); blast formation, propagation, interaction with structures; catastrophic fires (pool fires, torches and fireballs; highly reactive substances) runaway reactions; features of more general interest; toxic substances, excluding toxicology; and dust explosions (phenomenology and protective measures) are discussed.

  14. Enhanced dust emissivity power-law index along the western H α filament of NGC 1569

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Kaneda, H.; Onaka, T.; Yamagishi, M.; Ishihara, D.; Kokusho, T.; Tsuchikawa, T.

    2018-07-01

    We used a data set from AKARI and Herschel images at wavelengths from 7 to 500 μm to catch the evidence of dust processing in galactic winds in NGC 1569. Images show a diffuse infrared (IR) emission extending from the galactic disc into the halo region. The most prominent filamentary structure seen in the diffuse IR emission is spatially in good agreement with the western H α filament (western arm). The spatial distribution of the F350/F500 map shows high values in regions around the super-star clusters (SSCs) and towards the western arm, which are not found in the F250/F350 map. The colour-colour diagram of F250/F350-F350/F500 indicates high values of the emissivity power-law index (βc) of the cold dust component in those regions. From a spectral decomposition analysis on a pixel-by-pixel basis, a βc map shows values ranging from ˜1 to ˜2 over the whole galaxy. In particular, high βc values of ˜2 are observed only in the regions indicated by the colour-colour diagram. Since the average cold dust temperature in NGC 1569 is ˜30 K, βc < 2.0 in the far-IR and sub-mm region theoretically suggests emission from amorphous grains, while βc = 2.0 suggests that from crystal grains. Given that the enhanced βc regions are spatially confined by the H I ridge that is considered to be a birthplace of the SSCs, the spatial coincidences may indicate that dust grains around the SSCs are grains of relatively high crystallinity injected by massive stars originating from starburst activities and that those grains are blown away along the H I ridge and thus the western arm.

  15. The Circumstellar Disk HD 169142: Gas, Dust, and Planets Acting in Concert?

    NASA Astrophysics Data System (ADS)

    Pohl, A.; Benisty, M.; Pinilla, P.; Ginski, C.; de Boer, J.; Avenhaus, H.; Henning, Th.; Zurlo, A.; Boccaletti, A.; Augereau, J.-C.; Birnstiel, T.; Dominik, C.; Facchini, S.; Fedele, D.; Janson, M.; Keppler, M.; Kral, Q.; Langlois, M.; Ligi, R.; Maire, A.-L.; Ménard, F.; Meyer, M.; Pinte, C.; Quanz, S. P.; Sauvage, J.-F.; Sezestre, É.; Stolker, T.; Szulágyi, J.; van Boekel, R.; van der Plas, G.; Villenave, M.; Baruffolo, A.; Baudoz, P.; Le Mignant, D.; Maurel, D.; Ramos, J.; Weber, L.

    2017-11-01

    HD 169142 is an excellent target for investigating signs of planet-disk interaction due to previous evidence of gap structures. We perform J-band (˜1.2 μm) polarized intensity imaging of HD 169142 with VLT/SPHERE. We observe polarized scattered light down to 0.″16 (˜19 au) and find an inner gap with a significantly reduced scattered-light flux. We confirm the previously detected double-ring structure peaking at 0.″18 (˜21 au) and 0.″56 (˜66 au) and marginally detect a faint third gap at 0.″70-0.″73 (˜82-85 au). We explore dust evolution models in a disk perturbed by two giant planets, as well as models with a parameterized dust size distribution. The dust evolution model is able to reproduce the ring locations and gap widths in polarized intensity but fails to reproduce their depths. However, it gives a good match with the ALMA dust continuum image at 1.3 mm. Models with a parameterized dust size distribution better reproduce the gap depth in scattered light, suggesting that dust filtration at the outer edges of the gaps is less effective. The pileup of millimeter grains in a dust trap and the continuous distribution of small grains throughout the gap likely require more efficient dust fragmentation and dust diffusion in the dust trap. Alternatively, turbulence or charging effects might lead to a reservoir of small grains at the surface layer that is not affected by the dust growth and fragmentation cycle dominating the dense disk midplane. The exploration of models shows that extracting planet properties such as mass from observed gap profiles is highly degenerate. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO program 095.C-0273.

  16. Modeling the Interaction of Mineral Dust with Solar Radiation: Spherical versus Non-spherical Particles

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, A.; Vogel, B.; Vogel, H.

    2017-12-01

    Mineral dust, emitted from arid and semi-arid regions, is the most dominant atmospheric aerosol by mass. Beside detrimental effect on air quality, airborne dust also influences the atmospheric radiation by absorbing and scattering solar and terrestrial radiation. As a result, while the long-term radiative impacts of dust are important for climate, the short-term effects are significant for the photovoltaic energy production. Therefore, it is a vital requirement to accurately forecast the effects of dust on energy budget of the atmosphere and surface. To this end, a major issue is the fact that dust particles are non-spherical. Thus, the optical properties of such particles cannot be calculated precisely using the conventional methods like Mie theory that are often used in climate and numerical weather forecast models. In this study, T-Matrix method is employed, which is able to treat the non-sphericity of particles. Dust particles are assumed to be prolate spheroids with aspect ratio of 1.5 distributed in three lognormal modes. The wavelength-dependent refractive indices of dust are used in T-Matrix algorithm to calculate the extinction coefficient, single scattering albedo, asymmetry parameter and backscattering ratio at different wavelengths. These parameters are then implemented in ICON-ART model (ICOsahedral Nonhydrostatic model with Aerosols and Reactive Trace gases) to conduct a global simulation with 80 km horizontal resolution and 90 vertical levels. April 2014 is selected as the simulation period during which North African dust plumes reached central Europe and Germany. Results show that treatment of non-sphericity reduces the dust AOD in the range of 10 to 30%/. The impacts on diffuse and direct radiation at global, regional and local scales show strong dependency on the size distribution of the airborne dust. The implications for modeling and remote sensing the dust impacts on solar energy are also discussed.

  17. Integration of Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Sprigg, W. A.; Huete, A.; Nickovic, S.; Pejanovic, G.; Levetin, E.; Van de water, P.; Myers, O.; Budge, A. M.; Krapfl, H.; hide

    2011-01-01

    Pollen can be transported great distances. Van de Water et. al., 2003 reported Juniperus pollen, a significant aeroallergen was transported 200-600 km. Hence local observations of plant phenology may not be consistent with the timing and source of pollen collected by pollen sampling instruments. The DREAM (Dust REgional Atmospheric Model, Yin 2007) is a verified model for atmospheric dust transport modeling using MODIS data products to identify source regions and quantities of dust (Yin 2007). The use of satellite data products for studying phenology is well documented (White and Nemani 2006). We are modifying the DREAM model to incorporate pollen transport. The linkages already exist with DREAM through PHAiRS (Public Health Applications in remote Sensing) to the public health community. This linkage has the potential to fill this data gap so that health effects of pollen can better be tracked for linkage with health outcome data including asthma, respiratory effects, myocardial infarction, and lost work days. DREAM is based on the SKIRON/Eta modeling system and the Eta/NCEP regional atmospheric model. The dust modules of the entire system incorporate the state of the art parameterizations of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particle size distribution on aerosol dispersion. The dust production mechanism is based on the viscous/turbulent mixing, shear-free convection diffusion, and soil moisture. In addition to these sophisticated mechanisms, very high resolution databases, including elevation, soil properties, and vegetation cover are utilized. The DREAM model was modified to use pollen sources instead of dust (PREAM). Pollen release will be estimated based on satellite-derived phenology of Juniperus spp. communities. The MODIS surface reflectance product (MOD09) will provide information on the start of the plant growing season, growth stage, peak greenness, dry-down and pollen release. Ground based observational records of pollen release timing and quantities will be used as verification. Techniques developed using MOD09 surface reflectance products will be directly applicable to the next generation sensors such as VIIRS. The resulting deterministic model for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. This information will be used to support the Centers for Disease Control and Prevention (CDC)'s National Environmental Public Health Tracking Program (EPHT) and the State of New Mexico environmental public health decision support for asthma and allergies alerts

  18. The X-ray structure of Centaurus A

    NASA Technical Reports Server (NTRS)

    Feigelson, E. D.; Schreier, E. J.; Delvaille, J. P.; Giacconi, R.; Grindlay, J. E.; Lightman, A. P.

    1981-01-01

    The Einstein X-ray observatory imaging detectors have found X-ray emission associated with several components of the nearby radio galaxy Cen A = NGC 5128: (1) the compact nucleus; (2) an X-ray jet pointed toward the NE radio lobes; (3) the middle NE radio lobe; (4) the disk or dust lane; and (5) diffuse emission extending several arcmin around the nucleus. The intensity of the nucleus changed by a factor of seven over six months. The X-ray jet is considered in terms of thermal, inverse Compton, and synchrotron models. The emission of the NE radio lobe is greater than that expected from inverse Compton or synchrotron processes. Two ridges of emission are found along each edge of the dust lane, within several arcmin of the nucleus. The diffuse X-ray component has a luminosity which is too high to be due to bulge population X-ray sources, but which may be produced by main sequence stars under appropriate circumstances.

  19. A Principal Component Analysis of the Diffuse Interstellar Bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ensor, T.; Cami, J.; Bhatt, N. H.

    2017-02-20

    We present a principal component (PC) analysis of 23 line-of-sight parameters (including the strengths of 16 diffuse interstellar bands, DIBs) for a well-chosen sample of single-cloud sightlines representing a broad range of environmental conditions. Our analysis indicates that the majority (∼93%) of the variations in the measurements can be captured by only four parameters The main driver (i.e., the first PC) is the amount of DIB-producing material in the line of sight, a quantity that is extremely well traced by the equivalent width of the λ 5797 DIB. The second PC is the amount of UV radiation, which correlates wellmore » with the λ 5797/ λ 5780 DIB strength ratio. The remaining two PCs are more difficult to interpret, but are likely related to the properties of dust in the line of sight (e.g., the gas-to-dust ratio). With our PCA results, the DIBs can then be used to estimate these line-of-sight parameters.« less

  20. Voyager investigation of the cosmic diffuse background: Observations of rocket-studied locations with Voyager

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1994-01-01

    Attachments to this final report include 2 papers connected with the Voyager work: 'Voyager Observations of Dust Scattering Near the Coalsack Nebula' and 'Search for the Intergalactic Medium'. An appendix of 12 one-page write-ups prepared in connection with another program, UVISI, is also included. The one-page write-ups are: (1) Sky survey of UV point sources to 600 times fainter than previous (TD-1) survey; (2) Diffuse galactic light: starlight scattered from dust at high galactic latitude; (3) Optical properties of interstellar grains; (4) Fluorescence of molecular hydrogen in the interstellar medium; (5) Line emission from hot interstellar medium and/or hot halo of galaxy; (6) Integrated light of distant galaxies in the ultraviolet; (7) Intergalactic far-ultraviolet radiation field; (8) Radiation from recombining intergalactic medium; (9) Radiation from re-heating of intergalactic medium following recombination; (10) Radiation from radiative decay of dark matter candidates (neutrino, etc.); (11) Reflectivity of the asteroids in the Ultraviolet; and (12) Zodiacal light.

  1. 4. OVERVIEW LOOKING NORTHEAST, BLD 5 RIGHT FOREGROUND, BLDG. 44/16 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. OVERVIEW LOOKING NORTHEAST, BLD 5 RIGHT FOREGROUND, BLDG. 44/16 LEFT FOREGROUND. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  2. VIEW TO EAST OF CRYSTALLIZATION LABORATORY (CENTER LEFT FOREGROUND), PAINT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO EAST OF CRYSTALLIZATION LABORATORY (CENTER LEFT FOREGROUND), PAINT APPLICATION BUILDING (CENTER BACKGROUND), AND c1944-1950 c1944-1950 POST-U.S. RADIUM ADDITION ADDITIONS TO EACH BUILDING (RIGHT FOREGROUND AND BACKGROUND) - United States Radium Corporation, 422-432 Alden Street, Orange, Essex County, NJ

  3. A slowly moving foreground can capture an observer's self-motion--a report of a new motion illusion: inverted vection.

    PubMed

    Nakamura, S; Shimojo, S

    2000-01-01

    We investigated interactions between foreground and background stimuli during visually induced perception of self-motion (vection) by using a stimulus composed of orthogonally moving random-dot patterns. The results indicated that, when the foreground moves with a slower speed, a self-motion sensation with a component in the same direction as the foreground is induced. We named this novel component of self-motion perception 'inverted vection'. The robustness of inverted vection was confirmed using various measures of self-motion sensation and under different stimulus conditions. The mechanism underlying inverted vection is discussed with regard to potentially relevant factors, such as relative motion between the foreground and background, and the interaction between the mis-registration of eye-movement information and self-motion perception.

  4. A molecular gas ridge offset from the dust lane in a spiral arm of M83

    NASA Technical Reports Server (NTRS)

    Lord, Steven D.; Kenney, Jeffrey D. P.

    1991-01-01

    A high-resolution interferometric map of the CO emission on the eastern spiral arm of M83 is presented. The detected emission originates in about five unresolved components located parallel but about 300 pc downstream from the dust lane which lies along the inner edge of the spiral arm. All the CO components in the map but one are located within 130 pc of an H II region and may represent emission from locally heated gas. The lack of CO emission on the dust lane indicates that the dense molecular gas does not pile up here in M83. Remarkable differences between the molecular gas distributions in M83 and the spiral arms or M51, where CO emission peaks on the dust lane, is attributed to the difference in the strength of their density waves. The observations of M83 are consistent with the model of Elmegreen in which diffuse gas is compressed at the shock front, producing the dust lane at the inner edge of the spiral arm while dense giant molecular clouds pass through the front and form a broad distribution on the arm.

  5. Using Nadir and Directional Emissivity as a Probe of Particle Microphysical Properties

    NASA Astrophysics Data System (ADS)

    Pitman, Karly M.; Wolff, Michael J.; Bandfield, Joshua L.; Clayton, Geoffrey C.

    Real surfaces are not expected to be diffuse emitters, thus observed emissivity values of surface dust deposits are a function of viewing geometry. Attempts to model infrared emission spectral profiles of surface dust deposits at nadir have not yet matured to match the sophistication of astrophysical dust radiative transfer codes. In the absence of strong thermal gradients, directional emissivity may be obtained theoretically via a combination of reciprocity and Kirchhoff's Law. Owing to a lack of laboratory data on directional emissivity for comparison, theorists have not explored the potential utility of directional emissivity as a direct probe of surface dust microphysical properties. Motivated by future analyses of MGS/TES emission phase function (EPF) sequences and the upcoming Mars Exploration Rover mini-TES dataset, we explore the effects of dust particle size and composition on observed radiances at nadir and off-nadir geometries in the TES spectral regime using a combination of multiple scattering radiative transfer and Mie scattering algorithms. Comparisons of these simulated spectra to laboratory spectra of standard mineral assemblages will also be made. This work is supported through NASA grant NAGS-9820 (MJW) and LSU Board of Regents (KMP).

  6. Mica dust and pneumoconiosis: example of a pure occupational exposure in a muscovite milling unit.

    PubMed

    Hulo, Sébastien; Cherot-kornobis, Nathalie; Edme, Jean-Louis; de Broucker, Virginie; Falgayrac, Guillaume; Penel, Guillaume; Legrand-Cattan, Karinne; Remy, Jacques; Sobaszek, Annie

    2013-12-01

    We present pulmonary disorders of four employees who were exposed to high concentration of pure mica dust in a muscovite milling unit. All cases underwent traditional examinations with a dual-energy chest computed tomographic scan. An analysis of exhaled breath condensate by Raman microspectrometry and of mineralogical content of a lung biopsy was performed for one case. All cases showed bilateral micronodular ground glass opacities and mediastinal and hilar hyperdense lymph nodes consistent with the nodal sequestration of mineral particles. Histological analysis showed giant cell granulomas without typical silicotic nodule with high concentration of birefringent particles consistent with mica. Mica particles found in the exhaled breath condensate were identical to particles in ambient air at the company. Occupational exposure to mica dust is responsible for diffuse infiltrative lung disease by overload processes.

  7. The 617 MHz-λ 850 μm correlation (cosmic rays and cold dust) in NGC 3044 and NGC 4157

    NASA Astrophysics Data System (ADS)

    Irwin, J. A.; Brar, R. S.; Saikia, D. J.; Henriksen, R. N.

