Simulating galactic dust grain evolution on a moving mesh
NASA Astrophysics Data System (ADS)
McKinnon, Ryan; Vogelsberger, Mark; Torrey, Paul; Marinacci, Federico; Kannan, Rahul
2018-05-01
Interstellar dust is an important component of the galactic ecosystem, playing a key role in multiple galaxy formation processes. We present a novel numerical framework for the dynamics and size evolution of dust grains implemented in the moving-mesh hydrodynamics code AREPO suited for cosmological galaxy formation simulations. We employ a particle-based method for dust subject to dynamical forces including drag and gravity. The drag force is implemented using a second-order semi-implicit integrator and validated using several dust-hydrodynamical test problems. Each dust particle has a grain size distribution, describing the local abundance of grains of different sizes. The grain size distribution is discretised with a second-order piecewise linear method and evolves in time according to various dust physical processes, including accretion, sputtering, shattering, and coagulation. We present a novel scheme for stochastically forming dust during stellar evolution and new methods for sub-cycling of dust physics time-steps. Using this model, we simulate an isolated disc galaxy to study the impact of dust physical processes that shape the interstellar grain size distribution. We demonstrate, for example, how dust shattering shifts the grain size distribution to smaller sizes resulting in a significant rise of radiation extinction from optical to near-ultraviolet wavelengths. Our framework for simulating dust and gas mixtures can readily be extended to account for other dynamical processes relevant in galaxy formation, like magnetohydrodynamics, radiation pressure, and thermo-chemical processes.
COSMIC DUST AGGREGATION WITH STOCHASTIC CHARGING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Lorin S.; Hyde, Truell W.; Shotorban, Babak, E-mail: Lorin_Matthews@baylor.edu
2013-10-20
The coagulation of cosmic dust grains is a fundamental process which takes place in astrophysical environments, such as presolar nebulae and circumstellar and protoplanetary disks. Cosmic dust grains can become charged through interaction with their plasma environment or other processes, and the resultant electrostatic force between dust grains can strongly affect their coagulation rate. Since ions and electrons are collected on the surface of the dust grain at random time intervals, the electrical charge of a dust grain experiences stochastic fluctuations. In this study, a set of stochastic differential equations is developed to model these fluctuations over the surface ofmore » an irregularly shaped aggregate. Then, employing the data produced, the influence of the charge fluctuations on the coagulation process and the physical characteristics of the aggregates formed is examined. It is shown that dust with small charges (due to the small size of the dust grains or a tenuous plasma environment) is affected most strongly.« less
Physical properties of five grain dust types.
Parnell, C B; Jones, D D; Rutherford, R D; Goforth, K J
1986-01-01
Physical properties of grain dust derived from five grain types (soybean, rice, corn, wheat, and sorghum) were measured and reported. The grain dusts were obtained from dust collection systems of terminal grain handling facilities and were assumed to be representative of grain dust generated during the handling process. The physical properties reported were as follows: particle size distributions and surface area measurements using a Coulter Counter Model TAII; percent dust fractions less than 100 micron of whole dust; bulk density; particle density; and ash content. PMID:3709482
Laboratory Studies of Charging Properties of Dust Grains in Astrophysical/Planetary Environments
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper we focus on charging of individual micron/submicron dust grains by processes that include: (a) UV photoelectric emissions involving incident photon energies higher than the work function of the material and b) electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). It is well accepted that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the bulk materials. However, no viable models for calculation of the charging properties of individual micron size dust grains are available at the present time. Therefore, the photoelectric yields, and secondary electron emission yields of micron-size dust grains have to be obtained by experimental methods. Currently, very limited experimental data are available for charging of individual micron-size dust grains. Our experimental results, obtained on individual, micron-size dust grains levitated in an electrodynamic balance facility (at NASA-MSFC), show that: (1) The measured photoelectric yields are substantially higher than the bulk values given in the literature and indicate a particle size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains; (2) dust charging by low energy electron impact is a complex process. Also, our measurements indicate that the electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Laboratory measurements on charging of analogs of the interstellar dust as well as Apollo 11 dust grains conducted at the NASA-MSFC Dusty Plasma Lab. are presented here
Experiments on Dust Grain Charging
NASA Technical Reports Server (NTRS)
Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.
2004-01-01
Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.
Image charge effects on electron capture by dust grains in dusty plasmas.
Jung, Y D; Tawara, H
2001-07-01
Electron-capture processes by negatively charged dust grains from hydrogenic ions in dusty plasmas are investigated in accordance with the classical Bohr-Lindhard model. The attractive interaction between the electron in a hydrogenic ion and its own image charge inside the dust grain is included to obtain the total interaction energy between the electron and the dust grain. The electron-capture radius is determined by the total interaction energy and the kinetic energy of the released electron in the frame of the projectile dust grain. The classical straight-line trajectory approximation is applied to the motion of the ion in order to visualize the electron-capture cross section as a function of the impact parameter, kinetic energy of the projectile ion, and dust charge. It is found that the image charge inside the dust grain plays a significant role in the electron-capture process near the surface of the dust grain. The electron-capture cross section is found to be quite sensitive to the collision energy and dust charge.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with UV/X-ray radiation, as well as by electron/ion impact. Knowledge of physical and optical properties of individual dust grains is required for understanding of the physical and dynamical processes in space environments and the role of dust in formation of stellar and planetary systems. In this paper, we discuss experimental results on dust charging by electron impact, where low energy electrons are scattered or stick to the dust grains, thereby charging the dust grains negatively, and at sufficiently high energies the incident electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Currently, very limited experimental data are available for charging of individual micron-size dust grains, particularly by low energy electron impact. Available theoretical models based on the Sternglass equation (Sternglass, 1954) are applicable for neutral, planar, and bulk surfaces only. However, charging properties of individual micron-size dust grains are expected to be different from the values measured on bulk materials. Our recent experimental results on individual, positively charged, micron-size lunar dust grains levitated in an electrodynamic balance facility (at NASA-MSFC) indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (e.g. Abbas et al, 2010). Here we discuss the complex nature of SEE charging properties of individual micron-size lunar dust grains and silica microspheres.
Positive column of a glow discharge in neon with charged dust grains (a review)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakov, D. N., E-mail: cryolab@ihed.ras.ru; Shumova, V. V.; Vasilyak, L. M.
The effect of charged micron-size dust grains (microparticles) on the electric parameters of the positive column of a low-pressure dc glow discharge in neon has been studied experimentally and numerically. Numerical analysis is carried out in the diffusion-drift approximation with allowance for the interaction of dust grains with metastable neon atoms. In a discharge with a dust grain cloud, the longitudinal electric field increases. As the number density of dust grains in an axisymmetric cylindrical dust cloud rises, the growth of the electric field saturates. It is shown that the contribution of metastable atoms to ionization is higher in amore » discharge with dust grains, in spite of the quenching of metastable atoms on dust grains. The processes of charging of dust grains and the dust cloud are considered. As the number density of dust grains rises, their charge decreases, while the space charge of the dust cloud increases. The results obtained can be used in plasma technologies involving microparticles.« less
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; LeClair, A.
2014-01-01
Dust grains constitute a significant component of matter in the universe, and play an important and crucial role in the formation and evolution of the stellar/planetary systems in interstellar dust clouds. Knowledge of physical and optical properties of dust grains is required for understanding of a variety of processes in astrophysical and planetary environments. The currently available and generally employed data on the properties of dust grains is based on bulk materials, with analytical models employed to deduce the corresponding values for individual small micron/submicron-size dust grains. However, it has been well-recognized over a long period, that the properties of individual smallsize dust grains may be very different from those deduced from bulk materials. This has been validated by a series of experimental investigations carried out over the last few years, on a laboratory facility based on an Electrodynamic Balance at NASA, which permits levitation of single small-size dust grains of desired composition and size, in vacuum, in simulated space environments. In this paper, we present a brief review of the results of a series of selected investigations carried out on the analogs of interstellar and planetary dust grains, as well as dust grains obtained by Apollo-l1-17 lunar missions. The selected investigations, with analytical results and discussions, include: (a) Direct measurements of radiation on individual dust grains (b) Rotation and alignments of dust grains by radiative torque (c) Charging properties of dust grains by: (i) UV Photo-electric emissions (ii) Electron Impact. The results from these experiments are examined in the light of the current theories of the processes involved.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Spann, J. F.; LeClair, A. C.
2010-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions. Knowledge of the dust grain charges and equilibrium potentials is important for understanding of a variety of physical and dynamical processes in the interstellar medium (ISM), and heliospheric, interplanetary, planetary, and lunar environments. The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. It has been well recognized that the charging properties of individual micron/submicron size dust grains are expected to be substantially different from the corresponding values for bulk materials and theoretical models. In this paper we present experimental results on charging of individual dust grains selected from Apollo 11 and Apollo 17 dust samples by exposing them to mono-energetic electron beams in the 10- 400 eV energy range. The charging rates of positively and negatively charged particles of approximately 0.2 to 13 microns diameters are discussed in terms of the secondary electron emission (SEE) process, which is found to be a complex charging process at electron energies as low as 10-25 eV, with strong particle size dependence. The measurements indicate substantial differences between dust charging properties of individual small size dust grains and of bulk materials.
Photoelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. a.; Camata, R. P.
2006-01-01
The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much different from the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approx. 0.09-5 micrometer radii levitated in an electrodynamic balance and illuminated with ultraviolet radiation at 120-160 nm wavelengths. The measured yields are found to be substantially higher than the bulk values given in the literature and indicate a size dependence with larger particles having order-of-magnitude higher values than for submicron-size grains.
Simulation study of spheroidal dust gains charging: Applicable to dust grain alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zahed, H.; Sobhanian, S.; Mahmoodi, J.
2006-09-15
The charging process of nonspherical dust grains in an unmagnetized plasma as well as in the presence of a magnetic field is studied. It is shown that unlike the spherical dust grain, due to nonhomogeneity of charge distribution on the spheroidal dust surface, the resultant electric forces on electrons and ions are different. This process produces some surface charge density gradient on the nonspherical grain surface. Effects of a magnetic field and other plasma parameters on the properties of the dust particulate are studied. It has been shown that the alignment direction could be changed or even reversed with themore » magnetic field and plasma parameters. Finally, the charge distribution on the spheroidal grain surface is studied for different ambient parameters including plasma temperature, neutral collision frequency, and the magnitude of the magnetic field.« less
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2005-01-01
Microdsub-micron size cosmic dust grains play an important role in the physical and dynamical process in the galaxy, the interstellar medium, and the interplanetary and planetary environments. The dust grains in various astrophysical environments are generally charged by a variety of mechanisms that include collisional process with electrons and ions, and photoelectric emissions with UV radiation. The photoelectric emission process is believed to be the dominant process in many astrophysical environments with nearby UV sources, such as the interstellar medium, diffuse clouds, the outer regions of the dense molecular clouds, interplanetary medium, dust in planetary environments and rings, cometary tails, etc. Also, the processes and mechanisms involved in the rotation and alignment of interstellar dust grains are of great interest in view of the polarization of observed starlight as a probe for evaluation of the galactic magnetic field.
Measurements of Charging of Apollo 17 Lunar Dust Grains by Electron Impact
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.
2008-01-01
It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron size dust grains with unusually high adhesive characteristics. The dust grains observed to be levitated and transported on the lunar surface are believed to have a hazardous impact on the robotic and human missions to the Moon. The observed dust phenomena are attributed to the lunar dust being charged positively during the day by UV photoelectric emissions, and negatively during the night by the solar wind electrons. The current dust charging and the levitation models, however, do not fully explain the observed phenomena, with the uncertainty of dust charging processes and the equilibrium potentials of the individual dust grains. It is well recognized that the charging properties of individual dust grains are substantially different from those determined from measurements made on bulk materials that are currently available. An experimental facility has been developed in the Dusty Plasma Laboratory at MSFC for investigating the charging and optical properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present the laboratory measurements on charging of Apollo 17 individual lunar dust grains by a low energy electron beam. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission process are discussed.
Laboratory Measurements of Charging of Apollo 17 Lunar Dust Grains by Low Energy Electrons
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James F.; Dube, Michael J.; Gaskin, Jessica
2007-01-01
It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abbas, M. M.; Craven, P. D.; LeClair, A. C.
2010-08-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEEs). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/planetary, and lunar environments. It has been well recognized that the charging properties of individualmore » micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 {mu}m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEEs discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.« less
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Crave, P. D.; LeClair, A.; Spann, J. F.
2010-01-01
Dust grains in various astrophysical environments are generally charged electrostatically by photoelectric emissions with radiation from nearby sources, or by electron/ion collisions by sticking or secondary electron emissions (SEES). The high vacuum environment on the lunar surface leads to some unusual physical and dynamical phenomena involving dust grains with high adhesive characteristics, and levitation and transportation over long distances. Knowledge of the dust grain charges and equilibrium potentials is important for understanding a variety of physical and dynamical processes in the interstellar medium, and heliospheric, interplanetary/ planetary, and lunar environments. It has been well recognized that the charging properties of individual micron-/submicron-size dust grains are expected to be substantially different from the corresponding values for bulk materials. In this paper, we present experimental results on the charging of individual 0.2-13 m size dust grains selected from Apollo 11 and 17 dust samples, and spherical silica particles by exposing them to mono-energetic electron beams in the 10-200 eV energy range. The dust charging process by electron impact involving the SEES discussed is found to be a complex charging phenomenon with strong particle size dependence. The measurements indicate substantial differences between the polarity and magnitude of the dust charging rates of individual small-size dust grains, and the measurements and model properties of corresponding bulk materials. A more comprehensive plan of measurements of the charging properties of individual dust grains for developing a database for realistic models of dust charging in astrophysical and lunar environments is in progress.
Phototelectric Emission Measurements on the Analogs of Individual Cosmic Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.; Weingartner, J. C.; Tielens, A. G. G. M.; Nuth, J. A.; Camata, R. P.;
2005-01-01
The photoelectric emission process is considered to be the dominant mechanism for charging of cosmic dust grains in many astrophysical environments. The grain charge and the equilibrium potentials play an important role in the dynamical and physical processes that include heating of the neutral gas in the interstellar medium, coagulation processes in the dust clouds, and levitation and dynamical processes in the interplanetary medium and planetary surfaces and rings. An accurate evaluation of photoelectric emission processes requires knowledge of the photoelectric yields of individual dust grains of astrophysical composition as opposed to the values obtained from measurements on flat surfaces of bulk materials, as it is generally assumed on theoretical considerations that the yields for the small grains are much higher than the bulk values. We present laboratory measurements of the photoelectric yields of individual dust grains of silica, olivine, and graphite of approximately 0.09 to 8 microns radii levitated in an electrodynamic balance and illuminated with W radiation at 120 to 160 nm wavelengths. The measured values and the size dependence of the yields are found to be substantially different from the bulk values given in the literature.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging processes in astrophysical and planetary environments. Incident low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grains, leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available classical theoretical models for calculations of SEE yields are generally applicable for neutral, planar, or bulk surfaces. These models, however, are not valid for calculations of the electron impact charging properties of electrostatically charged micron/submicron-size dust grains in astrophysical environments. Rigorous quantum mechanical models are not yet available, and the SEE yields have to be determined experimentally for development of more accurate models for charging of individual dust grains. At the present time, very limited experimental data are available for charging of individual micron-size dust grains, particularly for low energy electron impact. The experimental results on individual, positively charged, micron-size lunar dust grains levitated carried out by us in a unique facility at NASA-MSFC, based on an electrodynamic balance, indicate that the SEE by electron impact is a complex process. The electron impact may lead to charging or discharging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration (Abbas et al, 2010, 2012). In this paper, we discuss SEE charging properties of individual micron-size silica microspheres that are believed to be analogs of a class of interstellar dust grains. The measurements indicate charging of the 0.2m silica particles when exposed to 25 eV electron beams and discharging when exposed to higher energy electron beams. Relatively large size silica particles (5.2-6.82m) generally discharge to lower equilibrium potentials at both electron energies. These measurements conducted on silica microspheres are qualitatively similar in nature to our previous SEE measurements on lunar Apollo missions dust samples.
Photophoretic Levitation and Trapping of Dust in the Inner Regions of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
McNally, Colin P.; McClure, Melissa K.
2017-01-01
In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk. In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.
Mechanisms of dust grain charging in plasma with allowance for electron emission processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mol’kov, S. I.; Savin, V. N., E-mail: moped@onego.ru
2017-02-15
The process of dust grain charging is described with allowance for secondary, ion-induced, photoelectric, and thermal electron emission from the grain surface. The roughness of the grain surface is taken into account. An intermediate charging regime involving ion–atom collisions and electron ionization in the perturbed plasma region is analyzed using the moment equations and Poisson’s equation. A calculation method is proposed that allows one to take into account the influence of all the above effects and determine the radius of the plasma region perturbed by the dust grain.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2013-01-01
The dust charging by electron impact is an important dust charging process in Astrophysical, Planetary, and the Lunar environments. Low energy electrons are reflected or stick to the grains charging the dust grains negatively. At sufficiently high energies electrons penetrate the grain leading to excitation and emission of electrons referred to as secondary electron emission (SEE). Available theoretical models for the calculation of SEE yield applicable for neutral, planar or bulk surfaces are generally based on Sternglass Equation. However, viable models for charging of individual dust grains do not exist at the present time. Therefore, the SEE yields have to be obtained by some experimental methods at the present time. We have conducted experimental studies on charging of individual micron size dust grains in simulated space environments using an electrodynamic balance (EDB) facility at NASA-MSFC. The results of our extensive laboratory study of charging of individual micron-size dust grains by low energy electron impact indicate that the SEE by electron impact is a very complex process expected to be substantially different from the bulk materials. It was found that the incident electrons may lead to positive or negative charging of dust grains depending upon the grain size, surface potential, electron energy, electron flux, grain composition, and configuration. In this paper we give a more elaborate discussion about the possible effects of the AC field in the EDB on dust charging measurements by comparing the secondary electron emission time-period (tau (sub em) (s/e)) with the time-period (tau (sub ac) (ms)) of the AC field cycle in the EDB that we have briefly addressed in our previous publication.
Interstellar and Cometary Dust
NASA Technical Reports Server (NTRS)
Mathis, John S.
1997-01-01
'Interstellar dust' forms a continuum of materials with differing properties which I divide into three classes on the basis of observations: (a) diffuse dust, in the low-density interstellar medium; (b) outer-cloud dust, observed in stars close enough to the outer edges of molecular clouds to be observed in the optical and ultraviolet regions of the spectrum, and (c) inner-cloud dust, deep within the cores of molecular clouds, and observed only in the infrared by means of absorption bands of C-H, C=O, 0-H, C(triple bond)N, etc. There is a surprising regularity of the extinction laws between diffuse- and outer-cloud dust. The entire mean extinction law from infrared through the observable ultraviolet spectrum can be characterized by a single parameter. There are real deviations from this mean law, larger than observational uncertainties, but they are much smaller than differences of the mean laws in diffuse- and outer-cloud dust. This fact shows that there are processes which operate over the entire distribution of grain sizes, and which change size distributions extremely efficiently. There is no evidence for mantles on grains in local diffuse and outer-cloud dust. The only published spectra of the star VI Cyg 12, the best candidate for showing mantles, does not show the 3.4 micro-m band which appreciable mantles would produce. Grains are larger in outer-cloud dust than diffuse dust because of coagulation, not accretion of extensive mantles. Core-mantle grains favored by J. M. Greenberg and collaborators, and composite grains of Mathis and Whiffen (1989), are discussed more extensively (naturally, I prefer the latter). The composite grains are fluffy and consist of silicates, amorphous carbon, and some graphite in the same grain. Grains deep within molecular clouds but before any processing within the solar system are presumably formed from the accretion of icy mantles on and within the coagulated outer-cloud grains. They should contain a mineral/carbonaceous matrix, without organic refractory mantles, in between the ices. Unfortunately, they may be significantly processed by chemical processes accompanying the warming (over the 10 K of the dark cloud cores) which occurs in the outer solar system. Evidence of this processing is the chemical anomalies present in interplanetary dust particles collected in the stratosphere, which may be the most primitive materials we have obtained to date. The comet return mission would greatly clarify the situation, and probably provide samples of genuine interstellar grains.
Theoretical Studies of Dust in the Galactic Environment: Some Recent Advances
NASA Technical Reports Server (NTRS)
Leung, Chun Ming
1995-01-01
Dust grains, although a minor constituent, play a very important role in the thermodynamics and evolution of many astronomical objects, e.g., young and evolved stars, nebulae, interstellar clouds, and nuclei of some galaxies. Since the birth of infrared astronomy over two decades ago, significant progress has been made not only in the observations of galactic dust, but also in the theoretical studies of phenomena involving dust grains. Models with increasing degree of sophistication and physical realism (in terms of grain properties, dust formation, emission processes, and grain alignment mechanisms) have become available. Here I review recent progress made in the following areas: (1) Extinction and emission of fractal grains. (2) Dust formation in radiation-driven outflows of evolved stars. (3) Transient heating and emission of very small dust grains. Where appropriate, relevant modeling results are presented and observational implications emphasized.
PHOTOPHORETIC LEVITATION AND TRAPPING OF DUST IN THE INNER REGIONS OF PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNally, Colin P.; McClure, Melissa K., E-mail: cmcnally@nbi.dk, E-mail: mmcclure@eso.org
In protoplanetary disks, the differential gravity-driven settling of dust grains with respect to gas and with respect to grains of varying sizes determines the observability of grains, and sets the conditions for grain growth and eventually planet formation. In this work, we explore the effect of photophoresis on the settling of large dust grains in the inner regions of actively accreting protoplanetary disks. Photophoretic forces on dust grains result from the collision of gas molecules with differentially heated grains. We undertake one-dimensional dust settling calculations to determine the equilibrium vertical distribution of dust grains in each column of the disk.more » In the process we introduce a new treatment of the photophoresis force which is consistent at all optical depths with the representation of the radiative intensity field in a two-stream radiative transfer approximation. The levitation of large dust grains creates a photophoretic dust trap several scale heights above the mid-plane in the inner regions of the disk where the dissipation of accretion energy is significant. We find that differential settling of dust grains is radically altered in these regions of the disk, with large dust grains trapped in a layer below the stellar irradiation surface, where the dust to gas mass ratio can be enhanced by a factor of a hundred for the relevant particles. The photophoretic trapping effect has a strong dependence on particle size and porosity.« less
Dust Spectroscopy and the Nature of Grains
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.
