Science.gov

Sample records for dust foreground diffuse

  1. Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vidal, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in Iν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is

  2. Accounting for the foreground contribution to the dust emission towards Kepler's supernova remnant

    NASA Astrophysics Data System (ADS)

    Gomez, H. L.; Dunne, L.; Ivison, R. J.; Reynoso, E. M.; Thompson, M. A.; Sibthorpe, B.; Eales, S. A.; Delaney, T. M.; Maddox, S.; Isaak, K.

    2009-08-01

    Whether or not supernovae contribute significantly to the overall dust budget is a controversial subject. Submillimetre (sub-mm) observations, sensitive to cold dust, have shown an excess at 450 and 850μm in young remnants Cassiopeia A (Cas A) and Kepler. Some of the sub-mm emission from Cas A has been shown to be contaminated by unrelated material along the line of sight. In this paper, we explore the emission from material towards Kepler using sub-mm continuum imaging and spectroscopic observations of atomic and molecular gas, via HI, 12CO(J = 2-1) and 13CO(J = 2-1). We detect weak CO emission (peak T*A = 0.2-1K, 1-2kms-1 full width at half-maximum) from diffuse, optically thin gas at the locations of some of the sub-mm clumps. The contribution to the sub-mm emission from foreground molecular and atomic clouds is negligible. The revised dust mass for Kepler's remnant is 0.1-1.2Msolar, about half of the quoted values in the original study by Morgan et al., but still sufficient to explain the origin of dust at high redshifts.

  3. Foreground Bias from Parametric Models of Far-IR Dust Emission

    NASA Technical Reports Server (NTRS)

    Kogut, A.; Fixsen, D. J.

    2016-01-01

    We use simple toy models of far-IR dust emission to estimate the accuracy to which the polarization of the cosmic microwave background can be recovered using multi-frequency fits, if the parametric form chosen for the fitted dust model differs from the actual dust emission. Commonly used approximations to the far-IR dust spectrum yield CMB residuals comparable to or larger than the sensitivities expected for the next generation of CMB missions, despite fitting the combined CMB plus foreground emission to precision 0.1 percent or better. The Rayleigh-Jeans approximation to the dust spectrum biases the fitted dust spectral index by (Delta)(Beta)(sub d) = 0.2 and the inflationary B-mode amplitude by (Delta)(r) = 0.03. Fitting the dust to a modified blackbody at a single temperature biases the best-fit CMB by (Delta)(r) greater than 0.003 if the true dust spectrum contains multiple temperature components. A 13-parameter model fitting two temperature components reduces this bias by an order of magnitude if the true dust spectrum is in fact a simple superposition of emission at different temperatures, but fails at the level (Delta)(r) = 0.006 for dust whose spectral index varies with frequency. Restricting the observing frequencies to a narrow region near the foreground minimum reduces these biases for some dust spectra but can increase the bias for others. Data at THz frequencies surrounding the peak of the dust emission can mitigate these biases while providing a direct determination of the dust temperature profile.

  4. Planck 2015 results. X. Diffuse component separation: Foreground maps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature

  5. Diffuse radio foregrounds: all-sky polarisation and anomalous microwave emission

    NASA Astrophysics Data System (ADS)

    Vidal Navarro, M. A.

    2014-07-01

    plane. We study the foreground contamination in a region of the sky. We also discuss some properties of the diffuse synchrotron emission observed on the Galactic plane by QUIET.Using interferometric observations at 31 GHz, we studied AME in the translucent cloud LDN 1780. Interferometric data at 31 GHz and different ancillary data were used. We study the connection between the radio emission and the interstellar dust present in the cloud. The spinning dust hypothesis for the origin of AME is tested and we conclude that it can explain the radio properties observed in this cloud.

  6. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds

    NASA Astrophysics Data System (ADS)

    Schlegel, D. J.; Finkbeiner, D. P.; Davis, Marc

    1997-12-01

    We present a full sky 100micron map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. We have constructed a map of the dust temperature, so that the 100micron map can be converted to a map proportional to dust column density. The dust temperature varies from 17 K to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE-quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high latitude regions, the dust map correlates well with maps of HI emission, but deviations are significant. To generate the full sky dust maps, we must first remove zodiacal light contamination as well as a possible cosmic infrared background (CIB). For the 100micron map no signficant CIB is detected, but in the 140micron and 240micron maps, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 30 +/- 8 {nW/m}(2/sr) at 140\\micron, and 16 \\pm 3.4 {nW/m}^2/sr at 240micron (95% confidence), which is an integrated flux ~ 2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a standard reddening law, and use the colors of elliptical galaxies. We demonstrate that the new maps are twice as accurate as the older Burstein-Heiles reddening estimates in regions of low and moderate reddening. The maps are expected to be significantly more accurate in regions of high reddening. These dust maps will also be useful for estimating millimeter emission that contaminates CMBR experiments and for estimating soft X-ray absorption.

  7. The Herschel Virgo Cluster Survey. XX. Dust and gas in the foreground Galactic cirrus

    NASA Astrophysics Data System (ADS)

    Bianchi, S.; Giovanardi, C.; Smith, M. W. L.; Fritz, J.; Davies, J. I.; Haynes, M. P.; Giovanelli, R.; Baes, M.; Bocchio, M.; Boissier, S.; Boquien, M.; Boselli, A.; Casasola, V.; Clark, C. J. R.; De Looze, I.; di Serego Alighieri, S.; Grossi, M.; Jones, A. P.; Hughes, T. M.; Hunt, L. K.; Madden, S.; Magrini, L.; Pappalardo, C.; Ysard, N.; Zibetti, S.

    2017-01-01

    We study the correlation between far-infrared/submm dust emission and atomic gas column density in order to derive the properties of the high Galactic latitude, low density, Milky Way cirrus in the foreground of the Virgo cluster of galaxies. Dust emission maps from 60 to 850 μm are obtained from observations with the Spectral and Photometric Imaging Receiver (SPIRE) and carried out within the Herschel Virgo Cluster Survey (HeViCS); these are complemented by IRAS and Planck maps. Data from the Arecibo legacy Fast ALFA Survey is used to derive atomic gas column densities for two broad velocity components: low and intermediate velocity clouds. Dust emissivities are derived for each gas component and each far-infrared/submm band. For the low velocity clouds, we measure an average emissivity ɛLVCν = (0.79 ± 0.08) × 10-20 MJy sr-1 cm2 at 250 μm. After fitting a modified blackbody to the available bands, we estimated a dust absorption cross section of τLVCν/NH i = (0.49 ± 0.13) × 10-25 cm2 H-1 at 250 μm (with dust temperature T = 20.4 ± 1.5 K and spectral index β = 1.53 ± 0.17). The results are in excellent agreement with those obtained by Planck over a much larger coverage of the high Galactic latitude cirrus (50% of the sky versus 0.2% in our work). For dust associated with intermediate velocity gas, we confirm earlier Planck results and find a higher temperature and lower emissivity and cross section. After subtracting the modeled components, we find regions at scales smaller than 20' in which the residuals deviate significantly from the average scatter, which is dominated by cosmic infrared background. These large residuals are most likely due to local variations in the cirrus dust properties or to high-latitude molecular clouds with average NH2 ≲ 1020 cm-2. We find no conclusive evidence for intracluster dust emission in Virgo. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and

  8. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds

    NASA Astrophysics Data System (ADS)

    Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc

    1998-06-01

    We present a full-sky 100 μm map that is a reprocessed composite of the COBE/DIRBE and IRAS/ISSA maps, with the zodiacal foreground and confirmed point sources removed. Before using the ISSA maps, we remove the remaining artifacts from the IRAS scan pattern. Using the DIRBE 100 and 240 μm data, we have constructed a map of the dust temperature so that the 100 μm map may be converted to a map proportional to dust column density. The dust temperature varies from 17 to 21 K, which is modest but does modify the estimate of the dust column by a factor of 5. The result of these manipulations is a map with DIRBE quality calibration and IRAS resolution. A wealth of filamentary detail is apparent on many different scales at all Galactic latitudes. In high-latitude regions, the dust map correlates well with maps of H I emission, but deviations are coherent in the sky and are especially conspicuous in regions of saturation of H I emission toward denser clouds and of formation of H2 in molecular clouds. In contrast, high-velocity H I clouds are deficient in dust emission, as expected. To generate the full-sky dust maps, we must first remove zodiacal light contamination, as well as a possible cosmic infrared background (CIB). This is done via a regression analysis of the 100 μm DIRBE map against the Leiden-Dwingeloo map of H I emission, with corrections for the zodiacal light via a suitable expansion of the DIRBE 25 μm flux. This procedure removes virtually all traces of the zodiacal foreground. For the 100 μm map no significant CIB is detected. At longer wavelengths, where the zodiacal contamination is weaker, we detect the CIB at surprisingly high flux levels of 32 +/- 13 nW m-2 sr-1 at 140 μm and of 17 +/- 4 nW m-2 sr-1 at 240 μm (95% confidence). This integrated flux ~2 times that extrapolated from optical galaxies in the Hubble Deep Field. The primary use of these maps is likely to be as a new estimator of Galactic extinction. To calibrate our maps, we assume a

  9. DIFFUSE EXTRAPLANAR DUST IN NGC 891

    SciTech Connect

    Seon, Kwang-il; Shinn, Jong-ho; Kim, Il-joong; Witt, Adolf N.

    2014-04-10

    We report the detection of vertically extended far-ultraviolet and near-UV emissions in an edge-on spiral galaxy NGC 891, which we interpret as being due to dust-scattered starlight. Three-dimensional radiative transfer models are used to investigate the content of the extraplanar dust that is required to explain the UV emission. The UV halos are well reproduced by a radiative transfer model with two exponential dust disks, one with a scale height of ≈0.2-0.25 kpc and the other with a scale height of ≈1.2-2.0 kpc. The central face-on optical depth of the geometrically thick disk is found to be τ{sub B}{sup thick}≈0.3--0.5 at the B band. The results indicate that the dust mass at |z| > 2 kpc is ≈3%-5% of the total dust mass, which is in good accordance with the recent Herschel submillimeter observation. Our results, together with the recent discovery of the UV halos in other edge-on galaxies, suggest the widespread existence of a geometrically thick dust layer above the galactic plane in spirals.

  10. Diffuse alveolar hemorrhage caused by exposure to organic dust.

    PubMed

    Suzuki, Yuzo; Imokawa, Shiro; Nihashi, Fumiya; Uto, Tomohiro; Sato, Jun; Suda, Takafumi

    2015-01-01

    Diffuse alveolar hemorrhage, a life-threatening disease, can complicate various conditions. We herein describe, for the first time, a patient with diffuse alveolar hemorrhage caused by exposure to organic dust. A 49-year-old woman who worked as a cantaloupe farmer in a greenhouse was referred to our hospital for sudden onset of dyspnea 3 h after exposure to organic dust. A chest X-ray and computed tomography scan performed on admission showed diffuse ground-glass opacities in both lung fields. Suspecting hypersensitivity pneumonitis, fiberoptic bronchoscopy was performed. Mucopurulent sputum was present in the trachea and both bronchi, and bronchoalveolar lavage revealed a progressively bloody return, typical of diffuse alveolar hemorrhage. Based on the history and bronchoscopy findings, she was diagnosed with diffuse alveolar hemorrhage following exposure to organic dust and was treated with antibiotics and corticosteroids. Diffuse alveolar hemorrhage should be considered in the differential diagnosis of diffuse ground-glass opacities observed on radiographs in farmers following exposure to organic dust.

  11. Influence of plasma diffusion losses on dust charge relaxation in discharge afterglow

    SciTech Connect

    Coueedel, L.; Mikikian, M.; Boufendi, L.

    2008-09-07

    The influence of diffusive losses on residual dust charge in a complex plasma afterglow has been investigated. The dust residual charges were simulated based on a model developed to describe complex plasma decay. The experimental and simulated data show that the transition from ambipolar to free diffusion in the decaying plasma plays a significant role in determining the residual dust particle charges. The presence of positively charged dust particles is explained by a broadening of the charge distribution function in the afterglow plasma.

  12. Reappraising foreground contamination in the COBE-DMR data

    NASA Astrophysics Data System (ADS)

    Banday, A. J.; Dickinson, C.; Davies, R. D.; Davis, R. J.; Górski, K. M.

    2003-11-01

    With the advent of all-sky Hα surveys it is possible to determine a reliable free-free template of the diffuse interstellar medium which can be used in conjunction with the synchrotron and dust templates to correct cosmic microwave background (CMB) observations for diffuse Galactic foregrounds. We have used the COBE-DMR data at 31.5, 53 and 90 GHz and employed cross-correlation techniques to re-evaluate the foreground contributions, particularly that due to dust which is known to be partially correlated with Hα (and free-free) emission. The DMR microwave maps are found to contain, as well as the expected synchrotron and free-free components, a component tightly correlated to the COBE-DIRBE 140-μm dust map. At 31.5, 53 and 90 GHz this emission is 6.3 +/- 0.6, 2.4 +/- 0.4 and 2.2 +/- 0.4 μK MJy-1 sr at 140 μm, respectively. When corrected for the contribution from thermal dust, a strong anomalous dust-correlated emission component remains, which is well fitted by a frequency spectrum of the form ν-β where β~ 2.5 in the DMR frequency range; this is the dominant foreground at 31.5 GHz. The result implies the presence of an emission component with a dust-like morphology but a synchrotron-like spectrum. We discuss the possible origins of this component and compare it with the recent WMAP interpretation. The better knowledge of the individual foregrounds provided by the present study enables a larger area of the sky (|b| > 15°) to be used to reappraise the CMB quadrupole normalization, Qrms-PS, and the scalar perturbations spectral index, n. We find Qrms-PS= 15.2+2.8-2.3 with a power-law spectral index of n= 1.2 +/- 0.2. These values are consistent with previous COBE-DMR analyses and the WMAP 1-yr analysis.

  13. Dust models post-Planck: constraining the far-infrared opacity of dust in the diffuse interstellar medium

    NASA Astrophysics Data System (ADS)

    Fanciullo, L.; Guillet, V.; Aniano, G.; Jones, A. P.; Ysard, N.; Miville-Deschênes, M.-A.; Boulanger, F.; Köhler, M.

    2015-08-01

    Aims: We compare the performance of several dust models in reproducing the dust spectral energy distribution (SED) per unit extinction in the diffuse interstellar medium (ISM). We use our results to constrain the variability of the optical properties of big grains in the diffuse ISM, as published by the Planck collaboration. Methods: We use two different techniques to compare the predictions of dust models to data from the Planck HFI, IRAS, and SDSS surveys. First, we fit the far-infrared emission spectrum to recover the dust extinction and the intensity of the interstellar radiation field (ISRF). Second, we infer the ISRF intensity from the total power emitted by dust per unit extinction, and then predict the emission spectrum. In both cases, we test the ability of the models to reproduce dust emission and extinction at the same time. Results: We identify two issues. Not all models can reproduce the average dust emission per unit extinction: there are differences of up to a factor ~2 between models, and the best accord between model and observation is obtained with the more emissive grains derived from recent laboratory data on silicates and amorphous carbons. All models fail to reproduce the variations in the emission per unit extinction if the only variable parameter is the ISRF intensity: this confirms that the optical properties of dust are indeed variable in the diffuse ISM. Conclusions: Diffuse ISM observations are consistent with a scenario where both ISRF intensity and dust optical properties vary. The ratio of the far-infrared opacity to the V band extinction cross-section presents variations of the order of ~20% (40-50% in extreme cases), while ISRF intensity varies by ~30% (~60% in extreme cases). This must be accounted for in future modelling. Appendices are available in electronic form at http://www.aanda.org

  14. BFORE: The B-mode Foreground Experiment

    NASA Astrophysics Data System (ADS)

    Niemack, Michael D.; Ade, Peter; de Bernardis, Francesco; Boulanger, Francois; Bryan, Sean; Devlin, Mark; Dunkley, Joanna; Eales, Steve; Gomez, Haley; Groppi, Chris; Henderson, Shawn; Hillbrand, Seth; Hubmayr, Johannes; Mauskopf, Philip; McMahon, Jeff; Miville-Deschênes, Marc-Antoine; Pascale, Enzo; Pisano, Giampaolo; Novak, Giles; Scott, Douglas; Soler, Juan; Tucker, Carole

    2016-08-01

    The B-mode Foreground Experiment (BFORE) is a proposed NASA balloon project designed to make optimal use of the sub-orbital platform by concentrating on three dust foreground bands (270, 350, and 600 GHz) that complement ground-based cosmic microwave background (CMB) programs. BFORE will survey ˜ 1/4 of the sky with 1.7-3.7 arcminute resolution, enabling precise characterization of the Galactic dust that now limits constraints on inflation from CMB B-mode polarization measurements. In addition, BFORE's combination of frequency coverage, large survey area, and angular resolution enables science far beyond the critical goal of measuring foregrounds. BFORE will constrain the velocities of thousands of galaxy clusters, provide a new window on the cosmic infrared background, and probe magnetic fields in the interstellar medium. We review the BFORE science case, timeline, and instrument design, which is based on a compact off-axis telescope coupled to {>}10,000 superconducting detectors.

  15. SPIDER OPTIMIZATION. II. OPTICAL, MAGNETIC, AND FOREGROUND EFFECTS

    SciTech Connect

    O'Dea, D. T.; Clark, C. N.; Contaldi, C. R.; Ade, P. A. R.; Amiri, M.; Burger, B.; Davis, G.; Benton, S. J.; Bock, J. J.; Crill, B. P.; Dore, O.; Filippini, J. P.; Bond, J. R.; Farhang, M.; Bonetti, J. A.; Bryan, S.; Chiang, H. C.; Fraisse, A. A.; Fissel, L. M.; Gandilo, N. N.

    2011-09-01

    SPIDER is a balloon-borne instrument designed to map the polarization of the cosmic microwave background (CMB) with degree-scale resolution over a large fraction of the sky. SPIDER's main goal is to measure the amplitude of primordial gravitational waves through their imprint on the polarization of the CMB if the tensor-to-scalar ratio, r, is greater than 0.03. To achieve this goal, instrumental systematic errors must be controlled with unprecedented accuracy. Here, we build on previous work to use simulations of SPIDER observations to examine the impact of several systematic effects that have been characterized through testing and modeling of various instrument components. In particular, we investigate the impact of the non-ideal spectral response of the half-wave plates, coupling between focal-plane components and Earth's magnetic field, and beam mismatches and asymmetries. We also present a model of diffuse polarized foreground emission based on a three-dimensional model of the Galactic magnetic field and dust, and study the interaction of this foreground emission with our observation strategy and instrumental effects. We find that the expected level of foreground and systematic contamination is sufficiently low for SPIDER to achieve its science goals.

  16. First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Foreground Emission

    NASA Technical Reports Server (NTRS)

    Bennett, C. L.; Hill, R. S.; Hinshaw, G.; Nolta, M. R.; Odegard, N.; Page, L.; Spergel, D. N.; Weiland, J. L.; Wright, E. L.; Halpern, M.

    2003-01-01

    The WMAP mission has mapped the full sky to determine the geometry, content, and evolution of the universe. Full sky maps are made in five microwave frequency bands to separate the temperature anisotropy of the cosmic microwave background (CMB) from foreground emission, including diffuse Galactic emission and Galactic and extragalactic point sources. We define masks that excise regions of high foreground emission, so CMB analyses can became out with minimal foreground contamination. We also present maps and spectra of the individual emission components, leading to an improved understanding of Galactic astrophysical processes. The effectiveness of template fits to remove foreground emission from the WMAP data is also examined. These efforts result in a CMB map with minimal contamination and a demonstration that the WMAP CMB power spectrum is insensitive to residual foreground emission. We use a Maximum Entropy Method to construct a model of the Galactic emission components. The observed total Galactic emission matches the model to less than 1% and the individual model components are accurate to a few percent. We find that the Milky Way resembles other normal spiral galaxies between 408 MHz and 23 GHz, with a synchrotron spectral index that is flattest (beta(sub s) approx. -2.5) near star-forming regions, especially in the plane, and steepest (beta(sub s) approx. -3) in the halo. This is consistent with a picture of relativistic cosmic ray electron generation in star-forming regions and diffusion and convection within the plane. The significant synchrotron index steepening out of the plane suggests a diffusion process in which the halo electrons are trapped in the Galactic potential long enough to suffer synchrotron and inverse Compton energy losses and hence a spectral steepening. The synchrotron index is steeper in the WMAP bands than in lower frequency radio surveys, with a spectral break near 20 GHz to beta(sub s) less than -3. The modeled thermal dust spectral

  17. VARIATIONS BETWEEN DUST AND GAS IN THE DIFFUSE INTERSTELLAR MEDIUM

    SciTech Connect

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe

    2015-10-01

    Using the Planck far-infrared and Arecibo GALFA 21 cm line surveys, we identified a set of isolated interstellar clouds (approximately degree-sized on the sky and comprising 100 solar masses) and assessed the ratio of gas mass to dust mass. Significant variations of the gas/dust ratio are found both from cloud to cloud and within regions of individual clouds; within the clouds, the atomic gas per unit dust decreases by more than a factor of 3 compared with the standard gas/dust ratio. Three hypotheses are considered. First, the apparently low gas/dust ratio could be due to molecular gas. Comparing to Planck CO maps, the brightest clouds have a H{sub 2}/CO ratio comparable to Galactic plane clouds, but a strong lower limit is placed on the ratio for other clouds, such that the required amount of molecular gas is far higher than would be expected based on the CO upper limits. Second, we consider self-absorbed 21 cm lines and find that the optical depth must be ∼3, significantly higher than found from surveys of radio sources. Third, grain properties may change within the clouds: they become more emissive when they are colder, while not utilizing heavy elements that already have their cosmic abundance fully locked into grains. It is possible that all three processes are active, and follow-up studies will be required to disentangle them and measure the true total gas and dust content of interstellar clouds.

  18. Wave Propagation And Diffusive Transition Of Oscillations In Pair Plasmas With Dust

    SciTech Connect

    Atamaniuk, Barbara; Turski, Andrzej J.

    2008-09-07

    In view of applications to electron-positron pair-plasmas and fullerene pair-ion-plasmas containing charged dust impurities a thorough discussion is given of three-component Plasmas. Space-time responses of multi component linearized Vlasov plasmas on the basis of multiple integral equations are invoked. Choosing respectively equilibrium distributions for the pair plasma components and heavy dust particles, we can reduce the resolvent equation to: (i) an undamped dispersive dust acoustic wave equation, (ii) and equations of diffusive transport of oscillations.

  19. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas.

    PubMed

    Choudhary, Mangilal; Mukherjee, S; Bandyopadhyay, P

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  20. Transport and trapping of dust particles in a potential well created by inductively coupled diffused plasmas

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-05-01

    A versatile linear dusty (complex) plasma device is designed to study the transport and dynamical behavior of dust particles in a large volume. Diffused inductively coupled plasma is generated in the background of argon gas. A novel technique is used to introduce the dust particles in the main plasma by striking a secondary direct current glow discharge. These dust particles are found to get trapped in an electrostatic potential well, which is formed due to the combination of the ambipolar electric field caused by diffusive plasma and the field produced by the charged glass wall of the vacuum chamber. According to the requirements, the volume of the dust cloud can be controlled very precisely by tuning the plasma and discharge parameters. The present device can be used to address the underlying physics behind the transport of dust particles, self-excited dust acoustic waves, and instabilities. The detailed design of this device, plasma production and characterization, trapping and transport of the dust particle, and some of the preliminary experimental results are presented.

  1. Quantitative mid-infrared diffuse reflection of occupational wood dust exposures.

    PubMed

    Chirila, Madalina M; Lee, Taekhee; Flemmer, Michael M; Slaven, James E; Harper, Martin

    2011-03-01

    Occupational exposure to airborne wood dust has been implicated in the development of several symptoms and diseases, including nasal carcinoma. However, the assessment of occupational wood dust exposure is usually performed by gravimetric analysis, which is non-specific. In this study, a mid-infrared (mid-IR) diffuse reflection method was adapted for direct on-filter determination of wood dust mass. The cup from the diffuse reflection unit was replaced with a horizontal translational stage and a filter with wood dust was set thereon. Diffuse reflection (DR) spectra were collected from filters with six different diameters in order to average the signal from the most filter surface. Two absorption bands around 1595 and 1510 cm(-1), attributed to lignin, were monitored for quantitative analysis. Calibration curves were constructed for standard extrathoracic red oak and yellow pine (aerodynamic particle diameters between 10 and 100 μm). Calibration of DR intensity versus known wood dust mass on the filter using the Kubelka-Munk function showed a nonlinear dependence for mass of less than 10 mg of wood dust. The experimental data and small-thickness samples indicate that Kubelka-Munk conditions are not obeyed. Alternatively, the pseudo-absorption function log(1/R), for which R is the relative reflectance, while still giving nonlinear dependence against mass, is closer to a linear dependence and has been preferred by other researchers. Therefore, we consider the use of the log(1/R) function for mid-infrared DR analysis of neat, small-thickness wood dust samples. Furthermore, we suggest the use of a silver metal membrane filter for direct on-filter analysis of wood dust rather than the glass fiber filters that have been used previously.

  2. Dust variations in the diffuse interstellar medium: constraints on Milky Way dust from Planck-HFI observations

    NASA Astrophysics Data System (ADS)

    Ysard, N.; Köhler, M.; Jones, A.; Miville-Deschênes, M.-A.; Abergel, A.; Fanciullo, L.

    2015-05-01

    Context. The Planck-HFI all-sky survey from 353 to 857 GHz combined with the IRAS data at 100 μm (3000 GHz, IRIS version of the data) show that the dust properties vary from line of sight to line of sight in the diffuse interstellar medium (ISM) at high Galactic latitude (1019 ≤ NH ≤ 2.5 × 1020 H/cm2, for a sky coverage of ~12%). Aims: These observations contradict the usual thinking of uniform dust properties, even in the most diffuse areas of the sky. Thus, our aim is to explain these variations with changes in the ISM properties and with evolution of the grain properties. Methods: Our starting point is the latest core-mantle dust model. This model consists of small aromatic-rich carbon grains, larger amorphous carbonaceous grains with an aliphatic-rich core and an aromatic-rich mantle, and amorphous silicates (mixture of olivine and pyroxene types) with Fe/FeS nano-inclusions covered by aromatic-rich carbon mantles. We explore whether variations in the radiation field or in the gas density distribution in the diffuse ISM could explain the observed variations. The dust properties are also varied in terms of their mantle thickness, metallic nano-inclusions, carbon abundance locked in the grains, and size distributions. Results: We show that variations in the radiation field intensity and gas density distribution cannot explain variations observed with Planck-HFI but that radiation fields harder than the standard ISRF may participate in creating part of the observed variations. We further show that variations in the mantle thickness on the grains coupled with changes in their size distributions can reproduce most of the observations. We concurrently put a limit on the mantle thickness of the silicates, which should not exceed ~ 10 to 15 nm, and find that aromatic-rich mantles are definitely needed for the carbonaceous grain population with a thickness of at least 5 to 7.5 nm. We also find that changes in the carbon cosmic abundance included in the grains

  3. Correlation properties of interstellar dust: Diffuse interstellar bands

    NASA Technical Reports Server (NTRS)

    Somerville, W. B.

    1989-01-01

    Results are presented from a research program in which an attempt was made to establish the physical nature of the interstellar grains, and the carriers of the diffuse interstellar bands, by comparing relations between different observed properties; the properties used include the extinction in the optical and ultraviolet (including wavelength 2200 and the far-UV rise), cloud density, atomic depletions, and strengths of the diffuse bands. Observations and also data from literature were used, selecting particularly sight-lines where some observed property was found to have anomalous behavior.

  4. Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma

    SciTech Connect

    Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.

    2015-11-15

    In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.

  5. Dust and gas jets: Evidence for a diffuse source in Halley's coma

    NASA Technical Reports Server (NTRS)

    Clairemidi, Jacques; Rousselot, Philippe; Vernotte, F.; Moreels, Guy

    1992-01-01

    The distribution of dust-scattered intensity in Halley's inner coma is measured with the Vega three-channel spectrometer at three selected wavelengths: 377, 482, and 607 nm. The variation along a cometo-centric radius may be described by a p(sup -s) law where p is the distance between nucleus and optical axis and s is an exponent which is equal to 1 except in an intermediate 3000 less than p less than 7000 km region where s = 1.5. The shape of the radial distribution may be explained with a model including solar radiation pressure effect and quantum scattering efficiencies calculated from Mie theory. Monochromatic images inside an angular sector having its apex at the nucleus show evidence of two dust jets which extend to 40,000 Km. The pixel-to-pixel ratio of two images of dust intensity at 377 and 482 nm shows that the scattered intensity presents an excess of blue coloration in a zone located around the jets between 10,000 and 25,000 km. This coloration is interpreted as being due to a population of sub-micronic grains which result of the fragmentation of dust particles transported in the jets. It is suggested that the diffuse source where an additional quantity of CO was detected might be connected with the presence of a dust jet. In the present scheme, grain particles with a size of several micron or 10 micron would be transported inside a dust jet to distances of several 10,000 km where they would suffer fragmentation and produce sub-micronic particles and a release of gas which would be at the origin of the diffuse source.

  6. THREE-DIMENSIONAL LAGRANGIAN TURBULENT DIFFUSION OF DUST GRAINS IN A PROTOPLANETARY DISK: METHOD AND FIRST APPLICATIONS

    SciTech Connect

    Charnoz, Sebastien; Aleon, Jerome

    2011-08-10

    In order to understand how the chemical and isotopic compositions of dust grains in a gaseous turbulent protoplanetary disk are altered during their journey in the disk, it is important to determine their individual trajectories. We study here the dust-diffusive transport using Lagrangian numerical simulations using the popular 'turbulent diffusion' formalism. However, it is naturally expressed in an Eulerian form, which does not allow the trajectories of individual particles to be studied. We present a simple stochastic and physically justified procedure for modeling turbulent diffusion in a Lagrangian form that overcomes these difficulties. We show that a net diffusive flux F of the dust appears and that it is proportional to the gas density ({rho}) gradient and the dust diffusion coefficient D{sub d}: (F = D{sub d} /{rho} x grad({rho})). It induces an inward transport of dust in the disk's midplane, while favoring outward transport in the disk's upper layers. We present tests and applications comparing dust diffusion in the midplane and upper layers as well as sample trajectories of particles with different sizes. We also discuss potential applications for cosmochemistry and smoothed particle hydrodynamic codes.

  7. Foregrounds in Wide-field Redshifted 21 cm Power Spectra

    NASA Astrophysics Data System (ADS)

    Thyagarajan, Nithyanandan; Jacobs, Daniel C.; Bowman, Judd D.; Barry, N.; Beardsley, A. P.; Bernardi, G.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Dillon, Joshua S.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, Han-Seek; Kittiwisit, P.; Kratzenberg, E.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, Sourabh; Pindor, B.; Pober, J. C.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Sethi, Shiv K.; Srivani, K. S.; Subrahmanyan, R.; Sullivan, I. S.; Tegmark, M.; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2015-05-01

    Detection of 21 cm emission of H i from the epoch of reionization, at redshifts z\\gt 6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the H i signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the “foreground wedge” in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor of ∼100 with negligible loss of sensitivity.

  8. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS).

    PubMed

    Kwon, Cheol-Woong; Chirila, Madalina M; Lee, Taekhee; Harper, Martin; Rando, Roy J

    2013-01-01

    Emerging concerns regarding the toxicity of inhaled wood dust support the need for techniques to quantitate wood content of mixed industrial dusts. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis technique was applied to the determination of wood content of 181 inhalable dust samples (geometric mean concentration: 0.895 mg/m(3); geometric standard deviation: 2.73) collected from six wood product industry factories using 25mm glass fibre filters with the Button aerosol sampler. Prior to direct DRIFTS analysis the filter samples were treated with ethyl acetate and re-deposited uniformly. Standards ranging from 125 μg to 4000 μg were prepared for red oak, southern yellow pine, and red cedar and used for quantitation of samples depending upon the wood materials present at a given factory. The oak standards spectra were quantitated by linear regression of response in Kubelka-Munk units at 1736 cm(-1), whereas the pine standards and the cedar standards spectra were quantitated by polynomial regression of response in log 1/R units at 1734 cm(-1), with the selected wavenumbers corresponding to stretching vibration of free C=O from cellulose and hemicelluloses. For one factory which used both soft- and hardwoods, a separate polynomial standard curve was created by proportionally combining the oak and pine standards polynomial regression equations based on response (log 1/R) at 1734 cm(-1). The analytical limits of detection were approximately 52 μg of oak, 20 μg of pine, 30 μg of cedar, and 16 μg of mixed oak and pine for the factory with mixed woods. Overall, the average of dry wood dust percentage of inhalable dust was approximately 56% and the average dry wood dust weight was 0.572mg for the Button samples. Across factories, there were statistically significant differences (p<0.001) for the percentage of dry wood dust in inhalable dust with factory averages ranging from 33.5 to 97.6%.

  9. Determination of airborne wood dust in Button samples by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

    PubMed Central

    Kwon, Cheol-Woong; Chirila, Madalina M.; Lee, Taekhee; Harper, Martin; Rando, Roy J.

    2015-01-01

    Emerging concerns regarding the toxicity of inhaled wood dust support the need for techniques to quantitate wood content of mixed industrial dusts. The diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis technique was applied to the determination of wood content of 181 inhalable dust samples (geometric mean concentration: 0.895 mg/m3; geometric standard deviation: 2.73) collected from six wood product industry factories using 25mm glass fibre filters with the Button aerosol sampler. Prior to direct DRIFTS analysis the filter samples were treated with ethyl acetate and re-deposited uniformly. Standards ranging from 125 μg to 4000 μg were prepared for red oak, southern yellow pine, and red cedar and used for quantitation of samples depending upon the wood materials present at a given factory. The oak standards spectra were quantitated by linear regression of response in Kubelka-Munk units at 1736 cm−1, whereas the pine standards and the cedar standards spectra were quantitated by polynomial regression of response in log 1/R units at 1734 cm−1, with the selected wavenumbers corresponding to stretching vibration of free C=O from cellulose and hemicelluloses. For one factory which used both soft- and hardwoods, a separate polynomial standard curve was created by proportionally combining the oak and pine standards polynomial regression equations based on response (log 1/R) at 1734 cm−1. The analytical limits of detection were approximately 52 μg of oak, 20 μg of pine, 30 μg of cedar, and 16 μg of mixed oak and pine for the factory with mixed woods. Overall, the average of dry wood dust percentage of inhalable dust was approximately 56% and the average dry wood dust weight was 0.572mg for the Button samples. Across factories, there were statistically significant differences (p<0.001) for the percentage of dry wood dust in inhalable dust with factory averages ranging from 33.5 to 97.6%. PMID:26526539

  10. Sunlight Transmission through Desert Dust and Marine Aerosols: Diffuse Light Corrections to Sun Photometry and Pyrheliometry

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Dubovik, O.; Ramirez, S. A.; Wang, J.; Redemann, J.; Schmid, B.; Box, M.; Holben, B. N.

    2003-01-01

    Desert dust and marine aerosols are receiving increased scientific attention because of their prevalence on intercontinental scales and their potentially large effects on Earth radiation and climate, as well as on other aerosols, clouds, and precipitation. The relatively large size of desert dust and marine aerosols produces scattering phase functions that are strongly forward- peaked. Hence, Sun photometry and pyrheliometry of these aerosols are more subject to diffuse-light errors than is the case for smaller aerosols. Here we quantify these diffuse-light effects for common Sun photometer and pyrheliometer fields of view (FOV), using a data base on dust and marine aerosols derived from (1) AERONET measurements of sky radiance and solar beam transmission and (2) in situ measurements of aerosol layer size distribution and chemical composition. Accounting for particle non-sphericity is important when deriving dust size distribution from both AERONET and in situ aerodynamic measurements. We express our results in terms of correction factors that can be applied to Sun photometer and pyrheliometer measurements of aerosol optical depth (AOD). We find that the corrections are negligible (less than approximately 1% of AOD) for Sun photometers with narrow FOV (half-angle eta less than degree), but that they can be as large as 10% of AOD at 354 nm wavelength for Sun photometers with eta = 1.85 degrees. For pyrheliometers (which can have eta up to approximately 2.8 degrees), corrections can be as large as 16% at 354 nm. We find that AOD correction factors are well correlated with AOD wavelength dependence (hence Angstrom exponent). We provide best-fit equations for determining correction factors from Angstrom exponents of uncorrected AOD spectra, and we demonstrate their application to vertical profiles of multiwavelength AOD.

  11. Dust scattering from the Taurus Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Narayan, Sathya; Murthy, Jayant; Karuppath, Narayanankutty

    2017-04-01

    We present an analysis of the diffuse ultraviolet emission near the Taurus Molecular Cloud based on observations made by the Galaxy Evolution Explorer. We used a Monte Carlo dust scattering model to show that about half of the scattered flux originates in the molecular cloud with 25 per cent arising in the foreground and 25 per cent behind the cloud. The best-fitting albedo of the dust grains is 0.3, but the geometry is such that we could not constrain the phase function asymmetry factor (g).

  12. Spectroscopy of diffuse light in dust clouds. Scattered light and the solar neighbourhood radiation field

    NASA Astrophysics Data System (ADS)

    Lehtinen, K.; Mattila, K.

    2013-01-01

    Context. The optical surface brightness of dark nebulae is mainly due to scattering of integrated starlight by classical dust grains. It contains information on the impinging interstellar radiation field, cloud structure, and grain scattering properties. We have obtained spectra of the scattered light from 3500 to 9000 Å in two globules, the Thumbprint Nebula and DC 303.8-14.2. Aims. We use observations of the scattered light to study the impinging integrated starlight spectrum as well as the scattered Hα and other line emissions from all over the sky. We search also for the presence of other than scattered light in the two globules. Methods. We obtained long-slit spectra encompassing the whole globule plus adjacent sky in a one-slit setting, thus enabling efficient elimination of airglow and other foreground sky components. We calculated synthetic integrated starlight spectra for the solar neighbourhood using HIPPARCOS-based stellar distributions and the spectral library of Pickles. Results. Spectra are presented separately for the bright rims and dark cores of the globules. The continuum spectral energy distributions and absorption line spectra can be well modelled with the synthetic integrated starlight spectra. Emission lines of Hα +[N II], Hβ, and [S II] are detected and are interpreted in terms of scattered light plus an in situ warm ionized medium component behind the globules. We detected an excess of emission over the wavelength range 5200-8000 Å in DC 303.8-14.2 but the nature of this emission remains open. Based on observations collected at the European Southern Observatory, Chile, under programme ESO No. 073.C-0239(A). Appendix A is available in electronic form at http://www.aanda.org.

  13. Ice Formation via Deposition Mode Nucleation Onto Dust Particulates: The University of Toronto Continuous Flow Diffusion Chamber

    NASA Astrophysics Data System (ADS)

    Kanji, Z. A.; Abbatt, J. P.; Cotton, R.; Demott, P.; Jones, H.; Möhler, O.; Stetzer, O.

    2008-12-01

    Laboratory studies are described whereby the heterogeneous ice nucleating ability of various dust samples were studied, for particles suspended in a newly built thermal gradient continuous flow diffusion chamber (TG-CFDC). Ice formation is observed using an optical particle counter (OPC) and the relative humidity (RH) and temperature conditions of the flow system are validated by observing homogenous freezing of H2SO4 aerosols. At the Fourth International Ice Nucleation Workshop (ICIS 07) in Karslruhe, Germany this system was used to investigate ice nucleation primarily in the vapor deposition mode, for Arizona Test Dust (ATD), Israeli Desert Dust (ID), Canary Island Dust (CID), Saharan Dust (SD), Graphite Spark Soot, Snomax® (dead bacteria) and live bacteria. The aerosol size was in the submicron range with an approximate cut off of 700 nm and a mode of 350 nm. Temperatures for nucleation were varied from 265 - 230 K. The dust aerosols were generally found to be more efficient than soot. At warmer temperatures (263 K) the bacteria were found to be active in the deposition mode which was not the case for dusts. Among the various dust types at 248 K, the CID was more efficient than ATD at nucleating ice when efficiency is based on lowest onset RH conditions for ice formation in our chamber. We also present preliminary results for the effect of total surface area versus size of aerosols on ice nucleation using ATD as a surrogate for naturally occurring mineral dust.

  14. Symmetry constraint for foreground extraction.

    PubMed

    Fu, Huazhu; Cao, Xiaochun; Tu, Zhuowen; Lin, Dongdai

    2014-05-01

    Symmetry as an intrinsic shape property is often observed in natural objects. In this paper, we discuss how explicitly taking into account the symmetry constraint can enhance the quality of foreground object extraction. In our method, a symmetry foreground map is used to represent the symmetry structure of the image, which includes the symmetry matching magnitude and the foreground location prior. Then, the symmetry constraint model is built by introducing this symmetry structure into the graph-based segmentation function. Finally, the segmentation result is obtained via graph cuts. Our method encourages objects with symmetric parts to be consistently extracted. Moreover, our symmetry constraint model is applicable to weak symmetric objects under the part-based framework. Quantitative and qualitative experimental results on benchmark datasets demonstrate the advantages of our approach in extracting the foreground. Our method also shows improved results in segmenting objects with weak, complex symmetry properties.

  15. Variations between Dust and Gas in the Diffuse Interstellar Medium. II. Search for Cold Gas

    NASA Astrophysics Data System (ADS)

    Reach, William T.; Heiles, Carl; Bernard, Jean-Philippe

    2017-01-01

    The content of interstellar clouds, in particular the inventory of diffuse molecular gas, remains uncertain. We identified a sample of isolated clouds, approximately 100 M⊙ in size, and used the dust content to estimate the total amount of gas. In Paper I, the total inferred gas content was found significantly larger than that seen in 21 cm emission measurements of H i. In this paper we test the hypothesis that the apparent excess “dark” gas is cold H i, which would be evident in absorption but not in emission due to line saturation. The results show that there is not enough 21 cm absorption toward the clouds to explain the total amount of “dark” gas.

  16. Dust in the Diffuse Emission of the Galactic Plane: The Herschel/Spitzer Spectral Energy Distribution Fitting

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Flagey, N.; Noriega-Crespo, A.; Martin, P. G.; Bernard, J.-P.; Paladini, R.; Molinari, S.

    2010-11-01

    The first Herschel Hi-Gal images of the Galactic plane unveil the far-infrared diffuse emission of the interstellar medium with an unprecedented angular resolution and sensitivity. In this Letter, we present the first analysis of these data in combination with those of Spitzer GLIMPSE and MIPSGAL. We selected a relatively diffuse and low excitation region of the l ~ 59° Hi-Gal Science Demonstration Phase field to perform a pixel-by-pixel fitting of the 8 to 500 μm spectral energy distribution (SED) using the DustEM dust emission model. We derived maps of the very small grain (VSG) and polycyclic aromatic hydrocarbon (PAH) abundances from the model. Our analysis allows us to illustrate that the aromatic infrared band intensity does not necessarily trace the PAH abundance but rather the product of "abundance × column density × intensity of the exciting radiation field." We show that the spatial structure of PACS 70 μm maps resemble the shorter wavelengths (e.g., IRAC 8 μm) maps, because they trace both the intensity of exciting radiation field and column density. We also show that the modeled VSG contribution to PACS 70 μm (PACS 160 μm) band intensity can be up to 50% (7%). The interpretation of diffuse emission spectra at these wavelengths must take stochastically heated particles into account. Finally, this preliminary study emphasizes the potential of analyzing the full dust SED sampled by Herschel and Spitzer data, with a physical dust model (DustEM) to reach the properties of the dust at simultaneously large and small scales. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. The Spitzer Space Telescope is operated by the Jet Propulsion Laboratory, California Institute of Technology under a contract with NASA.

  17. DUST IN THE DIFFUSE EMISSION OF THE GALACTIC PLANE: THE HERSCHEL/SPITZER SPECTRAL ENERGY DISTRIBUTION FITTING

    SciTech Connect

    Compiegne, M.; Martin, P. G.; Flagey, N.; Noriega-Crespo, A.; Paladini, R.; Bernard, J.-P.; Molinari, S.

    2010-11-20

    The first Herschel Hi-Gal images of the Galactic plane unveil the far-infrared diffuse emission of the interstellar medium with an unprecedented angular resolution and sensitivity. In this Letter, we present the first analysis of these data in combination with those of Spitzer GLIMPSE and MIPSGAL. We selected a relatively diffuse and low excitation region of the l {approx} 59{sup 0} Hi-Gal Science Demonstration Phase field to perform a pixel-by-pixel fitting of the 8 to 500 {mu}m spectral energy distribution (SED) using the DustEM dust emission model. We derived maps of the very small grain (VSG) and polycyclic aromatic hydrocarbon (PAH) abundances from the model. Our analysis allows us to illustrate that the aromatic infrared band intensity does not necessarily trace the PAH abundance but rather the product of 'abundance x column density x intensity of the exciting radiation field'. We show that the spatial structure of PACS 70 {mu}m maps resemble the shorter wavelengths (e.g., IRAC 8 {mu}m) maps, because they trace both the intensity of exciting radiation field and column density. We also show that the modeled VSG contribution to PACS 70 {mu}m (PACS 160 {mu}m) band intensity can be up to 50% (7%). The interpretation of diffuse emission spectra at these wavelengths must take stochastically heated particles into account. Finally, this preliminary study emphasizes the potential of analyzing the full dust SED sampled by Herschel and Spitzer data, with a physical dust model (DustEM) to reach the properties of the dust at simultaneously large and small scales.

  18. Near- and far-infrared observations of interplanetary dust bands from the COBE diffuse infrared background experiment

    NASA Technical Reports Server (NTRS)

    Spiesman, William J.; Hauser, Michael G.; Kelsall, Thomas; Lisse, Carey M.; Moseley, S. Harvey, Jr.; Reach, William T.; Silverberg, Robert F.; Stemwedel, Sally W.; Weiland, Janet L.

    1995-01-01

    Data from the Diffuse Infrared Background Experiment (DIRBE) instrument aboard the Cosmic Background Explorer Satellite (COBE) spacecraft have been used to examine the near and far infrared signatures of the interplanetary dust (IPD) bands. Images of the dust band pairs at ecliptic latitudes of +/- 1.4 deg and +/- 10 deg have been produced at DIRBE wavelengths from 1.25 to 100 micrometers. The observations at the shorter wavelengths provide the first evidence of scattered sunlight from particles responsible for the dust bands. It is found that the grains in the bands and those in the smooth IPD cloud have similar spectral energy distributions, suggesting similar compositions and possibly a common origin. The scattering albedos from 1.25 to 3.5 micrometers for the grains in the dust bands and those in the IPD cloud are 0.22 and 0.29, respectively. The 10 deg band pair is cooler (185 +/- 10 K) than the smooth interplanetary dust cloud (259 +/- 10 K). From both parallactic and thermal analyses, the implied location of the grains responsible for the peak brightness of the 10 deg band pair is 2.1 +/- 0.1 AU the Sun A parallactic distance of 1.4 +/- 0.2 AU is found for the peak of the 1.4 deg band pair.

  19. Dust Diffusion and Settling in the Presence of Collisions: Trapping (sub)micron Grains in the Midplane

    NASA Astrophysics Data System (ADS)

    Krijt, Sebastiaan; Ciesla, Fred J.

    2016-05-01

    In protoplanetary disks, the distribution and abundance of small (sub)micron grains are important for a range of physical and chemical processes. For example, they dominate the optical depth at short wavelengths and their surfaces are the sites of many important chemical reactions, such as the formation of water. Based on their aerodynamical properties (i.e., their strong dynamical coupling with the surrounding gas) it is often assumed that these small grains are well-mixed with the gas. Our goal is to study the vertical (re)distribution of grains taking into account settling, turbulent diffusion, and collisions with other dust grains. Assuming a fragmentation-limited background dust population, we developed a Monte Carlo approach that follows single monomers as they move through a vertical column of gas and become incorporated in different aggregates as they undergo sticking and fragmenting collisions. We find that (sub)micron grains are not necessarily well-mixed vertically, but can become trapped in a thin layer with a scale height that is significantly smaller than that of the gas. This collisional trapping occurs when the timescale for diffusion is comparable to or longer than the collision timescale in the midplane and its effect is strongest when the most massive particles in the size distribution show significant settling. Based on simulations and analytical considerations, we conclude that for typical dust-to-gas ratios and turbulence levels, the collisional trapping of small grains should be a relatively common phenomenon. The absence of trapping could then indicate a low dust-to-gas ratio, possibly because a large portion of the dust mass has been removed through radial drift or is locked up in planetesimals.

  20. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples.

    PubMed

    Miller, Arthur L; Murphy, Nathaniel C; Bayman, Sean J; Briggs, Zachary P; Kilpatrick, Andrew D; Quinn, Courtney A; Wadas, Mackenzie R; Cauda, Emanuele G; Griffiths, Peter R

    2015-01-01

    The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers' pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100-600 μg and 600-5300 μg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of -log R correlate linearly with known amounts of quartz on filters, with R(2) values of approximately 0.99 and 0.94, respectively, for samples loaded up to ∼4000 μg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is "free," as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive

  1. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples

    PubMed Central

    Miller, Arthur L.; Murphy, Nathaniel C.; Bayman, Sean J.; Briggs, Zachary P.; Kilpatrick, Andrew D.; Quinn, Courtney A.; Wadas, Mackenzie R.; Cauda, Emanuele G.; Griffiths, Peter R.

    2015-01-01

    The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers’ pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100–600 μg and 600–5300 μg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of −log R correlate linearly with known amounts of quartz on filters, with R2 values of approximately 0.99 and 0.94, respectively, for samples loaded up to ~4000 μg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is “free,” as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive

  2. Testing for foreground residuals in the Planck foreground cleaned maps: A new method for designing confidence masks

    NASA Astrophysics Data System (ADS)

    Axelsson, M.; Ihle, H. T.; Scodeller, S.; Hansen, F. K.

    2015-06-01

    We test for foreground residuals in the foreground-cleaned Planck cosmic microwave background (CMB) maps outside and inside the U73 mask commonly used for cosmological analysis. The aim of this paper is to introduce a new method of validating masks by looking at the differences in cleaned maps obtained by different component-separation methods. By analyzing the power spectrum, as well as the mean, rms, and skewness of needlet coefficients on separate equatorial bands running from the poles to the equator outside and inside the U73 mask, we first confirm that the pixels already masked by U73 are highly contaminated and cannot be used for cosmological analysis. We further find that the U73 mask needs extension in order to reduce large-scale foreground residuals to a level of less than 20% of the standard deviation of CMB fluctuations within the bands closest to the galactic equator. We also find 276 point-like residuals in the cleaned foreground maps that are currently not masked by the U73 mask. About 80 of these are identified as sz clusters that have not been properly subtracted by the component separation methods, and the rest are strongly correlated with the Planck dust map, indicating point-like dust residuals. Our final publicly available extended mask leaves 65.9% of the sky for cosmological analysis. This extended mask may be important for analyses on local sky patches; for the full sky power spectrum, we have shown that the unmasked residuals have very little impact. The final extended mask (FITS format) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A44 and at http://folk.uio.no/frodekh/PS_catalogue/planck_extended_mask.fits

  3. Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission

    NASA Technical Reports Server (NTRS)

    Gold, B.; Bennett, C.L.; Larson, D.; Hill, R.S.; Odegard, N.; Weiland, J.L.; Hinshaw, G.; Kogut, A.; Wollack, E.; Page, L.; Dunkley, J.; Jarosik, N.; Spergel, N.; Halpern, M.; Komatsu, E.; Meyer, S.S.; Nolta, M.R.; Wright, E.L.

    2008-01-01

    We present a new estimate of foreground emission in the WMAP data, using a Markov chain Monte Carlo (MCMC) method. The new technique delivers maps of each foreground component for a variety of foreground models, error estimates of the uncertainty of each foreground component, and provides an overall goodness-of-fit measurement. The resulting foreground maps are in broad agreement with those from previous techniques used both within the collaboration and by other authors. We find that for WMAP data, a simple model with power-law synchrotron, free-free, and thermal dust components fits 90% of the sky with a reduced X(sup 2) (sub v) of 1.14. However, the model does not work well inside the Galactic plane. The addition of either synchrotron steepening or a modified spinning dust model improves the fit. This component may account for up to 14% of the total flux at Ka-band (33 GHz). We find no evidence for foreground contamination of the CMB temperature map in the 85% of the sky used for cosmological analysis.

  4. Interstellar extinction toward the Cas OB6 association: Where is the dust?

    NASA Technical Reports Server (NTRS)

    Hanson, Margaret Murray; Clayton, Geoffrey C.

    1993-01-01

    We have completed a multiband (ultraviolet, optical, and near-infrared) study of the interstellar extinction properties of nine massive stars in IC 1805 and IC 1848, which are both part of Cas OB6 in the Perseus spiral arm. Our analysis includes determination of absolute extinction over the wavelength range from 3 micrometers to 1250 A. We have attempted to distinguish between foreground dust and dust local to Cas OB6. This is done by quantitatively comparing extinction laws of the least reddened sightlines (sampling mostly foreground dust) versus the most reddened sightlines (sampling a larger fraction of the dust in the Cas OB6 region). We have combined previous investigations to better understand the evolution of the interstellar medium in this active star forming region. We found no variation of extinction curve behavior between moderately reddend and heavily reddened Cas OB6 stars. None of the curves show any significant deviation from the Cardelli-Clayton-Mathis (CCM) R(sub upsilon)-dependent extinction. They are all consistent with that seen from diffuse dust. Most or all of the dust along the line of sight may be foreground to Cas OB6. Massive star forming regions can show significant deviations from CCM behavior which have been attributed to processing of the dust grains. Any dust local to the association must exist far from the hot stars in IC 1805 and IC 1848. A previous episode of star formation may have already cleared out the region of most of the gas and dust. Evidence for this can be seen in H I and IRAS data of the region.