    2013-08-01

    We present the first maps of NGC 3044 and NGC 4157 at λ 450 μm and λ 850 μm from the James Clerk Maxwell Telescope as well as the first maps at 617 MHz from the Giant Metrewave Radio Telescope. High-latitude emission has been detected in both the radio continuum and sub-mm for NGC 3044 and in the radio continuum for NGC 4157, including several new features. For NGC 3044, in addition, we find 617 MHz emission extending to the north of the major axis, beginning at the far ends of the major axis. One of these low-intensity features, more than 10 kpc from the major axis, has apparently associated emission at λ 20 cm and may be a result of in-disc activity related to star formation. The dust spectrum at long wavelengths required fitting with a two-temperature model for both galaxies, implying the presence of cold dust (Tc = 9.5 K for NGC 3044 and Tc = 15.3 K for NGC 4157). Dust masses are Md = 1.6 × 108 M⊙ and Md = 2.1 × 107 M⊙ for NGC 3044 and NGC 4157, respectively, and are dominated by the cold component. There is a clear correlation between the 617 MHz and λ 850 μm emission in the two galaxies. In the case of NGC 3044 for which the λ 850 μm data are strongly dominated by cold dust, this implies a relation between the non-thermal synchrotron emission and cold dust. The 617 MHz component represents an integration of massive star formation over the past 107-8 yr and the λ 850 μm emission represents heating from the diffuse interstellar radiation field (ISRF). The 617 MHz-λ 850 μm correlation improves when a smoothing kernel is applied to the λ 850 μm data to account for differences between the cosmic ray (CR) electron diffusion scale and the mean free path of an ISRF photon to dust. The best-fitting relation is L_{617_MHz} ∝ {L_{850μ m}}^{2.1 ± 0.2} for NGC 3044. If variations in the cold dust emissivity are dominated by variations in dust density, and the synchrotron emission depends on magnetic field strength (a function of gas density) as well as CR electron generation (a function of massive star formation rate and therefore density via the Schmidt law) then the expected correlation for NGC 3044 is L_{617_MHz} ∝ {L_{850μ m}}^{2.2}, in agreement with the observed correlation.

  8. A Polarimetric Approach for Constraining the Dynamic Foreground Spectrum for Cosmological Global 21 cm Measurements

    NASA Astrophysics Data System (ADS)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Jack O.

    2017-02-01

    The cosmological global (sky-averaged) 21 cm signal is a powerful tool to probe the evolution of the intergalactic medium in high-redshift universe (z≤slant 6). One of the biggest observational challenges is to remove the foreground spectrum which is at least four orders of magnitude brighter than the cosmological 21 cm emission. Conventional global 21 cm experiments rely on the spectral smoothness of the foreground synchrotron emission to separate it from the unique 21 cm spectral structures in a single total-power spectrum. However, frequency-dependent instrumental and observational effects are known to corrupt such smoothness and complicate the foreground subtraction. We introduce a polarimetric approach to measure the projection-induced polarization of the anisotropic foreground onto a stationary dual-polarized antenna. Due to Earth rotation, when pointing the antenna at a celestial pole, the revolving foreground will modulate this polarization with a unique frequency-dependent sinusoidal signature as a function of time. In our simulations, by harmonic decomposing this dynamic polarization, our technique produces two separate spectra in parallel from the same observation: (I) a total sky power consisting both the foreground and the 21 cm background and (II) a model-independent measurement of the foreground spectrum at a harmonic consistent to twice the sky rotation rate. In the absence of any instrumental effects, by scaling and subtracting the latter from the former, we recover the injected global 21 cm model within the assumed uncertainty. We further discuss several limiting factors and potential remedies for future implementation.

  9. Asian dust events of April 1998

    USGS Publications Warehouse

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative analysis for improved air quality and disaster management. Copyright 2001 by the American Geophysical Union.

  10. Modelling Dust Processing and Evolution in Extreme Environments as seen by Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Bocchio, Marco

    2014-09-01

    The main goal of my PhD study is to understand the dust processing that occurs during the mixing between the galactic interstellar medium and the intracluster medium. This process is of particular interest in violent phenomena such as galaxy-galaxy interactions or the ``Ram Pressure Stripping'' due to the infalling of a galaxy towards the cluster centre.Initially, I focus my attention to the problem of dust destruction and heating processes, re-visiting the available models in literature. I particularly stress on the cases of extreme environments such as a hot coronal-type gas (e.g., IGM, ICM, HIM) and supernova-generated interstellar shocks. Under these conditions small grains are destroyed on short timescales and large grains are heated by the collisions with fast electrons making the dust spectral energy distribution very different from what observed in the diffuse ISM.In order to test our models I apply them to the case of an interacting galaxy, NGC 4438. Herschel data of this galaxy indicates the presence of dust with a higher-than-expected temperature.With a multi-wavelength analysis on a pixel-by-pixel basis we show that this hot dust seems to be embedded in a hot ionised gas therefore undergoing both collisional heating and small grain destruction.Furthermore, I focus on the long-standing conundrum about the dust destruction and dust formation timescales in the Milky Way. Based on the destruction efficiency in interstellar shocks, previous estimates led to a dust lifetime shorter than the typical timescale for dust formation in AGB stars. Using a recent dust model and an updated dust processing model we re-evaluate the dust lifetime in our Galaxy. Finally, I turn my attention to the phenomenon of ``Ram Pressure Stripping''. The galaxy ESO 137-001 represents one of the best cases to study this effect. Its long H2 tail embedded in a hot and ionised tail raises questions about its possible stripping from the galaxy or formation downstream in the tail. Based on recent hydrodynamical numerical simulations, I show that the formation of H2 molecules on the surface of dust grains in the tail is a viable scenario.

  11. Normal and anomalous diffusion in fluctuations of dust concentration nearby emission source

    NASA Astrophysics Data System (ADS)

    Szczurek, Andrzej; Maciejewska, Monika; Wyłomańska, Agnieszka; Sikora, Grzegorz; Balcerek, Michał; Teuerle, Marek

    2018-02-01

    Particulate matter (PM) is an important component of air. Nowadays, major attention is payed to fine dust. It has considerable environmental impact, including adverse effect on human health. One of important issues regarding PM is the temporal variation of its concentration. The variation contains information about factors influencing this quantity in time. The work focuses on the character of PM concentration dynamics indoors, in the vicinity of emission source. The objective was to recognize between the homogeneous or heterogeneous dynamics. The goal was achieved by detecting normal and anomalous diffusion in fluctuations of PM concentration. For this purpose we used anomalous diffusion exponent, β which was derived from Mean Square Displacement (MSD) analysis. The information about PM concentration dynamics may be used to design sampling strategy, which serves to attain representative information about PM behavior in time. The data analyzed in this work was collected from single-point PM concentration monitoring in the vicinity of seven emission sources in industrial environment. In majority of cases we observed heterogeneous character of PM concentration dynamics. It confirms the complexity of interactions between the emission sources and indoor environment. This result also votes against simplistic approach to PM concentration measurement indoors, namely their occasional character, short measurement periods and long term averaging.

  12. Dust evolution, a global view: II. Top-down branching, nanoparticle fragmentation and the mystery of the diffuse interstellar band carriers

    PubMed Central

    2016-01-01

    The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates. PMID:28083089

  13. Dust evolution, a global view: II. Top-down branching, nanoparticle fragmentation and the mystery of the diffuse interstellar band carriers

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2016-12-01

    The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates.

  14. Dusty Pair Plasma—Wave Propagation and Diffusive Transition of Oscillations

    NASA Astrophysics Data System (ADS)

    Atamaniuk, Barbara; Turski, Andrzej J.

    2011-11-01

    The crucial point of the paper is the relation between equilibrium distributions of plasma species and the type of propagation or diffusive transition of plasma response to a disturbance. The paper contains a unified treatment of disturbance propagation (transport) in the linearized Vlasov electron-positron and fullerene pair plasmas containing charged dust impurities, based on the space-time convolution integral equations. Electron-positron-dust/ion (e-p-d/i) plasmas are rather widespread in nature. Space-time responses of multi-component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. An initial-value problem for Vlasov-Poisson/Ampère equations is reduced to the one multiple integral equation and the solution is expressed in terms of forcing function and its space-time convolution with the resolvent kernel. The forcing function is responsible for the initial disturbance and the resolvent is responsible for the equilibrium velocity distributions of plasma species. By use of resolvent equations, time-reversibility, space-reflexivity and the other symmetries are revealed. The symmetries carry on physical properties of Vlasov pair plasmas, e.g., conservation laws. Properly choosing equilibrium distributions for dusty pair plasmas, we can reduce the resolvent equation to: (i) the undamped dispersive wave equations, (ii) and diffusive transport equations of oscillations.

  15. NORTH AND WEST SIDES OF OIL HOUSE IN RIGHT FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH AND WEST SIDES OF OIL HOUSE IN RIGHT FOREGROUND, WITH EMBANKMENT (MI-100-A) IN LEFT FOREGROUND, AND POWERHOUSE (MI-100-B) AND SUBSTATION (MI-100-C) AT CENTER AND LEFT BACKGROUND. VIEW TO SOUTHEAST - Hardy Hydroelectric Plant, Oil House, 6928 East Thirty-sixth Street, Newaygo, Newaygo County, MI

  16. Adaptive local thresholding for robust nucleus segmentation utilizing shape priors

    NASA Astrophysics Data System (ADS)

    Wang, Xiuzhong; Srinivas, Chukka

    2016-03-01

    This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.

  17. Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Myers, Philip C.; Stephens, Ian W.; Tobin, John; Commerçon, Benoît; Henning, Thomas; Looney, Leslie; Kwon, Woojin; Segura-Cox, Dominique; Harris, Robert

    2018-06-01

    We present high-resolution (∼30 au) ALMA Band 6 dust polarization observations of VLA 1623. The VLA 1623 data resolve compact ∼40 au inner disks around the two protobinary sources, VLA 1623-A and VLA 1623-B, and also an extended ∼180 au ring of dust around VLA 1623-A. This dust ring was previously identified as a large disk in lower-resolution observations. We detect highly structured dust polarization toward the inner disks and the extended ring with typical polarization fractions ≈1.7% and ≈2.4%, respectively. The two components also show distinct polarization morphologies. The inner disks have uniform polarization angles aligned with their minor axes. This morphology is consistent with expectations from dust scattering. By contrast, the extended dust ring has an azimuthal polarization morphology not previously seen in lower-resolution observations. We find that our observations are well-fit by a static, oblate spheroid model with a flux-frozen, poloidal magnetic field. We propose that the polarization traces magnetic grain alignment likely from flux freezing on large scales and magnetic diffusion on small scales. Alternatively, the azimuthal polarization may be attributed to grain alignment by the anisotropic radiation field. If the grains are radiatively aligned, then our observations indicate that large (∼100 μm) dust grains grow quickly at large angular extents. Finally, we identify significant proper motion of VLA 1623 using our observations and those in the literature. This result indicates that the proper motion of nearby systems must be corrected for when combining ALMA data from different epochs.

  18. A new spin on primordial hydrogen recombination and a refined model for spinning dust radiation

    NASA Astrophysics Data System (ADS)

    Ali-Haimoud, Yacine

    2011-08-01

    This thesis describes theoretical calculations in two subjects: the primordial recombination of the electron-proton plasma about 400,000 years after the Big Bang and electric dipole radiation from spinning dust grains in the present-day interstellar medium. Primordial hydrogen recombination has recently been the subject of a renewed attention because of the impact of its theoretical uncertainties on predicted cosmic microwave background (CMB) anisotropy power spectra. The physics of the primordial recombination problem can be divided into two qualitatively different aspects. On the one hand, a detailed treatment of the non-thermal radiation field in the optically thick Lyman lines is required for an accurate recombination history near the peak of the visibility function. On the other hand, stimulated recombinations and out-of equilibrium effects are important at late times and a multilevel calculation is required to correctly compute the low-redshift end of the ionization history. Another facet of the problem is the requirement of computational efficiency, as a large number of recombination histories must be evaluated in Markov chains when analyzing CMB data. In this thesis, an effective multilevel atom method is presented, that speeds up multilevel atom computations by more than 5 orders of magnitude. The impact of previously ignored radiative transfer effects is quantified, and explicitly shown to be negligible. Finally, the numerical implementation of a fast and highly accurate primordial recombination code partly written by the author is described. The second part of this thesis is devoted to one of the potential galactic foregrounds for CMB experiments: the rotational emission from small dust grains. The rotational state of dust grains is described, first classically, and assuming that grains are rotating about their axis of greatest inertia. This assumption is then lifted, and a quantum-mechanical calculation is presented for disk-like grains with a randomized nutation state. In both cases, the probability distribution for the total grain angular momentum is computed with a Fokker-Planck equation, and the resulting emissivity is evaluated, as a function of environmental parameters. These computations are implemented in a public code written by the author.

  19. THE CIRCUMSTELLAR ENVIRONMENT OF R CORONAE BOREALIS: WHITE DWARF MERGER OR FINAL-HELIUM-SHELL FLASH?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Geoffrey C.; Andrews, J. E.; Sugerman, Ben E. K.

    2011-12-10

    In 2007, R Coronae Borealis (R CrB) went into a historically deep and long decline. In this state, the dust acts like a natural coronagraph at visible wavelengths, allowing faint nebulosity around the star to be seen. Imaging has been obtained from 0.5 to 500 {mu}m with Gemini/GMOS, Hubble Space Telescope/WFPC2, Spitzer/MIPS, and Herschel/SPIRE. Several of the structures around R CrB are cometary globules caused by wind from the star streaming past dense blobs. The estimated dust mass of the knots is consistent with their being responsible for the R CrB declines if they form along the line of sightmore » to the star. In addition, there is a large diffuse shell extending up to 4 pc away from the star containing cool 25 K dust that is detected all the way out to 500 {mu}m. The spectral energy distribution of R CrB can be well fitted by a 150 AU disk surrounded by a very large diffuse envelope which corresponds to the size of the observed nebulosity. The total masses of the disk and envelope are 10{sup -4} and 2 M{sub Sun }, respectively, assuming a gas-to-dust ratio of 100. The evidence pointing toward a white dwarf merger or a final-helium-shell flash origin for R CrB is contradictory. The shell and the cometary knots are consistent with a fossil planetary nebula. Along with the fact that R CrB shows significant lithium in its atmosphere, this supports the final-helium-shell flash. However, the relatively high inferred mass of R CrB and its high fluorine abundance support a white dwarf merger.« less

  20. A coagulation-fragmentation model for the turbulent growth and destruction of preplanetesimals

    NASA Astrophysics Data System (ADS)

    Johansen, A.; Brauer, F.; Dullemond, C.; Klahr, H.; Henning, T.

    2008-08-01

    To treat the problem of growing protoplanetary disc solids across the meter barrier, we consider a very simplified two-component coagulation-fragmentation model that consists of macroscopic boulders and smaller dust grains, the latter being the result of catastrophic collisions between the boulders. Boulders in turn increase their radii by sweeping up the dust fragments. An analytical solution of the dynamical equations predicts that growth by coagulation-fragmentation can be efficient and allow agglomeration of 10-m-sized objects within the time-scale of the radial drift. These results are supported by computer simulations of the motion of boulders and fragments in 3-D time-dependent magnetorotational turbulence. However allowing the fragments to diffuse freely out of the sedimentary layer of boulders drastically reduces the density of both boulders and fragments in the mid-plane, and thus also the growth of the boulder radius. The reason is that the turbulent diffusion time-scale is so much shorter than the collisional time-scale that dust fragments leak out of the mid-plane layer before they can be swept up by the boulders there. Our conclusion that coagulation-fragmentation is not an efficient way to grow across the meter barrier in fully turbulent protoplanetary discs confirms recent results by Brauer, Dullemond, & Henning who solved the coagulation equation in a parameterised turbulence model with collisional fragmentation, cratering, radial drift, and a range of particle sizes. We find that a relatively small population of boulders in a sedimentary mid-plane layer can populate the entire vertical extent of the disc with small grains and that these grains are not first generation dust, but have been through several agglomeration-destruction cycles during the simulations.

  1. Multiple origins for the DLA at zabs = 0.313 toward PKS 1127-145 indicated by a complex dust depletion pattern of Ca, Ti, and Mn

    NASA Astrophysics Data System (ADS)

    Guber, C. R.; Richter, P.; Wendt, M.

    2018-01-01

    Aims: We aim to investigate the dust depletion properties of optically thick gas in and around galaxies and its origin we study in detail the dust depletion patterns of Ti, Mn, and Ca in the multi-component damped Lymanα (DLA) absorber at zabs = 0.313 toward the quasar PKS 1127-145. Methods: We performed a detailed spectral analysis of the absorption profiles of Ca II, Mn II, Ti II, and Na I associated with the DLA toward PKS 1127-145, based on optical high-resolution data obtained with the UVES instrument at the Very Large Telescope. We obtained column densities and Doppler-parameters for the ions listed above and determine their gas-phase abundances, from which we conclude on their dust depletion properties. We compared the Ca and Ti depletion properties of this DLA with that of other DLAs. Results: One of the six analyzed absorption components (component 3) shows a striking underabundance of Ti and Mn in the gas-phase, indicating the effect of dust depletion for these elements and a locally enhanced dust-to-gas ratio. In this DLA and in other similar absorbers, the Mn II abundance follows that of Ti II very closely, implying that both ions are equally sensitive to the dust depletion effects. Conclusions: Our analysis indicates that the DLA toward PKS 1127-145 has multiple origins. With its narrow line width and its strong dust depletion, component 3 points toward the presence of a neutral gas disk from a faint LSB galaxy in front of PKS 1127-145, while the other, more diffuse and dust-poor, absorption components possibly are related to tidal gas features from the interaction between the various, optically confirmed galaxy-group members. In general, the Mn/Ca II ratio in sub-DLAs and DLAs possibly serves as an important indicator to discriminate between dust-rich and dust-poor in neutral gas in and around galaxies.