2006-01-01
Ground-based, air-borne and space-based, infrared spectra of a wide variety of objects have revealed prominent absorption and emission features due to large molecules and small dust grains. Analysis of this data reveals a highly diverse interstellar and circumstellar grain inventory, including both amorphous materials and highly crystalline compounds (silicates and carbon). This diversity points towards a wide range of physical and chemical birthsites as well as a complex processing of these grains in the interstellar medium. In this talk, I will review the dust inventory contrasting and comparing both the interstellar and circumstellar reservoirs. The focus will be on the processes that play a role in the lifecycle of dust in the interstellar medium.
Formation of dust grains with impurities in red giant winds
NASA Technical Reports Server (NTRS)
Dominik, Carsten
1994-01-01
Among the several proposed carriers of diffuse interstellar bands (DIB's) are impurities in small dust grains, especially in iron oxide grains (Huffman 1977) and silicate grains (Huffman 1970). Most promising are single ion impurities since they can reproduce the observed band widths (Whittet 1992). These oxygen-rich grains are believed to originate mostly in the mass flows from red giants and in supernovae ejecta (e.g. Gehrz 1989). A question of considerable impact for the origin of DIB's is therefore, whether these grains are produced as mainly clean crystals or as some dirty materials. A formalism has been developed that allows tracking of the heterogeneous growth of a dust grain and its internal structure during the dust formation process. This formalism has been applied to the dust formation in the outflow from a red giant star.
NASA Technical Reports Server (NTRS)
Tankosic, D.; Abbas, M. M.
2012-01-01
Observations made during Apollo missions, as well as theoretical models indicate that the lunar surface and dust grains are electrostatically charged, levitated and transported. Lunar dust grains are charged by UV photoelectric emissions on the lunar dayside and by the impact of the solar wind electrons on the nightside. The knowledge of charging properties of individual lunar dust grains is important for developing appropriate theoretical models and mitigating strategies. Currently, very limited experimental data are available for charging of individual micron-size size lunar dust grains in particular by low energy electron impact. However, experimental results based on extensive laboratory measurements on the charging of individual 0.2-13 micron size lunar dust grains by the secondary electron emissions (SEE) have been presented in a recent publication. The SEE process of charging of micron-size dust grains, however, is found to be very complex phenomena with strong particle size dependence. In this paper we present some examples of the complex nature of the SEE properties of positively charged individual lunar dust grains levitated in an electrodynamic balance (EDB), and show that they remain unaffected by the variation of the AC field employed in the above mentioned measurements.
Annealing of Silicate Dust by Nebular Shocks at 10 AU
NASA Technical Reports Server (NTRS)
Harker, David E.; Desch, Steven J.; DeVincenzi, D. (Technical Monitor)
2001-01-01
Silicate dust grains in the interstellar medium are known to be mostly amorphous, yet crystalline silicate grains have been observed in many long-period comets and in protoplanetary disks. Annealing of amorphous silicate grains into crystalline grains requires temperatures greater than or approximately equal to 1000 K, but exposure of dust grains in comets to such high temperatures is apparently incompatible with the generally low temperatures experienced by comets. This has led to the proposal of models in which dust grains were thermally processed near the protoSun, then underwent considerable radial transport until they reached the gas giant planet region where the long-period comets originated. We hypothesize instead that silicate dust grains were annealed in situ, by shock waves triggered by gravitational instabilities. We assume a shock speed of 5 km/s, a plausible value for shocks driven by gravitational instabilities. We calculate the peak temperatures of pyroxene grains under conditions typical in protoplanetary disks at 5-10 AU. We show that in situ annealing of micron-sized dust grains can occur, obviating the need for large-scale radial transport.
Laboratory Investigation of Space and Planetary Dust Grains
NASA Technical Reports Server (NTRS)
Spann, James
2005-01-01
Dust in space is ubiquitous and impacts diverse observed phenomena in various ways. Understanding the dominant mechanisms that control dust grain properties and its impact on surrounding environments is basic to improving our understanding observed processes at work in space. There is a substantial body of work on the theory and modeling of dust in space and dusty plasmas. To substantiate and validate theory and models, laboratory investigations and space borne observations have been conducted. Laboratory investigations are largely confined to an assembly of dust grains immersed in a plasma environment. Frequently the behaviors of these complex dusty plasmas in the laboratory have raised more questions than verified theories. Space borne observations have helped us characterize planetary environments. The complex behavior of dust grains in space indicates the need to understand the microphysics of individual grains immersed in a plasma or space environment.
Straumfors, Anne; Heldal, Kari Kulvik; Wouters, Inge M; Eduard, Wijnand
2015-07-01
The grain and compound feed industry entails inevitable risks of exposure to grain dust and its microbial content. The objective of this study was therefore to investigate task-dependent exposure differences in order to create knowledge basis for awareness and exposure reducing measures in the Norwegian grain and compound feed industry. A total of 166 samples of airborne dust were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified and used as individual outcomes in mixed models with worker nested in company as random effect and different departments and tasks as fixed effects. The exposure levels were highest in grain elevator departments. Exposure to endotoxins was particularly high. Tasks that represented the highest and lowest exposures varied depending on the bioaerosol component. The most important determinants for elevated dust exposure were cleaning and process controlling. Cleaning increased the dust exposure level by a factor of 2.44 of the reference, from 0.65 to 1.58mg m(-3), whereas process controlling increased the dust exposure level by a factor of 2.97, from 0.65 to 1.93mg m(-3). Process controlling was associated with significantly less grain dust exposure in compound feed mills and the combined grain elevators and compound feed mills, than in grain elevators. The exposure was reduced by a factor of 0.18 and 0.22, from 1.93 to 0.34mg m(-3) and to 0.42mg m(-3), respectively, compared with the grain elevators. Inspection/maintenance, cleaning, and grain rotation and emptying were determinants of higher exposure to both endotoxin and β-1→3-glucans. Seed winnowing was in addition a strong determinant for endotoxin, whereas mixing of animal feed implied higher β-1→3-glucan exposure. Cleaning was the only task that contributed significantly to higher exposure to bacteria and fungal spores. Cleaning in all companies and process controlling in grain elevators were the strongest determinants for overall exposure, whereas seed winnowing was a particular strong determinant of endotoxin exposure. Exposure reduction by technical intervention or personal protective equipment should therefore be considered at work places with identified high exposure tasks. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Laboratory Measurements of Optical Properties of Micron Size Individual Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Witherow, W. K.; Camata, R.; Gerakines, P.
2003-01-01
A laboratory program is being developed at NASA Marshall Space Flight Center for experimental determination of the optical and physical properties individual dust grains in simulated astrophysical environments. The experimental setup is based on an electrodynamic balance that permits levitation of single 0.1 - 10 micron radii dust grains in a cavity evacuated to pressures of approx. 10(exp -6) torr. The experimental apparatus is equipped with observational ports for measurements in the UV, visible, and infrared spectral regions. A cryogenic facility for cooling the particles to temperature of approx. 10-50K is being installed. The current and the planned measurements include: dust charging processes, photoelectric emissions and yields with UV irradiation, radiation pressure measurements, infrared absorption and scattering properties, and condensation processes, involving the analogs of cosmic dust grains. Selected results based on photoemissions, radiation pressure, and other laboratory measurements will be presented.
Electrostatic Charging of Lunar Dust by UV Photoelectric Emissions and Solar Wind Electrons
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Spann, James f.; LeClair, Andre C.; Dube, Michael J.
2008-01-01
The ubiquitous presence of dust in the lunar environment with its high adhesive characteristics has been recognized to be a major safety issue that must be addressed in view of its hazardous effects on robotic and human exploration of the Moon. The reported observations of a horizon glow and streamers at the lunar terminator during the Apollo missions are attributed to the sunlight scattered by the levitated lunar dust. The lunar surface and the dust grains are predominantly charged positively by the incident UV solar radiation on the dayside and negatively by the solar wind electrons on the night-side. The charged dust grains are levitated and transported over long distances by the established electric fields. A quantitative understanding of the lunar dust phenomena requires development of global dust distribution models, based on an accurate knowledge of lunar dust charging properties. Currently available data of lunar dust charging is based on bulk materials, although it is well recognized that measurements on individual dust grains are expected to be substantially different from the bulk measurements. In this paper we present laboratory measurements of charging properties of Apollo 11 & 17 dust grains by UV photoelectric emissions and by electron impact. These measurements indicate substantial differences of both qualitative and quantitative nature between dust charging properties of individual micron/submicron sized dust grains and of bulk materials. In addition, there are no viable theoretical models available as yet for calculation of dust charging properties of individual dust grains for both photoelectric emissions and electron impact. It is thus of paramount importance to conduct comprehensive measurements for charging properties of individual dust grains in order to develop realistic models of dust processes in the lunar atmosphere, and address the hazardous issues of dust on lunar robotic and human missions.
Laboratory Measurements of Optical and Physical Properties of Individual Lunar Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Hoover, R. B.
2006-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, and transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The experimental results were obtained on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of radii sub-micron size to several micron radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Effect of Charged-Magnetic Grains in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Perry, Jonathan; Matthews, Lorin; Hyde, Truell
Effects of Charged-Magnetic Grains in Protoplanetary Disks Jonathan, Perry, Lorin Swint Matthews, and Truell W. Hyde Center for Astrophysics, Space Physics, and Engi-neering Research, addressPlaceNamePlaceNameplaceBaylor StreetPlaceTypeUniversity, Stree-taddressOne Bear Place 97316 Waco, TX 76798 USA The interaction and growth of dust grains is an important process in early planetesimal formation. The structure of aggregates formed from dust depend largely on the initial properties within the dust population, whether the grains are charged or uncharged, magnetic or non-magnetic. Theoretical simulations exam-ining pair-wise interactions between aggregates indicate that charged magnetic grains exhibit different growth behavior than populations consisting of exclusively charged or exclusively mag-netic grains. This study extends that work to predict how charged-magnetic grains influence grain growth within a protoplanetary disk. An N-body simulation containing various mixtures of dust materials is used to examine the differences in dust coagulation in the presence of charged magnetic aggregates. The growth of the dust aggregates is analyzed to determine the effects that charged magnetic grains contribute to the evolution of the dust cloud. Comparison of the rate of aggregation as well as the dynamic exponent relating mass of a cluster to the elapsed time will both be discussed.
Lunar dust charging by photoelectric emissions
NASA Astrophysics Data System (ADS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-05-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Lunar Dust Charging by Photoelectric Emissions
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Lunar Dust Charging by Photoelectric Emissions
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, E. A.
2007-01-01
The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
Dynamics of dust in astrophysical plasma and implications
NASA Astrophysics Data System (ADS)
Hoang, Thiem
2012-06-01
Dust is a ubiquitous constituent of the interstellar medium, molecular clouds, and circumstellar and protoplanetary disks. Dust emission interferes with observations of cosmic microwave background (CMB) temperature anisotropy and its polarized emission dominates the CMB B-mode polarization that prevents us from getting insight into the inflation epoch of the early universe. In my PhD thesis, I have studied fundamental physical processes of dust dynamics in astrophysical plasma and explored their implications for observations of the CMB, studies of magnetic fields, and formation of planets. I have investigated the spinning dust emission from very small grains (e.g., polycyclic aromatic hydrocarbons) of non-spherical shapes (including spheroid and triaxial ellipsoid shapes) that have grain axes fluctuating around grain angular momentum due to internal thermal fluctuations within the grain. I have proposed an approach based on Fourier transform to find power spectrum of spinning dust emission from grains of arbitrary grain shape. In particular, I have devised a method to find exact grain angular momentum distribution using the Langevin equation. I have explored the effects of transient spin-up by single-ion collisions, transient heating by single UV photons, and compressible turbulence on spinning dust emission. This improved model of spinning dust emission well reproduces observation data by Wilkinson Microwave Anisotropy Probe and allows a reliable separation of Galactic contamination from the CMB. I have identified grain helicity as the major driver for grain alignment via radiative torques (RATs) and suggested an analytical model of RATs based on this concept. Dust polarization predicted by the model has been confirmed by numerous observations, and can be used as a frequency template for the CMB B-mode searches. I have proposed a new type of dust acceleration due to magnetohydrodynamic turbulence through transit time damping for large grains, and quantified a novel acceleration mechanism induced by charge fluctuations for very small grains using Monte Carlo simulations. Grain velocities from these new acceleration mechanisms are necessary for understanding dust coagulation in protoplanetary disks and formations of planets.
NASA Astrophysics Data System (ADS)
Ghannad, Z.; Hakimi Pajouh, H.
2017-12-01
In this work, the motion of a dust particle under the influence of the random force due to dust charge fluctuations is considered as a non-Markovian stochastic process. Memory effects in the velocity process of the dust particle are studied. A model is developed based on the fractional Langevin equation for the motion of the dust grain. The fluctuation-dissipation theorem for the dust grain is derived from this equation. The mean-square displacement and the velocity autocorrelation function of the dust particle are obtained in terms of the Mittag-Leffler functions. Their asymptotic behavior and the dust particle temperature due to charge fluctuations are studied in the long-time limit. As an interesting result, it is found that the presence of memory effects in the velocity process of the dust particle as a non-Markovian process can cause an anomalous diffusion in dusty plasmas. In this case, the velocity autocorrelation function of the dust particle has a power-law decay like t - α - 2, where the exponent α take values 0 < α < 1.
Stardust from Supernovae and Its Isotopes
NASA Astrophysics Data System (ADS)
Hoppe, Peter
Primitive solar system materials, namely, meteorites, interplanetary dust particles, and cometary matter contain small quantities of nanometer- to micrometer-sized refractory dust grains that exhibit large isotopic abundance anomalies. These grains are older than our solar system and have been named "presolar grains." They formed in the winds of red giant and asymptotic giant stars and in the ejecta of stellar explosions, i.e., represent a sample of stardust that can be analyzed in terrestrial laboratories for isotopic compositions and other properties. The inventory of presolar grains is dominated by grains from red giant and asymptotic giant branch stars. Presolar grains from supernovae form a minor but important subpopulation. Supernova (SN) minerals identified to date include silicon carbide, graphite, silicon nitride, oxides, and silicates. Isotopic studies of major, minor, and trace elements in these dust grains have provided detailed insights into nucleosynthetic and mixing processes in supernovae and how dust forms in these violent environments.
The MAGO experiment for dust environment monitoring on the Martian surface
NASA Astrophysics Data System (ADS)
Palumbo, P.; Battaglia, R.; Brucato, J. R.; Colangeli, L.; della Corte, V.; Esposito, F.; Ferrini, G.; Mazzotta Epifani, E.; Mennella, V.; Palomba, E.; Panizza, A.; Rotundi, A.
2004-01-01
Among the main directions identified for future Martian exploration, the study of the properties of dust dispersed in the atmosphere, its cycle and the impact on climate are considered of primary relevance. Dust storms, dust devils and the dust ``cycle'' have been identified and studied by past remote and in situ experiments, but little quantitative information is available on these processes, so far. The airborne dust contributes to the determination of the dynamic and thermodynamic evolution of the atmosphere, including the large-scale circulation processes and its impact on the climate of Mars. Moreover, aeolian erosion, redistribution of dust on the surface and weathering processes are mostly known only qualitatively. In order to improve our knowledge of the airborne dust evolution and other atmospheric processes, it is mandatory to measure the amount, mass-size distribution and dynamical properties of solid particles in the Martian atmosphere as a function of time. In this context, there is clearly a need for the implementation of experiments dedicated to study directly atmospheric dust. The Martian atmospheric grain observer (MAGO) experiment is aimed at providing direct quantitative measurements of mass and size distributions of dust particles, a goal that has never been fully achieved so far. The instrument design combines three types of sensors to monitor in situ the dust mass flux (micro balance system, MBS) and single grain properties (grain detection system, GDS+impact sensor, IS). Technical solutions and science capabilities are discussed in this paper.
Analysis of the Effect of Prevailing Weather Conditions on the Occurrence of Grain Dust Explosions.
Sanghi, Achint; Ambrose, R P Kingsly
2016-07-27
Grain dust explosions have been occurring in the U.S. for the past twenty years. In the past ten years, there have been an average of ten explosions a year, resulting in nine fatalities and 93 injuries. In more than half of these cases, the ignition source remains unidentified. The effect of ambient humidity on the likelihood of a dust explosion has been discussed for many years. However, no investigation into a possible link between the two has been carried out. In this study, we analyzed local weather data and grain dust explosions during the period 2006 to 2014 to measure potential relationships between the two events. The 84 analyzed explosions do not show any trend with regard to prevailing temperatures, or relative or absolute humidity. In addition, the ignition source could not be identified in 54 of the incidents. The majority of grain dust explosion incidents occurred at grain elevator facilities, where the dust generation potential was high compared with grain processing industries. Copyright© by the American Society of Agricultural Engineers.
NASA Technical Reports Server (NTRS)
Brearley, Adrian J.
1993-01-01
SEM, TEM, and electron microprobe analysis were used to investigate in detail the mineralogical and chemical characteristics of dark matrix and fine-grained rims in the unequilibrated CO3 chondrite ALHA77307. Data obtained revealed that there was a remarkable diversity of distinct mineralogical components, which can be identified using their chemical and textural characteristics. The matrix and rim components in ALHA77307 formed by disequilibrium condensation process as fine-grained amorphous dust that is represented by the abundant amorphous component in the matrix. Subsequent thermal processing of this condensate material, in a variety of environments in the nebula, caused partial or complete recrystallization of the fine-grained dust.
NASA Astrophysics Data System (ADS)
Bocchio, Marco
2014-09-01
The main goal of my PhD study is to understand the dust processing that occurs during the mixing between the galactic interstellar medium and the intracluster medium. This process is of particular interest in violent phenomena such as galaxy-galaxy interactions or the ``Ram Pressure Stripping'' due to the infalling of a galaxy towards the cluster centre.Initially, I focus my attention to the problem of dust destruction and heating processes, re-visiting the available models in literature. I particularly stress on the cases of extreme environments such as a hot coronal-type gas (e.g., IGM, ICM, HIM) and supernova-generated interstellar shocks. Under these conditions small grains are destroyed on short timescales and large grains are heated by the collisions with fast electrons making the dust spectral energy distribution very different from what observed in the diffuse ISM.In order to test our models I apply them to the case of an interacting galaxy, NGC 4438. Herschel data of this galaxy indicates the presence of dust with a higher-than-expected temperature.With a multi-wavelength analysis on a pixel-by-pixel basis we show that this hot dust seems to be embedded in a hot ionised gas therefore undergoing both collisional heating and small grain destruction.Furthermore, I focus on the long-standing conundrum about the dust destruction and dust formation timescales in the Milky Way. Based on the destruction efficiency in interstellar shocks, previous estimates led to a dust lifetime shorter than the typical timescale for dust formation in AGB stars. Using a recent dust model and an updated dust processing model we re-evaluate the dust lifetime in our Galaxy. Finally, I turn my attention to the phenomenon of ``Ram Pressure Stripping''. The galaxy ESO 137-001 represents one of the best cases to study this effect. Its long H2 tail embedded in a hot and ionised tail raises questions about its possible stripping from the galaxy or formation downstream in the tail. Based on recent hydrodynamical numerical simulations, I show that the formation of H2 molecules on the surface of dust grains in the tail is a viable scenario.
Low-temperature crystallization of silicate dust in circumstellar disks.
Molster, F J; Yamamura, I; Waters, L B; Tielens, A G; de Graauw, T; de Jong, T; de Koter, A; Malfait, K; van den Ancker, M E; van Winckel, H; Voors, R H; Waelkens, C
1999-10-07
Silicate dust in the interstellar medium is observed to be amorphous, yet silicate dust in comets and interplanetary dust particles is sometimes partially crystalline. The dust in disks that are thought to be forming planets around some young stars also appears to be partially crystalline. These observations suggest that as the dust goes from the precursor clouds to a planetary system, it must undergo some processing, but the nature and extent of this processing remain unknown. Here we report observations of highly crystalline silicate dust in the disks surrounding binary red-giant stars. The dust was created in amorphous form in the outer atmospheres of the red giants, and therefore must be processed in the disks to become crystalline. The temperatures in these disks are too low for the grains to anneal; therefore, some low-temperature process must be responsible. As the physical properties of the disks around young stars and red giants are similar, our results suggest that low-temperature crystallization of silicate grains also can occur in protoplanetary systems.
Mechanism for the acceleration and ejection of dust grains from Jupiter's magnetosphere
NASA Technical Reports Server (NTRS)
Horanyi, M.; Morfill, G.; Gruen, E.
1993-01-01
The Ulysses mission detected quasi-periodic streams of high-velocity submicron-sized dust particles during its encounter with Jupiter. It is shown here how the dust events could result from the acceleration and subsequent ejection of small grains by Jupiter's magnetosphere. Dust grains entering the plasma environment of the magnetosphere become charged, with the result that their motion is then determined by both electromagnetic and gravitational forces. This process is modeled, and it is found that only those particles in a certain size range gain sufficient energy to escape the Jovian system. Moreover, if Io is assumed to be the source of the dust grains, its location in geographic and geomagnetic coordinates determines the exit direction of the escaping particles, providing a possible explanation for the observed periodicities. The calculated mass and velocity range of the escaping dust gains are consistent with the Ulysses findings.
Dust on Snow Processes and Impacts in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Skiles, M.; Painter, T. H.; Okin, G. S.
2015-12-01
In the Upper Colorado River Basin episodic deposition of mineral dust onto mountain snow cover frequently occurs in the spring when wind speeds and dust emission peaks on the nearby Colorado Plateau, and deposition rates have increased since the intensive settlement in the western USA in the mid 1880s. Dust deposition darkens the snow surface, and accelerates snowmelt through reduction of albedo and further indirect reduction of albedo by accelerating the growth of snow grain size. Observation and modeling of dust-on-snow processes began in 2005 at Senator Beck Basin Study Area (SBBSA) in the San Juan Mountains, CO, work which has shown that dust advances melt, shifts runoff timing and intensity, and reduces total water yield. The consistency of deposition and magnitude of impacts highlighted the need for more detailed understanding of the radiative impacts of dust-on-snow in this region. Here I will present results from a novel, high resolution, daily snow property dataset, collected at SBBSA over the 2013 ablation season, to facilitate physically based radiative transfer and snowmelt modeling. Measurements included snow albedo and vertical profiles of snow density, optical snow grain size, and dust/black carbon concentrations. This dataset was used to assess the relationship between episodic dust events, snow grain growth, and albedo over time, and observe the relation between deposited dust and melt water. Additionally, modeling results include the determination of the regionally specific dust-on-snow complex refractive index and radiative forcing partitioning between dust and black carbon, and dust and snow grain growth.