  5. Lifetime Occupational Exposure to Dusts, Gases and Fumes Is Associated with Bronchitis Symptoms and Higher Diffusion Capacity in COPD Patients

    PubMed Central

    Rodríguez, Esther; Ferrer, Jaume; Zock, Jan-Paul; Serra, Ignasi; Antó, Josep M.; de Batlle, Jordi; Kromhout, Hans; Vermeulen, Roel; Donaire-González, David; Benet, Marta; Balcells, Eva; Monsó, Eduard; Gayete, Angel; Garcia-Aymerich, Judith

    2014-01-01

    Background Occupational exposure to dusts, gases and fumes has been associated with reduced FEV1 and sputum production in COPD patients. The effect of occupational exposure on other characteristics of COPD, especially those reflecting emphysema, has not been studied in these patients. Methods We studied 338 patients hospitalized for a first exacerbation of COPD in 9 Spanish hospitals, obtaining full occupational history in a face-to-face interview; job codes were linked to a job exposure matrix for semi-quantitative estimation of exposure to mineral/biological dust, and gases/fumes for each job held. Patients underwent spirometry, diffusing capacity testing and analysis of gases in stable conditions. Quality of life, dyspnea and chronic bronchitis symptoms were determined with a questionnaire interview. A high- resolution CT scan was available in 133 patients. Results 94% of the patients included were men, with a mean age of 68(8.5) years and a mean FEV1% predicted 52 (16). High exposure to gases or fumes was associated with chronic bronchitis, and exposure to mineral dust and gases/fumes was associated with higher scores for symptom perception in the St. George’s questionnaire. No occupational agent was associated with a lower FEV1. High exposure to all occupational agents was associated with better lung diffusion capacity, in long-term quitters. In the subgroup with CT data, patients with emphysema had 18% lower DLCO compared to those without emphysema. Conclusions In our cohort of COPD patients, high exposure to gases or fumes was associated with chronic bronchitis, and high exposure to all occupational agents was consistently associated with better diffusion capacity in long-term quitters. PMID:24516659

  6. Emission from small dust particles in diffuse and molecular cloud medium

    NASA Technical Reports Server (NTRS)

    Bernard, J. P.; Desert, X.

    1990-01-01

    Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances.

  7. The properties of diffuse interstellar dust clouds as determined from GALEX and infrared (IRAS, Herschel) observations

    NASA Astrophysics Data System (ADS)

    Armengot, M.; Gómez de Castro, A. I.

    2017-03-01

    Dust grain properties are known to vary in the interstellar medium depending on the density, the ultraviolet radiation field and the local abundances of metal elements. Though there are plenty of studies addressing the atomic and molecular gas component or the infrared radiation of dust grains, there are very few studies that address the spatial distribution of small large grains and large molecules such as the Polyaromathic Hydrocarbons (PAHs).In this work, we make use of the GALEX survey of the Galaxy to identify the absorption produced in the GALEX far UV (write in the spectral range) and new UV (write in the spectral range) by well know infrared cirrus and compare the absorption produced in the UV by the thin cirrus with the infrared dust emissivity in various bands; (describe the IRAS bands used and whether there is any Herschel band in this study). As the spatial resolution of GALEX images is significantly larger than that of IRAS images data handling has required mosaicking and and rescaling GALEX data as well as transforming the images form equinox 1950 to equinox 2000. We describe in this work the computational procedures used to generate the ultraviolet and infrared maps. Also we present our first results that show there is an anticorrelation between UV and infrared (IR) emission, as other wise expected. The largest concentrations of dust grains radiate IR photons and absorb UV photons.

  8. Contamination of the Epoch of Reionization power spectrum in the presence of foregrounds

    NASA Astrophysics Data System (ADS)

    Sims, Peter H.; Lentati, Lindley; Alexander, Paul; Carilli, Chris L.

    2016-11-01

    We construct foreground simulations comprising spatially correlated extragalactic and diffuse Galactic emission components and calculate the `intrinsic' (instrument-free) two-dimensional spatial power spectrum and the cylindrically and spherically averaged three-dimensional k-space power spectra of the Epoch of Reionization (EoR) and our foreground simulations using a Bayesian power spectral estimation framework. This leads us to identify a model-dependent region of optimal signal estimation for our foreground and EoR models, within which the spatial power in the EoR signal relative to the foregrounds is maximized. We identify a target field-dependent region, in k-space, of intrinsic foreground power spectral contamination at low k⊥ and k∥ and a transition to a relatively foreground-free intrinsic EoR window in the complement to this region. The contaminated region of k-space demonstrates that simultaneous estimation of the EoR and foregrounds is important for obtaining statistically robust estimates of the EoR power spectrum; biased results will be obtained from methodologies that ignore their covariance. Using simulated observations with frequency-dependent uv-coverage and primary beam, with the former derived for the Hydrogen Epoch of Reionization Array in 37-antenna and 331-antenna configuration, we recover instrumental power spectra consistent with their intrinsic counterparts. We discuss the implications of these results for optimal strategies for unbiased estimation of the EoR power spectrum.

  9. Isotropy-violation diagnostics for B-mode polarization foregrounds to the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    Rotti, Aditya; Huffenberger, Kevin

    2016-09-01

    Isotropy-violation statistics can highlight polarized galactic foregrounds that contaminate primordial B-modes in the Cosmic Microwave Background (CMB). We propose a particular isotropy-violation test and apply it to polarized Planck 353 GHz data, constructing a map that indicates B-mode foreground dust power over the sky. We build our main isotropy test in harmonic space via the bipolar spherical harmonic basis, and our method helps us to identify the least-contaminated directions. By this measure, there are regions of low foreground in and around the BICEP field, near the South Galactic Pole, and in the Northern Galactic Hemisphere. There is also a possible foreground feature in the BICEP field. We compare our results to those based on the local power spectrum, which is computed on discs using a version of the method of Planck Int. XXX (2016). The discs method is closely related to our isotropy-violation diagnostic. We pay special care to the treatment of noise, including chance correlations with the foregrounds. Currently we use our isotropy tool to assess the cleanest portions of the sky, but in the future such methods will allow isotropy-based null tests for foreground contamination in maps purported to measure primordial B-modes, particularly in cases of limited frequency coverage.

  10. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, J.

    2014-06-01

    The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient Dp⊥ is obtained from the simulation data. The force dependence of Dp⊥ is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy Wp for perpendicular motion is also obtained. The diffusion coefficient is found to increase with Wp with a linear trend at higher energies, but an exponential trend at lower energies.

  11. Non-Gaussianity in the foreground-reduced CMB maps

    SciTech Connect

    Bernui, A.; Reboucas, M. J.

    2010-03-15

    A detection or nondetection of primordial non-Gaussianity by using the cosmic microwave background radiation (CMB) data is crucial not only to discriminate inflationary models but also to test alternative scenarios. Non-Gaussianity offers, therefore, a powerful probe of the physics of the primordial Universe. The extraction of primordial non-Gaussianity is a difficult enterprise since several effects of a nonprimordial nature can produce non-Gaussianity. Given the far-reaching consequences of such a non-Gaussianity for our understanding of the physics of the early Universe, it is important to employ a range of different statistical tools to quantify and/or constrain its amount in order to have information that may be helpful for identifying its causes. Moreover, different indicators can in principle provide information about distinct forms of non-Gaussianity that can be present in CMB data. Most of the Gaussianity analyses of CMB data have been performed by using part-sky frequency, where the mask is used to deal with the galactic diffuse foreground emission. However, full-sky map seems to be potentially more appropriate to test for Gaussianity of the CMB data. On the other hand, masks can induce bias in some non-Gaussianity analyses. Here we use two recent large-angle non-Gaussianity indicators, based on skewness and kurtosis of large-angle patches of CMB maps, to examine the question of non-Gaussianity in the available full-sky five-year and seven-year Wilkinson Microwave Anisotropy Probe (WMAP) maps. We show that these full-sky foreground-reduced maps present a significant deviation from Gaussianity of different levels, which vary with the foreground-reducing procedures. We also make a Gaussianity analysis of the foreground-reduced five-year and seven-year WMAP maps with a KQ75 mask, and compare with the similar analysis performed with the corresponding full-sky foreground-reduced maps. This comparison shows a significant reduction in the levels of non

  12. The Origin of the Excess Near-Infrared Diffuse Sky Brightness: Population III Stars or Zodiacal Light?

    NASA Technical Reports Server (NTRS)

    Dwek, Eli

    2006-01-01

    The intensity of the diffuse 1 to 5 micron sky emission from which solar system and Galactic foregrounds have been subtracted is in excess of that expected from energy released by galaxies and stars that formed during the z < 5 redshift interval. The spectral signature of this excess near-infrared background light (NIRBL) component is almost identical to that of reflected sunlight from the interplanetary dust cloud, and could therefore be the result of the incomplete subtraction of this foreground emission component from the diffuse sky maps. Alternatively, this emission component could be extragalactic. Its spectral signature is consistent with that of redshifted continuum and recombination line emission from H-II regions formed by the first generation of very massive stars. In this talk I will present the implications of this excess emission for our understanding of the zodiacal dust cloud, the formation rate of Pop III stars, and the TeV gamma-ray opacity to nearby blazars.

  13. Perpendicular diffusion of a dilute beam of charged dust particles in a strongly coupled dusty plasma

    SciTech Connect

    Liu, Bin; Goree, J.

    2014-06-15

    The diffusion of projectiles drifting through a target of strongly coupled dusty plasma is investigated in a simulation. A projectile's drift is driven by a constant force F. We characterize the random walk of the projectiles in the direction perpendicular to their drift. The perpendicular diffusion coefficient D{sub p⊥} is obtained from the simulation data. The force dependence of D{sub p⊥} is found to be a power law in a high force regime, but a constant at low forces. A mean kinetic energy W{sub p} for perpendicular motion is also obtained. The diffusion coefficient is found to increase with W{sub p} with a linear trend at higher energies, but an exponential trend at lower energies.

  14. Stochastic charging of dust grains in planetary rings: Diffusion rates and their effects on Lorentz resonances

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1995-01-01

    Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.

  15. Interstellar Dust: Contributed Papers

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M. (Editor); Allamandola, Louis J. (Editor)

    1989-01-01

    A coherent picture of the dust composition and its physical characteristics in the various phases of the interstellar medium was the central theme. Topics addressed included: dust in diffuse interstellar medium; overidentified infrared emission features; dust in dense clouds; dust in galaxies; optical properties of dust grains; interstellar dust models; interstellar dust and the solar system; dust formation and destruction; UV, visible, and IR observations of interstellar extinction; and quantum-statistical calculations of IR emission from highly vibrationally excited polycyclic aromatic hydrocarbon (PAH) molecules.

  16. Unusual relative strengths of the diffuse interstellar bands in some interstellar dust clouds

    NASA Technical Reports Server (NTRS)

    Krelowski, J.; Walker, G. A. H.

    1986-01-01

    Some of the diffuse interstellar features (DIBs) in the spectra of certain stars at high galactic latitudes (1 is greater than 15 degrees) are unusually weak or absent while others have the strength expected for their color excess. In some cases the stars are probably reddened by single interstellar clouds. There appear to be three families of DIBs. The effects of these families are examined. The existance of the three families implies that at least three agents cause the DIBs and that the proportions of the agents or the physical conditions giving rise to the DIBs can vary from cloud to cloud.

  17. BICEP2/Keck - Planck joint analysis and prospects for Galactic foreground removal from CMB observations

    NASA Astrophysics Data System (ADS)

    Crill, Brendan

    2015-08-01

    The joint analysis of 150 GHz polarized maps from BICEP2 and Keck Array at 150 GHz with Planck data at 353 GHzallowed the removal of Galactic dust contamination from the measurement of lensed B-modes in the deep (57 nK deg)BICEP2/Keck maps as well as setting an upper limit on the primordial gravitational wave background from inflation. We present this analysis, describe prospects for polarized foreground cleaning of future suborbitalmeasurements of CMB, and additionally describe Planck's measurements of the spatial correlation of polarizedemission from synchrotron and dust at high galactic latitude, which complicates the removal of Galactic foregrounds at the foregroundminimum of 70-100 GHz.

  18. Foreground extraction for moving RGBD cameras

    NASA Astrophysics Data System (ADS)

    Junejo, Imran N.; Ahmed, Naveed

    2017-02-01

    In this paper, we propose a simple method to perform foreground extraction for a moving RGBD camera. These cameras have now been available for quite some time. Their popularity is primarily due to their low cost and ease of availability. Although the field of foreground extraction or background subtraction has been explored by the computer vision researchers since a long time, the depth-based subtraction is relatively new and has not been extensively addressed as of yet. Most of the current methods make heavy use of geometric reconstruction, making the solutions quite restrictive. In this paper, we make a novel use RGB and RGBD data: from the RGB frame, we extract corner features (FAST) and then represent these features with the histogram of oriented gradients (HoG) descriptor. We train a non-linear SVM on these descriptors. During the test phase, we make used of the fact that the foreground object has distinct depth ordering with respect to the rest of the scene. That is, we use the positively classified FAST features on the test frame to initiate a region growing to obtain the accurate segmentation of the foreground object from just the RGBD data. We demonstrate the proposed method of a synthetic datasets, and demonstrate encouraging quantitative and qualitative results.

  19. TOWER, WEST ELEVATION, SHOWING CONNECTION PIPES FOR TURNOUTS 22 (FOREGROUND) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TOWER, WEST ELEVATION, SHOWING CONNECTION PIPES FOR TURNOUTS 22 (FOREGROUND) AND 24. NOTE “LAZY JACK” TEMPERATURE COMPENSATOR IN FOREGROUND. - Baltimore & Ohio Railroad, Z Tower, State Route 46, Keyser, Mineral County, WV

  20. 2. VIEW SHOWING SOUTHWEST FACE OF BATTERY OFFICES FOREGROUND, DIRECTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SHOWING SOUTHWEST FACE OF BATTERY OFFICES FOREGROUND, DIRECTOR PIT LEFT MIDDLE-GROUND. AND HEIGHT FINDER RIGHT FOREGROUND, LOOKING NORTHEAST - Fort Cronkhite, Anti-Aircraft Battery No. 1, Battery Offices, Wolf Ridge, Sausalito, Marin County, CA

  1. GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF SITE LOOKING SOUTHWEST. JUPITER 'HOP' STAND, FOREGROUND CENTER, REDSTONE TEST STAND FOREGROUND RIGHT, SATURN I C TEST STAND BACKGROUND LEFT. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  2. A comparison of two laboratories for the measurement of wood dust using button sampler and diffuse reflection infrared Fourier-transform spectroscopy (DRIFTS).

    PubMed

    Chirila, Madalina M; Sarkisian, Khachatur; Andrew, Michael E; Kwon, Cheol-Woong; Rando, Roy J; Harper, Martin

    2015-04-01

    The current measurement method for occupational exposure to wood dust is by gravimetric analysis and is thus non-specific. In this work, diffuse reflection infrared Fourier transform spectroscopy (DRIFTS) for the analysis of only the wood component of dust was further evaluated by analysis of the same samples between two laboratories. Field samples were collected from six wood product factories using 25-mm glass fiber filters with the Button aerosol sampler. Gravimetric mass was determined in one laboratory by weighing the filters before and after aerosol collection. Diffuse reflection mid-infrared spectra were obtained from the wood dust on the filter which is placed on a motorized stage inside the spectrometer. The metric used for the DRIFTS analysis was the intensity of the carbonyl band in cellulose and hemicellulose at ~1735 cm(-1). Calibration curves were constructed separately in both laboratories using the same sets of prepared filters from the inhalable sampling fraction of red oak, southern yellow pine, and western red cedar in the range of 0.125-4 mg of wood dust. Using the same procedure in both laboratories to build the calibration curve and analyze the field samples, 62.3% of the samples measured within 25% of the average result with a mean difference between the laboratories of 18.5%. Some observations are included as to how the calibration and analysis can be improved. In particular, determining the wood type on each sample to allow matching to the most appropriate calibration increases the apparent proportion of wood dust in the sample and this likely provides more realistic DRIFTS results.

  3. 4. Log chicken house (far left foreground), log bunkhouse (far ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Log chicken house (far left foreground), log bunkhouse (far left background), one-room log cabin (left of center background), log root cellar (center), post-and-beam center in foreground, and blacksmith shop (far right foreground). View to southeast. - William & Lucina Bowe Ranch, County Road 44, 0.1 mile northeast of Big Hole River Bridge, Melrose, Silver Bow County, MT

  4. Toward an understanding of foreground emission in the BICEP2 region

    SciTech Connect

    Flauger, Raphael; Hill, J. Colin; Spergel, David N. E-mail: jch@astro.princeton.edu

    2014-08-01

    BICEP2 has reported the detection of a degree-scale B-mode polarization pattern in the Cosmic Microwave Background (CMB) and has interpreted the measurement as evidence for primordial gravitational waves. Motivated by the profound importance of the discovery of gravitational waves from the early Universe, we examine to what extent a combination of Galactic foregrounds and lensed E-modes could be responsible for the signal. We reanalyze the BICEP2 results and show that the 100 ×150 GHz and 150 ×150 GHz data are consistent with a cosmology with r=0.2 and negligible foregrounds, but also with a cosmology with r=0 and a significant dust polarization signal. We give independent estimates of the dust polarization signal in the BICEP2 region using a number of different approaches: (1) data-driven models based on Planck 353 GHz intensity, polarization fractions inferred from the same Planck data used by the BICEP2 team but corrected for CMB and CIB contributions, and polarization angles from starlight polarization data or the Planck sky model; (2) the same set of pre-Planck models used by the BICEP2 team but taking into account the higher polarization fractions observed in the CMB- and CIB-corrected map; (3) a measurement of neutral hydrogen gas column density N{sub HI} in the BICEP2 region combined with an extrapolation of a relation between HI column density and dust polarization derived by Planck; and (4) a dust polarization map based on digitized Planck data, which we only use as a final cross-check. While these approaches are consistent with each other, the expected amplitude of the dust polarization power spectrum remains uncertain by about a factor of three. The lower end of the prediction leaves room for a primordial contribution, but at the higher end the dust in combination with the standard CMB lensing signal could account for the BICEP2 observations, without requiring the existence of primordial gravitational waves. By measuring the cross-correlations between

  5. A CMB foreground study in WMAP data: Extragalactic point sources and zodiacal light emission

    NASA Astrophysics Data System (ADS)

    Chen, Xi

    , separately, in comparison to t 0.40 from the WMAP catalogs. Our source catalogs are a good supplement to the existing WMAP source catalogs, and the method itself is proven to be both complementary to and competitive with all the current source finding techniques in WMAP maps. Scattered light and thermal emission from the interplanetary dust (IPD) within our Solar System are major contributors to the diffuse sky brightness at most infrared wavelengths. For wavelengths longer than 3.5 mm, the thermal emission of the IPD dominates over scattering, and the emission is often referred to as the Zodiacal Light Emission (ZLE). To set a limit of ZLE contribution to the WMAP data, we have performed a simultaneous fit of the yearly WMAP time-ordered data to the time variation of ZLE predicted by the DIRBE IPD model (Kelsallet al. 1998) evaluated at 240 mm, plus [cursive l] = 1 - 4 CMB components. It is found that although this fitting procedure can successfully recover the CMB dipole to a 0.5% accuracy, it is not sensitive enough to determine the ZLE signal nor the other multipole moments very accurately.

  6. COSMOG: Cosmology Oriented Sub-mm Modeling of Galactic Foregrounds

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.; Leisawitz, D.

    2004-01-01

    With upcoming missions in mid- and far-Infrared there is a need for software packages to reliably simulate the planned observations. This would help in both planning the observation and scanning strategy and in developing the concepts of the far-off missions. As this workshop demonstrated, many of the new missions are to be in the far-IR range of the electromagnetic spectrum and at the same time will map the sky with a sub-arcsec angular resolution. We present here a computer package for simulating foreground maps for the planned sub-mm and far-IR missions. such as SPECS. The package allows to study confusion limits and simulate cosmological observations for specified sky location interactively and in real time. Most of the emission at wavelengths long-ward of approximately 50 microns is dominated by Galactic cirrus and Zodiacal dust emission. Stellar emission at these wavelengths is weak and is for now neglected. Cosmological sources (distant and not-so-distant) galaxies for specified cosmologies will be added. Briefly, the steps that the algorithm goes through is described.

  7. Detection of Stationary Foreground Objects Using Multiple Nonparametric Background-Foreground Models on a Finite State Machine.

    PubMed

    Cuevas, Carlos; Martinez, Raquel; Berjon, Daniel; Garcia, Narciso

    2017-03-01

    There is a huge proliferation of surveillance systems that require strategies for detecting different kinds of stationary foreground objects (e.g., unattended packages or illegally parked vehicles). As these strategies must be able to detect foreground objects remaining static in crowd scenarios, regardless of how long they have not been moving, several algorithms for detecting different kinds of such foreground objects have been developed over the last decades. This paper presents an efficient and high-quality strategy to detect stationary foreground objects, which is able to detect not only completely static objects but also partially static ones. Three parallel nonparametric detectors with different absorption rates are used to detect currently moving foreground objects, short-term stationary foreground objects, and long-term stationary foreground objects. The results of the detectors are fed into a novel finite state machine that classifies the pixels among background, moving foreground objects, stationary foreground objects, occluded stationary foreground objects, and uncovered background. Results show that the proposed detection strategy is not only able to achieve high quality in several challenging situations but it also improves upon previous strategies.

  8. Sensitivity and foreground modelling for large-scale cosmic microwave background B-mode polarization satellite missions

    NASA Astrophysics Data System (ADS)

    Remazeilles, M.; Dickinson, C.; Eriksen, H. K. K.; Wehus, I. K.

    2016-05-01

    The measurement of the large-scale B-mode polarization in the cosmic microwave background (CMB) is a fundamental goal of future CMB experiments. However, because of unprecedented sensitivity, future CMB experiments will be much more sensitive to any imperfect modelling of the Galactic foreground polarization in the reconstruction of the primordial B-mode signal. We compare the sensitivity to B-modes of different concepts of CMB satellite missions (LiteBIRD, COrE, COrE+, PRISM, EPIC, PIXIE) in the presence of Galactic foregrounds. In particular, we quantify the impact on the tensor-to-scalar parameter of incorrect foreground modelling in the component separation process. Using Bayesian fitting and Gibbs sampling, we perform the separation of the CMB and Galactic foreground B-modes. The recovered CMB B-mode power spectrum is used to compute the likelihood distribution of the tensor-to-scalar ratio. We focus the analysis to the very large angular scales that can be probed only by CMB space missions, i.e. the reionization bump, where primordial B-modes dominate over spurious B-modes induced by gravitational lensing. We find that fitting a single modified blackbody component for thermal dust where the `real' sky consists of two dust components strongly bias the estimation of the tensor-to-scalar ratio by more than 5σ for the most sensitive experiments. Neglecting in the parametric model the curvature of the synchrotron spectral index may bias the estimated tensor-to-scalar ratio by more than 1σ. For sensitive CMB experiments, omitting in the foreground modelling a 1 per cent polarized spinning dust component may induce a non-negligible bias in the estimated tensor-to-scalar ratio.

  9. A novel approach to extract closed foreground object contours in video surveillance

    NASA Astrophysics Data System (ADS)

    Tzanidou, Giounona; Edirisinghe, Eran A.

    2014-03-01

    In this paper we present a novel approach for the detection of closed contours of foreground objects in videos. The proposed methodology begins with an initial localization of contours that is achieved via background subtraction technique that makes use of mixture of Gaussian distributions to model the background. The features that are used to realize an approximate foreground contour segmentation consist of magnitude of gradient at multiple orientations and phase congruency. In the next stage, canny edges of the incoming frames are computed at multiple scales and thresholds using the saturation and value components of HSV image. The approximate foreground contour is refined by reflecting it on the detected edges. A color ratio based noise and shadow line removal technique has been devised to remove the falsely segmented noise and strong shadow edges. Ultimately, to ensure closed contours, edge completion algorithm by anisotropic diffusion is applied. Once the contour is completed, it undergoes flood fill to define the foreground areas. Detailed experimental results on benchmark dataset showed that the proposed framework performs well in most of the different background scenarios. It effectively tackles the presence of shadows, illumination changes, some cases of dynamic background and thermal videos.

  10. GARDEN (FOREGROUND), GARAGE (CENTER), AND PUMPHOUSE, LOOKING NORTHWEST Irvine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GARDEN (FOREGROUND), GARAGE (CENTER), AND PUMPHOUSE, LOOKING NORTHWEST - Irvine Ranch Agricultural Headquarters, Carillo Tenant House, Southwest of Intersection of San Diego & Santa Ana Freeways, Irvine, Orange County, CA

  11. HISTORIC IMAGE: AERIAL VIEW WITH NEW EXPRESSWAY IN FOREGROUND. PHOTOGRAPH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    HISTORIC IMAGE: AERIAL VIEW WITH NEW EXPRESSWAY IN FOREGROUND. PHOTOGRAPH 19 SEPTEMBER 1978. NCA HISTORY COLLECTION. - Black Hills National Cemetery, 20901 Pleasant Valley Drive, Sturgis, Meade County, SD

  12. 20. CAMPANILE WITH DOWNING URN IN FOREGROUND, LOOKING SOUTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. CAMPANILE WITH DOWNING URN IN FOREGROUND, LOOKING SOUTHWEST - Smithsonian Institution Building, 1000 Jefferson Drive, between Ninth & Twelfth Streets, Southwest, Washington, District of Columbia, DC

  13. VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, CONDENSERS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, CONDENSERS AND ORE BIN FOUNDATION ABOVE, LOOKING NORTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  14. 18. VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF MARISCAL WORKS INCLUDING (POSSIBLE SOOT FURNACE), FOREGROUND, CONDENSERS, AND ORE BIN FOUNDATION ABOVE, LOOKING NORTHWEST. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  15. A moving foreground objects extraction method under camouflage effect

    NASA Astrophysics Data System (ADS)

    Zhu, Zhen-zhen; Li, Jing-yue; Yang, Si-si; Zhou, Hong

    2015-07-01

    This paper discusses the problem of segmenting foreground objects with apertures or discontinuities under camouflage effect and the optical physics model is introduced into foreground detection. A moving foreground objects extraction method based on color invariants is proposed in which color invariants are used as descriptors to model the background and do the foreground segmentation. It makes full use of the color spectral information and spatial configuration. Experimental results demonstrate that the proposed method performs well in various situations of color similarity and meets the demand of real-time performance.

  16. An illustration of the foreground emission subtraction process resulting in the DIRBE detection of t

    NASA Technical Reports Server (NTRS)

    2002-01-01

    An illustration of the foreground emission subtraction process resulting in the DIRBE detection of the Cosmic Infrared Background at 240 Aum. The map at the top is a false-color image showing the observed infrared sky brightness at wavelengths of 60 (blue), 100 (green) and 240 Aum (red). The bright white-yellow horizontal band across the middle of the image corresponds to emission from interstellar dust in the plane of our Milky Way Galaxy (the center of the Galaxy lies at the center of the map). The red regions above and below this bright band are 'infrared cirrus' clouds, wispy clouds of relatively cool Galactic dust. The blue S-shaped figure follows the ecliptic plane and represents emission from interplanetary dust in the solar system. The map in the middle is a 60-100-240 Aum false-color image depicting the sky after the foreground glow of the interplanetary dust has been modeled and subtracted; this image is dominated by emission from interstellar dust in the Milky Way. After the infrared light from our solar system and Galaxy has been removed, what remains is a uniform Cosmic Infrared Background. This is illustrated in the bottom image, which shows just the residual 240 Aum brightness. The line across the center is an artifact from removal of the Galactic light. The DIRBE team reports detection of this cosmic background light also at 140 Aum, and has set limits to its brightness at eight other infrared wavelengths from 1.25 to 100 Aum (see Slide 22). Credit: STScI OPO - PRC98-01; M. Hauser and NASA.

  17. Moving-object segmentation using a foreground history map.

    PubMed

    Kwak, Sooyeong; Bae, Guntae; Byun, Hyeran

    2010-02-01

    This paper describes a real-time foreground segmentation method in monocular video sequences for video teleconferencing. Background subtraction is widely used in foreground segmentation for static cameras. However, the results are usually not accurate enough for background substitution tasks. In this paper, we propose a novel strategy for fast and accurate foreground segmentation. The strategy consists of two steps: initial foreground segmentation and fine foreground segmentation. The key to our algorithm consists of two steps. In the first step, a moving object is roughly segmented using the background subtraction method. In order to update the initial foreground segmentation results in the second step, a region-based segmentation method and a foreground history map (FHM)-based segmentation representing the combination of temporal and spatial information were developed. The segmentation accuracy of the proposed algorithm was evaluated with respect to the ground truth, which was the manually cropped foreground. The experimental results showed that the proposed algorithm improved the accuracy of segmentation with respect to Horprasert's well-known algorithm.

  18. VIEW TO EAST OF CRYSTALLIZATION LABORATORY (CENTER LEFT FOREGROUND), PAINT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW TO EAST OF CRYSTALLIZATION LABORATORY (CENTER LEFT FOREGROUND), PAINT APPLICATION BUILDING (CENTER BACKGROUND), AND c1944-1950 c1944-1950 POST-U.S. RADIUM ADDITION ADDITIONS TO EACH BUILDING (RIGHT FOREGROUND AND BACKGROUND) - United States Radium Corporation, 422-432 Alden Street, Orange, Essex County, NJ

  19. NORTH AND WEST SIDES OF OIL HOUSE IN RIGHT FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH AND WEST SIDES OF OIL HOUSE IN RIGHT FOREGROUND, WITH EMBANKMENT (MI-100-A) IN LEFT FOREGROUND, AND POWERHOUSE (MI-100-B) AND SUBSTATION (MI-100-C) AT CENTER AND LEFT BACKGROUND. VIEW TO SOUTHEAST - Hardy Hydroelectric Plant, Oil House, 6928 East Thirty-sixth Street, Newaygo, Newaygo County, MI

  20. A 100-3000 GHz model of thermal dust emission observed by Planck, DIRBE and IRAS

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anistropy on small angular scales. We have recently released maps and associated software utilities for obtaining thermal dust emission and reddening predictions using our Planck-based two-component model.

  1. Robust Background Subtraction with Foreground Validation for Urban Traffic Video

    SciTech Connect

    Cheung, S S; Kamath, C

    2004-01-15

    Identifying moving objects in a video sequence is a fundamental and critical task in many computer-vision applications. Background subtraction techniques are commonly used to separate foreground moving objects from the background. Most background subtraction techniques assume a single rate of adaptation, which is inadequate for complex scenes such as a traffic intersection where objects are moving at different and varying speeds. In this paper, we propose a foreground validation algorithm that first builds a foreground mask using a slow-adapting Kalman filter, and then validates individual foreground pixels by a simple moving object model, built using both the foreground and background statistics as well as the frame difference. Ground-truth experiments with urban traffic sequences show that our proposed algorithm significantly improves upon results using only Kalman filter or frame-differencing, and outperforms other techniques based on mixture of Gaussians, median filter, and approximated media filter.

  2. Cosmic Microwave Background Small-Scale Structure: I. Observations of the Foreground Emission

    NASA Astrophysics Data System (ADS)

    Schmelz, Joan T.; Verschuur, Gerrit L.

    2017-01-01

    The derivation of the small-scale structure in the cosmic microwave background (CMB) relies on an accurate subtraction of foreground signals from the Milky Way Galaxy. Known sources include thermal emission from interstellar cirrus, galactic synchrotron emission resulting from interactions between cosmic ray electrons and magnetic fields, and electron-ion free-free emission from interstellar H II regions. Additional sources include spinning and spinning-wobbling dust grains, and emission from rotational transitions of carbon monoxide. Verschuur (2015 and references therein) showed many examples of connections, associations, and overlaps of galactic HI and CMB structure. Clark et al. (2014) showed that the long, thin filamentary features seen in the high sensitivity, high dynamic range Galactic Arecibo L-Band Feed Array (GALFA) HI survey appear to be aligned along magnetic field directions, which are inferred from the optical polarization of star light. Clark et al. (2015) took this important discovery a step further, relating those magnetic field orientations to the polarized PLANCK 353 GHz dust emission. These results imply that the neutral hydrogen in the interstellar medium is tightly coupled to the galactic magnetic field, which requires a population of electrons. Taken together, these HI results suggest a candidate for a previously unidentified foreground component that may need to be understood in order to improve our ability to measure and interpret the CMB small-scale structure. This work is supported by NASA and NSF.

  3. Planck intermediate results. XXX. The angular power spectrum of polarized dust emission at intermediate and high Galactic latitudes

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hivon, E.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Remazeilles, M.; Renault, C.; Renzi, A.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Soler, J. D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The polarized thermal emission from diffuse Galactic dust is the main foreground present in measurements of the polarization of the cosmic microwave background (CMB) at frequencies above 100 GHz. In this paper we exploit the uniqueness of the Planck HFI polarization data from 100 to 353 GHz to measure the polarized dust angular power spectra CℓEE and CℓBB over the multipole range 40 <ℓ< 600 well away from the Galactic plane. These measurements will bring new insights into interstellar dust physics and allow a precise determination of the level of contamination for CMB polarization experiments. Despite the non-Gaussian and anisotropic nature of Galactic dust, we show that general statistical properties of the emission can be characterized accurately over large fractions of the sky using angular power spectra. The polarization power spectra of the dust are well described by power laws in multipole, Cℓ ∝ ℓα, with exponents αEE,BB = -2.42 ± 0.02. The amplitudes of the polarization power spectra vary with the average brightness in a way similar to the intensity power spectra. The frequency dependence of the dust polarization spectra is consistent with modified blackbody emission with βd = 1.59 and Td = 19.6 K down to the lowest Planck HFI frequencies. We find a systematic difference between the amplitudes of the Galactic B- and E-modes, CℓBB/CℓEE = 0.5. We verify that these general properties are preserved towards high Galactic latitudes with low dust column densities. We show that even in the faintest dust-emitting regions there are no "clean" windows in the sky where primordial CMB B-mode polarization measurements could be made without subtraction of foreground emission. Finally, we investigate the level of dust polarization in the specific field recently targeted by the BICEP2 experiment. Extrapolation of the Planck 353 GHz data to 150 GHz gives a dust power 𝒟ℓBB ≡ ℓ(ℓ+1)CℓBB/(2π) of 1.32 × 10-2 μKCMB2 over the multipole range

  4. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    SciTech Connect

    Meisner, Aaron M.; Finkbeiner, Douglas P. E-mail: dfinkbeiner@cfa.harvard.edu

    2015-01-10

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.

  5. Dust evolution, a global view: II. Top-down branching, nanoparticle fragmentation and the mystery of the diffuse interstellar band carriers

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    2016-12-01

    The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates.

  6. Dust evolution, a global view: II. Top-down branching, nanoparticle fragmentation and the mystery of the diffuse interstellar band carriers.

    PubMed

    Jones, A P

    2016-12-01

    The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates.

  7. Dust evolution, a global view: II. Top-down branching, nanoparticle fragmentation and the mystery of the diffuse interstellar band carriers

    PubMed Central

    2016-01-01

    The origin of the diffuse interstellar bands (DIBs), one of the longest-standing mysteries of the interstellar medium (ISM), is explored within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS). The likely nature of the DIB carriers and their evolution is here explored within the framework of the structures and sub-structures inherent to doped hydrogenated amorphous carbon grains in the ISM. Based on the natural aromatic-rich moieties (asphaltenes) recovered from coal and oil, the likely structure of their interstellar analogues is investigated within the context of the diffuse band problem. It is here proposed that the top-down evolution of interstellar carbonaceous grains, and, in particular, a-C(:H) nanoparticles, is at the heart of the formation and evolution of the DIB carriers and their associations with small molecules and radicals, such as C2, C3, CH and CN. It is most probable that the DIBs are carried by dehydrogenated, ionized, hetero-cyclic, olefinic and aromatic-rich moieties that form an integral part of the contiguous structure of hetero-atom-doped hydrogenated amorphous carbon nanoparticles and their daughter fragmentation products. Within this framework, it is proposed that polyene structures in all their variants could be viable DIB carrier candidates. PMID:28083089

  8. 6. Water treatment plant, view NE, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Water treatment plant, view NE, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  9. 8. Water treatment plant, view to SE, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Water treatment plant, view to SE, berm in foreground covering settling tank - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  10. 4. Water treatment plant, view to NW, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Water treatment plant, view to NW, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  11. 7. Water treatment plant, view to E, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Water treatment plant, view to E, berm in foreground covering settling tank - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  12. 5. Water treatment plant, view to N, berm in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Water treatment plant, view to N, berm in foreground - Fort Benton Water Treatment Plant, Filtration Plant, Lots 9-13 of Block 7, Fort Benton Original Townsite at Missouri River, Fort Benton, Chouteau County, MT

  13. PIQUETTE AVENUE STREETSCAPE WITH STUDEBAKER CORPORATION IN FOREGROUND. 411 PIQUETTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PIQUETTE AVENUE STREETSCAPE WITH STUDEBAKER CORPORATION IN FOREGROUND. 411 PIQUETTE AVENUE IN CENTER, AND FORD PIQIETTE PLANT ON THE OTHER SIDE. (Duplicate color view of HAER MI-349-1) - 411 Piquette Avenue (Industrial), Detroit, MI

  14. 12. June 1988 INTERIOR, SOUTHWEST CORNER; SHOWING FIREFINDER (FOREGROUND), LIGHTNING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. June 1988 INTERIOR, SOUTHWEST CORNER; SHOWING FIREFINDER (FOREGROUND), LIGHTNING STOOL AND BED (BOTH TO RIGHT OF FIREFINDER) - Suntop Lookout, Forest Road 510, Mt. Baker-Snoqualmie National Forest, Greenwater, Pierce County, WA

  15. 12. NEW YORK SIDE, HUDSON RIVER VENTILATION BUILDING IN FOREGROUND; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. NEW YORK SIDE, HUDSON RIVER VENTILATION BUILDING IN FOREGROUND; NEW JERSEY SIDE, HUDSON RIVEN VENTILATION BUILDING IN BACKGROUND - Holland Tunnel, Beneath Hudson River between New York & Jersey City, New York County, NY

  16. Overview of operational apron. Painted warning sign in foreground. View ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of operational apron. Painted warning sign in foreground. View to north - Offutt Air Force Base, Looking Glass Airborne Command Post, Operational & Hangar Access Aprons, Spanning length of northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  17. Looking east along Porter Avenue, management engineering in foreground; supply ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Looking east along Porter Avenue, management engineering in foreground; supply department storehouse (building no. 5) (Haer no. PA-387-1) to left. - Naval Base Philadelphia-Philadelphia Naval Shipyard, Management Engineering, League Island, Philadelphia, Philadelphia County, PA

  18. Context view looking west from hill with tree in foreground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Context view looking west from hill with tree in foreground. Entist Mountains are in distance. - Badger Mountain Lookout, .125 mile northwest of Badger Mountain summit, East Wenatchee, Douglas County, WA

  19. SECTION 1, WITH BIVOUAC OF THE DEAD TABLET IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECTION 1, WITH BIVOUAC OF THE DEAD TABLET IN FOREGROUND AND FLAGPOLE IN BACKGROUND. VIEW TO EAST. - Crown Hill Cemetery, Crown Hill National Cemetery, 700 West Thirty-eighth Street, Indianapolis, Marion County, IN

  20. View of Antenna #1 (foreground), and Antenna #2 surface doors. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Antenna #1 (foreground), and Antenna #2 surface doors. Image looking northeast - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  1. 8. View looking SW with Manhattan Bridge in foreground. Jet ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View looking SW with Manhattan Bridge in foreground. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  2. 10. View looking S with Manhattan tower in right foreground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View looking S with Manhattan tower in right foreground. Jet Lowe, photographer, 1982. - Brooklyn Bridge, Spanning East River between Park Row, Manhattan and Sands Street, Brooklyn, New York County, NY

  3. CONTEXTUAL VIEW FROM HOTEL; HAMILTON BUNGALOW IN FOREGROUND; BUNGALOW NO. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTEXTUAL VIEW FROM HOTEL; HAMILTON BUNGALOW IN FOREGROUND; BUNGALOW NO. 3 DIRECTLY BEHIND; HINDS & CONNER AND "A" BUNGALOWS IN REAR. VISTA DEL ARROYO HOTEL ON RIGHT - Vista del Arroyo Hotel, 125 South Grand Avenue, Pasadena, Los Angeles County, CA

  4. Black Maria Reconstruction (left foreground); Building No. 1; Main Building; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Black Maria Reconstruction (left foreground); Building No. 1; Main Building; Edison Storage Battery Building (right background) - Thomas A. Edison Laboratories, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  5. 13. AERIAL VIEW SHOWING IN THE FOREGROUND, EXCAVATION FOR THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. AERIAL VIEW SHOWING IN THE FOREGROUND, EXCAVATION FOR THE SPILLWAY APRON.... Volume XVII, No. 12, December 26, 1939. - Prado Dam, Spillway, Santa Ana River near junction of State Highways 71 & 91, Corona, Riverside County, CA

  6. 12. EAST REAR OF OFFICE BUILDING (RIGHT FOREGROUND) AND WAREHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. EAST REAR OF OFFICE BUILDING (RIGHT FOREGROUND) AND WAREHOUSE (LEFT BACKGROUND). VIEW TO SOUTH. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA

  7. 11. SOUTH SIDE OF WAREHOUSE, WITH LOADING DOCK IN FOREGROUND. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. SOUTH SIDE OF WAREHOUSE, WITH LOADING DOCK IN FOREGROUND. VIEW TO NORTHWEST. - Commercial & Industrial Buildings, International Harvester Company Showroom, Office & Warehouse, 10 South Main Street, Dubuque, Dubuque County, IA

  8. 6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENE WASH DAM, LOOKING NORTHWEST. SURVEY REFLECTOR IN FOREGROUND FOR MONITORING MOVEMENT OF DAM AND EARTH. - Gene Wash Reservoir & Dam, 2 miles west of Parker Dam, Parker Dam, San Bernardino County, CA

  9. 9. FLUME BOX Y, LOOKING SOUTH. CANAL IN FOREGROUND FOLLOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. FLUME BOX Y, LOOKING SOUTH. CANAL IN FOREGROUND FOLLOWS HILLSIDE INTO DRAINAGE; FLUME HEADING TO RIGHT CROSSED GULCH ON A TRESTLE. - Snake River Ditch, Headgate on north bank of Snake River, Dillon, Summit County, CO

  10. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  11. 7. INTERIOR OF BUILDING 242, SHOWING GANTRY HOIST IN FOREGROUND. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR OF BUILDING 242, SHOWING GANTRY HOIST IN FOREGROUND. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Chlorine Production Cell Building, 405 feet South of December Seventh Avenue; 330 feet West of D Street, Commerce City, Adams County, CO

  12. 1. DETAIL, NORTHEAST VIEW (REMAINDER OF SHAFTTURNING MECHANISM IN FOREGROUND). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DETAIL, NORTHEAST VIEW (REMAINDER OF SHAFT-TURNING MECHANISM IN FOREGROUND). - Vanadium Corporation of America (VCA) Naturita Mill, Brick Skimmer Salt Roaster, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  13. El Tovar steam tunnel breaker box in foreground. Note El ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    El Tovar steam tunnel breaker box in foreground. Note El Tovar stone vault in alignment with tunnel. - Grand Canyon Village Utilities, Grand Canyon National Park, Grand Canyon Village, Coconino County, AZ

  14. Interior oblique view with wagon in foreground; camera facing southwest. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior oblique view with wagon in foreground; camera facing southwest. - Mare Island Naval Shipyard, Mechanics Shop, Waterfront Avenue, west side between A Street & Third Street, Vallejo, Solano County, CA

  15. Redwood tanks in foreground with old rain shed (Building No. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Redwood tanks in foreground with old rain shed (Building No. 43) and steel tanks in background. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  16. 1. LOOKING WEST ON LEHIGH CANAL, GRAPHITE MILL IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING WEST ON LEHIGH CANAL, GRAPHITE MILL IN FOREGROUND - Pettinos Brothers Graphite Manufacturing Mill, On Sand Island, south side of Lehigh Canal, west of Hill-to-Hill Bridge, Bethlehem, Northampton County, PA

  17. 1. LOOKING NORTH, SHOWING IODINE SPRING (FOREGROUND), SALT SULPHUR SPRING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LOOKING NORTH, SHOWING IODINE SPRING (FOREGROUND), SALT SULPHUR SPRING (LEFT BACKGROUND), AND TWIN COTTAGES (UPPER RIGHT) (4 x 5 negative; 5 x 7 print) - Salt Sulpher Springs, U.S. Route 219, Salt Sulphur Springs, Monroe County, WV

  18. SECTION D, WITH FLAT GROUP BURIAL MARKER AT RIGHT FOREGROUND. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECTION D, WITH FLAT GROUP BURIAL MARKER AT RIGHT FOREGROUND. VIEW TO NORTHWEST. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  19. 18. Marine Railway #1, location in foreground; Marine Railway #2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Marine Railway #1, location in foreground; Marine Railway #2 (broken cradle) center; cradle for Marine Railway #3 on right. - Thames Tow Boat Company, Foot of Farnsworth Street, New London, New London County, CT

  20. 15. Foreground; broken gear from headhouse of electric powered Marine ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Foreground; broken gear from headhouse of electric powered Marine Railway #3; cradle for Marine Railway #3 in background. - Thames Tow Boat Company, Foot of Farnsworth Street, New London, New London County, CT

  1. View of Chapel Park, showing bomb shelters at right foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Chapel Park, showing bomb shelters at right foreground, from building 746 parking lot across Walnut Avenue; camera facing north. - Mare Island Naval Shipyard, East of Nave Drive, Vallejo, Solano County, CA

  2. 33. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (right) Photographs taken by Joseph E.B. Elliot - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  3. Southeast corner with overhead crane in foreground Bureau of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Southeast corner with overhead crane in foreground - Bureau of Mines Boulder City Experimental Station, Titanium Development Plant, Date Street north of U.S. Highway 93, Boulder City, Clark County, NV

  4. 1. NORTHWEST FRONT, SOUTHWEST SIDE (SPRING HOUSE IN FOREGROUND; BATH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. NORTHWEST FRONT, SOUTHWEST SIDE (SPRING HOUSE IN FOREGROUND; BATH HOUSE AT REAR) (4 x 5 negative; 5 x 7 print) - Salt Sulphur Springs, Spring House, U.S. Route 219, Salt Sulphur Springs, Monroe County, WV

  5. 1. View of caretaker's house with field in foreground and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of caretaker's house with field in foreground and corral fence to the right looking east - Richmond Hill Plantation, Caretaker's House, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  6. 22. View of historic district looking northeast; road in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. View of historic district looking northeast; road in foreground and Ogeechee River in background - Richmond Hill Plantation, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  7. BOILING HOUSE, INTERIOR, SECOND FLOOR, SYRUP TANKS IN RIGHT FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, SYRUP TANKS IN RIGHT FOREGROUND, HIGH GRADE VACUUM PANS BEYOND THE SYRUP TANKS. VIEW FROM THE SOUTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  8. 2. MAGAZINE P, WITH ENTRANCE DOOR IN FOREGROUND, LOOKING NORTHEAST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. MAGAZINE P, WITH ENTRANCE DOOR IN FOREGROUND, LOOKING NORTHEAST. - NIKE Missile Base C-84, Underground Storage Magazines & Launcher-Loader Assemblies, Easternmost portion of launch area, Barrington, Cook County, IL

  9. 53. VIEW OF PASSENGER SPEEDER 04 IN FOREGROUND, BOOM SPEEDER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. VIEW OF PASSENGER SPEEDER 04 IN FOREGROUND, BOOM SPEEDER 75 IN BACKGROUND LEFT, AND BOOM SPEEDER 59 IN BACKGROUND RIGHT - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  10. 5. View, oxidizer waste tanks and containment basin in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View, oxidizer waste tanks and containment basin in foreground with Systems Integration Laboratory (T-28) uphill in background, looking northeast. - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  11. Drill press in foreground is one of few machine tools ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Drill press in foreground is one of few machine tools in operating condition which is still operated occasionally for public demonstrations. - Thomas A. Edison Laboratories, Building No. 5, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  12. Contextual view of building, with building #11 in right foreground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view of building, with building #11 in right foreground. Camera facing east - Naval Supply Center, Broadway Complex, Administration Storehouse, 911 West Broadway, San Diego, San Diego County, CA

  13. 7. Shed and keeper' house with helicopter pad in foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Shed and keeper' house with helicopter pad in foreground, view east, southwest and northwest sides - Goat Island Light Station, Goat Island, next to entrance to Cape Porpoise Harbor, just south of Trott Island, Cape Porpoise, York County, ME

  14. 2. Long view east, with bridge in foreground, showing length ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Long view east, with bridge in foreground, showing length of Carquinez Strait with Benecia Martinez Bridge in background. - Carquinez Bridge, Spanning Carquinez Strait at Interstate 80, Vallejo, Solano County, CA

  15. 89. LOCK 13 EAST. WOODEN TIMBERS (FOREGROUND LEFT AND RIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    89. LOCK 13 EAST. WOODEN TIMBERS (FOREGROUND LEFT AND RIGHT OF LOCK ENTRANCE) ARE BEING USED AS BUMPERS TO HELP GUIDE SHIP INTO LOCK WHILE AVOIDING CONTACT WITH WALLS. - Morris Canal, Phillipsburg, Warren County, NJ

  16. 2. LONG VIEW NORTHWEST, EASTBOUND BRIDGE IN FOREGROUND, WESTBOUND BRIDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LONG VIEW NORTHWEST, EASTBOUND BRIDGE IN FOREGROUND, WESTBOUND BRIDGE IN BACKGROUND - Willow Run Expressway Bridge No. R01, Spanning Conrail Railway, eastbound, at US-10, Ypsilanti, Washtenaw County, MI

  17. OBLIQUE VIEW WITH ABOVEGROUND PORTION IN THE FOREGROUND. VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW WITH ABOVE-GROUND PORTION IN THE FOREGROUND. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  18. DETAIL OF THREE DOORS FOR READY AMMUNITION BOXES (IN FOREGROUND). ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THREE DOORS FOR READY AMMUNITION BOXES (IN FOREGROUND). NOTE THE STEEL PLATES IN THE BACKGROUND - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  19. 27. View east, foreground north facade of Forest Hall, background ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. View east, foreground north facade of Forest Hall, background north facade of Forest East Suites. - Lake Placid Club, Forest Wing, East side of Mirror Lake Drive, North of State Route 86 & Main, North Elba, Essex County, NY

  20. 19. View west, foreground, north facade of Forest East Suites, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. View west, foreground, north facade of Forest East Suites, background north & east facades of Forest Hall. - Lake Placid Club, Forest Wing, East side of Mirror Lake Drive, North of State Route 86 & Main, North Elba, Essex County, NY

  1. 25. CAFETERIA Note remains of tile floor in foreground. Food ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. CAFETERIA Note remains of tile floor in foreground. Food cooked on the stove was served to workers in the eating area to the left of the counter (off picture). - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA

  2. Contextual view showing building 253 in foreground; camera facing southeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Contextual view showing building 253 in foreground; camera facing southeast. - Mare Island Naval Shipyard, Supply Building, Walnut Avenue, southeast corner of Walnut Avenue & Fifth Street, Vallejo, Solano County, CA

  3. Elevation from east. White Holly in foreground, with White Sage ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation from east. White Holly in foreground, with White Sage behind. - U.S. Coast Guard Cutter WHITE HOLLY, U.S. Coast Guard 8th District Base, 4640 Urquhart Street, New Orleans, Orleans Parish, LA

  4. 76. PINETREE SIPHON, SECOND AQUEDUCT IN FOREGROUND LOOKING WEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    76. PINETREE SIPHON, SECOND AQUEDUCT IN FOREGROUND LOOKING WEST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  5. View facing north, Structure 162 in foreground, as Transmission Line ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View facing north, Structure 16-2 in foreground, as Transmission Line turns at intersection of Powerline Road and US 87 - Havre Rainbow Transmission Line, Havre City to Great Falls vicinity, Montana, Great Falls, Cascade County, MT

  6. SECTION B, WITH ARTILLERY MONUMENT AT LEFT FOREGROUND, NEW YORK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECTION B, WITH ARTILLERY MONUMENT AT LEFT FOREGROUND, NEW YORK MONUMENT AT LEFT BACKGROUND AND PENNSYLVANIA MONUMENT AT CENTER BACKGROUND. VIEW TO NORTHEAST. - Culpeper National Cemetery, 305 U.S. Avenue, Culpeper, Culpeper County, VA

  7. 20. OUTLET (FOREGROUND) AND WEIR (BACKGROUND) OF DEER FLAT CALDWELL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. OUTLET (FOREGROUND) AND WEIR (BACKGROUND) OF DEER FLAT CALDWELL CANAL ON DOWNSTREAM FACE OF UPPER EMBANKMENT. VIEW TO NORTH. - Boise Project, Deer Flat Embankments, Lake Lowell, Nampa, Canyon County, ID

  8. VIEW OF INTERIOR SPACE WITH VERSON HYDROPRESS IN FOREGROUND, FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF INTERIOR SPACE WITH VERSON HYDROPRESS IN FOREGROUND, FACING SOUTHWEST. - Douglas Aircraft Company Long Beach Plant, Aircraft Parts Shipping & Receiving Building, 3855 Lakewood Boulevard, Long Beach, Los Angeles County, CA

  9. 17. TRACTOR ENGINE POWERING SHAFT SYSTEM IN FOREGROUND, BELT CONNECTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. TRACTOR ENGINE POWERING SHAFT SYSTEM IN FOREGROUND, BELT CONNECTS WITH MAIN SHAFT LOOKING EAST. - W. A. Young & Sons Foundry & Machine Shop, On Water Street along Monongahela River, Rices Landing, Greene County, PA

  10. 10. CONTEXTUAL VIEW WEST OF FEATURE 14 IN FOREGROUND, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. CONTEXTUAL VIEW WEST OF FEATURE 14 IN FOREGROUND, WITH FEATURES 7, 6, 8, AND 2 IN BACKGROUND. - Juniata Mill Complex, 22.5 miles Southwest of Hawthorne, between Aurora Crater & Aurora Peak, Hawthorne, Mineral County, NV

  11. 26. VIEW OF TAINTER GATE HOIST CAR (LEFT FOREGROUND), BULKHEAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW OF TAINTER GATE HOIST CAR (LEFT FOREGROUND), BULKHEAD HOIST CAR (LEFT BACKGROUND) AND FLATCAR ON DAM BRIDGE, LOOKING EAST - Upper Mississippi River 9-Foot Channel Project, Lock & Dam No. 5, Minneiska, Winona County, MN

  12. 3. EXTERIOR FRONT OF TRIPLEX COTTAGE. CONCRETE STEPS IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EXTERIOR FRONT OF TRIPLEX COTTAGE. CONCRETE STEPS IN FOREGROUND LEAD TO SECOND FLOOR WEST SIDE APARTMENT. VIEW TO SOUTH. - Lee Vining Creek Hydroelectric System, Triplex Cottage, Lee Vining Creek, Lee Vining, Mono County, CA

  13. BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BOILING HOUSE, INTERIOR, SECOND FLOOR, GARVER CLARIFIER IN FOREGROUND, TOPS OF LONG TUBE EVAPORATORS IN BACKGROUND. VIEW FROM NORTHWEST - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  14. 3. View west. North elevation Walpole span in foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View west. North elevation - Walpole span in foreground, link span; Westminster span in background. - Walpole-Westminster Bridge, Spanning Connecticut River between Walpole, NH & Westminster, VT, Walpole, Cheshire County, NH

  15. View along Cavalry Avenue, with building 210 in left foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View along Cavalry Avenue, with building 210 in left foreground and left to right, buildings 212 through 222. View to east. - Fort David A. Russell, Randall Avenue west of First Street, Cheyenne, Laramie County, WY

  16. First floor interior, showing mess room in left foreground and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    First floor interior, showing mess room in left foreground and main hall in right background. View to southwest. - Fort David A. Russell, Artillery Barracks, Randall Avenue between Sixth & Fifth Streets, Cheyenne, Laramie County, WY

  17. 44. Blue Coal Corporation Office Building (foreground), Huber Breaker (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Blue Coal Corporation Office Building (foreground), Huber Breaker (left), Retail Coal Storage Bins (far center) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  18. 2. GATELIFTING SPUR GEAR DRIVE IN FOREGROUND, ATTACHED TO A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GATE-LIFTING SPUR GEAR DRIVE IN FOREGROUND, ATTACHED TO A GENERAL ELECTRIC COMPANY CRANE MOTOR, WITH COMPANION SOLENOID BRAKE IN RIGHT BACKGROUND, WITH BOTH MOUNTED ON A CONCRETE PEDESTAL. PORTIONS OF THE STEEL DERRICK LIFTING FRAME ARE VISIBLE IN THE FOREGROUND AND BACKGROUND, LOOKING EAST/NORTHEAST. - Washington Water Power Spokane River Upper Falls Hydroelectric Development, Gates & Gate-Lifting Mechanisms, Spokane River, approximately 0.5 mile northeast of intersection of Spokane Falls Boulevard & Post Street, Spokane, Spokane County, WA

  19. Interstellar Dust: Physical Processes

    NASA Technical Reports Server (NTRS)

    Jones, A. P.; Tielens, A. G. G. M.