  2. Scattered, extinguished, emitted: Three views of the dust in Perseus

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan Bruce

    Dust in star-forming regions is both a blessing and a curse. By shrouding young stars it inhibits our study of their birth, yet without dust we would have an impoverished view of the structure of the molecular cloud before it collapses to form a protostar--the initial conditions of the problem of star formation. Though less than 1% of the mass of a molecular cloud, dust is a reliable tracer of the invisible H 2 which makes up the vast majority of the material. Other molecules can trace the H 2 distribution, and are useful in the appropriate regime, but all are confounded by the complications of chemistry, excitation conditions, and depletion, processes which have little effect on dust. Interpreting observations of dust is not entirely straightforward. We do not have a comprehensive theory of dust which explains the size distribution and mineralogical composition of dust in the diverse environments where it is present, from the diffuse ISM to the proto-planetary disks around young stars. Lacking such a theory, it is surprising that models of dust are nonetheless able to reproduce many of the observational constraints imposed upon them. Among these constraints are direct capture of dust grains, spectral features, extinction of background light, scattering, and thermal emission. In this thesis I (1) describe a method to use scattered ambient galactic light to map dense cores with unprecedented high resolution; (2) extend near-infrared extinction mapping by incorporating background galaxies; (3) demonstrate a relation between column density and changes in the extinction law, which is evidence of grain growth; (4) report on a study using NH 3 temperatures to more precisely interpret a thermal emission map at 1.1-mm; and (5) apply all these different techniques to a single starless region in order to compare them and learn something both about dust and the initial conditions of star formation.

  3. Emission from small dust particles in diffuse and molecular cloud medium

    NASA Technical Reports Server (NTRS)

    Bernard, J. P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances.

  4. Anisotropies in the diffuse gamma-ray background from dark matter with Fermi LAT: A closer look

    DOE PAGES

    Cuoco, A.; Sellerholm, A.; Conrad, J.; ...

    2011-06-21

    We perform a detailed study of the sensitivity to the anisotropies related to dark matter (DM) annihilation in the isotropic gamma-ray background (IGRB) as measured by the Fermi Large Area Telescope ( Fermi LAT). For the first time, we take into account the effects of the Galactic foregrounds and use a realistic representation of the Fermi LAT. We implement an analysis pipeline which simulates Fermi LAT data sets starting from model maps of the Galactic foregrounds, the Fermi-resolved point sources, the extragalactic diffuse emission and the signal from DM annihilation. The effects of the detector are taken into account bymore » convolving the model maps with the Fermi LAT instrumental response. We then use the angular power spectrum to characterize the anisotropy properties of the simulated data and to study the sensitivity to DM. We consider DM anisotropies of extragalactic origin and of Galactic origin (which can be generated through annihilation in the Milky Way substructures) as opposed to a background of anisotropies generated by sources of astrophysical origin, blazars for example. We find that with statistics from 5 yr of observation, Fermi is sensitive to a DM contribution at the level of 1–10 per cent of the measured IGRB depending on the DM mass m χ and annihilation mode. In terms of the thermally averaged cross-section , this corresponds to ~10 –25 cm 3 s –1, i.e. slightly above the typical expectations for a thermal relic, for low values of the DM mass m χ≲ 100 GeV. As a result, the anisotropy method for DM searches has a sensitivity comparable to the usual methods based only on the energy spectrum and thus constitutes an independent and complementary piece of information in the DM puzzle.« less

  5. High Energy Studies of Astrophysical Dust

    NASA Astrophysics Data System (ADS)

    Corrales, Lia Racquel

    Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how information from a single scattering halo can be used in conjunction with X-ray spectroscopy to directly measure the dust-to-gas mass ratio, laying the groundwork for future scattering halo surveys. Distant quasars also produce X-rays that pierce the intergalactic medium. These sources invite the unique opportunity to search for extragalactic dust, whether distributed diffusely throughout intergalactic space, surrounding other galaxies, or occupying reservoirs of cool intergalactic gas. I review X-ray scattering in a cosmological context, examining the range and sensitivity of Chandra to detect the low surface brightness levels of intergalactic scattering. Of particular interest is large "grey" dust, which would cause systematic errors in precision cosmology experiments at a level comparable to the size of the error bars sought. This requires using the more exact Mie scattering treatment, which reduces the scattering cross-section for soft X-rays by a factor of about ten, compared to the Rayleigh-Gans approximation used for interstellar X-ray scattering studies. This allows me to relax the limit on intergalactic dust imposed by previous X-ray imaging of a z=4.3 quasar, QSO 1508+5714, which overestimated the scattering intensity. After implementing the Mie solution with the cosmological integral for scattering halo intensity, I found that intergalactic dust will scatter 1-3% of soft X-ray light. Unfortunately the wings of the Chandra PSF are brighter than the surface brightness expected for these intergalactic scattering halos. The X-ray signatures of intergalactic dust may only be visible if a distant quasar suddenly dimmed by a factor of 1000 or more, leaving behind an X-ray scattering echo, or "ghost" halo.

  6. The Role of African Easterly Wave on Dust Transport and the Interaction Between Saharan Dust Layer and Atlantic ITCZ During Boreal Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, Kyu-Myong

    2012-01-01

    In this paper, we investigate the relationships among Saharan dust outbreak and transport, African easterly waves (AEW), African easterly jet (AEJ) and associated convective activities of Atlantic Intertropical Convergence Zone (ITCZ) using Cloudsat-Calipso, MODIS and MERRA data. We find that a major Saharan dust outbreak is associated with the formation of a westward propagating strong cyclone around 15-25N over the western part northern Saharan. The strong cyclonic flow mobilizes and lifts the dust from the desert surface to a high elevation. As the cyclone propagate westward, it transports a thick elevated dust layer between 900 -500 hPa from the African continent to the eastern Atlantic. Cloudiness is reduced within the warm, dry dusty layer, but enhanced underneath it, possibly due to the presence of a shallow inversion layer over the marine boundary layer. The dust outbreak is linked to enhanced deep convection in the northern part of Atlantic ITCZ, abutting the southern flank of the dust layer, and a strengthening of the northward flank of the AEJ. As the dust layer spreads westward, it loses elevation and becomes increasing diffused as it reaches the central and western Atlantic. Using band pass filtered EOF analysis of MERRA winds, we find that AEWs propagating westward along two principal tracks, centered at 15-25N and 5-10N respectively. The easterly waves in the northern track are highly correlated with major dust outbreak over North Africa and associated with slower moving systems, with a quasi-periodicity of 6-9 day. On the other hand, easterly waves along the southern track are faster, with quasi-periodicity of 3-5 days. These faster easterly waves are closely tied to rainfall/cloud variations along the Atlantic ITCZ. Dust transport along the southern track by the faster waves generally leads rainfall/cloud anomalies in the same region by one or two days, suggesting the southern tracks of dust outbreak are regions of strong interaction between Saharan dust layer and Atlantic ITCZ.

  7. DISSECTING THE HIGH- z INTERSTELLAR MEDIUM THROUGH INTENSITY MAPPING CROSS-CORRELATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serra, Paolo; Doré, Olivier; Lagache, Guilaine, E-mail: Paolo.Serra@jpl.nasa.gov

    We explore the detection, with upcoming spectroscopic surveys, of three-dimensional power spectra of emission line fluctuations produced in different phases of the interstellar medium (ISM) by forbidden transitions of ionized carbon [C ii] (157.7 μ m), ionized nitrogen [N ii] (121.9 and 205.2 μ m), and neutral oxygen [O i] (145.5 μ m) at redshift z  > 4. These lines are important coolants of both the neutral and the ionized medium, and probe multiple phases of the ISM. In the framework of the halo model, we compute predictions of the three-dimensional power spectra for two different surveys, showing that they havemore » the required sensitivity to detect cross-power spectra between the [C ii] line and both the [O i] line and the [N ii] lines with sufficient signal-to-noise ratio. The importance of cross-correlating multiple lines with the intensity mapping technique is twofold. On the one hand, we will have multiple probes of the different phases of the ISM, which is key to understanding the interplay between energetic sources, and the gas and dust at high redshift. This kind of study will be useful for a next-generation space observatory such as the NASA Far-IR Surveyor, which will probe the global star formation and the ISM of galaxies from the peak of star formation to the epoch of reionization. On the other hand, emission lines from external galaxies are an important foreground when measuring spectral distortions of the cosmic microwave background spectrum with future space-based experiments like PIXIE; measuring fluctuations in the intensity mapping regime will help constrain the mean amplitude of these lines, and will allow us to better handle this important foreground.« less

  8. MEASUREMENTS OF SUB-DEGREE B -MODE POLARIZATION IN THE COSMIC MICROWAVE BACKGROUND FROM 100 SQUARE DEGREES OF SPTPOL DATA

    DOE PAGES

    Keisler, R.; Hoover, S.; Harrington, N.; ...

    2015-07-09

    We present a measurement of themore » $B$-mode polarization power spectrum (the $BB$ spectrum) from 100 $$\\mathrm{deg}^2$$ of sky observed with SPTpol, a polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work were taken during 2012 and early 2013 and include data in spectral bands centered at 95 and 150 GHz. We report the $BB$ spectrum in five bins in multipole space, spanning the range $$300 \\le \\ell \\le 2300$$, and for three spectral combinations: 95 GHz $$\\times$$ 95 GHz, 95 GHz $$\\times$$ 150 GHz, and 150 GHz $$\\times$$ 150 GHz. We subtract small ($$< 0.5 \\sigma$$ in units of statistical uncertainty) biases from these spectra and account for the uncertainty in those biases. The resulting power spectra are inconsistent with zero power but consistent with predictions for the $BB$ spectrum arising from the gravitational lensing of $E$-mode polarization. If we assume no other source of $BB$ power besides lensed $B$ modes, we determine a preference for lensed $B$ modes of $$4.9 \\sigma$$. After marginalizing over tensor power and foregrounds, namely polarized emission from galactic dust and extragalactic sources, this significance is $$4.3 \\sigma$$. Fitting for a single parameter, $$A_\\mathrm{lens}$$, that multiplies the predicted lensed $B$-mode spectrum, and marginalizing over tensor power and foregrounds, we find $$A_\\mathrm{lens} = 1.08 \\pm 0.26$$, indicating that our measured spectra are consistent with the signal expected from gravitational lensing. The data presented here provide the best measurement to date of the $B$-mode power spectrum on these angular scales.« less

  9. "Ice Cubes" in the Center of the Milky Way: Water-ice and Hydrocarbons in the Central Parsec

    NASA Astrophysics Data System (ADS)

    Moultaka, J.; Eckart, A.; Mužić, K.

    2015-06-01

    The close environment of the central supermassive black hole of our Galaxy has been studied thoroughly for decades in order to shed light on the behavior of the central regions of galaxies in general and of active galaxies in particular. The Galactic center (GC) has shown a wealth of structures on different scales with a complicated mixture of early- and late-type stars, ionized and molecular gas, dust, and winds. Here we aim to study the distribution of water-ices and hydrocarbons in the central parsec, as well as along the line of sight. This study is made possible thanks to L-band spectroscopy. This spectral band, from 2.8 to 4.2 μm, hosts important signatures of the circumstellar medium and interstellar dense and diffuse media among which deep absorption features are attributed to water-ices and hydrocarbons. We observed the GC in the L band of the ISAAC spectrograph located on the UT1/VLT ESO telescope. By mapping the central half parsec using 27 slit positions, we were able to build the first data cube of the region in this wavelength domain. Thanks to a calibrator spectrum of the foreground extinction in the L band derived in a previous paper, we corrected our data cube for the line-of-sight extinction and validated our calibrator spectrum. The data show that a residual absorption due to water-ices and hydrocarbons is present in the corrected data cube. This suggests that the features are produced in the local environment of the GC, implying very low temperatures well below 80 K. This is in agreement with our finding of local CO ices in the central parsec described in Moultaka et al. Resulting from ESO VLT observations of program ID numbers 71.C-0192A and 077.C-0286A.

  10. The Application of Continuous Wavelet Transform Based Foreground Subtraction Method in 21 cm Sky Surveys

    NASA Astrophysics Data System (ADS)

    Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen

    2013-08-01

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.

  11. VLT Images the Horsehead Nebula

    NASA Astrophysics Data System (ADS)

    2002-01-01

    Summary A new, high-resolution colour image of one of the most photographed celestial objects, the famous "Horsehead Nebula" (IC 434) in Orion, has been produced from data stored in the VLT Science Archive. The original CCD frames were obtained in February 2000 with the FORS2 multi-mode instrument at the 8.2-m VLT KUEYEN telescope on Paranal (Chile). The comparatively large field-of-view of the FORS2 camera is optimally suited to show this extended object and its immediate surroundings in impressive detail. PR Photo 02a/02 : View of the full field around the Horsehead Nebula. PR Photo 02b/02 : Enlargement of a smaller area around the Horse's "mouth" A spectacular object ESO PR Photo 02a/02 ESO PR Photo 02a/02 [Preview - JPEG: 400 x 485 pix - 63k] [Normal - JPEG: 800 x 970 pix - 896k] [Full-Res - JPEG: 1951 x 2366 pix - 4.7M] ESO PR Photo 02b/02 ESO PR Photo 02b/02 [Preview - JPEG: 400 x 501 pix - 91k] [Normal - JPEG: 800 x 1002 pix - 888k] [Full-Res - JPEG: 1139 x 1427 pix - 1.9M] Caption : PR Photo 02a/02 is a reproduction of a composite colour image of the Horsehead Nebula and its immediate surroundings. It is based on three exposures in the visual part of the spectrum with the FORS2 multi-mode instrument at the 8.2-m KUEYEN telescope at Paranal. PR Photo 02b/02 is an enlargement of a smaller area. Technical information about these photos is available below. PR Photo 02a/02 shows the famous "Horsehead Nebula" , which is situated in the Orion molecular cloud complex. Its official name is Barnard 33 and it is a dust protrusion in the southern region of the dense dust cloud Lynds 1630 , on the edge of the HII region IC 434 . The distance to the region is about 1400 light-years (430 pc). This beautiful colour image was produced from three images obtained with the multi-mode FORS2 instrument at the second VLT Unit Telescope ( KUEYEN ), some months after it had "First Light", cf. PR 17/99. The image files were extracted from the VLT Science Archive Facility and the photo constitutes a fine example of the subsequent use of such valuable data. Details about how the photo was made and some weblinks to other pictures are available below. The comparatively large field-of-view of the FORS2 camera (nearly 7 x 7 arcmin 2 ) and the detector resolution (0.2 arcsec/pixel) make this instrument optimally suited for imaging of this extended object and its immediate surroundings. There is obviously a wealth of detail, and scientific information can be derived from the colours shown in this photo. Three predominant colours are seen in the image: red from the hydrogen (H-alpha) emission from the HII region; brown for the foreground obscuring dust; and blue-green for scattered starlight. The blue-green regions of the Horsehead Nebula correspond to regions not shadowed from the light from the stars in the H II region to the top of the picture and scatter stellar radiation towards the observer; these are thus `mountains' of dust . The Horse's `mane' is an area in which there is less dust along the line-of-sight and the background (H-alpha) emission from ionized hydrogen atoms can be seen through the foreground dust. A chaotic area At the high resolution of this image the Horsehead appears very chaotic with many wisps and filaments and diffuse dust . At the top of the figure there is a bright rim separating the dust from the HII region. This is an `ionization front' where the ionizing photons from the HII region are moving into the cloud, destroying the dust and the molecules and heating and ionizing the gas. Dust and molecules can exist in cold regions of interstellar space which are shielded from starlight by very large layers of gas and dust. Astronomers refer to elongated structures, such as the Horsehead, as `elephant trunks' (never mind the zoological confusion!) which are common on the boundaries of HII regions. They can also be seen elsewhere in Orion - another well-known example is the pillars of M16 (the "Eagle Nebula") made famous by the fine HST image - a new infrared view by VLT and ISAAC of this area was published last month, cf. PR 25/01. Such structures are only temporary as they are being constantly eroded by the expanding region of ionized gas and are destroyed on timescales of typically a few thousand years. The Horsehead as we see it today will therefore not last forever and minute changes will become observable as the time passes. The surroundings To the east of the Horsehead (at the bottom of this image) there is ample evidence for star formation in the Lynds 1630 dark cloud . Here, the reflection nebula NGC 2023 surrounds the hot B-type star HD 37903 and some Herbig Haro objects are found which represent high-speed gas outflows from very young stars with masses of around a solar mass. The HII region to the west (top of picture) is ionized by the strong radiation from the bright star Sigma Orionis , located just below the southernmost star in Orion's Belt. The chain of dust and molecular clouds are part of the Orion A and B regions (also known as Orion's `sword' ). Other images of the Horsehead Nebula The Horsehead Nebula is a favourite object for amateur astrophotographers and large numbers of images are available on the WWW. Due to its significant extension and the limited field-of-view of some professional telescopes, fewer photographs are available from today's front-line facilities, except from specialized wide-field instruments like Schmidt telescopes, etc. The links below point to a number of prominent photos obtained elsewhere and some contain further useful links to other sites with more information about this splendid sky area. "Astronomy Picture of the Day" : http://antwrp.gsfc.nasa.gov/apod/ap971025.html Hubble Heritage image : http://hubble.stsci.edu/news_.and._views/pr.cgi?2001%2B12 INT Wide-Field image : http://www.ing.iac.es/PR/science/horsehead.htm NOT image : http://www.not.iac.es/new/general/photos/astronomical/ NOAO Wide-Field image : http://www.noao.edu/outreach/press/pr01/ir0101.html Bill Arnett's site : http://www.seds.org/billa/twn/b33x.html Technical information about the photos PR Photo 02a/02 was produced from three images, obtained on February 1, 2000, with the FORS2 multi-mode instrument at the 8.2-m KUEYEN Unit Telescope and extracted from the VLT Science Archive Facility. The frames were obtained in the B-band (600 sec exposure; wavelength 429 nm; FWHM 88 nm; here rendered as blue), V-band (300 sec; 554 nm; 112 nm; green) and R-band (120 sec; 655 nm; 165 nm; red) The original pixel size is 0.2 arcsec. The photo shows the full field recorded in all three colours, approximately 6.5 x 6.7 arcmin 2. The seeing was about 0.75 arcsec. PR Photo 02b/02 is an enlargement of a smaller area, measuring 3.8 x 4.1 arcmin 2. North is to the left and east is down (the usual orientation for showing this object). The frames were recorded with a TK2048 SITe CCD and the ESO-FIERA Controller, built by the Optical Detector Team (ODT). The images were prepared by Cyril Cavadore (ESO-ODT) , by means of Prism software. ESO PR Photos 02a-b/02 may be reproduced, if credit is given the European Southern Observatory (ESO).