NASA Technical Reports Server (NTRS)
Aller, Monique C.; Dwek, Eliahu; Kulkarni, Varsha P.; York, Donald G.; Welty, Daniel E.; Vladilo, Giovanni; Som, Debopam; Lackey, Kyle; Dwek, Eli; Beiranvand, Nassim;
2016-01-01
Gas and dust grains are fundamental components of the interstellar medium and significantly impact many of the physical processes driving galaxy evolution, such as star-formation, and the heating, cooling, and ionization of the interstellar material. Quasar absorption systems (QASs), which trace intervening galaxies along the sightlines to luminous quasars, provide a valuable tool to directly study the properties of the interstellar gas and dust in distant, normal galaxies. We have established the presence of silicate dust grains in at least some gas-rich QASs, and find that they exist at higher optical depths than expected for diffuse gas in the Milky Way. Differences in the absorption feature shapes additionally suggest variations in the silicate dust grain properties, such as in the level of grain crystallinity, from system-to-system. We present results from a study of the gas and dust properties of QASs with adequate archival IR data to probe the silicate dust grain properties. We discuss our measurements of the strengths of the 10 and 18 micron silicate dust absorption features in the QASs, and constraints on the grain properties (e.g., composition, shape, crystallinity) based on fitted silicate profile templates. We investigate correlations between silicate dust abundance, reddening, and gas metallicity, which will yield valuable insights into the history of star formation and chemical enrichment in galaxies.
Random dust charge fluctuations in the near-Enceladus plasma
NASA Astrophysics Data System (ADS)
Yaroshenko, V. V.; Lühr, H.
2014-08-01
Stochastic dust charge fluctuations have been studied in the light of Cassini data on the near-Enceladus plasma environment. Estimates of fluctuation time scales showed that this process can be of importance for the grains emanating from the icy moon. The analytical modeling predicts that in the dust-loaded Enceladus plasma a majority of the grains acquires fluctuating negative charges, but there might appear a minority of positively charged particles. The probability of this effect mostly depends on the ratio of the dust/plasma number densities. Our findings appear to be supported by the available Cassini Plasma Spectrometer measurements of the charged grain distributions during E3 and E5 plume flybys. The theoretical results can also provide new insights into the intricate process of particle dynamics in the inner magnetosphere.
Disintegration of Dust Aggregates in Interstellar Shocks and the Lifetime of Dust Grains in the ISM
NASA Technical Reports Server (NTRS)
Dominik, C.; Jones, A. P.; Tielens, A. G. G. M.; Cuzzi, Jeff (Technical Monitor)
1994-01-01
Interstellar grains are destroyed by shock waves moving through the ISM. In fact, the destruction of grains may be so effective that it is difficult to explain the observed abundance of dust in the ISM as a steady state between input of grains from stellar sources and destruction of grains in shocks. This is especially a problem for the larger grains. Therefore, the dust grains must be protected in some way. Jones et al. have already considered coatings and the increased post-shock drag effects for low density grains. In molecular clouds and dense clouds, coagulation of grains is an important process, and the largest interstellar grains may indeed be aggregates of smaller grains rather than homogeneous particles. This may provide a means to protect the larger grains, in that, in moderate velocity grain-grain collisions in a shock the aggregates may disintegrate rather than be vaporized. The released small particles are more resilient to shock destruction (except in fast shocks) and may reform larger grains later, recovering the observed size distribution. We have developed a model for the binding forces in grain aggregates and apply this model to the collisions between an aggregate and fast small grains. We discuss the results in the light of statistical collision probabilities and grain life times.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.
2004-01-01
The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models, and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in subject, we have carried out some unique experiments to illuminate the processes involved in the rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron-sized, nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low-frequency (approximately 0 - 100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in light of the current theories of alignment.
The Evolution of Dust in the Multiphase Interstellar Medium
NASA Technical Reports Server (NTRS)
Oliversen, Ronald J. (Technical Monitor); Slavin, Jonathan
2003-01-01
Interstellar dust has a profound effect on the structure and evolution of the interstellar medium (ISM) and on the processes by which stars form from it. Dust obscures regions of star formation from view, and the uncertain quantities of elements in dust makes it difficult to measure accurately the abundances of the elements in low density regions. Despite the central importance of dust in astrophysics, we cannot answer some of the most basic questions about it: Why is it that most of the refractory elements are in dust grains? What determines the sizes of interstellar grains? It has been the goal of our proposed theoretical investigations to address these questions by studying the destruction of interstellar grains, and to develop observational diagnostics that can test the models we develop.
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E. A.; Weingartner, J. C.; Witherow, W. K.; Tielens, A. G. G. M.
2004-01-01
The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment with respect to the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approximately 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 Angstroms, and the grain rotation rates are obtained by analyzing the low frequency (approximately 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.
Laboratory Experiments on Rotation of Micron Size Cosmic Dust Grains with Radiation
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; Gallagher, D. L.; West, E.; Weingartner, J.; Witherow, W. K.
2004-01-01
The processes and mechanisms involved in the rotation and alignment of interstellar dust grains have been of great interest in astrophysics ever since the surprising discovery of the polarization of starlight more than half a century ago. Numerous theories, detailed mathematical models and numerical studies of grain rotation and alignment along the Galactic magnetic field have been presented in the literature. In particular, the subject of grain rotation and alignment by radiative torques has been shown to be of particular interest in recent years. However, despite many investigations, a satisfactory theoretical understanding of the processes involved in grain rotation and alignment has not been achieved. As there appears to be no experimental data available on this subject, we have carried out some unique experiments to illuminate the processes involved in rotation of dust grains in the interstellar medium. In this paper we present the results of some preliminary laboratory experiments on the rotation of individual micron/submicron size nonspherical dust grains levitated in an electrodynamic balance evacuated to pressures of approx. 10(exp -3) to 10(exp -5) torr. The particles are illuminated by laser light at 5320 A, and the grain rotation rates are obtained by analyzing the low frequency (approx. 0-100 kHz) signal of the scattered light detected by a photodiode detector. The rotation rates are compared with simple theoretical models to retrieve some basic rotational parameters. The results are examined in the light of the current theories of alignment.
Measurements of Lunar Dust Charging Properties by Electron Impact
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Tankosic, Dragana; Craven, Paul D.; Schneider, Todd A.; Vaughn, Jason A.; LeClair, Andre; Spann, James F.; Norwood, Joseph K.
2009-01-01
Dust grains in the lunar environment are believed to be electrostatically charged predominantly by photoelectric emissions resulting from solar UV radiation on the dayside, and on the nightside by interaction with electrons in the solar wind plasma. In the high vacuum environment on the lunar surface with virtually no atmosphere, the positive and negative charge states of micron/submicron dust grains lead to some unusual physical and dynamical dust phenomena. Knowledge of the electrostatic charging properties of dust grains in the lunar environment is required for addressing their hazardous effect on the humans and mechanical systems. It is well recognized that the charging properties of individual small micron size dust grains are substantially different from the measurements on bulk materials. In this paper we present the results of measurements on charging of individual Apollo 11 and Apollo 17 dust grains by exposing them to mono-energetic electron beams in the 10-100 eV energy range. The charging/discharging rates of positively and negatively charged particles of approx. 0.1 to 5 micron radii are discussed in terms of the sticking efficiencies and secondary electron yields. The secondary electron emission process is found to be a complex and effective charging/discharging mechanism for incident electron energies as low as 10-25 eV, with a strong dependence on particle size. Implications of the laboratory measurements on the nature of dust grain charging in the lunar environment are discussed.
Composition, structure and chemistry of interstellar dust
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M.; Allamandola, Louis J.
1986-01-01
The observational constraints on the composition of the interstellar dust are analyzed. The dust in the diffuse interstellar medium consists of a mixture of stardust (amorphous silicates, amorphous carbon, polycyclic aromatic hydrocarbons, and graphite) and interstellar medium dust (organic refractory material). Stardust seems to dominate in the local diffuse interstellar medium. Inside molecular clouds, however, icy grain mantles are also important. The structural differences between crystalline and amorphous materials, which lead to differences in the optical properties, are discussed. The astrophysical consequences are briefly examined. The physical principles of grain surface chemistry are discussed and applied to the formation of molecular hydrogen and icy grain mantles inside dense molecular clouds. Transformation of these icy grain mantles into the organic refractory dust component observed in the diffuse interstellar medium requires ultraviolet sources inside molecular clouds as well as radical diffusion promoted by transient heating of the mantle. The latter process also returns a considerable fraction of the molecules in the grain mantle to the gas phase.
NASA Technical Reports Server (NTRS)
Morfill, G. E.; Gruen, E.; Johnson, T. V.
1980-01-01
The physical processes acting on charged microscopic dust grains in the Jovian atmosphere involve electromagnetic forces which dominate dust particle dynamics and diffusion across field lines resulting from random charge fluctuations of the dust grains. A model of the Jovian ring hypothesizes that the 'visible' ring particles are produced by erosive collisions between an assumed population of kilometer-sized parent bodies and submicron-sized magnetospheric dust particles. Fluctuations in the ring topology and intensity are determined over various time scales, showing that the ring is a quasipermanent and quasistable characteristic of the Jovian system. Finally, the interaction of the Jovian energetic belt electrons and the Jovian plasma with an ambient dust population is examined; the distribution of dust ejected from Io in the inner magnetosphere and losses of magnetospheric ions and electrons due to direct collisions with charged dust particles are calculated.
Use of Laboratory Data to Model Interstellar Chemistry
NASA Technical Reports Server (NTRS)
Vidali, Gianfranco; Roser, J. E.; Manico, G.; Pirronello, V.
2006-01-01
Our laboratory research program is about the formation of molecules on dust grains analogues in conditions mimicking interstellar medium environments. Using surface science techniques, in the last ten years we have investigated the formation of molecular hydrogen and other molecules on different types of dust grain analogues. We analyzed the results to extract quantitative information on the processes of molecule formation on and ejection from dust grain analogues. The usefulness of these data lies in the fact that these results have been employed by theoreticians in models of the chemical evolution of ISM environments.
Dance into the fire: dust survival inside supernova remnants
NASA Astrophysics Data System (ADS)
Micelotta, Elisabetta R.; Dwek, Eli; Slavin, Jonathan D.
2016-06-01
Core collapse supernovae (CCSNe) are important sources of interstellar dust, potentially capable of producing 1 M_{⊙}) of dust in their explosively expelled ejecta. However, unlike other dust sources, the dust has to survive the passage of the reverse shock, generated by the interaction of the supernova blast wave with its surrounding medium. Knowledge of the net amount of dust produced by CCSNe is crucial for understanding the origin and evolution of dust in the local and high-redshift universe. Our goal is to identify the dust destruction mechanisms in the ejecta, and derive the net amount of dust that survives the passage of the reverse shock. To do so, we have developed analytical models for the evolution of a supernova blast wave and of the reverse shock, and the simultaneous processing of the dust inside the cavity of the supernova remnant. We have applied our models to the special case of the clumpy ejecta of the remnant of Cassiopeia A (Cas A), assuming that the dust (silicates and carbon grains) resides in cool oxygen-rich ejecta clumps which are uniformly distributed within the remnant and surrounded by a hot X-ray emitting plasma (smooth ejecta). The passage of the reverse shock through the clumps gives rise to a relative gas-grain motion and also destroys the clumps. While residing in the ejecta clouds, dust is processed via kinetic sputtering, which is terminated either when the grains escape the clumps, or when the clumps are destroyed by the reverse shock. In either case, grain destruction proceeds thereafter by thermal sputtering in the hot shocked smooth ejecta. We find that 12 and 16 percent of silicate and carbon dust, respectively, survive the passage of the reverse shock by the time the shock has reached the center of the remnant. These fractions depend on the morphology of the ejecta and the medium into which the remnant is expanding, as well as the composition and size distribution of the grains that formed in the ejecta. Results will therefore differ for different types of supernovae. I will discuss our models and results and briefly illustrate the impact of the capabilities of the Athena+ X-ray mission on the variety of astrophysical problems involving the processing of dust particles in extreme environments characterized by the presence of shocked X-ray emitting gas.
Induced nucleation of carbon dust in red giant stars
NASA Technical Reports Server (NTRS)
Cadwell, Brian J.; Wang, Hai; Feigelson, Eric D.; Frenklach, Michael
1994-01-01
This study quantitatively tests the proposed model of induced nucleation of carbonaceous grains in carbon-rich red giant stars. Induced nucleation is the process of grain growth initiated by the presence of reactive surfaces provided by seed particles. The numerical study was performed using a deailed chemical kinetic model of carbon deposition, grain coagulation, and homogeneous nucleation of polycyclic aromatic hydrocarbons (PAHs). The model uses a method of moments to keep track of developing grain population in the forming dust shell. We test the efficiency of grain formation for large ranges of dust shell parameters typical for carbon stars. Our model is capable of producing a range of optically thick and thin dust shells in carbon stars. Results are in accord with (IRAS) spectral classes of carbon stars. The resulting composite grains produced are consistent with those recently found in ancient meteorites. This model also provides a realistic explanation for high abundances of (PAHs) in the interstellar medium and some planetary nebulae.
Combustibility determination for cotton gin dust and almond huller dust
USDA-ARS?s Scientific Manuscript database
It has been documented that some dusts generated while processing agricultural products, such as grain and sugar (OSHA, 2009), can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, OSHA initiated action to develop a mandatory standard to comprehen...
The Electric Environment of Martian Dust Devils
NASA Astrophysics Data System (ADS)
Barth, E. L.; Farrell, W. M.; Rafkin, S. C.
2017-12-01
While Martian dust devils have been monitored through decades of observations, we have yet to study their possible electrical effects from in situ instrumentation. However, evidence for the existence of active electrodynamic processes on Mars is provided by laboratory studies of analog material and field campaigns of dust devils on Earth. We have enabled our Mars regional scale atmospheric model (MRAMS) to estimate an upper limit on electric fields generated through dust devil circulations by including charged particles as defined from the Macroscopic Triboelectric Simulation (MTS) code. MRAMS is used to investigate the complex physics of regional, mesoscale, and microscale atmospheric phenomena on Mars; it is a 3-D, nonhydrostatic model, which permits the simulation of atmospheric flows with large vertical accelerations, such as dust devils. MTS is a 3-D particle code which quantifies charging associated with swirling, mixing dust grains; grains of pre-defined sizes and compositions are placed in a simulation box and allowed to move under the influence of winds and gravity. Our MRAMS grid cell size makes our results most applicable to dust devils of a few hundred meters in diameter. We have run a number of simulations to understand the sensitivity of the electric field strength to the particle size and abundance and the amount of charge on each dust grain. We find that Efields can indeed develop in Martian dust convective features via dust grain filtration effects. The overall value of these E-fields is strongly dependent upon dust grain size, dust load, and lifting efficiency, and field strengths can range from 100s of mV/m to 10s of kV/m.
Dust Coagulation in Protoplanetary Accretion Disks
NASA Technical Reports Server (NTRS)
Schmitt, W.; Henning, Th.; Mucha, R.
1996-01-01
The time evolution of dust particles in circumstellar disk-like structures around protostars and young stellar objects is discussed. In particular, we consider the coagulation of grains due to collisional aggregation. The coagulation of the particles is calculated by solving numerically the non-linear Smoluchowski equation. The different physical processes leading to relative velocities between the grains are investigated. The relative velocities may be induced by Brownian motion, turbulence and drift motion. Starting from different regimes which can be identified during the grain growth we also discuss the evolution of dust opacities. These opacities are important for both the derivation of the circumstellar dust mass from submillimeter/millimeter continuum observations and the dynamical behavior of the disks. We present results of our numerical studies of the coagulation of dust grains in a turbulent protoplanetary accretion disk described by a time-dependent one-dimensional (radial) alpha-model. For several periods and disk radii, mass distributions of coagulated grains have been calculated. From these mass spectra, we determined the corresponding Rosseland mean dust opacities. The influence of grain opacity changes due to dust coagulation on the dynamical evolution of a protostellar disk is considered. Significant changes in the thermal structure of the protoplanetary nebula are observed. A 'gap' in the accretion disk forms at the very frontier of the coagulation, i.e., behind the sublimation boundary in the region between 1 and 5 AU.
Dust Grain Charge above the Lunar terminator
NASA Astrophysics Data System (ADS)
Vaverka, Jakub; Richterova, Ivana; Nemecek, Zdenek; Safrankova, Jana; Pavlu, Jiri; Vysinka, Marek
Interaction of a lunar surface with the solar wind and magnetosphere leads to its charging by several processes as photoemission, a collection of primary particles, and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a shielding of solar light and solar wind ions by hills, craters, and boulders that can locally influence the surface potential. Moreover, a presence of a plasma wake can strongly affect this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred volts (night side). An electric field above the charged surface can lead to a levitation of dust grains as it has been observed by several spacecraft and by astronauts during Apollo missions. Although charging and transport of dust grains above the lunar surface are in the center of interest for many years, these phenomena are not still completely understood. We present calculation of an equilibrium potential of dust grains above the lunar surface. We focus on a terminator area during the Earth’s plasma sheet crossing. We use the secondary electron emission model for dust grains which takes into account an influence of the grain size, material, and surface roughness and findings from laboratory experiments with charging of lunar dust simulants by an electron beam.
NASA Astrophysics Data System (ADS)
Jones, A. P.
2016-12-01
Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of `polar ice' mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm `carbonyl' absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes.
NASA Astrophysics Data System (ADS)
Flynn, George
Analysis of organic grain coatings in primitive interplanetary dust particles: Implications for the origin of Solar System organic matter Chondritic, porous interplanetary dust particles (CP IDPs), the most primitive samples of extraterrestrial material available for laboratory analysis [1], are unequilibrated aggregates of mostly submicron, anhydrous grains of a diverse mineralogy. They contain organic matter not produced by parent body aqueous processing [2], some carrying H and N isotopic anomalies consistent with molecular cloud or outer Solar System material [3]. Scanning Transmission X-Ray Microscope (STXM) imaging at the C K-edge shows the individual grains in 10 micron aggregate CP IDPs are coated by a layer of carbonaceous material 100 nm thick. This structure implies a three-step formation sequence. First, individual grains condensed from the cooling nebular gas. Then complex, refractory organic molecules covered the surfaces of the grains either by deposition, formation in-situ, or a combination of both processes. Finally, the grains collided and stuck together forming the first dust-size material in the Solar System. Ultramicrotome sections, 70 to 100 nm thick were cut from several CP IDPs, embedded in elemental S to avoid exposure to C-based embedding media. X-ray Absorption Near Edge Structure (XANES) spectra were derived from image stacks obtained using a STXM. "Cluster analysis" was used to compare the C-XANES spectra from each of the pixels in an image stack and identify pixels exhibiting similar spectra. When applied to a CP IDP, cluster analysis identifies most carbonaceous grain coatings in a particle as having similar C-XANES spectra. Two processes are commonly suggested in the literature for production of organic grain coatings. The similarity in thickness and C-XANES spectra of the coatings on different minerals in the same IDP indicates the first, mineral specific catalysis, was not the process that produced these organic rims. Our results are consistent with this primitive organic matter being produced by the alternative process of condensation of C-bearing ices onto the grain surfaces and production of refractory organic matter by UV or other ionizing radiation bombardment of the ices [4]. The processes by which primitive grains aggregate to form the first dust of our Solar System are not well understood. Collision experiments indicate that bare rocky grains bounce apart at collision speeds ¡30 to 50 m/s and shatter at larger speeds [5]. However, experiments indicate grains coated with organic matter stick quite easily, even at speeds up to 5 m/s -an order of magnitude higher than the speed at which silicate grains accrete [6]. Thus the organic grain coatings we identified likely played a critical role in dust aggregation in the early Solar System. References: [1] Ishii, H. et al. Science 2009. [2] Flynn, G. J. et al. (2003) Geochim. Cosmochim. Acta, 67, 4791-4806. [3] Keller L. P. et al. GCA (2004) Geochim. Cosmochim. Acta, 68, 2577-2589. [4] Bernstein, M. P. et al. (1995) Astrophys. J., 454, 327-344. [5] Hartmann, W. K. (1978) Icarus, 33, 50-61. [6] Kudo, T. et al. (2002) Meteoritics Planet. Sci., 37, 1975-1983.
Craters formed in mineral dust by hypervelocity microparticles.
NASA Technical Reports Server (NTRS)
Vedder, J. F.
1972-01-01
As a simulation of erosion processes on the lunar surface, impact craters were formed in dust targets by 2- to 5-micron-diameter polystyrene spheres with velocities between 2.5 and 12 km/sec. For weakly cohesive, thick targets of basalt dust with a maximum grain size comparable to the projectile diameter, the craters had an average projectile-to-diameter diameter ratio of 25, and the displaced mass was 3 orders of magnitude greater than the projectile mass. In a simulation of the effect of a dust covering on lunar rocks, a layer of cohesive, fine-grained basalt dust with a thickness nearly twice the projectile diameter protected a glass substrate from damage, but an area about 50 times the cross-sectional area of the projectile was cleared of all but a few grains. Impact damage was produced in glass under a thinner dust layer.
NASA Astrophysics Data System (ADS)
Brunner, M.; Maercker, M.; Mecina, M.; Khouri, T.; Kerschbaum, F.