    1993-01-01

    Dust is formed in stellar environments, and destroyed by sputtering, shattering and vaporization in shock waves due to cloud-cloud collisions and supernova blast waves. Dust is also destroyed during star formation. We review the dust formation and destruction balance. The calculated destruction time-scale is less than or equal to one billion years and the star dust injection time-scale is approx. 2.5 billion years. Hence, the fractions of elemental carbon and silicon locked up in stardust are less than 0.3 and less than 0.15, respectively. An efficient ISM dust formation route is therefore implied. In particular, in dense clouds dust grows; through the processes of coagulation and the accretion of gas phase molecules e.g. H20, CO, CH4. These icy materials may then be photoprocessed to refractory materials in more diffuse regions. The resulting carbonaceous grain mantle may actually be the glue that holds the coagulated grains together.

  20. Galactic Foreground Contribution to the BEAST Cosmic Microwave Background Anisotropy Maps

    NASA Astrophysics Data System (ADS)

    Mejía, Jorge; Bersanelli, Marco; Burigana, Carlo; Childers, Jeff; Figueiredo, Newton; Kangas, Miikka; Lubin, Philip; Maino, Davide; Mandolesi, Nazzareno; Marvil, Josh; Meinhold, Peter; O'Dwyer, Ian; O'Neill, Hugh; Platania, Paola; Seiffert, Michael; Stebor, Nathan; Tello, Camilo; Villela, Thyrso; Wandelt, Benjamin; Wuensche, Carlos Alexandre

    2005-05-01

    We report limits on the Galactic foreground emission contribution to the Background Emission Anisotropy Scanning Telescope (BEAST) Ka- and Q-band CMB anisotropy maps. We estimate the contribution from the cross-correlations between these maps and the foreground emission templates of an Hα map, a destriped version of the Haslam et al. 408 MHz map, and a combined 100 μm IRAS DIRBE map. Our analysis samples the BEAST ~10° declination band into 24 one-hour (R.A.) wide sectors with ~7900 pixels each, where we calculate (1) the linear correlation coefficient between the anisotropy maps and the templates; (2) the coupling constants between the specific intensity units of the templates and the antenna temperature at the BEAST frequencies; and (3) the individual foreground contributions to the BEAST anisotropy maps. The peak sector contributions of the contaminants in the Ka-band are of 56.5% free-free with a coupling constant of 8.3+/-0.4 μK R-1, and 67.4% dust with 45.0+/-2.0 μK MJy-1 sr-1. In the Q band the corresponding values are of 64.4% free-free with 4.1+/-0.2 μK R-1 and 67.5% dust with 24.0+/-1.0 μK MJy-1 sr-1. Using a lower limit of 10% in the relative uncertainty of the coupling constants, we can constrain the sector contributions of each contaminant in both maps to <20% in 21 (free-free), 19 (dust), and 22 (synchrotron) sectors. At this level, all these sectors are found outside of the |b|=14.6d region. By performing the same correlation analysis as a function of Galactic scale height, we conclude that the region within b=+/-17.5d should be removed from the BEAST maps for CMB studies in order to keep individual Galactic contributions below ~1% of the map's rms.

  1. Postmortem endogenous ethanol production and diffusion from the lung due to aspiration of wood chip dust in the work place.

    PubMed

    Furumiya, Junichi; Nishimura, Hiroyuki; Nakanishi, Akinori; Hashimoto, Yoshiaki

    2011-07-01

    We report an autopsy case of postmortem ethanol diffusion into the cardiac blood after aspiration of wood chips, although antemortem ethanol consumption was not evident. A man in his twenties, who was loading a truck with small wood chips in a hot, humid storehouse, was accidentally buried in a heap of chips. At the time the body was discovered, 20 h after the accident, rectal temperature was 36°C. Autopsy showed the cause of death to be asphyxia due to obstruction of the airway by aspiration of wood chips. The ethanol and n-propanol levels were significantly higher in the lungs (left, 0.603 and 0.009 mg/g; right, 0.571 and 0.006 mg/g) than in other tissues. A significant difference in ethanol concentration was observed between the left cardiac blood (0.243 mg/g) and the right femoral blood (0.042 mg/g). Low levels of ethanol and n-propanol were detected in the stomach contents (0.105 and 0.001 mg/g, respectively). In order to determine whether aspiration of wood chips affects postmortem ethanol production in the lung, we measured the ethanol and n-propanol levels of homogenized rabbit lung tissue incubated with autoclaved or non-autoclaved wood chips. Levels of ethanol and n-propanol were significantly higher in the homogenates incubated with non-autoclaved chips for 24h. The results of this animal experiment suggested that the ethanol detected in the lung was produced by putrefactive bacteria within the wood chips. After death, the ethanol produced endogenously in the lung appears to have diffused and affected the ethanol concentration of the left cardiac blood.

  2. Dust-correlated cm wavelength continuum emission from translucent clouds ζ Oph and LDN 1780

    NASA Astrophysics Data System (ADS)

    Vidal, M.; Casassus, S.; Dickinson, C.; Witt, A. N.; Castellanos, P.; Davies, R. D.; Davis, R. J.; Cabrera, G.; Cleary, K.; Allison, J. R.; Bond, J. R.; Bronfman, L.; Bustos, R.; Jones, M. E.; Paladini, R.; Pearson, T. J.; Readhead, A. C. S.; Reeves, R.; Sievers, J. L.; Taylor, A. C.

    2011-07-01

    The diffuse cm wave IR-correlated signal, the 'anomalous' CMB foreground, is thought to arise in the dust in cirrus clouds. We present Cosmic Background Imager (CBI) cm wave data of two translucent clouds, ζ Oph and LDN 1780 with the aim of characterizing the anomalous emission in the translucent cloud environment. In ζ Oph, the measured brightness at 31 GHz is 2.4σ higher than an extrapolation from 5-GHz measurements assuming a free-free spectrum on 8 arcmin scales. The SED of this cloud on angular scales of 1° is dominated by free-free emission in the cm range. In LDN 1780 we detected a 3σ excess in the SED on angular scales of 1° that can be fitted using a spinning dust model. In this cloud, there is a spatial correlation between the CBI data and IR images, which trace dust. The correlation is better with near-IR templates (IRAS 12 and 25 μm) than with IRAS 100 μm, which suggests a very small grain origin for the emission at 31 GHz. We calculated the 31-GHz emissivities in both clouds. They are similar and have intermediate values between that of cirrus clouds and dark clouds. Nevertheless, we found an indication of an inverse relationship between emissivity and column density, which further supports the VSGs origin for the cm emission since the proportion of big relative to small grains is smaller in diffuse clouds.

  3. MAXIMUM LIKELIHOOD FOREGROUND CLEANING FOR COSMIC MICROWAVE BACKGROUND POLARIMETERS IN THE PRESENCE OF SYSTEMATIC EFFECTS

    SciTech Connect

    Bao, C.; Hanany, S.; Baccigalupi, C.; Gold, B.; Jaffe, A.; Stompor, R.

    2016-03-01

    We extend a general maximum likelihood foreground estimation for cosmic microwave background (CMB) polarization data to include estimation of instrumental systematic effects. We focus on two particular effects: frequency band measurement uncertainty and instrumentally induced frequency dependent polarization rotation. We assess the bias induced on the estimation of the B-mode polarization signal by these two systematic effects in the presence of instrumental noise and uncertainties in the polarization and spectral index of Galactic dust. Degeneracies between uncertainties in the band and polarization angle calibration measurements and in the dust spectral index and polarization increase the uncertainty in the extracted CMB B-mode power, and may give rise to a biased estimate. We provide a quantitative assessment of the potential bias and increased uncertainty in an example experimental configuration. For example, we find that with 10% polarized dust, a tensor to scalar ratio of r = 0.05, and the instrumental configuration of the E and B experiment balloon payload, the estimated CMB B-mode power spectrum is recovered without bias when the frequency band measurement has 5% uncertainty or less, and the polarization angle calibration has an uncertainty of up to 4°.

  4. Are Silicon Nanoparticles an Interstellar Dust Component?

    NASA Astrophysics Data System (ADS)

    Li, Aigen; Draine, B. T.

    2002-01-01

    Silicon nanoparticles (SNPs) with oxide coatings have been proposed as the source of the observed ``extended red emission'' (ERE) from interstellar dust. We calculate the thermal emission expected from such particles, both in a reflection nebula such as NGC 2023 and in the diffuse interstellar medium (ISM). It is shown that Si/SiO2 SNPs (both neutral and charged) would produce a strong emission feature at 20 μm. The observational upper limit on the 20 μm feature in NGC 2023 imposes an upper limit of less than 0.2 parts per million in Si/SiO2 SNPs. The observed ERE intensity from NGC 2023 then gives a lower bound on the product ηPLf0, where ηPL<1 is the photoluminescence efficiency for a neutral SNP and f0<=1 is the fraction of SNPs that are uncharged. For foreground extinction A0.68μm=1.2mag, we find ηPLf0>0.24 for Si/SiO2 SNPs in NGC 2023. Measurement of the R-band extinction toward the ERE-emitting region could strengthen this lower limit. The ERE emissivity of the diffuse interstellar medium appears to require >~42% of solar Si abundance in Si/SiO2 SNPs even with ηPLf0=1. We predict IR emission spectra and show that DIRBE photometry appears to rule out such high abundances of free-flying SNPs in the diffuse ISM. We conclude that if the ERE is due to SNPs, they must be either in clusters or attached to larger grains.

  5. Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

    NASA Astrophysics Data System (ADS)

    Errard, Josquin; Feeney, Stephen M.; Peiris, Hiranya V.; Jaffe, Andrew H.

    2016-03-01

    Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)~1.3×10-4, σ(nt)~0.03, σ( ns )~1.8×10

  6. Robust forecasts on fundamental physics from the foreground-obscured, gravitationally-lensed CMB polarization

    SciTech Connect

    Errard, Josquin; Feeney, Stephen M.; Jaffe, Andrew H.; Peiris, Hiranya V. E-mail: s.feeney@imperial.ac.uk E-mail: a.jaffe@imperial.ac.uk

    2016-03-01

    Recent results from the BICEP, Keck Array and Planck Collaborations demonstrate that Galactic foregrounds are an unavoidable obstacle in the search for evidence of inflationary gravitational waves in the cosmic microwave background (CMB) polarization. Beyond the foregrounds, the effect of lensing by intervening large-scale structure further obscures all but the strongest inflationary signals permitted by current data. With a plethora of ongoing and upcoming experiments aiming to measure these signatures, careful and self-consistent consideration of experiments' foreground- and lensing-removal capabilities is critical in obtaining credible forecasts of their performance. We investigate the capabilities of instruments such as Advanced ACTPol, BICEP3 and Keck Array, CLASS, EBEX10K, PIPER, Simons Array, SPT-3G and SPIDER, and projects as COrE+, LiteBIRD-ext, PIXIE and Stage IV, to clean contamination due to polarized synchrotron and dust from raw multi-frequency data, and remove lensing from the resulting co-added CMB maps (either using iterative CMB-only techniques or through cross-correlation with external data). Incorporating these effects, we present forecasts for the constraining power of these experiments in terms of inflationary physics, the neutrino sector, and dark energy parameters. Made publicly available through an online interface, this tool enables the next generation of CMB experiments to foreground-proof their designs, optimize their frequency coverage to maximize scientific output, and determine where cross-experimental collaboration would be most beneficial. We find that analyzing data from ground, balloon and space instruments in complementary combinations can significantly improve component separation performance, delensing, and cosmological constraints over individual datasets. In particular, we find that a combination of post-2020 ground- and space-based experiments could achieve constraints such as σ(r)∼1.3×10{sup −4}, σ(n{sub t})∼0

  7. Studies of dust grain properties in infrared reflection nebulae.

    PubMed

    Pendleton, Y J; Tielens, A G; Werner, M W

    1990-01-20

    We have developed a model for reflection nebulae around luminous infrared sources embedded in dense dust clouds. The aim of this study is to determine the sizes of the scattering grains. In our analysis, we have adopted an MRN-like power-law size distribution (Mathis, Rumpl, and Nordsieck) of graphite and silicate grains, but other current dust models would give results which were substantially the same. In the optically thin limit, the intensity of the scattered light is proportional to the dust column density, while in the optically thick limit, it reflects the grain albedo. The results show that the shape of the infrared spectrum is the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of our model results with infrared observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse interstellar medium, or one consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains (approximately 5000 angstroms). By adding water ice mantles to the silicate and graphite cores, we have modeled the 3.08 micrometers ice band feature, which has been observed in the spectra of several infrared reflection nebulae. We show that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains. We show that the shape of the ice band is diagnostic of the presence of large grains, as previously suggested by Knacke and McCorkle. Comparison with observations of the BN/KL reflection nebula in the OMC-1 cloud shows that large ice grains (approximately 5000 angstroms) contribute substantially to the scattered light.

  8. Studies of dust grain properties in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Y. J.; Tielens, A. G. G. M.; Werner, M. W.

    1990-01-01

    A model has been developed for reflection nebulae around luminous IR sources embedded in dense dust clouds. The shape of the IR spectrum is shown to be the result of a combination of the scattering properties of the dust, the spectrum of the illuminating source, and foreground extinction, while geometry plays a minor role. Comparison of the model results with IR observations of the reflection nebula surrounding OMC-2/IRS 1 shows that either a grain size distribution like that found in the diffuse ISM, or consisting of larger grains, can explain the observed shape of the spectrum. However, the absolute intensity level of the scattered light, as well as the observed polarization, requires large grains. By adding water-ice mantles to the silicate and graphite cores, the 3.08 micron ice-band feature observed in the spectra of several IR reflection nebulae has been modeled. It is shown that this ice band arises naturally in optically thick reflection nebulae containing ice-coated grains.

  9. 25. White Plains Road Bridge in foreground; Unionport Road Bridge ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. White Plains Road Bridge in foreground; Unionport Road Bridge in background. Van Nest, Bronx Co., NY. Sec. 4207, MP 12.75./78. - Northeast Railroad Corridor, Amtrak Route between New Jersey/New York & New York/Connecticut State Lines, New York County, NY

  10. 6. DAM AFTERBAY, WITH OWYEE RIVER IN FOREGROUND, SHOWING OUTLET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DAM AFTERBAY, WITH OWYEE RIVER IN FOREGROUND, SHOWING OUTLET TUNNEL PORTAL (LEFT) AND POWERHOUSE AND ENTRANCE PORTAL TO DAM INTERIOR (RIGHT). NOTE RELEASE OF WATER FROM NEEDLE VALVE NUMBER 2 IN VALVEHOUSE ON DAM. VIEW TO SOUTHEAST. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR

  11. Operational apron with pit hydrants in foreground, aircraft in background. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Operational apron with pit hydrants in foreground, aircraft in background. View to west - Offutt Air Force Base, Looking Glass Airborne Command Post, Operational & Hangar Access Aprons, Spanning length of northeast half of Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  12. 4. View, fuel waste tanks and containment basin in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View, fuel waste tanks and containment basin in foreground with Systems Integration Laboratory (T-28) uphill in background, looking southeast. At the extreme right is the Long-Term Oxidizer Silo (T-28B) and the Oxidizer Conditioning Structure (T-28D). - Air Force Plant PJKS, Systems Integration Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  13. View of Antenna #1 (foreground), and Antenna #2 surface doors. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Antenna #1 (foreground), and Antenna #2 surface doors. Orientation Target #2 in background. Image looking northeast - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  14. View of Antenna #2 (foreground), and Antenna #1 surface doors. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Antenna #2 (foreground), and Antenna #1 surface doors. Orientation Target #1 in background. Image looking northwest - Titan One Missile Complex 2A, .3 miles west of 129 Road and 1.5 miles north of County Line Road, Aurora, Adams County, CO

  15. 72. NORTHEAST SIDE OF NITROGEN EXCHANGERS IN FOREGROUND; FUEL APRON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. NORTHEAST SIDE OF NITROGEN EXCHANGERS IN FOREGROUND; FUEL APRON IN BACKGROUND. NORTHEAST CORNER OF WEST CAMERA TOWER ALSO IN BACKGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  16. 52. VIEW OF HONEYWELL PROPELLANT UTILIZATION TEST SET (FOREGROUND) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. VIEW OF HONEYWELL PROPELLANT UTILIZATION TEST SET (FOREGROUND) AND GENERAL ELECTRIC AIRBORNE BEACON EQUIPMENT TEST SET LOCATED IMMEDIATELY SOUTH OF DEMULTIPLEX BAY, IN THE SOUTHWEST CORNER OF THE TELEMETRY ROOM (ROOM 106) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. 1. PERSPECTIVE VIEW, FROM THE NORTHEAST ATOP EAST WING (FOREGROUND), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. PERSPECTIVE VIEW, FROM THE NORTHEAST ATOP EAST WING (FOREGROUND), OF GREAT KIVA (RECONSTUCTED IN BACKGROUND) AND A SMALLER KIVA (MIDDLE GROUND) - Aztec Ruins, Great Kiva, New Mexico 44 near junction of U.S. 550, Aztec, San Juan County, NM

  18. 113. VIEW OF MACHINE SHOP FROM WEST. AREA IN FOREGROUND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. VIEW OF MACHINE SHOP FROM WEST. AREA IN FOREGROUND WAS ONCE ENCLOSED AS PART OF THE SHOP. THE TRAM LINE AND SNOWSHED RAN TO THE RIGHT (SOUTH) TO EAGLE MINE PORTAL. - Bald Mountain Gold Mill, Nevada Gulch at head of False Bottom Creek, Lead, Lawrence County, SD

  19. 78. (Credit JTL) Mixing chambers (19241926) in foreground, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. (Credit JTL) Mixing chambers (1924-1926) in foreground, looking west along south facade of station. Settling basins to left, new filter house (1942) in background. Aerators added in 1930-31 to remove carbon dioxide from water. - McNeil Street Pumping Station, McNeil Street & Cross Bayou, Shreveport, Caddo Parish, LA

  20. View of Plum Street regulator in foreground, containing 18" vitrified ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Plum Street regulator in foreground, containing 18" vitrified clay pipe, in background are the Riverfront Park and the Route 51 Bridge. WPA retaining wall (Haer no. Pa-398) is right. - Plum Street Regulator, Plum Street at Monongahela River, Allegheny County, PA

  1. 24. VIEW, LOOKING NORTHEAST, SHOWING MAIN TRANSMISSION IN LEFT FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. VIEW, LOOKING NORTHEAST, SHOWING MAIN TRANSMISSION IN LEFT FOREGROUND, GASOLINE-POWERED WAUKESHA AUXILIARY DRIVE MOTOR AT CENTER, AND ONE OF TWO MAIN ELECTRIC DRIVE MOTORS AT LEFT CENTER - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  2. View to east northeast. Southwest operating shelters in foreground to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View to east northeast. Southwest operating shelters in foreground to left. East-end operating shelters in distant background, to right center - St. Mary's Falls Canal, Soo Locks, Sabin Lock Subcomplex, St. Mary's River at Falls, Sault Ste. Marie, Chippewa County, MI

  3. 2. East front of building, with vehicle inspection in foreground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. East front of building, with vehicle inspection in foreground. View to northwest. - U.S. Customs Service Port of Roosville, Main Port Building, U.S. Highway 93, immediately south of U.S.-Canadian border, Eureka, Lincoln County, MT

  4. 2. VIEW OF ROOT CELLAR (Feature 11) IN FOREGROUND, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF ROOT CELLAR (Feature 11) IN FOREGROUND, WITH REAR ROOF OF HOUSE (Feature 10) AT LEFT, AND ROOF OF BUTCHER SHOP/FREIGHT DEPOT (Feature 9) IN CENTER, LOOKING SOUTHWEST - Leesburg Townsite, Root Cellar, Napias Creek, Salmon, Lemhi County, ID

  5. 6. GENERAL VIEW OF INTERNAL POLICE POST IN FOREGROUND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. GENERAL VIEW OF INTERNAL POLICE POST IN FOREGROUND AND MILITARY POLICE POST IN BACKGROUND ALONG ENTRANCE ROAD, LOOKING NORTHEAST - Manzanar War Relocation Center, Owens Valley off U.S. Highway 395, 6 miles South of Independence, Independence, Inyo County, CA

  6. Ford Service Building in foreground with new facade covering front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Ford Service Building in foreground with new facade covering front elevation. Original facade can be seen on side. Original was eight-story reinforced concrete Albert Kahn design with exposed structural frame. One-story addition on north side. Stone veneer covers south and west facades of the building in strips - Ford Service Building, 7310 Woodward Avenue, Detroit, MI

  7. 2. COW HOUSE AT RIGHT FOREGROUND. There is an identical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. COW HOUSE AT RIGHT FOREGROUND. There is an identical cow house opposite from the one pictured. In the background are: Robinson-Aiken Slave Building and Kitchens (SC-276) on left, and Robinson-Aiken Service Building and Stable (SC-275) on right. - Robinson-Aiken Cow House, 48 Elizabeth Street, Charleston, Charleston County, SC

  8. 14. ELEVATED CAMERA STAND IN FOREGROUND, FIRING CONTROL BLOCKHOUSE (BLDG. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. ELEVATED CAMERA STAND IN FOREGROUND, FIRING CONTROL BLOCKHOUSE (BLDG. 0545) IN CENTER, AIR SUPPLY BUILDING AND PROTECTIVE BERM IN BACKGROUND. Looking north northeast from Camera Road. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  9. 7. VIEW TO NORTH SHOWING SEWER CONSTRUCTION IN FOREGROUND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO NORTH SHOWING SEWER CONSTRUCTION IN FOREGROUND AND BUILDING F IN THE LEFT BACKGROUND. 8X10 black and white gelatin print. United States Coast Guard, Air Station Contract 1247, Sewer System. 1956. - U.S. Coast Guard Air Station San Francisco, 1020 North Access Road, San Francisco, San Francisco County, CA

  10. 16. FOREGROUND (LEFT TO RIGHT) EXHAUST AND INTAKE DUCTS. SOUTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. FOREGROUND (LEFT TO RIGHT) EXHAUST AND INTAKE DUCTS. SOUTH SIDE AND WEST FRONT OF LAUNCH CONTROL SUPPORT BUILDING IN BACKGROUND. VIEW TO NORTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO

  11. OBLIQUE VIEW OF REAR SIDE WITH UNIT A IN FOREGROUND. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF REAR SIDE WITH UNIT A IN FOREGROUND. NOTE THE FLOOR TO CEILING WINDOWS OF THE LIVING ROOM. VIEW FACING NORTHWEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Three-Bedroom Duplex Type 3, Acacia Road, Birch Circle, and Cedar Drive, Pearl City, Honolulu County, HI

  12. INTERIOR VIEW, NORTH QUARRY, LOOKING WEST. IN THE FOREGROUND ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH QUARRY, LOOKING WEST. IN THE FOREGROUND ON THE FIRST BENCH, POWDER HILLS ARE PRIMED FOR DOLOMITE EXTRACTION. ON THE SECOND BENCH, THE DRILL TEAM IS LAYING OUT THE NEXT SHOTS. - Wade Sand & Gravel Company, North Quarry, State Highway 78, Thomas, Jefferson County, AL

  13. 74. Rocky Knob Recreation area contact station. In the foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. Rocky Knob Recreation area contact station. In the foreground is one of the Rocky Fins which is representative of the area. In the background is the contact station which opened as a gas station in September 1949. Facing northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  14. 251. Rocky Knob Recreation Area contact station. In the foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    251. Rocky Knob Recreation Area contact station. In the foreground S one of the rock fins which is representative of the area. In the background is the contact station which opened as a gas station in September 1949. Facing northwest. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  15. 9. Looking northeast, foreground Clenny Run Road, duck pond and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Looking northeast, foreground Clenny Run Road, duck pond and Clenny Run, with intersection of State Routes 92 and 100 beyond, Brandywine Creek State Park in background, mixed deciduous trees along top of hill - Winterthur Farms, Intersection State Routes 92 & 100, Intersection State Routes 92 & 100, Winterthur, New Castle County, DE

  16. A LINE POLE 1 IN FOREGROUND AND MYSTIC LAKE POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    A LINE POLE 1 IN FOREGROUND AND MYSTIC LAKE POWERHOUSE IN BACKGROUND. A LINE POLE 1 IS A MODERN REPLACEMENT STRUCTURE WITH BROWN PORCELAIN SUSPENSION-TYPE INSULATORS. VIEW TO EAST. - Mystic Lake Hydroelectric Facility, Electric Transmission A Line, Along West Rosebud Creek, Fishtail, Stillwater County, MT

  17. 18. INTERIOR VIEW OF ROUGH FORGED TOOLS (FOREGROUND) WHICH ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR VIEW OF ROUGH FORGED TOOLS (FOREGROUND) WHICH ARE PRE-HEATED IN THE FURNACE (REAR RIGHT) AND THEN FORGED WITH THE BRADLEY HAMMER (LEFT) AS SHOWN BY JAMES GLASPELL - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV

  18. View of unit 42 flywheel with plant crew in foreground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of unit 42 flywheel with plant crew in foreground. From left to right; Asst Superintendent James L. Wine; Paul W. Bragg; Garry N. Dobbins, Robert L. Gregory. - Burnsville Natural Gas Pumping Station, Saratoga Avenue between Little Kanawha River & C&O Railroad line, Burnsville, Braxton County, WV

  19. 18. CLOSEUP OF NITROGEN REGENERATOR IN FOREGROUND AND VERMICULITE STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. CLOSE-UP OF NITROGEN REGENERATOR IN FOREGROUND AND VERMICULITE STORAGE TOWER FOR THE LINDE 1000 TONS PER DAY HIGH PURITY OXYGEN MAKING PLANT. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  20. 7. POWERHOUSE, FOREGROUND ON CEILING EXCITER FLATBELT PULLEYS, BACK RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. POWERHOUSE, FOREGROUND ON CEILING EXCITER FLATBELT PULLEYS, BACK RIGHT, WOODEN PERSONAL FACILITY LOCATED IN POWERHOUSE LOWER LEVEL LOOKING SOUTH - Dayville Mills Hydroelectric Facility, Powerhouse, North side of Route 101, .5 mile west of Route 395, Killingly Center, Windham County, CT

  1. DETAIL OF JAMES LEAK CONFEDERATE HEADSTONE (RIGHT FOREGROUND), WITH CANNON, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF JAMES LEAK CONFEDERATE HEADSTONE (RIGHT FOREGROUND), WITH CANNON, FLAGPOLE, CONFEDERATE MONUMENT, CANNONBALL PYRAMID AND ARC OF UNKNOWN U.S. SOLDIER HEADSTONES IN BACKGROUND. VIEW TO NORTHEAST. - Oak Woods Cemetery, Confederate Mound, 1035 East 67th Street, Chicago, Cook County, IL

  2. 23. DETAIL OF PIPELINE PIERS, LOOKING EAST. FOREGROUND IS SLOPED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. DETAIL OF PIPELINE PIERS, LOOKING EAST. FOREGROUND IS SLOPED TYPE, NEXT ONE IS PERPENDICULAR TYPE A COMPRESSION COUPLING, USED TO REPAIR A BROKEN PIPE SECTION, CAN BE SEEN AT BOTTOM. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  3. 8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. POWERHOUSE INTERIOR SHOWING EXCITER No. 1 IN FOREGROUND, EXCITER No. 2., AND GENERATOR UNITS BEHIND EXCITER No. 2 IN BACKGROUND. EXCITER No. 1 GENERATOR HAS A COVER OVER TOP HALF OF COMMUTATOR ELEMENT. VIEW TO NORTHWEST. - Rush Creek Hydroelectric System, Powerhouse Exciters, Rush Creek, June Lake, Mono County, CA

  4. 34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Coal Fuel Elevator (diagonal in foreground), Fuel Elevator (left), Fuel Storage Bins (center), and Power Plant (far center), and Retail Coal Storage Bins (right) Photograph taken by George Harven - Huber Coal Breaker, 101 South Main Street, Ashley, Luzerne County, PA

  5. Detail of north end of the Electrical Shop (foreground) and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of north end of the Electrical Shop (foreground) and Sheet Metal Shop, note the metal-frame windows in the Electrical Shop, view facing east - Kahului Cannery, Plant No. 28, Boiler House, Sheet Metal and Electrical Shops, 120 Kane Street, Kahului, Maui County, HI

  6. 125. NORTH PLANT AMMUNITION DEMOLITION FACILITY IN FOREGROUND AND ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    125. NORTH PLANT AMMUNITION DEMOLITION FACILITY IN FOREGROUND AND ASSEMBLY PLANT/WAREHOUSE (BUILDING 1601/1606/1701) IN BACKGROUND. FROM GB MANUFACTURING PLANT. VIEW TO NORTHWEST. - Rocky Mountain Arsenal, Bounded by Ninety-sixth Avenue & Fifty-sixth Avenue, Buckley Road, Quebec Street & Colorado Highway 2, Commerce City, Adams County, CO

  7. REAR ELEVATION WITH BASE OF PALM TREE IN FOREGROUND. VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    REAR ELEVATION WITH BASE OF PALM TREE IN FOREGROUND. VIEW FACING NORTH/NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 9, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  8. 2. In the foreground is the fan which removed fumes ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. In the foreground is the fan which removed fumes from the galvanizing area in building #8. In the background are the waste treatment tanks for the acids and alkali used in the zinc-electro-plating process. - American Chain & Cable Company, East Princess Street (400 Block), York, York County, PA

  9. VIEW OF TAIL SERVICE MASTS, PORT TSM IN THE FOREGROUND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TAIL SERVICE MASTS, PORT TSM IN THE FOREGROUND, FROM THE CORNER WHERE SIDES 1 AND 2 MEET - Cape Canaveral Air Force Station, Launch Complex 39, Mobile Launcher Platforms, Launcher Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  10. 4. Credit PSR. View east northeast (60°) down dust ditch. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Credit PSR. View east northeast (60°) down dust ditch. Wing wall of culvert in foreground carries this ditch beneath Second Street near the Utility and Paint Shop foundation (Building 4315). - Edwards Air Force Base, North Base, Dust Ditch System, Traversing North Base, Boron, Kern County, CA

  11. Interstellar and Cometary Dust

    NASA Technical Reports Server (NTRS)

    Mathis, John S.

    1997-01-01

    'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral

  12. RESEARCH PAPER: Foreground removal of 21 cm fluctuation with multifrequency fitting

    NASA Astrophysics Data System (ADS)

    He, Li-Ping

    2009-06-01

    The 21 centimeter (21 cm) line emission from neutral hydrogen in the intergalactic medium (IGM) at high redshifts is strongly contaminated by foreground sources such as the diffuse Galactic synchrotron emission and free-free emission from the Galaxy, as well as emission from extragalactic radio sources, thus making its observation very complicated. However, the 21 cm signal can be recovered through its structure in frequency space, as the power spectrum of the foreground contamination is expected to be smooth over a wide band in frequency space while the 21 cm fluctuations vary significantly. We use a simple polynomial fitting to reconstruct the 21 cm signal around four frequencies 50, 100, 150 and 200MHz with an especially small channel width of 20 kHz. Our calculations show that this multifrequency fitting approach can effectively recover the 21 cm signal in the frequency range 100 ~ 200 MHz. However, this method doesn't work well around 50 MHz because of the low intensity of the 21 cm signal at this frequency. We also show that the fluctuation of detector noise can be suppressed to a very low level by taking long integration times, which means that we can reach a sensitivity of approx10 mK at 150 MHz with 40 antennas in 120 hours of observations.

  13. Continuum Foreground Polarization and Na I Absorption in Type Ia SNe

    NASA Astrophysics Data System (ADS)

    Zelaya, P.; Clocchiatti, A.; Baade, D.; Höflich, P.; Maund, J.; Patat, F.; Quinn, J. R.; Reilly, E.; Wang, L.; Wheeler, J. C.; Förster, F.; González-Gaitán, S.

    2017-02-01

    We present a study of the continuum polarization over the 400–600 nm range of 19 SNe Ia obtained with FORS at the VLT. We separate them into those that show Na i D lines at the velocity of their hosts and those that do not. Continuum polarization of the sodium sample near maximum light displays a broad range of values, from extremely polarized cases like SN 2006X to almost unpolarized ones like SN 2011ae. The non-sodium sample shows, typically, smaller polarization values. The continuum polarization of the sodium sample in the 400–600 nm range is linear with wavelength and can be characterized by the mean polarization ({P}{mean}). Its values span a wide range and show a linear correlation with color, color excess, and extinction in the visual band. Larger dispersion correlations were found with the equivalent width of the Na i D and Ca ii H and K lines, and also a noisy relation between {P}{mean} and R V , the ratio of total to selective extinction. Redder SNe show stronger continuum polarization, with larger color excesses and extinctions. We also confirm that high continuum polarization is associated with small values of R V . The correlation between extinction and polarization—and polarization angles—suggest that the dominant fraction of dust polarization is imprinted in interstellar regions of the host galaxies. We show that Na i D lines from foreground matter in the SN host are usually associated with non-galactic ISM, challenging the typical assumptions in foreground interstellar polarization models. Based on observations made with ESO Telescopes at the Paranal Observatory under programs 068.D-0571(A), 069.D-0438(A), 070.D-0111(A), 076.D-0178(A), 079.D-0090(A), 080.D-0108(A), 081.D-0558(A), 085.D-0731(A), and 086.D-0262(A). Also based on observations collected at the German-Spanish Astronomical Center, Calar Alto (Spain).

  14. Broad-bandwidth Metamaterial Antireflection Coatings for Sub-Millimeter Astronomy and CMB Foreground Removal

    NASA Astrophysics Data System (ADS)

    McMahon, Jeff

    Sub-millimeter observations are crucial for answering questions about star and galaxy formation; understanding galactic dust foregrounds; and for removing these foregrounds to detect the faint signature of inflationary gravitational waves in the polarization of the Cosmic Microwave Background (CMB). Achieving these goals requires improved, broad-band antireflection coated lenses and half-wave plates (HWPs). These optical elements will significantly boost the sensitivity and capability of future sub-millimeter and CMB missions. We propose to develop wide-bandwidth metamaterial antireflection coatings for silicon lenses and sapphire HWPs with 3:1 ratio bandwidth that are scalable across the sub-millimeter band from 300 GHz to 3 THz. This is an extension of our successful work on saw cut metamaterial AR coatings for silicon optics at millimeter wave lengths. These, and the proposed coatings consist of arrays of sub-wavelength scale features cut into optical surfaces that behave like simple dielectrics. We have demonstrated saw cut 3:1 bandwidth coatings on silicon lenses, but these coatings are limited to the millimeter wave band by the limitations of dicing saw machining. The crucial advance needed to extend these broad band coatings throughout the sub-millimeter band is the development of laser cut graded index metamaterial coatings. The proposed work includes developing the capability to fabricate these coatings, optimizing the design of these metamaterials, fabricating and testing prototype lenses and HWPs, and working with the PIPER collaboration to achieve a sub-orbital demonstration of this technology. The proposed work will develop potentially revolutionary new high performance coatings for the sub-millimeter bands, and cary this technology to TRL 7 paving the way for its use in space. We anticipate that there will be a wide range of applications for these coatings on future NASA balloons and satellites.

  15. VIEW SHOWING THE ENTRY THROUGH THE RETAINING WALL (FOREGROUND) TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SHOWING THE ENTRY THROUGH THE RETAINING WALL (FOREGROUND) TO THE CONCRETE SLAB. NOTE THE 1¾" MOUNTING BOLTS FOR THE STEEL PLATE BASE OF THE 5" GUN, SET IN THE GUN BLOCK. STEEL REINFORCING RODS PROTRUDING FROM THE BROKEN TOPS OF THE RETAINING WALLS ARE ALSO VISIBLE. VIEW FACING EAST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, South Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  16. View of east entrance to Flume Tunnel #2. In foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of east entrance to Flume Tunnel #2. In foreground, covered decking (covered by debris) protects the flume below it (not visible). The extreme top of the tunnel entrance is visible in the middle of the picture, just beyond the covered decking. This is typical of gravity tunnel entrances and the only photograph representing these features in the system. Looking south - Childs-Irving Hydroelectric Project, Childs System, Flume Tunnel No. 2, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  17. OBLIQUE VIEW OF REAR SIDE WITH UNIT B IN FOREGROUND. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW OF REAR SIDE WITH UNIT B IN FOREGROUND. NOTE THE GABLE VENT AND CONCRETE SLAB OF THE CARPORT (TO THE RIGHT OF UNIT B). VIEW FACING NORTHEAST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, U-Shaped Three-Bedroom Duplex Type 3, Acacia Road, Birch Circle, and Cedar Drive, Pearl City, Honolulu County, HI

  18. INTERIOR VIEW, NORTH QUARRY, LOOKING WEST. IN THE FOREGROUND ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    INTERIOR VIEW, NORTH QUARRY, LOOKING WEST. IN THE FOREGROUND ON THE FIRST BENCH, POWDER HILLS ARE PRIMED FOR DOLOMITE EXTRACTION. ON THE SECOND BENCH, THE DRILL TEAM IS LAYING OUT THE NEXT SHOTS. ON THE TOP BENCH, A 245 CATERPILLAR LOADER FILLS A 55-TON CATERPILLAR ROCK TRUCK WITH EXTRACTED DOLOMITE FOR TRANSPORT TO THE DOLOMITE CRUSHING AND SCREENING PLANT. - Wade Sand & Gravel Company, North Quarry, State Highway 78, Thomas, Jefferson County, AL

  19. UV extinction properties of carina nebular dust

    NASA Technical Reports Server (NTRS)

    Massa, Derck

    1993-01-01

    I have performed an analysis of the UV extinction by dust along the line of sight to the young open cluster Tr 16. The observed curves are parameterized in order to extract quantitative information about the structure of the curves. Furthermore, by constructing differential extinction curves, obtained by differencing curves for stars which lie within a few arc seconds of each other on the sky, I was able to obtain a curve which is free of the effects of foreground extinction, and represents the extinction by the dust in the Tr 16 molecular cloud. I then show that this curve is nearly identical to one due to dust in the Orion molecular cloud. This result shows that dust in the Carina arm exhibits the same behavior as that in the local arm.

  20. The Origin and Evolution of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Houches, Les

    2006-01-01

    In this lecture I will discuss the many different manifestation of interstellar dust, and current dust models that satisfy interstellar extinction, diffuse infrared emission, and interstellar abundances constraints. Dust is made predominantly in AGB stars and Type I1 supernovae, and I will present observational evidence for the presence of dust in these sources. I will then present chemical evolution models that follow the abundance of dust which is determined by the combined processes of formation, destruction by interstellar shock waves, and accretion in molecular clouds. The model will be applied to the evolution of PAHs and the evolution of dust in the high-redshift galaxy (z=6.42) JD11.

  1. Cosmic dust

    NASA Technical Reports Server (NTRS)

    Brownlee, Donald E.; Sandford, Scott A.

    1992-01-01

    Dust is a ubiquitous component of our galaxy and the solar system. The collection and analysis of extraterrestrial dust particles is important to exobiology because it provides information about the sources of biogenically significant elements and compounds that accumulated in distant regions of the solar nebula and that were later accreted on the planets. The topics discussed include the following: general properties of interplanetary dust; the carbonaceous component of interplanetary dust particles; and the presence of an interstellar component.

  2. Photocopy of photograph entitled, on back, "Bldg in foreground ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of photograph entitled, on back, "Bldg in foreground - 1st hospital". That building is 511 and in the background is the Red Cross Building with steeple. The photograph dates to the 1920's and in the Fitzsimons Army Medical Center Public Affairs Office, building 120. Photograph in public domain as it is not copyrighted. Compare to CO-172-5. - Fitzsimons General Hospital, Bounded by East Colfax to south, Peoria Street to west, Denver City/County & Adams County Line to north, & U.S. Route 255 to east, Aurora, Adams County, CO

  3. Circumstellar dust

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1986-01-01

    The presence of dust in the general interstellar medium is inferred from the extinction, polarization, and scattering of starlight; the presence of dark nebulae; interstellar depletions; the observed infrared emission around certain stars and various types of interstellar clouds. Interstellar grains are subject to various destruction mechanisms that reduce their size or even completely destroy them. A continuous source of newly formed dust must therefore be present for dust to exist in the various phases of the interstellar medium (ISM). The working group has the following goals: (1) review the evidences for the formation of dust in the various sources; (2) examine the clues to the nature and composition of the dust; (3) review the status of grain formation theories; (4) examine any evidence for the processing of the dust prior to its injection into the interstellar medium; and (5) estimate the relative contribution of the various sources to the interstellar dust population.

  4. Object-Based Multiple Foreground Video Co-Segmentation via Multi-State Selection Graph.

    PubMed

    Fu, Huazhu; Xu, Dong; Zhang, Bao; Lin, Stephen; Ward, Rabab Kreidieh

    2015-11-01

    We present a technique for multiple foreground video co-segmentation in a set of videos. This technique is based on category-independent object proposals. To identify the foreground objects in each frame, we examine the properties of the various regions that reflect the characteristics of foregrounds, considering the intra-video coherence of the foreground as well as the foreground consistency among the different videos in the set. Multiple foregrounds are handled via a multi-state selection graph in which a node representing a video frame can take multiple labels that correspond to different objects. In addition, our method incorporates an indicator matrix that for the first time allows accurate handling of cases with common foreground objects missing in some videos, thus preventing irrelevant regions from being misclassified as foreground objects. An iterative procedure is proposed to optimize our new objective function. As demonstrated through comprehensive experiments, this object-based multiple foreground video co-segmentation method compares well with related techniques that co-segment multiple foregrounds.

  5. Spatial distribution of interstellar dust in the Sun's vicinity. Comparison with neutral sodium-bearing gas

    NASA Astrophysics Data System (ADS)

    Vergely, J.-L.; Valette, B.; Lallement, R.; Raimond, S.

    2010-07-01

    Aims: 3D tomography of the interstellar dust and gas may be useful in many respects, from the physical and chemical evolution of the interstellar medium itself to foreground decontamination of the cosmic microwave background, or various studies of the environments of specific objects. However, while spectral data cubes of the galactic emission become increasingly precise, the information on the distance to the emitting regions has not progressed as well and relies essentially on the galactic rotation curve. Our goal here is to bring more precise information on the distance to nearby interstellar dust and gas clouds within 250 pc. Methods: We apply the best available calibration methods to a carefully screened set of stellar Strömgren photometry data for targets possessing a Hipparcos parallax and spectral type classification. We combine the derived interstellar extinctions and the parallax distances for about 6000 stars to build a 3D tomography of the local dust. We use an inversion method based on a regularized Bayesian approach and a least squares criterion, optimized for this specific data set. We apply the same inversion technique to a totally independent set of neutral sodium absorption data available for about 1700 target stars. Results: We obtain 3D maps of the opacity and the distance to the main dust-bearing clouds within 250 pc and identify in those maps well-known dark clouds and high galactic more diffuse entities. We calculate the integrated extinction between the Sun and the cube boundary and compare this with the total galactic extinction derived from infrared 2D maps. The two quantities reach similar values at high latitudes, as expected if the local dust content is satisfyingly reproduced and the dust is closer than 250 pc. Those maps show a larger high latitude dust opacity in the North compared to the South, reinforcing earlier evidences. Interestingly the gas maps do not show the same asymmetry, suggesting a polar asymmetry of the dust to gas

  6. Improving video foreground segmentation and propagation through multifeature fusion

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaoliu; Wang, Yan; Yuan, Xiaobing; Li, Baoqing; Ding, Yuanyuan; Zhang, Zebin

    2015-11-01

    Video foreground segmentation lays the foundation for many high-level visual applications. However, how to dig up the effective features for foreground propagation and how to intelligently fuse the different information are still challenging problems. We aim to deal with the above-mentioned problems, and the goal is to accurately propagate the object across the rest of the frames given an initially labeled frame. Our contributions are summarized as follows: (1) we describe the object features with superpixel-based appearance and motion clues from both global and local viewpoints. Furthermore, the objective confidences for both the appearance and motion features are also introduced to balance the different clues. (2) All the features and their confidences are intelligently fused by the improved Dempster-Shafer evidence theory instead of the empirical parameters tuning used in many algorithms. Experimental results on the two well-known SegTrack and SegTrack v2 datasets demonstrate that our algorithm can yield high-quality segmentations.

  7. Large-scale polarization of the microwave background and foreground

    NASA Astrophysics Data System (ADS)

    de Oliveira-Costa, Angélica; Tegmark, Max; O'dell, Christopher; Keating, Brian; Timbie, Peter; Efstathiou, George; Smoot, George

    2003-10-01

    The DASI discovery of cosmic microwave background (CMB) polarization has opened a new chapter in cosmology. Most of the useful information about inflationary gravitational waves and reionization is on large angular scales where galactic foreground contamination is the worst, so a key challenge is to model, quantify, and remove polarized foregrounds. We use the POLAR experiment, COBE/DMR and radio surveys to provide the strongest limits to date on the TE cross-power spectrum of the CMB on large angular scales and to quantify the polarized synchrotron radiation, which is likely to be the most challenging polarized contaminant for the WMAP satellite. We find that the synchrotron E and B contributions are equal to within 10% from 408 820 MHz with a hint of E domination at higher frequencies. We quantify Faraday rotation and depolarization effects in the two-dimensional (l,ν) plane and show that they cause the synchrotron polarization percentage to drop both towards lower frequencies and towards lower multipoles.

  8. Boundary Layer Dust Occurrence, 1: Atmospheric Dust Over the White Sands Missile Range, New Mexico Area

    DTIC Science & Technology

    1975-04-01

    samples of atmospheric dust in the 0.3- to 1.1-- um wavelength interval. This work, which is based on the Kubelka - Munk theory of diffuse re...samples of atmospheric dust in the 0.3- to 1.1-pm wavelength interval. This work, which is based on the Kubelka - Munk theory of diffuse re- flectance

  9. Protoplanetary Dust

    NASA Astrophysics Data System (ADS)

    Apai, D.´niel; Lauretta, Dante S.

    2014-02-01

    Preface; 1. Planet formation and protoplanetary dust Daniel Apai and Dante Lauretta; 2. The origins of protoplanetary dust and the formation of accretion disks Hans-Peter Gail and Peter Hope; 3. Evolution of protoplanetary disk structures Fred Ciesla and Cornelius P. Dullemond; 4. Chemical and isotopic evolution of the solar nebula and protoplanetary disks Dmitry Semenov, Subrata Chakraborty and Mark Thiemens; 5. Laboratory studies of simple dust analogs in astrophysical environments John R. Brucato and Joseph A. Nuth III; 6. Dust composition in protoplanetaty dust Michiel Min and George Flynn; 7. Dust particle size evolution Klaus M. Pontoppidan and Adrian J. Brearly; 8. Thermal processing in protoplanetary nebulae Daniel Apai, Harold C. Connolly Jr. and Dante S. Lauretta; 9. The clearing of protoplanetary disks and of the protosolar nebula Ilaira Pascucci and Shogo Tachibana; 10. Accretion of planetesimals and the formation of rocky planets John E. Chambers, David O'Brien and Andrew M. Davis; Appendixes; Glossary; Index.

  10. Hubble space telescope imaging of decoupled dust clouds in the ram pressure stripped Virgo spirals NGC 4402 and NGC 4522

    SciTech Connect

    Abramson, Anne; Kenney, Jeffrey D. P. E-mail: jeff.kenney@yale.edu

    2014-03-01

    We present the highest-resolution study to date of the interstellar medium (ISM) in galaxies undergoing ram pressure stripping, using Hubble Space Telescope BVI imaging of NGC 4522 and NGC 4402, Virgo Cluster spirals that are well known to be experiencing intracluster medium (ICM) ram pressure. We find that throughout most of both galaxies, the main dust lane has a fairly well-defined edge, with a population of giant molecular cloud (GMC) sized (tens- to hundreds-of-pc scale), isolated, highly extincting dust clouds located up to ∼1.5 kpc radially beyond it. Outside of these dense clouds, the area has little or no diffuse dust extinction, indicating that the clouds have decoupled from the lower-density ISM material that has already been stripped. Several of the dust clouds have elongated morphologies that indicate active ram pressure, including two large (kpc scale) filaments in NGC 4402 that are elongated in the projected ICM wind direction. We calculate a lower limit on the H I + H{sub 2} masses of these clouds based on their dust extinctions and find that a correction factor of ∼10 gives cloud masses consistent with those measured in CO for clouds of similar diameters, probably due to the complicating factors of foreground light, cloud substructure, and resolution limitations. Assuming that the clouds' actual masses are consistent with those of GMCs of similar diameters (∼10{sup 4}-10{sup 5} M {sub ☉}), we estimate that only a small fraction (∼1%-10%) of the original H I + H{sub 2} remains in the parts of the disks with decoupled clouds. Based on Hα images, a similar fraction of star formation persists in these regions, 2%-3% of the estimated pre-stripping star formation rate. We find that the decoupled cloud lifetimes may be up to 150-200 Myr.

  11. Differentiating salt marsh species using foreground/background analysis

    SciTech Connect

    Zhang, M.; Pinzon, J.; Ustin, S.L.; Rejmankova, E.

    1996-10-01

    Three California salt marsh plant species have distinctive morphologies that could be remotely sensed by airborne spectrometers because the architectures create differences in canopy reflectance characteristics. This paper presents a method to differentiate wetland species using a modified spectral mixture analysis termed hierarchical foreground and background analysis (HFBA). To validate this approach, the method was applied to field spectral data from several salt marshes. Foreground and background analysis allows the user to direct analysis along a specified axis of variance by identifying vectors through the n-dimensional spectral volume by identifying vectors that comprise the information of selected subset of spectra which emphasizes the presence of a discriminative signature of interest. The goal of FBA is to project spectral variation along the most relevant axis of variance that maximizes spectral differences between groups, while minimizing spectral variation within each group. For this work, we selected a training set that allowed us to create HFBA vectors which efficiently discriminate species based on canopy spectral characteristics. Results indicated that the dominant species in these salts marshes could be clearly differentiated with greater than 90% certainty from field collected canopy spectrometer data. Hundred percent of Spartina and 79% of Salicornia were correctly classified at the first level of classification. The accuracy of classification for Salicornia improved to 87% in the second level of classification. The unclassified spectral samples were related to extraordinary conditions within the wetlands such as extreme biomass, salinity and nitrogen conditions. These patterns were apparent in AVIRIS (Airborne Visible/infrared Imaging Spectrometer) images which showed distinct zonation corresponding to the distributions of these species in the marsh. Results were confirmed by field reconnaissance. 19 refs., 3 figs., 4 tabs.

  12. An improved model of diffuse galactic radio emission from 10 MHz to 5 THz

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Tegmark, M.; Dillon, J. S.; Kim, D. A.; Liu, A.; Neben, A. R.; Jonas, J.; Reich, P.; Reich, W.

    2017-01-01

    We present an improved Global Sky Model (GSM) of diffuse Galactic radio emission from 10 MHz to 5 THz, whose uses include foreground modelling for cosmic microwave background (CMB) and 21 cm cosmology. Our model improves on past work both algorithmically and by adding new data sets such as the Planck maps and the enhanced Haslam map. Our method generalizes the principal component analysis approach to handle non-overlapping regions, enabling the inclusion of 29 sky maps with no region of the sky common to all. We also perform a blind separation of our GSM into physical components with a method that makes no assumptions about physical emission mechanisms (synchrotron, free-free, dust, etc). Remarkably, this blind method automatically finds five components that have previously only been found `by hand', which we identify with synchrotron, free-free, cold dust, warm dust, and the CMB anisotropy. Computing the cross-power spectrum between these blindly extracted components and Planck component maps, we find a strong correlation at all angular scales. The improved GSM is available online at http://github.com/jeffzhen/gsm2016.

  13. No cold dust within the supernova remnant Cassiopeia A

    NASA Astrophysics Data System (ADS)

    Krause, Oliver; Birkmann, Stephan M.; Rieke, George H.; Lemke, Dietrich; Klaas, Ulrich; Hines, Dean C.; Gordon, Karl D.