  12. Color Variations on Mount Sharp, Mars White Balanced

    NASA Image and Video Library

    2016-12-13

    The foreground of this scene from the Mast Camera (Mastcam) on NASA's Curiosity Mars rover shows purple-hued rocks near the rover's late-2016 location on lower Mount Sharp. The scene's middle distance includes higher layers that are future destinations for the mission. Variations in color of the rocks hint at the diversity of their composition on lower Mount Sharp. The purple tone of the foreground rocks has been seen in other rocks where Curiosity's Chemical and Mineralogy (CheMin) instrument has detected hematite. Winds and windblown sand in this part of Curiosity's traverse and in this season tend to keep rocks relatively free of dust, which otherwise can cloak rocks' color. The three frames combined into this mosaic were acquired by the Mastcam's right-eye camera on Nov. 10, 2016, during the 1,516th Martian day, or sol, of Curiosity's work on Mars. The scene is presented with a color adjustment that approximates white balancing, to resemble how the rocks and sand would appear under daytime lighting conditions on Earth. Sunlight on Mars is tinged by the dusty atmosphere and this adjustment helps geologists recognize color patterns they are familiar with on Earth. The view spans about 15 compass degrees, with the left edge toward southeast. The rover's planned direction of travel from its location when this scene was recorded is generally southeastward. The orange-looking rocks just above the purplish foreground ones are in the upper portion of the Murray formation, which is the basal section of Mount Sharp, extending up to a ridge-forming layer called the Hematite Unit. Beyond that is the Clay Unit, which is relatively flat and hard to see from this viewpoint. The next rounded hills are the Sulfate Unit, Curiosity's highest planned destination. The most distant slopes in the scene are higher levels of Mount Sharp, beyond where Curiosity will drive. Figure 1 is a version of the same scene with annotations added as reference points for distance, size and relative elevation. The annotations are triangles with text telling the distance (in kilometers) to the point in the image marked by the triangle, the point's elevation (in meters) relative to the rover's location, and the size (in meters) of an object as big as the triangle at that distance. An annotated figure is available at http://photojournal.jpl.nasa.gov/catalog/PIA21256

  13. Pebble pile-up and planetesimal formation at the snow line

    NASA Astrophysics Data System (ADS)

    Drazkowska, J.

    2017-09-01

    The planetesimal formation stage represents a major gap in our understanding of planet formation process. Because of this, the late-stage planet accretion models typically make arbitrary assumptions about planetesimals and pebbles distribution, while the state-of-the-art dust evolution models predict no or little planetesimal formation. With this contribution, I present a step toward bridging the gap between the early and late stages of planet formation by models that connect dust coagulation and planetesimal formation. With the aid of evaporation, outward diffusion, and re-condensation of water vapor, pile-up of large pebbles is formed outside of the snow line that facilitates planetesimal formation by streaming instability.

  14. Cellular Precipitates Of Iron Oxide in Olivine in a Stratospheric Interplanetary Dust Particle

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1996-01-01

    The petrology of a massive olivine-sulphide interplanetary dust particle shows melting of Fe,Ni-sulphide plus complete loss of sulphur and subsequent quenching to a mixture of iron-oxides and Fe,Ni-metal. Oxidation of the fayalite component in olivine produced maghemite discs and cellular intergrowths with olivine and rare andradite-rich garnet. Cellular reactions require no long-range solid-state diffusion and are kinetically favourable during pyrometamorphic oxidation. Local melting of the cellular intergrowths resulted in three dimensional symplectic textures. Dynamic pyrometamorphism of this asteroidal particle occurred at approx. 1100 C during atmospheric entry flash (5-15 s) heating.

  15. DRBE comet trails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arendt, Richard G., E-mail: Richard.G.Arendt@nasa.gov

    2014-12-01

    Re-examination of the Cosmic Background Explorer Diffuse Infrared Background Experiment (DIRBE) data reveals the thermal emission of several comet dust trails. The dust trails of 1P/Halley, 169P/NEAT, and 3200 Phaethon have not been previously reported. The known trails of 2P/Encke and 73P/Schwassmann–Wachmann 3 are also seen. The dust trails have 12 and 25 μm surface brightnesses of <0.1 and <0.15 MJy sr{sup −1}, respectively, which is <1% of the zodiacal light intensity. The trails are very difficult to see in any single daily image of the sky, but are evident as rapidly moving linear features in movies of the DIRBEmore » data. Some trails are clearest when crossing through the orbital plane of the parent comet, but others are best seen at high ecliptic latitudes as the Earth passes over or under the dust trail. All these comets have known associations with meteor showers. This re-examination also reveals 1 additional comet and 13 additional asteroids that had not previously been recognized in the DIRBE data.« less

  16. Comets: Role and importance to exobiology

    NASA Technical Reports Server (NTRS)

    Delsemme, Armand H.

    1992-01-01

    The transfer of organic compounds from interstellar space to the outskirts of a protoplanetary disk, their accretion into cometary objects, and the transport of the latter into the inner solar system by orbital diffusion throw a new light on the central problem of exobiology. It suggests the existence of a cosmic mechanism, working everywhere, that can supply prebiotic compounds to ubiquitous rocky planets, in search of the proper environment to start life in many places in the Universe. Under the heading of chemistry of the cometary nucleus, the following topics are covered: radial homogeneity of the nucleus; the dust-to-ice ratio; nature of the dust grains; origin of the dust in comets; nature of the volatile fraction; the CO distribution in comet Halley; dust contribution to the volatile fraction; elemental balance sheet of comet Halley; quantitative molecular analysis of the volatile fraction; and isotopic ratios. Under the heading of exogenous origin of carbon on terrestrial planets the following topics are covered: evidence for a high-temperature phase; from planetesimals to planets; a veneer of volatile and organic material; and cometary contribution.

  17. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids.

    PubMed

    Sun, Lei; Chen, Dongmei; Wan, Shungang; Yu, Zebin

    2015-12-01

    Biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids at low temperatures was utilized as adsorbent to remove methylene blue (MB) from aqueous solutions. Fourier transform infrared spectroscopy analysis showed that the carboxyl group was introduced on the biochar surface. Adsorption experiment data indicated that eucalyptus saw dust modified with citric acid showed higher MB adsorption efficiency than that modified with tartaric and acetic acids. Pseudo-second-order kinetics was the most suitable model for describing MB adsorption on biochar compared with pseudo-first-order, Elovich, and intraparticle diffusion models. The calculated values of ΔG(0) and ΔH(0) indicated the spontaneous and endothermic nature of the adsorption process. MB adsorption on biochar followed the Langmuir isotherm. The maximum adsorption capacities for eucalyptus saw dust modified with citric, tartaric, and acetic acids were 178.57, 99.01, and 29.94 mg g(-1), respectively, at 35°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Photopolarimetric Observations of CI(1657 Angstroms) and Dust Continuum Emissions from Comet Hale-Bopp with the WISP Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Harris, W. M.; Nordsieck, K. H.; Scherb, F.; Mierkiewicz, E. J.

    1997-07-01

    We report on photopolarimetric observations of resonant emission from Carbon [CI(1657 Angstroms)] and scattered solar continuum from dust at 2800 Angstroms using the Wisconsin Imaging Survey Polarimeter (WISP). The WISP is a wide field (1.5deg x 4.8deg ) sounding rocket telescope originally designed for polarimetric observations of diffuse galactic light at a 1% photometric level. We will describe the initial results of our launch on 8 April, 1997 from the White Sands Missile range, including a discussion of the images obtained, and the results from supporting visible/near-infrared measurements of gas and dust from the Burrell Schmidt telescope, and spectroscopic observations of the CI(9850 Angstroms) metastable line from the McMath Pierce Solar Telescope. This research was supported by NASA grant NAG5-5091 and NSF grant AST-9615625.

  19. Diffusion and Clustering of Carbon Dioxide on Non-porous Amorphous Solid Water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Jiao; Emtiaz, Shahnewaj M.; Vidali, Gianfranco

    2017-03-01

    Observations by ISO and Spitzer toward young stellar objects showed that CO{sub 2} segregates in the icy mantles covering dust grains. Thermal processing of the ice mixture was proposed as being responsible for the segregation. Although several laboratories studied thermally induced segregation, a satisfying quantification is still missing. We propose that the diffusion of CO{sub 2} along pores inside water ice is the key to quantify segregation. We combined Temperature Programmed Desorption and Reflection Absorption InfraRed Spectroscopy to study how CO{sub 2} molecules interact on a non-porous amorphous solid water (np-ASW) surface. We found that CO{sub 2} diffuses significantly onmore » an np-ASW surface above 65 K and clusters are formed at well below one monolayer. A simple rate equation simulation finds that the diffusion energy barrier of CO{sub 2} on np-ASW is 2150 ± 50 K, assuming a diffusion pre-exponential factor of 10{sup 12} s{sup −1}. This energy should also apply to the diffusion of CO{sub 2} on the wall of pores. The binding energy of CO{sub 2} from CO{sub 2} clusters and CO{sub 2} from H{sub 2}O ice has been found to be 2415 ± 20 K and 2250 ± 20 K, respectively, assuming the same prefactor for desorption. CO{sub 2}–CO{sub 2} interaction is stronger than CO{sub 2}–H{sub 2}O interaction, in agreement with the experimental finding that CO{sub 2} does not wet the np-ASW surface. For comparison, we carried out similar experiments with CO on np-ASW, and found that the CO–CO interaction is always weaker than CO–H{sub 2}O. As a result, CO wets the np-ASW surface. This study should be of help to uncover the thermal history of CO{sub 2} on the icy mantles of dust grains.« less

  20. Planck 2015 results. I. Overview of products and scientific results

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Akrami, Y.; Alves, M. I. R.; Argüeso, F.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaglia, P.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bikmaev, I.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chluba, J.; Chon, G.; Christensen, P. R.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Farhang, M.; Feeney, S.; Fergusson, J.; Fernandez-Cobos, R.; Feroz, F.; Finelli, F.; Florido, E.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschet, C.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Giusarma, E.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Handley, W.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Ilić, S.; Jaffe, A. H.; Jaffe, T. R.; Jin, T.; Jones, W. C.; Juvela, M.; Karakci, A.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Lellouch, E.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Lilley, M.; Linden-Vørnle, M.; Lindholm, V.; Liu, H.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Marcos-Caballero, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martinelli, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McEwen, J. D.; McGehee, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Moss, A.; Mottet, S.; Münchmeyer, M.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Olamaie, M.; Oppermann, N.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Peiris, H. V.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Romelli, E.; Rosset, C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rouillé d'Orfeuil, B.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rumsey, C.; Rusholme, B.; Said, N.; Salvatelli, V.; Salvati, L.; Sandri, M.; Sanghera, H. S.; Santos, D.; Saunders, R. D. E.; Sauvé, A.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Shimwell, T. W.; Shiraishi, M.; Smith, K.; Souradeep, T.; Spencer, L. D.; Spinelli, M.; Stanford, S. A.; Stern, D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Texier, D.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tramonte, D.; Tristram, M.; Troja, A.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vassallo, T.; Vibert, L.; Vidal, M.; Viel, M.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Welikala, N.; Weller, J.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.

    2016-09-01

    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based ondata from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.

  1. 12. VIEW OF SOUTH ELEVATIONS OF BUILDINGS 7, 8, 48, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW OF SOUTH ELEVATIONS OF BUILDINGS 7, 8, 48, 50, 40, 39 AND 33; BUILDING 7 AT EXTREME LEFT CENTER, BUILDING 8 LEFT CENTER FOREGROUND; BUILDING 48 LEFT CENTER BACKGROUND; BUILDING 50 CENTER FOREGROUND; BUILDING 40 CENTER BACKGROUND; BUILDING 39 RIGHT FOREGROUND; BUILDING 33 RIGHT BACKGROUND - Scovill Brass Works, 59 Mill Street, Waterbury, New Haven County, CT

  2. Sahara Desert, Sudan, Northeast Africa as seen from STS-62

    NASA Image and Video Library

    1994-03-05

    STS062-151-182Z (4-18 March 1994) --- This east-looking view shows most of the east-west extent of the country of Sudan. The foreground shows a vegetation-less and almost uninhabited region of northwest Sudan. The rich earth colors are ancient soils (browner and redder tones), a concentrated mass of what may be volcanic cinder cones (dark brown dots - center) and dune and younger river sediments (yellows). The photo would have been difficult to locate had it not been for two recognizable features in the background: a visually well-known inselberg ("island mountain" -- top center) on a large west-bank tributary of the White Nile; and the confluence of the Blue and White Nile's, with the great cotton developments of the Gezira Scheme between them (top left). The Red Sea coast is almost obscured by a dust cloud but can be discerned running across the top of the picture. The clouds at top may be developing over the coastal ranges of Saudi Arabia beyond the Red Sea.

  3. The Pelican Nebula and its Vicinity: a New Look at Stellar Population in the Cloud and around It

    NASA Astrophysics Data System (ADS)

    Boyle, Richard P.; Janusz, R.; Vrba, F. J.; Straizys, V.; Laugalys, V.; Kazlauskas, A.; Stott, J.; Philip, A. G. D.

    2011-01-01

    A region of active star formation is located in the complex of dust and molecular clouds known as the Pelican Nebula and the dark cloud L935. In this paper we describe the results of our investigation in the area bounded by the coordinates (2000) RA 20h50m - 20h54m and DEC +44d20m - 44m55d. Our CCD photometry in the Vilnius seven-color system, obtained on the 1.8 m Vatican Advanced Technology Telescope, Mt. Graham, and the 1 m telescope of the USNO Flagstaff Station, is used to classify stars down to V = 17 mag in spectral and luminosity classes. The interstellar extinction values and distances to these stars are determined. Additionally, the data from the 2MASS, MegaCam, IPHAS and Spitzer surveys are analyzed. We present star population maps in the foreground and background of the complex and within it. The known and newly identified YSOs in the area are tabulated.

  4. Spacelab

    NASA Image and Video Library

    1990-12-02

    Onboard the Space Shuttle Orbiter Columbia (STS-35), the various components of the Astro-1 payload are seen backdropped against dark space. Parts of the Hopkins Ultraviolet Telescope (HUT), Ultraviolet Imaging Telescope (UIT), and the Wisconsin Ultraviolet Photo-Polarimetry Experiment (WUPPE) are visible on the Spacelab pallet. The Broad-Band X-Ray Telescope (BBXRT) is behind the pallet and is not visible in this scene. The smaller cylinder in the foreground is the igloo. The igloo was a pressurized container housing the Command Data Management System, that interfaced with the in-cabin controllers to control the Instrument Pointing System (IPS) and the telescopes. The Astro Observatory was designed to explore the universe by observing and measuring the ultraviolet radiation from celestial objects. Astronomical targets of observation selected for Astro missions included planets, stars, star clusters, galaxies, clusters of galaxies, quasars, remnants of exploded stars (supernovae), clouds of gas and dust (nebulae), and the interstellar medium. Managed by the Marshall Space Flight Center, the Astro-1 was launched aboard the Space Shuttle Orbiter Columbia (STS-35) on December 2, 1990.

  5. Interstellar and Ejecta Dust in the Cas A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jonghee; Hwang, Una

    2013-01-01

    The ejecta of the Cas A supernova remnant has a complex morphology, consisting of dense fast-moving line emitting knots and diffuse X-ray emitting regions that have encountered the reverse shock, as well as more slowly expanding, unshocked regions of the ejecta. Using the Spitzer 5-35 micron IRS data cube, and Herschel 70, 100, and 160 micron PACS data, we decompose the infrared emission from the remnant into distinct spectral components associated with the different regions of the ejecta. Such decomposition allows the association of different dust species with ejecta layers that underwent distinct nuclear burning histories, and determination of the dust heating mechanisms. Our decomposition identified three characteristic dust spectra. The first, most luminous one, exhibits strong emission features at approx. 9 and 21 micron, and a weaker 12 micron feature, and is closely associated with the ejecta knots that have strong [Ar II] 6.99 micron and [Ar III] 8.99 micron emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low MgO-to-SiO2 ratios. A second, very different dust spectrum that has no indication of any silicate features, is best fit by Al2O3 dust and is found in association with ejecta having strong [Ne II] 12.8 micron and [Ne III] 15.6 micron emission lines. A third characteristic dust spectrum shows features that best matched by magnesium silicates with relatively high MgO-to-SiO2 ratio. This dust is primarily associated with the X-ray emitting shocked ejecta and the shocked interstellar/circumstellar material. All three spectral components include an additional featureless cold dust component of unknown composition. Colder dust of indeterminate composition is associated with [Si II] 34.8 micron emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. The dust mass giving rise to the warm dust component is about approx. 0.1solar M. However, most of the dust mass is associated with the unidentified cold dust component. Its mass could be anywhere between 0.1 and 1 solar M, and is primarily limited by the mass of refractory elements in the ejecta. Given the large uncertainty in the dust mass, the question of whether supernovae can produce enough dust to account for ISM dust masses in the local and high-z universe remains largely unresolved.