2018-06-01
Context. On the asymptotic giant branch (AGB), Sun-like stars lose a large portion of their mass in an intensive wind and enrich the surrounding interstellar medium with nuclear processed stellar material in the form of molecular gas and dust. For a number of carbon-rich AGB stars, thin detached shells of gas and dust have been observed. These shells are formed during brief periods of increased mass loss and expansion velocity during a thermal pulse, and open up the possibility to study the mass-loss history of thermally pulsing AGB stars. Aims: We study the properties of dust grains in the detached shell around the carbon AGB star R Scl and aim to quantify the influence of the dust grain properties on the shape of the spectral energy distribution (SED) and the derived dust shell mass. Methods: We modelled the SED of the circumstellar dust emission and compared the models to observations, including new observations of Herschel/PACS and SPIRE (infrared) and APEX/LABOCA (sub-millimeter). We derived present-day mass-loss rates and detached shell masses for a variation of dust grain properties (opacities, chemical composition, grain size, and grain geometry) to quantify the influence of changing dust properties to the derived shell mass. Results: The best-fitting mass-loss parameters are a present-day dust mass-loss rate of 2 × 10-10 M⊙ yr-1 and a detached shell dust mass of (2.9 ± 0.3) × 10-5 M⊙. Compared to similar studies, the uncertainty on the dust mass is reduced by a factor of 4. We find that the size of the grains dominates the shape of the SED, while the estimated dust shell mass is most strongly affected by the geometry of the dust grains. Additionally, we find a significant sub-millimeter excess that cannot be reproduced by any of the models, but is most likely not of thermal origin. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
Dust Processing in Supernova Remnants: Spitzer MIPS SED and IRS Observations
NASA Technical Reports Server (NTRS)
Hewitt, John W.; Petre, Robert; Katsuda Satoru; Andersen, M.; Rho, J.; Reach, W. T.; Bernard, J. P.
2011-01-01
We present Spitzer MIPS SED and IRS observations of 14 Galactic Supernova Remnants previously identified in the GLIMPSE survey. We find evidence for SNR/molecular cloud interaction through detection of [OI] emission, ionic lines, and emission from molecular hydrogen. Through black-body fitting of the MIPS SEDs we find the large grains to be warm, 29-66 K. The dust emission is modeled using the DUSTEM code and a three component dust model composed of populations of big grains, very small grains, and polycyclic aromatic hydrocarbons. We find the dust to be moderately heated, typically by 30-100 times the interstellar radiation field. The source of the radiation is likely hydrogen recombination, where the excitation of hydrogen occurred in the shock front. The ratio of very small grains to big grains is found for most of the molecular interacting SNRs to be higher than that found in the plane of the Milky Way, typically by a factor of 2--3. We suggest that dust shattering is responsible for the relative over-abundance of small grains, in agreement with prediction from dust destruction models. However, two of the SNRs are best fit with a very low abundance of carbon grains to silicate grains and with a very high radiation field. A likely reason for the low abundance of small carbon grains is sputtering. We find evidence for silicate emission at 20 $\\mu$m in their SEDs, indicating that they are young SNRs based on the strong radiation field necessary to reproduce the observed SEDs.
LUNAR SURFACE AND DUST GRAIN POTENTIALS DURING THE EARTH’S MAGNETOSPHERE CROSSING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaverka, J.; Richterová, I.; Pavlu, J.
2016-07-10
Interaction between the lunar surface and the solar UV radiation and surrounding plasma environment leads to its charging by different processes like photoemission, collection of charged particles, or secondary electron emission (SEE). Whereas the photoemission depends only on the angle between the surface and direction to the Sun and varies only slowly, plasma parameters can change rapidly as the Moon orbits around the Earth. This paper presents numerical simulations of one Moon pass through the magnetospheric tail including the real plasma parameters measured by THEMIS as an input. The calculations are concentrated on different charges of the lunar surface itselfmore » and a dust grain lifted above this surface. Our estimations show that (1) the SEE leads to a positive charging of parts of the lunar surface even in the magnetosphere, where a high negative potential is expected; (2) the SEE is generally more important for isolated dust grains than for the lunar surface covered by these grains; and (3) the time constant of charging of dust grains depends on their diameter being of the order of hours for sub-micrometer grains. In view of these results, we discuss the conditions under which and the areas where a levitation of the lifted dust grains could be observed.« less
Laboratory Analysis of Silicate Stardust Grains of Diverse Stellar Origins
NASA Technical Reports Server (NTRS)
Nguyen, Ann N.; Keller, Lindsay P.; Nakamura-Messenger, Keiko
2016-01-01
Silicate dust is ubiquitous in a multitude of environments across the cosmos, including evolved oxygen-rich stars, interstellar space, protoplanetary disks, comets, and asteroids. The identification of bona fide silicate stardust grains in meteorites, interplanetary dust particles, micrometeorites, and dust returned from comet Wild 2 by the Stardust spacecraft has revolutionized the study of stars, interstellar space, and the history of dust in the Galaxy. These stardust grains have exotic isotopic compositions that are records of nucleosynthetic processes that occurred in the depths of their now extinct parent stars. Moreover, the chemical compositions and mineralogies of silicate stardust are consequences of the physical and chemical nature of the stellar condensation environment, as well as secondary alteration processes that can occur in interstellar space, the solar nebula, and on the asteroid or comet parent body in which they were incorporated. In this talk I will discuss our use of advanced nano-scale instrumentation in the laboratory to conduct coordinated isotopic, chemical, and mineralogical analyses of silicate stardust grains from AGB stars, supernovae, and novae. By analyzing the isotopic compositions of multiple elements in individual grains, we have been able to constrain their stellar sources, explore stellar nucleosynthetic and mixing processes, and Galactic chemical evolution. Through our mineralogical studies, we have found these presolar silicate grains to have wide-ranging chemical and mineral characteristics. This diversity is the result of primary condensation characteristics and in some cases secondary features imparted by alteration in space and in our Solar System. The laboratory analysis of actual samples of stars directly complements astronomical observations and astrophysical models and offers an unprecedented level of detail into the lifecycles of dust in the Galaxy.
SILICATE COMPOSITION OF THE INTERSTELLAR MEDIUM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fogerty, S.; Forrest, W.; Watson, D. M.
2016-10-20
The composition of silicate dust in the diffuse interstellar medium and in protoplanetary disks around young stars informs our understanding of the processing and evolution of the dust grains leading up to planet formation. An analysis of the well-known 9.7 μ m feature indicates that small amorphous silicate grains represent a significant fraction of interstellar dust and are also major components of protoplanetary disks. However, this feature is typically modeled assuming amorphous silicate dust of olivine and pyroxene stoichiometries. Here, we analyze interstellar dust with models of silicate dust that include non-stoichiometric amorphous silicate grains. Modeling the optical depth alongmore » lines of sight toward the extinguished objects Cyg OB2 No. 12 and ζ Ophiuchi, we find evidence for interstellar amorphous silicate dust with stoichiometry intermediate between olivine and pyroxene, which we simply refer to as “polivene.” Finally, we compare these results to models of silicate emission from the Trapezium and protoplanetary disks in Taurus.« less
Dust Evolution in Galaxy Cluster Simulations
NASA Astrophysics Data System (ADS)
Gjergo, Eda; Granato, Gian Luigi; Murante, Giuseppe; Ragone-Figueroa, Cinthia; Tornatore, Luca; Borgani, Stefano
2018-06-01
We implement a state-of-the-art treatment of the processes affecting the production and Interstellar Medium (ISM) evolution of carbonaceous and silicate dust grains within SPH simulations. We trace the dust grain size distribution by means of a two-size approximation. We test our method on zoom-in simulations of four massive (M200 ≥ 3 × 1014M⊙) galaxy clusters. We predict that during the early stages of assembly of the cluster at z ≳ 3, where the star formation activity is at its maximum in our simulations, the proto-cluster regions are rich in dusty gas. Compared to the case in which only dust production in stellar ejecta is active, if we include processes occurring in the cold ISM,the dust content is enhanced by a factor 2 - 3. However, the dust properties in this stage turn out to be significantly different from those observationally derived for the average Milky Way dust, and commonly adopted in calculations of dust reprocessing. We show that these differences may have a strong impact on the predicted spectral energy distributions. At low redshift in star forming regions our model reproduces reasonably well the trend of dust abundances over metallicity as observed in local galaxies. However we under-produce by a factor of 2 to 3 the total dust content of clusters estimated observationally at low redshift, z ≲ 0.5 using IRAS, Planck and Herschel satellites data. This discrepancy does not subsist by assuming a lower sputtering efficiency, which erodes dust grains in the hot Intracluster Medium (ICM).
Investigations of the Formation of Carbon Grains in Circumstellar Outflows
NASA Technical Reports Server (NTRS)
Contreras, Cesar; Salama, Farid
2013-01-01
The study of formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of carbonaceous dust. PAHs are important chemical building blocks of interstellar dust. They are detected in interplanetary dust particles and in meteoritic samples. Additionally, observational, laboratory, and theoretical studies have shown that PAHs, in their neutral and ionized forms, are an important, ubiquitous component of the interstellar medium. Also, the formation of PAHs from smaller molecules has not been extensively studied. Therefore, it is imperative that laboratory experiments be conducted to study the dynamic processes of carbon grain formation from PAH precursors. Studies of interstellar dust analogs formed from a variety of PAH and hydrocarbon precursors as well as species that include the atoms O, N, and S, have recently been performed in our laboratory under conditions that simulate interstellar and circumstellar environments. The species formed in the pulsed discharge nozzle (PDN) plasma source are detected and characterized with a high-sensitivity cavity ringdown spectrometer (CRDS) coupled to a Reflectron time-of-flight mass spectrometer (ReTOF-MS), thus providing both spectroscopic and ion mass information in-situ. We report the first set of measurements obtained in these experiments and identify the species present in the experiments and the ions that are formed in the plasma process. From these unique measurements, we derive information on the size and the structure of interstellar dust grain particles, the growth and the destruction processes of interstellar dust and the resulting budget of extraterrestrial organic molecules.
Dust in Supernovae and Supernova Remnants II: Processing and Survival
NASA Astrophysics Data System (ADS)
Micelotta, E. R.; Matsuura, M.; Sarangi, A.
2018-03-01
Observations have recently shown that supernovae are efficient dust factories, as predicted for a long time by theoretical models. The rapid evolution of their stellar progenitors combined with their efficiency in precipitating refractory elements from the gas phase into dust grains make supernovae the major potential suppliers of dust in the early Universe, where more conventional sources like Asymptotic Giant Branch (AGB) stars did not have time to evolve. However, dust yields inferred from observations of young supernovae or derived from models do not reflect the net amount of supernova-condensed dust able to be expelled from the remnants and reach the interstellar medium. The cavity where the dust is formed and initially resides is crossed by the high velocity reverse shock which is generated by the pressure of the circumstellar material shocked by the expanding supernova blast wave. Depending on grain composition and initial size, processing by the reverse shock may lead to substantial dust erosion and even complete destruction. The goal of this review is to present the state of the art about processing and survival of dust inside supernova remnants, in terms of theoretical modelling and comparison to observations.
Astrophysical dust grains in stars, the interstellar medium, and the solar system
NASA Technical Reports Server (NTRS)
Gehrz, Robert D.
1991-01-01
Studies of astrophysical dust grains in circumstellar shells, the interstellar medium, and the solar system may provide information about stellar evolution and about physical conditions in the primitive solar nebula. The following subject areas are covered: (1) the cycling of dust in stellar evolution and the formation of planetary systems; (2) astrophysical dust grains in circumstellar environments; (3) circumstellar grain formation and mass loss; (4) interstellar dust grains; (5) comet dust and the zodiacal cloud; (6) the survival of dust grains during stellar evolution; and (7) establishing connections between stardust and dust in the solar system.
NASA Astrophysics Data System (ADS)
Friese, Carmen A.; van der Does, Michèlle; Merkel, Ute; Iversen, Morten H.; Fischer, Gerhard; Stuut, Jan-Berend W.
2016-09-01
The particle sizes of Saharan dust in marine sediment core records have been used frequently as a proxy for trade-wind speed. However, there are still large uncertainties with respect to the seasonality of the particle sizes of deposited Saharan dust off northwestern Africa and the factors influencing this seasonality. We investigated a three-year time-series of grain-size data from two sediment-trap moorings off Cape Blanc, Mauritania and compared them to observed wind-speed and precipitation as well as satellite images. Our results indicate a clear seasonality in the grain-size distributions: during summer the modal grain sizes were generally larger and the sorting was generally less pronounced compared to the winter season. Gravitational settling was the major deposition process during winter. We conclude that the following two mechanisms control the modal grain size of the collected dust during summer: (1) wet deposition causes increased deposition fluxes resulting in coarser modal grain sizes and (2) the development of cold fronts favors the emission and transport of coarse particles off Cape Blanc. Individual dust-storm events throughout the year could be recognized in the traps as anomalously coarse-grained samples. During winter and spring, intense cyclonic dust-storm events in the dust-source region explained the enhanced emission and transport of a larger component of coarse particles off Cape Blanc. The outcome of our study provides important implications for climate modellers and paleo-climatologists.
The Journey of Interstellar Dust
NASA Technical Reports Server (NTRS)
Dwek, Eliahu
2007-01-01
Interstellar dust particles undergo a complex journey in space. It commences with their formation in stellar outflows or outbursts, but may end in very different ways. Their fates range from sudden "death by destruction" promptly after their formation to maturity and inclusion in protoplanetary objects in stellar nursery homes. Throughout this journey dust grains are subjected to a host of interstellar processes in different astrophysical environments which leave their imprint on the dust and affects their surrounding environment. In this review I will summarize our current knowledge of the field, emphasizing what we still need to know to gain a full understanding of interstellar dust grains and their journey through the ISM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagao, Takashi; Maeda, Keiichi; Nozawa, Takaya, E-mail: nagao@kusastro.kyoto-u.ac.jp
Many astronomical objects are surrounded by dusty environments. In such dusty objects, multiple scattering processes of photons by circumstellar (CS) dust grains can effectively alter extinction properties. In this paper, we systematically investigate the effects of multiple scattering on extinction laws for steady-emission sources surrounded by the dusty CS medium using a radiation transfer simulation based on the Monte Carlo technique. In particular, we focus on whether and how the extinction properties are affected by properties of CS dust grains by adopting various dust grain models. We confirm that behaviors of the (effective) extinction laws are highly dependent on themore » properties of CS grains, especially the total-to-selective extinction ratio R{sub V}, which characterizes the extinction law and can be either increased or decreased and compared with the case without multiple scattering. We find that the criterion for this behavior is given by a ratio of albedos in the B and V bands. We also find that either small silicate grains or polycyclic aromatic hydrocarbons are necessary for realizing a low value of R{sub V} as often measured toward SNe Ia if the multiple scattering by CS dust is responsible for their non-standard extinction laws. Using the derived relations between the properties of dust grains and the resulting effective extinction laws, we propose that the extinction laws toward dusty objects could be used to constrain the properties of dust grains in CS environments.« less
Secondary emission from dust grains: Comparison of experimental and model results
NASA Astrophysics Data System (ADS)
Richterova, I.; Pavlu, J.; Nemecek, Z.; Safrankova, J.; Zilavy, P.
The motion, coalescence, and other processes in dust clouds are determined by the dust charge. Since dust grains in the space are bombarded by energetic electrons, the secondary emission is an important process contributing to their charge. It is generally expected that the secondary emission yield is related to surface properties of the bombarded body. However, it is well known that secondary emission from small bodies is determined not only by their composition but an effect of dimension can be very important when the penetration depth of primary electrons is comparable with the grain size. It implies that the secondary emission yield can be influenced by the substrate material if the surface layer is thin enough. We have developed a simple Monte Carlo model of secondary emission that was successfully applied on the dust simulants from glass and melanine formaldehyd (MF) resin and matched very well experimental results. In order to check the influence of surface layers, we have modified the model for spheres covered by a layer with different material properties. The results of model simulations are compared with measurements on MF spheres covered by different metals.
Ultrathin amorphous coatings on lunar dust grains.
Bibring, J P; Duraud, J P; Durrieu, L; Jouret, C; Maurette, M; Meunier, R
1972-02-18
UItrathin amorphous coatings have been observed by high-voltage electron microscopy on micrometer-sized dust grains from the Apollo 11, Apollo 12, Apollo 14, and Luna 16 missions. Calibration experiments show that these coatings result from an "ancient" implantation of solar wind ions in the grains. This phenomenon has interdisciplinary applications concerning the past activity of the sun, the lunar albedo, the ancient lunar atmosphere and magnetic field, the carbon content of lunar soils, and lunar dynamic processes.
2016-01-01
Within the framework of The Heterogeneous dust Evolution Model for Interstellar Solids (THEMIS), this work explores the surface processes and chemistry relating to core/mantle interstellar and cometary grain structures and their influence on the nature of these fascinating particles. It appears that a realistic consideration of the nature and chemical reactivity of interstellar grain surfaces could self-consistently and within a coherent framework explain: the anomalous oxygen depletion, the nature of the CO dark gas, the formation of ‘polar ice’ mantles, the red wing on the 3 μm water ice band, the basis for the O-rich chemistry observed in hot cores, the origin of organic nano-globules and the 3.2 μm ‘carbonyl’ absorption band observed in comet reflectance spectra. It is proposed that the reaction of gas phase species with carbonaceous a-C(:H) grain surfaces in the interstellar medium, in particular the incorporation of atomic oxygen into grain surfaces in epoxide functional groups, is the key to explaining these observations. Thus, the chemistry of cosmic dust is much more intimately related with that of the interstellar gas than has previously been considered. The current models for interstellar gas and dust chemistry will therefore most likely need to be fundamentally modified to include these new grain surface processes. PMID:28083090
GEMS Revealed: Spectrum Imaging of Aggregate Grains in Interplanetary Dust
NASA Technical Reports Server (NTRS)
Keller, L. P.; Messenger, S.; Christoffersen, R.
2005-01-01
Anhydrous interplanetary dust particles (IDPs) of cometary origin contain abundant materials that formed in the early solar nebula. These materials were transported outward and subsequently mixed with molecular cloud materials and presolar grains in the region where comets accreted [1]. GEMS (glass with embedded metal and sulfides) grains are a major component of these primitive anhydrous IDPs, along with crystalline Mg-rich silicates, Fe-Ni sulfides, carbonaceous material, and other trace phases. Some GEMS grains (5%) are demonstrably presolar based on their oxygen isotopic compositions [2]. However, most GEMS grains are isotopically solar and have bulk chemical compositions that are incompatible with inferred compositions of interstellar dust, suggesting a solar system origin [3]. An alternative hypothesis is that GEMS grains represent highly irradiated interstellar grains whose oxygen isotopic compositions were homogenized through processing in the interstellar medium (ISM) [4]. We have obtained the first quantitative X-ray maps (spectrum images) showing the distribution of major and minor elements in individual GEMS grains. Nanometer-scale chemical maps provide critical data required to evaluate the differing models regarding the origin of GEMS grains.
Chemical Evolution of Interstellar Dust into Planetary Materials
NASA Technical Reports Server (NTRS)
Fomenkova, M. N.; Chang, S.; DeVincenzi, Donald L. (Technical Monitor)
1995-01-01
Comets are believed to retain some interstellar materials, stored in fairly pristine conditions since-their formation. The composition and properties of cometary dust grains should reflect those of grains in the outer part of the protosolar nebula which, at least in part, were inherited from the presolar molecular cloud. However, infrared emission features in comets differ from their interstellar counterparts. These differences imply processing of interstellar material on its way to incorporation in comets, but C and N appear to be retained. Overall dust evolution from the interstellar medium (ISM) to planetary materials is accompanied by an increase in proportion of complex organics and a decrease in pure carbon phases. The composition of cometary dust grains was measured in situ during fly-by missions to comet Halley in 1986. The mass spectra of about 5000 cometary dust grains with masses of 5 x 10(exp -17) - 5 x 10(exp -12) g provide data about the presence and relative abundances of the major elements H, C, N, O,Na, Mg, Al, Si, S, Cl, K, Ca, Ti, Cr, Fe, Ni. The bulk abundances of major rock-forming elements integrated over all spectra were found to be solar within a factor of 2, while the volatile elements H, C, N, O in dust are depleted in respect to their total cosmic abundances. The abundances of C and N in comet dust are much closer to interstellar than to meteoritic and are higher than those of dust in the diffuse ISM. In dense molecular clouds dust grains are covered by icy mantles, the average composition of which is estimated to be H:C:N:O = 96:14:1:34. Up to 40% of elemental C and O may be sequestered in mantles. If we use this upper limit to add H, C, N and O as icy mantle material to the abundances residing in dust in the diffuse ISM, then the resulting values for H. C, and N match cometary abundances. Thus, ice mantles undergoing chemical evolution on grains in the dense ISM appear to have been transformed into less volatile and more complex organic residues wherein the H, C and N are largely retained and ultimately accreted in cometary dust. The abundance of O is about the same for cometary dust, meteorites and interstellar dust. In all these samples, most of O in a solid phase is bonded to silicates. In dense molecular clouds, the abundance of O in dust+mantles is significantly higher then in cometary dust. This difference may reflect the greater lability of oxygenated species toward astrophysical processing. Laboratory studies show that O-bearing functional groups in organic compounds tend to be relatively easily removed by heating and/or UV and particle irradiation . In Halley's coma, O-containing organic grains, being unstable, were located closest to the nucleus. The decomposition of the organic grain component in the coma provided a significant extended source contribution to O-containing gaseous species such as CO and H2CO.
Kuiper Belt Dust Grains as a Source of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Liou, Jer-Chyi; Zook, Herbert A.; Dermott, Stanley F.
1996-01-01
The recent discovery of the so-called Kuiper belt objects has prompted the idea that these objects produce dust grains that may contribute significantly to the interplanetary dust population. In this paper, the orbital evolution of dust grains, of diameters 1 to 9 microns, that originate in the region of the Kuiper belt is studied by means of direct numerical integration. Gravitational forces of the Sun and planets, solar radiation pressure, as well as Poynting-Robertson drag and solar wind drag are included. The interactions between charged dust grains and solar magnetic field are not considered in the model. Because of the effects of drag forces, small dust grains will spiral toward the Sun once they are released from their large parent bodies. This motion leads dust grains to pass by planets as well as encounter numerous mean motion resonances associated with planets. Our results show that about 80% of the Kuiper belt grains are ejected from the Solar System by the giant planets, while the remaining 20% of the grains evolve all the way to the Sun. Surprisingly, the latter dust grains have small orbital eccentricities and inclinations when they cross the orbit of the Earth. This makes them behave more like asteroidal than cometary-type dust particles. This also enhances their chances of being captured by the Earth and makes them a possible source of the collected interplanetary dust particles; in particular, they represent a possible source that brings primitive/organic materials from the outer Solar System to the Earth. When collisions with interstellar dust grains are considered, however, Kuiper belt dust grains around 9 microns appear likely to be collisionally shattered before they can evolve toward the inner part of the Solar System. The collision destruction can be applied to Kuiper belt grains up to about 50 microns. Therefore, Kuiper belt dust grains within this range may not be a significant part of the interplanetary dust complex in the inner Solar System.