    2004-12-01

    A large amount (about three solar masses) of cold (18K) dust in the prototypical type II supernova remnant Cassiopeia A was recently reported. It was concluded that dust production in type II supernovae can explain how the large quantities (~ 108 solar masses) of dust observed in the most distant quasars could have been produced within only 700 million years after the Big Bang. Foreground clouds of interstellar material, however, complicate the interpretation of the earlier submillimetre observations of Cas A. Here we report far-infrared and molecular line observations that demonstrate that most of the detected submillimetre emission originates from interstellar dust in a molecular cloud complex located in the line of sight between the Earth and Cas A, and is therefore not associated with the remnant. The argument that type II supernovae produce copious amounts of dust is not supported by the case of Cas A, which previously appeared to provide the best evidence for this possibility.

  14. No cold dust within the supernova remnant Cassiopeia A.

    PubMed

    Krause, Oliver; Birkmann, Stephan M; Rieke, George H; Lemke, Dietrich; Klaas, Ulrich; Hines, Dean C; Gordon, Karl D

    2004-12-02

    A large amount (about three solar masses) of cold (18 K) dust in the prototypical type II supernova remnant Cassiopeia A was recently reported. It was concluded that dust production in type II supernovae can explain how the large quantities (approximately 10(8) solar masses) of dust observed in the most distant quasars could have been produced within only 700 million years after the Big Bang. Foreground clouds of interstellar material, however, complicate the interpretation of the earlier submillimetre observations of Cas A. Here we report far-infrared and molecular line observations that demonstrate that most of the detected submillimetre emission originates from interstellar dust in a molecular cloud complex located in the line of sight between the Earth and Cas A, and is therefore not associated with the remnant. The argument that type II supernovae produce copious amounts of dust is not supported by the case of Cas A, which previously appeared to provide the best evidence for this possibility.

  15. China Dust

    Atmospheric Science Data Center

    2013-04-16

    ... SpectroRadiometer (MISR) nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a ... arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the ...

  16. Andromeda's dust

    SciTech Connect

    Draine, B. T.; Aniano, G.; Krause, Oliver; Groves, Brent; Sandstrom, Karin; Klaas, Ulrich; Linz, Hendrik; Rix, Hans-Walter; Schinnerer, Eva; Schmiedeke, Anika; Walter, Fabian; Braun, Robert; Leroy, Adam E-mail: ganiano@ias.u-psud.fr

    2014-01-10

    Spitzer Space Telescope and Herschel Space Observatory imaging of M31 is used, with a physical dust model, to construct maps of dust surface density, dust-to-gas ratio, starlight heating intensity, and polycyclic aromatic hydrocarbon (PAH) abundance, out to R ≈ 25 kpc. The global dust mass is M {sub d} = 5.4 × 10{sup 7} M {sub ☉}, the global dust/H mass ratio is M {sub d}/M {sub H} = 0.0081, and the global PAH abundance is (q {sub PAH}) = 0.039. The dust surface density has an inner ring at R = 5.6 kpc, a maximum at R = 11.2 kpc, and an outer ring at R ≈ 15.1 kpc. The dust/gas ratio varies from M {sub d}/M {sub H} ≈ 0.026 at the center to ∼0.0027 at R ≈ 25 kpc. From the dust/gas ratio, we estimate the interstellar medium metallicity to vary by a factor ∼10, from Z/Z {sub ☉} ≈ 3 at R = 0 to ∼0.3 at R = 25 kpc. The dust heating rate parameter (U) peaks at the center, with (U) ≈ 35, declining to (U) ≈ 0.25 at R = 20 kpc. Within the central kiloparsec, the starlight heating intensity inferred from the dust modeling is close to what is estimated from the stars in the bulge. The PAH abundance reaches a peak q {sub PAH} ≈ 0.045 at R ≈ 11.2 kpc. When allowance is made for the different spectrum of the bulge stars, q {sub PAH} for the dust in the central kiloparsec is similar to the overall value of q {sub PAH} in the disk. The silicate-graphite-PAH dust model used here is generally able to reproduce the observed dust spectral energy distribution across M31, but overpredicts 500 μm emission at R ≈ 2-6 kpc, suggesting that at R = 2-6 kpc, the dust opacity varies more steeply with frequency (with β ≈ 2.3 between 200 and 600 μm) than in the model.

  17. 4. OVERVIEW LOOKING NORTHEAST, BLD 5 RIGHT FOREGROUND, BLDG. 44/16 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. OVERVIEW LOOKING NORTHEAST, BLD 5 RIGHT FOREGROUND, BLDG. 44/16 LEFT FOREGROUND. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  18. HD/H{sub 2} AS A PROBE OF THE ROLES OF GAS, DUST, LIGHT, METALLICITY, AND COSMIC RAYS IN PROMOTING THE GROWTH OF MOLECULAR HYDROGEN IN THE DIFFUSE INTERSTELLAR MEDIUM

    SciTech Connect

    Liszt, H. S.

    2015-01-20

    We modeled recent observations of UV absorption of HD and H{sub 2} in the Milky Way and toward damped/subdamped Lyα systems at z = 0.18 and z >1.7. N(HD)/N(H{sub 2}) ratios reflect the separate self-shieldings of HD and H{sub 2} and the coupling introduced by deuteration chemistry. Locally, observations are explained by diffuse molecular gas with 16 cm{sup –3} ≲ n(H) ≲ 128 cm{sup –3} if the cosmic-ray ionization rate per H nucleus ζ {sub H} =2 × 10{sup –16} s{sup –1}, as inferred from H{sub 3} {sup +} and OH{sup +}. The dominant influence on N(HD)/N(H{sub 2}) is the cosmic-ray ionization rate with a much weaker downward dependence on n(H) at solar metallicity, but dust extinction can drive N(HD) higher as with N(H{sub 2}). At z > 1.7, N(HD) is comparable to the Galaxy but with 10 times smaller N(H{sub 2}) and somewhat smaller N(H{sub 2})/N(H I). Comparison of our Galaxy with the Magellanic Clouds shows that smaller H{sub 2}/H is expected at subsolar metallicity, and we show by modeling that HD/H{sub 2} increases with density at low metallicity, opposite to the Milky Way. Observations of HD would be explained with higher n(H) at low metallicity, but high-z systems have high HD/H{sub 2} at metallicity 0.04 ≲ Z ≲ 2 solar. In parallel, we trace dust extinction and self-shielding effects. The abrupt H{sub 2} transition to H{sub 2}/H ≈ 1%-10% occurs mostly from self-shielding, although it is assisted by extinction for n(H) ≲ 16 cm{sup –3}. Interior H{sub 2} fractions are substantially increased by dust extinction below ≲ 32 cm{sup –3}. At smaller n(H), ζ {sub H}, small increases in H{sub 2} triggered by dust extinction can trigger abrupt increases in N(HD)

  19. Exozodiacal dust

    NASA Astrophysics Data System (ADS)

    Kuchner, Marc Jason

    Besides the sun, the most luminous feature of the solar system is a cloud of "zodiacal" dust released by asteroids and comets that pervades the region interior to the asteroid belt. Similar clouds of dust around other stars---exozodiacal clouds---may be the best tracers of the habitable zones of extra-solar planetary systems. This thesis discusses three searches for exozodiacal dust: (1) We observed six nearby main-sequence stars with the Keck telescope at 11.6 microns, correcting for atmosphere-induced wavefront aberrations and deconvolving the point spread function via classical speckle analysis. We compare our data to a simple model of the zodiacal dust in our own system based on COBE DIRBE observations and place upper limits on the density of exozodiacal dust in these systems. (2) We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the Hubble Space Telescope to look for scattered light from exozodiacal dust and faint companions within 10 AU from these stars. (3) The planned nulling capability of the Keck Interferometer should allow it to probe the region <200 milliarcsecond from a bright star and to suppress on-axis starlight by factors of 10 -3 to reveal faint circumstellar material. We model the response of the Keck Interferometer to hypothetical exozodiacal clouds to derive detection limits that account for the effects of stellar leakage, photon noise, noise from null depth fluctuations, and the fact that the cloud's shape is not known a priori. We also discuss the interaction of dust with planets. We used the COBE DIRBE Sky and Zodi Atlas and the IRAS Sky Survey Atlas to search for dynamical signatures of three different planets in the solar system dust complex: (1) We searched the COBE DIRBE Sky and Zodi Atlas for a wake of dust trailing Mars. We compare the DIRBE images to a model Mars wake based on the empirical model of the Earth's wake as seen by the DIRBE. (2) We searched the COBE DIRRE Sky and Zodi Atlas for Tiojan dust near

  20. ISO Lensing Studies: background galaxies and foreground cluster properties

    NASA Astrophysics Data System (ADS)

    Perez-Martinez, Ricardo

    2003-02-01

    A number of ISO programmes, totaling over 100 hours of observation time, made use of the gravitational lensing phenomenon to extend the sensitivity of ISO observations. Substantial results derived from those programmes have been published, or are in the peer review process, addressing the MIR properties of the background lensed galaxy population. These results, which have important implications for galaxy evolution, and which resolve a large fraction of the 15 and 7 μm infrared-background light, will be briefly summarised. But the data has much further potential. Little has been published to date concerning the implications of the ISO lensing data for the foreground clusters themselves, nor addressing the overlap between the observed ISO sources and lensed populations seen at X-Ray and Sub-mm wavelengths. We report briefly on an ongoing programme to systematically reassess the set of ISO observations of lensing galaxy clusters and to describe and compare the IR properties of the clusters themselves. The overlap between ISO source lists and recently published lists of X-Ray and Sub-mm sources in the same fields is under study.

  1. African Dust Blows over the Caribbean

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Shuttle astronauts frequently track Saharan dust storms as they blow from north Africa across the Atlantic Ocean. Dust palls blowing from Africa take about a week to cross the Atlantic. Recently, researchers have linked Saharan dust to coral disease, allergic reactions in humans, and red tides. The top photograph, a classic image showing African dust over the Caribbean, was taken at a time when few scientists had considered the possibility. The image was taken by Space Shuttle astronauts on July 11, 1994 (STS065-75-47). This photograph looks southwest over the northern edge of a large trans-Atlantic dust plume that blew off the Sahara desert in Africa. In this view, Caicos Island in the Bahamas and the mountainous spines of Haiti are partly obscured by the dust. Closer to the foreground, (about 26 degrees north latitude), the skies are clear. The lower photograph (STS105-723-7) was taken by Space Shuttle astronauts while docked to the International Space Station on August 19, 2001. The spacecraft is over the Atlantic Ocean at roughly 45oN, 60oW. The astronauts were looking obliquely to the south; the boundaries of the dust plumes can be traced visually by the abrupt change from clear to hazy atmosphere-the hazy line marks the northern edge of the dust pall near the Caribbean. Images provided by the Earth Sciences and Image Analysis Laboratory at Johnson Space Center. Additional images taken by astronauts and cosmonauts can be viewed at the NASA-JSC Gateway to Astronaut Photography of Earth.

  2. Dust obscuration by an evolving galaxy population

    NASA Technical Reports Server (NTRS)

    Najita, Joan; Silk, Joseph; Wachter, Kenneth W.

    1990-01-01

    The effect of an evolving luminosity function (LF) on the ability of foreground galaxies to obscure background sources is discussed, using the Press-Schechter/CDM standard evolving LF model. Galaxies are modeled as simplified versions of local spirals and Poisson statistics are used to estimate the fraction of sky covered by intervening dusty galaxies and the mean optical depths due to these galaxies. The results are compared to those obtained in the case of nonevolving luminosity function in a low-density universe. It is found that evolution of the galaxy LF does not allow the quasar dust obscuration hypothesis to be sustained for dust disks with plausible sizes. Even in a low-density universe, where evolution at z = less than 10 is unimportant, large disk radii are needed to achieve the desired obscuring effect. The mean fraction of sky covered is presented as a function of the redshift z along with adequate diagram illustrations.

  3. 20. VIEW OF NEWER 7LEVER INTERLOCKING MACHINE IN FOREGROUND, NEXT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. VIEW OF NEWER 7-LEVER INTERLOCKING MACHINE IN FOREGROUND, NEXT TO ORIGINAL INTERLOCKING MACHINE, THIRD FLOOR - South Station Tower No. 1 & Interlocking System, Dewey Square, Boston, Suffolk County, MA

  4. View of slow sand filters with pump house/chlorinator in foreground. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of slow sand filters with pump house/chlorinator in foreground. Clear well tank located behind pump house and trees. - Hawaii Volcanoes National Park Water Collection System, Hawaii Volcanoes National Park, Volcano, Hawaii County, HI

  5. East façade, Burton Park Club House, with Amphitheater in foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    East façade, Burton Park Club House, with Amphitheater in foreground, view to north from Amphitheater stage (90 mm lens). - Burton Park, Club House & Amphitheater, Adjacent ot south end of Chestnut Avenue, San Carlos, San Mateo County, CA

  6. 4. VIEW SOUTHWEST OF 15MILLION GALLON UNDERGROUND CLEARWELL (foreground), HEAD ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW SOUTHWEST OF 15-MILLION GALLON UNDERGROUND CLEARWELL (foreground), HEAD HOUSE (left), OLD PUMP STATION (center), AND EAST FILTER BUILDING (background) - Dalecarlia Water Treatment Plant, 5900 MacArthur Boulevard, Northwest, Washington, District of Columbia, DC

  7. 79th Street Rotunda, former fountain in foreground, now Boat Basin ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79th Street Rotunda, former fountain in foreground, now Boat Basin Cafe, looking west. - Henry Hudson Parkway, Extending 11.2 miles from West 72nd Street to Bronx-Westchester border, New York County, NY

  8. 1. General view of HABS no. IA190 east front (foreground), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. General view of HABS no. IA-190 east front (foreground), HABS no. IA-191 in background (right) and HABS no. IA-192 in background (left). - 860 Martin Luther King Jr. Parkway (Cottage), Des Moines, Polk County, IA

  9. SECTION A, WITH PENNSYLVANIA MONUMENT AT LEFT FOREGROUND AND 28TH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECTION A, WITH PENNSYLVANIA MONUMENT AT LEFT FOREGROUND AND 28TH NEW YORK REGIMENT MONUMENT AT RIGHT BACKGROUND. VIEW TO SOUTH. - Culpeper National Cemetery, 305 U.S. Avenue, Culpeper, Culpeper County, VA

  10. The Application of Continuous Wavelet Transform Based Foreground Subtraction Method in 21 cm Sky Surveys

    NASA Astrophysics Data System (ADS)

    Gu, Junhua; Xu, Haiguang; Wang, Jingying; An, Tao; Chen, Wen

    2013-08-01

    We propose a continuous wavelet transform based non-parametric foreground subtraction method for the detection of redshifted 21 cm signal from the epoch of reionization. This method works based on the assumption that the foreground spectra are smooth in frequency domain, while the 21 cm signal spectrum is full of saw-tooth-like structures, thus their characteristic scales are significantly different. We can distinguish them in the wavelet coefficient space easily and perform the foreground subtraction. Compared with the traditional spectral fitting based method, our method is more tolerant to complex foregrounds. Furthermore, we also find that when the instrument has uncorrected response error, our method can also work significantly better than the spectral fitting based method. Our method can obtain similar results with the Wp smoothing method, which is also a non-parametric method, but our method consumes much less computing time.

  11. Polarized galactic synchrotron and dust emission and their correlation

    SciTech Connect

    Choi, Steve K.; Page, Lyman A. E-mail: page@princeton.edu

    2015-12-01

    We present an analysis of the level of polarized dust and synchrotron emission using the WMAP9 and Planck data. The primary goal of this study is to inform the assessment of foreground contamination in the cosmic microwave background (CMB) measurements below ℓ ∼ 200 from 23 to 353 GHz. We compute angular power spectra as a function of sky cut based on the Planck 353 GHz polarization maps. Our primary findings are the following. (1) There is a spatial correlation between the dust emission as measured by Planck at 353 GHz and the synchrotron emission as measured by WMAP at 23 GHz with ρ ≈ 0.4 or greater for ℓ < 20 and f{sub sky} ≥ 0.5, dropping to ρ ≈ 0.2 for 30 < ℓ < 200. (2) A simple foreground model with dust, synchrotron, and their correlation fits well to all possible cross spectra formed with the WMAP and Planck 353 GHz data given the current uncertainties. (3) In the 50% cleanest region of the polarized dust map, the ratio of synchrotron to dust amplitudes at 90 GHz for 50 ≤ ℓ ≤110 is 0.3{sub −0.2}{sup +0.3}. Smaller regions of sky can be cleaner although the uncertainties in our knowledge of synchrotron emission are larger. A high-sensitivity measurement of synchrotron below 90 GHz will be important for understanding all the components of foreground emission near 90 GHz.

  12. Analysis of small-scale microwave background radiation anisotropy in the presence of foreground contamination

    NASA Technical Reports Server (NTRS)

    Dodelson, Scott; Stebbins, Albert

    1994-01-01

    Many of the current round of experiments searching for anisotropies in the microwave background radiation (MBR) are confronting the problem of how to disentangle the cosmic signal from contamination due to Galactic and intergalactic foreground sources. Here we show how commonly used likelihood function techniques can be generalized to account for foreground. Specifically we set some restrictions on the spectrum of foreground contamination but allow the amplitude to vary arbitrarily. The likelihood function thus generalized gives reasonable limits on the MBR anisotropy which, in some cases, are not much less restrictive than what one would get from more detailed modeling of the foreground. Furthermore, the likelihood function is exactly the same as one would obtain by simply projecting out foreground contamination and looking at the reduced data set. We apply this generalized analysis to the recent medium-angle data sets of ACME-HEMT (Gaier et al. 1992; Schuster et al. 1993) and MAX (Meinhold et al. 1993; Gunderson et al. 1993). The resulting analysis constrains the one free parameter in the standard cold dark matter theory to be Q(sub rms-ps) = 18(sub -5 sup +8) microKelvin. This best fit value, although in striking agreement with the normalization from Cosmic Background Explorer (COBE), is not a very good fit, with an overall chi-squared/degrees of freedom = 208/168. We also argue against three commonly used methods of dealing with foreground: (1) ignoring it completely; (2) subtracting off a best-fit foreground and treating the residuals as if uncontaminated; and (3) culling data which appears to be contaminated by foreground.

  13. Respiratory Diseases Caused by Coal Mine Dust

    PubMed Central

    Laney, A. Scott; Weissman, David N.

    2015-01-01

    Objective To provide an update on respiratory diseases caused by coal mine dust. Methods This article presents the results of a literature review initially performed for an International Conference on Occupational and Environmental Lung Disease held in summer 2013. Results Coal mine dust causes a spectrum of lung diseases collectively termed coal mine dust lung disease (CMDLD). These include Coal Workers’ Pneumoconiosis, silicosis, mixed dust pneumoconiosis, dust-related diffuse fibrosis (which can be mistaken for idiopathic pulmonary fibrosis), and chronic obstructive pulmonary disease. CMDLD continues to be a problem in the United States, particularly in the central Appalachian region. Treatment of CMDLD is symptomatic. Those with end-stage disease are candidates for lung transplantation. Because CMDLD cannot be cured, prevention is critical. Conclusions Coal mine dust remains a relevant occupational hazard and miners remain at risk for CMDLD. PMID:25285970

  14. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; Ali, Zaki; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, Dave; Dexter, Matthew; MacMahon, Dave; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Patricia J.; Manley, Jason; Walbrugh, William P.; Stefan, Irina I.

    2013-05-10

    We present new observations with the Precision Array for Probing the Epoch of Reionization with the aim of measuring the properties of foreground emission for 21 cm epoch of reionization (EoR) experiments at 150 MHz. We focus on the footprint of the foregrounds in cosmological Fourier space to understand which modes of the 21 cm power spectrum will most likely be compromised by foreground emission. These observations confirm predictions that foregrounds can be isolated to a {sup w}edge{sup -}like region of two-dimensional (k , k{sub Parallel-To })-space, creating a window for cosmological studies at higher k{sub Parallel-To} values. We also find that the emission extends past the nominal edge of this wedge due to spectral structure in the foregrounds, with this feature most prominent on the shortest baselines. Finally, we filter the data to retain only this ''unsmooth'' emission and image its specific k{sub Parallel-To} modes. The resultant images show an excess of power at the lowest modes, but no emission can be clearly localized to any one region of the sky. This image is highly suggestive that the most problematic foregrounds for 21 cm EoR studies will not be easily identifiable bright sources, but rather an aggregate of fainter emission.

  15. Ambipolar diffusion in complex plasma.

    PubMed

    Losseva, T V; Popel, S I; Yu, M Y; Ma, J X

    2007-04-01

    A self-consistent model of the ambipolar diffusion of electrons and ions in complex (dusty) plasmas accounting for the local electric fields, the dust grain charging process, and the interaction of the plasma particles with the dust grains and neutrals is presented. The dependence of the diffusion coefficient on the interaction of the electrons and ions with the dust grains as well as with the neutrals are investigated. It is shown that increase of the dust density leads to a reduction of the diffusion scale length, and this effect is enhanced at higher electron densities. The dependence of the diffusion scale length on the neutral gas pressure is found to be given by a power law, where the absolute value of the power exponent decreases with increase of the dust density. The electric field gradient and its effects are shown to be significant and should thus be taken into account in studies of complex plasmas with not very small dust densities. The possibility of observing localized coherent dissipative nonlinear dust ion-acoustic structures in an asymmetrically discharged double plasma is discussed.

  16. A Polarimetric Approach for Constraining the Dynamic Foreground Spectrum for Cosmological Global 21 cm Measurements

    NASA Astrophysics Data System (ADS)

    Nhan, Bang D.; Bradley, Richard F.; Burns, Jack O.

    2017-02-01

    The cosmological global (sky-averaged) 21 cm signal is a powerful tool to probe the evolution of the intergalactic medium in high-redshift universe (z≤slant 6). One of the biggest observational challenges is to remove the foreground spectrum which is at least four orders of magnitude brighter than the cosmological 21 cm emission. Conventional global 21 cm experiments rely on the spectral smoothness of the foreground synchrotron emission to separate it from the unique 21 cm spectral structures in a single total-power spectrum. However, frequency-dependent instrumental and observational effects are known to corrupt such smoothness and complicate the foreground subtraction. We introduce a polarimetric approach to measure the projection-induced polarization of the anisotropic foreground onto a stationary dual-polarized antenna. Due to Earth rotation, when pointing the antenna at a celestial pole, the revolving foreground will modulate this polarization with a unique frequency-dependent sinusoidal signature as a function of time. In our simulations, by harmonic decomposing this dynamic polarization, our technique produces two separate spectra in parallel from the same observation: (i) a total sky power consisting both the foreground and the 21 cm background and (ii) a model-independent measurement of the foreground spectrum at a harmonic consistent to twice the sky rotation rate. In the absence of any instrumental effects, by scaling and subtracting the latter from the former, we recover the injected global 21 cm model within the assumed uncertainty. We further discuss several limiting factors and potential remedies for future implementation.

  17. Assessment of Models of Galactic Thermal Dust Emission Using COBE/FIRAS and COBE/DIRBE Observations

    NASA Astrophysics Data System (ADS)

    Odegard, N.; Kogut, A.; Chuss, D. T.; Miller, N. J.

    2016-09-01

    Accurate modeling of the spectrum of thermal dust emission at millimeter wavelengths is important for improving the accuracy of foreground subtraction for cosmic microwave background (CMB) measurements, for improving the accuracy with which the contributions of different foreground emission components can be determined, and for improving our understanding of dust composition and dust physics. We fit four models of dust emission to high Galactic latitude COBE/FIRAS and COBE/DIRBE observations from 3 mm to 100 μm and compare the quality of the fits. We consider the two-level systems (TLS) model because it provides a physically motivated explanation for the observed long wavelength flattening of the dust spectrum and the anti-correlation between emissivity index and dust temperature. We consider the model of Finkbeiner et al. because it has been widely used for CMB studies, and the generalized version of this model that was recently applied to Planck data by Meisner and Finkbeiner. For comparison we have also fit a phenomenological model consisting of the sum of two graybody components. We find that the two-graybody model gives the best fit and the FDS model gives a significantly poorer fit than the other models. The Meisner and Finkbeiner model and the TLS model remain viable for use in Galactic foreground subtraction, but the FIRAS data do not have a sufficient signal-to-noise ratio to provide a strong test of the predicted spectrum at millimeter wavelengths.

  18. Cassiopeia A: dust factory revealed via submillimetre polarimetry

    NASA Astrophysics Data System (ADS)

    Dunne, L.; Maddox, S. J.; Ivison, R. J.; Rudnick, L.; Delaney, T. A.; Matthews, B. C.; Crowe, C. M.; Gomez, H. L.; Eales, S. A.; Dye, S.

    2009-04-01

    If Type II supernovae - the evolutionary end points of short-lived, massive stars - produce a significant quantity of dust (>0.1Msolar) then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre (submm) observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type II supernovae. In this paper, we present new data which show that the submm emission from Cas A is polarized at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarized submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarization in this way and so we attribute the excess polarized submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarized and unpolarized dust emission in the north of the remnant where there is no contamination from foreground molecular clouds. The inferred dust polarization fraction is unprecedented (fpol ~ 30 per cent) which, coupled with the brief time-scale available for grain alignment (<300yr), suggests that supernova dust differs from that seen in other Galactic sources (where fpol = 2-7 per cent) or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.

  19. Martian Dust Devil Movie, Phoenix Sol 104

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Surface Stereo Imager on NASA's Phoenix Mars Lander caught this dust devil in action west of the lander in four frames shot about 50 seconds apart from each other between 11:53 a.m. and 11:56 a.m. local Mars time on Sol 104, or the 104th Martian day of the mission, Sept. 9, 2008.

    Dust devils have not been detected in any Phoenix images from earlier in the mission, but at least six were observed in a dozen images taken on Sol 104.

    Dust devils are whirlwinds that often occur when the Sun heats the surface of Mars, or some areas on Earth. The warmed surface heats the layer of atmosphere closest to it, and the warm air rises in a whirling motion, stirring dust up from the surface like a miniature tornado.

    The dust devil visible in this sequence was about 1,000 meters (about 3,300 feet) from the lander when the first frame was taken, and had moved to about 1,700 meters (about 5,600 feet) away by the time the last frame was taken about two and a half minutes later. The dust devil was moving westward at an estimated speed of 5 meters per second (11 miles per hour), which is similar to typical late-morning wind speed and direction indicated by the telltale wind gauge on Phoenix.

    This dust devil is about 5 meters (16 feet) in diameter. This is much smaller than dust devils that have been observed by NASA's Mars Exploration Rover Spirit much closer to the equator. It is closer in size to dust devils seen from orbit in the Phoenix landing region, though still smaller than those..

    The image has been enhanced to make the dust devil easier to see. Some of the frame-to-frame differences in the appearance of foreground rocks is because each frame was taken through a different color filter.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  20. Instantaneous normal mode analysis of melting of finite dust clusters.

    PubMed

    Melzer, André; Schella, André; Schablinski, Jan; Block, Dietmar; Piel, Alexander

    2012-06-01

    The experimental melting transition of finite two-dimensional dust clusters in a dusty plasma is analyzed using the method of instantaneous normal modes. In the experiment, dust clusters are heated in a thermodynamic equilibrium from a solid to a liquid state using a four-axis laser manipulation system. The fluid properties of the dust cluster, such as the diffusion constant, are measured from the instantaneous normal mode analysis. Thereby, the phase transition of these finite clusters is approached from the liquid phase. From the diffusion constants, unique melting temperatures have been assigned to dust clusters of various sizes that very well reflect their dynamical stability properties.

  1. [C II] absorption and emission in the diffuse interstellar medium across the Galactic plane

    NASA Astrophysics Data System (ADS)

    Gerin, M.; Ruaud, M.; Goicoechea, J. R.; Gusdorf, A.; Godard, B.; de Luca, M.; Falgarone, E.; Goldsmith, P.; Lis, D. C.; Menten, K. M.; Neufeld, D.; Phillips, T. G.; Liszt, H.

    2015-01-01

    Aims: Ionized carbon is the main gas-phase reservoir of carbon in the neutral diffuse interstellar medium (ISM) and its 158 μm fine structure transition [C ii] is the most important cooling line of the diffuse ISM. We combine [C ii] absorption and emission spectroscopy to gain an improved understanding of physical conditions in the different phases of the ISM. Methods: We present high-resolution [C ii] spectra obtained with the Herschel/HIFI instrument towards bright dust continuum regions in the Galactic plane, probing simultaneously the diffuse gas along the line of sight and the background high-mass star forming regions. These data are complemented by single pointings in the 492 and 809 GHz fine structure lines of atomic carbon and by medium spectral resolution spectral maps of the fine structure lines of atomic oxygen at 63 and 145 μm with Herschel/PACS. Results: We show that the presence of foreground absorption may completely cancel the emission from the background source in medium spectral resolution PACS data and that high spectral resolution spectra are needed to interpret the [C ii] and [O i] emission and the [C ii]/FIR ratio. This phenomenon may explain part of the [C ii]/FIR deficit seen in external luminous infrared galaxies where the bright emission from the nuclear regions may be partially canceled by absorption from diffuse gas in the foreground. The C+ and C excitation in the diffuse gas is consistent with a median pressure of ~5900 K cm-3 for a mean kinetic temperature of ~100 K. A few higher pressure regions are detected along the lines of sight, as emission features in both fine structure lines of atomic carbon. The knowledge of the gas density allows us to determine the filling factor of the absorbing gas along the selected lines of sight. The derived median value of the filling factor is 2.4%, in good agreement with the properties of the Galactic cold neutral medium. The mean excitation temperature is used to derive the average cooling due

  2. Image classification using multiscale information fusion based on saliency driven nonlinear diffusion filtering.

    PubMed

    Hu, Weiming; Hu, Ruiguang; Xie, Nianhua; Ling, Haibin; Maybank, Stephen

    2014-04-01

    In this paper, we propose saliency driven image multiscale nonlinear diffusion filtering. The resulting scale space in general preserves or even enhances semantically important structures such as edges, lines, or flow-like structures in the foreground, and inhibits and smoothes clutter in the background. The image is classified using multiscale information fusion based on the original image, the image at the final scale at which the diffusion process converges, and the image at a midscale. Our algorithm emphasizes the foreground features, which are important for image classification. The background image regions, whether considered as contexts of the foreground or noise to the foreground, can be globally handled by fusing information from different scales. Experimental tests of the effectiveness of the multiscale space for the image classification are conducted on the following publicly available datasets: 1) the PASCAL 2005 dataset; 2) the Oxford 102 flowers dataset; and 3) the Oxford 17 flowers dataset, with high classification rates.

  3. A new mean filter ratio technique for edge detection and foreground extraction

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad M.; Islam, Mohammed N.; Asari, K. V.; Alam, Mohammad S.

    2008-08-01

    Edge detection is the primary step in image segmentation and target detection applications. The edge operators proposed so far in the literature, namely, Canny, Sobel, Prewitt, provide a number of unwanted edges which complicate the foreground object detection process. In this paper, a novel technique is proposed for edge detection and foreground segmentation employing two mean filters of different window sizes. A ratio of the filtered images is taken and normalized. Then a threshold is applied on the histogram of the resultant image to derive the final output which can detect the edges and hence separate the foreground from the background. Performance of the proposed method has been investigated through computer simulation and compared with other existing edge detection techniques using complex reallife image sequences, which verifies that the technique provides better detection results for any input scene.

  4. AKARI mid-infrared all-sky survey: development of the new inter-planetary dust (IPD) map and the world-first all-sky PAH map

    NASA Astrophysics Data System (ADS)

    Ishihara, D.; Kaneda, H.; Kondo, T.; Amatsutsu, T.; Nakamichi, K.; Yamagishi, M.; Oyabu, S.; Ootsubo, T.; Onaka, T.

    We are constructing accurately calibrated 9 µm and 18 µm all-sky diffuse maps from the AKARI mid-infrared all-sky survey data. These maps are heavily affected by the foreground emission of the zodiacal light, which has an intensity peak at around these wavelengths. We carefully separate the zodiacal emission component from the maps using Kelsall’s model. Through improvement of the parameters in the zodiacal light emission model, we obtained new insight on the structure and composition of the interplanetary dust in our solar system. The zodiacal light removed AKARI 9 µm map is the world’s first all-sky PAH map, that traces the emission features of Galactic polycyclic aromatic hydrocarbons (PAHs) at wavelengths of 6.2, 7.7, 8.6, and 11.3 µm. On a global scale, PAHs show good spatial correlation with tracers of general ISM such as CO, HI, and far-IR dust emissions. On a local scale, we recognize the variation of physical state and compositions of hydrocarbons reflecting the variation of the local physical environment. This PAH map will be effectively used in diagnoses of various interstellar phenomena.

  5. AN INFRARED CENSUS OF DUST IN NEARBY GALAXIES WITH SPITZER (DUSTINGS). I. OVERVIEW

    SciTech Connect

    Boyer, Martha L.; Sonneborn, George; McQuinn, Kristen B. W.; Gehrz, Robert D.; Skillman, Evan; Barmby, Pauline; Bonanos, Alceste Z.; Gordon, Karl D.; Meixner, Margaret; Groenewegen, M. A. T.; Lagadec, Eric; Lennon, Daniel; Marengo, Massimo; Sloan, G. C.; Van Loon, Jacco Th.; Zijlstra, Albert

    2015-01-01

    Nearby resolved dwarf galaxies provide excellent opportunities for studying the dust-producing late stages of stellar evolution over a wide range of metallicity (–2.7 ≲ [Fe/H] ≲ –1.0). Here, we describe DUSTiNGS (DUST in Nearby Galaxies with Spitzer): a 3.6 and 4.5 μm post-cryogen Spitzer Space Telescope imaging survey of 50 dwarf galaxies within 1.5 Mpc that is designed to identify dust-producing asymptotic giant branch (AGB) stars and massive stars. The survey includes 37 dwarf spheroidal, 8 dwarf irregular, and 5 transition-type galaxies. This near-complete sample allows for the building of statistics on these rare phases of stellar evolution over the full metallicity range. The photometry is >75% complete at the tip of the red giant branch for all targeted galaxies, with the exception of the crowded inner regions of IC 10, NGC 185, and NGC 147. This photometric depth ensures that the majority of the dust-producing stars, including the thermally pulsing AGB stars, are detected in each galaxy. The images map each galaxy to at least twice the half-light radius to ensure that the entire evolved star population is included and to facilitate the statistical subtraction of background and foreground contamination, which is severe at these wavelengths. In this overview, we describe the survey, the data products, and preliminary results. We show evidence for the presence of dust-producing AGB stars in eight of the targeted galaxies, with metallicities as low as [Fe/H] = –1.9, suggesting that dust production occurs even at low metallicity.

  6. Modeling Europa's Dust Plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring the properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we adjust the ejection model by Schmidt et al. [2008] to the conditions at Europa. In this way, we estimate properties of a possible, yet unobserved dust component of the Europa plume. For a size-dependent speed distribution of emerging ice particles we use the model from Kempf et al. [2010] for grain dynamics, modified to run simulations of plumes on Europa. Specifically, we model emission from the two plume locations determined from observations by Roth et al. [2014] and also from other locations chosen at the closest approach of low-altitude flybys investigated in the Europa Clipper study. This allows us to estimate expected fluxes of ice grains on the spacecraft. We then explore the parameter space of Europa dust plumes with regard to particle speed distribution parameters, plume location, and spacecraft flyby elevation. Each parameter set results in a 3-dimensional particle density structure through which we simulate flybys, and a map of particle fallback ('snowfall') on the surface of Europa. Due to the moon's high escape speed, a Europa plume will eject few to no particles that can escape its gravity, which has several further consequences: (i) For given ejection velocity a Europa plume will have a smaller scale height, with a higher particle number densities than the plume on Enceladus, (ii) plume particles will not feed the diffuse Galilean dust ring, (iii) the snowfall pattern on the surface will be more localized about the plume location, and will not induce a global m = 2 pattern as seen on Enceladus, and (iv) safely observing an active plume will require low altitude flybys, preferably at 50

  7. Video background tracking and foreground extraction via L1-subspace updates

    NASA Astrophysics Data System (ADS)

    Pierantozzi, Michele; Liu, Ying; Pados, Dimitris A.; Colonnese, Stefania

    2016-05-01

    We consider the problem of online foreground extraction from compressed-sensed (CS) surveillance videos. A technically novel approach is suggested and developed by which the background scene is captured by an L1- norm subspace sequence directly in the CS domain. In contrast to conventional L2-norm subspaces, L1-norm subspaces are seen to offer significant robustness to outliers, disturbances, and rank selection. Subtraction of the L1-subspace tracked background leads then to effective foreground/moving objects extraction. Experimental studies included in this paper illustrate and support the theoretical developments.

  8. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  9. Dust Measurements in Tokamaks

    SciTech Connect

    Rudakov, D; Yu, J; Boedo, J; Hollmann, E; Krasheninnikov, S; Moyer, R; Muller, S; Yu, A; Rosenberg, M; Smirnov, R; West, W; Boivin, R; Bray, B; Brooks, N; Hyatt, A; Wong, C; Fenstermacher, M; Groth, M; Lasnier, C; McLean, A; Stangeby, P; Ratynskaia, S; Roquemore, A; Skinner, C; Solomon, W M

    2008-04-23

    Dust production and accumulation impose safety and operational concerns for ITER. Diagnostics to monitor dust levels in the plasma as well as in-vessel dust inventory are currently being tested in a few tokamaks. Dust accumulation in ITER is likely to occur in hidden areas, e.g. between tiles and under divertor baffles. A novel electrostatic dust detector for monitoring dust in these regions has been developed and tested at PPPL. In DIII-D tokamak dust diagnostics include Mie scattering from Nd:YAG lasers, visible imaging, and spectroscopy. Laser scattering resolves size of particles between 0.16-1.6 {micro}m in diameter; the total dust content in the edge plasmas and trends in the dust production rates within this size range have been established. Individual dust particles are observed by visible imaging using fast-framing cameras, detecting dust particles of a few microns in diameter and larger. Dust velocities and trajectories can be determined in 2D with a single camera or 3D using multiple cameras, but determination of particle size is problematic. In order to calibrate diagnostics and benchmark dust dynamics modeling, pre-characterized carbon dust has been injected into the lower divertor of DIII-D. Injected dust is seen by cameras, and spectroscopic diagnostics observe an increase of carbon atomic, C2 dimer, and thermal continuum emissions from the injected dust. The latter observation can be used in the design of novel dust survey diagnostics.

  10. Influence of dust particles on glow discharge

    NASA Astrophysics Data System (ADS)

    Polyakov, D. N.; Shumova, V. V.; Vasilyak, L. M.; Fortov, V. E.

    2010-11-01

    The gas discharge-dust particle interaction for a dc discharge in air with micron-sized particles is investigated. The plasma of the dc column is described in the frame of diffusion approximation combined with the orbital motion limited approximation for ion and electron flow on the dust component surface. The problem is solved for dust particles of 2 μm radius, embedded in a uniform glow discharge column with a diameter of 16 mm at air pressure 0.5 torr, discharge current 0.5-3 mA and particle concentration up to 105 cm-3. The current-voltage characteristics as an easy-to-observe measure of the nonlocal dust influence on the total amount of charge carriers in the discharge, as well as the radial distributions of plasma components in the dc discharge, are calculated for different dust concentrations and discharge currents. The results are compared with recently published experimental data. The presence of dust particles leads to an increase of the longitudinal electric field due to additional loss of ions and electrons. A decrease of the radial electric field within the dust cloud under the action of dust particles results in an essential change of the electron concentration profile, down to the appearance of the local minimum at the axis of the discharge.

  11. 9. Acircuit weather cover in foreground, personnel access hatch, transporter/erector ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. A-circuit weather cover in foreground, personnel access hatch, transporter/erector grounding points at right center - Ellsworth Air Force Base, Delta Flight, Launch Facility D-6, 4 miles north of Badlands National Park Headquarters, 4.5 miles east of Jackson County line on county road, Interior, Jackson County, SD

  12. Overview of RyantoRainbow Line 1 (foreground) and Line 2 (center) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overview of Ryan-to-Rainbow Line 1 (foreground) and Line 2 (center) in context with Morony-to-Rainbow 100kv Transmission Line (background) about on-half mile southwest of Ryan Dam. View to north - Ryan Hydroelectric Facility, Ryan-to-Rainbow 100 kV Transmission Line, West bank of Missouri River, northeast of Great Falls, Great Falls, Cascade County, MT

  13. Effects of Numerical Versus Foreground-Only Icon Displays on Understanding of Risk Magnitudes.

    PubMed

    Stone, Eric R; Gabard, Alexis R; Groves, Aislinn E; Lipkus, Isaac M

    2015-01-01

    The aim of this work is to advance knowledge of how to measure gist and verbatim understanding of risk magnitude information and to apply this knowledge to address whether graphics that focus on the number of people affected (the numerator of the risk ratio, i.e., the foreground) are effective displays for increasing (a) understanding of absolute and relative risk magnitudes and (b) risk avoidance. In 2 experiments, the authors examined the effects of a graphical display that used icons to represent the foreground information on measures of understanding (Experiments 1 and 2) and on perceived risk, affect, and risk aversion (Experiment 2). Consistent with prior findings, this foreground-only graphical display increased perceived risk and risk aversion; however, it also led to decreased understanding of absolute (although not relative) risk magnitudes. Methodologically, this work shows the importance of distinguishing understanding of absolute risk from understanding of relative risk magnitudes, and the need to assess gist knowledge of both types of risk. Substantively, this work shows that although using foreground-only graphical displays is an appealing risk communication strategy to increase risk aversion, doing so comes at the cost of decreased understanding of absolute risk magnitudes.

  14. 140° view showing: Pigeon Wash, foreground; Lake Mead NRA Approved ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    140° view showing: Pigeon Wash, foreground; Lake Mead NRA Approved Road 148, middleground; and part of the Cockscomb Range, background. This negative forms a 360° composite panoramic when joined with AZ-2-78 and AZ-2-79. See AZ-2-89 for color version. - Tassi Ranch, Tassi Springs, Littlefield, Mohave County, AZ

  15. NORTH EMBANKMENT IN FOREGROUND, WITH (LR) SUBSTATION (MI98D), POWERHOUSE (MI98C), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH EMBANKMENT IN FOREGROUND, WITH (L-R) SUBSTATION (MI-98-D), POWERHOUSE (MI-98-C), AND COOKE DAM POND IN BACKGROUND. VIEW TO SOUTH - Cooke Hydroelectric Plant, North Embankment, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  16. A foreground object features-based stereoscopic image visual comfort assessment model

    NASA Astrophysics Data System (ADS)

    Jin, Xin; Jiang, G.; Ying, H.; Yu, M.; Ding, S.; Peng, Z.; Shao, F.

    2014-11-01

    Since stereoscopic images provide observers with both realistic and discomfort viewing experience, it is necessary to investigate the determinants of visual discomfort. By considering that foreground object draws most attention when human observing stereoscopic images. This paper proposes a new foreground object based visual comfort assessment (VCA) metric. In the first place, a suitable segmentation method is applied to disparity map and then the foreground object is ascertained as the one having the biggest average disparity. In the second place, three visual features being average disparity, average width and spatial complexity of foreground object are computed from the perspective of visual attention. Nevertheless, object's width and complexity do not consistently influence the perception of visual comfort in comparison with disparity. In accordance with this psychological phenomenon, we divide the whole images into four categories on the basis of different disparity and width, and exert four different models to more precisely predict its visual comfort in the third place. Experimental results show that the proposed VCA metric outperformance other existing metrics and can achieve a high consistency between objective and subjective visual comfort scores. The Pearson Linear Correlation Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) are over 0.84 and 0.82, respectively.

  17. 3. GENERAL VIEW, LOOKING NORTHEAST, SHOWING T1032 IN FOREGROUND ON ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. GENERAL VIEW, LOOKING NORTHEAST, SHOWING T-1032 IN FOREGROUND ON LEFT. T-1032, T-1031, T-1030 & T-1029 CAN ALSO BE SEEN IN BACKGROUND ON RIGHT. - Fort McCoy, Building No. T-1032, North side of South Tenth Avenue, Block 10, Sparta, Monroe County, WI

  18. 2. VIEW OF WASTE HOUSE/SECTION 16 IN FOREGROUND CENTER, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW OF WASTE HOUSE/SECTION 16 IN FOREGROUND CENTER, WITH NAPPING BUILDING/SECTION 12 AT LEFT, CLOTH ROOM/SECTION 15 IN CENTER, SHOWING SAWTOOTH MONITOR ROOF. MILL NO. 1/SECTION 4 IS AT EXTREME RIGHT: BOOTT MILLS AND CHIMNEY IN BACKGROUND (ACROSS BRIDGE STREET), LOOKING WEST-NORTHWEST. April 1989 - Massachusetts Mills, 95 Bridge Street, Lowell, Middlesex County, MA

  19. OBLIQUE VIEW SHOING THE OR&L BRIDGE IN THE FOREGROUND. NOTE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OBLIQUE VIEW SHOING THE OR&L BRIDGE IN THE FOREGROUND. NOTE THE ARC-PLAN END STACHION AND THE RELATIONSHIP BETWEEN THE OR&L BRIDGE AND THE WAIKELE CANAL BRIDGE, WHICH CAN BE SEEN IN THE BACKGROUND. VIEW FACING WEST. - Waikele Canal Bridge and Highway Overpass, Farrington Highway and Waikele Stream, Waipahu, Honolulu County, HI

  20. THE LISA GRAVITATIONAL WAVE FOREGROUND: A STUDY OF DOUBLE WHITE DWARFS

    SciTech Connect

    Ruiter, Ashley J.; Belczynski, Krzysztof; Larson, Shane L. E-mail: kbelczyn@nmsu.ed E-mail: gabriel.j.williams@gmail.co

    2010-07-10

    Double white dwarfs (WDs) are expected to be a source of confusion-limited noise for the future gravitational wave observatory LISA. In a specific frequency range, this 'foreground noise' is predicted to rise above the instrumental noise and hinder the detection of other types of signals, e.g., gravitational waves arising from stellar-mass objects inspiraling into massive black holes. In many previous studies, only detached populations of compact object binaries have been considered in estimating the LISA gravitational wave foreground signal. Here, we investigate the influence of compact object detached and Roche-Lobe overflow (RLOF) Galactic binaries on the shape and strength of the LISA signal. Since >99% of remnant binaries that have orbital periods within the LISA sensitivity range are WD binaries, we consider only these binaries when calculating the LISA signal. We find that the contribution of RLOF binaries to the foreground noise is negligible at low frequencies, but becomes significant at higher frequencies, pushing the frequency at which the foreground noise drops below the instrumental noise to >6 mHz. We find that it is important to consider the population of mass-transferring binaries in order to obtain an accurate assessment of the foreground noise on the LISA data stream. However, we estimate that there still exists a sizeable number ({approx}11,300) of Galactic double WD binaries that will have a signal-to-noise ratio >5, and thus will be potentially resolvable with LISA. We present the LISA gravitational wave signal from the Galactic population of WD binaries, show the most important formation channels contributing to the LISA disk and bulge populations, and discuss the implications of these new findings.

  1. Dust feed mechanism

    DOEpatents

    Milliman, Edward M.

    1984-01-01

    The invention is a dust feed device for delivery of a uniform supply of dust for long periods of time to an aerosolizing means for production of a dust suspension. The device utilizes at least two tandem containers having spiral brushes within the containers which transport the dust from a supply to the aerosolizer means.

  2. A Novel Dust Telescope

    NASA Astrophysics Data System (ADS)

    Grün, E.; Srama, R.; Krüger, H.; Kempf, S.; Harris, D.; Conlon, T.; Auer, S.

    2001-11-01

    Dust particles in space, like photons, are born at remote sites in space and time. From knowledge of the dust particles' birthplace and the particles' bulk properties, we can learn about the remote environment out of which the particles were formed. This approach is carried out by means of a dust telescope on a dust observatory in space. A dust telescope is a combination of a dust trajectory sensor together with a chemical composition analyzer for dust particles. A novel dust telescope is described. It consists of a highly sensitive dust trajectory sensor, and a large area chemical dust analyzer. It can provide valuable information about the particles' birthplace which may not be accessible by other techniques. Dust particles' trajectories are determined by the measurement of the electric signals that are induced when a charged grain flies through an appropriately configured electrode systems. After the successful identification of a few charged micron-sized dust grains in space by the Cassini Cosmic Dust Analyzer, this dust telescope has a ten fold increased sensitivity of charge detection (10-16 Coulombs) and will be able to obtain trajectories for sub-micron sized dust grains. State-of-the art dust chemical analyzers have sufficient mass resolution to resolve ions with atomic mass numbers above 100. However, since their impact areas are small they can analyze statistically meaningful numbers of grains only in the dust-rich environments of comets or ringed planets. Therefore, this dust telescope includes a large area (0.1 m2) chemical dust analyzer of mass resolution > 100 that will allow us to obtain statistically significant measurements of interplanetary and interstellar dust grains in space.

  3. Foregrounds for observations of the cosmological 21 cm line. II. Westerbork observations of the fields around 3C 196 and the North Celestial Pole

    NASA Astrophysics Data System (ADS)

    Bernardi, G.; de Bruyn, A. G.; Harker, G.; Brentjens, M. A.; Ciardi, B.; Jelić, V.; Koopmans, L. V. E.; Labropoulos, P.; Offringa, A.; Pandey, V. N.; Schaye, J.; Thomas, R. M.; Yatawatta, S.; Zaroubi, S.

    2010-11-01

    Context. In the coming years a new insight into galaxy formation and the thermal history of the Universe is expected to come from the detection of the highly redshifted cosmological 21 cm line. Aims: The cosmological 21 cm line signal is buried under Galactic and extragalactic foregrounds which are likely to be a few orders of magnitude brighter. Strategies and techniques for effective subtraction of these foreground sources require a detailed knowledge of their structure in both intensity and polarization on the relevant angular scales of 1-30 arcmin. Methods: We present results from observations conducted with the Westerbork telescope in the 140-160 MHz range with 2 arcmin resolution in two fields located at intermediate Galactic latitude, centred around the bright quasar 3C 196 and the North Celestial Pole. They were observed with the purpose of characterizing the foreground properties in sky areas where actual observations of the cosmological 21 cm line could be carried out. The polarization data were analysed through the rotation measure synthesis technique. We have computed total intensity and polarization angular power spectra. Results: Total intensity maps were carefully calibrated, reaching a high dynamic range, 150 000:1 in the case of the 3C 196 field. No evidence of diffuse Galactic emission was found in the angular power spectrum analysis on scales smaller than ~10 arcmin in either of the two fields. On these angular scales the signal is consistent with the classical confusion noise of ~3 mJy beam-1. On scales greater than 30 arcmin we found an excess of power attributed to the Galactic foreground with an rms of 3.4 K and 5.5 K for the 3C 196 and the NCP field respectively. The intermediate angular scales suffered from systematic errors which prevented any detection. Patchy polarized emission was found only in the 3C 196 field whereas the polarization in the NCP area was essentially due to radio frequency interference. The polarized signal in the 3C

  4. Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2003-01-01

    [figure removed for brevity, see original site]

    Crater wall dust avalanches in southern Arabia Terra.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

    Image information: VIS instrument. Latitude 10.3, Longitude 24.5 East (335.5 West). 19 meter/pixel resolution.

  5. PILOT: a balloon-borne experiment to measure the polarized FIR emission of dust grains in the interstellar medium

    NASA Astrophysics Data System (ADS)

    Misawa, Ruka; Bernard, Jean-Philippe

    Measuring precisely the faint polarization of the Far-Infrared and sub-millimetre sky is one of the next observational challenges of modern astronomy and cosmology. In particular, detection of the B-mode polarization from the Cosmic Microwave Background (CMB) may reveal the inflationary periods in the very early universe. Such measurements will require very high sensitivity and very low instrumental systematic effects. As for measurements of the CMB intensity, sensitive measurements of the CMB polarization will be made difficult by the presence of foreground emission from our own Milky Way, which is orders of magnitude stronger than the faint polarized cosmological signal. Such foreground emission will have to be understood very accurately and removed from cosmological measurements. This polarized emission is also interesting in itself, since it brings information relevant to the process of star formation, about the orientation of the magnetic field in our Galaxy through the alignment of dust grains. I will first summarize our current knowledge in this field, on the basis of extinction and emission measurements from the ground and airborne experiments and in the context of the recent measurements with the Planck satellite. I will then describe the concept and science goals of the PILOT balloon-borne experiment project (http://pilot.irap.omp.eu). This project is funded by the French space agency (CNES: “Centre National des Etudes Spatiales”) and currently under final assembly and tests. The experiment is dedicated to measuring precisely the linear polarization of the faint interstellar diffuse dust emission in the Far-Infrared in our Galaxy and nearby galaxies. It is composed of a 0.83 m diameter telescope and a Helium 4 deware accommodating the rest of the optics and 2 focal plane arrays with a total of 2048 individual bolometers cooled to 300 mK, developed for the PACS instruments on board the Hershel satellite. It will be operating in two broad photometric

  6. Dust particle dynamics in atmospheric dust devils

    NASA Astrophysics Data System (ADS)

    Izvekova, Yulia; Popel, Sergey

    2016-04-01

    Dust particle dynamics is modeled in the Dust Devils (DDs). DD is a strong, well-formed, and relatively long-lived whirlwind, ranging from small (half a meter wide and a few meters tall) to large (more than 100 meters wide and more than 1000 meters tall) in Earth's atmosphere. We develop methods for the description of dust particle charging in DDs, discuss the ionization processes in DDs, and model charged dust particle motion. Our conclusions are consistent with the fact that DD can lift a big amount of dust from the surface of a planet into its atmosphere. On the basis of the model we perform calculations and show that DDs are important mechanism for dust uplift in the atmospheres of Earth and Mars. Influence of DD electric field on dynamics of dust particles is investigated. It is shown that influence of the electric field on dust particles trajectories is significant near the ground. At some altitude (more then a quarter of the height of DD) influence of the electric field on dust particles trajectories is negligible. For the calculation of the dynamics of dust electric field can be approximated by effective dipole located at a half of the height of DD. This work was supported by the Russian Federation Presidential Program for State Support of Young Scientists (project no. MK-6935.2015.2).

  7. Discriminating dusts and dusts sources using magnetic properties and hematite:Goethite ratios of surface materials and dust from North Africa, the Atlantic and Barbados

    NASA Astrophysics Data System (ADS)

    Oldfield, F.; Chiverrell, R. C.; Lyons, R.; Williams, E.; Shen, Z.; Bristow, C.; Bloemendal, J.; Torrent, J.; Boyle, J. F.