  6. KSC-06pd0080

    NASA Image and Video Library

    2006-01-19

    KENNEDY SPACE CENTER, FLA. -- Great white egrets and a great blue heron in the foreground seem to stand watch as NASA's New Horizons spacecraft leaps off the pad on time at 2 p.m. EST aboard an Atlas V rocket from Complex 41 on Cape Canaveral Air Force Station in Florida. This was the third launch attempt in as many days after scrubs due to weather concerns. The compact, 1,050-pound piano-sized probe will get a boost from a kick-stage solid propellant motor for its journey to Pluto. New Horizons will be the fastest spacecraft ever launched, reaching lunar orbit distance in just nine hours and passing Jupiter 13 months later. The New Horizons science payload, developed under direction of Southwest Research Institute, includes imaging infrared and ultraviolet spectrometers, a multi-color camera, a long-range telescopic camera, two particle spectrometers, a space-dust detector and a radio science experiment. The dust counter was designed and built by students at the University of Colorado, Boulder. The launch at this time allows New Horizons to fly past Jupiter in early 2007 and use the planet’s gravity as a slingshot toward Pluto. The Jupiter flyby trims the trip to Pluto by as many as five years and provides opportunities to test the spacecraft’s instruments and flyby capabilities on the Jupiter system. New Horizons could reach the Pluto system as early as mid-2015, conducting a five-month-long study possible only from the close-up vantage of a spacecraft. Photo credit: NASA/Ken Thornsley

  7. KSC-06pd0081

    NASA Image and Video Library

    2006-01-19

    KENNEDY SPACE CENTER, FLA. — Great white egrets and a great blue heron in the foreground seem to stand watch as NASA’s New Horizons spacecraft leaps off the pad on time at 2 p.m. EST aboard an Atlas V rocket from Complex 41 on Cape Canaveral Air Force Station in Florida. This was the third launch attempt in as many days after scrubs due to weather concerns. The compact, 1,050-pound piano-sized probe will get a boost from a kick-stage solid propellant motor for its journey to Pluto. New Horizons will be the fastest spacecraft ever launched, reaching lunar orbit distance in just nine hours and passing Jupiter 13 months later. The New Horizons science payload, developed under direction of Southwest Research Institute, includes imaging infrared and ultraviolet spectrometers, a multi-color camera, a long-range telescopic camera, two particle spectrometers, a space-dust detector and a radio science experiment. The dust counter was designed and built by students at the University of Colorado, Boulder. The launch at this time allows New Horizons to fly past Jupiter in early 2007 and use the planet’s gravity as a slingshot toward Pluto. The Jupiter flyby trims the trip to Pluto by as many as five years and provides opportunities to test the spacecraft’s instruments and flyby capabilities on the Jupiter system. New Horizons could reach the Pluto system as early as mid-2015, conducting a five-month-long study possible only from the close-up vantage of a spacecraft. Photo credit: NASA/Ken Thornsley

  8. The Most Luminous Object in the Universe: Shrouded Quasar or Proto-Galaxy

    NASA Technical Reports Server (NTRS)

    Heckman, Timothy M.

    1999-01-01

    We have used ASCA to observe the IRAS source FSC 10214+4724, which is identified with a galaxy at a redshift of 2.286. When first discovered, it was believed to be the most luminous object in the universe. Subsequent HST images have established that it is gravitationally-lensed by a foreground cluster. It is still a very powerful object, but not extraordinarily so. Observations at other wavebands have not established whether it is a dust-shrouded quasar or a young, massive galaxy in the process of formation. Since quasars are strong emitters of hard X-rays, while proto-galaxies would not be, and since the opacity of gas and dust is relatively small in the energy regime probed by ASCA (3 to 30 keV in the galaxy rest frame), we undertook these observations to search for a heavily shrouded quasar that might be invisible at lower energies. However, the observations did not detect any emission from this object. This either means that the galaxy is in fact powered by a starburst or that the putative quasar is located behind a very high column density of absorbing gas (N_H > 10(exp 25)/sq cm), so that not even hard X-rays are transmitted. A hidden quasar should be visible in reflected light in X-ray data of higher sensitivity. Observations with NASA's Chandra X-ray Observatory or ESA's XMM are required to settle the matter. No publication resulted from our null result.

  9. Wavelet-based techniques for the gamma-ray sky

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDermott, Samuel D.; Fox, Patrick J.; Cholis, Ilias

    2016-07-01

    Here, we demonstrate how the image analysis technique of wavelet decomposition can be applied to the gamma-ray sky to separate emission on different angular scales. New structures on scales that differ from the scales of the conventional astrophysical foreground and background uncertainties can be robustly extracted, allowing a model-independent characterization with no presumption of exact signal morphology. As a test case, we generate mock gamma-ray data to demonstrate our ability to extract extended signals without assuming a fixed spatial template. For some point source luminosity functions, our technique also allows us to differentiate a diffuse signal in gamma-rays from darkmore » matter annihilation and extended gamma-ray point source populations in a data-driven way.« less

  10. A study of extended zodiacal structures

    NASA Technical Reports Server (NTRS)

    Sykes, Mark V.

    1990-01-01

    Observations of cometary dust trails and zodiacal dust bands, discovered by the Infrared Astronomical Satellite (IRAS) were analyzed in a continuing effort to understand their nature and relationship to comets, asteroids, and processes effecting those bodies. A survey of all trails observed by IRAS has been completed, and analysis of this phenomenon continues. A total of 8 trails have been associated with known short-period comets (Churyumov-Gerasimenko, Encke, Gunn, Kopff, Pons-Winnecke, Schwassmann-Wachmann 1, Tempel 1, and Tempel 2), and a few faint trails have been detected which are not associated with any known comet. It is inferred that all short-period comets may have trails, and that the trails detected were seen as a consequence of observational selection effects. Were IRAS launched today, it would likely observe a largely different set of trails. The Tempel 2 trail exhibits a small but significant excess in color temperature relative to a blackbody at the same heliocentric distance. This excess may be due to the presence of a population of small, low-beta particles deriving from large particles within the trail, or a temperature gradient over the surface of large trail particles. Trails represent the very first stage in the formation and evolution of a meteor stream, and may also be the primary mechanism by which comets contribute to the interplanetary dust complex. A mathematical model of the spatial distribution of orbitally evolved collisional debris was developed which reproduces the zodiacal dust band phenomena and was used in the analysis of dust band observations made by IRAS. This has resulted in the principal zodiacal dust bands being firmly related to the principal Hirayama asteroid families. In addition, evidence for the collisional diffusion of the orbital elements of the dust particles has been found in the case of dust generated in the Eos asteroid family.

  11. New insights into the vertical structure of the September 2015 dust storm employing eight ceilometers and auxiliary measurements over Israel

    NASA Astrophysics Data System (ADS)

    Uzan, Leenes; Egert, Smadar; Alpert, Pinhas

    2018-03-01

    On 7 September 2015, an unprecedented and unexceptional extreme dust storm struck the eastern Mediterranean (EM) basin. Here, we provide an overview of the previous studies and describe the dust plume evolution over a relatively small area, i.e., Israel. This study presents vertical profiles provided by an array of eight ceilometers covering the Israeli shore, inland and mountain regions. We employ multiple tools including spectral radiometers (Aerosol Robotic Network - AERONET), ground particulate matter concentrations, satellite images, global/diffuse/direct solar radiation measurements and radiosonde profiles. The main findings reveal that the dust plume penetrated Israel on 7 September from the northeast in a downward motion to southwest. On 8 September, the lower level of the dust plume reached 200 m above ground level, generating aerosol optical depth (AOD) above 3 and extreme ground particulate matter concentrations up to ˜ 10 000 µm m-3. A most interesting feature on 8 September was the very high variability in the surface solar radiation in the range of 200-600 W m-2 (22 sites) over just a distance of several hundred kilometers in spite of the thick dust layer above. Furthermore, 8 September shows the lowest radiation levels for this event. On the following day, the surface solar radiation increased, thus enabling a late (between 11:00 and 12:00 UTC) sea breeze development mainly in the coastal zone associated with a creation of a narrow dust layer detached from the ground. On 10 September, the AOD values started to drop down to ˜ 1.5, and the surface concentrations of particulate matter decreased as well as the ceilometers' aerosol indications (signal counts) although Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) revealed an upper dust layer remained.

  12. Model of Image Artifacts from Dust Particles

    NASA Technical Reports Server (NTRS)

    Willson, Reg

    2008-01-01

    A mathematical model of image artifacts produced by dust particles on lenses has been derived. Machine-vision systems often have to work with camera lenses that become dusty during use. Dust particles on the front surface of a lens produce image artifacts that can potentially affect the performance of a machine-vision algorithm. The present model satisfies a need for a means of synthesizing dust image artifacts for testing machine-vision algorithms for robustness (or the lack thereof) in the presence of dust on lenses. A dust particle can absorb light or scatter light out of some pixels, thereby giving rise to a dark dust artifact. It can also scatter light into other pixels, thereby giving rise to a bright dust artifact. For the sake of simplicity, this model deals only with dark dust artifacts. The model effectively represents dark dust artifacts as an attenuation image consisting of an array of diffuse darkened spots centered at image locations corresponding to the locations of dust particles. The dust artifacts are computationally incorporated into a given test image by simply multiplying the brightness value of each pixel by a transmission factor that incorporates the factor of attenuation, by dust particles, of the light incident on that pixel. With respect to computation of the attenuation and transmission factors, the model is based on a first-order geometric (ray)-optics treatment of the shadows cast by dust particles on the image detector. In this model, the light collected by a pixel is deemed to be confined to a pair of cones defined by the location of the pixel s image in object space, the entrance pupil of the lens, and the location of the pixel in the image plane (see Figure 1). For simplicity, it is assumed that the size of a dust particle is somewhat less than the diameter, at the front surface of the lens, of any collection cone containing all or part of that dust particle. Under this assumption, the shape of any individual dust particle artifact is the shape (typically, circular) of the aperture, and the contribution of the particle to the attenuation factor for a given pixel is the fraction of the cross-sectional area of the collection cone occupied by the particle. Assuming that dust particles do not overlap, the net transmission factor for a given pixel is calculated as one minus the sum of attenuation factors contributed by all dust particles affecting that pixel. In a test, the model was used to synthesize attenuation images for random distributions of dust particles on the front surface of a lens at various relative aperture (F-number) settings. As shown in Figure 2, the attenuation images resembled dust artifacts in real test images recorded while the lens was aimed at a white target.

  13. Hydrocarbons on Saturns Satellites: Relationship to Interstellar Dust and the Solar Nebula

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.

    2012-01-01

    To understand the origin and evolution of our Solar System, and the basic components that led to life on Earth, we study interstellar and planetary spectroscopic signatures. The possible relationship of organic material detected in carbonaceous meteorites, interplanetary dust particles (IDPs), comets and the interstellar medium have been the source of speculation over the years as the composition and processes that governed the early solar nebula have been explored to understand the extent to which primitive material survived or became processed. The Cassini VIMS has provided new data relevant to this problem. Three of Saturn's satellites, Phoebe, Iapetus, and Hyperion, are found to have aromatic and aliphatic hydrocarbons on their surfaces. The aromatic hydrocarbon signature (C-H stretching mode at 3.28 micrometers) is proportionally significantly stronger (relative to the aliphatic bands) than that seen in other Solar System bodies (e.g., comets) and materials (Stardust samples, IDPs, meteorites) and the distinctive sub-features of the 3.4 micrometer aliphatic band (CH2 and CH3 groups) are reminiscent of those widely detected throughout the diffuse ISM. Phoebe may be a captured object that originated in the region beyond the present orbit of Neptune, where the solar nebula contained a large fraction of original interstellar ice and dust that was less processed than material closer to the Sun. Debris from Phoebe now resident on Iapetus and Hyperion, as well as o Phoebe itself, thus presents a unique blend of hydrocarbons, amenable to comparisons with interstellar hydrocarbons and other Solar System materials. The dust ring surrounding Saturn, in which Phoebe is embedded, probably originated from a collision with Phoebe. Dust ring particles are the likely source of the organic-bearing materials, and perhaps the recently identified small particles of Fe detected on Saturn's satellites. Lab measurements of the absolute band strengths of representative aliphatic and aromatic molecules, together with measurements from the VIMS data, allow us to calculate the number of C atoms to find the relative abundances of C atoms in the two kinds of organic molecules. The strength of the prominent aromatic C-H stretch band relative to the aliphatic band complex in Phoebe and Iapetus indicates that the relative abundance of aromatic to aliphatic carbon is very large (greater than 200). In contract, the aromatic band is nearly imperceptible in spectra of interplanetary dust particles (IDP), returned samples from comet 91P/Wild 2, insoluable carbonaceous material in most meteorites, and the diffuse interstellar dust (DISM) (although aromatics are known in all these materials-here we consider only the spectroscopic signature)

  14. THE DUST PROPERTIES OF TWO HOT R CORONAE BOREALIS STARS AND A WOLF-RAYET CENTRAL STAR OF A PLANETARY NEBULA: IN SEARCH OF A POSSIBLE LINK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Geoffrey C.; Gallagher, J. S.; Freeman, W. R.

    2011-08-15

    We present new Spitzer/IRS spectra of two hot R Coronae Borealis (RCB) stars, one in the Galaxy, V348 Sgr, and one lying in the Large Magellanic Cloud, HV 2671. These two objects may constitute a link between the RCB stars and the late Wolf-Rayet ([WCL]) class of central stars of planetary nebulae (CSPNe), such as CPD -56{sup 0} 8032, that has little or no hydrogen in their atmospheres. HV 2671 and V348 Sgr are members of a rare subclass that has significantly higher effective temperatures than most RCB stars, but shares the traits of hydrogen deficiency and dust formation thatmore » define the cooler RCB stars. The [WC] CSPN star, CPD -56{sup 0} 8032, displays evidence of dual-dust chemistry showing both polycyclic aromatic hydrocarbons (PAHs) and crystalline silicates in its mid-IR spectrum. HV 2671 shows strong PAH emission but no sign of having crystalline silicates. The spectrum of V348 Sgr is very different from that of CPD -56{sup 0} 8032 and HV 2671. The PAH emission seen strongly in the other two stars is not present. Instead, the spectrum is dominated by a broad emission centered at about 8.2 {mu}m. This feature is not identified with either PAHs or silicates. Several other cool RCB stars, novae, and post-asymptotic giant branch stars show similar features in their IR spectra. The mid-IR spectrum of CPD -56{sup 0} 8032 shows emission features that may be associated with C{sub 60}. The other two stars do not show evidence of C{sub 60}. The different nature of the dust around these stars does not help us in establishing further links that may indicate a common origin. HV 2671 has also been detected by Herschel/PACS and SPIRE. V348 Sgr and CPD -56{sup 0} 8032 have been detected by AKARI/Far-Infrared Surveyor. These data were combined with Spitzer, IRAS, Two Micron All Sky Survey, and other photometry to produce their spectral energy distributions (SEDs) from the visible to the far-IR. Monte Carlo radiative transfer modeling was used to study the circumstellar dust around these stars. HV 2671 and CPD -56{sup 0} 8032 require both a flared inner disk with warm dust and an extended diffuse envelope with cold dust to fit their SEDs. The SED of V348 Sgr can be fit with a much smaller disk and envelope. The cold dust in the extended diffuse envelopes inferred around HV 2671 and CPD -56{sup 0} 8032 may consist of interstellar medium swept up during mass-loss episodes.« less

  15. Tracing Water Vapor and Ice During Dust Growth

    NASA Astrophysics Data System (ADS)

    Krijt, Sebastiaan; Ciesla, Fred J.; Bergin, Edwin A.

    2016-12-01

    The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ˜50 in the disk atmosphere. In our isothermal column, this vapor depletion results in the vertical snowline moving closer to the midplane (by up to 2 gas scale heights) and the gas-phase {{C}}/{{O}} ratio above the vertical snowline increasing. Our findings illustrate the importance of dynamical effects and the need for understanding coevolutionary dynamics of gas and solids in planet-forming environments.

  16. The use of kerogen data in understanding the properties and evolution of interstellar carbonaceous dust

    NASA Astrophysics Data System (ADS)

    Papoular, R.