NASA Astrophysics Data System (ADS)
Orhan, Hükmü
1992-04-01
The importance of dust storms on geological processes has only been studied recently. Case-hardening, desert-varnish formation, duricrust development, reddening and cementation of sediments and caliche formation, are some important geological processes related to dust storms. Dust storms can also be a major source for cements in aeolian sandstones. The Jurassic aeolian Entrada Formation in the Ghost Ranch area is composed of quartz with minor amounts of feldspar and rock fragments, and is cemented with smectite as grain coatings and calcite and kaolinite as pore fillings. Smectite shows a crinkly and honeycomb-like morphology which points to an authigenic origin. The absence of smectite as framework grains and the presence of partially dissolved grains, coated with smectite and smectite egg-shells, indicate an external source. Clay and fine silt-size particles are believed to be the major source for cements, smectite and calcite in the Entrada Formation. The common association of kaolinite with altered feldspar, and the absence of kaolinite in spots heavily cemented with calcite, lead to the conclusions that the kaolinite formation postdates carbonates and that framework feldspar grains were the source of kaolinite.
Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E.; Sheldon, R.; Witherow, W. K.; Gallagher, D. L.; Adrian, M. L.
2002-01-01
A laboratory facility for conducting a variety of experiments on single isolated dust particles of astrophysical interest levitated in an electrodynamics balance has been developed at NASA/Marshall Space Flight Center. The objective of the research is to employ this experimental technique for studies of the physical and optical properties of individual cosmic dust grains of 0.1-100 micron size in controlled pressure/temperatures environments simulating astrophysical conditions. The physical and optical properties of the analogs of interstellar and interplanetary dust grains of known composition and size distribution will be investigated by this facility. In particular, we will carry out three classes of experiments to study the micro-physics of cosmic dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. (2) Infrared optical properties of dust particles (extinction coefficients and scattering phase functions) in the 1-30 micron region using infrared diode lasers and measuring the scattered radiation. (3) Condensation experiments to investigate the condensation of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The condensation experiments will involve levitated nucleus dust grains of known composition and initial mass (or m/q ratio), cooled to a temperature and pressure (or scaled pressure) simulating the astrophysical conditions, and injection of a volatile gas at a higher temperature from a controlled port. The increase in the mass due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data will permit determination of the sticking coefficients of volatile gases and growth rates of dust particles of astrophysical interest. Some preliminary results based on measurements of photoelectric emission and radiation pressure on single isolated 0.2 to 6.6 micron size silica particles exposed to UV radiation at 120-200 nm and green laser light at 532 nm are presented.
NASA Technical Reports Server (NTRS)
Bloemhof, E. E.; Danen, R. M.; Gwinn, C. R.
1996-01-01
We describe how high spatial resolution imaging of circumstellar dust at a wavelength of about 10 micron, combined with knowledge of the source spectral energy distribution, can yield useful information about the sizes of the individual dust grains responsible for the infrared emission. Much can be learned even when only upper limits to source size are available. In parallel with high-resolution single-telescope imaging that may resolve the more extended mid-infrared sources, we plan to apply these less direct techniques to interpretation of future observations from two-element optical interferometers, where quite general arguments may be made despite only crude imaging capability. Results to date indicate a tendency for circumstellar grain sizes to be rather large compared to the Mathis-Rumpl-Nordsieck size distribution traditionally thought to characterize dust in the general interstellar medium. This may mean that processing of grains after their initial formation and ejection from circumstellar atmospheres adjusts their size distribution to the ISM curve; further mid-infrared observations of grains in various environments would help to confirm this conjecture.
Coagulation of dust particles in a plasma
NASA Technical Reports Server (NTRS)
Horanyi, M.; Goertz, C. K.
1990-01-01
The electrostatic charge of small dust grains in a plasma in which the temperature varies in time is discussed, pointing out that secondary electron emission might introduce charge separation. If the sign of the charge on small grains is opposite to that on big ones, enhanced coagulation can occur which will affect the size distribution of grains in a plasma. Two scenarios where this process might be relevant are considered: a hot plasma environment with temperature fluctuations and a cold plasma environment with transient heating events. The importance of the enhanced coagulation is uncertain, because the plasma parameters in grain-producing environments such as a molecular cloud or a protoplanetary disk are not known. It is possible, however, that this process is the most efficient mechanism for the growth of grains in the size range of 0.1-500 microns.
Exposure to grain dust in Great Britain.
Spankie, Sally; Cherrie, John W
2012-01-01
Airborne grain dust is a complex mixture of fragments of organic material from grain, plus mineral matter from soil, and possible insect, fungal, or bacterial contamination or their toxic products, such as endotoxin. In the 1990s, grain workers in Britain were frequently exposed to inhalable dust >10 mg.m(-3) (8 h), with particularly high exposures being found at terminals where grain was imported or exported and in drying operations (personal exposure typically approximately 20 mg.m(-3)). Since then, the industry has made substantial progress in improving the control of airborne dust through better-designed processes, increased automation, and an improved focus on product quality. We have used information from the published scientific literature and a small survey of industry representatives to estimate current exposure levels. These data suggest that current long-term exposure to inhalable dust for most workers is on average less than approximately 3 mg.m(-3), with perhaps 15-20% of individual personal exposures being >10 mg.m(-3). There are no published data from Britain on short-term exposure during cleaning and other tasks. We have estimated average levels for a range of tasks and judge that the highest levels, for example during some cleaning activities and certain process tasks such as loading and packing, are probably approximately10 mg.m(-3). Endotoxin levels were judged likely to be <10⁴ EU m(-3) throughout the industry provided inhalable dust levels are <10 mg.m(-3). There are no published exposure data on mycotoxin, respirable crystalline silica, and mite contamination but these are not considered to present widespread problems in the British industry. Further research should be carried out to confirm these findings.
A Massive Shell of Supernova-Formed Dust in SNR G54.1+0.3
NASA Technical Reports Server (NTRS)
Temim, Tea; Dwek, Eli; Arendt, Richard G.; Borkowski, Kazimiera J.; Reynolds, Stephen P.; Slane, Patrick; Gelfand, Joseph D.; Raymond, John C.
2017-01-01
While theoretical models of dust condensation predict that most refractory elements produced in core-collapsesupernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed inSN1987A. We present an analysis of observations from the Spitzer Space Telescope, Herschel SpaceObservatory, Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding thepulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 m to amagnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, whichexhibits the same spectral signature. If this species is responsible for producing the observed spectral feature andaccounts for a significant fraction of the observed infrared continuum, we find that it would be the dominantconstituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such ascarbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3Me. Wediscuss how these results may be affected by varying dust grain properties and self-consistent grain heating models.The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SNformeddust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a clusterin which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 1627Me andimply a high dust condensation efficiency, similar to that found for Cas A and SN1987A. The study providesanother example of significant dust formation in a Type IIP SN explosion and sheds light on the properties ofpristine SN-condensed dust.
Chan-Yeung, M.; Ashley, M. J.; Grzybowski, S.
1978-01-01
Grain dust is composed of a large number of materials, including various types of grain and their disintegration products, silica, fungi, insects and mites. The clinical syndromes described in relation to exposure to grain dust are chronic bronchitis, grain dust asthma, extrinsic allergic alveolitis, grain fever and silo-filler's lung. Rhinitis and conjunctivitis are also common in grain workers. While the concentration and the quality of dust influence the frequency and the type of clinical syndrome in grain workers, host factors are also important. Of the latter, smoking is the most important factor influencing the frequency of chronic bronchitis. The role of atopy and of bronchial hyperreactivity in grain dust asthma has yet to be assessed. Several well designed studies are currently being carried out in North America not only to delineate the frequency of the respiratory abnormalities, the pathogenetic mechanisms and the host factors, but also to establish a meaningful threshold limit concentration for grain dust. Images p1272-a PMID:348288
A two-dimensional particle-in-cell model of a dusty plasma
NASA Technical Reports Server (NTRS)
Young, B.; Cravens, T. E.; Armstrong, T. P.; Friauf, R. J.
1994-01-01
Dusty plasmas are present in comets, in the ring systems of the outer planets, and in the interstellar medium. A two-dimensional particle-in-cell (PIC) model of a dusty plasma is presented in this paper. The PIC code is best suited for modeling the plasma-dust interaction for large grains, with diameters of the order of a centimeter. We have modeled the charging process for an individual dust grain and the associated potential pattern in the surrounding plasma. We have also considered the case of a large number of grains in a plasma, with intergrain separations of the order of the Debye length, and have shown that the plasma becomes depleted and the charge on a dust grain is reduced, as other workers in this field have predicted (cf. C. K. Goertz, 1989). We examine the electron and ion distribution functions in the vicinity of a charged grain and demonstrate that the ions near a grain have clearly been accelerated by the electrostatic potential.
Role of electron temperature on charging of dust grains
NASA Astrophysics Data System (ADS)
Kausik, S. S.; Chakraborty, M.; Saikia, B. K.
2007-02-01
Dust grains are produced by evaporation of silver in an experimental setup consisting of a dust chamber, a plasma chamber, and a deflection chamber. Due to differential pressure between the dust and plasma chambers, the dust grains move upward and after passing through plasma they become negatively charged. These charged dust grains are then deflected by a dc field applied across a pair of deflector plates in the deflection chamber. Both from the amount of deflection and also from the floating potential, the number of charges collected on the dust grains is calculated. As the gas pressure is changed, the plasma density and the electron temperature changes. Dust charge is then calculated at each value of pressure from the deflection and floating potential. It is found that the electron temperature has a profound effect in the accumulation of charge on dust grains.
From Nuclei to Dust Grains: How the AGB Machinery Works
NASA Astrophysics Data System (ADS)
Gobrecht, D.; Cristallo, S.; Piersanti, L.
2015-12-01
With their circumstellar envelopes AGB stars are marvelous laboratories to test our knowledge of microphysics (opacities, equation of state), macrophysics (convection, rotation, stellar pulsations, magnetic fields) and nucleosynthesis (nuclear burnings, slow neutron capture processes, molecules and dust formation). Due to the completely different environments those processes occur, the interplay between stellar interiors (dominated by mixing events like convection and dredge-up episodes) and stellar winds (characterized by dust formation and wind acceleration) is often ignored. We intend to develop a new approach involving a transition region, taking into consideration hydrodynamic processes which may drive AGB mass-loss. Our aim is to describe the process triggering the mass-loss in AGB stars with different masses, metallicities and chemical enrichments, possibly deriving a velocity field of the outflowing matter. Moreover, we intend to construct an homogeneous theoretical database containing detailed abundances of atomic and molecular species produced by these objects. As a long term goal, we will derive dust production rates for silicates, alumina and silicon carbides, in order to explain laboratory measurements of isotopic ratios in AGB dust grains.
Charging and shielding of a non-spherical dust grain in a plasma
NASA Astrophysics Data System (ADS)
Zhao, L.; Delzanno, G.
2013-12-01
The interaction of objects with a plasma is a classic problem of plasma physics. Originally, it was investigated in the framework of probe theory but more recently its interest has grown in connection with space and complex or dusty plasmas. It is customary to assume that the dust grains are spherical, and theories such as the Orbital Motion Limited (OML) theory are usually applied to calculate the dust charge. However, in nature dust grains have a variety of sizes and shapes. It is therefore natural to ask about the influence of the dust shape on the charging and shielding process. In order to answer this question, we study the charging and shielding of a non-spherical dust grain immersed in a Maxwellian plasma at rest. We consider prolate ellipsoids, varying parametrically the aspect ratio while keeping the surface area constant. The study is conducted with CPIC [1], a newly developed Particle-In-Cell code in curvilinear geometry that conforms to objects of arbitrary shape. For a plasma with temperature ratio equal to unity and for a dust grain with characteristic size of the order of the Debye length, it is shown that the floating potential has a very weak dependence on the geometry, while the charge on the grain increases by a factor of three when the aspect ratio changes from one (a sphere) to hundred (a needle-like ellipsoid). These results are consistent with the higher capacitance of ellipsoidal dust grains, but also indicate that the screening length depends on the geometry. Scaling studies of the dependence of the charging time and screening length on the aspect ratio and plasma conditions are presented, including theoretical considerations to support the numerical results. [1] G.L. Delzanno, et al, ';CPIC: a curvilinear Particle-In-Cell code for plasma-material interaction studies', under review.
Gas-grain energy transfer in solar nebula shock waves: Implications for the origin of chondrules
NASA Technical Reports Server (NTRS)
Hood, L. L.; Horanyi, M.
1993-01-01
Meteoritic chondrules provide evidence for the occurrence of rapid transient heating events in the protoplanetary nebula. Astronomical evidence suggests that gas dynamic shock waves are likely to be excited in protostellar accretion disks by processes such as protosolar mass ejections, nonaxisymmetric structures in an evolving disk, and impact on the nebula surface of infalling 'clumps' of circumstellar gas. Previous detailed calculations of gas-grain energy and momentum transfer have supported the possibility that such shock waves could have melted pre-existing chondrule-sized grains. The main requirement for grains to reach melting temperatures in shock waves with plausibly low Mach numbers is that grains existed in dust-rich zones (optical depth greater than 1) where radiative cooling of a given grain can be nearly balanced by radiation from surrounding grains. Localized dust-rich zones also provide a means of explaining the apparent small spatial scale of heating events. For example, the scale size of at least some optically thick dust-rich zones must have been relatively small (less than 10 kilometers) to be consistent with petrologic evidence for accretion of hot material onto cold chondrules. The implied number density of mm-sized grains for these zones would be greater than 30 m(exp -3). In this paper, we make several improvements of our earlier calculations to include radiation self-consistently in the shock jump conditions, and we include heating of grains due to radiation from the shocked gas. In addition, we estimate the importance of momentum feedback of dust concentrations onto the shocked gas which would tend to reduce the efficiency of gas dynamic heating of grains in the center of the dust cloud.
NASA Technical Reports Server (NTRS)
Temim, Tea; Dwek, Eli
2013-01-01
Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in external galaxies.
Dust trap formation in a non-self-sustained discharge with external gas ionization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippov, A. V., E-mail: fav@triniti.ru; Babichev, V. N.; Pal’, A. F.
2015-11-15
Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. Themore » interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.« less
Laboratory Experiments on the Low-temperature Formation of Carbonaceous Grains in the ISM
NASA Astrophysics Data System (ADS)
Fulvio, Daniele; Góbi, Sándor; Jäger, Cornelia; Kereszturi, Ákos; Henning, Thomas
2017-11-01
The life cycle of cosmic dust grains is far from being understood and the origin and evolution of interstellar medium (ISM) grains is still under debate. In the ISM, the cosmic dust destruction rate is faster than the production rate by stellar sources. However, observations of ISM refractory matter suggest that to maintain a steady amount of cosmic grains, some supplementary production mechanism takes place. In this context, we aimed to study possible reformation mechanisms of cosmic grains taking place at low temperature directly in the ISM. The low-temperature condensation of carbonaceous materials has been investigated in experiments mimicking the ISM conditions. Gas-phase carbonaceous precursors created by laser ablation of graphite were forced to accrete on cold substrates (T ≈ 10 K) representing surviving dust grains. The growing and evolution of the condensing carbonaceous precursors have been monitored by MIR and UV spectroscopy under a number of experimental scenarios. For the first time, the possibility to form ISM carbonaceous grains in situ is demonstrated. The condensation process is governed by carbon chains that first condense into small carbon clusters and finally into more stable carbonaceous materials, of which structural characteristics are comparable to the material formed in gas-phase condensation experiments at very high temperature. We also show that the so-formed fullerene-like carbonaceous material is transformed into a more ordered material under VUV processing. The cold condensation mechanisms discussed here can give fundamental clues to fully understand the balance between the timescale for dust injection, destruction, and reformation in the ISM.
Size distribution of dust grains: A problem of self-similarity
NASA Technical Reports Server (NTRS)
Henning, TH.; Dorschner, J.; Guertler, J.
1989-01-01
Distribution functions describing the results of natural processes frequently show the shape of power laws, e.g., mass functions of stars and molecular clouds, velocity spectrum of turbulence, size distributions of asteroids, micrometeorites and also interstellar dust grains. It is an open question whether this behavior is a result simply coming about by the chosen mathematical representation of the observational data or reflects a deep-seated principle of nature. The authors suppose the latter being the case. Using a dust model consisting of silicate and graphite grains Mathis et al. (1977) showed that the interstellar extinction curve can be represented by taking a grain radii distribution of power law type n(a) varies as a(exp -p) with 3.3 less than or equal to p less than or equal to 3.6 (example 1) as a basis. A different approach to understanding power laws like that in example 1 becomes possible by the theory of self-similar processes (scale invariance). The beta model of turbulence (Frisch et al., 1978) leads in an elementary way to the concept of the self-similarity dimension D, a special case of Mandelbrot's (1977) fractal dimension. In the frame of this beta model, it is supposed that on each stage of a cascade the system decays to N clumps and that only the portion beta N remains active further on. An important feature of this model is that the active eddies become less and less space-filling. In the following, the authors assume that grain-grain collisions are such a scale-invarient process and that the remaining grains are the inactive (frozen) clumps of the cascade. In this way, a size distribution n(a) da varies as a(exp -(D+1))da (example 2) results. It seems to be highly probable that the power law character of the size distribution of interstellar dust grains is the result of a self-similarity process. We can, however, not exclude that the process leading to the interstellar grain size distribution is not fragmentation at all. It could be, e.g., diffusion-limited growth discussed by Sander (1986), who applied the theory of fractal geometry to the classification of non-equilibrium growth processes. He received D=2.4 for diffusion-limited aggregation in 3d-space.
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, Natasha M.
2012-01-01
More than 95% of silicate minerals and other oxides found in meteorites were melted, or vaporized and recondensed in the Solar Nebula prior to their incorporation into meteorite parent bodies. Gravitational accretion energy and heating via radioactive decay further transformed oxide minerals accreted into planetesimals. In such an oxygen-rich environment the carbonaceous dust that fell into the nebula as an intimate mixture with oxide grains should have been almost completely converted to CO. While some pre-collapse, molecular-cloud carbonaceous dust does survive, much in the same manner as do pre-solar oxide grains, such materials constitute only a few percent of meteoritic carbon and are clearly distinguished by elevated D/H, N-15/N-16, C-13/C-12 ratios or noble gas patterns. Carbonaceous Dust in Meteorites: We argue that nearly all of the carbon in meteorites was synthesized in the Solar Nebula from CO and that this CO was generated by the reaction of carbonaceous dust with solid oxides, water or OH. It is probable that some fraction of carbonaceous dust that is newly synthesized in the Solar Nebula is also converted back into CO by additional thermal processing. CO processing might occur on grains in the outer nebula through irradiation of CO-containing ice coatings or in the inner nebula via Fischer-Tropsch type (FTT) reactions on grain surfaces. Large-scale transport of both gaseous reaction products and dust from the inner nebula out to regions where comets formed would spread newly formed carbonaceous materials throughout the solar nebula. Formation of Organic Carbon: Carbon dust in the ISM might easily be described as inorganic graphite or amorphous carbon, with relatively low structural abundances of H, N, O and S . Products of FTT reactions or organics produced via irradiation of icy grains contain abundant aromatic and aliphatic hydrocarbons. aldehydes, keytones, acids, amines and amides.. The net result of the massive nebular carbon cycle is to convert relatively inert carbonaceous dust from the ISM into the vital organic precursors to life such as amino acids and sugars intimately mixed with dust and ice in primitive planetesimals. Since the number of carbon atoms entering the Solar Nebula as dust exceeds the number of atoms entering the nebula as oxide grains. the formation of large quantities of complex organic molecules may represent the largest single chemical cycle in the nebula.
Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Dutkiewicz, Jacek
2007-01-01
During combine harvesting of 5 various cereal crops (rye, barley, oats, buckwheat, corn) 24 samples of grain and 24 samples of settled grain dust were collected on farms located in the Lublin province of eastern Poland. The samples were examined for the concentration of total microfungi, Fusarium species, deoxynivalenol (DON), nivalenol (NIV), and ochratoxin A (OTA). Microfungi able to grow on malt agar were present in 79.2% of grain samples and in 91.7% of grain dust samples in the concentrations of 1.0-801.3x10(3) cfu/g and 1.5-12440.0x10(3) cfu/g, respectively. The concentration of microfungi in grain dust samples was significantly greater than in grain samples (p<0.01). Fusarium strains were isolated from 54.2% of grain samples and from 58.3% of grain dust samples in the concentrations of 0.1-375.0x10(3) cfu/g and 4.0-7,700.0x10(3) cfu/g, respectively. They were found in all samples of grain and grain dust from rye, barley and corn, but only in 0-16.7% of samples of grain and grain dust from oats and buckwheat. DON was found in 79.2% of grain samples and in 100% of grain dust samples in the concentrations of 0.001-0.18 microg/g and 0.006-0.283 microg/g, respectively. NIV was detected in 62.5% of grain samples and in 94.4% of grain dust samples in the concentrations of 0.004-0.502 microg/g and 0.005-0.339 microg/g, respectively. OTA was detected in 58.3% of grain samples and in 91.7% of grain dust samples in the concentrations of 0.00039- 0.00195 microg/g and 0.00036-0.00285 microg/g, respectively. The concentrations of DON, total fusariotoxins (DON+NIV) and OTA were significantly greater in grain dust samples than in grain samples (p<0.05, p<0.05, and p<0.001, respectively). The concentration of Fusarium poae in the samples of rye grain and dust was significantly correlated with the concentrations of DON (p<0.05), NIV (p<0.01), and total fusariotoxins (p<0.05). Similarly, the concentration of Fusarium culmorum in the samples of barley grain and dust was significantly correlated with the concentration of total fusariotoxins (p<0.05). A significant correlation was also found between the concentration of total fungi grown on malt agar and the concentration of OTA (p<0.05). In conclusion, although the concentration of DON, NIV and OTA in the samples of grain dust collected from 5 various cereals on farms in eastern Poland was not large, the persistent presence of these mycotoxins in over 90% of examined samples poses a potential health risk of chronic respiratory intoxication for exposed grain farmers.