    2014-06-01

    Magnetic measurements and Diffuse Reflectance Spectroscopy are used in an attempt to differentiate dusts and dust sources in North Africa, over the Atlantic and in Barbados. Special attention is paid to dusts and to lacustrine clay and diatomite samples from the Bodélé Depression, in view of its alleged importance in trans-Atlantic and global dust generation. The results indicate that dusts from the Bodélé Depression can be distinguished from other dusts and potential sources in Niger, Chad, Burkina and Mali on the basis of their magnetic properties, notably their low magnetic concentrations, negligible frequency dependent magnetic susceptibility and distinctive IRM demagnetization characteristics. Dust from over the Atlantic and from Barbados, obtained from meshes in the 1960s and ’70s have high frequency dependent susceptibility values, are quite distinctive from the Bodélé Depression samples and are more closely comparable to samples from elsewhere in the Sahara and especially the Sahel. The Diffuse Reflectance Spectroscopy data, though of limited value here, are not inconsistent with the inferences based on the magnetic measurements. Overall, the results obtained point to a wide range of sources for dusts both over North Africa itself and across the Atlantic. They do not offer support to the view that dusts from the Bodélé Depression have dominated supply across the Atlantic over the last five decades.

  8. The Marriage of Gas and Dust

    NASA Astrophysics Data System (ADS)

    Price, D. J.; Laibe, G.

    2015-10-01

    Dust-gas mixtures are the simplest example of a two fluid mixture. We show that when simulating such mixtures with particles or with particles coupled to grids a problem arises due to the need to resolve a very small length scale when the coupling is strong. Since this is occurs in the limit when the fluids are well coupled, we show how the dust-gas equations can be reformulated to describe a single fluid mixture. The equations are similar to the usual fluid equations supplemented by a diffusion equation for the dust-to-gas ratio or alternatively the dust fraction. This solves a number of numerical problems as well as making the physics clear.

  9. Composition, structure and chemistry of interstellar dust

    NASA Technical Reports Server (NTRS)

    Tielens, Alexander G. G. M.; Allamandola, Louis J.

    1986-01-01

    The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.

  10. Understanding (Galactic) Foreground Emission: A Road To Success For The LOFAR-EoR Experiment

    NASA Astrophysics Data System (ADS)

    Jelic, Vibor; Lofar Eor Team

    2014-04-01

    The LOFAR-EoR experiment will use the innovative technology and capabilities of the radio telescope LOFAR to study the Epoch of Reionization (EoR). However, feeble cosmological radiation is swamped by the prominent foreground emission of our Galaxy and other extragalactic radio sources. This emission is two to three orders of magnitude stronger than the EoR signal. Without understanding and removing the foreground emission from the data, we will not be able to detect the cosmological radiation and probe the EoR. During my talk I will give an overview of the LOFAR-EoR experiment, its challenges, and present the most recent observational results in particular detection of peculiar structures in poalrization.

  11. Large-scale Inference Problems in Astronomy: Building a 3D Galactic Dust Map

    NASA Astrophysics Data System (ADS)

    Finkbeiner, Douglas

    2016-03-01

    The term ''Big Data'' has become trite, as modern technology has made data sets of terabytes or even petabytes easy to store. Such data sets provide a sandbox in which to develop new statistical inference techniques that can extract interesting results from increasingly rich (and large) databases. I will give an example from my work on mapping the interstellar dust of the Milky Way. 2D emission-based maps have been used for decades to estimate the reddening and emission from interstellar dust, with applications from CMB foregrounds to surveys of large-scale structure. For studies within the Milky Way, however, the third dimension is required. I will present our work on a 3D dust map based on Pan-STARRS1 and 2MASS over 3/4 of the sky (http://arxiv.org/abs/1507.01005), assess its usefulness relative to other dust maps, and discuss future work. Supported by the NSF.

  12. SPERTI Terminal Building (PER604) is under construction in foreground, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Terminal Building (PER-604) is under construction in foreground, with vertical metal siding partially affixed to gable end of building. Utility lines are laid in shallow trench to Reactor Pit and Instrument Cell Buildings also under construction in distance. Photographer: R.G. Larsen. Date: April 22, 1955. INEEL negative no. 55-1001 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. 28. VIEW SOUTH FROM SLC3W MST STATION 63. FOREGROUND LEFT: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. VIEW SOUTH FROM SLC-3W MST STATION 63. FOREGROUND LEFT: THEODOLITE SHELTER (BLDG. 786) CENTER LEFT TO RIGHT: GLOBAL POSITIONING SYSTEM AZIMUTH STATION (BLDG. 775), PYROTECHNIC SHED (BLDG. 757), PORTABLE GUARD SHED, METEOROLOGICAL SHED (BLDG. 756), METEOROLOGICAL TOWER. BACKGROUND CENTER TO RIGHT: STORAGE SHED (BLDG. 776), LIQUID OXYGEN APRON, SLC-3E MST, TOP OF SLC-3E FUEL STORAGE TANK. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  14. BAYESIAN SEMI-BLIND COMPONENT SEPARATION FOR FOREGROUND REMOVAL IN INTERFEROMETRIC 21 cm OBSERVATIONS

    SciTech Connect

    Zhang, Le; Timbie, Peter T.; Bunn, Emory F.; Karakci, Ata; Korotkov, Andrei; Tucker, Gregory S.; Sutter, P. M.; Wandelt, Benjamin D.

    2016-01-15

    In this paper, we present a new Bayesian semi-blind approach for foreground removal in observations of the 21 cm signal measured by interferometers. The technique, which we call H i Expectation–Maximization Independent Component Analysis (HIEMICA), is an extension of the Independent Component Analysis technique developed for two-dimensional (2D) cosmic microwave background maps to three-dimensional (3D) 21 cm cosmological signals measured by interferometers. This technique provides a fully Bayesian inference of power spectra and maps and separates the foregrounds from the signal based on the diversity of their power spectra. Relying only on the statistical independence of the components, this approach can jointly estimate the 3D power spectrum of the 21 cm signal, as well as the 2D angular power spectrum and the frequency dependence of each foreground component, without any prior assumptions about the foregrounds. This approach has been tested extensively by applying it to mock data from interferometric 21 cm intensity mapping observations under idealized assumptions of instrumental effects. We also discuss the impact when the noise properties are not known completely. As a first step toward solving the 21 cm power spectrum analysis problem, we compare the semi-blind HIEMICA technique to the commonly used Principal Component Analysis. Under the same idealized circumstances, the proposed technique provides significantly improved recovery of the power spectrum. This technique can be applied in a straightforward manner to all 21 cm interferometric observations, including epoch of reionization measurements, and can be extended to single-dish observations as well.

  15. Infrared studies of dust grains in infrared reflection nebulae

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.; Tielens, Alexander G. G. M.; Werner, Michael W.

    1989-01-01

    IR reflection nebulae, regions of dust which are illuminated by nearby embedded sources, were observed in several regions of ongoing star formation. Near IR observation and theoretical modelling of the scattered light form IR reflection nebulae can provide information about the dust grain properties in star forming regions. IR reflection nebulae were modelled as plane parallel slabs assuming isotropically scattering grains. For the grain scattering properties, graphite and silicate grains were used with a power law grain size distribution. Among the free parameters of the model are the stellar luminosity and effective temperature, the optical depth of the nebula, and the extinction by foreground material. The typical results from this model are presented and discussed.

  16. Dust particle radial confinement in a dc glow discharge.

    PubMed

    Sukhinin, G I; Fedoseev, A V; Antipov, S N; Petrov, O F; Fortov, V E

    2013-01-01

    A self-consistent nonlocal model of the positive column of a dc glow discharge with dust particles is presented. Radial distributions of plasma parameters and the dust component in an axially homogeneous glow discharge are considered. The model is based on the solution of a nonlocal Boltzmann equation for the electron energy distribution function, drift-diffusion equations for ions, and the Poisson equation for a self-consistent electric field. The radial distribution of dust particle density in a dust cloud was fixed as a given steplike function or was chosen according to an equilibrium Boltzmann distribution. The balance of electron and ion production in argon ionization by an electron impact and their losses on the dust particle surface and on the discharge tube walls is taken into account. The interrelation of discharge plasma and the dust cloud is studied in a self-consistent way, and the radial distributions of the discharge plasma and dust particle parameters are obtained. It is shown that the influence of the dust cloud on the discharge plasma has a nonlocal behavior, e.g., density and charge distributions in the dust cloud substantially depend on the plasma parameters outside the dust cloud. As a result of a self-consistent evolution of plasma parameters to equilibrium steady-state conditions, ionization and recombination rates become equal to each other, electron and ion radial fluxes become equal to zero, and the radial component of electric field is expelled from the dust cloud.

  17. Erasing the Variable: Empirical Foreground Discovery for Global 21 cm Spectrum Experiments

    NASA Technical Reports Server (NTRS)

    Switzer, Eric R.; Liu, Adrian

    2014-01-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z approx. 6 - 30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal, and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line-of-sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least approx. 10(exp -4). In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the approx. 10(exp -2) level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission. Subject headings: dark ages, reionization, first stars - methods: data analysis - methods: statistical

  18. Erasing the Variable: Empirical Foreground Discovery for Global 21 cm Spectrum Experiments

    NASA Astrophysics Data System (ADS)

    Switzer, Eric R.; Liu, Adrian

    2014-10-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z ~ 6-30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line of sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least ~10-4. In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the ~10-2 level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission.

  19. Forecasting performance of CMB experiments in the presence of complex foreground contaminations

    NASA Astrophysics Data System (ADS)

    Stompor, Radek; Errard, Josquin; Poletti, Davide

    2016-10-01

    We present a new, semianalytic framework for estimating the level of residuals present in cosmic microwave background (CMB) maps derived from multifrequency CMB data and forecasting their impact on cosmological parameters. The data are assumed to contain non-negligible signals of astrophysical and/or Galactic origin, which we clean using a parametric component separation technique. We account for discrepancies between the foreground model assumed during the separation procedure and the true one, allowing for differences in scaling laws and/or their spatial variations. Our estimates and their uncertainties include both systematic and statistical effects and are averaged over the instrumental noise and CMB signal realizations. The framework can be further extended to account self-consistently for existing uncertainties in the foreground models. We demonstrate and validate the framework on simple study cases which aim at estimating the tensor-to-scalar ratio, r . The proposed approach is computationally efficient permitting an investigation of hundreds of setups and foreground models on a single CPU.

  20. Erasing the variable: empirical foreground discovery for global 21 cm spectrum experiments

    SciTech Connect

    Switzer, Eric R.; Liu, Adrian

    2014-10-01

    Spectral measurements of the 21 cm monopole background have the promise of revealing the bulk energetic properties and ionization state of our universe from z ∼ 6-30. Synchrotron foregrounds are orders of magnitude larger than the cosmological signal and are the principal challenge faced by these experiments. While synchrotron radiation is thought to be spectrally smooth and described by relatively few degrees of freedom, the instrumental response to bright foregrounds may be much more complex. To deal with such complexities, we develop an approach that discovers contaminated spectral modes using spatial fluctuations of the measured data. This approach exploits the fact that foregrounds vary across the sky while the signal does not. The discovered modes are projected out of each line of sight of a data cube. An angular weighting then optimizes the cosmological signal amplitude estimate by giving preference to lower-noise regions. Using this method, we show that it is essential for the passband to be stable to at least ∼10{sup –4}. In contrast, the constraints on the spectral smoothness of the absolute calibration are mainly aesthetic if one is able to take advantage of spatial information. To the extent it is understood, controlling polarization to intensity leakage at the ∼10{sup –2} level will also be essential to rejecting Faraday rotation of the polarized synchrotron emission.

  1. Improved foreground removal in GMRT 610 MHz observations towards redshifted 21-cm tomography

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhik; Bharadwaj, Somnath; Ali, Sk. Saiyad; Chengalur, Jayaram N.

    2011-12-01

    Foreground removal is a challenge for 21-cm tomography of the high-redshift Universe. We use archival Giant Metrewave Radio Telescope (GMRT) data (obtained for completely different astronomical goals) to estimate the foregrounds at a redshift of ˜1. The statistic we use is the cross power spectrum between two frequencies separated by Δν at the angular multipole ℓ, or equivalently the multi-frequency angular power spectrum Cℓ(Δν). An earlier measurement of Cℓ(Δν) using these data had revealed the presence of oscillatory patterns along Δν, which turned out to be a severe impediment for foreground removal. Using the same data, in this paper we show that it is possible to considerably reduce these oscillations by suppressing the sidelobe response of the primary antenna elements. The suppression works best at the angular multipoles ℓ for which there is a dense sampling of the u-v plane. For three angular multipoles ℓ= 1405, 1602 and 1876, this sidelobe suppression along with a low order polynomial fitting completely results in residuals of (≤ 0.02 mK2), consistent with the noise at the 3σ level. Since the polynomial fitting is done after estimation of the power spectrum it can be ensured that the estimation of the H I signal is not biased. The corresponding 99 per cent upper limit on the H I signal is ?, where ? is the mean neutral fraction and b is the bias.

  2. Faraday tomography of the local interstellar medium with LOFAR: Galactic foregrounds towards IC 342

    NASA Astrophysics Data System (ADS)

    Van Eck, C. L.; Haverkorn, M.; Alves, M. I. R.; Beck, R.; de Bruyn, A. G.; Enßlin, T.; Farnes, J. S.; Ferrière, K.; Heald, G.; Horellou, C.; Horneffer, A.; Iacobelli, M.; Jelić, V.; Martí-Vidal, I.; Mulcahy, D. D.; Reich, W.; Röttgering, H. J. A.; Scaife, A. M. M.; Schnitzeler, D. H. F. M.; Sobey, C.; Sridhar, S. S.

    2017-01-01

    Magnetic fields pervade the interstellar medium (ISM), but are difficult to detect and characterize. The new generation of low-frequency radio telescopes, such as the Low Frequency Array (LOFAR: a Square Kilometre Array-low pathfinder), provides advancements in our capability of probing Galactic magnetism through low-frequency polarimetry. Maps of diffuse polarized radio emission and the associated Faraday rotation can be used to infer properties of, and trace structure in, the magnetic fields in the ISM. However, to date very little of the sky has been probed at high angular and Faraday depth resolution. We observed a 5° by 5° region centred on the nearby galaxy IC 342 (ℓ = 138.2°,b = + 10.6°) using the LOFAR high-band antennae in the frequency range 115-178 MHz. We imaged this region at 4'.5x3'.8 resolution and performed Faraday tomography to detect foreground Galactic polarized synchrotron emission separated by Faraday depth (different amounts of Faraday rotation). Our Faraday depth cube shows a rich polarized structure, with up to 30 K of polarized emission at 150 MHz. We clearly detect two polarized features that extend over most of the field, but are clearly separated in Faraday depth. Simulations of the behaviour of the depolarization of Faraday-thick structures at such low frequencies show that such structures would be too strongly depolarized to explain the observations. These structures are therefore rejected as the source of the observed polarized features. Only Faraday thin structures will not be strongly depolarized at low frequencies; producing such structures requires localized variations in the ratio of synchrotron emissivity to Faraday depth per unit distance. Such variations can arise from several physical phenomena, such as a transition between regions of ionized and (mostly) neutral gas. We conclude that the observed polarized emission is Faraday thin, and propose that the emission originates from two mostly neutral clouds in the local ISM

  3. Model of Image Artifacts from Dust Particles

    NASA Technical Reports Server (NTRS)

    Willson, Reg

    2008-01-01

    A mathematical model of image artifacts produced by dust particles on lenses has been derived. Machine-vision systems often have to work with camera lenses that become dusty during use. Dust particles on the front surface of a lens produce image artifacts that can potentially affect the performance of a machine-vision algorithm. The present model satisfies a need for a means of synthesizing dust image artifacts for testing machine-vision algorithms for robustness (or the lack thereof) in the presence of dust on lenses. A dust particle can absorb light or scatter light out of some pixels, thereby giving rise to a dark dust artifact. It can also scatter light into other pixels, thereby giving rise to a bright dust artifact. For the sake of simplicity, this model deals only with dark dust artifacts. The model effectively represents dark dust artifacts as an attenuation image consisting of an array of diffuse darkened spots centered at image locations corresponding to the locations of dust particles. The dust artifacts are computationally incorporated into a given test image by simply multiplying the brightness value of each pixel by a transmission factor that incorporates the factor of attenuation, by dust particles, of the light incident on that pixel. With respect to computation of the attenuation and transmission factors, the model is based on a first-order geometric (ray)-optics treatment of the shadows cast by dust particles on the image detector. In this model, the light collected by a pixel is deemed to be confined to a pair of cones defined by the location of the pixel s image in object space, the entrance pupil of the lens, and the location of the pixel in the image plane (see Figure 1). For simplicity, it is assumed that the size of a dust particle is somewhat less than the diameter, at the front surface of the lens, of any collection cone containing all or part of that dust particle. Under this assumption, the shape of any individual dust particle artifact

  4. Dust in the Circumgalactic Medium of Low-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Peek, J. E. G.; Ménard, Brice; Corrales, Lia

    2015-11-01

    Using spectroscopically selected galaxies from the Sloan Digital Sky Survey we present a detection of reddening effects from the circumgalactic medium of galaxies which we attribute to an extended distribution of dust. We detect the mean change in the colors of “standard crayons” correlated with the presence of foreground galaxies at z˜ 0.05 as a function of angular separation. Following Peek & Graves, we create standard crayons using passively evolving galaxies corrected for Milky Way reddening and color-redshift trends, leading to a sample with as little as 2% scatter in color. We devise methods to ameliorate possible systematic effects related to the estimation of colors, and we find an excess reddening induced by foreground galaxies at a level ranging from 10 to 0.5 mmag on scales ranging from 30 kpc to 1 Mpc. We attribute this effect to a large-scale distribution of dust around galaxies similar to the findings of Ménard et al. We find that circumgalactic reddening is a weak function of stellar mass over the range 6× {10}9 {M}⊙ -6× {10}10 {M}⊙ and note that this behavior appears to be consistent with recent results on the distribution of metals in the gas phase. We also find that circumgalactic reddening has no detectable dependence on the specific star formation rate of the host galaxy.

  5. Statistical analysis of the cosmic microwave background: Power spectra and foregrounds

    NASA Astrophysics Data System (ADS)

    O'Dwyer, Ian J.

    2005-11-01

    In this thesis I examine some of the challenges associated with analyzing Cosmic Microwave Background (CMB) data and present a novel approach to solving the problem of power spectrum estimation, which is called MAGIC (MAGIC Allows Global Inference of Covariance). In light of the computational difficulty of a brute force approach to power spectrum estimation, I review several approaches which have been applied to the problem and show an example application of such an approximate method to experimental CMB data from the Background Emission Anisotropy Scanning Telescope (BEAST). I then introduce MAGIC, a new approach to power spectrum estimation; based on a Bayesian statistical analysis of the data utilizing Gibbs Sampling. I demonstrate application of this method to the all-sky Wilkinson Microwave Anistropy Probe WMAP data. The results are in broad agreement with those obtained originally by the WMAP team. Since MAGIC generates a full description of each C l it is possible to examine several issues raised by the best-fit WMAP power spectrum, for example the perceived lack of power at low ℓ. It is found that the distribution of C ℓ's at low l are significantly non-Gaussian and, based on the exact analysis presented here, the "low quadrupole issue" can be attributed to a statistical fluctuation. Finally, I examine the effect of Galactic foreground contamination on CMB experiments and describe the principle foregrounds. I show that it is possible to include the foreground components in a self-consistent fashion within the statistical framework of MAGIC and give explicit examples of how this might be achieved. Foreground contamination will become an increasingly important issue in CMB data analysis and the ability of this new algorithm to produce an exact power spectrum in a computationally feasible time, coupled with the foreground component separation and removal is an exciting development in CMB data analysis. When considered with current algorithmic developments

  6. Dust Plume off Mauritania

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A thick plume of dust blew off the coast of Mauritania in western Africa on October 2, 2007. The Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Aqua satellite observed the dust plume as it headed toward the southwest over the Atlantic Ocean. In this image, the dust varies in color from nearly white to medium tan. The dust plume is easier to see over the dark background of the ocean, but the plume stretches across the land surface to the east, as well. The dust plume's structure is clearest along the coastline, where relatively clear air pockets separate distinct puffs of dust. West of that, individual pillows of dust push together to form a more homogeneous plume. Near its southwest tip, the plume takes on yet another shape, with stripes of pale dust fanning out toward the northwest. Occasional tiny white clouds dot the sky overhead, but skies are otherwise clear.

  7. Asian dust events of April 1998

    USGS Publications Warehouse

    Husar, R.B.; Tratt, D.M.; Schichtel, B.A.; Falke, S.R.; Li, F.; Jaffe, D.; Gasso, S.; Gill, T.; Laulainen, N.S.; Lu, F.; Reheis, M.C.; Chun, Y.; Westphal, D.; Holben, B.N.; Gueymard, C.; McKendry, I.; Kuring, N.; Feldman, G.C.; McClain, C.; Frouin, R.J.; Merrill, J.; DuBois, D.; Vignola, F.; Murayama, T.; Nickovic, S.; Wilson, W.E.; Sassen, K.; Sugimoto, N.; Malm, W.C.

    2001-01-01

    On April 15 and 19, 1998, two intense dust storms were generated over the Gobi desert by springtime low-pressure systems descending from the northwest. The windblown dust was detected and its evolution followed by its yellow color on SeaWiFS satellite images, routine surface-based monitoring, and through serendipitous observations. The April 15 dust cloud was recirculating, and it was removed by a precipitating weather system over east Asia. The April 19 dust cloud crossed the Pacific Ocean in 5 days, subsided to the surface along the mountain ranges between British Columbia and California, and impacted severely the optical and the concentration environments of the region. In east Asia the dust clouds increased the albedo over the cloudless ocean and land by up to 10-20%, but it reduced the near-UV cloud reflectance, causing a yellow coloration of all surfaces. The yellow colored backscattering by the dust eludes a plausible explanation using simple Mie theory with constant refractive index. Over the West Coast the dust layer has increased the spectrally uniform optical depth to about 0.4, reduced the direct solar radiation by 30-40%, doubled the diffuse radiation, and caused a whitish discoloration of the blue sky. On April 29 the average excess surface-level dust aerosol concentration over the valleys of the West Coast was about 20-50 ??g/m3 with local peaks >100 ??g/m3. The dust mass mean diameter was 2-3 ??m, and the dust chemical fingerprints were evident throughout the West Coast and extended to Minnesota. The April 1998 dust event has impacted the surface aerosol concentration 2-4 times more than any other dust event since 1988. The dust events were observed and interpreted by an ad hoc international web-based virtual community. It would be useful to set up a community-supported web-based infrastructure to monitor the global aerosol pattern for such extreme aerosol events, to alert and to inform the interested communities, and to facilitate collaborative

  8. Drifts of Dust or Something Else?

    NASA Technical Reports Server (NTRS)

    2004-01-01

    While the interior and far walls of the crater dubbed 'Bonneville' can be seen in the background, the dominant foreground features in this 180-degree navigation camera mosaic are the wind-deposited drifts of dust or sand. NASA's Mars Exploration Rover Spirit completed this mosaic on sol 71, March 15, 2004, from its newest location at the rim of 'Bonneville' crater.

    Scientists are interested in these formations in part because they might give insight into the processes that formed some of the material within the crater. Thermal emission measurements by the rover indicate that the dark material just below the far rim of this crater is spectrally similar to rocks that scientists have analyzed along their journey to this location. They want to know why this soil-like material has a spectrum that more closely resembles rocks rather than other soils examined so far. The drifts seen in the foreground of this mosaic might have the answer. Scientists hypothesize that these drifts might consist of wind-deposited particles that are the same as the dark material found against the back wall of the crater. If so, Spirit may spend time studying the material and help scientists understand why it is different from other fine-grained material seen at Gusev.

    The drifts appear to be lighter in color than the dark material deposited on the back wall of the crater. They might be covered by a thin deposit of martian dust, or perhaps the drift is like other drifts seen during Spirit's journey and is just a collection of martian dust.

    To find out, Spirit will spend some of sol 72 digging its wheels into the drift to uncover its interior. After backing up a bit, Spirit will use the panoramic camera and miniature thermal emission spectrometer to analyze the scuffed area. If the interior material has a similar spectrum to the dark deposit in the crater, then Spirit will most likely stay here a little longer to study the drift with the instruments on its robotic arm. If the

  9. Influence of dust void on neon DC discharge

    NASA Astrophysics Data System (ADS)

    Shumova, V. V.; Polyakov, D. N.; Vasilyak, L. M.

    2017-03-01

    The diffusion/drift model of the positive column of glow discharge in neon with fine dust particles was used to study the role of a dust cloud with a void in the interaction between plasma and dust particles in the range of neon pressure and discharge current where dust particles may form structures with cavities. The results represent the nonlocal effect of void size on plasma composition, configuration of electric field and on distributions of plasma components in discharge with voids in dust structures. Simulations show that the electric field strength and the metastable atom concentration inside the void are higher than in the discharge without dust particles, while electron concentration may be either higher or lower.

  10. Niamey Dust Observations

    DOE Data Explorer

    Flynn, Connor

    2008-10-01

    Niamey aerosol are composed of two main components: dust due to the proximity of the Sahara Desert, and soot from local and regional biomass burning. The purpose of this data product is to identify when the local conditions are dominated by the dust component so that the properties of the dust events can be further studied.

  11. China Dust and Sand

    Atmospheric Science Data Center

    2013-04-16

    article title:  Dust and Sand Sweep Over Northeast China     ... (MISR) captured these views of the dust and sand that swept over northeast China on March 10, 2004. Information on the ... available at JPL March 10, 2004 - Dust and sand sweep the northeast region. project:  MISR ...

  12. Dust in the Universe

    ERIC Educational Resources Information Center

    Hemenway, Mary Kay; Armosky, Brad J.

    2004-01-01

    Space is seeming less and less like empty space as new discoveries and reexaminations fill in the gaps. And, ingenuity and technology, like the Spitzer Space Telescope, is allowing examination of the far reaches of the Milky Way and beyond. Even dust is getting its due, but not the dust everyone is familiar with. People seldom consider the dust in…

  13. Middle East Dust

    Atmospheric Science Data Center

    2013-04-16

    ... only some of the dust over eastern Syria and southeastern Turkey can be discerned. The dust is much more obvious in the center panel, ... 18, 2002 - A large dust plume extends across Syria and Turkey. project:  MISR category:  gallery ...

  14. Searching for inflationary B modes: can dust emission properties be extrapolated from 350 GHz to 150 GHz?

    NASA Astrophysics Data System (ADS)

    Tassis, Konstantinos; Pavlidou, Vasiliki

    2015-07-01

    Recent Planck results have shown that radiation from the cosmic microwave background passes through foregrounds in which aligned dust grains produce polarized dust emission, even in regions of the sky with the lowest level of dust emission. One of the most commonly used ways to remove the dust foreground is to extrapolate the polarized dust emission signal from frequencies where it dominates (e.g. ˜350 GHz) to frequencies commonly targeted by cosmic microwave background experiments (e.g. ˜150 GHz). In this Letter, we describe an interstellar medium effect that can lead to decorrelation of the dust emission polarization pattern between different frequencies due to multiple contributions along the line of sight. Using a simple 2-cloud model we show that there are two conditions under which this decorrelation can be large: (a) the ratio of polarized intensities between the two clouds changes between the two frequencies; (b) the magnetic fields between the two clouds contributing along a line of sight are significantly misaligned. In such cases, the 350 GHz polarized sky map is not predictive of that at 150 GHz. We propose a possible correction for this effect, using information from optopolarimetric surveys of dichroicly absorbed starlight.

  15. Impact of galactic and intergalactic dust on the stellar EBL

    NASA Astrophysics Data System (ADS)

    Vavryčuk, V.

    2016-06-01

    Current theories assume that the low intensity of the stellar extragalactic background light (stellar EBL) is caused by finite age of the Universe because the finite-age factor limits the number of photons that have been pumped into the space by galaxies and thus the sky is dark in the night. We oppose this opinion and show that two main factors are responsible for the extremely low intensity of the observed stellar EBL. The first factor is a low mean surface brightness of galaxies, which causes a low luminosity density in the local Universe. The second factor is light extinction due to absorption by galactic and intergalactic dust. Dust produces a partial opacity of galaxies and of the Universe. The galactic opacity reduces the intensity of light from more distant background galaxies obscured by foreground galaxies. The inclination-averaged values of the effective extinction AV for light passing through a galaxy is about 0.2 mag. This causes that distant background galaxies become apparently faint and do not contribute to the EBL significantly. In addition, light of distant galaxies is dimmed due to absorption by intergalactic dust. Even a minute intergalactic opacity of 1 × 10^{-2} mag per Gpc is high enough to produce significant effects on the EBL. As a consequence, the EBL is comparable with or lower than the mean surface brightness of galaxies. Comparing both extinction effects, the impact of the intergalactic opacity on the EBL is more significant than the obscuration of distant galaxies by partially opaque foreground galaxies by factor of 10 or more. The absorbed starlight heats up the galactic and intergalactic dust and is further re-radiated at IR, FIR and micro-wave spectrum. Assuming static infinite universe with no galactic or intergalactic dust, the stellar EBL should be as high as the surface brightness of stars. However, if dust is considered, the predicted stellar EBL is about 290 nW m^{-2} sr^{-1}, which is only 5 times higher than the observed

  16. Optical properties and climate forcing of Icelandic dust

    NASA Astrophysics Data System (ADS)

    Dagsson Waldhauserova, Pavla; Olafsson, Haraldur; Arnalds, Olafur; Hladil, Jindrich; Skala, Roman; Navratil, Tomas; Chadimova, Leona; Gritsevich, Maria; Peltoniemi, Jouni; Hakala, Teemu

    2014-05-01

    Iceland is an active source of dust originating from glaciogenic and volcanic sediments. The frequency of days with dust suspension exceeded 34 dust days annually in 1949-2011. This figure represents a minimum value as many dust storms occur without the dust passing the weather stations recording the events. Comparison of meteorological synoptic codes for dust observation and direct particulate matter mass concentration measurements in 2005-2013 showed that the mean number of dust days in Iceland can increase up to135 dust days annually. Dust events in NE Iceland occur mostly in May-September, while almost half of all dust events in SW Iceland were at sub-zero temperatures or in winter. Icelandic dust is different from the crustal dust; it is of volcanic origin and dark in colour. It contains sharp-tipped shards and is often with bubbles. Such physical properties allow large particle suspension and transport to long distances, e.g. towards the Arctic. To estimate the further impacts of dust transport, both laboratory and snow spectropolarimetric measurements were done using the Finnish Geodetic Institute Field Goniospectrometer FIGIFIGO (http://www.polarisation.eu/index.php/list-of-instruments/view-submission/172), an automated portable instrument for multiangular reflectance measurements. The albedo, hemispherical directional reflectance factor (HDRF), polarization, and other snow properties were monitored on the snow and areas affected by the dust deposition through the following melting period in spring 2013 in Lapland during the Soot on Snow (SoS) 2013 campaign. Glaciogenic silt deposited on snow made the snow optically darker. The melting, metamorphose and diffusion processes were fast during the measurement time while the sun heated the particles, snow melted around, and the particles diffused inside the snow. Smaller particles diffused faster than the larger. Fine silt particles tended to form larger grains. Larger volcanic sand particles had lower

  17. Dust and Planetary Rings

    NASA Astrophysics Data System (ADS)

    Siddiqui, Muddassir

    ABSTRACT Space is not empty it has comic radiations (CMBR), dust etc. Cosmic dust is that type of dust which is composed of particles in space which vary from few molecules to 0.1micro metres in size. This type of dust is made up of heavier atoms born in the heart of stars and supernova. Mainly it contains dust grains and when these dust grains starts compacting then it turns to dense clouds, planetary ring dust and circumstellar dust. Dust grains are mainly silicate particles. Dust plays a major role in our solar system, for example in zodiacal light, Saturn's B ring spokes, planetary rings at Jovian planets and comets. Observations and measurements of cosmic dust in different regions of universe provide an important insight into the Universe's recycling processes. Astronomers consider dust in its most recycled state. Cosmic dust have radiative properties by which they can be detected. Cosmic dusts are classified as intergalactic dusts, interstellar dusts and planetary rings. A planetary ring is a ring of cosmic dust and other small particles orbiting around a planet in flat disc shape. All of the Jovian planets in our solar system have rings. But the most notable one is the Saturn's ring which is the brightest one. In March 2008 a report suggested that the Saturn's moon Rhea may have its own tenuous ring system. The ring swirling around Saturn consists of chunks of ice and dust. Most rings were thought to be unstable and to dissipate over course of tens or hundreds of millions of years but it now appears that Saturn's rings might be older than that. The dust particles in the ring collide with each other and are subjected to forces other than gravity of its own planet. Such collisions and extra forces tend to spread out the rings. Pluto is not known to have any ring system but some Astronomers believe that New Horizons probe might find a ring system when it visits in 2015.It is also predicted that Phobos, a moon of Mars will break up and form into a planetary ring

  18. Probing Milky Way Structure with Near-Infrared Diffuse Interstellar Bands

    NASA Astrophysics Data System (ADS)

    Zasowski, Gail; Ménard, Brice; Bizyaev, Dmitry; Garcia-Hernandez, D.; García Pérez, Ana; Hayden, Michael R.; Hearty, Fred; Holtzman, Jon A.; Johnson, Jennifer; Kinemuchi, Karen; Majewski, Steven R.; Nidever, David L.; Sellgren, Kristen; Shetrone, Matthew D.; Whelan, David G.; Wilson, John C.

    2015-01-01

    Astronomers have studied the set of interstellar absorption features known as the diffuse interstellar bands (DIBs) for nearly a century, characterizing them into families and using them as probes of local interstellar medium (ISM) conditions even while trying to understand their origin. Though most DIB studies have focused on the optical features, recent DIB identifications at infrared (IR) wavelengths -- where extinction by interstellar dust is significantly decreased -- provide us with tracers of ISM along heavily extincted, previously inaccessible sightlines. This talk will briefly summarize results from a project using the strongest of these IR DIBs (detected in more than 60,000 sightlines towards cool, distant giant stars observed as part of the SDSS-III/APOGEE survey) to characterize the large-scale distribution and properties of the Galactic ISM, including in the heavily reddened bulge and inner disk. The DIB absorption's tight correlation with foreground reddening makes it a powerful, independent probe of line-of-sight dust extinction. For the first time, we map the velocity field of a DIB on large scales and find that it displays the signature of the rotating Galactic disk. Three-dimensional modeling of the carrier distribution reveals not only large-scale gradients consistent with other ISM components, but also substructures that coincide with particular Galactic bulge and disk features. Finally, we find that features that are outliers in the distribution of DIB profile shapes may have an origin in circumstellar, rather than interstellar, environments along these particular sightlines, and the properties of these atypical features may contain clues towards identifying the currently-unknown carrier molecule of this DIB.

  19. Dust in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Polikarpova, O. L.; Shchekinov, Yu. A.

    2017-02-01

    The conditions for the destruction of dust in hot gas in galaxy clusters are investigated. It is argued that extinction measurements can be subject to selection effects, hindering their use in obtaining trustworthy estimates of dust masses in clusters. It is shown, in particular, that the ratio of the dust mass to the extinction M d / S d increases as dust grains are disrupted, due to the rapid destruction of small grains. Over long times, this ratio can asymptotically reach values a factor of three higher than the mean value in the interstellar medium in the Galaxy. This lowers dust-mass estimates based on measurements of extinction in galaxy clusters. The characteristic lifetime of dust in hot cluster gas is determined by its possible thermal isolation by the denser medium of gas fragments within which the dust is ejected from galaxies, and can reach 100-300 million years, depending on the kinematics and morphology of the fragments. As a result, the mass fraction of dust in hot cluster gas can reach 1-3% of the Galactic value. Over its lifetime, dust can also be manifest through its far-infrared emission. The emission characteristics of the dust change as it is disrupted, and the ratio of the fluxes at 350 and 850 μm can increase appreciably. This can potentially serve as an indicator of the state of the dust and ambient gas.

  20. Interstellar Dust - A Review

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2012-01-01

    The study of the formation and the destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic materials. Although dust with all its components plays an important role in the evolution of interstellar physics and chemistry and in the formation of organic materials, little is known on the formation and destruction processes of carbonaceous dust. Laboratory experiments that are performed under conditions that simulate interstellar and circumstellar environments to provide information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules. A review of the properties of dust and of the laboratory experiments that are conducted to study the formation processes of dust grains from molecular precursors will be given.

  1. Light Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2004-01-01

    14 October 2004 Many Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images exhibit wild patterns of dark streaks thought to have formed by the passage of many dust devils. The dust devils disrupt the dust coating the martian surface, leaving behind a streak. However, not all dust devils make streaks, and not all dust devil streaks are dark. Some are light---it simply depends upon which is darker, the substrate or the dust that the spinning vortex disrupts. The example of light-toned dust devil streaks shown here is located in southern Schiaparelli Basin near 5.3oS, 343.3oW. The image covers an area about 3 km (1.9 mi) across; sunlight illuminates the scene from the left/upper left.

  2. Differential Heating of Magnetically Aligned Dust Grains

    NASA Astrophysics Data System (ADS)

    Vaillancourt, John E.; Andersson, B.

    2013-01-01

    We use far-infrared photometric maps from IRAS and Herschel to search for the differential heating of asymmetric dust grains aligned with respect to an interstellar magnetic field and heated by a localized radiation source. The grains are known to be asymmetric and have a net alignment of their axes from observations of background starlight polarization. Modern theories on grain alignment suggest that photons from stars embedded in the foreground cloud are a key ingredient of the physical mechanism responsible for alignment (i.e., radiative torques). This theory predicts a relation between the grain alignment efficiency and the angle between the magnetic field and the direction to the aligning radiation source. This effect has been tentatively observed in a source with a very simple geometry (Andersson et al. 2011): the aligning photons are primarily from a single localized source (i.e., a single star) and the local magnetic field direction is known to be fairly uniform. Such a region also has consequences for the distribution of grain heating. For example, asymmetric grains whose largest cross-sections are normal to the incident stellar radiation will reach warmer equilibrium temperatures compared to grains whose largest cross-section is parallel to that direction. This should be observed as an azimuthal dependence of the dust color temperature. We present evidence of such a dependence using IRAS data at 60 and 100 micron. We expect this effect to be stronger using longer wavelength (i.e., 160 micron) data better coupled to the "big-grain" dust population, grains which are also more efficiently aligned with the local magnetic field. Here we also present the results of our on-going work to search for this signal using Herschel maps towards three candidate stars.

  3. All-Sky Observational Evidence for An Inverse Correlation Between Dust Temperature and Emissivity Spectral Index

    NASA Technical Reports Server (NTRS)

    Liang, Z.; Fixsen, D. J.; Gold, B.

    2012-01-01

    We show that a one-component variable-emissivity-spectral-index model (the free- model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed- models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100-240 micrometer maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-alpha model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (T(sub dust)) to be 13.7-22.7 (plus or minus 1.3) K, the emissivity spectral index (alpha) to be 1.2-3.1 (plus or minus 0.3) and the optical depth (tau) to range 0.6-46 x 10(exp -5) with a 23 per cent uncertainty. Using these estimates, we present all-sky evidence for an inverse correlation between the emissivity spectral index and dust temperature, which fits the relation alpha = 1/(delta + omega (raised dot) T(sub dust) with delta = -.0.510 plus or minus 0.011 and omega = 0.059 plus or minus 0.001. This best model will be useful to cosmic microwave background experiments for removing foreground dust contamination and it can serve as an all-sky extended-frequency reference for future higher resolution dust models.

  4. The Lunar Dust Environment

    NASA Astrophysics Data System (ADS)

    Szalay, Jamey Robert

    Planetary bodies throughout the solar system are continually bombarded by dust particles, largely originating from cometary activities and asteroidal collisions. Surfaces of bodies with thick atmospheres, such as Venus, Earth, Mars and Titan are mostly protected from incoming dust impacts as these particles ablate in their atmospheres as 'shooting stars'. However, the majority of bodies in the solar system have no appreciable atmosphere and their surfaces are directly exposed to the flux of high speed dust grains. Impacts onto solid surfaces in space generate charged and neutral gas clouds, as well as solid secondary ejecta dust particles. Gravitationally bound ejecta clouds forming dust exospheres were recognized by in situ dust instruments around the icy moons of Jupiter and Saturn, and had not yet been observed near bodies with refractory regolith surfaces before NASA's Lunar Dust and Environment Explorer (LADEE) mission. In this thesis, we first present the measurements taken by the Lunar Dust Explorer (LDEX), aboard LADEE, which discovered a permanently present, asymmetric dust cloud surrounding the Moon. The global characteristics of the lunar dust cloud are discussed as a function of a variety of variables such as altitude, solar longitude, local time, and lunar phase. These results are compared with models for lunar dust cloud generation. Second, we present an analysis of the groupings of impacts measured by LDEX, which represent detections of dense ejecta plumes above the lunar surface. These measurements are put in the context of understanding the response of the lunar surface to meteoroid bombardment and how to use other airless bodies in the solar system as detectors for their local meteoroid environment. Third, we present the first in-situ dust measurements taken over the lunar sunrise terminator. Having found no excess of small grains in this region, we discuss its implications for the putative population of electrostatically lofted dust.

  5. High Energy Studies of Astrophysical Dust

    NASA Astrophysics Data System (ADS)

    Corrales, Lia Racquel

    Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how

  6. Microwave thermal emission from the zodiacal dust cloud predicted with contemporary meteoroid models

    NASA Astrophysics Data System (ADS)

    Dikarev, Valery V.; Schwarz, Dominik J.

    2015-12-01

    Predictions of the microwave thermal emission from the zodiacal dust cloud are made using several contemporary meteoroid models to construct the distributions of the cross-section area of dust in space, and by applying the Mie light-scattering theory to estimate the temperatures and emissivities of dust particles in a wide range of sizes and heliocentric distances. In particular, the Kelsall model of the zodiacal light emission based on COBE infrared observations is extrapolated to the microwaves with assistance from fits to selected IRAS and Planck data. Furthermore, the five populations of interplanetary meteoroids by Divine and the Interplanetary Meteoroid Engineering Model (IMEM) based on a variety of remote and in situ observations of dust are used in combination with the optical properties of olivine, carbonaceous, and iron spherical particles. The Kelsall model has been accepted by the cosmic microwave background (CMB) community for subtraction of the zodiacal cloud's foreground emission. We show, however, that the Kelsall model predicts microwave emission from interplanetary dust that is remarkably different from the results obtained by applying the meteoroid engineering models. We make maps and spectra of the microwave emission predicted by all three models assuming different compositions of dust particles. The predictions can be used to look for the emission from interplanetary dust in CMB experiments and to plan new observations.

  7. Dust outflows from quiescent spiral disks.

    NASA Astrophysics Data System (ADS)

    Alton, P. B.; Rand, R. J.; Xilouris, E. M.; Bevan, S.; Ferguson, A. M.; Davies, J. I.; Bianchi, S.

    2000-07-01

    We have conducted a search for ``dust chimneys'' in a sample of 10 highly-inclined spiral galaxies (i=86-90deg) which we had previously observed in the Hα emission line (Rand 1996). We have procured B-band CCD images for this purpose and employed unsharp-masking techniques to accentuate the structure of the dust lane. A scattering+absorption radiation transfer model enabled us to separate 5 galaxies from the sample which are sufficiently inclined (i>87deg) for us to reliably identify and quantify dust clouds residing at over 2 scale-heights above the disk. Three of these galaxies possess numerous curvi-linear chimney structures stretching up to 2 kpc from the midplane and the fraction of total galactic dust contained in such structures is of order 1%. Optical extinction offers a lower limit to the amount of dust contained in the extraplanar layer but, by examining the transparent submm thermal emission from NGC 891, we fix an upper limit of 5%. Our results are consistent with a similar recent study by Howk & Savage (1999) which indicates that about half of quiescent spiral disks possess detectable dust chimneys. We have compared our optical images with the corresponding Hα emission-line radiation. We do not find a detailed spatial correspondance between dust chimneys and either sites of recent star-formation or the extraplanar diffuse ionized gas. This is somewhat surprising given that FIR-bright galaxies, such as M 82, are known to entrain dust at the working surface of the starburst-driven outflow (traced in Hα ). It is possible a global correlation exists, with disks experiencing overall higher rates of star-formation also possessing the greatest number of chimneys. This may indicate a timescale difference between the two phenomena with the Hα phase lasting ~ 106 yr but chimneys requiring ~ 107 yr to form. Additionally, we have investigated the edge-on disk NGC 55 which, being ten times closer than galaxies in our main sample, allows us to examine in greater

  8. Characterizing the Dust-Correlated Anomalous Emission in LDN 1622

    NASA Astrophysics Data System (ADS)

    Cleary, Kieran; Casassus, Simon; Dickinson, Clive; Lawrence, Charles; Sakon, Itsuki

    2008-03-01

    The search for 'dust-correlated microwave emission' was started by the surprising excess correlation of COBE-DMR maps, at 31.5, 53 and 91GHz, with DIRBE dust emission at 140 microns. It was first thought to be Galactic free-free emission from the Warm Ionized Medium (WIM). However, Leitch et al. (1997) ruled out a link with free-free by comparing with Halpha templates and first confirmed the anomalous nature of this emission. Since then, this emission has been detected by a number of experiments in the frequency range 5-60 GHz. The most popular explanation is emission from ultra-small spinning dust grains (first postulated by Erickson, 1957), which is expected to have a spectrum that is highly peaked at about 20 GHz. Spinning dust models appear to be broadly consistent with microwave data at high latitudes, but the data have not been conclusive, mainly due to the difficulty of foreground separation in CMB data. LDN 1622 is a dark cloud that lies within the Orion East molecular cloud at a distance of 120 pc. Recent cm-wave observations, in combination with WMAP data, have verified the detection of anomalous dust-correlated emission in LDN 1622. This mid-IR-cm correlation in LDN 1622 is currently the only observational evidence that very small grains VSG emit at GHz frequencies. We propose a programme of spectroscopic observations of LDN 1622 with Spitzer IRS to address the following questions: (i) Are the IRAS 12 and 25 microns bands tracing VSG emission in LDN 1622? (ii) What Mid-IR features and continuum bands best correlate with the cm-wave emission? and (iii) How do the dust properties vary with the cm-wave emission? These questions have important implications for high-sensitivity CMB experiments.

  9. Can residuals of the solar system foreground explain low multipole anomalies of the CMB?

    SciTech Connect

    Hansen, M.; Kim, J.; Frejsel, A.M.; Ramazanov, S.; Naselsky, P.; Zhao, W.; Burigana, C. E-mail: jkim@nbi.dk E-mail: sabir_ra@nbi.dk E-mail: wzhao7@nbi.ku.dk

    2012-10-01

    The low multipole anomalies of the Cosmic Microwave Background has received much attention during the last few years. It is still not ascertained whether these anomalies are indeed primordial or the result of systematics or foregrounds. An example of a foreground, which could generate some non-Gaussian and statistically anisotropic features at low multipole range, is the very symmetric Kuiper Belt in the outer solar system. In this paper, expanding upon the methods presented in [1], we investigate the contributions from the Kuiper Belt objects (KBO) to the WMAP ILC 7 map, whereby we can minimize the contrast in power between even and odd multipoles in the CMB, discussed in [2,3]. We submit our KBO de-correlated CMB signal to several tests, to analyze its validity, and find that incorporation of the KBO emission can decrease the quadrupole-octupole alignment and parity asymmetry problems, provided that the KBO signals has a non-cosmological dipole modulation, associated with the statistical anisotropy of the ILC 7 map. Additionally, we show that the amplitude of the dipole modulation, within a 2σ interval, is in agreement with the corresponding amplitudes, discussed in [4].

  10. Foreground marker controlled watershed on digital radiographic image for weld discontinuity detection

    NASA Astrophysics Data System (ADS)

    Abd Halim, Suhaila; Zahid, Akhma; Abdul Razak, Nurul Syafinaz; Ibrahim, Arsmah; Manurung, Yupiter HP; Jayes, Mohd Idris

    2013-04-01

    Radiography is one of the most common and widely used non-destructive testing (NDT) technique in inspecting weld discontinuity in welded joints. Conventionally, radiography inspector is requires to do the inspection analysis manually on weld discontinuity based on visual characteristics such as location, shape, length and density. The results can be very subjective, time consuming and inconsistent. Hence, semi-automated inspection using digital image processing and segmentation technique can be applied for weld discontinuity detection. The goal of this work is to detect the weld discontinuity on digital radiographic image using Foreground Marker Controlled Watershed. It is usually implemented in image processing because it always generates closed contour for each region in the image. In this paper, image enhancement on radiographic image is aim to remove image noise and improve image contrast. Then, marker controlled watershed with foreground markers is applied on the image to detect the discontinuity. The accuracy of the technique is evaluated using Receiver Operating Characteristic (ROC) curve. The accuracy of the technique has been compared with the ground truth and the result shows that the accuracy is 67% and area under the curve is 0.7134. The application of image processing technique in detecting weld discontinuity is able to assist radiographer to improve the inconsistent results in evaluating the radiographic image.

  11. Foregrounds for redshifted 21-cm studies of reionization: Giant Meter Wave Radio Telescope 153-MHz observations

    NASA Astrophysics Data System (ADS)

    Ali, Sk. Saiyad; Bharadwaj, Somnath; Chengalur, Jayaram N.

    2008-04-01

    Foreground subtraction is the biggest challenge for future redshifted 21-cm observations to probe reionization. We use a short Giant Meter Wave Radio Telescope (GMRT) observation at 153MHz to characterize the statistical properties of the background radiation across ~1° to subarcmin angular scales, and across a frequency band of 5MHz with 62.5kHz resolution. The statistic we use is the visibility correlation function, or equivalently the angular power spectrum Cl. We present the results obtained from using relatively unsophisticated, conventional data calibration procedures. We find that even fairly simple-minded calibration allows one to estimate the visibility correlation function at a given frequency V2(U, 0). From our observations, we find that V2(U, 0) is consistent with foreground model predictions at all angular scales except the largest ones probed by our observations where the model predictions are somewhat in excess. On the other hand, the visibility correlation between different frequencies κ(U, Δν) seems to be much more sensitive to calibration errors. We find a rapid decline in κ(U, Δν), in contrast with the prediction of less than 1 per cent variation across 2.5MHz. In this case, however, it seems likely that a substantial part of the discrepancy may be due to limitations of data reduction procedures.

  12. Skewness and kurtosis as indicators of non-Gaussianity in galactic foreground maps

    SciTech Connect

    Ben-David, Assaf; Jackson, Andrew D.; Hausegger, Sebastian von E-mail: s.vonhausegger@nbi.dk

    2015-11-01

    Observational cosmology is entering an era in which high precision will be required in both measurement and data analysis. Accuracy, however, can only be achieved with a thorough understanding of potential sources of contamination from foreground effects. Our primary focus will be on non-Gaussian effects in foregrounds. This issue will be crucial for coming experiments to determine B-mode polarization. We propose a novel method for investigating a data set in terms of skewness and kurtosis in locally defined regions that collectively cover the entire sky. The method is demonstrated on two sky maps: (i) the SMICA map of Cosmic Microwave Background fluctuations provided by the Planck Collaboration and (ii) a version of the Haslam map at 408 MHz that describes synchrotron radiation. We find that skewness and kurtosis can be evaluated in combination to reveal local physical information. In the present case, we demonstrate that the statistical properties of both maps in small local regions are predominantly Gaussian. This result was expected for the SMICA map. It is surprising that it also applies for the Haslam map given its evident large scale non-Gaussianity. The approach described here has a generality and flexibility that should make it useful in a variety of astrophysical and cosmological contexts.

  13. Reducing float coal dust

    PubMed Central

    Patts, J.R.; Colinet, J.F.; Janisko, S.J.; Barone, T.L.; Patts, L.D.

    2016-01-01

    Controlling float coal dust in underground coal mines before dispersal into the general airstream can reduce the risk of mine explosions while potentially achieving a more effective and efficient use of rock dust. A prototype flooded-bed scrubber was evaluated for float coal dust control in the return of a continuous miner section. The scrubber was installed inline between the face ventilation tubing and an exhausting auxiliary fan. Airborne and deposited dust mass measurements were collected over three days at set distances from the fan exhaust to assess changes in float coal dust levels in the return due to operation of the scrubber. Mass-based measurements were collected on a per-cut basis and normalized on the basis of per ton mined by the continuous miner. The results show that average float coal dust levels measured under baseline conditions were reduced by more than 90 percent when operating the scrubber. PMID:28018004

  14. DUST FORMATION IN MACRONOVAE

    SciTech Connect

    Takami, Hajime; Ioka, Kunihito; Nozawa, Takaya E-mail: kunihito.ioka@kek.jp

    2014-07-01

    We examine dust formation in macronovae (as known as kilonovae), which are the bright ejecta of neutron star binary mergers and one of the leading sites of r-process nucleosynthesis. In light of information about the first macronova candidate associated with GRB 130603B, we find that dust grains of r-process elements have difficulty forming because of the low number density of the r-process atoms, while carbon or elements lighter than iron can condense into dust if they are abundant. Dust grains absorb emission from ejecta with an opacity even greater than that of the r-process elements, and re-emit photons at infrared wavelengths. Such dust emission can potentially account for macronovae without r-process nucleosynthesis as an alternative model. This dust scenario predicts a spectrum with fewer features than the r-process model and day-scale optical-to-ultraviolet emission.

  15. Dust devils on Mars

    NASA Technical Reports Server (NTRS)

    Thomas, P. G.; Gierasch, P.

    1985-01-01

    Large columns of dust have been discovered rising above plains on Mars. The storms are probably analogous to terrestrial dust devils, but their size indicates that they are more similar to tornadoes in intensity. They occur at locations where the soil has been strongly warmed by the Sun, and there the surface is smooth and fine grained. These are the same conditions that favor dust devils on Earth. Warm gas from the lowest atmospheric layer converges and rises in a thin column, with intense swirl developing at the edge of the column. In one area a mosaic of Viking images shows 97 vortices in a three day period. This represents a density of vortices of about one in each 900 square kilometers. Thus, these dust devils may be important in moving dust or starting over dust storms.