    2001-11-01

    A number of authors have, in the past decade, pointed to the similarity of the 3.4-mu m band of kerogen with that of the Galactic Centre (GC). Kerogen is a family of solid terrestrial sedimentary materials essentially made of C, H and O interlocked in a disordered, more or less aliphatic, structure. Here, the most recent results of the astronomical literature and the rich quantitative geochemical literature are tapped with two purposes in mind: extend the analogy to the mid-IR bands and, based on these new constraints, quantitatively assess the properties of the carrier dust. It is shown that the great diversity of IR astronomical IS (interstellar) dust is paralleled by the changes in kerogen spectra as the material spontaneously and continuously evolves (aromatizes) in the earth. Since the composition and structure of kerogen are known all along its evolution, it is possible, by spectral analogy, to estimate these properties for the corresponding astronomical carriers. The Galactic Centre 3.4 mu m feature is thus found to correspond to an early stage of evolution, for which the composition in C, H and O and the structure of the corresponding kerogen are known and reported here. The role of oxygen in the subsequent evolution and its contribution to different bands are stressed. The above provides new arguments in favour of the 3.4-mu m band, as well as the observed accompanying mid-IR bands, being carried by kerogen-like dust born in CS (circumstellar) envelopes, mostly of AGB (asymptotic giant branch) objects. Subsequent dust evolution in composition and structure (aromatization) is fast enough that the unidentified infrared bands can already show up in well-developed planetary nebulae (PNe), as observed. A fraction of incompletely evolved dust can escape into the diffuse IS medium and molecular clouds. As a consequence, aliphatic and aromatic features can both be detected in the sky, in emission (Proto-PNe, PNe and PDRs (photo-dissociation regions)) as well as in absorption (dense molecular clouds and diffuse ISM). Changes in wavelength and band width with line of sight are explained by changes in the nature and number of chemical functional groups composing the carrier material. Predictions of the kerogen model in the UV and far IR are proposed for testing.

  17. The Coupled Physical Structure of Gas and Dust in the IM Lup Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Cleeves, L. Ilsedore; Öberg, Karin I.; Wilner, David J.; Huang, Jane; Loomis, Ryan A.; Andrews, Sean M.; Czekala, Ian

    2016-12-01

    The spatial distribution of gas and solids in protoplanetary disks determines the composition and formation efficiency of planetary systems. A number of disks show starkly different distributions for the gas and small grains compared to millimeter-centimeter-sized dust. We present new Atacama Large Millimeter/Submillimeter Array observations of the dust continuum, CO, 13CO, and C18O in the IM Lup protoplanetary disk, one of the first systems where this dust-gas dichotomy was clearly seen. The 12CO is detected out to a radius of 970 au, while the millimeter continuum emission is truncated at just 313 au. Based upon these data, we have built a comprehensive physical and chemical model for the disk structure, which takes into account the complex, coupled nature of the gas and dust and the interplay between the local and external environment. We constrain the distributions of gas and dust, the gas temperatures, the CO abundances, the CO optical depths, and the incident external radiation field. We find that the reduction/removal of dust from the outer disk exposes this region to higher stellar and external radiation and decreases the rate of freeze-out, allowing CO to remain in the gas out to large radial distances. We estimate a gas-phase CO abundance of 5% of the interstellar medium value and a low external radiation field (G 0 ≲ 4). The latter is consistent with that expected from the local stellar population. We additionally find tentative evidence for ring-like continuum substructure, suggestions of isotope-selective photodissociation, and a diffuse gas halo.

  18. Mineral Surface Rearrangement at High Temperatures: Implications for Extraterrestrial Mineral Grain Reactivity.

    PubMed

    King, Helen E; Plümper, Oliver; Putnis, Christine V; O'Neill, Hugh St C; Klemme, Stephan; Putnis, Andrew

    2017-04-20

    Mineral surfaces play a critical role in the solar nebula as a catalytic surface for chemical reactions and potentially acted as a source of water during Earth's accretion by the adsorption of water molecules to the surface of interplanetary dust particles. However, nothing is known about how mineral surfaces respond to short-lived thermal fluctuations that are below the melting temperature of the mineral. Here we show that mineral surfaces react and rearrange within minutes to changes in their local environment despite being far below their melting temperature. Polished surfaces of the rock and planetary dust-forming silicate mineral olivine ((Mg,Fe) 2 SiO 4 ) show significant surface reorganization textures upon rapid heating resulting in surface features up to 40 nm in height observed after annealing at 1200 °C. Thus, high-temperature fluctuations should provide new and highly reactive sites for chemical reactions on nebula mineral particles. Our results also may help to explain discrepancies between short and long diffusion profiles in experiments where diffusion length scales are of the order of 100 nm or less.

  19. Collective dynamics and transport in extremely magnetized dusty plasmas

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter

    2016-09-01

    We have built an experimental setup to realize and observe rotating dusty plasmas in a co-rotating frame. Based on the Larmor theorem, the ``RotoDust'' setup is able to create effective magnetizations, mimicked by the Coriolis inertial force, in strongly coupled dusty plasmas that are impossible to approach with superconducting magnets. At the highest rotation speed, we have achieved effective magnetic fields of 3200 T. The effective magnetization β =ωc /ωp (ratio of cyclotron to plasma frequency) reaches 0.76 which is typical for many strongly magnetized and strongly correlated plasmas in compact astrophysical objects. The analysis of the wave spectra as observed in the rotating frame clearly shows the equivalence of the rotating dust cloud and a magnetized plasma. Further, the analysis of the mean square displacement (MSD) and the velocity autocorrelation function (VAC) revealed the transport parameters diffusion and viscosity, which are in reasonable agreement with numerical predictions for magnetized 2D Yukawa systems. Small degree of super-diffusion is observed. This research was supported by grant NKFIH K-115805 and the Janos Bolyai Research Scholarship of the HAS.

  20. Infrared observations of Comet Austin (1990 V) by the COBE/Diffuse Infrared Background Experiment

    NASA Technical Reports Server (NTRS)

    Lisse, C. M.; Freudenreich, H. T.; Hauser, M. G.; Kelsall, T.; Moseley, S. H.; Reach, W. T.; Silverberg, R. F.

    1994-01-01

    Comet Austin was observed by the Cosmic Background Explorer (COBE)/Diffuse Infrared Background Experiment (DIRBE) with broadband photometry at 1-240 micrometers during the comet's close passage by Earth in 1990 May. A 6 deg long (6 x 10(exp 6) km) dust tail was found at 12 and 25 micrometers, with detailed structure due to variations in particle properties and mass-loss rate. The spectrum of the central 42 x 42 sq arcmin pixel was found to agree with that of a graybody of temperature 309 +/- 5 K and optical depth 7.3 +/- 10(exp -8). Comparison with IUE and ground-based obervations indicates that particles of radius greater than 20 micrometers predominate by surface area. A mass-loss rate of 510 (+510/-205) kg/s and a total tail mass of 7 +/- 2 x 10(exp 10) kg was found for a model dust tail composed of Mie spheres with a differential particle mass distribution dn/d log m approx. m(exp -0.63) and 2:1 silicate:amorphous carbon composition by mass.

  1. A Clustered Extragalactic Foreground Model for the EoR

    NASA Astrophysics Data System (ADS)

    Murray, S. G.; Trott, C. M.; Jordan, C. H.

    2018-05-01

    We review an improved statistical model of extra-galactic point-source foregrounds first introduced in Murray et al. (2017), in the context of the Epoch of Reionization. This model extends the instrumentally-convolved foreground covariance used in inverse-covariance foreground mitigation schemes, by considering the cosmological clustering of the sources. In this short work, we show that over scales of k ~ (0.6, 40.)hMpc-1, ignoring source clustering is a valid approximation. This is in contrast to Murray et al. (2017), who found a possibility of false detection if the clustering was ignored. The dominant cause for this change is the introduction of a Galactic synchrotron component which shadows the clustering of sources.

  2. First Photograph Taken On Mars Surface

    NASA Image and Video Library

    1996-12-12

    This is the first photograph ever taken on the surface of the planet Mars. It was obtained by Viking 1 just minutes after the spacecraft landed successfully early today [July 20, 1976]. The center of the image is about 1.4 meters (five feet) from Viking Lander camera #2. We see both rocks and finely granulated material--sand or dust. Many of the small foreground rocks are flat with angular facets. Several larger rocks exhibit irregular surfaces with pits and the large rock at top left shows intersecting linear cracks. Extending from that rock toward the camera is a vertical linear dark band which may be due to a one-minute partial obscuration of the landscape due to clouds or dust intervening between the sun and the surface. Associated with several of the rocks are apparent signs of wind transport of granular material. The large rock in the center is about 10 centimeters (4 inches) across and shows three rough facets. To its lower right is a rock near a smooth portion of the Martian surface probably composed of very fine-grained material. It is possible that the rock was moved during Viking 1 descent maneuvers, revealing the finer-grained basement substratum; or that the fine-grained material has accumulated adjacent to the rock. There are a number of other furrows and depressions and places with fine-grained material elsewhere in the picture. At right is a portion of footpad #2. Small quantities of fine grained sand and dust are seen at the center of the footpad near the strut and were deposited at landing. The shadow to the left of the footpad clearly exhibits detail, due to scattering of light either from the Martian atmosphere or from the spacecraft, observable because the Martian sky scatters light into shadowed areas. http://photojournal.jpl.nasa.gov/catalog/PIA00381

  3. The Nature and Evolution of Interstellar Ices: Studies of Methanol and Carbon Monoxide

    NASA Astrophysics Data System (ADS)

    Chiar, Jean Elizabeth

    The evolution of icy grain mantles is governed by the environment in which they exist. Infrared spectroscopy provides the observational means for detecting absorption features of molecules in the dust. The 3.3-4.0 μm spectral region contains the fundamental C-H stretching vibrations of alcohols and aliphatic hydrocarbons and provides a powerful method of characterizing the organic component of interstellar ices. I discuss hydrocarbon and methanol absorption in several lines of sight in Taurus. My results are consistent with a location for the 3.47 μm absorber in the grain mantle material rather than the core. The 3.54 μm methanol (CH3OH) feature is not detected in any of the sources and the possibility that methanol production requires warm conditions is discussed. The CO profile is observed in lines of sight toward embedded and background objects. Modeling of the CO features is accomplished by fitting laboratory data to the astronomical spectra. This is done for sources in several dark clouds. In general, CO spectra of field stars are best-fitted with pure (or mostly pure) CO along with a minor contribution from the polar component. In contrast, some embedded stars show distinctly different CO profiles. Their spectra are broader than those of field stars and some are best-fitted with laboratory mixtures which imply the presence of CO2. In other cases, where the CO-containing mantles exist in the foreground dust far away from the embedded object, the CO is in pure form. Observations of the 4.27 μm CO2 feature confirm the presence of processed dust along these same lines of sight. Thus, it is likely that the CO and CO2 exist in separate grain populations along the line of sight. In the final chapter of this thesis, I discuss the relevance of this work to origin of life studies.

  4. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jaorsik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M; hide

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = -0.0027+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter ?Lambda-CDM model, based on CMB data alone. For a model including tensors, the allowed seven-parameter volume has been reduced by a factor 117,000. Other cosmological observations are in accord with the CMB predictions, and the combined data reduces the cosmological parameter volume even further.With no significant anomalies and an adequate goodness of fit, the inflationary flat Lambda-CDM model and its precise and accurate parameters rooted in WMAP data stands as the standard model of cosmology.

  5. Foreground Subtraction and Signal reconstruction in redshifted 21cm Global Signal Experiments using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Choudhury, Madhurima; Datta, Abhirup

    2018-05-01

    Observations of HI 21cm transition line is a promising probe into the Dark Ages and Epoch-of-Reionization. Detection of this redshifted 21cm signal is one of the key science goal for several upcoming low-frequency radio telescopes like HERA, SKA and DARE. Other global signal experiments include EDGES, LEDA, BIGHORNS, SCI-HI, SARAS. One of the major challenges for the detection of this signal is the accuracy of the foreground source removal. Several novel techniques have been explored already to remove bright foregrounds from both interferometric as well as total power experiments. Here, we present preliminary results from our investigation on application of ANN to detect 21cm global signal amidst bright galactic foreground. Following the formalism of representing the global 21cm signal by 'tanh' model, this study finds that the global 21cm signal parameters can be accurately determined even in the presence of bright foregrounds represented by 3rd order log-polynomial or higher.

  6. Infrared Photometry of 487 Sources in the Inner Regions of NGC 5128 (Centaurus A)

    NASA Astrophysics Data System (ADS)

    Alonso, M. Victoria; Minniti, Dante

    1997-04-01

    We study the sources present in the inner 3 kpc region of NGC 5128 (Cen A), most of which are star clusters of different ages. Photometry of archival Hubble Space Telescope WFPC images (F675W filter) is complemented with IR photometry (JHK' filters) obtained with the IRAC2B infrared array camera at the ESO/MPI 2.2 m telescope. From IR color maps we divide the field into two regions: a clear region outside the dust lane, and an obscured region well inside the dust lane of NGC 5128. In the unreddened region there is a great variety of sources such as globular clusters, star associations, and H II regions. These sources are not individual stars, which would be too faint to be resolved from ground-based telescopes. The vast majority of IR sources in the reddened region, where the dust lane dominates, are not seen at all in the deep HST images. The presence of large amounts of differential extinction makes it difficult to evaluate them. In total, there are 372 objects detected in the inner region of NGC 5128. From them, 125 objects are detected both in IR and HST frames. There are 247 IR sources without optical counterparts (47 in the clear region and 200 in the dust lane). Accounting for the small volume sampled, there must be a total of ~500 sources with K < 18 in the dust lane region. The distribution of these sources is rather uniform and not particularly centrally concentrated. This fact suggests that the majority of them are located in a disk, as would be expected if they are young associations or clusters. The degree of background and foreground contamination is evaluated using observations of a nearby field. We found 115 IR sources in this field. The nucleus itself is invisible in deep optical images, but it is clearly identified in the IR. In the region just south of the nucleus the extinction must be larger than AK = 3. In the clear region, where the effect of the dust lane is negligible, we have identified some objects as intermediate-age clusters containing carbon stars. From color-magnitude diagrams we do not find evidence of very young clusters in this region. Such clusters might be fainter than our detection limit in JHK'. We measure metallicities for 42 globular clusters, confirming the presence of a metallicity gradient with Δ[Fe/H]/ΔR = -0.06 dex kpc-1. Based on observations collected at La Silla Observatory and on archival data of the NASA/ESA Hubble Space Telescope, which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  7. Resolving Molecular Clouds in the Nearby Galaxy NGC 300

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher; Lada, Charles J.; Forbrich, Jan

    2015-01-01

    We present results from our ongoing Submillimeter Array (SMA) survey in which we resolve Giant Molecular Clouds (GMCs) for the first time in the nearby (D = 1.9 Mpc) spiral galaxy NGC 300. We have conducted CO(2-1) and 1.3 mm dust continuum observations of several massive star-forming regions in NGC 300, following up on the Atacama Pathfinder Experiment (APEX) survey of Faesi et al. (2014). We find that the unresolved CO sources detected with APEX at ~250 pc resolution typically resolve into one dominant GMC in our SMA observations, which have a resolution of ~3.5' (30 pc). The majority of sources are significantly detected in CO, but only one exhibits dust continuum emission. Comparing with archival H-alpha, GALEX far-ultraviolet, and Spitzer 24 micron images, we note physical offsets between the young star clusters, warm dust, and ionized and molecular gas components in these regions. We recover a widely varying fraction -- between 30% and almost 100% -- of the full APEX single dish flux with our interferometric observations. This implies that the fraction of CO-emitting molecular gas that is in a diffuse state (i.e. with characteristic spatial scales > 100 pc) differs greatly amongst star forming regions in NGC 300. We investigate potential trends in the implied diffuse molecular gas fraction with GMC properties and star formation activity. We compute virial masses and analyze the velocity structure of these resolved extragalactic GMCs and compare to results from surveys of the Milky Way and other nearby galaxies.

  8. Modeling the Radio Foreground for Detection of CMB Spectral Distortions from the Cosmic Dawn and the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Udaya Shankar, N.; Chluba, Jens

    2017-05-01

    Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30-6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal. We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.

  9. Extracting foreground ensemble features to detect abnormal crowd behavior in intelligent video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien

    2017-09-01

    Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.

  10. Extended Red Emission in the Evil Eye Galaxy

    NASA Astrophysics Data System (ADS)

    Pierini, D.; Majeed, A.; Boroson, T. A.; Witt, A. N.

    2001-05-01

    The Evil Eye Galaxy (NGC 4826) is a nearby galaxy with an asymmetrically placed, strongly absorbing dust lane across its prominent bulge, associated to an active star formation (SF) region. We obtained accurate low--resolution (4.2 Å/pixel) spectroscopy (KPNO 4-m) of NGC 4826 in the wavelength range 5300--9100Å with a slit of 4.4' length, positioned across the nucleus of the galaxy and encompassing its bulge size. We were able to study the wavelength dependent effects of absorption and scattering by the dust by comparing the stellar SEDs at corresponding positions on the bulge, symmetrically placed with respect to the nucleus, under the assumption that the intrinsic (i.e. unobscured by the dust lane) ISRF is radially symmetric, except for the ongoing SF region. We report on the detection of strong extended red emission (ERE) from the dust lane of NGC 4826 within a radial distance of about 15{' '} from its nucleus, adjacent to the active SF region. At the nucleus, the ERE band extends from about 5800 Å to 9100 Å, with peak near 8300 Å, and the ERE-to-scattered light integrated intensity ratio is about 0.7. At farther distances, approaching the ongoing SF region, the ERE band and peak shift to longer wavelengths, while the integrated ERE intensity diminishes and, finally, vanishes there. The H α line intensity and the index [NII]λ 6583/H α constrain the Lyman continuum photon rate and the effective temperatures of the OB association stars. The ERE-to-scattered light ratio decreases as well but shows a secondary maximum where the opacity of the dust lane peaks. We interpret the ERE nature as photoluminescence by nanometer--sized clusters, illuminated by UV/visible photons of the local radiation field. When examined within the context of ERE observations in the diffuse ISM of our Galaxy and in a variety of other dusty environments, we conclude that the ERE photon conversion efficiency in NGC 4826 is as high as found elsewhere, but that the characteristic size of the nanoparticles there is about twice as large as that inferred in the Galactic diffuse ISM.