Ishii, Hope A; Bradley, John P; Bechtel, Hans A; Brownlee, Donald E; Bustillo, Karen C; Ciston, James; Cuzzi, Jeffrey N; Floss, Christine; Joswiak, David J
2018-06-26
The solar system formed from interstellar dust and gas in a molecular cloud. Astronomical observations show that typical interstellar dust consists of amorphous ( a -) silicate and organic carbon. Bona fide physical samples for laboratory studies would yield unprecedented insight about solar system formation, but they were largely destroyed. The most likely repositories of surviving presolar dust are the least altered extraterrestrial materials, interplanetary dust particles (IDPs) with probable cometary origins. Cometary IDPs contain abundant submicron a- silicate grains called GEMS (glass with embedded metal and sulfides), believed to be carbon-free. Some have detectable isotopically anomalous a- silicate components from other stars, proving they are preserved dust inherited from the interstellar medium. However, it is debated whether the majority of GEMS predate the solar system or formed in the solar nebula by condensation of high-temperature (>1,300 K) gas. Here, we map IDP compositions with single nanometer-scale resolution and find that GEMS contain organic carbon. Mapping reveals two generations of grain aggregation, the key process in growth from dust grains to planetesimals, mediated by carbon. GEMS grains, some with a- silicate subgrains mantled by organic carbon, comprise the earliest generation of aggregates. These aggregates (and other grains) are encapsulated in lower-density organic carbon matrix, indicating a second generation of aggregation. Since this organic carbon thermally decomposes above ∼450 K, GEMS cannot have accreted in the hot solar nebula, and formed, instead, in the cold presolar molecular cloud and/or outer protoplanetary disk. We suggest that GEMS are consistent with surviving interstellar dust, condensed in situ, and cycled through multiple molecular clouds. Copyright © 2018 the Author(s). Published by PNAS.
Surface chemistry in photodissociation regions
NASA Astrophysics Data System (ADS)
Esplugues, G. B.; Cazaux, S.; Meijerink, R.; Spaans, M.; Caselli, P.
2016-06-01
Context. The presence of dust can strongly affect the chemical composition of the interstellar medium. We model the chemistry in photodissociation regions (PDRs) using both gas-phase and dust-phase chemical reactions. Aims: Our aim is to determine the chemical compositions of the interstellar medium (gas/dust/ice) in regions with distinct (molecular) gas densities that are exposed to radiation fields with different intensities. Methods: We have significantly improved the Meijerink PDR code by including 3050 new gas-phase chemical reactions and also by implementing surface chemistry. In particular, we have included 117 chemical reactions occurring on grain surfaces covering different processes, such as adsorption, thermal desorption, chemical desorption, two-body reactions, photo processes, and cosmic-ray processes on dust grains. Results: We obtain abundances for different gas and solid species as a function of visual extinction, depending on the density and radiation field. We also analyse the rates of the formation of CO2 and H2O ices in different environments. In addition, we study how chemistry is affected by the presence/absence of ice mantles (bare dust or icy dust) and the impact of considering different desorption probabilities. Conclusions: The type of substrate (bare dust or icy dust) and the probability of desorption can significantly alter the chemistry occurring on grain surfaces, leading to differences of several orders of magnitude in the abundances of gas-phase species, such as CO, H2CO, and CH3OH. The type of substrate, together with the density and intensity of the radiation field, also determine the threshold extinction to form ices of CO2 and H2O. We also conclude that H2CO and CH3OH are mainly released into the gas phase of low, far-ultraviolet illuminated PDRs through chemical desorption upon two-body surface reactions, rather than through photodesorption.
Is the Electron Avalanche Process in a Martian Dust Devil Self-Quenching?
NASA Technical Reports Server (NTRS)
Farrell, William M.; McLain, Jason L.; Collier, M. R.; Keller, J. W.; Jackson, T. J.; Delory, G. T.
2015-01-01
Viking era laboratory experiments show that mixing tribocharged grains in a low pressure CO2 gas can form a discharge that glows, indicating the presence of an excited electron population that persists over many seconds. Based on these early experiments, it has been predicted that martian dust devils and storms may also contain a plasma and new plasma chemical species as a result of dust grain tribo-charging. However, recent results from modeling suggest a contrasting result: that a sustained electron discharge may not be easily established since the increase in gas conductivity would act to short-out the local E-fields and quickly dissipate the charged grains driving the process. In essence, the system was thought to be self-quenching (i.e., turn itself off). In this work, we attempt to reconcile the difference between observation and model via new laboratory measurements. We conclude that in a Mars-like low pressure CO2 atmosphere and expected E-fields, the electron current remains (for the most part) below the expected driving tribo-electric dust currents (approx. 10 microA/m(exp. 2)), thereby making quenching unlikely.
NASA Astrophysics Data System (ADS)
Nozawa, Takaya; Kozasa, Takashi; Habe, Asao; Dwek, Eli; Umeda, Hideyuki; Tominaga, Nozomu; Maeda, Keiichi; Nomoto, Ken'ichi
2008-05-01
The calculations for the evolution of dust within Population III supernova remnants (SNRs) are presented, based on the models of dust formed in the unmixed ejecta of Type II SNe. We show that once dust grains collide with the reverse shock penetrating into the ejecta, their fates strongly depend on the initial radius aini. For SNRs expanding into the interstellar medium (ISM) with nH,0 = 1 cm-3, grains of aini<0.05 μm are trapped in the hot gas to be completely destroyed; grains of aini = 0.05-0.2 μm are piled up in the dense shell formed behind the forward shock; grains of aini>0.2 μm are injected into the ISM without being eroded significantly. The total mass of surviving dust is 0.01 to 0.8 Msolar for nH,0 = 10 to 0.1 cm-3. We also investigate the influence of the piled-up dust on the elemental abundances of the second-generation stars formed in the dense shell of Population III SNRs. The comparison of the calculated elemental abundances with those observed in hyper-metal-poor (HMP) and ultra-metal-poor (UMP) stars indicates that the transport of dust separated from metal-rich gas can be an important process in determining the abundance patterns of Mg and Si in HMP and UMP stars.
Carbohydrate and protein contents of grain dusts in relation to dust morphology.
Dashek, W V; Olenchock, S A; Mayfield, J E; Wirtz, G H; Wolz, D E; Young, C A
1986-01-01
Grain dusts contain a variety of materials which are potentially hazardous to the health of workers in the grain industry. Because the characterization of grain dusts is incomplete, we are defining the botanical, chemical, and microbial contents of several grain dusts collected from grain elevators in the Duluth-Superior regions of the U.S. Here, we report certain of the carbohydrate and protein contents of dusts in relation to dust morphology. Examination of the gross morphologies of the dusts revealed that, except for corn, each dust contained either husk or pericarp (seed coat in the case of flax) fragments in addition to respirable particles. When viewed with the light microscope, the fragments appeared as elongated, pointed structures. The possibility that certain of the fragments within corn, settled, and spring wheat were derived from cell walls was suggested by the detection of pentoses following colorimetric assay of neutralized 2 N trifluoroacetic acid hydrolyzates of these dusts. The presence of pentoses together with the occurrence of proteins within water washings of grain dusts suggests that glycoproteins may be present within the dusts. With scanning electron microscopy, each dust was found to consist of a distinct assortment of particles in addition to respirable particles. Small husk fragments and "trichome-like" objects were common to all but corn dust. Images FIGURE 4. FIGURE 5. PMID:3709476
NASA Technical Reports Server (NTRS)
Salama, F.; Biennier, L.
2004-01-01
The study of the formation and destruction processes of cosmic dust is essential to understand and to quantify the budget of extraterrestrial organic molecules. interstellar dust presents a continuous size distribution from large molecules, radicals and ions to nanometer-sized particles to micron-sized grains. The lower end of the dust size distribution is thought to be responsible for the ubiquitous spectral features that are seen in emission in the IR (UIBs) and in absorption in the visible (DIBs). The higher end of the dust-size distribution is thought to be responsible for the continuum emission plateau that is seen in the IR and for the strong absorption seen in the interstellar UV extinction curve. All these spectral signatures are characteristic of cosmic organic materials that are ubiquitous and present in various forms from gas-phase molecules to solid-state grains. Although dust with all its components plays an important role in the evolution of interstellar chemistry and in the formation of organic molecules, little is known on the formation and destruction processes of dust. Recent space observations in the UV (HST) and in the IR (ISO) help place size constraints on the molecular component of carbonaceous IS dust and indicate that small (ie., subnanometer) PAHs cannot contribute significantly to the IS features in the UV and in the IR. Studies of large molecular and nano-sized IS dust analogs formed from PAH precursors have been performed in our laboratory under conditions that simulate diffuse ISM environments (the particles are cold -100 K vibrational energy, isolated in the gas phase and exposed to a high-energy discharge environment in a cold plasma). The species (molecules, molecular fragments, ions, nanoparticles, etc) formed in the pulsed discharge nozzle (PDN) plasma source are detected with a high-sensitivity cavity ring-down spectrometer (CRDS). We will present new experimental results that indicate that nanoparticles are generated in the plasma. From these unique measurements, we derive information on the nature, the size and the structure of interstellar dust particles, the growth and the destruction processes of IS dust and the resulting budget of extraterrestrial organic molecules.
[The status of the body protective systems in children in atmospheric pollution by grain dust].
Mukhambetova, L Kh; Petrova, I V; Pinigin, M A; Leshchenko, G M; Shekhter, O V; Safiulin, A A; Astakhova, L F
1998-01-01
The use of noninvasive methods has revealed changes in the detoxification and immune systems in children exposed to grain dust-polluted ambient air. Impaired detoxification and immunity may be considered to be a manifestation of the common pathological mechanism responsible for reduced resistance to adverse factors and they lead to the increased risk of nonspecific infectious processes and allergy in the population.
IONIZATION AND DUST CHARGING IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivlev, A. V.; Caselli, P.; Akimkin, V. V., E-mail: ivlev@mpe.mpg.de
2016-12-10
Ionization–recombination balance in dense interstellar and circumstellar environments is a key factor for a variety of important physical processes, such as chemical reactions, dust charging and coagulation, coupling of the gas with magnetic field, and development of instabilities in protoplanetary disks. We determine a critical gas density above which the recombination of electrons and ions on the grain surface dominates over the gas-phase recombination. For this regime, we present a self-consistent analytical model, which allows us to calculate exactly the abundances of charged species in dusty gas, without making assumptions on the grain charge distribution. To demonstrate the importance ofmore » the proposed approach, we check whether the conventional approximation of low grain charges is valid for typical protoplanetary disks, and discuss the implications for dust coagulation and development of the “dead zone” in the disk. The presented model is applicable for arbitrary grain-size distributions and, for given dust properties and conditions of the disk, has only one free parameter—the effective mass of the ions, shown to have a small effect on the results. The model can be easily included in numerical simulations following the dust evolution in dense molecular clouds and protoplanetary disks.« less
Planetesimal formation by sweep-up coagulation
NASA Astrophysics Data System (ADS)
Windmark, Fredrik; Birnstiel, Til; Ormel, Chris W.; Dullemond, Cornelis P.
2013-07-01
The formation of planetesimals is often accredited to collisional sticking of dust grains in the protoplanetary disk. The exact process is however unknown, as collisions between larger aggregates tend to lead to fragmentation or bouncing rather than sticking. These growth barriers tend to halt the dust growth already at millimeters or centimeters in size, which is far below the kilometer-sizes that are needed for gravity to aid in the accretion. To study how far dust coagulation can proceed, we have developed a new collision model based on the latest laboratory experiments, and have used it together with a dust-size evolution code capable of resolving all grain interactions in the protoplanetary disk. We find that for the general dust population, bouncing and fragmenting collisions prevent the growth above millimeter-sizes. However, a small number of lucky particles can grow larger than the rest by only interacting at low, sticky velocities. As they grow, they become increasingly resilient to fragmentation caused by the small grains. In this way, two populations are formed: One which remains small due to the collisional barriers, and one that continues to grow by sweeping up the smaller grains around them.
The role of endotoxin in grain dust exposure and airway obstruction.
Von Essen, S
1997-05-01
Grain dust exposure is a common cause of respiratory symptoms in grain workers, feed mill employees, and farmers. Many of these workers develop wheezing and acute and chronic bronchitis symptoms, which can be associated with obstructive changes on pulmonary function testing. It has recently been demonstrated that grain dust exposure causes neutrophilic airways inflammation and systemic symptoms related to release of interleukin-1, tumor necrosis factor, interleukin-6, and other mediators of inflammation. Although grain dust is a heterogenous substance, endotoxin has received the greatest amount of attention as a possible cause of the airway inflammation that occurs after grain dust exposure. Although endotoxin undoubtedly causes a portion of the changes seen after grain dust exposure, it is becoming clear that other substances play a role as well.
Effects of grain dust on lungs prior to and following dust remediation.
Pahwa, Punam; Dosman, James A; McDuffie, Helen H
2008-12-01
To determine longitudinal estimates of pulmonary function decline in Canadian grain elevator workers before and after dust control by analyzing data collected from five regions of Canada over 15 years. Declines in forced expired volume in one second and forced vital capacity before and after dust control were estimated by using a generalized estimating equations approach. For grain workers who were in the grain industry for 20 or more years both before and after dust control: the mean annual loss of forced expired volume in one second was greatest among current smoking grain workers followed by ex-smokers and nonsmokers, respectively. Similar results were obtained for forced vital capacity. Grain dust control was effective in reducing decline in the lung function measurements among grain workers in all smoking and exposure categories.
Beyond Orbital-Motion-Limited theory effects for dust transport in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delzanno, Gian Luca; Tang, Xianzhu
Dust transport in tokamaks is very important for ITER. Can many kilograms of dust really accumulate in the device? Can the dust survive? The conventional dust transport model is based on Orbital-Motion-Limited theory (OML). But OML can break in the limit where the dust grain becomes positively charged due to electron emission processes because it overestimates the dust collected power. An OML + approximation of the emitted electrons trapped/passing boundary is shown to be in good agreement with PIC simulations.
Photoemission of Single Dust Grains for Heliospheric Conditions
NASA Technical Reports Server (NTRS)
Spann, James F., Jr.; Venturini, Catherine C.; Abbas, Mian M.; Comfort, Richard H.
2000-01-01
Initial results of an experiment to measure the photoemission of single dust grains as a function of far ultraviolet wavelengths are presented. Coulombic forces dominate the interaction of the dust grains in the heliosphere. Knowledge of the charge state of dust grains, whether in a dusty plasma (Debye length < intergrain distance) or in the diffuse interplanetary region, is key to understanding their interaction with the solar wind and other solar system constituents. The charge state of heliospheric grains is primarily determined by primary electron and ion collisions, secondary electron emission and photoemission due to ultraviolet sunlight. We have established a unique experimental technique to measure the photoemission of individual micron-sized dust grains in vacuum. This technique resolves difficulties associated with statistical measurements of dust grain ensembles and non-static dust beams. The photoemission yield of Aluminum Oxide 3-micron grains For wavelengths from 120-300 nm with a spectral resolution of 1 nm FWHM is reported. Results are compared to interplanetary conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaham, B.; Faculté des Sciences et des Sciences Appliquées, Université de Bouira Rue Drissi Yahia 10000 Bouira; Tahraoui, A., E-mail: alatif-tahraoui@yahoo.fr
The loss of electrons and ions due to their attachment to a Gauss-distributed sizes of dust grains present in electrostatic sheaths of discharge plasmas is investigated. A uni-dimensional, unmagnetized, and stationary multi-fluid model is proposed. Forces acting on the dust grain along with its charge are self-consistently calculated, within the limits of the orbit motion limited model. The dynamic analysis of dust grains shows that the contribution of the neutral drag force in the net force acting on the dust grain is negligible, whereas the contribution of the gravity force is found considerable only for micrometer particles. The dust grainsmore » trapping is only possible when the electrostatic force is balanced by the ion drag and the gravity forces. This trapping occurs for a limited radius interval of micrometer dust grains, which is around the most probable dust grain radius. The effect of electron temperature and ion density at the sheath edge is also discussed. It is shown that the attachment of particles reduces considerably the sheath thickness and induces dust grain deceleration. The increase of the lower limit as well as the upper limit of the dust radius reduces also the sheath thickness.« less
Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Skórska, Czesława; Góra-Florek, Anna; Milanowski, Janusz
2016-01-01
Pantoea agglomerans, a Gram-negative bacterium developing in a variety of plants as epiphyte or endophyte is particularly common in grain and grain dust, and has been identified by an interdisciplinary group from Lublin, eastern Poland, as a causative agent of work-related diseases associated with exposure to grain dust and other agricultural dusts. The concentration of P. agglomerans in grain as well as in the settled grain and flour dust was found to be high, ranging from 10(4)-10(8) CFU/g, while in the air polluted with grain or flour dust it ranged from 10(3)-10(5) CFU/m(3) and formed 73.2-96% of the total airborne Gram-negative bacteria. The concentration of P. agglomerans was also relatively high in the air of the facilities processing herbs and other plant materials, while it was lower in animal farms and in wood processing facilities. Pantoea agglomerans produces a biologically-potent endotoxin (cell wall lipopolysaccharide, LPS). The significant part of this endotoxin occurs in dusts in the form of virus-sized globular nanoparticles measuring 10-50 nm that could be described as the 'endotoxin super-macromolecules'. A highly significant relationship was found (R=0.804, P=0.000927) between the concentration of the viable P. agglomerans in the air of various agricultural and wood industry settings and the concentration of bacterial endotoxin in the air, as assessed by the Limulus test. Although this result may be interfered by the presence of endotoxin produced by other Gram-negative species, it unequivocally suggests the primary role of the P. agglomerans endotoxin as an adverse agent in the agricultural working environment, causing toxic pneumonitis (ODTS). Numerous experiments by the inhalation exposure of animals to various extracts of P. agglomerans strains isolated from grain dust, including endotoxin isolated with trichloroacetic acid (LPS-TCA), endotoxin nanoparticles isolated in sucrose gradient (VECN), and mixture of proteins and endotoxin obtained by extraction of bacterial mass in saline (CA-S), showed the ability of these extracts to evoke inflammatory and fibrotic changes in the lungs, to stimulate alveolar macrophages to produce superoxide anion (O2(-)), interleukin-1 (IL-1) and chemotactic factors for other macrophages and neutrophils, and to increase the pulmonary concentrations of toll-like receptors and chemokines. The most potent properties showed the CA-S which may be attributed to the allergenic properties of P. agglomerans proteins enhanced by the presence of the autologous endotoxin. The results of these experiments are in accord with the clinical studies which revealed a high reactivity of the agricultural and grain industry workers to allergenic extracts of P. agglomerans, and the presence in these populations of hypersensitivity pneumonitis and asthma cases caused by this bacterium. P. agglomerans has been also identified as a potential causative agent of allergic dermatitis in farmers and of allergic pulmonary disorders in cattle. In conclusion, similar to the cotton industry, also in the grain industry and in agriculture, Pantoea agglomerans should be regarded as one of the major causative agents of work-related diseases, caused by the adverse effects of protein allergens and endotoxin produced by this bacterium.
A bimodal dust grain distribution in the IC 434 H ii region
NASA Astrophysics Data System (ADS)
Ochsendorf, B. B.; Tielens, A. G. G. M.
2015-04-01
Context. Studies of dust evolution and processing in different phases of the interstellar medium (ISM) is essential to understanding the lifecycle of dust in space. Recent results have challenged the capabilities and validity of current dust models, indicating that the properties of interstellar dust evolve as it transits between different phases of the ISM. Aims: We characterize the dust content from the IC 434 H ii region, and present a scenario that results in the large-scale structure of the region seen to date. Methods: We conduct a multi-wavelength study of the dust emission from the ionized gas, and combine this with modeling, from large scales that provide insight into the history of the IC 434/L1630 region, to small scales that allow us to infer quantitative properties of the dust content inside the H ii region. Results: The dust enters the H ii region through momentum transfer with a champagne flow of ionized gas, set up by a chance encounter between the L1630 molecular cloud and the star cluster of σ Ori. We observe two clearly separated dust populations inside the ionized gas, that show different observational properties, as well as contrasting optical properties. Population A is colder (~25 K) than predicted by widely-used dust models, its temperature is insensitive to an increase of the impinging radiation field, it is momentum-coupled to the gas, and efficiently absorbs radiation pressure to form a dust wave at 1.0 pc ahead of σ Ori AB. Population B is characterized by a constant [20/30] flux ratio throughout the H ii region, heats up to ~75 K close to the star, and is less efficient in absorbing radiation pressure, forming a dust wave at 0.1 pc from the star. Conclusions: The dust inside IC 434 is bimodal. The characteristics of population A are remarkable and cannot be explained by current dust models. We argue that large porous grains or fluffy aggregates are potential candidates to explain much of the observational characteristics. Population B are grains that match the classical description of spherical, compact dust. The inferred optical properties are consistent with either very small grains, or large grains in thermal equilibrium with the radiation field. Our results confirm recent work that stress the importance of variations in the dust properties between different regions of the ISM.
On the theory of dynamics of dust grain in plasma
NASA Astrophysics Data System (ADS)
Stepanenko, A. A.; Krasheninnikov, S. I.
2013-03-01
The dynamics of rotationally symmetric dust grains in plasma embedded in a magnetic field are of concern. The general expressions for forces and torques acting on dust are found. It is shown that dust spinning is determined by torques related to both the Lorentz force (dominant for relatively small grains) and the gyro-motion of plasma particles impinging the grain (which prevails for large grains). The stability of grain spinning is analyzed and it is shown that, for some cases (e.g., oblate spheroid), there is no stable dynamic equilibrium of grain spinning.
Grain growth in Class I protostar Per-emb-50: a dust continuum analysis with NOEMA & SMA .
NASA Astrophysics Data System (ADS)
Agurto-Gangas, C.; Pineda, J. E.; Testi, L.; Caselli, P.; Szucs, L.; Tazzari, M.; Dunham, M.; Stephens, I. W.; Miotello, A.
A good understanding of when dust grains grow from sub-micrometer to millimeter sizes occurs is crucial for models of planet formation. This provides the first step towards the production of pebbles and planetesimals in protoplanetary disks. Thanks to detailed studies of the spectral index in Class II disks, it is well established that Class II objects have already dust grains of millimetres sizes, however, it is not clear when in the star formation process this grain growth occurs. Here, we present interferometric data from NOEMA at 3 mm and SMA at 1.3 mm of the Class I protostar, Per-emb-50, to determine the flux density spectral index at mm-wavelengths of the unresolved disk and the surrounding envelope. We find a spectral index in the unresolved disk 30% smaller than the envelope, alpha env=2.18, comparable to values obtained toward Class 0 sources.