  16. Dust Formation and Destruction

    NASA Astrophysics Data System (ADS)

    Wiebe, Dmitry

    Recent infrared and sub-millimeter observations have opened up a new window in dust evolution studies. High angular resolution of Spitzer and Herschel space telescopes from near to far-infrared wavelengths allows observing dust emission in galactic and extragalactic star-forming complexes, covering a broad range of metallicities, radiation field properties, etc. A wide-scale picture of dust evolution starts to arise from these observations. In my contribution I will try to cover major recent advances in studies of dust formation and destruction, including such topics as a diverse role of supernovae in dust evolution, possibility of dust formation and/or growth in molecular clouds, and VSG and PAH evolution in HII regions and complexes.

  17. Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints

    NASA Technical Reports Server (NTRS)

    Zubko, Viktor; Dwek, Eli; Arendt, Richard G.

    2004-01-01

    We present new interstellar dust models which have been derived by simultaneously fitting the far ultraviolet to near infrared extinction, the diffuse infrared emission, and, unlike previous models, the elemental abundances in dust for the diffuse interstellar medium. We found that dust models consisting of a mixture of spherical graphite and silicate grains, polycyclic aromatic hydrocarbon (PAH) molecules, in addition to porous composite particles containing silicate, organic refractory, and water ice, provide an improved .t to the UV-to-infrared extinction and infrared emission measurements, while consuming the amounts of elements well within the uncertainties of adopted interstellar abundances, including B star abundances. These models are a signi.cant improvement over the recent Li & Draine (2001, ApJ, 554, 778) model which requires an excessive amount of silicon to be locked up in dust: 48 ppm (atoms per million of H atoms), considerably more than the solar abundance of 34 ppm or the B star abundance of 19 ppm.

  18. Dust Devil Formation

    NASA Astrophysics Data System (ADS)

    Rafkin, S.; Jemmett-Smith, B.; Fenton, L.; Lorenz, R.; Takemi, T.; Ito, J.; Tyler, D.

    2016-11-01

    The essential dynamical characteristic of convective vortices, including dust devils, is a highly localized vorticity tube that extends into the vertical. This chapter is concerned with both the generation of vorticity and the subsequent focusing of that vorticity into a tight vortex, and with the environmental conditions that are conducive to the formation of convective vortices in general and dust devils in particular. A review of observations, theory, and modeling of dust devil formation is provided.

  19. Galaxy formation by dust

    NASA Technical Reports Server (NTRS)

    Wang, Boqi; Field, Goerge B.

    1989-01-01

    It has been known since the early 1940's that radiation can cause an instability in the interstellar medium. Absorbing dust particles in an isotropic radiation field shadow each other by a solid angle which is inversely proportional to the square of the distance between the two particles, leading to an inverse-square attractive force - mock gravity. The effect is largest in an optically thin medium. Recently Hogan and White (HW, hereafter) proposed that if the pre-galactic universe contained suitable sources of radiation and dust, instability in the dust distribution caused by mock gravity may have led to the formation of galaxies and galaxy clusters. In their picture of a well-coupled dust-gas medium, HW show that mock gravity begins to dominate gravitational instability when the perturbation becomes optically thin, provided that the radiation field at the time is strong enough. The recent rocket observation of the microwave background at submillimeter wavelengths by Matsumoto et al. might be from pre-galactic stars, the consequence of the absorption of ultraviolet radiation by dust, and infrared reemission which is subsequently redshifted. HW's analysis omits radiative drag, incomplete collisional coupling of gas and dust, finite dust albedo, and finite matter pressure. These effects could be important. In a preliminary calculation including them, the authors have confirmed that mock gravitational instability is effective if there is a strong ultraviolet radiation at the time, but any galaxies that form would be substantially enriched in heavy elements because the contraction of the dust is more rapid than that of the gas. Moreover, since the dust moves with supersonic velocity through the gas soon after the perturbation becomes optically thin, the sputtering of dust particles by gas is significant, so the dust could disappear before the instability develops significantly. They conclude that the mock gravity by dust is not important in galaxy formations.

  20. The Organic Component of Interstellar Dust

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne

    2003-01-01

    The distribution, chemical structure, and formation of organic matter in the interstellar medium are important to our understanding of the overall evolution of dust. The exchange of dust between the dense and diffuse interstellar medium, and the effects of processing on dust within dense clouds will affect the inventory of material available for incorporation into newly forming star and planetary systems. Observational ground-based studies have confirmed the widespread distribution of the 3.4 pm absorption band attributed to aliphatic hydrocarbons in the diffuse interstellar medium of our own galaxy, and in the dusty spectra of a few nearby galaxies, while space based observations from IS0 probed the signatures of corresponding mid-infrared features. Laboratory experiments which utilize both thermal processes and energetic processing by high energy photons and cosmic rays, produce candidate materials which offer close matches to the observed diffuse interstellar medium and extragalactic hydrocarbon absorption features. Through an analysis of the 4000 to 1000 cm (2.5 to 10 micrometers) region of the spectrum of diffuse interstellar medium (DISM) dust compared with the spectra of thirteen chemical entities produced in the laboratory which serve as analogs to the interstellar material, significant constraints have been placed on the applicability of proposed candidate materials to explain the interstellar features. The results indicate that the organic refractory material in the diffuse interstellar medium is predominantly hydrocarbon in nature, possessing little nitrogen or oxygen, with the carbon distributed between the aromatic and aliphatic forms. Long alkane chains H3C-(CH2),- with n much greater than 4 or 5 are not major constituents of this material. Comparisons to laboratory analogs indicate the DISM organic material resembles plasma processed pure hydrocarbon residues much more so than energetically processed ice residues. This result is consistent with a

  1. Operational Dust Prediction

    NASA Technical Reports Server (NTRS)

    Benedetti, Angela; Baldasano, Jose M.; Basart, Sara; Benincasa, Francesco; Boucher, Olivier; Brooks, Malcolm E.; Chen, Jen-Ping; Colarco, Peter R.; Gong, Sunlin; Huneeus, Nicolas; Jones, Luke; Lu, Sarah; Menut, Laurent; Morcrette, Jean-Jacques; Mulcahy, Jane; Nickovic, Slobodan; Garcia-Pando, Carlos P.; Reid, Jeffrey S.; Sekiyama, Thomas T.; Tanaka, Taichu Y.; Terradellas, Enric; Westphal, Douglas L.; Zhang, Xiao-Ye; Zhou, Chun-Hong

    2014-01-01

    Over the last few years, numerical prediction of dust aerosol concentration has become prominent at several research and operational weather centres due to growing interest from diverse stakeholders, such as solar energy plant managers, health professionals, aviation and military authorities and policymakers. Dust prediction in numerical weather prediction-type models faces a number of challenges owing to the complexity of the system. At the centre of the problem is the vast range of scales required to fully account for all of the physical processes related to dust. Another limiting factor is the paucity of suitable dust observations available for model, evaluation and assimilation. This chapter discusses in detail numerical prediction of dust with examples from systems that are currently providing dust forecasts in near real-time or are part of international efforts to establish daily provision of dust forecasts based on multi-model ensembles. The various models are introduced and described along with an overview on the importance of dust prediction activities and a historical perspective. Assimilation and evaluation aspects in dust prediction are also discussed.

  2. Dust Devil Tracks

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 8 May 2002) The Science This image, centered near 50.0 S and 17.7 W displays dust devil tracks on the surface. Most of the lighter portions of the image likely have a thin veneer of dust settled on the surface. As a dust devil passes over the surface, it acts as a vacuum and picks up the dust, leaving the darker substrate exposed. In this image there is a general trend of many of the tracks running from east to west or west to east, indicating the general wind direction. There is often no general trend present in dust devil tracks seen in other images. The track patterns are quite ephemeral and can completely change or even disappear over the course of a few months. Dust devils are one of the mechanisms that Mars uses to constantly pump dust into the ubiquitously dusty atmosphere. This atmospheric dust is one of the main driving forces of the present Martian climate. The Story Vrrrrooooooooom. Think of a tornado, the cartoon Tasmanian devil, or any number of vacuum commercials that powerfully suck up swirls of dust and dirt. That's pretty much what it's like on the surface of Mars a lot of the time. Whirlpools of wind called

  3. Dust and Ionized Gas in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul

    1995-05-01

    ellipticals. The detection rate of dust and ionized gas are found to be about 40% and 60%, respectively, which is significantly higher than that of previous imaging studies. The distributions of dust and ionized gas are consistent with being physically associated with each other. The wavelength dependence of the dust extinction in elliptical galaxies with large-scale dust lanes are presented and discussed in chapter 5. We find that the dust grains in dust-lane elliptical galaxies are smaller on average than the canonical grain size in our Galaxy. Comparing the typical lifetime of dust grains in different environments with formation timescales of lanes and/or rings in elliptical galaxies, we suggest that the observed characteristic dust grain size is determined by the time elapsed since the dust lane was accreted from outside. In Chapter 6 we combine the IRAS far-infrared observations, our optical survey data, and the available X-ray data of the galaxies in our sample. We find that dust masses as determined from the IRAS data are roughly an order of magnitude higher than those determined from optical extinction. To solve this dilemma we argue that the majority of the dust in elliptical galaxies exists as a diffusely distributed component. We show that the assumption of this newly postulated distribution of dust in terms of total masses and energetics of the dust is entirely consistent with heating by optical photons and hot electrons in the X-ray-emitting gas. The diffuse component of dust is found to have a non-negligible effect on the radial colour gradients in elliptical galaxies, and should thus be taken seriously in the interpretation of colour gradients. Several arguments in favour of an external origin of dust in elliptical galaxies are discussed. Last but not least, a strong anticorrelation between the masses of dust and hot gas in X-ray luminous elliptical galaxies is found and discussed. (SECTION: Dissertation Summaries)

  4. Whither Cometary Dust?

    NASA Astrophysics Data System (ADS)

    Lisse, Carey M.

    2010-10-01

    In this paper I will discuss recent findings that have important implications for our understanding of the formation and evolution of primitive solar system dust, including: - Nesvorny et al. (2010), following up on their dynamical analyses of the zodiacal dust bands as sourced by the breakup of the Karin (5Mya) and Veritas (8Mya) asteroid families, argue that over 90% of the interplanetary dust cloud at 1 AU comes from JFC comets with near-circularized, low inclination orbits. This implies that the noted IPD collections of anhydrous and hydrous dust particles are likely to be from Oort cloud and JFC comets, respectively, not from asteroids and comets as thought in the past. Hydrous dust particles from comets like 85P/Wild2 and 9P/Tempel 1 would be consistent with results from the STARDUST and Deep Impact experiments. - Estimates of the dust particle size distributions (PSDs) in the comae of 85P/Wild2 (Green et al. 2004, 2007) and 73P/SW-3 (Sitko et al. 2010, Vaubaillon & Reach 2010) and in the trails of comets (Reach et al. 2007) have broken power law structure, with a plateau enhancement of particles of 1 mm - 1 cm in size. This size is also the size of most chondritic inclusions, and the predicted size range of the "aggregational barrier", where collisions between dust particles become destructive. - Studies of the albedo and polarization properties of cometary dust (Kolokolova et al. 2007) suggest there are 2 major groupings, one with low scattering capability and one with high. While these families could possibly have been explained by systematics in the PSDs of the emitted dust, independent work by Lisse et al. (2008) on the mineralogy of a number of highly dusty comets has shown evidence for one family of comets with highly crystalline dust and another with highly amorphous dust.

  5. The dust mass in Cassiopeia A from a spatially resolved Herschel analysis

    NASA Astrophysics Data System (ADS)

    De Looze, I.; Barlow, M. J.; Swinyard, B. M.; Rho, J.; Gomez, H. L.; Matsuura, M.; Wesson, R.

    2017-03-01

    Theoretical models predict that core-collapse supernovae (CCSNe) can be efficient dust producers (0.1-1.0 M⊙), potentially accounting for most of the dust production in the early Universe. Observational evidence for this dust production efficiency is however currently limited to only a few CCSN remnants (e.g. SN 1987A, Crab nebula). In this paper, we revisit the dust mass produced in Cassiopeia A (Cas A), a ∼330-yr old O-rich Galactic supernova remnant (SNR) embedded in a dense interstellar foreground and background. We present the first spatially resolved analysis of Cas A based on Spitzer and Herschel infrared and submillimetre data at a common resolution of ∼0.6 arcmin for this 5 arcmin diameter remnant following a careful removal of contaminating line emission and synchrotron radiation. We fit the dust continuum from 17 to 500 μm with a four-component interstellar medium and supernova (SN) dust model. We find a concentration of cold dust in the unshocked ejecta of Cas A and derive a mass of 0.3-0.5 M⊙ of silicate grains freshly produced in the SNR, with a lower limit of ≥0.1-0.2 M⊙. For a mixture of 50 per cent of silicate-type grains and 50 per cent of carbonaceous grains, we derive a total SN dust mass between 0.4 and 0.6 M⊙. These dust mass estimates are higher than from most previous studies of Cas A and support the scenario of SN-dominated dust production at high redshifts. We furthermore derive an interstellar extinction map for the field around Cas A which towards Cas A gives average values of AV = 6-8 mag, up to a maximum of AV = 15 mag.

  6. What can the occult do for you? Understanding dust geometry in other galaxies from overlapping galaxy pairs.

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne Willem

    2015-08-01

    Interstellar dust is still the dominant uncertainty in Astronomy, limiting precision in e.g., cosmological distance estimates and models of how light is re-processed within a galaxy. When a foreground galaxy serendipitously overlaps a more distant one, the latter backlights the dusty structures in the nearer foreground galaxy. Such an overlapping or occulting galaxy pair can be used to measure the distribution of dust in the closest galaxy with great accuracy. My STARSMOG program uses HST observation of occulting galaxy pairs to accurately map the distribution of dust in foreground galaxies in fine (<100 pc) detail.The primary motivation is threefold: first, almost half of the light from stars in spiral galaxies is absorbed by the interstellar dust grains and re-emitted at longer wavelengths. To model this accurately, one needs to know the distribution and detailed geometry of dust in galaxies. The travel of light through an inhomogeneous medium is radically different from the smooth one and depends strongly on the medium’s inner structure. Secondly, the model for our Universe today includes dark energy, inferred from the distances to supernova, which themselves may be dimmed by intervening dust. An accurate model for the dust extinction in supernova host galaxies is critical to evolve this technique to the next level of accuracy needed to map dark energy. And finally, the fine-scale maps of dust extinction in occuling galaxies can be used to trace the molecular cloud sizes and the role of turbulence in the ISM of these disks. Furthermore, Integral Field Unit observations of such pairs will map the effective extinction curve in these occulting galaxies, disentangling the role of fine-scale geometry and grain composition on these curves.The overlapping galaxy technique promises to deliver a clear understanding of the dust in galaxies: the dust geometry, a probability function of the amount of dimming as a function of galaxy type, its dependence on wavelength and

  7. A Search for Intracluster Dust of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Matsunaga, N.; Mito, H.; Nakada, Y.; Fukushi, H.; Tanabé, T.; Ita, Y.; Izumiura, H.; Matsuura, M.; Ueta, T.; Yamamura, I.

    2009-12-01

    We report far-IR observations with AKARI to search for intracluster dust (ICD, hereafter) from globular clusters. We observed 12 clusters and detected both diffuse and point-like sources through our Mission Program (MP) survey. However, it is found that most of them are not associated with clusters, leaving one possible candidate of ICD cloud (Matsunaga et al. 2008). We also searched the β-1 Bright Source Catalogue of the AKARI All-Sky Survey for ICD but no likely candidate was found. This paucity suggests that the dust disappears within a lifetime shorter than 5-50 Myr depending on the dust temperature.

  8. Integrating Windblown Dust Forecasts with Public Safety and Health Systems

    NASA Astrophysics Data System (ADS)

    Sprigg, W. A.

    2014-12-01

    Experiments in real-time prediction of desert dust emissions and downstream plume concentrations (~ 3.5 km near-surface spatial resolution) succeed to the point of challenging public safety and public health services to beta test a dust storm warning and advisory system in lowering risks of highway and airline accidents and illnesses such as asthma and valley fever. Key beta test components are: high-resolution models of dust emission, entrainment and diffusion, integrated with synoptic weather observations and forecasts; satellite-based detection and monitoring of soil properties on the ground and elevated above; high space and time resolution for health surveillance and transportation advisories.

  9. Interstellar and Ejecta Dust in the Cas A Supernova Remnant

    NASA Technical Reports Server (NTRS)

    Arendt, Richard G.; Dwek, Eli; Kober, Gladys; Rho, Jonghee; Hwang, Una

    2013-01-01

    The ejecta of the Cas A supernova remnant has a complex morphology, consisting of dense fast-moving line emitting knots and diffuse X-ray emitting regions that have encountered the reverse shock, as well as more slowly expanding, unshocked regions of the ejecta. Using the Spitzer 5-35 micron IRS data cube, and Herschel 70, 100, and 160 micron PACS data, we decompose the infrared emission from the remnant into distinct spectral components associated with the different regions of the ejecta. Such decomposition allows the association of different dust species with ejecta layers that underwent distinct nuclear burning histories, and determination of the dust heating mechanisms. Our decomposition identified three characteristic dust spectra. The first, most luminous one, exhibits strong emission features at approx. 9 and 21 micron, and a weaker 12 micron feature, and is closely associated with the ejecta knots that have strong [Ar II] 6.99 micron and [Ar III] 8.99 micron emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low MgO-to-SiO2 ratios. A second, very different dust spectrum that has no indication of any silicate features, is best fit by Al2O3 dust and is found in association with ejecta having strong [Ne II] 12.8 micron and [Ne III] 15.6 micron emission lines. A third characteristic dust spectrum shows features that best matched by magnesium silicates with relatively high MgO-to-SiO2 ratio. This dust is primarily associated with the X-ray emitting shocked ejecta and the shocked interstellar/circumstellar material. All three spectral components include an additional featureless cold dust component of unknown composition. Colder dust of indeterminate composition is associated with [Si II] 34.8 micron emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. The dust mass giving rise to the warm dust component is about approx. 0.1solar M. However, most of the dust mass

  10. Dust processing in photodissociation regions. Mid-IR emission modelling

    NASA Astrophysics Data System (ADS)

    Compiègne, M.; Abergel, A.; Verstraete, L.; Habart, E.

    2008-12-01

    Context: Mid-infrared spectroscopy of dense illuminated ridges (or photodissociation regions, PDRs) suggests dust evolution. Such evolution must be reflected in the gas physical properties through processes like photo-electric heating or H2 formation. Aims: With Spitzer Infrared Spectrograph (IRS) and ISOCAM data, we study the mid-IR emission of closeby, well known PDRs. Focusing on the band and continuum dust emissions, we follow their relative contributions and analyze their variations in terms of abundance of dust populations. Methods: In order to disentangle dust evolution and excitation effects, we use a dust emission model that we couple to radiative transfer. Our dust model reproduces extinction and emission of the standard interstellar medium that we represent with diffuse high galactic latitude clouds called Cirrus. We take the properties of dust in Cirrus as a reference to which we compare the dust emission from more excited regions, namely the Horsehead and the reflection nebula NGC 2023 North. Results: We show that in both regions, radiative transfer effects cannot account for the observed spectral variations. We interpret these variations in term of changes of the relative abundance between polycyclic aromatic hydrocarbons (PAHs, mid-IR band carriers) and very small grains (VSGs, mid-IR continuum carriers). Conclusions: We conclude that the PAH/VSG abundance ratio is 2.4 times smaller at the peak emission of the Horsehead nebula than in the Cirrus case. For NGC 2023 North where spectral evolution is observed across the northern PDR, we conclude that this ratio is ~5 times lower in the dense, cold zones of the PDR than in its diffuse illuminated part where dust properties seem to be the same as in Cirrus. We conclude that dust in PDRs seems to evolve from “dense” to “diffuse” properties at the small spatial scale of the dense illuminated ridge.

  11. Grain fever syndrome induced by inhalation of airborne grain dust.

    PubMed

    doPico, G A; Flaherty, D; Bhansali, P; Chavaje, N

    1982-05-01

    To study the clinical and physiologic manifestations of the grain fever syndrome and the potentially pathogenic role of complement activation, 12 subjects (six grain workers and six healthy non-grain workers) underwent inhalation provocations with airborne grain dust. The clinical response was characterized by facial warmth, headache, malaise, myalgias, feverish sensation, chilliness, throat and tracheal burning sensation, chest tightness, dyspnea, cough, and expectoration. Fever developed in four grain workers and two controls. Leukocytosis, ranging between 11,700 and 24,300 leukocytes/mm3 with left shift, developed in five grain workers and five controls. There was no evidence of complement activation by the classical or alternate pathway. None of the subjects had serum precipitins to grain dust. The pulmonary response was characterized by a decrease in FEV1, FVC, MMF, Vmax50, and Vmax75, with significant rise in pulmonary resistance and consistent change in dynamic compliance but without changes in static compliance or diffusing capacity. Hence, grain dust inhalation induced diffuse airways obstruction without detectable parenchymal reaction. The airways response to high concentrations of grain dust inhalation were unrelated to the presence of immediate skin hypersensitivity. Although we cannot exclude the etiopathogenetic role of an immunologic reaction to grain dust, our data do not support the hypothesis that the grain fever syndrome is a precipitin-mediated allergic pneumonitis. More likely, the manifestations of grain fever probably reflect the host reaction to grain dust bacterial endotoxins and/or nonallergic mediator release by grain or grain dust constituents.

  12. EXTINCTION AND DUST GEOMETRY IN M83 H II REGIONS: AN HUBBLE SPACE TELESCOPE/WFC3 STUDY

    SciTech Connect

    Liu, Guilin; Calzetti, Daniela; Hong, Sungryong; Whitmore, Bradley; Chandar, Rupali; O'Connell, Robert W.; Blair, William P.; Cohen, Seth H.; Kim, Hwihyun; Frogel, Jay A.

    2013-12-01

    We present Hubble Space Telescope/WFC3 narrow-band imaging of the starburst galaxy M83 targeting the hydrogen recombination lines (Hβ, Hα, and Paβ), which we use to investigate the dust extinction in the H II regions. We derive extinction maps with 6 pc spatial resolution from two combinations of hydrogen lines (Hα/Hβ and Hα/Paβ), and show that the longer wavelengths probe larger optical depths, with A{sub V} values larger by ≳1 mag than those derived from the shorter wavelengths. This difference leads to a factor ≳2 discrepancy in the extinction-corrected Hα luminosity, a significant effect when studying extragalactic H II regions. By comparing these observations to a series of simple models, we conclude that a large diversity of absorber/emitter geometric configurations can account for the data, implying a more complex physical structure than the classical foreground ''dust screen'' assumption. However, most data points are bracketed by the foreground screen and a model where dust and emitters are uniformly mixed. When averaged over large (≳100-200 pc) scales, the extinction becomes consistent with a ''dust screen'', suggesting that other geometries tend to be restricted to more local scales. Moreover, the extinction in any region can be described by a combination of the foreground screen and the uniform mixture model with weights of 1/3 and 2/3 in the center (≲2 kpc), respectively, and 2/3 and 1/3 for the rest of the disk. This simple prescription significantly improves the accuracy of the dust extinction corrections and can be especially useful for pixel-based analyses of galaxies similar to M83.

  13. Dust and Smoke

    Atmospheric Science Data Center

    2014-05-15

    ... dust, the most common non-spherical aerosol type, from pollution and forest fire particles. Determining aerosol characteristics is a ... aerosol is quite thick, and in some places, the dust over water is too optically thick for MISR to retrieve the aerosol amount. For the ...

  14. Combustible dust tests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The sugar dust explosion in Georgia on February 7, 2008 killed 14 workers and injured many others (OSHA, 2009). As a consequence of this explosion, OSHA revised its Combustible Dust National Emphasis (NEP) program. The NEP targets 64 industries with more than 1,000 inspections and has found more tha...

  15. Space dust in Paris

    NASA Astrophysics Data System (ADS)

    2017-02-01

    Next time you take a stroll in Paris, Oslo or Berlin, you might be breathing in big particles of cosmic dust after a study led by earth scientist Matthew Genge from Imperial College London found tiny specks of space dust on the rooftops of the three European capitals.

  16. Dust resuspension without saltation

    PubMed Central

    Loosmore, Gwen A.; Hunt, James R.

    2010-01-01

    Wind resuspension (or entrainment) provides a source of dust and contaminants for the atmosphere. Conventional wind erosion models parameterize dust resuspension flux with a threshold velocity or with a horizontal abrasion flux; in the absence of abrasion the models assume dust flux is transient only. Our experiments with an uncrusted, fine material at relative humidities exceeding 40% show a long-term steady dust flux in the absence of abrasion, which fits the approximate form: Fd = 3.6(u*)3, where Fd is the dust flux (in μg/m2 s), and u* is the friction velocity (in m/s). These fluxes are generally too small to be significant sources of dust in most models of dust emission. However, they provide a potential route to transport contaminants into the atmosphere. In addition, dust release is substantial during the initial transient phase. Comparison with field data suggests that the particle friction Reynolds number may prove a better parameter than u* for correlating fluxes and understanding the potential for abrasion. PMID:20336175

  17. Dust in supernova remnants

    NASA Astrophysics Data System (ADS)

    Gomez, H.

    In this Review, I will discuss our changing view on supernovae as interstellar dust sources. In particular I will focus on infrared and submillimetre studies of the historical supernova remnants Cassiopeia A, the Crab Nebula, SN 1987A, Tycho and Kepler. In the last decade (and particularly in recent years), SCUBA, Herschel and ALMA have now demonstrated that core-collapse supernovae are prolific dust factories, with evidence of 0.1 - 0.7 M⊙ of dust formed in the ejecta, though there is little evidence (as yet) for significant dust production in Type Ia supernova ejecta. There is no longer any question that dust (and molecule) formation is efficient after some supernova events, though it is not clear how much of this will survive over longer timescales. Current and future instruments will allow us to investigate the spatial distribution of dust within corecollapse ejecta, and whether this component contributes a significant amount to the dust content of the Universe or if supernovae ultimately provide a net loss once dust destruction by shocks is taken into account.

  18. Supernova Dust Factories

    NASA Astrophysics Data System (ADS)

    Gomez, Haley; Consortium, MESS; LCOGT

    2013-01-01

    The origin of interstellar dust in galaxies is poorly understood, particularly the relative contribution from supernovae. We present infrared and submillimeter photometry and spectroscopy from the Herschel Space Observatory of the Galactic remnants Tycho, Kepler and the Crab Nebula, taken as part of the Mass Loss from Evolved StarS program (MESS). Although we detect small amounts of dust surrounding Tycho and Kepler (the remnants of Type Ia supernovae), we show this is due to swept-up interstellar and circumstellar material respectively. The lack of dust grains in the ejecta suggests that Type Ia remnants do not produce substantial quantities of iron-rich dust grains and has important consequences for the ‘missing’ iron mass observed in ejecta. After carefully subtracting the synchrotron and line emission from the Crab, the remaining far-infrared continuum originates from 0.1-0.2 solar masses of dust. These observations suggest that the Crab Nebula has condensed most of the relevant refractory elements into dust and that these grains appear well set to survive their journey into the interstellar medium. In summary, our Herschel observations show that significantly less dust forms in the ejecta of Type Ia supernovae than in the remnants of core-collapse explosions, placing stringent constraints on the environments in which dust and molecules can form.

  19. Talc dust pneumoconiosis.

    PubMed

    Berner, A; Gylseth, B; Levy, F

    1981-01-01

    Various types of mineral dust can induce interstitial pulmonary fibrosis, but there is no definite correlation between lung X-ray findings, tissue lesions and the type of dust. In this paper, we report on the post mortem verification of talcosis by lung tissue analysis, using light microscopy, scanning electron microscopy, energy dispersive x-ray microanalysis and x-ray diffractometry.

  20. Size-resolved dust flux measurements in a fallow wheat field from the Japan-Australia Dust Experiment (JADE)

    NASA Astrophysics Data System (ADS)

    Ishizuka, Masahide; Mikami, Masao; Leys, John F.; Shao, Yaping; Yamada, Yutaka; Heidenreich, Stephan

    2013-04-01

    The time- and size-resolved dust flux was observed by using optical particle counters and profile measurements of wind speed and air temperature on a dry, non-crusted fallow wheat field in Australia during the Japan-Australia Dust Experiment (JADE). Mineral dust emitted from the ground surface into the atmosphere by strong winds is transported around the globe and can have effects on cloud properties and thus on climate. Therefore not only on the amount of dust but also on the size of the dust particles is important. To evaluate the power n of the law linking dust flux to friction velocity according to the particle size, the time- and size-resolved number and mass concentrations were measured and dust flux along with the friction velocity was evaluated by a gradient method. This observation shows the simple relationship between diffusion dust flux and friction velocity using power law to address questions: what is the best value to use for the power n? Does the n has the particle size dependency? The dust concentration and dust flux fluctuated greatly with time, and the fluctuations corresponded well with fluctuations in u*. The trend of the relationship between friction velocity and dust flux was similar across all measured particle sizes. Size distributions of suspended dust particles at two different heights (1 and 3.5 m) had a similar shape and modal behavior. This is different from saltation sand particles. This result indicates that dust particles were transported by vertical turbulent eddy motions. As for dust mass flux, particles ranging in size from 2.0 to 8.4 μm composed 90% and particles from 0.6 to 2.0 μm composed 10%. While, finer dusts are dominant for number concentration. Number concentration and mass flux behave differently. The dust flux integrated from 0.6 to 8.4 μm in six bins fluctuated greatly, depending on friction velocity. When the power law equation was fitted to the data for each particle size range, the power n should be determined

  1. Dust evolution from comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1977-01-01

    The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of the evolution of cometary dust. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tails is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.

  2. Dust escape from Io

    NASA Astrophysics Data System (ADS)

    Flandes, Alberto

    2004-08-01

    The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.

  3. Lunar Dust Mitigation Screens

    NASA Astrophysics Data System (ADS)

    Knutson, Shawn; Holloway, Nancy

    With plans for the United States to return to the moon, and establish a sustainable human presence on the lunar surface many issues must be successfully overcome. Lunar dust is one of a number of issues with the potential to create a myriad of problems if not adequately addressed. Samples of dust brought back from Apollo missions show it to be soft, yet sharp and abrasive. The dust consists of a variety of morphologies including spherical, angular blocks, shards, and a number of irregular shapes. One of the main issues with lunar dust is its attraction to stick to anything it comes in contact with (i.e. astronauts, equipment, habitats, etc.). Ionized radiation from the sun strikes the moon's surface and creates an electrostatic charge on the dust. Further, the dust harbors van der Waals forces making it especially difficult to separate once it sticks to a surface. During the Apollo missions, it was discovered that trying to brush the lunar dust from spacesuits was not effective, and rubbing it caused degradation of the suit material. Further, when entering the lunar module after moonwalks, the astronauts noted that the dust was so prolific inside the cabin that they inhaled and ingested it, causing at least one of them, Harrison "Jack" Schmidt, to report irritation of the throat and lungs. It is speculated that the dust could also harm an astronaut's nervous and cardiovascular systems, especially during an extended stay. In addition to health issues, the dust can also cause problems by scouring reflective coatings off of thermal blankets, and roughening surfaces of windows and optics. Further, panels on solar cells and photovoltaics can also be compromised due to dust sticking on the surfaces. Lunar dust has the capacity to penetrate seals, interfere with connectors, as well as mechanisms on digging machines, all of which can lead to problems and failure. To address lunar dust issues, development of electrostatic screens to mitigate dust on sur-faces is currently

  4. CMB Foreground Surveys with the New Sensitive Wideband Continuum Backend on the Green Bank Telescope

    NASA Astrophysics Data System (ADS)

    Mason, B.; Weintraub, L.; Pearson, T.; Sievers, J.; Shepherd, M.; Readhead, A.

    2005-12-01

    The California Institute of Technology and the National Radio Astronomy Observatory have constructed a new continuum backend for use with the 26 to 40 GHz pseudo-correlation receiver on the Green Bank Telescope (GBT). The backend simultaneously measures RF power across the full 14 GHz receiver band in two feeds and two polarizations, and is capable of executing a rapid beam switch to suppress the effects of receiver gain fluctuations. Combined with the GBT's large and excellent surface the CCB will give unprecedented cm-wave sensitivity to study CMB discrete-source foregrounds and very small-scale anisotropies. We present an overview of the instrument and our early science program, which aims to more precisely measure the small-scale excess power seen by the Cosmic Background Imager.

  5. Foregrounding Sociomaterial Practice in Our Understanding of Affordances: The Skilled Intentionality Framework

    PubMed Central

    van Dijk, Ludger; Rietveld, Erik

    2017-01-01

    Social coordination and affordance perception always take part in concrete situations in real life. Nonetheless, the different fields of ecological psychology studying these phenomena do not seem to make this situated nature an object of study. To integrate both fields and extend the reach of the ecological approach, we introduce the Skilled Intentionality Framework that situates both social coordination and affordance perception within the human form of life and its rich landscape of affordances. We argue that in the human form of life the social and the material are intertwined and best understood as sociomateriality. Taking the form of life as our starting point foregrounds sociomateriality in each perspective we take on engaging with affordances. Using ethnographical examples we show how sociomateriality shows up from three different perspectives we take on affordances in a real-life situation. One perspective shows us a landscape of affordances that the sociomaterial environment offers. Zooming in on this landscape to the perspective of a local observer, we can focus on an individual coordinating with affordances offered by things and other people situated in this landscape. Finally, viewed from within this unfolding activity, we arrive at the person’s lived perspective: a field of relevant affordances solicits activity. The Skilled Intentionality Framework offers a way of integrating social coordination and affordance theory by drawing attention to these complementary perspectives. We end by showing a real-life example from the practice of architecture that suggests how this situated view that foregrounds sociomateriality can extend the scope of ecological psychology to forms of so-called “higher” cognition. PMID:28119638

  6. First Detection of a Foreground Damped Ly-Alpha Absorber Along a GRB Line of Sight?

    NASA Technical Reports Server (NTRS)

    Vreeswijk, P. M.; Fruchter, A. S.; Pian, E.; Rol, E.; Wijers, R. A. M. J.; Kouveliotou, C.; Kaper, L.; Palazzi, E.; Masetti, N.; Frontera, F.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    We present a VLT spectrum of the optical afterglow of GRB 991216, taken 1.5 days after the burst, and HST (Hubble Space Telescope) imaging of the host galaxy, obtained four months later. The spectrum contains three metal absorption-line systems with redshifts z = 1.024, z = 0.803, and z = 0.771, where the highest redshift most likely reflects the distance to the host galaxy. For the z = 1.024 and z = 0.803 systems we tentatively detect MgI which suggests a dense environment at these redshifts. This and the strength of the z = 0.803 Fe lines indicate that this system very likely is a damped Ly-alpha absorber (DLA), which would be the first foreground DLA to be detected along a GRB afterglow sight line. The HST images are consistent with these findings: they show two blobs of light, one underneath the projected OT position, the presumed host galaxy, and the other 0.6" away, which is probably responsible for the absorption lines at z = 0.803. The lowest redshift system can be explained by either one of the two galaxies that are located roughly 2" away from the transient. Including these newly found systems, the total number of DLAS and Lyman limit systems along GRB afterglow sight lines is consistent with the number expected from QSO (quasi-stellar object) absorption line studies. We expect early spectroscopy of GRB afterglows to significantly increase the number of detected foreground absorption systems, and we discuss some advantages over QSO lines of sight.

  7. STS-65 Earth observation of dust plumes from Rio Grande in Southern Bolivia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of dust plumes from the Rio Grande in Southern Bolivia. A series of dust plumes can be seen rising from sand banks in the Rio Grande of southern Bolivia, bottom right of this northeast-looking view. The Rio Grande brings sediment from the Andes (foothills visible in the foreground, bottom left) and flows across the flat country of the northern Chaco plain. During the low-flow season, sand banks of this sediment are exposed to northerly winds which often blow dust into the surrounding forest. One of the significances of the dust plumes is that dust acts as a source of nutrient for the local soils. This is the most impressive example of dust ever recorded on Shuttle photography from this river. Such plumes have been seen on photographs from four previous missions (STS-31, STS-47, STS-48, STS-51I) emanating from the Rio Grande. The plumes are regularly space because the sand is blown only from those reaches of th

  8. Self-diffusion in a stochastically heated two-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2016-09-01

    Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust-dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.

  9. Dust Devil Dynamics

    NASA Astrophysics Data System (ADS)

    Horton, W.; Miura, H.

    2008-11-01

    A dust devil is a rotating updraft, with coherent structures ranging from small (H/D ˜ 5m/1m) to large (H/D ˜ 1000 m/10 m). Common in west Texas and Arizona, dust devils are formed unstable stratification of the air by solar heating over a sandy floor. Unstable gravity waves grow exponentially in the low density, hot air, rising into the upper layer of stably stratified atmosphere creating the large, 3D vortex. Dust devils are common on Mars. On Earth radio noise and electrical fields greater than 100kV/m are inferred [Kok J. F., N. O. Renno (2006), Geophys. Res. Lett., 33, L19S10]. Dust devils pick up small dirt and dust particles. The whirling charged dust particles (30 -50 microns) create a magnetic field that fluctuates between 3 and 30 times each second. The electric fields created assist the vortices in lifting materials off the ground and into the atmosphere. We use the theory and simulation tools of fusion plasma physics to describe dust devils. The Grad-Shafranov equation governs the vorticity dynamics and gives a solution for steady axisymmetric flows. The high core velocity is limited by the vortex model with viscous dissipation. The Reynolds number is not large, so these structures are well represented with super computers, in contrast to collisionless plasmas. 1mm Research supported by NIFS, Japan and the NSF through ATM-0638480 at UT Austin.

  10. Diffusion coefficient of three-dimensional Yukawa liquids

    SciTech Connect

    Dzhumagulova, K. N.; Ramazanov, T. S.; Masheeva, R. U.

    2013-11-15

    The purpose of this work is an investigation of the diffusion coefficient of the dust component in complex plasma. The computer simulation of the Yukawa liquids was made on the basis of the Langevin equation, which takes into account the influence of buffer plasma on the dust particles dynamics. The Green–Kubo relation was used to calculate the diffusion coefficient. Calculations of the diffusion coefficient for a wide range of the system parameters were performed. Using obtained numerical data, we constructed the interpolation formula for the diffusion coefficient. We also show that the interpolation formula correctly describes experimental data obtained under microgravity conditions.

  11. Quasi-Equilibrium Density Distributions of Small Dust Aggregations in the Solar Nebula

    NASA Astrophysics Data System (ADS)

    Sekiya, Minoru

    1998-06-01

    The rotational velocity of a fluid element around the midplane of the solar nebula increased as dust settled toward the midplane. The Kelvin and Helmholtz instability due to velocity difference of a dust-rich region and a dust-poor region should have occurred and the dust layer became turbulent when the Richardson number decreased below the critical value. Then, dust aggregations stirred up due to turbulent diffusion and were prevented to settle further. In this paper, the sizes of dust aggregations are assumed to be equal to or smaller than the typical radius of chondrules (∼0.3 mm). In this case, even very weak turbulence stirs up dust aggregations. Therefore a dust density distribution is considered to be self regulated so that the Richardson number is nearly equal to the critical value. The quasi-equilibrium dust density distribution is derived analytically by assuming that the Richardson number is equal to the critical value. The derived dust density at the midplane is much smaller than the critical density of the gravitational stability, if the solar composition of dust to gas ratio is assumed. On the other hand, the dust aggregations concentrate around the midplane and the dust layer becomes gravitationally unstable, if more than 97% (at 1 AU from the Sun) of the gaseous components have been dissipated from the nebula, leaving dusty components. Two alternative scenarios of planetesimal formation are proposed: planetesimals were formed by (1) mutual sticking of dust aggregations by nongravitational forces or by (2) gravitational instabilities in the nebula where the dust to gas ratio is much larger than the ratio with solar elemental abundance. Case (2) might be realized due to dissipation of the nebular gas and/or addition of dust by the bipolar outflow. In case (1), chondrule sizes do not indicate the maximum size of dust aggregations in the solar nebula.

  12. EXPLORING THE COSMIC REIONIZATION EPOCH IN FREQUENCY SPACE: AN IMPROVED APPROACH TO REMOVE THE FOREGROUND IN 21 cm TOMOGRAPHY

    SciTech Connect

    Wang, Jingying; Xu, Haiguang; Guo, Xueying; Li, Weitian; Liu, Chengze; An, Tao; Wang, Yu; Gu, Junhua; Martineau-Huynh, Olivier; Wu, Xiang-Ping E-mail: zishi@sjtu.edu.cn

    2013-02-15

    With the intent of correctly restoring the redshifted 21 cm signals emitted by neutral hydrogen during the cosmic reionization processes, we re-examine the separation approaches based on the quadratic polynomial fitting technique in frequency space in order to investigate whether they work satisfactorily with complex foreground by quantitatively evaluating the quality of restored 21 cm signals in terms of sample statistics. We construct the foreground model to characterize both spatial and spectral substructures of the real sky, and use it to simulate the observed radio spectra. By comparing between different separation approaches through statistical analysis of restored 21 cm spectra and corresponding power spectra, as well as their constraints on the mean halo bias b and average ionization fraction x{sub e} of the reionization processes, at z = 8 and the noise level of 60 mK we find that although the complex foreground can be well approximated with quadratic polynomial expansion, a significant part of the Mpc-scale components of the 21 cm signals (75% for {approx}> 6 h {sup -1} Mpc scales and 34% for {approx}> 1 h {sup -1} Mpc scales) is lost because it tends to be misidentified as part of the foreground when the single-narrow-segment separation approach is applied. The best restoration of the 21 cm signals and the tightest determination of b and x{sub e} can be obtained with the three-narrow-segment fitting technique as proposed in this paper. Similar results can be obtained at other redshifts.

  13. The Youth Worker as Jazz Improviser: Foregrounding Education "In the Moment" within the Professional Development of Youth Workers

    ERIC Educational Resources Information Center

    Harris, Pete

    2014-01-01

    This paper argues for the foregrounding of improvisation and education "in the moment" within youth workers' professional development. Devised in collaboration with third-year Youth and Community Work students and lecturers at a university in Birmingham, this participatory action research project drew on work of jazz ethnomusicologists…

  14. NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A

    NASA Astrophysics Data System (ADS)

    Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Zhang, Lan; Sicilia-Aguilar, Aurora; Alonso-Martínez, Miguel; Eiroa, Carlos; Wang, Hongchi

    2017-04-01

    We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018–0.030 M ⊙, which harbors a flaring disk. Using the Hα emission line, we characterize the accretion activity of the sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46% ± 7% versus 73% ± 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1–2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.

  15. Diffusion MRI

    NASA Astrophysics Data System (ADS)

    Fukuyama, Hidenao

    Recent advances of magnetic resonance imaging have been described, especially stressed on the diffusion sequences. We have recently applied the diffusion sequence to functional brain imaging, and found the appropriate results. In addition to the neurosciences fields, diffusion weighted images have improved the accuracies of clinical diagnosis depending upon magnetic resonance images in stroke as well as inflammations.

  16. Dust storms: recent developments.

    PubMed

    Goudie, Andrew S

    2009-01-01

    Dust storms have a number of impacts upon the environment including radiative forcing, and biogeochemical cycling. They transport material over many thousands of kilometres. They also have a range of impacts on humans, not least on human health. In recent years the identification of source areas for dust storms has been an important area or research, with the Sahara (especially Bodélé) and western China being recognised as the strongest sources globally. Another major development has been the recognition of the degree to which dust storm activity has varied at a range of time scales, millennial, century, decadal, annual and seasonal.

  17. Spirit Feels Dust Gust

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On sol 1149 (March 28, 2007) of its mission, NASA's Mars Exploration Rover Spirit caught a wind gust with its navigation camera. A series of navigation camera images were strung together to create this movie. The front of the gust is observable because it was strong enough to lift up dust. From assessing the trajectory of this gust, the atmospheric science team concludes that it is possible that it passed over the rover. There was, however, no noticeable increase in power associated with this gust. In the past, dust devils and gusts have wiped the solar panels of dust, making it easier for the solar panels to absorb sunlight.

  18. Dust Mite Allergy

    MedlinePlus

    ... a pollen allergy may be noticeable because the allergy is seasonal. For example, you may have more difficulty managing your asthma for a short time during the summer. Dust mite allergy, on the other hand, is due to something ...

  19. 1983 Transatlantic Dust Event

    NASA Video Gallery

    This visualization (prepared in 2001) shows dust being blown westward over the Atlantic from northern Africa in early 1983, from aerosol measurements taken by Nimbus 7's TOMS instrument. Saharan du...

  20. Composite circumstellar dust grains

    NASA Astrophysics Data System (ADS)

    Gupta, Ranjan; Vaidya, Dipak B.; Dutta, Rajeshwari

    2016-10-01

    We calculate the absorption efficiencies of composite silicate grains with inclusions of graphite and silicon carbide in the spectral range 5-25 μm. We study the variation in absorption profiles with volume fractions of inclusions. In particular we study the variation in the wavelength of peak absorption at 10 and 18 μm. We also study the variation of the absorption of porous silicate grains. We use the absorption efficiencies to calculate the infrared flux at various dust temperatures and compare with the observed infrared emission flux from the circumstellar dust around some M-type and asymptotic giant branch stars obtained from IRAS and a few stars from Spitzer satellite. We interpret the observed data in terms of the circumstellar dust grain sizes, shape, composition and dust temperature.

  1. Dust evolution from comets

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1976-01-01

    The studies of the evolution of cometary debris are reviewed. The subject is divided into three major sections: (1) the developments in the immediate vicinity of the cometary nucleus, which is the source of the dust; (2) the formation of the dust tail; and (3) the blending of the debris with the dust component of interplanetary matter. The importance of the physical theory of comets is emphasized for the understanding of the early phase of evolution. A physico-dynamical model designed to analyze the particle-emission mechanism from the distribution of light in the dust tail is described and the results are presented. Increased attention is paid to large particles because of their importance for the evolution of the zodiacal cloud. Finally, implications are discussed for the future in situ investigations of comets.

  2. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  3. The Lunar Dust Pendulum

    NASA Technical Reports Server (NTRS)

    Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.

    2011-01-01

    Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.

  4. Adhesion of Lunar Dust

    NASA Technical Reports Server (NTRS)

    Walton, Otis R.

    2007-01-01

    This paper reviews the physical characteristics of lunar dust and the effects of various fundamental forces acting on dust particles on surfaces in a lunar environment. There are transport forces and adhesion forces after contact. Mechanical forces (i.e., from rover wheels, astronaut boots and rocket engine blast) and static electric effects (from UV photo-ionization and/or tribo-electric charging) are likely to be the major contributors to the transport of dust particles. If fine regolith particles are deposited on a surface, then surface energy-related (e.g., van der Walls) adhesion forces and static-electric-image forces are likely to be the strongest contributors to adhesion. Some measurement techniques are offered to quantify the strength of adhesion forces. And finally some dust removal techniques are discussed.

  5. Where are the Dust Tori of Mars? - A Possible Role of Stochastic Effects

    NASA Astrophysics Data System (ADS)

    Makuch, M.; Brilliantov, N. V.; Spahn, F.; Krivov, A. V.

    2005-08-01

    Dust tori around Mars were predicted theoretically several decades ago, but still escape direct detection. On the base of our recent analytical and numerical studies we re-assess expected properties of the dust belts. In addition to deterministic models developed before we investigate the influence of stochastic effects on the dynamics, lifetimes of particles, and configuration of the dust tori. There exist various sources of stochasticity. For instance, we consider the influence of solar radiation on an ensemble of differently-shaped dust particles. Following the ergodic hypothesis, the dynamics of a single dust grain exposed to fluctuating radiation mimics the stochastic evolution of the whole ensemble. Further, we study the action of the planetary shadow on the dynamics of dust particles, a perturbation which turns out to be stochastic. Additional stochastic perturbations of deterministic dust trajectories are expected to be caused by different material properties of the dust grains, fluctuations of the solar wind, and the related magnetic field. As a result the fluctuating forces cause a diffusion of the dust configuration whose related fluxes can be estimated from our numerical experiments. This effect leads to a decrease of the expected optical depth of the tori, which is mainly determined by the strength of the stochastic force. We will provide estimates for the latter resulting in a diffusion coefficient. This will give new information about change of the configuration and lifetimes of the Martian dust-tori.

  6. Comments on Dust Reverberation

    NASA Astrophysics Data System (ADS)

    Peterson, B.

    2015-09-01

    Dust reverberation is an important technique for studying the inner structure of AGNs and probing the properties of astrophysical dust, and even has some potential as a cosmological probe. We will discuss two recent results that pose a serious limitation to understanding dust reverberation at the present time. First, recent high-cadence monitoring of the UV and optical continuum in two AGNs, NGC 2617 and NGC 5548, have yielded unambiguous lags between variations of the UV continuum and corresponding variations of the continuum at longer wavelengths. In the absence of UV data, this leads to a systematic underestimate of the innermost radius where dust is found. This similarly leads to an underestimate of the size of the broad emission-line region, although it does not affect the AGN black hole mass scale, which calibrates out this effect. Second, broad-band monitoring of continuum variations in the optical through near-IR show that the innermost dust is not necessarily at the 'instantaneous sublimation radius.' The innermost dust can be considerably cooler than expected at the sublimation radius and thus can heat up without sublimating when the central continuum source becomes more luminous (see the poster by Pott).

  7. The Galileo Dust Detector

    NASA Technical Reports Server (NTRS)

    Gruen, Eberhard; Fechtig, Hugo; Hanner, Martha S.; Kissel, Jochen; Lindblad, Bertil-Anders; Linkert, Dietmar; Maas, Dieter; Morfill, Gregor E.; Zook, Herbert A.

    1992-01-01

    The Galileo Dust Detector is intended to provide direct observations of dust grains with masses between 10 exp -19 and 10 exp -9 kg in interplanetary space and in the Jovian system, to investigate their physical and dynamical properties as functions of the distances to the sun, to Jupiter and to its satellites, and to study its interaction with the Galilean satellites and the Jovian magnetosphere. The investigation is performed with an instrument that measures the mass, speed, flight direction and electric charge of individual dust particles. It is a multicoincidence detector with a mass sensitivity 1 000 000 times higher than that of previous in situ experiments which measured dust in the outer solar system. The instrument weighs 4.2 kg, consumes 2.4 W, and has a normal data transmission rate of 24 bits/s in nominal spacecraft tracking mode. On December 29, 1989 the instrument was switched-on. After the instrument had been configured to flight conditions cruise science data collection started immediately. In the period to May 18, 1990 at least 168 dust impacts have been recorded. For 81 of these dust grains masses and impact speeds have been determined. First flux values are given.

  8. Hebes Chasma Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in Hebes Chasma.

    Image information: VIS instrument. Latitude -1.4, Longitude 286.6 East (73.4 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  9. Selecting baghouse dust collectors

    SciTech Connect

    Moore, S.; Rubak, J.; Jolin, M. |

    1996-10-01

    Control of nuisance or process dusts generated within a plant is a vital concern with today`s growing emphasis on indoor air quality. In the past, many companies simply moved these contaminants away from workers and discharged them into the atmosphere. More stringent pollution control requirements now make this course of action unacceptable. Also, in some cases there is a need to recover high-value dusts, such as chemicals or precious metals. As a result, proper design and selection of a dust collection system are more critical than ever. There are two types of fabric filter dust collection systems commonly used today: baghouses and cartridges. Baghouses were the first collection systems with fabric media (in the form of long tubes, or bags) for removal of contaminants. The versatility of the baghouse--coupled with constant technological refinements--have made it a long-standing favorite among specifiers of pollution control equipment. In fact, baghouses account for more than 80% of all fabric filter dust collection systems in use today. Cartridge dust collectors use rigidly pleated filter elements instead of bags, making it possible to accommodate a large amount of filter surface area in a comparatively small package. Cartridge collectors also offer high efficiency and low pressure drop.

  10. Influence of Planck foreground masks in the large angular scale quadrant CMB asymmetry

    NASA Astrophysics Data System (ADS)

    Santos, L.; Cabella, P.; Villela, T.; Zhao, W.

    2015-12-01

    Context. The measured cosmic microwave background (CMB) angular distribution shows high consistency with the ΛCDM model, which predicts cosmological isotropy as one of its fundamental characteristics. However, isotropy violations were reported in CMB temperature maps of the Wilkinson Microwave Anisotropy Probe (WMAP) and confirmed by Planck satellite data. Aims: Our purpose is to investigate the influence of different sky cuts (masks) employed in the analysis of CMB angular distribution, in particular in the excess of power in the southeastern quadrant (SEQ) and the lack of power in the northeastern quadrant (NEQ), found in both WMAP and Planck data. Methods: We compared the two-point correlation function (TPCF) computed for each quadrant of the CMB foreground-cleaned temperature maps to 1000 Monte Carlo (MC) simulations generated assuming the ΛCDM best-fit power spectrum using four different masks, from the least to the most severe one: mask-rulerminimal, UT78, U73, and U66. In addition to the quadrants and for a better understanding of these anomalies, we computed the TPCF using the mask-rulerminimal for circular regions in the map where the excess and lack of power are present. We also compared, for completeness, the effect of Galactic cuts (+/-10, 20, 25, and 30 degrees above/below the Galactic plane) in the TPCF calculations as compared to the MC simulations. Results: We found consistent results for three masks, namely mask-rulerminimal, U73, and U66. The results indicate that the excess of power in the SEQ tends to vanish as the portion of the sky covered by the mask increases and the lack of power in the NEQ remains virtually unchanged. A different result arises for the newly released UT78 Planck mask. When this mask is applied, the NEQ is no longer anomalous. On the other hand, the excess of power in the SEQ becomes the most significant one among the masks. Nevertheless, the asymmetry between the SEQ and NEQ is independent of the mask and it disagrees

  11. Newton to Einstein — dust to dust

    SciTech Connect

    Kopp, Michael; Uhlemann, Cora; Haugg, Thomas E-mail: cora.uhlemann@physik.lmu.de

    2014-03-01

    We investigate the relation between the standard Newtonian equations for a pressureless fluid (dust) and the Einstein equations in a double expansion in small scales and small metric perturbations. We find that parts of the Einstein equations can be rewritten as a closed system of two coupled differential equations for the scalar and transverse vector metric perturbations in Poisson gauge. It is then shown that this system is equivalent to the Newtonian system of continuity and Euler equations. Brustein and Riotto (2011) conjectured the equivalence of these systems in the special case where vector perturbations were neglected. We show that this approach does not lead to the Euler equation but to a physically different one with large deviations already in the 1-loop power spectrum. We show that it is also possible to consistently set to zero the vector perturbations which strongly constrains the allowed initial conditions, in particular excluding Gaussian ones such that inclusion of vector perturbations is inevitable in the cosmological context. In addition we derive nonlinear equations for the gravitational slip and tensor perturbations, thereby extending Newtonian gravity of a dust fluid to account for nonlinear light propagation effects and dust-induced gravitational waves.