  11. Changes in blast zone albedo patterns around new martian impact craters

    NASA Astrophysics Data System (ADS)

    Daubar, I. J.; Dundas, C. M.; Byrne, S.; Geissler, P.; Bart, G. D.; McEwen, A. S.; Russell, P. S.; Chojnacki, M.; Golombek, M. P.

    2016-03-01

    "Blast zones" (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506-516. http://dx.doi.org/10.1016/j.icarus.2013.04.009) does not suffer significantly from overall under-sampling due to blast zones fading before new impact sites can be initially discovered. However, the prevalence of changes seen around smaller craters may explain in part their shallower size frequency distribution.

  12. Changes in blast zone albedo patterns around new martian impact craters

    USGS Publications Warehouse

    Daubar, Ingrid J.; Dundas, Colin; Byrne, Shane; Geissler, Paul; Bart, Gwen; McEwen, Alfred S.; Russell, Patrick; Chojnacki, Matthew; Golombek, M.P.

    2016-01-01

    “Blast zones” (BZs) around new martian craters comprise various albedo features caused by the initial impact, including diffuse halos, extended linear and arcuate rays, secondary craters, ejecta patterns, and dust avalanches. We examined these features for changes in repeat images separated by up to four Mars years. Here we present the first comprehensive survey of the qualitative and quantitative changes observed in impact blast zones over time. Such changes are most likely due to airfall of high-albedo dust restoring darkened areas to their original albedo, the albedo of adjacent non-impacted surfaces. Although some sites show drastic changes over short timescales, nearly half of the sites show no obvious changes over several Mars years. Albedo changes are more likely to occur at higher-latitude sites, lower-elevation sites, and at sites with smaller central craters. No correlation was seen between amount of change and Dust Cover Index, relative halo size, or historical regional albedo changes. Quantitative albedo measurements of the diffuse dark halos relative to their surroundings yielded estimates of fading lifetimes for these features. The average lifetime among sites with measurable fading is ∼15 Mars years; the median is ∼8 Mars years for a linear brightening. However, at approximately half of sites with three or more repeat images, a nonlinear function with rapid initial fading followed by a slow increase in albedo provides a better fit to the fading behavior; this would predict even longer lifetimes. The predicted lifetimes of BZs are comparable to those of slope streaks, and considered representative of fading by global atmospheric dust deposition; they last significantly longer than dust devil or rover tracks, albedo features that are erased by different processes. These relatively long lifetimes indicate that the measurement of the current impact rate by Daubar et al. (Daubar, I.J. et al. [2013]. Icarus 225, 506–516. http://dx.doi.org/10.1016/j.icarus.2013.04.009) does not suffer significantly from overall under-sampling due to blast zones fading before new impact sites can be initially discovered. However, the prevalence of changes seen around smaller craters may explain in part their shallower size frequency distribution.

  13. The Cosmic Twilight Polarimeter: A Model-Independent Approach to Measure the Sky-averaged Foreground Spectrum for Global 21-cm Cosmology

    NASA Astrophysics Data System (ADS)

    Nhan, Bang; Bradley, Richard F.; Burns, Jack O.

    2018-06-01

    Detecting the cosmological sky-averaged (global) 21 cm spectrum as a function of observed frequency will provide a powerful tool to study the ionization and thermal history of intergalactic medium (IGM) in the high-redshift Universe (400 million years after the Big Bang). The biggest challenge in conventional ground-based total-power global 21 cm experiments is the removal of the Galactic and extragalactic synchrotron foreground (1E4-1E5 K) to uncover the weak cosmological signal (10-100 mK) due to corruptions on the spectral smoothness of foreground spectrum by instrumental effects. Although an absorption profile has been reported recently at 78 MHz in the sky-averaged spectrum by the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) experiment, it is necessary to confirm that the proposed observation is indeed the global 21 cm signal with an independent approach. In this presentation, we propose a new polarimetry-based observational approach that relies on the dynamic characteristics of the foreground emission at the circumpolar region to track and remove the foreground spectrum di- rectly, without relying on any parametric foreground models as in conventional approaches. Due to asymmetry and the Earth's rotation, the projection of the anisotropic foreground sources onto a wide-view antenna pointing at the North Celestial Pole (NCP) can induce a net polarization which varies with time with a unique twice-diurnal periodicity. Different from the zenith-pointing global 21 cm experiments, by using this twice-diurnal signature, the Cosmic Twilight Polarimeter (CTP) is designed to measure and separate the varying foreground from the isotropic cosmological background simultaneously in the same observation. By combining preliminary results of the proof-of-concept instrument with numerical simulations, we present a detailed evaluation for this technique and its feasibility in conducting an independent global 21 cm measurement in the near future.

  14. Systematic effects of foreground removal in 21-cm surveys of reionization

    NASA Astrophysics Data System (ADS)

    Petrovic, Nada; Oh, S. Peng

    2011-05-01

    21-cm observations have the potential to revolutionize our understanding of the high-redshift Universe. Whilst extremely bright radio continuum foregrounds exist at these frequencies, their spectral smoothness can be exploited to allow efficient foreground subtraction. It is well known that - regardless of other instrumental effects - this removes power on scales comparable to the survey bandwidth. We investigate associated systematic biases. We show that removing line-of-sight fluctuations on large scales aliases into suppression of the 3D power spectrum across a broad range of scales. This bias can be dealt with by correctly marginalizing over small wavenumbers in the 1D power spectrum; however, the unbiased estimator will have unavoidably larger variance. We also show that Gaussian realizations of the power spectrum permit accurate and extremely rapid Monte Carlo simulations for error analysis; repeated realizations of the fully non-Gaussian field are unnecessary. We perform Monte Carlo maximum likelihood simulations of foreground removal which yield unbiased, minimum variance estimates of the power spectrum in agreement with Fisher matrix estimates. Foreground removal also distorts the 21-cm probability distribution function (PDF), reducing the contrast between neutral and ionized regions, with potentially serious consequences for efforts to extract information from the PDF. We show that it is the subtraction of large-scale modes which is responsible for this distortion, and that it is less severe in the earlier stages of reionization. It can be reduced by using larger bandwidths. In the late stages of reionization, identification of the largest ionized regions (which consist of foreground emission only) provides calibration points which potentially allow recovery of large-scale modes. Finally, we also show that (i) the broad frequency response of synchrotron and free-free emission will smear out any features in the electron momentum distribution and ensure spectrally smooth foregrounds and (ii) extragalactic radio recombination lines should be negligible foregrounds.

  15. Constraining foreground spectrum with the projection-induced polarization for the cosmological global 21-cm experiments

    NASA Astrophysics Data System (ADS)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Professor O.

    2018-01-01

    Detecting the cosmological global (sky-averaged) 21-cm spectrum as a function of observed frequency will provide a powerful tool to study the thermal history of intergalactic medium (IGM) in the high-redshift Universe (~ 400 million years after the Big Bang). The biggest challenge in conventional ground-based total-power global 21-cm experiments is the removal of the Galactic and extragalactic synchrotron foreground (~ 1e4-1e5 K) to uncover the weak cosmological signal (~ 10-100 mK). The foreground is further corrupted by the frequency-dependent instrumental systematics. We have developed a new polarimetry-based observational approach that aims to measure the foreground emission by modulating it as a function of time through its circumpolar motion. Due to geometry, the projection of the anisotropic foreground sources onto the dual-polarized antenna induces a net foreground polarization, which is distinct from the much weaker intrinsic polarization of synchrotron sources. Instead of pointing the radio antenna at the zenith as in the conventional experiments, we point the antenna at the North Celestial Pole (NCP) and measure the projection-induced polarization modulated by the foreground's circumpolar diurnal periodicity. This temporal signature allows us to separate the dynamic foreground spectrum from the static cosmological background. In this presentation, we describe the design, construction, and initial results from the "Cosmic Twilight Polarimeter'' (CTP) as a proof-of-concept implementation of this technique. The instrument consists of a dual-polarized broadband antenna (60-120 MHz) with a two-stage thermally stabilized front-end electronics, tilted toward the NCP. The instrument is currently being evaluated at a site near Charlottesville, VA. Ultimately, the instrument will be relocated to an RFI-quiet site closer to the Geographic North Pole (GNP) to mitigate sky obstruction due to the horizon at a lower latitude.

  16. The diffuse interstellar bands: a tracer for organics in the diffuse interstellar medium?

    NASA Technical Reports Server (NTRS)

    Salama, F.

    1998-01-01

    The diffuse interstellar bands (DIBs) are absorption bands seen in the spectra of stars obscured by interstellar dust. DIBs are recognized as a tracer for free, organic molecules in the diffuse interstellar medium (ISM). The potential molecular carriers for the DIBs are discussed with an emphasis on neutral and ionized polycyclic aromatic hydrocarbons (PAHs) for which the most focused effort has been made to date. From the combined astronomical, laboratory and theoretical study, it is concluded that a distribution of free neutral and ionized complex organics (PAHs, fullerenes, unsaturated hydrocarbons) represents the most promising class of candidates to account for the DIBs. The case for aromatic hydrocarbons appears particularly strong. The implied widespread distribution of complex organics in the diffuse ISM bears profound implications for our understanding of the chemical complexity of the ISM, the evolution of prebiotic molecules and its impact on the origin and the evolution of life on early Earth through the exogenous delivery (cometary encounters and metoritic bombardments) of prebiotic organics.

  17. Formation and Destruction Processes of Interstellar Dust: From Organic Molecules to carbonaceous Grains

    NASA Technical Reports Server (NTRS)

    Salama, F.; Biennier, L.

    2004-01-01

    The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic molecules.

  18. Planck intermediate results: XXV. The Andromeda galaxy as seen by Planck

    DOE PAGES

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.; ...

    2015-09-30

    The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiralarms and sub-features. In this paper, we examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (≳0.3 mm) ismore » heated by the diffuse stellar population (as traced by 3.6 μm emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 μm emission). We also fit spectral energy distributions for individual 5' pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 ± 1.0) K with a spectral index of 1.62 ± 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20–60 GHz, which corresponds to a star formation rate of around 0.12 M ⊙ yr -1. Finally, we find a 2.3σ detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 ± 0.3 Jy, which is in line with expectations from our Galaxy.« less

  19. Planck intermediate results: XXV. The Andromeda galaxy as seen by Planck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, P. A. R.; Aghanim, N.; Arnaud, M.

    The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiralarms and sub-features. In this paper, we examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (≳0.3 mm) ismore » heated by the diffuse stellar population (as traced by 3.6 μm emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 μm emission). We also fit spectral energy distributions for individual 5' pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 ± 1.0) K with a spectral index of 1.62 ± 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20–60 GHz, which corresponds to a star formation rate of around 0.12 M ⊙ yr -1. Finally, we find a 2.3σ detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 ± 0.3 Jy, which is in line with expectations from our Galaxy.« less

  20. Planck intermediate results. XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Chiang, H. C.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Dusini, S.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Ferrière, K.; Finelli, F.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Guillet, V.; Hansen, F. K.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hivon, E.; Huang, Z.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Le Jeune, M.; Levrier, F.; Liguori, M.; Lilje, P. B.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Matarrese, S.; Mauri, N.; McEwen, J. D.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Moss, A.; Naselsky, P.; Natoli, P.; Neveu, J.; Nørgaard-Nielsen, H. U.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Paoletti, D.; Partridge, B.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Plaszczynski, S.; Polenta, G.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Ruiz-Granados, B.; Salvati, L.; Sandri, M.; Savelainen, M.; Scott, D.; Sirignano, C.; Soler, J. D.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Tenti, M.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Valiviita, J.; Vansyngel, F.; Van Tent, F.; Vielva, P.; Villa, F.; Wandelt, B. D.; Wehus, I. K.; Zacchei, A.; Zonca, A.

    2016-12-01

    Using data from the Planck satellite, we study the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (ψ), in order to characterize the ordered and turbulent components of the Galactic magnetic field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l0,b0) = (70° ± 5°,24° ± 5°). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram of ψ has a standard deviation of 12° about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and ψ to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p0) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and ψ distributions using a p0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 ± 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves.

  1. Planck intermediate results: XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap

    DOE PAGES

    Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.; ...

    2016-12-12

    Using data from the Planck satellite, we study in this paper the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (ψ), in order to characterize the ordered and turbulent components of the Galactic magneticmore » field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l 0,b 0) = (70° ± 5°,24° ± 5°). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram of ψ has a standard deviation of 12° about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and ψ to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p 0) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and ψ distributions using a p 0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 ± 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Finally, our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves.« less

  2. Planck intermediate results: XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aghanim, N.; Alves, M. I. R.; Arzoumanian, D.

    Using data from the Planck satellite, we study in this paper the statistical properties of interstellar dust polarization at high Galactic latitudes around the south pole (b < -60°). Our aim is to advance the understanding of the magnetized interstellar medium (ISM), and to provide a modelling framework of the polarized dust foreground for use in cosmic microwave background (CMB) component-separation procedures. We examine the Stokes I, Q, and U maps at 353 GHz, and particularly the statistical distribution of the polarization fraction (p) and angle (ψ), in order to characterize the ordered and turbulent components of the Galactic magneticmore » field (GMF) in the solar neighbourhood. The Q and U maps show patterns at large angular scales, which we relate to the mean orientation of the GMF towards Galactic coordinates (l 0,b 0) = (70° ± 5°,24° ± 5°). The histogram of the observed p values shows a wide dispersion up to 25%. The histogram of ψ has a standard deviation of 12° about the regular pattern expected from the ordered GMF. We build a phenomenological model that connects the distributions of p and ψ to a statistical description of the turbulent component of the GMF, assuming a uniform effective polarization fraction (p 0) of dust emission. To compute the Stokes parameters, we approximate the integration along the line of sight (LOS) as a sum over a set of N independent polarization layers, in each of which the turbulent component of the GMF is obtained from Gaussian realizations of a power-law power spectrum. We are able to reproduce the observed p and ψ distributions using a p 0 value of 26%, a ratio of 0.9 between the strengths of the turbulent and mean components of the GMF, and a small value of N. The mean value of p (inferred from the fit of the large-scale patterns in the Stokes maps) is 12 ± 1%. We relate the polarization layers to the density structure and to the correlation length of the GMF along the LOS. We emphasize the simplicity of our model (involving only a few parameters), which can be easily computed on the celestial sphere to produce simulated maps of dust polarization. Finally, our work is an important step towards a model that can be used to assess the accuracy of component-separation methods in present and future CMB experiments designed to search the B mode CMB polarization from primordial gravity waves.« less

  3. The ultraviolet interstellar extinction curve in the Pleiades

    NASA Technical Reports Server (NTRS)

    Witt, A. N.; Bohlin, R. C.; Stecher, T. P.

    1981-01-01

    The wavelength dependence of ultraviolet extinction in the Pleiades dust clouds has been determined from IUE observations of HD 23512, the brightest heavily reddened member of the Pleiades cluster. There is evidence for an anomalously weak absorption bump at 2200 A, followed by an extinction rise in the far ultraviolet with an essentially normal slope. A relatively weak absorption band at 2200 A and a weak diffuse absorption band at 4430 A seem to be common characteristics of dust present in dense clouds. Evidence is presented which suggests that the extinction characteristics found for HD 23512 are typical for a class of extinction curves observed in several cases in the Galaxy and in the LMC.

  4. An unsupervised video foreground co-localization and segmentation process by incorporating motion cues and frame features

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Zhang, Qian; Zheng, Chi; Qiu, Guoping

    2018-04-01

    Video foreground segmentation is one of the key problems in video processing. In this paper, we proposed a novel and fully unsupervised approach for foreground object co-localization and segmentation of unconstrained videos. We firstly compute both the actual edges and motion boundaries of the video frames, and then align them by their HOG feature maps. Then, by filling the occlusions generated by the aligned edges, we obtained more precise masks about the foreground object. Such motion-based masks could be derived as the motion-based likelihood. Moreover, the color-base likelihood is adopted for the segmentation process. Experimental Results show that our approach outperforms most of the State-of-the-art algorithms.

  5. Experiment requirements document for reflight of the small helium-cooled infrared telescope experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The four astronomical objectives addressed include: the measurement and mapping of extended low surface brightness infrared emission from the galaxy; the measurement of diffuse emission from intergalactic material and/or galaxies and quasi-stellar objects; the measurement of the zodiacal dust emission; and the measurement of a large number of discrete infrared sources.

  6. Constraints on interstellar dust models from extinction and spectro-polarimetry

    NASA Astrophysics Data System (ADS)

    Siebenmorgen, R.; Voshchinnikov, N. V.; Bagnulo, S.; Cox, N. L. J.

    2017-12-01

    We present polarisation spectra of seven stars in the lines-of-sight towards the Sco OB1 association. Our spectra were obtained within the framework of the Large Interstellar Polarization Survey carried out with the FORS instrument of the ESO VLT. We have modelled the wavelength-dependence of extinction and linear polarisation with a dust model for the diffuse interstellar medium which consists of a mixture of particles with size ranging from the molecular domain of 0.5 nm up to 350 nm. We have included stochastically heated small dust grains with radii between 0.5 and 6 nm made of graphite and silicate, as well as polycyclic aromatic hydrocarbon molecules (PAHs), and we have assumed that larger particles are prolate spheroids made of amorphous carbon and silicate. Overall, a dust model with eight free parameters best reproduces the observations, and is in agreement with cosmic abundance constraints. Reducing the number of free parameters leads to results that are inconsistent with the cosmic abundances of silicate and carbon. We found that aligned silicates are the dominant contributor to the observed polarisation, and that the polarisation spectra are best-fit by a lower limit of the equivolume sphere radius of aligned grains of 70-200 nm.