Laboratory Studies of Optical Characteristics and Condensation Processes of Cosmic Dust Particles
NASA Technical Reports Server (NTRS)
Spann, J. F., Jr.; Abbas, M. M.; Venturini, C. C.
2000-01-01
Information about the optical characteristics and physical processes involving cosmic dust particles is vital for interpretation of astronomical observations and an understanding of the formation and processing of dust in the evolutionary cycle of matter in the interstellar medium. Cosmic dust particles are formed in a variety of astrophysical environments such as in cool stellar outflows and circumstellar envelopes. Definitive knowledge of the nature, composition, and physical processes of cosmic dust grains, however, can only be inferred from astronomical observations through laboratory experiments on the analogs of hypothesized dust particles and with modeling calculations. Laboratory investigations of the nature, composition, and optical characteristics of cosmic dust particles are being, carried out at many institutions with a variety of experimental techniques. Despite a wealth of available data, however, many basic issues remain unresolved. An experimental facility based on suspension of dust particles in electrodynamic balance in a pressure/temperature controlled environment in a cavity has been operational at the NASA Marshall Space Flight Center, and is currently being employed for studies of dust particle charging mechanisms using electron beams and with UV radiation. In this paper, we discuss two general classes of experiments under planning stages that may be simultaneously carried out on this facility for cosmic dust investigations (i) Infrared optical characteristics (extinction coefficients and scattering phase functions) of the analogs of hypothesized of cosmic dust particles, such as natural and synthetic amorphous silicates with varying compositions, amorphous carbon grains, polycyclic aromatic hydrocarbons (PAHs), and icy core-mantle particles etc. The initial spectral range under consideration is 1-25 micrometers, to be extended to the far infrared region in the future (ii) Condensation of volatile gases on nucleus dust particles to be investigated for planetary and astrophysical environments.
A Massive Shell of Supernova-formed Dust in SNR G54.1+0.3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temim, Tea; Dwek, Eli; Arendt, Richard G.
While theoretical models of dust condensation predict that most refractory elements produced in core-collapse supernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed in SN 1987A. We present an analysis of observations from the Spitzer Space Telescope , Herschel Space Observatory , Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding the pulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 μ m to a magnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, whichmore » exhibits the same spectral signature. If this species is responsible for producing the observed spectral feature and accounts for a significant fraction of the observed infrared continuum, we find that it would be the dominant constituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such as carbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3 M {sub ⊙}. We discuss how these results may be affected by varying dust grain properties and self-consistent grain heating models. The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SN-formed dust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a cluster in which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 16–27 M {sub ⊙} and imply a high dust condensation efficiency, similar to that found for Cas A and SN 1987A. The study provides another example of significant dust formation in a Type IIP SN explosion and sheds light on the properties of pristine SN-condensed dust.« less
Langmuir wave phase-mixing in warm electron-positron-dusty plasmas
NASA Astrophysics Data System (ADS)
Pramanik, Sourav; Maity, Chandan
2018-04-01
An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.
Time Variability of the Dust Sublimation Zones in Pre-Main Sequence Disk Systems
NASA Technical Reports Server (NTRS)
Sitko, Michael L.; Carpenter, W. J.; Grady, C. A.; Russel, R. W.; Lynch, D. K.; Rudy, R. J.; Mazuk, S. M.; Venturini, C. C.; Kimes, R. L.; Beerman, L. C.;
2007-01-01
The dust sublimation zone (DSZ) is the region of pre-main sequence (PMS) disks where dust grains most easily anneal, sublime, and condense out of the gas. Because of this, it is a location where crystalline material may be enhanced and redistributed throughout the rest of the disk. A decade-long program to monitor the thermal emission of the grains located in this region demonstrates that large changes in emitted flux occur in many systems. Changes in the thermal emission between 3 and 13.5 microns were observed in HD 31648 (MWC 480), HD 163296 (MWC 275), and DG Tau. This emission is consistent with it being produced at the DSZ, where the transition from a disk of gas to one of gas+dust occurs. In the case of DG Tau, the outbursts were accompanied by increased emission on the 10 micron silicate band on one occasion, while on another occasion it went into absorption. This requires lofting of the material above the disk into the line of sight. Such changes will affect the determination of the inner disk structure obtained through interferometry measurements, and this has been confirmed in the case of HD 163296. Cyclic variations in the heating of the DSZ will lead to the annealing of large grains, the sublimation of smaller grains, possibly followed by re-condensation as the zone enters a cooling phase. Lofting of dust above the disk plane, and outward acceleration by stellar winds and radiation pressure, can re-distribute the processed material to cooler regions of the disk, where cometesimals form. This processing is consistent with the detection of the preferential concentration of large crystalline grains in the inner few AU of PMS disks using interferometric spectroscopy with the VLTI.
COMPUTING THE DUST DISTRIBUTION IN THE BOW SHOCK OF A FAST-MOVING, EVOLVED STAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Marle, A. J.; Meliani, Z.; Keppens, R.
2011-06-20
We study the hydrodynamical behavior occurring in the turbulent interaction zone of a fast-moving red supergiant star, where the circumstellar and interstellar material collide. In this wind-interstellar-medium collision, the familiar bow shock, contact discontinuity, and wind termination shock morphology form, with localized instability development. Our model includes a detailed treatment of dust grains in the stellar wind and takes into account the drag forces between dust and gas. The dust is treated as pressureless gas components binned per grain size, for which we use 10 representative grain size bins. Our simulations allow us to deduce how dust grains of varyingmore » sizes become distributed throughout the circumstellar medium. We show that smaller dust grains (radius <0.045 {mu}m) tend to be strongly bound to the gas and therefore follow the gas density distribution closely, with intricate fine structure due to essentially hydrodynamical instabilities at the wind-related contact discontinuity. Larger grains which are more resistant to drag forces are shown to have their own unique dust distribution, with progressive deviations from the gas morphology. Specifically, small dust grains stay entirely within the zone bound by shocked wind material. The large grains are capable of leaving the shocked wind layer and can penetrate into the shocked or even unshocked interstellar medium. Depending on how the number of dust grains varies with grain size, this should leave a clear imprint in infrared observations of bow shocks of red supergiants and other evolved stars.« less
The effect of the ambient plasma conditions on the variation of charge on dust grains
NASA Astrophysics Data System (ADS)
Chakraborty, M.; Kausik, S. S.; Saikia, B. K.; Kakati, M.; Bujarbarua, S.
2003-02-01
An experimental study has been performed into the variation of charge on dust grains with change in the ambient plasma conditons. A dust beam containing submicron sized silver grains was passed through plasma. The dust grains were charged by the plasma particles as well as by primary electrons from the filament. An increase in the filament current increased both the plasma density and the number density of the primary electrons. The grain charge was found out both from the deflection of the dust grains and also from the floating potential. The experimental observations shows that the secondary emission caused by the primary electrons significantly influenced and played a prominent role in the establishment of charge on the grains.
Acute symptoms following exposure to grain dust in farming.
Manfreda, J; Holford-Strevens, V; Cheang, M; Warren, C P
1986-01-01
History of acute symptoms (cough, wheezing, shortness of breath, fever, stuffy nose, and skin itching/rash) following exposure to grain dust was obtained from 661 male and 535 female current and former farmers. These symptoms were relatively common: 60% of male and 25% of female farmers reported at least one such symptom on exposure to grain dust. Association of cough, wheezing, shortness of breath, and stuffy nose with skin reactivity and capacity to form IgE is consistent with an allergic nature of these symptoms. Barley and oats dust were perceived as dust most often producing symptoms. On the other hand, grain fever showed a different pattern, i.e., it was not associated with either skin reactivity or total IgE. Smoking might modify the susceptibility to react to grain dust with symptoms. Only those who reported wheezing on exposure to grain dust may have an increased risk to develop chronic airflow obstruction. PMID:3709486
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro, E-mail: miyake.tomoya@e.mbox.nagoya-u.ac.jp, E-mail: stakeru@nagoya-u.jp
We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with sizemore » of 25–45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.« less
H2 formation via the UV photo-processing of a-C:H nano-particles
NASA Astrophysics Data System (ADS)
Jones, A. P.; Habart, E.
2015-09-01
Context. The photolysis of hydrogenated amorphous carbon, a-C(:H), dust by UV photon-irradiation in the laboratory leads to the release of H2 as well as other molecules and radicals. This same process is also likely to be important in the interstellar medium. Aims: We investigate molecule formation arising from the photo-dissociatively-driven, regenerative processing of a-C(:H) dust. Methods: We explore the mechanism of a-C(:H) grain photolysis leading to the formation of H2 and other molecules/radicals. Results: The rate constant for the photon-driven formation of H2 from a-C(:H) grains is estimated to be 2 × 10-17 cm3 s-1. In intense radiation fields photon-driven grain decomposition will lead to fragmentation into daughter species rather than H2 formation. Conclusions: The cyclic re-structuring of arophatic a-C(:H) nano-particles appears to be a viable route to formation of H2 for low to moderate radiation field intensities (1 ≲ G0 ≲ 102), even when the dust is warm (T ~ 50-100 K).
Formation and dissociation of dust molecules in dusty plasma
NASA Astrophysics Data System (ADS)
Yan, Jia; Feng, Fan; Liu, Fucheng; Dong, Lifang; He, Yafeng
2016-09-01
Dust molecules are observed in a dusty plasma experiment. By using measurements with high spatial resolution, the formation and dissociation of the dust molecules are studied. The ion cloud in the wake of an upper dust grain attracts the lower dust grain nearby. When the interparticle distance between the upper dust grain and the lower one is less than a critical value, the two dust grains would form a dust molecule. The upper dust grain always leads the lower one as they travel. When the interparticle distance between them is larger than the critical value, the dust molecule would dissociate. Project supported by the National Natural Science Foundation of China (Grant Nos. 11205044 and 11405042), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2011201006 and A2012201015), the Research Foundation of Education Bureau of Hebei Province, China (Grant No. Y2012009), the Program for Young Principal Investigators of Hebei Province, China, and the Midwest Universities Comprehensive Strength Promotion Project, China.
The effect of radiation pressure on spatial distribution of dust inside H II regions
NASA Astrophysics Data System (ADS)
Ishiki, Shohei; Okamoto, Takashi; Inoue, Akio K.
2018-02-01
We investigate the impact of radiation pressure on spatial dust distribution inside H II regions using one-dimensional radiation hydrodynamic simulations, which include absorption and re-emission of photons by dust. In order to investigate grain-size effects as well, we introduce two additional fluid components describing large and small dust grains in the simulations. Relative velocity between dust and gas strongly depends on the drag force. We include collisional drag force and coulomb drag force. We find that, in a compact H II region, a dust cavity region is formed by radiation pressure. Resulting dust cavity sizes (˜0.2 pc) agree with observational estimates reasonably well. Since dust inside an H II region is strongly charged, relative velocity between dust and gas is mainly determined by the coulomb drag force. Strength of the coulomb drag force is about 2 order of magnitude larger than that of the collisional drag force. In addition, in a cloud of mass 105 M⊙, we find that the radiation pressure changes the grain-size distribution inside H II regions. Since large (0.1 μm) dust grains are accelerated more efficiently than small (0.01 μm) grains, the large-to-small grain mass ratio becomes smaller by an order of magnitude compared with the initial one. Resulting dust-size distributions depend on the luminosity of the radiation source. The large and small grain segregation becomes weaker when we assume stronger radiation source, since dust grain charges become larger under stronger radiation and hence coulomb drag force becomes stronger.
Effect of stochastic grain heating on cold dense clouds chemistry
NASA Astrophysics Data System (ADS)
Chen, Long-Fei; Chang, Qiang; Xi, Hong-Wei
2018-06-01
The temperatures of dust grains play important roles in the chemical evolution of molecular clouds. Unlike large grains, the temperature fluctuations of small grains induced by photons may be significant. Therefore, if the grain size distribution is included in astrochemical models, the temperatures of small dust grains may not be assumed to be constant. We simulate a full gas-grain reaction network with a set of dust grain radii using the classical MRN grain size distribution and include the temperature fluctuations of small dust grains. Monte Carlo method is used to simulate the real-time dust grain's temperature fluctuations which is caused by the external low energy photons and the internal cosmic ray induced secondary photons. The increase of dust grains radii as ice mantles accumulate on grain surfaces is also included in our models. We found that surface CO2 abundances in models with grain size distribution and temperature fluctuations are more than one order of magnitude larger than those with single grain size. Small amounts of terrestrial complex organic molecules (COMs) can also be formed on small grains due to the temperature spikes induced by external low energy photons. However, cosmic ray induced secondary photons overheat small grains so that surface CO sublime and less radicals are formed on grains surfaces, thus the production of surface CO2 and COMs decreases by about one order of magnitude. The overheating of small grains can be offset by grain growth so that the formation of surface CO2 and COMs becomes more efficient.
Emission from small dust particles in diffuse and molecular cloud medium
NASA Technical Reports Server (NTRS)
Bernard, J. P.; Desert, X.
1990-01-01
Infrared Astronomy Satellite (IRAS) observations of the whole galaxy has shown that long wavelength emission (100 and 60 micron bands) can be explained by thermal emission from big grains (approx 0.1 micron) radiating at their equilibrium temperature when heated by the InterStellar Radiation Field (ISRF). This conclusion has been confirmed by continuum sub-millimeter observations of the galactic plane made by the EMILIE experiment at 870 microns (Pajot et al. 1986). Nevertheless, shorter wavelength observations like 12 and 25 micron IRAS bands, show an emission from the galactic plane in excess with the long wavelength measurements which can only be explained by a much hotter particles population. Because dust at equilibrium cannot easily reach high temperatures required to explain this excess, this component is thought to be composed of very small dust grains or big molecules encompassing thermal fluctuations. Researchers present here a numerical model that computes emission, from Near Infrared Radiation (NIR) to Sub-mm wavelengths, from a non-homogeneous spherical cloud heated by the ISRF. This model fully takes into account the heating of dust by multi-photon processes and back-heating of dust in the Visual/Infrared Radiation (VIS-IR) so that it is likely to describe correctly emission from molecular clouds up to large A sub v and emission from dust experiencing temperature fluctuations. The dust is a three component mixture of polycyclic aromatic hydrocarbons, very small grains, and classical big grains with independent size distributions (cut-off and power law index) and abundances.
Attraction of likely charged nano-sized grains in dust-electron plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishnyakov, Vladimir I., E-mail: eksvar@ukr.net
2016-01-15
Dust-electron plasma, which contains only the dust grains and electrons, emitted by them, is studied. Assumption of almost uniform spatial electrons distribution, which deviates from the uniformity only near the dust grains, leads to the grain charge division into two parts: first part is the individual for each grain “visible” charge and the second part is the common charge of the neutralized background. The visible grain charge can be both negative and positive, while the total grain charge is only positive. The attraction of likely charged grains is possible, because the grain interaction is determined by the visible charges. Themore » equilibrium state between attraction and repulsion of grains is demonstrated.« less
Multiyear Simulations of the Martian Water Cycle with the Ames General Circulation Model
NASA Technical Reports Server (NTRS)
Haberle, R. M.; Schaeffer, J. R.; Nelli, S. M.; Murphy, J. R.
2003-01-01
Mars atmosphere is carbon dioxide dominated with non-negligible amounts of water vapor and suspended dust particles. The atmospheric dust plays an important role in the heating and cooling of the planet through absorption and emission of radiation. Small dust particles can potentially be carried to great altitudes and affect the temperatures there. Water vapor condensing onto the dust grains can affect the radiative properties of both, as well as their vertical extent. The condensation of water onto a dust grain will change the grain s fall speed and diminish the possibility of dust obtaining high altitudes. In this capacity, water becomes a controlling agent with regard to the vertical distribution of dust. Similarly, the atmosphere s water vapor holding capacity is affected by the amount of dust in the atmosphere. Dust is an excellent green house catalyst; it raises the temperature of the atmosphere, and thus, its water vapor holding capacity. There is, therefore, a potentially significant interplay between the Martian dust and water cycles. Previous research done using global, 3-D computer modeling to better understand the Martian atmosphere treat the dust and the water cycles as two separate and independent processes. The existing Ames numerical model will be employed to simulate the relationship between the Martian dust and water cycles by actually coupling the two cycles. Water will condense onto the dust, allowing the particle's radiative characteristics, fall speeds, and as a result, their vertical distribution to change. Data obtained from the Viking, Mars Pathfinder, and especially the Mars Global Surveyor missions will be used to determine the accuracy of the model results.
NASA Technical Reports Server (NTRS)
Postberg, F.; Sterken, V.; Achilles, C.; Allen, C.; Bastien, R. K.; Frank, D.; Sandford, S. A.; Zolensky, M. E.; Butterworth, A.; Gainesforth, Z.
2014-01-01
The NASA Stardust mission used silica aerogel slabs to slowly decelerate and capture impinging cosmic dust particles for return to Earth. During this process, impact tracks are generated along the trajectory of the particle into the aerogel. It is believed that the morphology and dimensions of these tracks, together with the state of captured grains at track termini, may be linked to the size, velocity, and density of the impacting cosmic dust grain. Here, we present the results of laboratory hypervelocity impact experiments, during which cosmic dust analog particles (diameters of between 0.2 and 0.4 lm), composed of olivine, orthopyroxene, or an organic polymer, were accelerated onto Stardust flight spare low-density (approximately 0.01 g/cu cm) silica aerogel. The impact velocities (3-21 km/s) were chosen to simulate the range of velocities expected during Stardust's interstellar dust (ISD) collection phases. Track lengths and widths, together with the success of particle capture, are analyzed as functions of impact velocity and particle composition, density, and size. Captured terminal particles from low-density organic projectiles become undetectable at lower velocities than those from similarly sized, denser mineral particles, which are still detectable (although substantially altered by the impact process) at 15 km/s. The survival of these terminal particles, together with the track dimensions obtained during low impact speed capture of small grains in the laboratory, indicates that two of the three best Stardust candidate extraterrestrial grains were actually captured at speeds much lower than predicted. Track length and diameters are, in general, more sensitive to impact velocities than previously expected, which makes tracks of particles with diameters of 0.4 lm and below hard to identify at low capture speeds (<10 km/s). Therefore, although captured intact, the majority of the interstellar dust grains returned to Earth by Stardust remain to be found.
NASA Technical Reports Server (NTRS)
Messenger, S.; Walker, R. M.
2012-01-01
Interplanetary dust particles (IDPs) collected in the Earth s stratosphere contain high abundances of submicrometer amorphous silicates known as GEMS grains. From their birth as condensates in the outflows of oxygen-rich evolved stars, processing in interstellar space, and incorporation into disks around new stars, amorphous silicates predominate in most astrophysical environments. Amorphous silicates were a major building block of our Solar System and are prominent in infrared spectra of comets. Anhydrous interplanetary dust particles (IDPs) thought to derive from comets contain abundant amorphous silicates known as GEMS (glass with embedded metal and sulfides) grains. GEMS grains have been proposed to be isotopically and chemically homogenized interstellar amorphous silicate dust. We evaluated this hypothesis through coordinated chemical and isotopic analyses of GEMS grains in a suite of IDPs to constrain their origins. GEMS grains show order of magnitude variations in Mg, Fe, Ca, and S abundances. GEMS grains do not match the average element abundances inferred for ISM dust containing on average, too little Mg, Fe, and Ca, and too much S. GEMS grains have complementary compositions to the crystalline components in IDPs suggesting that they formed from the same reservoir. We did not observe any unequivocal microstructural or chemical evidence that GEMS grains experienced prolonged exposure to radiation. We identified four GEMS grains having O isotopic compositions that point to origins in red giant branch or asymptotic giant branch stars and supernovae. Based on their O isotopic compositions, we estimate that 1-6% of GEMS grains are surviving circumstellar grains. The remaining 94-99% of GEMS grains have O isotopic compositions that are indistinguishable from terrestrial materials and carbonaceous chondrites. These isotopically solar GEMS grains either formed in the Solar System or were completely homogenized in the interstellar medium (ISM). However, the chemical compositions of GEMS grains are extremely heterogeneous and seem to rule out this possibility. Based on their solar isotopic compositions and their non-solar elemental compositions we propose that most GEMS grains formed in the nebula as late-stage non-equilibrium condensates.
Exposure to grain dust and microbial components in the Norwegian grain and compound feed industry.
Halstensen, Anne Straumfors; Heldal, Kari Kulvik; Wouters, Inge M; Skogstad, Marit; Ellingsen, Dag G; Eduard, Wijnand
2013-11-01
The aim of this study was to extensively characterize grain workers' personal exposure during work in Norwegian grain elevators and compound feed mills, to identify differences in exposures between the workplaces and seasons, and to study the correlations between different microbial components. Samples of airborne dust (n = 166) were collected by full-shift personal sampling during work in 20 grain elevators and compound feed mills during one autumn season and two winter seasons. The personal exposure to grain dust, endotoxins, β-1→3-glucans, bacteria, and fungal spores was quantified. Correlations between dust and microbial components and differences between workplaces and seasons were investigated. Determinants of endotoxin and β-1→3-glucan exposure were evaluated by linear mixed-effect regression modeling. The workers were exposed to an overall geometric mean of 1.0mg m(-3) inhalable grain dust [geometric standard deviation (GSD) = 3.7], 628 endotoxin units m(-3) (GSD = 5.9), 7.4 µg m(-3) of β-1→3-glucan (GSD = 5.6), 21 × 10(4) bacteria m(-3) (GSD = 7.9) and 3.6 × 10(4) fungal spores m(-3) (GSD = 3.4). The grain dust exposure levels were similar across workplaces and seasons, but the microbial content of the grain dust varied substantially between workplaces. Exposure levels of all microbial components were significantly higher in grain elevators compared with all other workplaces. The grain dust exposure was significantly correlated (Pearson's r) with endotoxin (rp = 0.65), β-1→3-glucan (rp = 0.72), bacteria (rp = 0.44) and fungal spore (rp = 0.48) exposure, whereas the explained variances were strongly dependent on the workplace. Bacteria, grain dust, and workplace were important determinants for endotoxin exposure, whereas fungal spores, grain dust, and workplace were important determinants for β-1→3-glucan exposure. Although the workers were exposed to a relatively low mean dust level, the microbial exposure was high. Furthermore, the exposure levels of microbial components varied between workplaces although the dust levels were similar. We therefore recommend that exposure levels at different workplaces should be assessed separately and a task-based assessment should be done for detailed evaluation of efficient dust-reducing measures. The microbial content and knowledge of health effects of the microbial components should be considered in health risk evaluations of these workplaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankin, J.; Bates, J.; Claremont, A.