  12. Scattered, extinguished, emitted: Three views of the dust in Perseus

    NASA Astrophysics Data System (ADS)

    Foster, Jonathan Bruce

    Dust in star-forming regions is both a blessing and a curse. By shrouding young stars it inhibits our study of their birth, yet without dust we would have an impoverished view of the structure of the molecular cloud before it collapses to form a protostar--the initial conditions of the problem of star formation. Though less than 1% of the mass of a molecular cloud, dust is a reliable tracer of the invisible H 2 which makes up the vast majority of the material. Other molecules can trace the H 2 distribution, and are useful in the appropriate regime, but all are confounded by the complications of chemistry, excitation conditions, and depletion, processes which have little effect on dust. Interpreting observations of dust is not entirely straightforward. We do not have a comprehensive theory of dust which explains the size distribution and mineralogical composition of dust in the diverse environments where it is present, from the diffuse ISM to the proto-planetary disks around young stars. Lacking such a theory, it is surprising that models of dust are nonetheless able to reproduce many of the observational constraints imposed upon them. Among these constraints are direct capture of dust grains, spectral features, extinction of background light, scattering, and thermal emission. In this thesis I (1) describe a method to use scattered ambient galactic light to map dense cores with unprecedented high resolution; (2) extend near-infrared extinction mapping by incorporating background galaxies; (3) demonstrate a relation between column density and changes in the extinction law, which is evidence of grain growth; (4) report on a study using NH 3 temperatures to more precisely interpret a thermal emission map at 1.1-mm; and (5) apply all these different techniques to a single starless region in order to compare them and learn something both about dust and the initial conditions of star formation.

  13. Experimental Determination of Infrared Extinction Coefficients of Interplanetary Dust Particles

    NASA Technical Reports Server (NTRS)

    Spann, J. F., Jr.; Abbas, M. M.

    1998-01-01

    This technique is based on irradiating a single isolated charged dust particle suspended in balance by an electric field, and measuring the scattered radiation as a function of angle. The observed scattered intensity profile at a specific wavelength obtained for a dust particle of known composition is compared with Mie theory calculations, and the variable parameters relating to the particle size and complex refractive index are adjusted for a best fit between the two profiles. This leads to a simultaneous determination of the particle radius, the complex refractive index, and the scattering and extinction coefficients. The results of these experiments can be utilized to examine the IRAS and DIRBE (Diffuse Infrared Background Experiment) infrared data sets in order to determine the dust particle physical characteristics and distributions by using infrared models and inversion techniques. This technique may also be employed for investigation of the rotational bursting phenomena whereby large size cosmic and interplanetary particles are believed to fragment into smaller dust particles.

  14. Coal mine dust lung disease. New lessons from old exposure.

    PubMed

    Petsonk, Edward L; Rose, Cecile; Cohen, Robert

    2013-06-01

    Coal mining remains a sizable industry, with millions of working and retired coal miners worldwide. This article provides an update on recent advances in the understanding of respiratory health issues in coal miners and focuses on the spectrum of disease caused by inhalation of coal mine dust, termed coal mine dust lung disease. In addition to the historical interstitial lung diseases (coal worker's pneumoconiosis, silicosis, and mixed dust pneumoconiosis), coal miners are at risk for dust-related diffuse fibrosis and chronic airway diseases, including emphysema and chronic bronchitis. Recent recognition of rapidly progressive pneumoconiosis in younger miners, mainly in the eastern United States, has increased the sense of urgency and the need for vigilance in medical research, clinical diagnosis, and exposure prevention. Given the risk for disease progression even after exposure removal, along with few medical treatment options, there is an important role for chest physicians in the recognition and management of lung disease associated with work in coal mining.

  15. A fast combination calibration of foreground and background for pipelined ADCs

    NASA Astrophysics Data System (ADS)

    Kexu, Sun; Lenian, He

    2012-06-01

    This paper describes a fast digital calibration scheme for pipelined analog-to-digital converters (ADCs). The proposed method corrects the nonlinearity caused by finite opamp gain and capacitor mismatch in multiplying digital-to-analog converters (MDACs). The considered calibration technique takes the advantages of both foreground and background calibration schemes. In this combination calibration algorithm, a novel parallel background calibration with signal-shifted correlation is proposed, and its calibration cycle is very short. The details of this technique are described in the example of a 14-bit 100 Msample/s pipelined ADC. The high convergence speed of this background calibration is achieved by three means. First, a modified 1.5-bit stage is proposed in order to allow the injection of a large pseudo-random dithering without missing code. Second, before correlating the signal, it is shifted according to the input signal so that the correlation error converges quickly. Finally, the front pipeline stages are calibrated simultaneously rather than stage by stage to reduce the calibration tracking constants. Simulation results confirm that the combination calibration has a fast startup process and a short background calibration cycle of 2 × 221 conversions.

  16. Cosmic Microwave Background Small-Scale Structure: II. Model of the Foreground Emission

    NASA Astrophysics Data System (ADS)

    Verschuur, Gerrit L.; Schmelz, Joan T.

    2017-01-01

    We have investigated the possibility that a population of galactic electrons may contribute to the small-scale structure in the cosmic microwave background (CMB) found by WMAP and PLANCK. Model calculations of free-free emission from these electrons which include beam dilution produce a nearly flat spectrum. Data at nine frequencies from 22 to 100 GHz were fit with the model, which resulted in excellent values of reduced chi squared. The model involves three unknowns: electron excitation temperature, angular extent of the sources of emission, and emission measure. The resulting temperatures agree with the observed temperatures of related HI features. The derived angular extent of the continuum sources corresponds well with the observed angular extent of HI filamentary structures in the areas under consideration. The derived emission measures can be used to determine the fractional ionization along the path lengths through the emitting volumes of space. Understanding the role that free-free emission plays in the small-scale features observed by PLANCK and WMAP should allow us to create better masks of the galactic foreground. Pursuing such discoveries may yet transform our understanding of the origins of the universe.

  17. Using foreground/background analysis to determine leaf and canopy chemistry

    NASA Technical Reports Server (NTRS)

    Pinzon, J. E.; Ustin, S. L.; Hart, Q. J.; Jacquemoud, S.; Smith, M. O.

    1995-01-01

    Spectral Mixture Analysis (SMA) has become a well established procedure for analyzing imaging spectrometry data, however, the technique is relatively insensitive to minor sources of spectral variation (e.g., discriminating stressed from unstressed vegetation and variations in canopy chemistry). Other statistical approaches have been tried e.g., stepwise multiple linear regression analysis to predict canopy chemistry. Grossman et al. reported that SMLR is sensitive to measurement error and that the prediction of minor chemical components are not independent of patterns observed in more dominant spectral components like water. Further, they observed that the relationships were strongly dependent on the mode of expressing reflectance (R, -log R) and whether chemistry was expressed on a weight (g/g) or are basis (g/sq m). Thus, alternative multivariate techniques need to be examined. Smith et al. reported a revised SMA that they termed Foreground/Background Analysis (FBA) that permits directing the analysis along any axis of variance by identifying vectors through the n-dimensional spectral volume orthonormal to each other. Here, we report an application of the FBA technique for the detection of canopy chemistry using a modified form of the analysis.

  18. Griffith diffusers

    NASA Technical Reports Server (NTRS)

    Yang, T.-T.; Nelson, C. D.

    1979-01-01

    Contoured wall diffusers are designed by using an inverse method. The prescribed wall velocity distribution(s) was taken from the high lift airfoil designed by A. A. Griffith in 1938; therefore, such diffusers are named Griffith diffusers. First the formulation of the inverse problem and the method of solution are outlined. Then the typical contour of a two-dimensional diffuser and velocity distributions across the flow channel at various stations are presented. For a Griffith diffuser to operate as it is designed, boundary layer suction is necessary. Discussion of the percentage of through-flow required to be removed for the purpose of boundary layer control is given. Finally, reference is made to the latest version of a computer program for a two-dimensional diffuser requiring only area ratio, nondimensional length and suction percentage as inputs.

  19. Fractal dust grains in plasma

    SciTech Connect

    Huang, F.; Peng, R. D.; Liu, Y. H.; Chen, Z. Y.; Ye, M. F.; Wang, L.

    2012-09-15

    Fractal dust grains of different shapes are observed in a radially confined magnetized radio frequency plasma. The fractal dimensions of the dust structures in two-dimensional (2D) horizontal dust layers are calculated, and their evolution in the dust growth process is investigated. It is found that as the dust grains grow the fractal dimension of the dust structure decreases. In addition, the fractal dimension of the center region is larger than that of the entire region in the 2D dust layer. In the initial growth stage, the small dust particulates at a high number density in a 2D layer tend to fill space as a normal surface with fractal dimension D = 2. The mechanism of the formation of fractal dust grains is discussed.

  20. Magnification of photometric LRGs by foreground LRGs and clusters in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Bauer, Anne H.; Gaztañaga, Enrique; Martí, Pol; Miquel, Ramon

    2014-06-01

    The magnification effect of gravitational lensing is a powerful probe of the distribution of matter in the universe, yet it is frequently overlooked due to the fact that its signal-to-noise ratio is smaller than that of lensing shear. Because its systematic errors are quite different from those of shear, magnification is nevertheless an important approach with which to study the distribution of large-scale structure. We present lensing mass profiles of spectroscopic luminous red galaxies (LRGs) and galaxy clusters determined through measurements of the weak lensing magnification of photometric LRGs in their background. We measure the change in detected galaxy counts as well as the increased average galaxy flux behind the lenses. In addition, we examine the average change in source colour due to extinction by dust in the lenses. By simultaneously fitting these three probes we constrain the mass profiles and dust-to-mass ratios of the lenses in six bins of lens richness. For each richness bin we fit a Navarro-Frenk-White halo mass, brightest cluster galaxy mass, second halo term, and dust-to-mass ratio. The resulting mass-richness relation is consistent with previous analyses of the catalogues, and limits on the dust-to-mass ratio in the lenses are in agreement with expectations. We explore the effects of including the (low signal-to-noise ratio) flux magnification and reddening measurements in the analysis compared to using only the counts magnification data; the additional probes significantly improve the agreement between our measured mass-richness relation and previous results.

  1. Full-sky, High-resolution Maps of Interstellar Dust

    NASA Astrophysics Data System (ADS)

    Meisner, Aaron Michael

    We present full-sky, high-resolution maps of interstellar dust based on data from the Wide-field Infrared Survey Explorer (WISE) and Planck missions. We describe our custom processing of the entire WISE 12 micron All-Sky imaging data set, and present the resulting 15 arcsecond resolution, full-sky map of diffuse Galactic dust emission, free of compact sources and other contaminating artifacts. Our derived 12 micron dust map offers angular resolution far superior to that of all other existing full-sky, infrared dust emission maps, revealing a wealth of small-scale filamentary structure. We also apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. We derive full-sky 6.1 arcminute resolution maps of dust optical depth and temperature by fitting this two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. In doing so, we obtain the first ever full-sky 100-3000 GHz Planck-based thermal dust emission model, as well as a dust temperature correction with ~10 times enhanced angular resolution relative to DIRBE-based temperature maps. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration (2013) single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales. Future work will focus on combining

  2. The effects of dust scattering on high-resolution X-ray absorption edge structure

    NASA Astrophysics Data System (ADS)

    Corrales, L.; García, J.; Wilms, J.; Baganoff, F.

    2016-06-01

    High energy studies of astrophysical dust complement observations of dusty interstellar gas at other wavelengths. With high resolution X-ray spectroscopy, dust scattering significantly enhances the total extinction optical depth and alters the shape of photoelectric absorption edges. This effect is modulated by the dust grain size distribution, spatial location along the line of sight, and the imaging resolution of the X-ray telescope. At soft energies, the spectrum of scattered light is likely to have significant features at the 0.3 keV (C-K), 0.5 keV (O-K), and 0.7 keV (Fe-L) photoelectric absorption edges. This direct probe of ISM dust grain elements will be important for (i) understanding the relative abundances of graphitic grains or PAHs versus silicates, and (ii) measuring the depletion of gas phase elements into solid form. We focus in particular on the Fe-L edge, fitting a template for the total extinction to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. We discuss ways in which spectroscopy with XMM can yield insight into dust obscured objects such as stars, binaries, AGN, and foreground quasar absorption line systems.

  3. Determining inert content in coal dust/rock dust mixture

    DOEpatents

    Sapko, Michael J.; Ward, Jr., Jack A.

    1989-01-01

    A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

  4. Radiative transfer in dusty nebulae. III - The effects of dust albedo

    NASA Technical Reports Server (NTRS)

    Petrosian, V.; Dana, R. A.

    1980-01-01

    The effects of an albedo of internal dust, such as ionization structure and temperature of dust grain, were studied by the quasi-diffusion method with an iterative technique for solving the radiative heat transfer equations. It was found that the generalized on-the-spot approximation solution is adequate for most astrophysical applications for a zero albedo; for a nonzero albedo, the Eddington approximation is more accurate. The albedo increases the average energy of the diffuse photons, increasing the ionization level of hydrogen and heavy elements if the Eddington approximation is applied; the dust thermal gradient is reduced so that the infrared spectrum approaches blackbody spectrum with an increasing albedo.

  5. Connecting the Different Signatures of Interstellar Dust at Low Redshift: A Benchmark for Comparison to the Distant Universe

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha

    use Spitzer IRS spectra to measure the 9.7 and 18 micron silicate absorption features. (2) We will analyze HST/IUE UV spectra to measure the 2175 A carbonaceous dust features along the same sightlines that have the silicate measurements. (3) We will use the available Spitzer, Herschel, HST, and SDSS images of the background AGN to derive extinction curves of dust in the foreground galaxies. (4) We will examine the Keck Observatory Archive (KOA) HIRES/ESI and VLT UVES/X-SHOOTER spectra of the background AGN to measure gas-phase absorption lines in the foreground galaxies. Combining these with HST spectra, we will determine the gas-phase element depletions. (5) We will search Spitzer and Herschel spectra for longer wavelength crystalline silicate resonance absorption features. (6) By analyzing and combining these archival data, we will measure the carbon:silicate dust ratios, extinction curves and element depletions, and constrain grain structural properties in these nearby galaxies. (7) We will combine the dust properties thus obtained at z < 0.1 with those at higher redshifts from our recent studies, to constrain dust evolution models developed by Co-I Dr. Dwek. The proposed work will provide the first study of correlations between different dust absorption properties in the nearby Universe, and a direct probe of dust evolution when compared with measurements for the distant Universe. Our work is directly related to the Cosmic Origins Program outlined in the 2014 NASA Science Plan, since understanding dust evolution is fundamental to understanding galaxy evolution, and planet formation. This work will use data from several NASA-supported missions to establish a local benchmark for understanding dust evolution, and is thus especially relevant for distant galaxy studies with the JWST. Our work will also provide NASA-related outreach and graduate/undergraduate student research opportunities at the University of South Carolina and Georgia Southern University.

  6. Sahara Dust Cloud

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Dust Particles Click on the image for Quicktime movie from 7/15-7/24

    A continent-sized cloud of hot air and dust originating from the Sahara Desert crossed the Atlantic Ocean and headed towards Florida and the Caribbean. A Saharan Air Layer, or SAL, forms when dry air and dust rise from Africa's west coast and ride the trade winds above the Atlantic Ocean.

    These dust clouds are not uncommon, especially during the months of July and August. They start when weather patterns called tropical waves pick up dust from the desert in North Africa, carry it a couple of miles into the atmosphere and drift westward.

    In a sequence of images created by data acquired by the Earth-orbiting Atmospheric Infrared Sounder ranging from July 15 through July 24, we see the distribution of the cloud in the atmosphere as it swirls off of Africa and heads across the ocean to the west. Using the unique silicate spectral signatures of dust in the thermal infrared, AIRS can detect the presence of dust in the atmosphere day or night. This detection works best if there are no clouds present on top of the dust; when clouds are present, they can interfere with the signal, making it much harder to detect dust as in the case of July 24, 2005.

    In the Quicktime movie, the scale at the bottom of the images shows +1 for dust definitely detected, and ranges down to -1 for no dust detected. The plots are averaged over a number of AIRS observations falling within grid boxes, and so it is possible to obtain fractional numbers. [figure removed for brevity, see original site] Total Water Vapor in the Atmosphere Around the Dust Cloud Click on the image for Quicktime movie

    The dust cloud is contained within a dry adiabatic layer which originates over the Sahara Desert. This Saharan Air Layer (SAL) advances Westward over the Atlantic Ocean, overriding the cool, moist air nearer the surface. This burst of very dry air is visible in the

  7. Electrodynamic Dust Shield Demonstrator

    NASA Technical Reports Server (NTRS)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid

  8. Dust Growth by RF Sputtering

    SciTech Connect

    Churton, B.; Samarian, A. A.; Coueedel, L.

    2008-09-07

    The effect of the dust particle growth by RF sputtering on glow discharge has been investigated. It has been found that the growth of dust particles modifies the electrical characteristics of the discharge. In particularly, the absolute value of the self-bias voltage decreases during the particle growth due to the electron losses on the dust particles. To find the correlation between the dust growth and the self bias evolution, dust particles have been collected at different times. The dust particle growth rate is found to be linear.

  9. Interstellar dust at our doorstep

    NASA Astrophysics Data System (ADS)

    Sterken, V. J.

    2013-12-01

    Interstellar dust has long been researched by astronomical methods to learn about its size distribution, grain properties and composition. However, interstellar dust grains also move through the solar system. They were detected for the first time in-situ with the Ulysses dust detector in 1993. In addition, in 2006, the Stardust mission returned three interstellar dust grain candidates back to Earth after a collection period of 195 days. In this talk we elaborate on how the current in-situ ISD measurement methods are a valuable addition to the knowledge about interstellar dust inferred from classical astronomy. We also discuss the role of interstellar dust dynamics and simulations herein.

  10. Oblique dust density waves

    NASA Astrophysics Data System (ADS)

    Piel, Alexander; Arp, Oliver; Menzel, Kristoffer; Klindworth, Markus

    2007-11-01

    We report on experimental observations of dust density waves in a complex (dusty) plasma under microgravity. The plasma is produced in a radio-frequency parallel-plate discharge (argon, p=15Pa, U=65Vpp). Different sizes of dust particles were used (3.4 μm and 6.4μm diameter). The low-frequency (f 11Hz) dust density waves are naturally unstable modes, which are driven by the ion flow in the plasma. Surprisingly, the wave propagation direction is aligned with the ion flow direction in the bulk plasma but becomes oblique at the boundary of the dust cloud with an inclination of 60^o with respect to the plasma boundary. The experimental results are compared with a kinetic model in the electrostatic approximation [1] and a fluid model [2]. Moreover, the role of dust surface waves is discussed. [1] M. Rosenberg, J. Vac. Sci. Technol. A 14, 631 (1996) [2] A. Piel et al, Phys. Rev. Lett. 97, 205009 (2006)

  11. Conveyor dust control

    SciTech Connect

    Goldbeck, L.

    1999-11-01

    In the past, three different approaches have been used to control dust arising at conveyor load zones. They are: Dust Containment consists of those mechanical systems employed to keep material inside the transfer point with the main material body. Dust Suppression systems increase the mass of suspended dust particles, allowing them to fall from the air stream. Dust Collection is the mechanical capture and return of airborne material after it becomes airborne from the main material body. Previously, these three approaches have always been seen as separate entities. They were offered by separate organizations competing in the marketplace. The three technologies vied for their individual piece of the rock, at the expense of the other technologies (and often at the expense of overall success). There have been considerable amounts of I`m better selling, as well as finger pointing at the other systems when problems arose. Each system claimed its own technology was the best, providing the most effective, most cost-efficient, most maintenance-free solution to fugitive material.

  12. Dust trap formation in a non-self-sustained discharge with external gas ionization

    SciTech Connect

    Filippov, A. V. Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  13. Back- and fore-grounding ontology: exploring the linkages between critical realism, pragmatism, and methodologies in health & rehabilitation sciences.

    PubMed

    DeForge, Ryan; Shaw, Jay

    2012-03-01

    Back- and fore-grounding ontology: exploring the linkages between critical realism, pragmatism, and methodologies in health & rehabilitation sciences As two doctoral candidates in a health and rehabilitation sciences program, we describe in this paper our respective paradigmatic locations along a quite nonlinear ontological-epistemological-axiological-methodological chain. In a turn-taking fashion, we unpack the tenets of critical realism and pragmatism, and then trace the linkages from these paradigmatic locations through to the methodological choices that address a community-based research problem. Beyond serving as an answer to calls for academics in training to demonstrate philosophical-theoretical-methodological integrity and coherence in their scholarship, this paper represents critical realism and its fore-grounding of a deeply stratified ontology in reflexive relation to pragmatism and its back-grounding of ontology. We conclude by considering the merits and challenges of conducting research from within singular versus proliferate paradigmatic perspectives.

  14. The Panchromatic Hubble Andromeda Treasury. VIII. A Wide-area, High-resolution Map of Dust Extinction in M31

    NASA Astrophysics Data System (ADS)

    Dalcanton, Julianne J.; Fouesneau, Morgan; Hogg, David W.; Lang, Dustin; Leroy, Adam K.; Gordon, Karl D.; Sandstrom, Karin; Weisz, Daniel R.; Williams, Benjamin F.; Bell, Eric F.; Dong, Hui; Gilbert, Karoline M.; Gouliermis, Dimitrios A.; Guhathakurta, Puragra; Lauer, Tod R.; Schruba, Andreas; Seth, Anil C.; Skillman, Evan D.

    2015-11-01

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color-magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor of ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine & Li dust models overpredict the observed extinction by a factor of ˜2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ˜2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine & Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.

  15. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. VIII. A WIDE-AREA, HIGH-RESOLUTION MAP OF DUST EXTINCTION IN M31

    SciTech Connect

    Dalcanton, Julianne J.; Fouesneau, Morgan; Weisz, Daniel R.; Williams, Benjamin F.; Hogg, David W.; Lang, Dustin; Leroy, Adam K.; Gordon, Karl D.; Gilbert, Karoline M.; Sandstrom, Karin; Bell, Eric F.; Dong, Hui; Lauer, Tod R.; Gouliermis, Dimitrios A.; Guhathakurta, Puragra; Schruba, Andreas; Seth, Anil C.; Skillman, Evan D.

    2015-11-20

    We map the distribution of dust in M31 at 25 pc resolution using stellar photometry from the Panchromatic Hubble Andromeda Treasury survey. The map is derived with a new technique that models the near-infrared color–magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars in each 25 pc cell. The resulting extinction map has a factor of ≳4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. However, the widely used Draine and Li dust models overpredict the observed extinction by a factor of ∼2.5, suggesting that M31's true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. The observed factor of ∼2.5 discrepancy is consistent with similar findings in the Milky Way by the Plank Collaboration et al., but we find a more complex dependence on parameters from the Draine and Li dust models. We also show that the the discrepancy with the Draine et al. map is lowest where the current interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications in both M31 and other galaxies.

  16. Research allays longwall dust

    SciTech Connect

    Scott, F.E.

    1984-02-01

    Longwall shearer operators have to walk with their machines along the face to mine coal, but some must endure more respirable dust than others. The Bureau of Mines is willing to help any mine having trouble keeping dust levels below the Federal standard of 2.0 mg/m/sup 3/. Recently, Robert A. Jankowski and others at the Bureau of Mines (BoM) completed a survey of twelve US longwall mines. With the cooperation of mine operators and Mine Safety and Health Administration (MSHA) officials, they gathered information on longwall double-drum shearer installations from compliance records. Six of the operations examined were ''clean'' or regularly in compliance with the dust standard, while the other six had great difficulty in complying. Subsequently, BoM conducted an investigation into the reasons for the non-compliance and a search for possible solutions to the problems.

  17. Dust control for draglines

    SciTech Connect

    Grad, P.

    2009-09-15

    Monitoring dust levels inside draglines reveals room for improvement in how filtration systems are used and maintained. The Australian firm BMT conducted a field test program to measure airflow parameters, dust fallout rates and dust concentrations, inside and outside the machine house, on four draglines and one shovel. The study involved computational fluid dynamics (CFD) simulations. The article describes how the tests were made and gives results. It was not possible to say which of the two main filtration systems currently used on Australian draglines - Dynavane or Floseps - performs better. It would appear that more frequent maintenance and cleaning would increase the overall filtration performance and systems could be susceptible to repeat clogging in a short time. 2 figs., 1 photos.

  18. Selecting baghouse dust collectors

    SciTech Connect

    Moore, S.; Rubak, J.; Jolin, M. |

    1997-04-01

    A thorough analysis of the dust to be captured and determination of specific application requirements are necessary when designing a baghouse collection system. Independent consultants specializing in pollution control equipment and manufacturers with experience in several types of collectors are possible sources of assistance. These experts typically have testing facilities to analyze the dust characteristics. This final article of a two-part series on baghouse design and selection concentrates on application considerations created by the type of dust handled, selecting the best filtration media, selecting the best filtration media, and determining the air-to-cloth (A/C) ratio. The first article discussed bag sizing and cleaning methods and housing and hopper designs.

  19. High concentration dust monitor

    NASA Astrophysics Data System (ADS)

    Lilienfeld, P.

    1981-06-01

    The development, design, fabrication, and testing of a portable, self-contained prototype monitoring instrument capable of detecting and measuring airborne coal dust levels as concentrations in the range of 20 to 500 g/cu m is described. The output of the high concentration dust monitor is essentially independent of particle size and composition, with a response time of 10 seconds. Direct concentration readout as well as internal memory or recording capabilities are incorporated in the device. The operation of the instrument is based on direct sensing of the mass concentration of airborne dust by air-path beta radiation attenuation. The monitor is battery operated and incorporates a microprocessor that controls periodic automatic zero referencing, executes the mass computations, records the data for subsequent playback, and performs internal diagnostic checks.

  20. Real-time two-level foreground detection and person-silhouette extraction enhanced by body-parts tracking

    NASA Astrophysics Data System (ADS)

    Deeb, Rada; Desserée, Elodie; Bouakaz, Saida

    2012-01-01

    In this paper we discuss foreground detection and human body silhouette extraction and tracking in monocular video systems designed for human motion analysis applications. Vision algorithms face many challenges when it comes to analyze human activities in non-controlled environments. For instance, issues like illumination changes, shadows, camouflage and occlusions make the detection and the tracking of a moving person a hard task to accomplish. Hence, advanced solutions are required to analyze the content of video sequences. We propose a real-time, two-level foreground detection, enhanced by body parts tracking, designed to efficiently extract person silhouette and body parts for monocular video-based human motion analysis systems. We aim to find solutions for different non-controlled environment challenges, which make the detection and the tracking of a moving person a hard task to accomplish. On the first level, we propose an enhanced Mixture of Gaussians, built on both chrominanceluminance and chrominance-only spaces, which handles global illumination changes. On the second level, we improve segmentation results, in interesting areas, by using statistical foreground models updated by a high-level tracking of body parts. Each body part is represented with a set of template characterized by a feature vector built in an initialization phase. Then, high level tracking is done by finding blob-template correspondences via distance minimization in feature space. Correspondences are then used to update foreground models, and a graph cut algorithm, which minimizes a Markov random field energy function containing these models, is used to refine segmentation. We were able to extract a refined silhouette in the presence of light changes, noise and camouflage. Moreover, the tracking approach allowed us to infer information about the presence and the location of body parts even in the case of partial occlusion.

  1. Tikhonravov Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located within a small crater inside Tikhonravov Crater.

    Image information: VIS instrument. Latitude 12.6, Longitude 37.1 East (322.9 West). 36 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  2. Lycus Sulci Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches occur on the slopes of Lycus Sulci near Olympus Mons.

    Image information: VIS instrument. Latitude 28.1, Longitude 220.4 East (139.6 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    These dust avalanches are located in a small canyon within a crater rim northeast of Naktong Vallis.

    Image information: VIS instrument. Latitude 7.1, Longitude 34.7 East (325.3 West). 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  4. Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    Dust avalanches, also called slope streaks, occur on many Martian terrains. The deposition of airborne dust on surfaces causes a bright tone in the THEMIS VIS images. Any movement of the dust downhill, a dust avalanche, will leave behind a streak where the darker, dust-free surface is exposed.

    This region of dust avalanches is located in and around a crater to the west of yesterday's image.

    Image information: VIS instrument. Latitude 14.7, Longitude 32.7 East (327.3 West). 18 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  5. Competition for attentional resources between low spatial frequency content of emotional images and a foreground task in early visual cortex.

    PubMed

    Müller, Matthias M; Gundlach, Christopher

    2017-03-01

    Low spatial frequency (LSF) image content has been proposed to play a superior functional role in emotional content extraction via the magnocellular pathway biasing attentional resources toward emotional content in visual cortex. We investigated whether emotionally unpleasant complex images that were presented either unfiltered or with LSF content only in the background while subjects performed a foreground task will withdraw more attentional resources from the task compared to unemotional, neutral images (distraction paradigm). We measured steady-state visual evoked potentials (SSVEPs) driven by flickering stimuli of a foreground task. Unfiltered unpleasant images resulted in a significant reduction of SSVEP amplitude compared to neutral images. No statistically significant differences were found with LSF background images. In a behavioral control experiment, we found no significant differences for complexity ratings between unfiltered and LSF pictures. Content identification was possible for unfiltered and LSF picture (correct responses > 74%). An additional EEG study examined typical emotion-related components for complex images presented either as unfiltered, LSF, or high spatial frequency (HSF, as an additional control) filtered, unpleasant, and neutral images. We found a significant main effect of emotional valence in the early posterior negativity. Late positive potential differences were only found for unfiltered and HSF images. Results suggest that, while LSF content is sufficient to allow for content and emotional cue extraction when images were presented alone, LSF content is not salient enough to serve as emotional distractor that withdraws attentional resources from a foreground task in early visual cortex.

  6. MODELING EXTRAGALACTIC FOREGROUNDS AND SECONDARIES FOR UNBIASED ESTIMATION OF COSMOLOGICAL PARAMETERS FROM PRIMARY COSMIC MICROWAVE BACKGROUND ANISOTROPY

    SciTech Connect

    Millea, M.; Knox, L.; Dore, O.; Dudley, J.; Holder, G.; Shaw, L.; Song, Y.-S.; Zahn, O.

    2012-02-10

    Using the latest physical modeling and constrained by the most recent data, we develop a phenomenological parameterized model of the contributions to intensity and polarization maps at millimeter wavelengths from external galaxies and Sunyaev-Zeldovich effects. We find such modeling to be necessary for estimation of cosmological parameters from Planck data. For example, ignoring the clustering of the infrared background would result in a bias in n{sub s} of 7{sigma} in the context of an eight-parameter cosmological model. We show that the simultaneous marginalization over a full foreground model can eliminate such biases, while increasing the statistical uncertainty in cosmological parameters by less than 20%. The small increases in uncertainty can be significantly reduced with the inclusion of higher-resolution ground-based data. The multi-frequency analysis we employ involves modeling 46 total power spectra and marginalization over 17 foreground parameters. We show that we can also reduce the data to a best estimate of the cosmic microwave background power spectra, with just two principal components (with constrained amplitudes) describing residual foreground contamination.

  7. Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization

    NASA Astrophysics Data System (ADS)

    Geil, Paul M.; Gaensler, B. M.; Wyithe, J. Stuart B.

    2011-11-01

    Measurement of redshifted 21-cm emission from neutral hydrogen promises to be the most effective method for studying the reionization history of hydrogen and, indirectly, the first galaxies. These studies will be limited not by raw sensitivity to the signal, but rather, by bright foreground radiation from Galactic and extragalactic radio sources and the Galactic continuum. In addition, leakage due to gain errors and non-ideal feeds conspire to further contaminate low-frequency radio observations. This leakage leads to a portion of the complex linear polarization signal finding its way into Stokes I, and inhibits the detection of the non-polarized cosmological signal from the epoch of reionization. In this work, we show that rotation measure synthesis can be used to recover the signature of cosmic hydrogen reionization in the presence of contamination by polarized foregrounds. To achieve this, we apply the rotation measure synthesis technique to the Stokes I component of a synthetic data cube containing Galactic foreground emission, the effect of instrumental polarization leakage and redshifted 21-cm emission by neutral hydrogen from the epoch of reionization. This produces an effective Stokes I Faraday dispersion function for each line of sight, from which instrumental polarization leakage can be fitted and subtracted. Our results show that it is possible to recover the signature of reionization in its late stages (z≈ 7) by way of the 21-cm power spectrum, as well as through tomographic imaging of ionized cavities in the intergalactic medium.

  8. Combustibility determination for cotton gin dust and almond huller dust

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been documented that some dusts generated while processing agricultural products, such as grain and sugar (OSHA, 2009), can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, OSHA initiated action to develop a mandatory standard to comprehen...

  9. Syrian Dust Devil

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a dust devil in far western Syria Planum. The dust devil is located near the left-center of the image. It is casting a shadow toward the lower right (southeast).

    Location near: 14.5oS, 109.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  10. Dust Devil Tracks

    NASA Astrophysics Data System (ADS)

    Reiss, Dennis; Fenton, Lori; Neakrase, Lynn; Zimmerman, Michael; Statella, Thiago; Whelley, Patrick; Rossi, Angelo Pio; Balme, Matthew

    2016-11-01

    Dust devils that leave dark- or light-toned tracks are common on Mars and they can also be found on the Earth's surface. Dust devil tracks (hereinafter DDTs) are ephemeral surface features with mostly sub-annual lifetimes. Regarding their size, DDT widths can range between ˜1 m and ˜1 km, depending on the diameter of dust devil that created the track, and DDT lengths range from a few tens of meters to several kilometers, limited by the duration and horizontal ground speed of dust devils. DDTs can be classified into three main types based on their morphology and albedo in contrast to their surroundings; all are found on both planets: (a) dark continuous DDTs, (b) dark cycloidal DDTs, and (c) bright DDTs. Dark continuous DDTs are the most common type on Mars. They are characterized by their relatively homogenous and continuous low albedo surface tracks. Based on terrestrial and martian in situ studies, these DDTs most likely form when surficial dust layers are removed to expose larger-grained substrate material (coarse sands of ≥500 μm in diameter). The exposure of larger-grained materials changes the photometric properties of the surface; hence leading to lower albedo tracks because grain size is photometrically inversely proportional to the surface reflectance. However, although not observed so far, compositional differences (i.e., color differences) might also lead to albedo contrasts when dust is removed to expose substrate materials with mineralogical differences. For dark continuous DDTs, albedo drop measurements are around 2.5 % in the wavelength range of 550-850 nm on Mars and around 0.5 % in the wavelength range from 300-1100 nm on Earth. The removal of an equivalent layer thickness around 1 μm is sufficient for the formation of visible dark continuous DDTs on Mars and Earth. The next type of DDTs, dark cycloidal DDTs, are characterized by their low albedo pattern of overlapping scallops. Terrestrial in situ studies imply that they are formed when sand

  11. Dust Devils Whip by Spirit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On sol 1120 (February 26, 2007), the navigation camera aboard NASA's Mars Exploration Rover Spirit captured one of the best dust devils it's seen in its three-plus year mission. The series of navigation camera images were put together to make a dust devil movie.

    The dust devil column is clearly defined and is clearly bent in the down wind direction. Near the end of the movie, the base of the dust devil becomes much wider. The atmospheric science team thinks that this is because the dust devil encountered some sand and therefore produced a 'saltation skirt,' an apron of material that is thrown out of the dust devil because it is too large to be carried up into suspension.

    Also near the end of the movie the dust devil seems to move faster across the surface. This is because Spirit began taking pictures less frequently, and not because the dust devil sped up.

  12. Ice Nucleation Activity of Various Agricultural Soil Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Schiebel, Thea; Höhler, Kristina; Funk, Roger; Hill, Thomas C. J.; Levin, Ezra J. T.; Nadolny, Jens; Steinke, Isabelle; Suski, Kaitlyn J.; Ullrich, Romy; Wagner, Robert; Weber, Ines; DeMott, Paul J.; Möhler, Ottmar

    2016-04-01

    Recent investigations at the cloud simulation chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere) suggest that agricultural soil dust has an ice nucleation ability that is enhanced up to a factor of 10 compared to desert dust, especially at temperatures above -26 °C (Steinke et al., in preparation for submission). This enhancement might be caused by the contribution of very ice-active biological particles. In addition, soil dust aerosol particles often contain a considerably higher amount of organic matter compared to desert dust particles. To test agricultural soil dust as a source of ice nucleating particles, especially for ice formation in warm clouds, we conducted a series of laboratory measurements with different soil dust samples to extend the existing AIDA dataset. The AIDA has a volume of 84 m3 and operates under atmospherically relevant conditions over wide ranges of temperature, pressure and humidity. By controlled adiabatic expansions, the ascent of an air parcel in the troposphere can be simulated. As a supplement to the AIDA facility, we use the INKA (Ice Nucleation Instrument of the KArlsruhe Institute of Technology) continuous flow diffusion chamber based on the design by Rogers (1988) to expose the sampled aerosol particles to a continuously increasing saturation ratio by keeping the aerosol temperature constant. For our experiments, soil dust was dry dispersed into the AIDA vessel. First, fast saturation ratio scans at different temperatures were performed with INKA, sampling soil dust aerosol particles directly from the AIDA vessel. Then, we conducted the AIDA expansion experiment starting at a preset temperature. The combination of these two different methods provides a robust data set on the temperature-dependent ice activity of various agriculture soil dust aerosol particles with a special focus on relatively high temperatures. In addition, to extend the data set, we investigated the role of biological and organic matter in more

  13. The problematic growth of dust in high-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Ferrara, A.; Viti, S.; Ceccarelli, C.

    2016-11-01

    Dust growth via accretion of gas species has been proposed as the dominant process to increase the amount of dust in galaxies. We show here that this hypothesis encounters severe difficulties that make it unfit to explain the observed UV and IR properties of such systems, particularly at high redshifts. Dust growth in the diffuse ISM phases is hampered by (a) too slow accretion rates, (b) too high dust temperatures, and (c) the Coulomb barrier that effectively blocks accretion. In molecular clouds these problems are largely alleviated. Grains are cold (but not colder than the CMB temperature, TCMB ≈ 20 K at redshift z = 6). However, in dense environments accreted materials form icy water mantles, perhaps with impurities. Mantles are immediately (≲1 yr) photo-desorbed as grains return to the diffuse ISM at the end of the cloud lifetime, thus erasing any memory of the growth. We conclude that dust attenuating stellar light at high-z must be ready-made stardust largely produced in supernova ejecta.

  14. A preliminary assessment of beryllium dust oxidation during a wet bypass accident in a fusion reactor

    SciTech Connect

    Brad J. Merrill; Richard L. Moore; J. Phillip Sharp

    2008-09-01

    A beryllium dust oxidation model has been developed at the Idaho National Laboratory (INL) by the Fusion Safety Program (FSP) for the MELCOR safety computer code. The purpose of this model is to investigate hydrogen production from beryllium dust layers on hot surfaces inside a fusion reactor vacuum vessel (VV) during in-vessel loss-of-cooling accidents (LOCAs). This beryllium dust oxidation model accounts for the diffusion of steam into a beryllium dust layer, the oxidation of the dust particles inside this layer based on the beryllium-steam oxidation equations developed at the INL, and the effective thermal conductivity of this beryllium dust layer. This paper details this oxidation model and presents the results of the application of this model to a wet bypass accident scenario in the ITER device.

  15. Measurements of the diffuse ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Fix, John D.; Craven, John D.; Frank, Louis A.

    1989-01-01

    The imaging instrumentation on the Dynamics Explorer 1 satellite has been used to measure the intensity of the diffuse ultraviolet radiation on two great circles about the sky. It is found that the isotropic component of the diffuse ultraviolet radiation (possibly of extragalactic origin) has an intensity of 530 + or - 80 units (a unit is 1 photon per sq cm s A sr) at a wavelength of 150 nm. The Galactic component of the diffuse ultraviolet radiation has a dependence on Galactic latitude which requires strongly forward scattering particles if it is produced by dust above the Galactic plane.

  16. Dust devil dynamics

    NASA Astrophysics Data System (ADS)

    Horton, W.; Miura, H.; Onishchenko, O.; Couedel, L.; Arnas, C.; Escarguel, A.; Benkadda, S.; Fedun, V.

    2016-06-01

    A self-consistent hydrodynamic model for the solar heating-driven onset of a dust devil vortex is derived and analyzed. The toroidal flows and vertical velocity fields are driven by an instability that arises from the inversion of the mass density stratification produced by solar heating of the sandy surface soil. The nonlinear dynamics in the primary temperature gradient-driven vertical airflows drives a secondary toroidal vortex flow through a parametric interaction in the nonlinear structures. While an external tangential shear flow may initiate energy transfer to the toroidal vortex flow, the nonlinear interactions dominate the transfer of vertical-radial flows into a fast toroidal flow. This secondary flow has a vertical vorticity, while the primary thermal gradient-driven flow produces the toroidal vorticity. Simulations for the complex nonlinear structure are carried out with the passive convection of sand as test particles. Triboelectric charging modeling of the dust is used to estimate the charging of the sand particles. Parameters for a Dust Devil laboratory experiment are proposed considering various working gases and dust particle parameters. The nonlinear dynamics of the toroidal flow driven by the temperature gradient is of generic interest for both neutral gases and plasmas.

  17. Sweeping the Dust Away

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Mars Exploration Rover Spirit brushed the dust away from a rock target on an outcrop dubbed 'Clovis' prior to grinding a hole and conducting mineral studies. This view is a mosaic combining four frames that Spirit took with its microscopic imager on martian sol 214 (Aug. 9, 2004).

  18. Cylindrically symmetric dust spacetime

    NASA Astrophysics Data System (ADS)

    Senovilla, José M. M.

    2000-07-01

    We present an explicit exact solution of Einstein's equations for an inhomogeneous dust universe with cylindrical symmetry. The spacetime is extremely simple but nonetheless it has surprising new features. The universe is `closed' in the sense that the dust expands from a big-bang singularity but recollapses to a big-crunch singularity. In fact, both singularities are connected so that the whole spacetime is `enclosed' within a single singularity of general character. The big-bang is not simultaneous for the dust, and in fact the age of the universe as measured by the dust particles depends on the spatial position, an effect due to the inhomogeneity, and their total lifetime has no non-zero lower limit. Part of the big-crunch singularity is naked. The metric depends on a parameter and contains flat spacetime as a non-singular particular case. For appropriate values of the parameter the spacetime is a small perturbation of Minkowski spacetime. This seems to indicate that flat spacetime may be unstable against some global non-vacuum perturbations.

  19. Dust Devil Dynamics

    NASA Astrophysics Data System (ADS)

    Correa, C. E.; Escarguel, A.; Horton, W.; Arnas, C.; Couedel, L.; Benkadda, S.

    2013-12-01

    A self-consistent hydrodynamic model for the onset of a dust devil vortex is derived and analyzed. The horizontal toroidal flow and vertical velocity field are driven by the vertical temperature gradient instability of gravity waves. The critical temperature gradient is derived and the associated eigenmodes for simple models are given. The nonlinear dynamics in the vertical/horizontal flows drive the toroidal flow through a parametric decay process. Methods developed for triboelectric charging of dust are used to compute the electric polarization vector from the charging of the sand particles. Elementary comparisons are made with the data from dust devil observations and research and simulations by Farrell et al. 2004, 2006. The parameters for a proposed Dust Devil laboratory experiment at Aix-Marseille University are presented. Following R. L. Miller et al. JGR 2006 estimates are made of the overall contribution to the mid-latitude aerosol layer in the atmosphere that acts to moderate global climate temperature increases through a negative feedback loop. The problem has an analog in terms of the heating of the boron or beryllium coated steel vacuum vessel walls in tokamaks where the core plasma plays the role of the sun and has a temperature (~ 10keV ) that exceeds that of the core of the sun.

  20. Let There Be Dust

    NASA Astrophysics Data System (ADS)

    McKee, Christopher F.

    2011-09-01

    Most of the ordinary matter in the universe is hydrogen and helium. In galaxies such as ours, heavier elements make up only about 1% of the mass, and about half of this is tied up in small particles, termed dust grains, that range in size from a nanometer to a fraction of a micrometer. Interstellar dust contains an appreciable fraction of the carbon and most of the refractory elements, such as magnesium, silicon, and iron. Because these particles are comparable in size to the wavelength of light, they are very effective at absorbing it. As a result, the Milky Way is much fainter in the night sky than it would otherwise be. This absorbed light is reradiated, but because the dust in the interstellar medium is so cold - about 20° above absolute zero - it is radiated at very long wavelengths, at around 200 μm. Such radiation can be observed only from space, and the European Space Agency's Herschel Space Observatory was designed to do just that. On page 1258 of this issue, Matsuura et al. (1) present Herschel observations showing that substantial amounts of dust are created in the aftermath of a supernova, the titanic explosion that terminates the life of a massive star.

  1. From dust to life

    NASA Astrophysics Data System (ADS)

    Wickramasinghe, Chandra

    After initially challenging the dirty-ice theory of interstellar grains, Fred Hoyle and the present author proposed carbon (graphite) grains, mixtures of refractory grains, organic polymers, biochemicals and finally bacterial grains as models of interstellar dust. The present contribution summarizes this trend and reviews the main arguments supporting a modern version of panspermia.

  2. Dust Obscures Korea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The dust cloud over eastern Asia was so thick on March 21, 2002, that the Korean Peninsula completely disappeared from view in this Sea-viewing Wide Field-of-view Sensor (SeaWiFS) image of the region. Parts of South Korea report that visibility at the surface is less than 50 m (165 feet). Airports throughout the region canceled flights due to the poor visibility. Eyewitnesses in China report that the dust was so thick in Beijing at times that visibility was limited to 100 m (330 feet), while in parts of the Gansu Province visibility was reported at less than 10 m (33 feet). Chinese officials say this is the worst dust storm to hit in more than 10 years. Dust from an earlier event still colors the air to the east of Japan. (The island of Honshu is just peeking out from under the cloud cover in these images.) Image courtesy the SeaWiFS Project, NASA/Goddard Space Flight Center, and ORBIMAGE

  3. Nickel refinery dust

    Integrated Risk Information System (IRIS)

    Nickel refinery dust ; no CASRN Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effect

  4. Saharan Dust Cloud

    Atmospheric Science Data Center

    2013-04-16

    ... was expected to produce dramatic sunsets and possibly a light coating of red-brown dust on vehicles from Florida to Texas. This image, ... far the most common non-spherical atmospheric aerosol, from pollution and forest fire particles, which are typically spherical. This image ...

  5. Stellar Ontogeny: From Dust...

    ERIC Educational Resources Information Center

    MOSAIC, 1978

    1978-01-01

    Discusses the process of star formation. Infrared and radio astronomy, particularly microwave astronomy is used to provide information on different stages of stellar formation. The role of dust and gas which swirl through the interstellar regions of a galaxy and the collapse of a cloud in star formation are also presented. (HM)

  6. Dust lanes in backlit galaxies: first results from the STARSMOG survey

    NASA Astrophysics Data System (ADS)

    Keel, William C.; Bradford, Sarah; Holwerda, Benne; Conselice, Christopher; Baldry, Ivan; Bland-Hawthorn, Jonathan; Driver, Simon P.; Dunne, Loretta; Liske, Jochen; Robotham, Aaron; Tuffs, Richard

    2017-01-01

    STARSMOG is an HST WFC3 snapshot survey of dust attenuation in overlapping backlit galaxies, planned to span the range of morphological type and luminosity of dust-rich galaxies. The target list came from the Galaxy Zoo and GAMA catalogs, imposing a minimum redshift difference to guarantee large line-of-sight separations, virtually eliminating scattering corrections and avoiding potentially distorted interacting systems. These include the first flocculent spirals studied with the occulting-galaxy approach. We present results from the geometrically most favorable subset of 9 pairs from the 54 observed STARSMOG systems. The data quality and intensity of background light let us map dust features with attenuations of only a few per cent in the red F606W band. Organized dust lanes show sharp outer boundaries in disks, and are absent in galaxies of late Hubble type. Many Sb-Sc disks show a dusty web of criss-crossing lanes, some nearly at right angles to the overall spiral pattern. Particularly favorable cases constraint the scale height of starlight in the foreground disks, through comparison of the light loss in regions with and without background light. The covering fraction of dust at various attenuation levels is consistent between barred and nonbarred spirals, although dust features may be more concentrated in azimuth when a bar is present (and concentrated in an annulus when a stellar resonance ring is seen). Together with our previous data on much more limited samples or at lower resolution,these results add to a picture where galaxies of similar morphology may have quite different attenuation patterns with radius for both arm and interarm dust.

  7. Probing the interstellar dust in galaxies over >10 Gyr of cosmic history

    NASA Astrophysics Data System (ADS)

    Kulkarni, Varsha P.; Aller, Monique C.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam

    2016-11-01

    Dust has a profound effect on the physics and chemistry of the interstellar gas in galaxies and on the appearance of galaxies. Understanding the cosmic evolution of dust with time is therefore crucial for understanding the evolution of galaxies. Despite the importance of interstellar dust, very little is known about its nature and composition in distant galaxies. We summarize the results of our ongoing programs using observations of distant quasars to obtain better constraints on dust grains in foreground galaxies that happen to lie along the quasar sightlines. These observations consist of a combination of mid-infrared data obtained with the Spitzer Space Telescope and optical/UV data obtained with ground-based telescopes and/or the Hubble Space Telescope. The mid-IR data target the 10 μm and 18 μm silicate absorption features, while the optical/UV data allow determinations of element depletions, extinction curves, 2175 Å bumps, etc. Measurements of such properties in absorption-selected galaxies with redshifts ranging from z 0 to z > 2 provide constraints on the evolution of interstellar dust over the past > 10 Gyr . The optical depth of the 10 μm silicate absorption feature (τ10) in these galaxies is correlated with the amount of reddening along the sightline. But there are indications (e.g., based on the τ10 / E(B - V) ratio and possible grain crystallinity) that the dust in these distant galaxies differs in structure and composition from the dust in the Milky Way and the Magellanic Clouds. We briefly discuss the implications of these results for the evolution of galaxies and their star formation history.

  8. SWIFT ULTRAVIOLET OBSERVATIONS OF SUPERNOVA 2014J IN M82: LARGE EXTINCTION FROM INTERSTELLAR DUST

    SciTech Connect

    Brown, Peter J.; Smitka, Michael T.; Wang, Lifan; Krisciunas, Kevin; Breeveld, Alice; Kuin, N. Paul; Page, Mat; De Pasquale, Massimiliano; Hartmann, Dieter H.; Milne, Peter A.; Siegel, Michael

    2015-05-20

    We present optical and ultraviolet (UV) photometry and spectra of the very nearby and highly reddened supernova (SN) 2014J in M82 obtained with the Swift Ultra-Violet/Optical Telescope (UVOT). Comparison of the UVOT grism spectra of SN 2014J with Hubble Space Telescope observations of SN2011fe or UVOT grism spectra of SN 2012fr are consistent with an extinction law with a low value of R{sub V} ∼1.4. The high reddening causes the detected photon distribution in the broadband UV filters to have a much longer effective wavelength than for an unreddened SN. The light curve evolution is consistent with this shift and does not show a flattening due to photons being scattered back into the line of sight (LOS). The light curve shapes and color evolution are inconsistent with a contribution scattered into the LOS by circumstellar dust. We conclude that most or all of the high reddening must come from interstellar dust. We show that even for a single dust composition, there is not a unique reddening law caused by circumstellar scattering. Rather, when considering scattering from a time-variable source, we confirm earlier studies that the reddening law is a function of the dust geometry, column density, and epoch. We also show how an assumed geometry of dust as a foreground sheet in mixed stellar/dust systems will lead to a higher inferred R{sub V}. Rather than assuming the dust around SNe is peculiar, SNe may be useful probes of the interstellar reddening laws in other galaxies.

  9. Dust That's Worth Keeping

    SciTech Connect

    Hazi, A

    2006-01-25

    Images taken of interstellar space often display a colorful canvas of portions of the electromagnetic spectrum. Dispersed throughout the images are interstellar clouds of dust and gas--remnants ejected from stars and supernovae over billions and billions of years. For more than 40 years, astronomers have observed that interstellar dust exhibits a consistent effect at a spectral wavelength of 2,175 angstroms, the equivalent of 5.7 electronvolts in energy on the electromagnetic spectrum. At this wavelength, light from stars is absorbed by dust in the interstellar medium, blocking the stars light from reaching Earth. The 2,175-angstrom feature, which looks like a bump on spectra, is the strongest ultraviolet-visible light spectral signature of interstellar dust and is visible along nearly every observational line of sight. Scientists have sought to solve the mystery of what causes the 2,175-angstrom feature by reproducing the effect in the laboratory. They speculated a number of possibilities, including fullerenes (buckyballs), nanodiamonds, and even interstellar organisms. However, none of these materials fits the data for the unique spectral feature. Limitations in the energy and spatial resolution achievable with electron microscopes and ion microprobes--the two main instruments used to study samples of dust--have also prevented scientists from finding the answer. A collaborative effort led by Livermore physicist John Bradley and funded by the National Aeronautics and Space Administration (NASA) has used a new-generation transmission electron microscope (TEM) and nanoscale ion microprobe to unlock the mystery. The Livermore group includes physicists Zu Rong Dai, Ian Hutcheon, Peter Weber, and Sasa Bajt and postdoctoral researchers Hope Ishii, Giles Graham, and Julie Smith. They collaborated with the University of California at Davis (UCD), Lawrence Berkeley National Laboratory, Washington University's Laboratory for Space Sciences in St. Louis, and NASA's Ames

  10. Dust That's Worth Keeping

    NASA Technical Reports Server (NTRS)

    Hazi, A.