  7. Modeling the Radio Foreground for Detection of CMB Spectral Distortions from the Cosmic Dawn and the Epoch of Reionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathyanarayana Rao, Mayuri; Subrahmanyan, Ravi; Shankar, N Udaya

    Cosmic baryon evolution during the Cosmic Dawn and Reionization results in redshifted 21-cm spectral distortions in the cosmic microwave background (CMB). These encode information about the nature and timing of first sources over redshifts 30–6 and appear at meter wavelengths as a tiny CMB distortion along with the Galactic and extragalactic radio sky, which is orders of magnitude brighter. Therefore, detection requires precise methods to model foregrounds. We present a method of foreground fitting using maximally smooth (MS) functions. We demonstrate the usefulness of MS functions over traditionally used polynomials to separate foregrounds from the Epoch of Reionization (EoR) signal.more » We also examine the level of spectral complexity in plausible foregrounds using GMOSS, a physically motivated model of the radio sky, and find that they are indeed smooth and can be modeled by MS functions to levels sufficient to discern the vanilla model of the EoR signal. We show that MS functions are loss resistant and robustly preserve EoR signal strength and turning points in the residuals. Finally, we demonstrate that in using a well-calibrated spectral radiometer and modeling foregrounds with MS functions, the global EoR signal can be detected with a Bayesian approach with 90% confidence in 10 minutes’ integration.« less

  8. Integration for Airborne Dust Prediction Systems and Vegetation Phenology to Track Pollen for Asthma Alerts in Public Health Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Luvall, J. C.; Sprigg, W. A.; Nickovic, S.; Huete, A.; Budge, A.; Flowers, L.

    2008-01-01

    The objective of the program is to assess the feasibility of combining a dust transport model with MODIS derived phenology to study pollen transport for integration with a public health decision support system. The use of pollen information has specifically be identified as a critical need by the New Mexico State Health department for inclusion in the Environmental Public Health Tracking (EPHT) program. Material and methods: Pollen can be transported great distances. Local observations of plan phenology may be consistent with the timing and source of pollen collected by pollen sampling instruments. The Dust REgional Atmospheric Model (DREAM) is an integrated modeling system designed to accurately describe the dust cycle in the atmosphere. The dust modules of the entire system incorporate the state of the art parameterization of all the major phases of the atmospheric dust life such as production, diffusion, advection, and removal. These modules also include effects of the particles size distribution on aerosol dispersion. The model was modified to use pollen sources instead of dust. Pollen release was estimated based on satellite-derived phenology of key plan species and vegetation communities. The MODIS surface reflectance product (MOD09) provided information on the start of the plant growing season, growth stage, and pollen release. The resulting deterministic model is useful for predicting and simulating pollen emission and downwind concentration to study details of phenology and meteorology and their dependencies. The proposed linkage in this project provided critical information on the location timing and modeled transport of pollen directly to the EPHT> This information is useful to support the centers for disease control and prevention (CDC)'s National EPHT and the state of New Mexico environmental public health decision support for asthma and allergies alerts.

  9. Collective dynamics of large aspect ratio dusty plasma in an inhomogeneous plasma background: Formation of the co-rotating vortex series

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2018-02-01

    In this paper, the collective dynamics of large aspect ratio dusty plasma is studied over a wide range of discharge parameters. An inductively coupled diffused plasma, which creates an electrostatic trap to confine the negatively charged grains, is used to form a large volume (or large aspect ratio) dusty plasma at low pressure. For introducing the dust grains into the potential well, a unique technique using secondary DC glow discharge plasma is employed. The dust dynamics is recorded in a two-dimension (2D) plane at a given axial location. The dust fluid exhibits wave-like behavior at low pressure (p < 0.06 mbar) and high rf power (P > 3 W). The mixed motion, waves and vortices, is observed at an intermediate gas pressure (p ˜ 0.08 mbar) and low power (P < 3 W). Above the threshold value of gas pressure (p > 0.1 mbar), the clockwise and anti-clockwise co-rotating vortex series are observed on edges of the dust cloud, whereas the particles in the central region show random motion. These vortices are only observed above the threshold width of the dust cloud. The occurrence of the co-rotating vortices is understood on the basis of the charge gradient of dust particles, which is orthogonal to the gravity. The charge gradient is a consequence of the plasma inhomogeneity from the central region to the outer edge of the dust fluid. Since a vortex has the characteristic size in the dissipative medium; therefore, a series of the co-rotating vortex on both sides of dusty plasma is observed. The experimental results on the vortex formation and its multiplicity are compared to an available theoretical model and are found to be in close agreement.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapala, M. J.; Sandstrom, K.; Groves, B.

    The [C II] 158 μm line is one of the strongest emission lines observed in star-forming galaxies and has been empirically measured to correlate with the star-formation rate (SFR) globally and on kiloparsec scales. However, because of the multiphase origins of [C II], one might expect this relation to break down at small scales. We investigate the origins of [C II] emission by examining high spatial resolution observations of [C II] in M31 with the Survey of Lines in M31. We present five ∼700 × 700 pc (3' × 3') fields mapping the [C II] emission, Hα emission, and themore » ancillary infrared (IR) data. We spatially separate star-forming regions from diffuse gas and dust emission on ∼50 pc scales. We find that the [C II]-SFR correlation holds even at these scales, although the relation typically has a flatter slope than found at larger (kiloparsec) scales. While the Hα emission in M31 is concentrated in the SFR regions, we find that a significant amount (∼20%-90%) of the [C II] emission comes from outside star-forming regions and that the total IR emission (TIR) has the highest diffuse fraction of all SFR tracers. We find a weak correlation of the [C II]/TIR to dust color in each field and find a large-scale trend of increasing [C II]/TIR with galactocentric radius. The differences in the relative diffuse fractions of [C II], Hα, and IR tracers are likely caused by a combination of energetic photon leakage from H II regions and heating by the diffuse radiation field arising from older (B-star) stellar populations. However, we find that by averaging our measurements over kiloparsec scales, these effects are minimized, and the relation between [C II] and SFR found in other nearby galaxy studies is retrieved.« less

  11. Joint Bayesian Component Separation and CMB Power Spectrum Estimation

    NASA Technical Reports Server (NTRS)

    Eriksen, H. K.; Jewell, J. B.; Dickinson, C.; Banday, A. J.; Gorski, K. M.; Lawrence, C. R.

    2008-01-01

    We describe and implement an exact, flexible, and computationally efficient algorithm for joint component separation and CMB power spectrum estimation, building on a Gibbs sampling framework. Two essential new features are (1) conditional sampling of foreground spectral parameters and (2) joint sampling of all amplitude-type degrees of freedom (e.g., CMB, foreground pixel amplitudes, and global template amplitudes) given spectral parameters. Given a parametric model of the foreground signals, we estimate efficiently and accurately the exact joint foreground- CMB posterior distribution and, therefore, all marginal distributions such as the CMB power spectrum or foreground spectral index posteriors. The main limitation of the current implementation is the requirement of identical beam responses at all frequencies, which restricts the analysis to the lowest resolution of a given experiment. We outline a future generalization to multiresolution observations. To verify the method, we analyze simple models and compare the results to analytical predictions. We then analyze a realistic simulation with properties similar to the 3 yr WMAP data, downgraded to a common resolution of 3 deg FWHM. The results from the actual 3 yr WMAP temperature analysis are presented in a companion Letter.

  12. Search for Efficient Foreground Subtraction Method in 21cm Cosmology

    NASA Astrophysics Data System (ADS)

    Datta, Abhirup; Choudhury, Madhurima; Chakraborty, Arnab

    2017-06-01

    Observations of the HI 21 cm transition line promises to be an important probe into the cosmic Dark Ages and Epoch of Reionization. Detection of this redshifted 21 cm signal is one of the key science goal for several upcoming and future low frequency radio telescopes like Hydrogen Epoch of Reionization Array (HERA), Square Kilometer Array (SKA) and Dark Ages Radio Explorer (DARE). One of the challenges for the detection of this signal is the accuracy of the foreground source removal. Several novel techniques have been explored already to remove bright foregrounds from both interferometric as well as total power experiments. Here, we present preliminary results from our investigation on application of Artificial Neural Networks to detect faint 21cm global signal amidst the sea of bright galactic foreground.

  13. Origin and maintenance of the oxygen torus in Saturn's magnetosphere

    NASA Technical Reports Server (NTRS)

    Morfill, G. E.; Havnes, O.; Goertz, C. K.

    1993-01-01

    Observations of thermal ions in Saturn's inner magnetosphere suggest distributed local sources rather than diffusive mass loading from a source located further out. We suggest that the plasma is produced and maintained mainly by 'self-sputtering' of E ring dust. Sputtered particles are 'picked up' by the planetary magnetospheric field and accelerated to corotation energies (of the order of 8 eV/amu). The sputter yield for oxygen on ice at, for example, 120 eV is about 5, which implies that an avalanche of self-sputtering occurs. The plasma density is built up until it is balanced by local losses, presumably pitch angle scattering into the loss cone and absorption in the planet's ionosphere. The plasma density determines the distribution of dust in the E ring through plasma drag. Thus a feedback mechanism between the plasma and the E ring dust is established. The model accounts for the principal plasma observations and simultaneously the radial optical depth profile of the E ring.

  14. Planck 2015 results: I. Overview of products and scientific results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, R.; Ade, P. A. R.; Aghanim, N.

    The European Space Agency’s Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based ondata from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This study gives an overview of the main characteristics of the data and the data products in the release,more » as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Finally, scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.« less

  15. Planck 2015 results: I. Overview of products and scientific results

    DOE PAGES

    Adam, R.; Ade, P. A. R.; Aghanim, N.; ...

    2016-09-20

    The European Space Agency’s Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based ondata from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This study gives an overview of the main characteristics of the data and the data products in the release,more » as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Finally, scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.« less

  16. GARDEN (FOREGROUND), GARAGE (CENTER), AND PUMPHOUSE, LOOKING NORTHWEST Irvine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GARDEN (FOREGROUND), GARAGE (CENTER), AND PUMPHOUSE, LOOKING NORTHWEST - Irvine Ranch Agricultural Headquarters, Carillo Tenant House, Southwest of Intersection of San Diego & Santa Ana Freeways, Irvine, Orange County, CA

  17. 2. GATELIFTING SPUR GEAR DRIVE IN FOREGROUND, ATTACHED TO A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GATE-LIFTING SPUR GEAR DRIVE IN FOREGROUND, ATTACHED TO A GENERAL ELECTRIC COMPANY CRANE MOTOR, WITH COMPANION SOLENOID BRAKE IN RIGHT BACKGROUND, WITH BOTH MOUNTED ON A CONCRETE PEDESTAL. PORTIONS OF THE STEEL DERRICK LIFTING FRAME ARE VISIBLE IN THE FOREGROUND AND BACKGROUND, LOOKING EAST/NORTHEAST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  18. Towering Infernos

    NASA Image and Video Library

    2005-11-09

    This majestic false-color image from NASA's Spitzer Space Telescope shows the "mountains" where stars are born. Dubbed "Mountains of Creation" by Spitzer scientists, these towering pillars of cool gas and dust are illuminated at their tips with light from warm embryonic stars. The new infrared picture is reminiscent of Hubble's iconic visible-light image of the Eagle Nebula, which also features a star-forming region, or nebula, that is being sculpted into pillars by radiation and winds from hot, massive stars. The pillars in the Spitzer image are part of a region called W5, in the Cassiopeia constellation 7,000 light-years away and 50 light-years across. They are more than 10 times in the size of those in the Eagle Nebula (shown to scale here). The Spitzer's view differs from Hubble's because infrared light penetrates dust, whereas visible light is blocked by it. In the Spitzer image, hundreds of forming stars (white/yellow) can seen for the first time inside the central pillar, and dozens inside the tall pillar to the left. Scientists believe these star clusters were triggered into existence by radiation and winds from an "initiator" star more than 10 times the mass of our Sun. This star is not pictured, but the finger-like pillars "point" toward its location above the image frame. The Spitzer picture also reveals stars (blue) a bit older than the ones in the pillar tips in the evacuated areas between the clouds. Scientists believe these stars were born around the same time as the massive initiator star not pictured. A third group of young stars occupies the bright area below the central pillar. It is not known whether these stars formed in a related or separate event. Some of the blue dots are foreground stars that are not members of this nebula. The red color in the Spitzer image represents organic molecules known as polycyclic aromatic hydrocarbons. These building blocks of life are often found in star-forming clouds of gas and dust. Like small dust grains, they are heated by the light from the young stars, then emit energy in infrared wavelengths. This image was taken by the infrared array camera on Spitzer. It is a 4-color composite of infrared light, showing emissions from wavelengths of 3.6 microns (blue), 4.5 microns (green), 5.8 microns (orange), and 8.0 microns (red). http://photojournal.jpl.nasa.gov/catalog/PIA03096

  19. A Moment Frozen in Time

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On May 19th, 2005, NASA's Mars Exploration Rover Spirit captured this stunning view as the Sun sank below the rim of Gusev crater on Mars. This Panoramic Camera (Pancam) mosaic was taken around 6:07 in the evening of the rover's 489th martian day, or sol. Spirit was commanded to stay awake briefly after sending that sol's data to the Mars Odyssey orbiter just before sunset. This small panorama of the western sky was obtained using Pancam's 750-nanometer, 530-nanometer and 430-nanometer color filters. This filter combination allows false color images to be generated that are similar to what a human would see, but with the colors slightly exaggerated. In this image, the bluish glow in the sky above the Sun would be visible to us if we were there, but an artifact of the Pancam's infrared imaging capabilities is that with this filter combination the redness of the sky farther from the sunset is exaggerated compared to the daytime colors of the martian sky. Because Mars is farther from the Sun than the Earth is, the Sun appears only about two-thirds the size that it appears in a sunset seen from the Earth. The terrain in the foreground is the rock outcrop 'Jibsheet,' a feature that Spirit has been investigating for several weeks (rover tracks are dimly visible leading up to 'Jibsheet'). The floor of Gusev crater is visible in the distance, and the Sun is setting behind the wall of Gusev some 80 km (50 miles) in the distance.

    This mosaic is yet another example from MER of a beautiful, sublime martian scene that also captures some important scientific information. Specifically, sunset and twilight images are occasionally acquired by the science team to determine how high into the atmosphere the martian dust extends, and to look for dust or ice clouds. Other images have shown that the twilight glow remains visible, but increasingly fainter, for up to two hours before sunrise or after sunset. The long martian twilight (compared to Earth's) is caused by sunlight scattered around to the night side of the planet by abundant high altitude dust. Similar long twilights or extra-colorful sunrises and sunsets sometimes occur on Earth when tiny dust grains that are erupted from powerful volcanoes scatter light high in the atmosphere.

  20. Starlight morphology of the interacting galaxy NGC 5195

    NASA Astrophysics Data System (ADS)

    Smith, J.; Gehrz, R. D.; Grasdalen, G. L.; Hackwell, John A.; Dietz, R. D.; Friedman, Scott D.

    1990-10-01

    We present near-infrared, red, and optical observations of NGC 5195, the interacting companion of NGC 5194 (M51). Three intrinsic components are suggested by the near-infrared data: a bright nuclear maximum, a low-contrast bar centered symmetrically on the nucleus, and a nearly face-on exponential disk. This organized near-infrared morphology contrasts strongly with the irregular appearance of optical images. Neither dust nor hot stars contribute much to the near-infrared emission, leaving cool stars probably of an evolved population as the main near-infrared sources. Optical (V) and red (R, I) images confirm the near-infrared morphology and imply that obscuration by an irregular distribution of dust causes the great difference between optical and near-infrared morphologies. Dust within a foreground spiral arm of M51 is an important source of obscuration. Dust internal to NGC 5195 gives an observed quantity of reradiation and perhaps contributes significant obscuration within 10" of the galactic nucleus. The nucleus itself lies at or near a local minimum in color produced by small obscuration or possibly hot emission from the galaxy's nuclear emission-line region or X-ray medium. When corrected for all spatial components of extinction, the body of NGC 5195 becomes much bluer and has a mean B - H color common to normal disk galaxies. Observations lead consistently to SB, but no further, as the best description of the NGC 5195 morphology. Images reveal no evidence of spiral arms which alone would imply a lenticular subtype. Yet the bulge-to-disk ratio of NGC 5195, evaluated from near-infrared observations, is far smaller than values inferred for noninteracting lenticular galaxies. Motivated by these difficulties in conventional classification, we proceed to discuss the possibility that certain attributes of NGC 5195, including its bar, are transient manifestations of the interaction with M51. Presented measurements support the galaxy mass ratio and type of NGC 5195 morphology assumed in a successful model of the gravitational interaction between stars of M51 and NGC 5195. Encouraged by this agreement between theory and experiment, we explore the consequences of an expanded version of the model, still premised on interaction via gravity but now including dynamics of both stars and interstellar clouds. Working within this theoretical context, we identify an interaction-induced component of star formation, an incipient starburst, within the disk of M51.

Top