    2006-01-01

    Images taken of interstellar space often display a colorful canvas of portions of the electromagnetic spectrum. Dispersed throughout the images are interstellar clouds of dust and gas--remnants ejected from stars and supernovae over billions and billions of years. For more than 40 years, astronomers have observed that interstellar dust exhibits a consistent effect at a spectral wavelength of 2,175 angstroms, the equivalent of 5.7 electronvolts in energy on the electromagnetic spectrum. At this wavelength, light from stars is absorbed by dust in the interstellar medium, blocking the stars light from reaching Earth. The 2,175-angstrom feature, which looks like a bump on spectra, is the strongest ultraviolet-visible light spectral signature of interstellar dust and is visible along nearly every observational line of sight. Scientists have sought to solve the mystery of what causes the 2,175-angstrom feature by reproducing the effect in the laboratory. They speculated a number of possibilities, including fullerenes (buckyballs), nanodiamonds, and even interstellar organisms. However, none of these materials fits the data for the unique spectral feature. Limitations in the energy and spatial resolution achievable with electron microscopes and ion microprobes--the two main instruments used to study samples of dust--have also prevented scientists from finding the answer. A collaborative effort led by Livermore physicist John Bradley and funded by the National Aeronautics and Space Administration (NASA) has used a new-generation transmission electron microscope (TEM) and nanoscale ion microprobe to unlock the mystery. The Livermore group includes physicists Zu Rong Dai, Ian Hutcheon, Peter Weber, and Sasa Bajt and postdoctoral researchers Hope Ishii, Giles Graham, and Julie Smith. They collaborated with the University of California at Davis (UCD), Lawrence Berkeley National Laboratory, Washington University's Laboratory for Space Sciences in St. Louis, and NASA's Ames

  11. Fingerprints in the Dust

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These MISR nadir-camera images of eastern China compare a somewhat hazy summer view from July 9, 2000 (left) with a spectacularly dusty spring view from April 7, 2001 (middle). The left-hand and middle images are from Terra orbits 2967 and 6928, respectively, and extend from central Manchuria near the top to portions of North and South Korea at the bottom. They are approximately 380 kilometers in width.

    Asia's desert areas are prone to soil erosion, as underground water tables are lowered by prolonged drought and by industrial and agricultural water use. Heavy winds blowing eastward across the arid and sparsely vegetated surfaces of Mongolia and western China pick up large quantities of yellow dust. Airborne dust clouds from the April 2001 storm blew across the Pacific Ocean and were carried as far as North America. The minerals transported in this manner are believed to provide nutrients for both oceanic and land ecosystems.

    According to the Xinhua News Agency in China, nearly one million tons of Gobi Desert dust blow into Beijing each year. During a similar dust outbreak last year, the Associated Press reported that the visibility in Beijing had been reduced the point where buildings were barely visible across city streets, and airline schedules were significantly disrupted. The dust has also been implicated in adverse health effects such as respiratory discomfort and eye irritation.

    The image on the right is a higher resolution MISR nadir-camera view of a portion of the April 7, 2001 dust cloud. It covers an area roughly 250 kilometers wide by 470 kilometers high. When viewed at full magnification, a number of atmospheric wave features, like the ridges and valleys of a fingerprint, are apparent. These are probably induced by surface topography, which can disturb the wind flow. A few small cumulus clouds are also visible, and are casting shadows on the thick lower dust layer.

    Analyses of images such as these constitute one phase of MISR

  12. Analysis of Characteristics of Dust Aerosols in Northwest China based on Satellite Remote-sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Liu, L.; Zhao, Y.; Gong, S.; Henze, D. K.

    2014-12-01

    Based on the CloudSat data, effects of dust aerosol on cloud parameters under the circumstance of the monthly average, dusty days and dust-free days were analyzed during April, 2010. By using L2 aerosol profiles satellite data of CALIOP/CALIOPSO the aerosol extinction coefficients were analyzed over northwest China. As an important case, space distribution and transmission route of dust aerosol were investigated during the dust events occurred from April 16th to 18th in 2013 over northwest China, based on L1 data of CALIOP/CALIOPSO, a combination of multiple satellite data and models. The results show that (1) dust aerosols could cause the reduction in effective radius of particle, cloud liquid water content and cloud optical thickness, and the increase of the number concentration of liquid cloud particles as well, (2) The aerosol extinction coefficients were decreased with the increase of height. The value of the aerosol extinction coefficients in desert area was greater than that in the area of Gansu Province due to urbanization. Distribution of the aerosol extinction coefficients in spring was nearly the same as the annual average. (3) Using aerosol products of the vertical characteristics from CALIOP/CALIOPSO, aerosol was classified during dust events, and with NAPPS Global aerosol model, daily distribution of the dust aerosol concentration was given, showing the transport and diffusion of dust aerosol. With HYSPLIT trajectory model dust transportation path of the sand dust source areas was simulated and identified. During the outbreak of dust event dust aerosol was mainly distributed over the surface about 3km, with depolarization ratio at 0.4 and color ratio at 1.2. During the dust events were close to weak and stop, dust aerosol was mainly distributed over the surface under 2 km, with depolarization ratio from 0.2 to 0.3, and color ratio about 1.

  13. Analysis of Characteristics of Dust Aerosols in Northwest China based on Satellite Remote-sensing Data

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Liu, D.; Zhao, Q.

    2015-12-01

    Based on the CloudSat data, effects of dust aerosol on cloud parameters under the circumstance of the monthly average, dusty days and dust-free days were analyzed during April, 2010. By using L2 aerosol profiles satellite data of CALIOP/CALIOPSO the aerosol extinction coefficients were analyzed over northwest China. As an important case, space distribution and transmission route of dust aerosol were investigated during the dust events occurred from April 16th to 18th in 2013 over northwest China, based on L1 data of CALIOP/CALIOPSO, a combination of multiple satellite data and models. The results show that (1) dust aerosols could cause the reduction in effective radius of particle, cloud liquid water content and cloud optical thickness, and the increase of the number concentration of liquid cloud particles as well, (2) The aerosol extinction coefficients were decreased with the increase of height. The value of the aerosol extinction coefficients in desert area was greater than that in the area of Gansu Province due to urbanization. Distribution of the aerosol extinction coefficients in spring was nearly the same as the annual average. (3) Using aerosol products of the vertical characteristics from CALIOP/CALIOPSO, aerosol was classified during dust events, and with NAPPS Global aerosol model, daily distribution of the dust aerosol concentration was given, showing the transport and diffusion of dust aerosol. With HYSPLIT trajectory model dust transportation path of the sand dust source areas was simulated and identified. During the outbreak of dust event dust aerosol was mainly distributed over the surface about 3km, with depolarization ratio at 0.4 and color ratio at 1.2. During the dust events were close to weak and stop, dust aerosol was mainly distributed over the surface under 2 km, with depolarization ratio from 0.2 to 0.3, and color ratio about 1.

  14. Diffusion barriers

    NASA Technical Reports Server (NTRS)

    Nicolet, M. A.

    1983-01-01

    The choice of the metallic film for the contact to a semiconductor device is discussed. One way to try to stabilize a contact is by interposing a thin film of a material that has low diffusivity for the atoms in question. This thin film application is known as a diffusion barrier. Three types of barriers can be distinguished. The stuffed barrier derives its low atomic diffusivity to impurities that concentrate along the extended defects of a polycrystalline layer. Sacrificial barriers exploit the fact that some (elemental) thin films react in a laterally uniform and reproducible fashion. Sacrificial barriers have the advantage that the point of their failure is predictable. Passive barriers are those most closely approximating an ideal barrier. The most-studied case is that of sputtered TiN films. Stuffed barriers may be viewed as passive barriers whose low diffusivity material extends along the defects of the polycrystalline host.

  15. Diffuse radiation

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A diffuse celestial radiation which is isotropic at least on a course scale were measured from the soft X-ray region to about 150 MeV, at which energy the intensity falls below that of the galactic emission for most galactic latitudes. The spectral shape, the intensity, and the established degree of isotropy of this diffuse radiation already place severe constraints on the possible explanations for this radiation. Among the extragalactic theories, the more promising explanations of the isotropic diffuse emission appear to be radiation from exceptional galaxies from matter antimatter annihilation at the boundaries of superclusters of galaxies of matter and antimatter in baryon symmetric big bang models. Other possible sources for extragalactic diffuse gamma radiation are discussed and include normal galaxies, clusters of galaxies, primordial cosmic rays interacting with intergalactic matter, primordial black holes, and cosmic ray leakage from galaxies.

  16. Reuyl Crater Dust Avalanches

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 13 May 2002) The Science The rugged, arcuate rim of the 90 km crater Reuyl dominates this THEMIS image. Reuyl crater is at the southern edge of a region known to be blanketed in thick dust based on its high albedo (brightness) and low thermal inertia values. This thick mantle of dust creates the appearance of snow covered mountains in the image. Like snow accumulation on Earth, Martian dust can become so thick that it eventually slides down the face of steep slopes, creating runaway avalanches of dust. In the center of this image about 1/3 of the way down is evidence of this phenomenon. A few dozen dark streaks can be seen on the bright, sunlit slopes of the crater rim. The narrow streaks extend downslope following the local topography in a manner very similar to snow avalanches on Earth. But unlike their terrestrial counterparts, no accumulation occurs at the bottom. The dust particles are so small that they are easily launched into the thin atmosphere where they remain suspended and ultimately blow away. The apparent darkness of the avalanche scars is due to the presence of relatively dark underlying material that becomes exposed following the passage of the avalanche. Over time, new dust deposition occurs, brightening the scars until they fade into the background. Although dark slope streaks had been observed in Viking mission images, a clear understanding of this dynamic phenomenon wasn't possible until the much higher resolution images from the Mars Global Surveyor MOC camera revealed the details. MOC images also showed that new avalanches have occurred during the time MGS has been in orbit. THEMIS images will allow additional mapping of their distribution and frequency, contributing new insights about Martian dust avalanches. The Story The stiff peaks in this image might remind you of the Alps here on Earth, but they really outline the choppy edge of a large Martian crater over 50 miles wide (seen in the context image at right). While these aren

  17. Recombination of H atoms on the dust in fusion plasmas

    SciTech Connect

    Bakhtiyari-Ramezani, M. Alinejad, N.; Mahmoodi, J.

    2015-07-15

    We survey a model for theoretical study of the interaction of hydrogen and dust surface and apply our results for dusty plasmas to fusion devices. In this model, considering the mobility of ad-atoms from one physisorbed, or chemisorbed site, to other one by thermal diffusion, we describe the formation of H{sub 2} on grain surfaces. Finally, we calculate the formation rate on the high temperature dust surfaces for a range of temperature and density in typical conditions of divertor of tokamak.

  18. Capture of interplanetary and interstellar dust by the jovian magnetosphere.

    PubMed

    Colwell, J E; Horányi, M; Grün, E

    1998-04-03

    Interplanetary and interstellar dust grains entering Jupiter's magnetosphere form a detectable diffuse faint ring of exogenic material. This ring is composed of particles in the size range of 0. 5 to 1.5 micrometers on retrograde and prograde orbits in a 4:1 ratio, with semimajor axes 3 < a < 20 jovian radii, eccentricities 0. 1 < e < 0.3, and inclinations i less, similar 20 degrees or i greater, similar 160 degrees. The size range and the orbital characteristics are consistent with in situ detections of micrometer-sized grains by the Galileo dust detector, and the measured rates match the number densities predicted from numerical trajectory integrations.

  19. Development of materials resistant to metal dusting degradation.

    SciTech Connect

    Natesan, K.; Zeng, Z.

    2006-04-24

    Metal dusting corrosion has been a serious problem in the petroleum and petrochemical industries, such as reforming and syngas production systems. This form of deterioration has led to worldwide material loss for 50 years. For the past three years, we have studied the mechanism of metal dusting for Fe- and Ni-base alloys. In this report, we present a correlation between the weight loss and depth of pits that form in Ni-base alloys. Nickel-base alloys were also tested at 1 and 14.8 atm (210 psi), in a high carbon activity environment. Higher system pressure was found to accelerate corrosion in most Ni-base alloys. To reduce testing time, a pre-pitting method was developed. Mechanical scratches on the alloy surface led to fast metal dusting corrosion. We have also developed preliminary data on the performance of weldments of several Ni-base alloys in a metal dusting environment. Finally, Alloy 800 tubes and plates used in a reformer plant were examined by scanning electron microscopy, energy dispersive X-ray, and Raman spectroscopy. The oxide scale on the surface of the Alloy 800 primarily consists of Fe{sub 1+x}Cr{sub 2-X}O{sub 4} spinel phase with high Fe content. Carbon can diffuse through this oxide scale. It was discovered that the growth of metal dusting pits could be stopped by means of a slightly oxidized alloy surface. This leads to a new way to solve metal dusting problem.

  20. Photoemission of Single Dust Grains for Heliospheric Conditions

    NASA Technical Reports Server (NTRS)

    Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.

    2000-01-01

    Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.

  1. Dust in Planetary Systems

    NASA Astrophysics Data System (ADS)

    Krueger, H.; Graps, A.

    2007-01-01

    The workshop 'Dust in Planetary Systems' was held in Kauai'i/Hawaii from September 26 to 30, 2005, following the tradition of holding meetings in the field of Interplanetary Dust Research at regular intervals of a few years. The series of meetings started in Honolulu, Hawaii (USA) in 1967, followed by Heidelberg (Germany) in 1975, Ottawa (Canada) in 1979, Marseilles (France) in 1984, Kyoto (Japan) in 1990, Gainesville, Florida (USA) in 1995, with the last being held in Canterbury, (U.K.) in 2000. The Kauai'i workshop in 2005 was attended by 150 scientists from 20 countries who actively discussed recent progress made through remote observations from the ground and from space, in-situ measurements, as well as from theory and laboratory experiments. Since the last meeting in Canterbury, numerous space missions provided significant progress in various fields of cosmic dust research. For studies of comet nuclei, scientists in our field were involved in three space missions. In 2001, the Deep Space 1 spacecraft flew by comet Borelly. In 2004, Stardust flew by comet Wild 2, with many exciting results from the Stardust return capsule still to come. In 2005, the Deep Impact probe collided with comet Tempel 1. In addition, the comet dust community made large strides forward when Rosetta was launched to begin its 10-year voyage towards comet Churyumov-Gerasimenkov. Saturn's environment also provides a natural laboratory for cosmic dust researchers. The Saturn ring system with its spokes has been the prime motivator for dusty plasma studies since the time of the Voyager spacecraft twenty years ago. The Cassini spacecraft in orbit around Saturn since 2004 is well-placed to not only continue those studies, but to start new studies provided by Saturn's enigmatic moon Enceladus. Jupiter's dusty environment has not been neglected by spacecraft in these last five years either. While the Galileo mission was terminated in 2003 after the spacecraft's 7-year orbital tour about Jupiter

  2. Direct Measurement of Dust Attenuation in z approx. 1.5 Star-Forming Galaxies from 3D-HST: Implications for Dust Geometry and Star Formation Rates

    NASA Technical Reports Server (NTRS)

    Price, Sedona H.; Kriek, Mariska; Brammer, Gabriel B; Conroy, Charlie; Schreiber, Natascha M. Foerster; Franx, Marijn; Fumagalli, Mattia; Lundren, Britt; Momcheva, Ivelina; Nelson, Erica J.; Rix, Hans-Walter; Skelton, Rosalind E.; VanDokkum, Pieter G.; Tease, Katherine Whitaker; Wuyts, Stijn

    2013-01-01

    The nature of dust in distant galaxies is not well understood, and until recently few direct dust measurements have been possible. We investigate dust in distant star-forming galaxies using near-infrared grism spectra of the 3D-HST survey combined with archival multi-wavelength photometry. These data allow us to make a direct comparison between dust towards star-forming regions (measured using Balmer decrements) and the integrated dust properties (derived by comparing spectral energy distributions [SEDs] with stellar population and dust models) for a statistically significant sample of distant galaxies. We select a sample of 163 galaxies between 1.36< or = z< or = 1.5 with H(alpha) SNR > or = 5 and measure Balmer decrements from stacked spectra. First, we stack spectra in bins of integrated stellar dust attenuation, and find that there is extra dust extinction towards star-forming regions (AV,HII is 1.81 times the integrated AV, star), though slightly lower than found for low-redshift starburst galaxies. Next, we stack spectra in bins of specific star formation rate (log sSFR), star formation rate (log SFR), and stellar mass (logM*). We find that on average AV,HII increases with SFR and mass, but decreases with increasing sSFR. The amount of extra extinction also decreases with increasing sSFR and decreasing stellar mass. Our results are consistent with the two-phase dust model - in which galaxies contain both a diffuse and a stellar birth cloud dust component - as the extra extinction will increase once older stars outside the star-forming regions become more dominant. Finally, using our Balmer decrements we derive dust-corrected H(alpha) SFRs, and find evidence that SED fitting produces incorrect SFRs if very rapidly declining SFHs are included in the explored parameter space. Subject headings: dust, extinction- galaxies: evolution- galaxies: high-redshift

  3. Dust and Gas in the Magellanic Clouds from the HERITAGE Herschel Key Project. II. Gas-to-dust Ratio Variations across Interstellar Medium Phases

    NASA Astrophysics Data System (ADS)

    Roman-Duval, Julia; Gordon, Karl D.; Meixner, Margaret; Bot, Caroline; Bolatto, Alberto; Hughes, Annie; Wong, Tony; Babler, Brian; Bernard, Jean-Philippe; Clayton, Geoffrey C.; Fukui, Yasuo; Galametz, Maud; Galliano, Frederic; Glover, Simon; Hony, Sacha; Israel, Frank; Jameson, Katherine; Lebouteiller, Vianney; Lee, Min-Young; Li, Aigen; Madden, Suzanne; Misselt, Karl; Montiel, Edward; Okumura, Koryo; Onishi, Toshikazu; Panuzzo, Pasquale; Reach, William; Remy-Ruyer, Aurelie; Robitaille, Thomas; Rubio, Monica; Sauvage, Marc; Seale, Jonathan; Sewilo, Marta; Staveley-Smith, Lister; Zhukovska, Svitlana

    2014-12-01

    The spatial variations of the gas-to-dust ratio (GDR) provide constraints on the chemical evolution and lifecycle of dust in galaxies. We examine the relation between dust and gas at 10-50 pc resolution in the Large and Small Magellanic Clouds (LMC and SMC) based on Herschel far-infrared (FIR), H I 21 cm, CO, and Hα observations. In the diffuse atomic interstellar medium (ISM), we derive the GDR as the slope of the dust-gas relation and find GDRs of 380+250-130\\+/- 3 in the LMC, and 1200+1600-420\\+/- 120 in the SMC, not including helium. The atomic-to-molecular transition is located at dust surface densities of 0.05 M ⊙ pc-2 in the LMC and 0.03 M ⊙ pc-2 in the SMC, corresponding to A V ~ 0.4 and 0.2, respectively. We investigate the range of CO-to-H2 conversion factor to best account for all the molecular gas in the beam of the observations, and find upper limits on X CO to be 6 × 1020 cm-2 K-1 km-1 s in the LMC (Z = 0.5 Z ⊙) at 15 pc resolution, and 4 × 1021 cm-2 K-1 km-1 s in the SMC (Z = 0.2 Z ⊙) at 45 pc resolution. In the LMC, the slope of the dust-gas relation in the dense ISM is lower than in the diffuse ISM by a factor ~2, even after accounting for the effects of CO-dark H2 in the translucent envelopes of molecular clouds. Coagulation of dust grains and the subsequent dust emissivity increase in molecular clouds, and/or accretion of gas-phase metals onto dust grains, and the subsequent dust abundance (dust-to-gas ratio) increase in molecular clouds could explain the observations. In the SMC, variations in the dust-gas slope caused by coagulation or accretion are degenerate with the effects of CO-dark H2. Within the expected 5-20 times Galactic X CO range, the dust-gas slope can be either constant or decrease by a factor of several across ISM phases. Further modeling and observations are required to break the degeneracy between dust grain coagulation, accretion, and CO-dark H2. Our analysis demonstrates that obtaining robust ISM masses remains a

  4. STEADY STATE DUST DISTRIBUTIONS IN DISK VORTICES: OBSERVATIONAL PREDICTIONS AND APPLICATIONS TO TRANSITIONAL DISKS

    SciTech Connect

    Lyra, Wladimir; Lin, Min-Kai E-mail: mklin924@cita.utoronto.ca

    2013-09-20

    The Atacama Large Millimeter Array has returned images of transitional disks in which large asymmetries are seen in the distribution of millimeter sized dust in the outer disk. The explanation in vogue borrows from the vortex literature and suggests that these asymmetries are the result of dust trapping in giant vortices, excited via Rossby wave instabilities at planetary gap edges. Due to the drag force, dust trapped in vortices will accumulate in the center and diffusion is needed to maintain a steady state over the lifetime of the disk. While previous work derived semi-analytical models of the process, in this paper we provide analytical steady-steady solutions. Exact solutions exist for certain vortex models. The solution is determined by the vortex rotation profile, the gas scale height, the vortex aspect ratio, and the ratio of dust diffusion to gas-dust friction. In principle, all of these quantities can be derived from observations, which would validate the model and also provide constrains on the strength of the turbulence inside the vortex core. Based on our solution, we derive quantities such as the gas-dust contrast, the trapped dust mass, and the dust contrast at the same orbital location. We apply our model to the recently imaged Oph IRS 48 system, finding values within the range of the observational uncertainties.

  5. Experimental investigations of the optical and physical properties of interstellar and lunar dust grains

    NASA Astrophysics Data System (ADS)

    Tankosic, Dragana

    2010-10-01

    Dust grains constitute a major component of matter in the universe. About half of all elements in the interstellar medium (ISM) heavier than helium are in the form of dust. Dust particles are formed in astrophysical environments by processes such as stellar outflows and supernovae. Ejected into the ISM, they lead to the formation of diffuse and dense molecular clouds of gas and dust. The gas and dust in the interstellar clouds undergo a variety of complex physical and chemical evolutionary processes leading to the formation of stars and planetary systems, forming a cosmic dust cycle. Micron/submicron size cosmic dust grains have a significant role in physical and dynamical processes in the galaxy, the ISM, and the interplanetary and planetary environments. Therefore, the knowledge of the physical, optical, and charging properties of the cosmic dust provides valuable information about many issues related to the role of dust in astrophysical environments. An experimental facility based on an electrodynamic balance (EDB) has been developed at NASA- Marshall Space Flight Center (MSFC) for investigation of several different properties and processes of individual, levitated micron/submicron size dust grains in simulated space environments. This dissertation focuses on experimental investigations in the following areas: (1) Radiation pressure on individual micron-sized dust grains; (2) Rotation and alignment of micron-sized dust grains simulating rotation of dust grains in astrophysical environment; (3) Charging of analogs of individual cosmic dust grains and lunar dust grains by UV radiation; (4) Charging of Apollo 11 & 17 lunar dust grains by electron impact simulating the charging of lunar dust by the solar wind plasma. The experimental results obtained on individual micron/submicron-size dust grains in the EDB facility at NASA/MSFC in each of the above four areas were unique and first to be reported. Experimental studies of the physical and optical properties of

  6. A numerical study on dust devil dust transport: Implications to regional and global dust budget estimates

    NASA Astrophysics Data System (ADS)

    Klose, M.; Shao, Y.

    2015-12-01

    The amount of dust transported by dust devils (DDs) is subject to large uncertainties because the dust emission mechanisms in DDs are not yet well understood. Reducing this uncertainty is essential to estimate the contribution of DDs to the global dust budget and to study their impact on climate and the environment. Here, large-eddy simulation coupled with a dust emission scheme is used to investigate DD dust entrainment. DDs are identified from the simulations using various threshold values for pressure drop and vorticity in the DD center. The results show that DD dust lifting can be largely explained by convective turbulent dust emission. DD dust entrainment varies strongly between individual DDs even for similar atmospheric conditions, but the maximum emissions are determined by atmospheric stability. By relating DD emission and counts to Richardson number, we propose a new and simple method to estimate regional and global DD dust transport. The method is applied to results of regional model simulations for Australia, thus providing an estimate of the contribution of DDs to the Australian dust budget.

  7. Modeling Europa's dust plumes

    NASA Astrophysics Data System (ADS)

    Southworth, B. S.; Kempf, S.; Schmidt, J.

    2015-12-01

    The discovery of Jupiter's moon Europa maintaining a probably sporadic water vapor plume constitutes a huge scientific opportunity for NASA's upcoming mission to this Galilean moon. Measuring properties of material emerging from interior sources offers a unique chance to understand conditions at Europa's subsurface ocean. Exploiting results obtained for the Enceladus plume, we simulate possible Europa plume configurations, analyze particle number density and surface deposition results, and estimate the expected flux of ice grains on a spacecraft. Due to Europa's high escape speed, observing an active plume will require low-altitude flybys, preferably at altitudes of 5-100 km. At higher altitudes a plume may escape detection. Our simulations provide an extensive library documenting the possible structure of Europa dust plumes, which can be quickly refined as more data on Europa dust plumes are collected.

  8. Dust Storm, Aral Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Aral Sea has shrunk to less than half its size since 1985. The Aral Sea receives little water (sometimes no water) from the two major rivers that empty into it-the Syr Darya and Amu Darya. Instead, the river water is diverted to support irrigation for the region's extensive cotton fields. Recently, water scarcity has increased due to a prolonged drought in Central Asia. As the Aral Sea recedes, its former sea bed is exposed. The Aral's sea bed is composed of fine sediments-including fertilizers and other agricultural chemicals-that are easily picked up by the region's strong winds, creating thick dust storms. The International Space Station crew observed and recorded a large dust storm blowing eastward from the Aral Sea in late June 2001. This image illustrates the strong coupling between human activities (water diversions and irrigation), and rapidly changing land, sea and atmospheric processes-the winds blow across the

  9. Micromachined Dust Traps

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory H.; Bradley, James G.

    1993-01-01

    Micromachined traps devised to capture dust particles for analysis without contaminating them. Based on micromachined structures retaining particles, rather than adhesives or greases interfering with scanning-electron-microscope analysis or x-ray imaging. Unlike maze traps and traps enmeshing particles in steel wool or similar materials, micromachined traps do not obscure trapped particles. Internal geometries of traps range from simple cones to U-shapes, all formed by etching silicon.

  10. Dust Devil Art

    NASA Technical Reports Server (NTRS)

    2005-01-01

    12 December 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows dark squiggles and streaks created by passing spring and summer dust devils near Pallacopas Vallis in the martian southern hemisphere.

    Location near: 53.9oS, 17.2oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  11. ISM Diagnostics: Dust

    NASA Astrophysics Data System (ADS)

    Onaka, Takashi

    2013-03-01

    Infrared (IR) observations provide significant information on the lifecycle of dust grains in the interstellar medium (ISM), which is crucial for the understanding of the evolution of matter in the universe. The IR spectral energy distribution (SED) of the dust emission tells us the relative abundance of sub-micron grains, very small grains, and carriers of the unidentified infrared (UIR) emission bands, since they emit the far-IR, the mid-IR, and the UIR bands from the near- to mid-IR, respectively. On the other hand, the UIR emission bands themselves offer a useful means to probe the physical conditions from which the band emission arises because each band is assigned to a specific C-H or C-C vibration mode and because its relative intensity should reflect the properties of the band carriers and the physical conditions of the environment. Here the two diagnostic methods using IR observations are briefly described together with examples of the observational results. Implications for the dust lifecycle are also discussed.

  12. Dust, Climate, and Human Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. Ths paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  13. Dust, Climate, and Human Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2003-01-01

    Air pollution from both natural and anthropogenic causes is considered to be one of the most serious world-wide environment-related health problems, and is expected to become worse with changes in the global climate. Dust storms from the atmospheric transport of desert soil dust that has been lifted and carried by the winds - often over significant distances - have become an increasingly important emerging air quality issue for many populations. Recent studies have shown that the dust storms can cause significant health impacts from the dust itself as well as the accompanying pollutants, pesticides, metals, salt, plant debris, and other inorganic and organic materials, including viable microorganisms (bacteria, viruses and fungi). For example, thousands of tons of Asian desert sediments, some containing pesticides and herbicides from farming regions, are commonly transported into the Arctic during dust storm events. These chemicals have been identified in animal and human tissues among Arctic indigenous populations. Millions of tons of airborne desert dust are being tracked by satellite imagery, which clearly shows the magnitude as well as the temporal and spatial variability of dust storms across the "dust belt" regions of North Africa, the Middle East, and China. This paper summarizes the most recent findings on the effects of airborne desert dust on human health as well as potential climate influences on dust and health.

  14. Planck intermediate results. XXXVIII. E- and B-modes of dust polarization from the magnetized filamentary structure of the interstellar medium

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bracco, A.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombo, L. P. L.; Combet, C.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Ferrière, K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Soler, J. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The quest for a B-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. We present a statistical study of the filamentary structure of the 353 GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between E-modes and B-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder (SMAFF), we identify 259 filaments at high Galactic latitude, with lengths larger or equal to 2° (corresponding to 3.5 pc in length for a typical distance of 100 pc). Thesefilaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes I, Q, U, E, and B, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be 11%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the E and B asymmetry and the CℓTE/CℓEE ratio, reported in the power spectra analysis of the Planck353 GHz polarization maps. Future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.

  15. Dust in the Wind: Modern and Ancient Dust Compositions

    NASA Astrophysics Data System (ADS)

    Hummer, P. J.; Pierce, J. L.; Benner, S. G.

    2013-12-01

    The addition of wind-blown sediments to soils can alter soil grain-size distributions, chemistry, and hydrologic properties, which can substantially affect geomorphic and hydrologic processes. In the Snake River Plain of Idaho, dust deposition has a profound influence on soil development, soil fertility and other soil characteristics. A rigorous study of the movement and chemistry of dust in the Boise area has not been completed. This study will establish a sampling method for dust collection, define the elemental signature of Boise dust and analyze Quaternary loess deposits to determine if the composition of dust in the Boise area has changed. We constructed passive marble samplers to collect wind-blown sediments within the Dry Creek Experimental Watershed (DCEW) located in the Boise Front foothills about 16 km northeast of Boise, Idaho. Mass flux amounts and the mineralogical composition of dust samples will provide information about the influence of wind-blown sediments on the soils of Dry Creek Experimental Watershed. ICP-MS analysis of samples will define an elemental signature for Boise dust. Comparison of modern dust with ancient loess will improve the understanding of the role of climate change in dust transport. We analyzed hourly wind speed data collected over the past 10 years from three weather stations to investigate trends in the timing of peak wind events. Average annual wind speeds range from 1.29 to 4.91 mph with a total average of 2.82 mph. Analysis of wind speeds indicate that while the majority of the highest wind events occur in the winter, wind events that occur during the summer months may be responsible for transporting dust. Recent large dust storms may have originated from extensive burned rangelands, and/or large plowed agricultural land. Future work will investigate the percentages of organic vs. inorganic material in loess, in order to narrow down possible sources of dust in the Snake River Plain.

  16. Clouds and Dust Storms

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released 2 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere.

    Image information: VIS instrument. Latitude 68.4, Longitude 180 East (180 West). 38 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with

  17. Dust Telescopes and Active Dust Collectors: Linking Dust to Their Sources

    NASA Astrophysics Data System (ADS)

    Drake, K. J.; Sternovsky, Z.; Gruen, E.; Srama, R.; Auer, S.; Horanyi, M.; Kempf, S.; Krueger, H.; Postberg, F.

    2010-12-01

    Cosmic dust particles from remote sites and times are treasures of information. By determining the dust particles' source and their elemental properties, we can learn about the environments, where they were formed and processed. Born as stardust in the cool atmospheres of giant stars or in novae and supernovae explosions, the particles are subsequently modified in the interstellar medium. Interplanetary dust that originates from comets and asteroids represents even more processed material at different stages of Solar System evolution. Interstellar and interplanetary dust particles from various sources can be detected and analyzed in the near-Earth space environment. The newly developed instruments Dust Telescope and Active Dust Collector are able to determine the origin of dust particles and provide their elemental composition. A Dust Telescope is a combination of a Dust Trajectory Sensor (DTS) [1] together with an analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of induced electric signals when a charged grain flies through a position sensitive electrode system. A modern DTS can measure dust particles as small as 0.2 µm in radius and dust speeds up to 100 km/s. Large area chemical analyzers of 0.1 m2 sensitive area have been tested at a dust accelerator and it was demonstrated that they have sufficient mass resolution to resolve ions with atomic mass number up to >100 [2]. The advanced Dust Telescope is capable of identifying interstellar and interplanetary grains, and measuring their mass, velocity vector, charge, elemental and isotopic compositions. An Active Dust Collector combines a DTS with an aerogel or other dust collector materials, e.g. like the ones used on the Stardust mission. The combination of a DTS with a dust collector provides not only individual trajectories of the collected particles but also their impact time and position on the collector which proves essential to

  18. Defusing Diffusion

    ERIC Educational Resources Information Center

    Dou, Remy; Hogan, DaNel; Kossover, Mark; Spuck, Timothy; Young, Sarah

    2013-01-01

    Diffusion has often been taught in science courses as one of the primary ways by which molecules travel, particularly within organisms. For years, classroom teachers have used the same common demonstrations to illustrate this concept (e.g., placing drops of food coloring in a beaker of water). Most of the time, the main contributor to the motion…

  19. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  20. Circumstellar Dust in Symbiotic Novae

    NASA Astrophysics Data System (ADS)

    Jurkic, T.; Kotnik-Karuza, D.

    2015-12-01

    We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the near-IR photometry, ISO spectra and mid-IR interferometry. The dust properties were determined using the DUSTY code. A compact circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel shows the presence of an equatorially enhanced dust density during minimum obscuration. Obscuration events are explained by an increase in optical depth caused by the newly condensed dust. The mass loss rates are significantly higher than in intermediate-period single Miras but in agreement with longer-period O-rich AGB stars.

  1. Large Aperture Electrostatic Dust Detector

    SciTech Connect

    C.H. Skinner, R. Hensley, and A.L Roquemore

    2007-10-09

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 ν has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  2. HOT HYDROGEN IN DIFFUSE CLOUDS

    SciTech Connect

    Cecchi-Pestellini, Cesare; Duley, Walt W.; Williams, David A. E-mail: wwduley@uwaterloo.ca

    2012-08-20

    Laboratory evidence suggests that recombination of adsorbed radicals may cause an abrupt temperature excursion of a dust grain to about 1000 K. One consequence of this is the rapid desorption of adsorbed H{sub 2} molecules with excitation temperatures of this magnitude. We compute the consequences of injection of hot H{sub 2} into cold diffuse interstellar gas at a rate of 1% of the canonical H{sub 2} formation rate. We find that the level populations of H{sub 2} in J = 3, 4, and 5 are close to observed values, and that the abundances of CH{sup +} and OH formed in reactions with hot hydrogen are close to the values obtained from observations of diffuse clouds.

  3. Laboratory studies of interplanetary dust

    NASA Technical Reports Server (NTRS)

    Walker, R. M.

    1986-01-01

    Interplanetary dust particles (IDPs) are a form of primitive extraterrestrial material. In spite of the formidable experimental problems in working with particles that are too small to be seen with the naked eye, it has proven possible to obtain considerable information concerning their properties and possible origins. Dust particles collected in the stratosphere were reviewed. These particles are the best available samples of interplanetary dust and were studied using a variety of analytical techniques.

  4. A high reliability survey of discrete Epoch of Reionization foreground sources in the MWA EoR0 field

    NASA Astrophysics Data System (ADS)

    Carroll, P. A.; Line, J.; Morales, M. F.; Barry, N.; Beardsley, A. P.; Hazelton, B. J.; Jacobs, D. C.; Pober, J. C.; Sullivan, I. S.; Webster, R. L.; Bernardi, G.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; de Oliveira-Costa, A.; Dillon, J. S.; Emrich, D.; Ewall-Wice, A.; Feng, L.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, HS.; Kratzenberg, E.; Lenc, E.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, S.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Shankar, N. Udaya; Sethi, S. K.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wu, C.; Wyithe, J. S. B.

    2016-10-01

    Detection of the epoch of reionization H I signal requires a precise understanding of the intervening galaxies and AGN, both for instrumental calibration and foreground removal. We present a catalogue of 7394 extragalactic sources at 182 MHz detected in the RA = 0 field of the Murchison Widefield Array Epoch of Reionization observation programme. Motivated by unprecedented requirements for precision and reliability we develop new methods for source finding and selection. We apply machine learning methods to self-consistently classify the relative reliability of 9490 source candidates. A subset of 7466 are selected based on reliability class and signal-to-noise ratio criteria. These are statistically cross-matched to four other radio surveys using both position and flux density information. We find 7369 sources to have confident matches, including 90 partially resolved sources that split into a total of 192 sub-components. An additional 25 unmatched sources are included as new radio detections. The catalogue sources have a median spectral index of -0.85. Spectral flattening is seen towards lower frequencies with a median of -0.71 predicted at 182 MHz. The astrometric error is 7 arcsec compared to a 2.3 arcmin beam FWHM. The resulting catalogue covers ˜1400 deg2 and is complete to approximately 80 mJy within half beam power. This provides the most reliable discrete source sky model available to date in the MWA EoR0 field for precision foreground subtraction.

  5. Constraining Polarized Foregrounds for EoR Experiments I: 2D Power Spectra from the PAPER-32 Imaging Array

    NASA Astrophysics Data System (ADS)

    Kohn, S. A.; Aguirre, J. E.; Nunhokee, C. D.; Bernardi, G.; Pober, J. C.; Ali, Z. S.; Bradley, R. F.; Carilli, C. L.; DeBoer, D. R.; Gugliucci, N. E.; Jacobs, D. C.; Klima, P.; MacMahon, D. H. E.; Manley, J. R.; Moore, D. F.; Parsons, A. R.; Stefan, I. I.; Walbrugh, W. P.

    2016-06-01

    Current generation low-frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background aim to generate power spectra of the brightness temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional (2D) power spectra (power in Fourier modes parallel and perpendicular to the line of sight) that formed from interferometric visibilities have been shown to delineate a boundary between spectrally smooth foregrounds (known as the wedge) and spectrally structured 21 cm background emission (the EoR window). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U, and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U, and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.

  6. Circumstellar dust in symbiotic novae

    NASA Astrophysics Data System (ADS)

    Jurkic, Tomislav; Kotnik-Karuza, Dubravka

    2015-08-01

    Physical properties of the circumstellar dust and associated physical mechanisms play an important role in understanding evolution of symbiotic binaries. We present a model of inner dust regions around the cool Mira component of the two symbiotic novae, RR Tel and HM Sge, based on the long-term near-IR photometry, infrared ISO spectra and mid-IR interferometry. Pulsation properties and long-term variabilities were found from the near-IR light curves. The dust properties were determined using the DUSTY code which solves the radiative transfer. No changes in pulsational parameters were found, but a long-term variations with periods of 20-25 years have been detected which cannot be attributed to orbital motion.Circumstellar silicate dust shell with inner dust shell temperatures between 900 K and 1300 K and of moderate optical depth can explain all the observations. RR Tel showed the presence of an optically thin CS dust envelope and an optically thick dust region outside the line of sight, which was further supported by the detailed modelling using the 2D LELUYA code. Obscuration events in RR Tel were explained by an increase in optical depth caused by the newly condensed dust leading to the formation of a compact dust shell. HM Sge showed permanent obscuration and a presence of a compact dust shell with a variable optical depth. Scattering of the near-IR colours can be understood by a change in sublimation temperature caused by the Mira variability. Presence of large dust grains (up to 4 µm) suggests an increased grain growth in conditions of increased mass loss. The mass loss rates of up to 17·10-6 MSun/yr were significantly higher than in intermediate-period single Miras and in agreement with longer-period O-rich AGB stars.Despite the nova outburst, HM Sge remained enshrouded in dust with no significant dust destruction. The existence of unperturbed dust shell suggests a small influence of the hot component and strong dust shielding from the UV flux. By the use

  7. A fast and explicit algorithm for simulating the dynamics of small dust grains with smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Price, Daniel J.; Laibe, Guillaume

    2015-07-01

    We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extra diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This `diffusion approximation for dust' is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using smoothed particle hydrodynamics that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.

  8. Chemical Evolution of Interstellar Dust into Planetary Materials

    NASA Technical Reports Server (NTRS)

    Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)

    1995-01-01

    Comets are believed to retain some interstellar materials, stored in fairly pristine conditions since-their formation. The composition and properties of cometary dust grains should reflect those of grains in the outer part of the protosolar nebula which, at least in part, were inherited from the presolar molecular cloud. However, infrared emission features in comets differ from their interstellar counterparts. These differences imply processing of interstellar material on its way to incorporation in comets, but C and N appear to be retained. Overall dust evolution from the interstellar medium (ISM) to planetary materials is accompanied by an increase in proportion of complex organics and a decrease in pure carbon phases. The composition of cometary dust grains was measured in situ during fly-by missions to comet Halley in 1986. The mass spectra of about 5000 cometary dust grains with masses of 5 x 10(exp -17) - 5 x 10(exp -12) g provide data about the presence and relative abundances of the major elements H, C, N, O,Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Fe, Ni. The bulk abundances of major rock-forming elements integrated over all spectra were found to be solar within a factor of 2, while the volatile elements H, C, N, O in dust are depleted in respect to their total cosmic abundances. The abundances of C and N in comet dust are much closer to interstellar than to meteoritic and are higher than those of dust in the diffuse ISM. In dense molecular clouds dust grains are covered by icy mantles, the average composition of which is estimated to be H:C:N:O = 96:14:1:34. Up to 40% of elemental C and O may be sequestered in mantles. If we use this upper limit to add H, C, N and O as icy mantle material to the abundances residing in dust in the diffuse ISM, then the resulting values for H. C, and N match cometary abundances. Thus, ice mantles undergoing chemical evolution on grains in the dense ISM appear to have been transformed into less volatile and more complex organic

  9. Selective mode excitation in finite size plasma crystals by diffusely reflected laser light

    SciTech Connect

    Schablinski, Jan; Block, Dietmar

    2015-02-15

    The possibility to use diffuse reflections of a laser beam to exert a force on levitating dust particles is studied experimentally. Measurements and theoretical predictions are found to be in good agreement. Further, the method is applied to test the selective excitation of breathing-like modes in finite dust clusters.

  10. Dynamic of the Dust Structures under Magnetic Field Effect in DC Glow Discharges

    SciTech Connect

    Vasiliev, M. M.; D'yachkov, L. G.; Antipov, S. N.; Petrov, O. F.; Fortov, V. E.

    2008-09-07

    In this work, we investigate dust structures in the striation of DC glow discharges under magnetic field actions. The dependence of rotation frequency of dusty plasma structures as a function of the magnetic field was investigated. For various magnetic fields kinetic temperatures of the dust particles, diffusion coefficients, and effective coupling coefficient {gamma}* have been determined. Obtained results are analyzed and compared with theoretical predictions.

  11. THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS

    SciTech Connect

    Pober, J. C.; Hazelton, B. J.; Beardsley, A. P.; Barry, N. A.; Martinot, Z. E.; Sullivan, I. S.; Morales, M. F.; Carroll, P.; Bell, M. E.; Bernardi, G.; Bhat, N. D. R.; Emrich, D.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; De Oliveira-Costa, A.; Deshpande, A. A.; Dillon, Joshua S.; Ewall-Wice, A. M.; and others

    2016-03-01

    In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing a foreground model that includes sources in both the main field of view and the first sidelobes reduces the contamination in high k{sub ∥} modes by several per cent relative to a model that only includes sources in the main field of view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. While small, a percent-level amount of foreground power is in itself more than enough to prevent recovery of any Epoch of Reionization signal from these modes. This result demonstrates that foreground subtraction for redshifted 21 cm experiments is truly a wide-field problem, and algorithms and simulations must extend beyond the instrument’s main field of view to potentially recover the full 21 cm power spectrum.

  12. FOREGROUND MODEL AND ANTENNA CALIBRATION ERRORS IN THE MEASUREMENT OF THE SKY-AVERAGED λ21 cm SIGNAL AT z∼ 20

    SciTech Connect

    Bernardi, G.; McQuinn, M.; Greenhill, L. J.

    2015-01-20

    The most promising near-term observable of the cosmic dark age prior to widespread reionization (z ∼ 15-200) is the sky-averaged λ21 cm background arising from hydrogen in the intergalactic medium. Though an individual antenna could in principle detect the line signature, data analysis must separate foregrounds that are orders of magnitude brighter than the λ21 cm background (but that are anticipated to vary monotonically and gradually with frequency, e.g., they are considered {sup s}pectrally smooth{sup )}. Using more physically motivated models for foregrounds than in previous studies, we show that the intrinsic spectral smoothness of the foregrounds is likely not a concern, and that data analysis for an ideal antenna should be able to detect the λ21 cm signal after subtracting a ∼fifth-order polynomial in log ν. However, we find that the foreground signal is corrupted by the angular and frequency-dependent response of a real antenna. The frequency dependence complicates modeling of foregrounds commonly based on the assumption of spectral smoothness. Our calculations focus on the Large-aperture Experiment to detect the Dark Age, which combines both radiometric and interferometric measurements. We show that statistical uncertainty remaining after fitting antenna gain patterns to interferometric measurements is not anticipated to compromise extraction of the λ21 cm signal for a range of cosmological models after fitting a seventh-order polynomial to radiometric data. Our results generalize to most efforts to measure the sky-averaged spectrum.

  13. The Importance of Wide-field Foreground Removal for 21 cm Cosmology: A Demonstration with Early MWA Epoch of Reionization Observations

    NASA Astrophysics Data System (ADS)

    Pober, J. C.; Hazelton, B. J.; Beardsley, A. P.; Barry, N. A.; Martinot, Z. E.; Sullivan, I. S.; Morales, M. F.; Bell, M. E.; Bernardi, G.; Bhat, N. D. R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Carroll, P.; Corey, B. E.; de Oliveira-Costa, A.; Deshpande, A. A.; Dillon, Joshua. S.; Emrich, D.; Ewall-Wice, A. M.; Feng, L.; Goeke, R.; Greenhill, L. J.; Hewitt, J. N.; Hindson, L.; Hurley-Walker, N.; Jacobs, D. C.; Johnston-Hollitt, M.; Kaplan, D. L.; Kasper, J. C.; Kim, Han-Seek; Kittiwisit, P.; Kratzenberg, E.; Kudryavtseva, N.; Lenc, E.; Line, J.; Loeb, A.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morgan, E.; Neben, A. R.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Paul, Sourabh; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Sethi, Shiv K.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tegmark, M.; Thyagarajan, Nithyanandan; Tingay, S. J.; Trott, C. M.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.; Wyithe, J. S. B.

    2016-03-01

    In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing a foreground model that includes sources in both the main field of view and the first sidelobes reduces the contamination in high k∥ modes by several per cent relative to a model that only includes sources in the main field of view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. While small, a percent-level amount of foreground power is in itself more than enough to prevent recovery of any Epoch of Reionization signal from these modes. This result demonstrates that foreground subtraction for redshifted 21 cm experiments is truly a wide-field problem, and algorithms and simulations must extend beyond the instrument’s main field of view to potentially recover the full 21 cm power spectrum.

  14. Dust and Ocean Plants

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Adding iron to the diet of marine plant life has been shown in shipboard experiments to boost the amount of carbon-absorbing phytoplankton in certain parts of the world's oceans. A new study promises to give scientists their first global picture of the extent of these unique 'iron-limited' ocean regions, an important step in understanding how the ocean's biology controls the flow of carbon between the atmosphere and the ocean. The new study by researchers at NASA's Goddard Space Flight Center and the Department of Energy's Oak Ridge National Laboratory was presented at the American Geophysical Union's annual meeting in San Francisco on Friday, Dec. 15, 2000. Oceanic phytoplankton remove nearly as much carbon from the atmosphere each year as all land-based plants. Identifying the location and size of nutrient-limited areas in the open ocean has challenged oceanographers for nearly a century. The study pinpointed iron-limited regions by seeing which phytoplankton-rich areas of the world's oceans were also areas that received iron from wind-blown dust. In this map, areas with high levels of chlorophyll from phytoplankton and high levels of dust deposition (high correlation coefficients) are indicated in dark brown. Dust deposition was calculated by a 3-year modelled climatology for the years 1996-1998. The chlorophyll measurements are from 1998 observations from the SeaWiFS (Sea-viewing Wide Field-of-view Sensor) instrument on the OrbView-2 satellite. 'Global, satellite-based analyses such as this gives us insight into where iron deposition may be limiting ocean biological activity,' says lead author David Erickson of Oak Ridge National Laboratory's Computer Science and Mathematics Division. 'With this information we will be able to infer how the ocean productivity/iron deposition relationship might shift in response to climate change.' Map Source: David Erickson, Oak Ridge National Laboratory's Computer Science and Mathematics Division

  15. Cosmic Dust Catalog

    NASA Astrophysics Data System (ADS)

    Warren, J.; Watts, L.; Thomas-Keprta, K.; Wentworth, S.; Dodson, A.; Zolensky, Michael E.

    1997-07-01

    Since May 1981, the National Aeronautics and Space Administration (NASA) has used aircraft to collect cosmic dust (CD) particles from Earth's stratosphere. Specially designed dust collectors are prepared for flight and processed after flight in an ultraclean (Class-100) laboratory constructed for this purpose at the Lyndon B. Johnson Space Center (JSC) in Houston, Texas. Particles are individually retrieved from the collectors, examined and cataloged, and then made available to the scientific community for research. Cosmic dust thereby joins lunar samples and meteorites as an additional source of extraterrestrial materials for scientific study. This catalog summarizes preliminary observations on 468 particles retrieved from collection surfaces L2021 and L2036. These surfaces were flat plate Large Area Collectors (with a 300 cm2 surface area each) which was coated with silicone oil (dimethyl siloxane) and then flown aboard a NASA ER-2 aircraft during a series of flights that were made during January and February of 1994 (L2021) and June 7 through July 5 of 1994 (L2036). Collector L2021 was flown across the entire southern margin of the US (California to Florida), and collector L2036 was flown from California to Wallops Island, VA and on to New England. These collectors were installed in a specially constructed wing pylon which ensured that the necessary level of cleanliness was maintained between periods of active sampling. During successive periods of high altitude (20 km) cruise, the collectors were exposed in the stratosphere by barometric controls and then retracted into sealed storage container-s prior to descent. In this manner, a total of 35.8 hours of stratospheric exposure was accumulated for collector L2021, and 26 hours for collector L2036.

  16. Carbon in comet dust

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.

    1990-01-01

    The association of Halley particle results with data from existing meteoritic materials that can be analyzed in the laboratory is discussed. Comet samples must exist in present collections of meteoritic materials and the Halley results provide clues for identifying them. Although it is not presently possible to positively identify cometary meteorites or cometary interplanetary dust (IDP) samples, it is possible to determine which materials are similar to Halley dust and which ones are distinctly unlike Halley. The properties of these existing Halley-compatible samples provide insight into the possible properties of cometary material. Positive identification of meteoritic comet samples or direct samples returned from a comet nucleus would of course revolutionize our ability to study carbonaceous matter in comets. Modern analytical techniques are very powerful and it is possible to perform elemental, chemical, mineralogical and even limited isotopic analysis on micron-size particles. There is an important synergism between the laboratory studies of collected samples and astronomical data from comets and interstellar grains. To fully interpret results there must be convincing methods for associating a particular class or classes of meteoritic material with comets. Ultimately this will be done by direct comet sample return such as the Rosetta mission under development by ESA. At the present time the only links that can be made involve comparison with sample properties and measurable properties of comets. Unfortunately there is at present no known unique property of cometary dust that allows its absolute identification in the laboratory. The results from Halley encounters and observation do provide much new information on cometary grains. The Halley grain compositions, density, size distribution and scattering properties all provide a basis for future investigations. Other Halley properties such as the presence of polyoxymethylene and the 3.4um emission feature could

  17. Lunar Dust 101

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2008-01-01

    Largely due to rock and soil samples returned during the Apollo program, much has been learned about the composition and properties of lunar regolith. Although, for the most part, the mineral composition resembles terrestrial minerals, the characteristics of the lunar environment have led to very different weathering processes. These result in substantial differences in the particle shapes, particle size distributions, and surface chemistry. These differences lead to non-intuitive adhesion, abrasion, and possible health properties that will pose challenges to future lunar missions. An overview of lunar dust composition and properties will be given with a particular emphasis on possible health effects.

  18. Migration of Asteroidal Dust

    NASA Technical Reports Server (NTRS)

    Ipatov, S. I.; Mather, J. C.

    2003-01-01

    Using the Bulirsh Stoer method of integration, we investigated the migration of dust particles under the gravitational influence of all planets, radiation pressure, Poynting Robertson drag and solar wind drag for equal to 0.01, 0.05, 0.1, 0.25, and 0.4. For silicate particles such values of correspond to diameters equal to about 40, 9, 4, 2, and 1 microns, respectively [1]. The relative error per integration step was taken to be less than 10sup-8. Initial orbits of the particles were close to the orbits of the first numbered mainbelt asteroids.

  19. Dust coagulation in ISM

    NASA Technical Reports Server (NTRS)

    Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David

    1989-01-01

    Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.

  20. Flying Through Dust From Asteroids

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    How can we tell what an asteroid is made of? Until now, weve relied on remote spectral observations, though NASAs recently launched OSIRIS-REx mission may soon change this by landing on an asteroid and returning with a sample.But what if we could learn more about the asteroids near Earth without needing to land on each one? It turns out that we can by flying through their dust.The aerogel dust collector of the Stardust mission. [NASA/JPL/Caltech]Ejected CluesWhen an airless body is impacted by the meteoroids prevalent throughout our solar system, ejecta from the body are flung into the space around it. In the case of small objects like asteroids, their gravitational pull is so weak that most of the ejected material escapes, forming a surrounding cloud of dust.By flying a spacecraft through this cloud, we could perform chemical analysis of the dust, thereby determining the asteroids composition. We could even capture some of the dust during a flyby (for example, by using an aerogel collector like in the Stardust mission) and bring it back home to analyze.So whats the best place to fly a dust-analyzing or -collecting spacecraft? To answer this, we need to know what the typical distribution of dust is around a near-Earth asteroid (NEA) a problem that scientists Jamey Szalay (Southwest Research Institute) and Mihly Hornyi (University of Colorado Boulder) address in a recent study.The colors show the density distribution for dust grains larger than 0.3 m around a body with a 10-km radius. The distribution is asymmetric, with higher densities on the apex side, shown here in the +y direction. [Szalay Hornyi 2016]Moon as a LaboratoryTo determine typical dust distributions around NEAs, Szalay and Hornyi first look at the distribution of dust around our own Moon, caused by the same barrage of meteorites wed expect to impact NEAs. The Moons dust cloud was measured in situ in 2013 and 2014 by the Lunar Dust Experiment (LDEX) on board the Lunar Atmosphere and Dust Environment