1986-10-01
A total of 310 grain handlers was studied, with attention to prevalence and characteristics of clinical, psychological, immunological, radiological, serological blood and urine parameters to determine any apparent effects from grain-dust exposure. Grain handlers had a higher prevalence of respiratory symptoms and signs than did the city workers who comprised the comparison group. Evidence of accumulative respiratory effect due to recurring exposures to grain dust was found. Acute and chronic airway reactions were induced by exposure to grain dust. Wheezing and dyspnea on exposure were related to length of employment. Grain fever syndrome was prevalent. Cases of acute recurrent conjunctivitismore » and rhinitis were found along with skin pruritus, mainly on exposure to barley dust. Pesticide exposure caused temporary disabling symptoms. Lung function was adversely affected by grain-dust exposure. Exposure to grain mites and insects in contaminated cereal grain caused a reaction among grain workers.« less
Measurements of Photoelectric Yield and Physical Properties of Individual Lunar Dust Grains
NASA Technical Reports Server (NTRS)
Abbas, M. M.; Tankosic, D.; Craven, P. D.; Spann, J. F.; LeClair, A.; West, F. A.; Taylor, L.; Hoover, R.
2005-01-01
Micron size dust grains levitated and transported on the lunar surface constitute a major problem for the robotic and human habitat missions for the Moon. It is well known since the Apollo missions that the lunar surface is covered with a thick layer of micron/sub-micron size dust grains. Transient dust clouds over the lunar horizon were observed by experiments during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and the levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics is believed to have a severe impact on the human habitat and the lifetime and operations of a variety of equipment, it is necessary to investigate the phenomena and the charging properties of the lunar dust in order to develop appropriate mitigating strategies. We will present results of some recent laboratory experiments on individual micro/sub-micron size dust grains levitated in electrodynamic balance in simulated space environments. The experiments involve photoelectric emission measurements of individual micron size lunar dust grains illuminated with UV radiation in the 120-160 nm wavelength range. The photoelectric yields are required to determine the charging properties of lunar dust illuminated by solar UV radiation. We will present some recent results of laboratory measurement of the photoelectric yields and the physical properties of individual micron size dust grains from the Apollo and Luna-24 sample returns as well as the JSC-1 lunar simulants.
Prevalence of IgE antibodies to grain and grain dust in grain elevator workers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, D.M.; Romeo, P.A.; Olenchock, S.A.
1986-04-01
IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allowmore » us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies.« less
Prevalence of IgE antibodies to grain and grain dust in grain elevator workers.
Lewis, D M; Romeo, P A; Olenchock, S A
1986-01-01
IgE-mediated allergic reactions have been postulated to contribute to respiratory reactions seen in workers exposed to grain dusts. In an attempt better to define the prevalence of IgE antibodies in workers exposed to grain dusts, we performed the radioallergosorbent test (RAST) on worker sera using both commercial allergens prepared from grain and worksite allergens prepared from grain dust samples collected at the worksite. We found that the two types of reagents identified different populations with respect to the specificity of IgE antibodies present. The RAST assay performed using worksite allergens correlated well with skin test procedures. These results may allow us to gain better understanding of allergy associated with grain dust exposure, and document the utility of the RAST assay in assessment of occupational allergies. PMID:3709478
Self-Consistent Simulation of the Brownian Stage of Dust Growth
NASA Technical Reports Server (NTRS)
Kempf, S.; Pfalzner, S.; Henning, Th.
1996-01-01
It is a widely accepted view that in proto-planetary accretion disks the collision and following sticking of dust particles embedded in the gas eventually leads to the formation of planetesimals (coagulation). For the smallest dust grains, Brownian motion is assumed to be the dominant source of their relative velocities leading to collisions between these dust grains. As the dust grains grow they eventually couple to the turbulent motion of the gas which then drives the coagulation much more efficiently. Many numerical coagulation simulations have been carried out to calculate the fractal dimension of the aggregates, which determines the duration of the ineffective Brownian stage of growth. Predominantly on-lattice and off-lattice methods were used. However, both methods require simplification of the astrophysical conditions. The aggregates found by those methods had a fractal dimension of approximately 2 which is equivalent to a constant, mass-independent friction time. If this value were valid for the conditions in an accretion disk, this would mean that the coagulation process would finally 'freeze out' and the growth of a planetesimal would be impossible within the lifetime of an accretion disk. In order to investigate whether this fractal dimension is model independent, we simulate self-consistently the Brownian stage of the coagulation by an N-particle code. This method has the advantage that no further assumptions about homogeneity of the dust have to be made. In our model, the dust grains are considered as aggregates built up of spheres. The equation of motion of the dust grains is based on the probability density for the diffusive transport within the gas atmosphere. Because of the very low number density of the dust grains, only 2-body-collisions have to be considered. As the Brownian stage of growth is very inefficient, the system is to be simulated over long periods of time. In order to find close particle pairs of the system which are most likely to undergo a collision, we use a particle-in-cell (PIC) method for the early stages of the simulation where the system is still very homogeneous and a tree method later when the particles are more clustered.
In Situ Sampling of Relative Dust Devil Particle Loads and Their Vertical Grain Size Distributions.
Raack, Jan; Reiss, Dennis; Balme, Matthew R; Taj-Eddine, Kamal; Ori, Gian Gabriele
2017-04-19
During a field campaign in the Sahara Desert in southern Morocco, spring 2012, we sampled the vertical grain size distribution of two active dust devils that exhibited different dimensions and intensities. With these in situ samples of grains in the vortices, it was possible to derive detailed vertical grain size distributions and measurements of the lifted relative particle load. Measurements of the two dust devils show that the majority of all lifted particles were only lifted within the first meter (∼46.5% and ∼61% of all particles; ∼76.5 wt % and ∼89 wt % of the relative particle load). Furthermore, ∼69% and ∼82% of all lifted sand grains occurred in the first meter of the dust devils, indicating the occurrence of "sand skirts." Both sampled dust devils were relatively small (∼15 m and ∼4-5 m in diameter) compared to dust devils in surrounding regions; nevertheless, measurements show that ∼58.5% to 73.5% of all lifted particles were small enough to go into suspension (<31 μm, depending on the used grain size classification). This relatively high amount represents only ∼0.05 to 0.15 wt % of the lifted particle load. Larger dust devils probably entrain larger amounts of fine-grained material into the atmosphere, which can have an influence on the climate. Furthermore, our results indicate that the composition of the surface, on which the dust devils evolved, also had an influence on the particle load composition of the dust devil vortices. The internal particle load structure of both sampled dust devils was comparable related to their vertical grain size distribution and relative particle load, although both dust devils differed in their dimensions and intensities. A general trend of decreasing grain sizes with height was also detected. Key Words: Mars-Dust devils-Planetary science-Desert soils-Atmosphere-Grain sizes. Astrobiology 17, xxx-xxx.
Probing Cosmic Infrared Sources: A Computer Modeling Approach
1992-06-01
developed to study various physical phenomena involving dust grains, e.g., molecule formation on grains, grain formation in expanding circumstellar...EVALUATION OF METHODS OF ANALYSIS IN INFRARED ASTR9?NOMY 16 4.0 THEORETICAL STUDIES INVOLVING DUST GRAINS., 16 4.1 Theory of Molecule Formation on Dust Grains...17 4.2 Modeling Grain Formation in Stellar Outflows 7 18 4.3 Infrared Emission from Fractal Grains * 19 4.4 Photochemistry in Circumstellar Envelopes
Are the Formation and Abundances of Metal-poor Stars the Result of Dust Dynamics?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hopkins, Philip F.; Conroy, Charlie, E-mail: phopkins@caltech.edu
Large dust grains can fluctuate dramatically in their local density, relative to the gas, in neutral turbulent disks. Small, high-redshift galaxies (before reionization) represent ideal environments for this process. We show via simple arguments and simulations that order-of-magnitude fluctuations are expected in local abundances of large grains (>100 Å) under these conditions. This can have important consequences for star formation and stellar metal abundances in extremely metal-poor stars. Low-mass stars can form in dust-enhanced regions almost immediately after some dust forms even if the galaxy-average metallicity is too low for fragmentation to occur. We argue that the metal abundances ofmore » these “promoted” stars may contain interesting signatures as the CNO abundances (concentrated in large carbonaceous grains and ices) and Mg and Si (in large silicate grains) can be enhanced and/or fluctuate almost independently. Remarkably, the otherwise puzzling abundance patterns of some metal-poor stars can be well fit by standard IMF-averaged core-collapse SNe yields if we allow for fluctuating local dust-to-gas ratios. We also show that the observed log-normal distribution of enhancements in pure SNe yields, shows very large enhancements and variations up to factors of ≳100 as expected in the dust-promoted model, preferentially in the [C/Fe]-enhanced metal-poor stars. Together, this suggests that (1) dust exists in second-generation star formation, (2) local dust-to-gas ratio fluctuations occur in protogalaxies and can be important for star formation, and (3) the light element abundances of these stars may be affected by the local chemistry of dust where they formed, rather than directly tracing nucleosynthesis from earlier populations.« less
Physical characteristics of cometary dust from optical studies
NASA Technical Reports Server (NTRS)
Hanner, M. S.
1980-01-01
Observations of the sunlight scattered and thermal emission from cometary dust, which may be used to infer the physical properties of the dust grains, are reviewed. Consideration is given to the observed wavelength dependence of the scattered light from cometary coma and tails, the average scattering function of the dust grains, the average grain Bond albedo, the polarization of the scattered light, and grain temperatures deduced from thermal infrared emission. The thermal properties of dust grains are illustrated for models based on magnetite or olivine grain materials, with consideration given to the variation of thermal properties with particle radius and heliocentric distance. Comparison of the models with observations indicates that a disordered or amorphous olivine composition can give a reasonable fit to the data for appropriate grain sizes and temperatures. The observations acquired are noted to indicate an optically important particle size of 1 micron, with silicate particles not larger than a few microns usually present although pure silicate grains can not be responsible for the thermal emission, and the cometary dust grains are most likely not spherical. Further observations needed in the infrared are indicated.
NASA Astrophysics Data System (ADS)
Dwek, Eli; Temim, Tea
Recent infrared satellites, such as the Spitzer, Herschel, and WISE, have obtained a wealth of spectral and broadband data on the infrared (IR) emission from dust in supernova remnants (SNRs). Supernovae (SNe) are important producers of newly condensed dust during the early free-expansion phase of their evolution, and the dominant destroyers of dust during the subsequent remnant phase of their evolution. The infrared observations hold the key for determining their role in the origin and evolution of dust in the universe. We propose to model the composition, abundance, and size distribution of the dust in select Galactic and Magellanic Cloud remnants. As explained in detail below, the remnants were selected for the availability of IR and X-ray observations. All selected remnants have Spitzer IRS spectral data in the 5-35 μm regions which allow us to determine the effect of grain processing in the shock. Some have spectral maps that allow the distinction between the IR emission from SN-condensed and swept up circumstellar and interstellar dust. All remnants have also been covered by Spitzer, Herschel, and WISE imaging, and have existing X-ray Chandra and/or XMM observations. The dust in some remnants is radiatively-heated by a pulsar wind nebula, and in others collisionally- heated by shocked X-ray or line emitting gas. We will use physical models to calculate the radiative and collisional heating of SNR dust, the equilibrium or fluctuating dust temperatures, and the resulting IR emission for various dust compositions and size distributions. Specific examples of Cas A, SN1987A, the Crab Nebula, and Puppis A, are discussed in detail to illustrate our modeling approach. Our study will be the first comprehensive and physical analysis of a large sample of SNRs in different evolutionary states and different astrophysical environments. They will cover a wide range of interactions between the dust grains and their surroundings, including the radioactively- powered and/or shocked SN ejecta, hard X-rays and EUV radiation fields, and shocked circumstel- lar/interstellar gas. Our study will shed light on the evolution of dust grains from their explosive formation sites, through their violent injection into the ISM, and ultimate demise or survival as they travel through a network of interstellar shock waves. It will constitute a major advance in our understanding of the origin and evolution of dust in the Milky Way, in galaxies in general, and especially in the early universe.
Composition of extracts of airborne grain dusts: lectins and lymphocyte mitogens.
Olenchock, S A; Lewis, D M; Mull, J C
1986-01-01
Airborne grain dusts are heterogeneous materials that can elicit acute and chronic respiratory pathophysiology in exposed workers. Previous characterizations of the dusts include the identification of viable microbial contaminants, mycotoxins, and endotoxins. We provide information on the lectin-like activity of grain dust extracts and its possible biological relationship. Hemagglutination of erythrocytes and immunochemical modulation by antibody to specific lectins showed the presence of these substances in extracts of airborne dusts from barley, corn, and rye. Proliferation of normal rat splenic lymphocytes in vitro provided evidence for direct biological effects on the cells of the immune system. These data expand the knowledge of the composition of grain dusts (extracts), and suggest possible mechanisms that may contribute to respiratory disease in grain workers. PMID:3709474
Halstensen, Anne Straumfors; Nordby, Karl-Christian; Elen, Oleif; Eduard, Wijnand
2004-01-01
Ochratoxin A (OTA) is a nephrotoxin frequently contaminating grains. OTA inhalation during grain handling may therefore represent a health risk to farmers, and was the subject of this study. Airborne and settled grain dust was collected during grain work on 84 Norwegian farms. Climate and agricultural practices on each farm were registered. Penicillium spp., Aspergillus spp. and OTA in settled dust were measured. Settled dust contained median 4 microg OTA/kg dust (range 2-128), correlating with Penicillium spp. (median 40 cfu/mg; range 0-32000, rs =0.33; p < 0.01). Similar levels were found across grain species, districts and agricultural practices. Penicillium levels, but not OTA levels, were higher in storage than in threshing dust (p=0.003), and increased with storage time (rs =0.51, p < 0.001). Farmers were exposed to median 1 mg/m3 (range 0.2-15) dust during threshing and median 7 mg/m3 (range 1-110) dust during storage work, equalling median 3.7 pg/m3 (range 0.6-200) and median 40 pg/m3 (range 2-14000) OTA, respectively (p < 0.001). Agricultural practices could not predict OTA, Penicillium or Aspergillus contamination. Compared to oral intake of OTA, the inhalant exposure during grain work was low, although varying by more than 1,000-fold. However, the farmers may occasionally be highly exposed, particularly during handling of stored grain.
Chemical desorption and diffusive dust chemistry
NASA Astrophysics Data System (ADS)
Dulieu, Francois; Pirronello, Valerio; Minissale, Marco; Congiu, Emanuele; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Accolla, Mario; Cazaux, Stephanie; Manicò, Giulio
In molecular clouds, gaseous species can accrete efficiently on the cold surfaces of dust grains. As for radical-radical reactions, the surface of the grains acts as a third body, and changes dramatically the efficiency of the reactions (i.e., H2 formation), or lowers considerably the barrier to formation (i.e., H2O synthesis) in comparison with gas phase reaction processes. These properties make dust grains efficient catalytic templates. However, the chemical role of dust grains depends on the diffusive properties of the reactive partners. Over the last years, we have developed experimental tools and methods to explore the chemistry occurring on cold (6-50K) surfaces. We have obtained some hints about the diffusivity of H on amorphous ice, and studied in detail the diffusion of O atoms. The latter species appears to have a hopping rate in the range 0.01-100 hops/sec. The diffusion rate of O atoms is dependent on the surface morphology and on the surface temperature. The diffusion law is compatible with a diffusion dominated by quantum tunnelling rather than classical thermal hopping. Using H, O, N atoms and, indirectly, OH and HCO radicals, we have begun to explore many chemical reactive networks. In this presentation, I will focus on the formation of H2O and CO2, and will propose many possible formation routes to obtain these chemical traps. The molecules formed on surfaces have a certain probability of desorbing upon their formation. This non-thermal desorption mechanism, or chemical desorption, has been proposed to explain why some molecules can be detected in the gas phase of those region where they were believed to be part of the icy mantles covering dust grains. We have shown that this process can be very efficient, but is very sensitive to the substrate and the surroundings of the reaction site, is dependent on the kind of molecule formed and its chemical pathway. In my presentation I will present how the surface coverage and the type of reaction can play a major role in the chemical desorption process. I will discuss of possible key parameters that rule this process.
Skea, D; Broder, I
1986-01-01
We have found several similarities between tannic acid and grain dust extract prepared with methanol. Both formed a precipitate with IgG, and these interactions were inhibited by albumin. In addition, both preparations fixed complement; this activity was heat stable and was removed by prior adsorption of the preparations with hide powder. Adsorption with polyvinyl polypyrrolidone reduced the complement-fixing activity of tannic acid but not that of the methanol grain dust extract. The similarities between tannic acid and the methanol grain dust extract are consistent with the presence of a tannin or tanninlike material in grain dust. Images FIGURE 1. PMID:3709479
SEP events and wake region lunar dust charging with grain radii
NASA Astrophysics Data System (ADS)
Chandran, S. B. Rakesh; Rajesh, S. R.; Abraham, A.; Renuka, G.; Venugopal, Chandu
2017-01-01
Our lunar surface is exposed to all kinds of radiations from the Sun, since it lacks a global magnetic field. Like lunar surface, dust particles are also exposed to plasmas and UV radiation and, consequently they carry electrostatic charges. During Solar Energetic Particle events (SEPs) secondary electron emission plays a vital role in charging of lunar dusts. To study the lunar dust charging during SEPs on lunar wake region, we derived an expression for lunar dust potential and analysed how it varies with different electron temperatures and grain radii. Because of high energetic solar fluxes, secondary yield (δ) values reach up to 2.3 for 0.5 μm dust grain. We got maximum yield at an energy of 550 eV which is in well agreement with lunar sample experimental observation (Anderegg et al., 1972). It is observed that yield value increases with electron energy, reaches to a maximum value and then decreases. During SEPs heavier dust grains show larger yield values because of the geometry of the grains. On the wake region, the dust potential reaches up to -497 V for 0.5 μm dust grain. The electric field of these grains could present a significant threat to manned and unmanned missions to the Moon.
Investigation of dust transport on the lunar surface in laboratory plasmas
NASA Astrophysics Data System (ADS)
Wang, X.; Horanyi, M.; Robertson, S. H.
2009-12-01
There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.
A new method to generate dust with astrophysical properties
NASA Astrophysics Data System (ADS)
Hansen, J. F.; van Breugel, W.; Bringa, E. M.; Eberly, B.; Graham, G. A.; Remington, B. A.; Taylor, E. A.; Tielens, A. G. G. M.
2011-05-01
To model the size distribution and composition of interstellar and interplanetary dust grains, and their effect on a wide range of phenomena, it is vital to understand the mechanism of dust-shock interaction. We demonstrate a new laser experiment that subjects dust grains to pressure spikes similar to those of colliding astrophysical dust, and that accelerates the grains to astrophysical velocities. This new method generates much larger data sets than earlier methods; we show how large quantities (thousands) of grains are accelerated at once, rather than accelerating individual grains, as is the case of earlier methods using electric fields. We also measure the in-flight velocity ( ~ 4.5km/s) of hundreds of grains simultaneously by use of a particle image velocimetry (PIV) technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pauly, Tyler; Garrod, Robin T., E-mail: tap74@cornell.edu
Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays amore » significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface–gas interactions.« less
Partitioning Tungsten between Matrix Precursors and Chondrule Precursors through Relative Settling
NASA Astrophysics Data System (ADS)
Hubbard, Alexander
2016-08-01
Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interacted with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.
NASA Astrophysics Data System (ADS)
Squire, Jonathan; Hopkins, Philip F.
2018-04-01
We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.
Wang, Hongfang; Mason, J.A.; Balsam, W.L.
2006-01-01
The loess-paleosol succession in the Peoria Loess in southern Illinois is characterized as alternating loess layers and weathering bands, known as paleosol A horizons. The fast loess accumulation during the late Wisconsin glaciation interacted with the incipient pedogenesis and caused unclear boundaries of loess-paleosol alternations in soil horizonation and mineralogy. Parameters of grain size distribution, sedimentation rate, matrix carbonate content and diffuse reflectance (i.e. soil colors and iron oxides) are used in this paper to discuss the geological and pedological influences for the Peoria Loess in Keller Farm section in southern Illinois. The multi-proxy analysis revealed that many paleosol A horizons, defined by the diffuse reflectance variability, contain finer-grained materials with a relatively higher sedimentation rate. It suggests that glaciofluvial sediments were available in the source areas for uploading eolian dust during the temporary ice sheet retreats. The denser vegetation and wetter surface soils on the loess deposit area could increase the dust trapping efficiency and caused a greater accumulation rate of loess deposits. The coarser-grained materials and slower sedimentation rate are often found in loess layers. It suggests that strong surface winds transported the coarser-grained materials from local dust sources and sparse vegetation and dry surface soils reduced the dust trapping efficiency during the ice sheet readvance. The strong interactions between the geological and pedological processes played an important role on the loess-paleosol alternations in southern Illinois during the late Wisconsin glaciation. ?? 2006 Elsevier B.V. All rights reserved.
The fundamentally different dynamics of dust and gas in molecular clouds
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Lee, Hyunseok
2016-03-01
We study the behaviour of large dust grains in turbulent molecular clouds (MCs). In primarily neutral regions, dust grains move as aerodynamic particles, not necessarily with the gas. We therefore directly simulate, for the first time, the behaviour of aerodynamic grains in highly supersonic, magnetohydrodynamic turbulence typical of MCs. We show that, under these conditions, grains with sizes a ≳ 0.01 micron exhibit dramatic (exceeding factor ˜1000) fluctuations in the local dust-to-gas ratio (implying large small-scale variations in abundances, dust cooling rates, and dynamics). The dust can form highly filamentary structures (which would be observed in both dust emission and extinction), which can be much thinner than the characteristic width of gas filaments. Sometimes, the dust and gas filaments are not even in the same location. The `clumping factor' < n_dust2 > / < n_dust > 2 of the dust (critical for dust growth/coagulation/shattering) can reach ˜100, for grains in the ideal size range. The dust clustering is maximized around scales ˜ 0.2 pc (a/μm) (ngas/100 cm- 3)- 1, and is `averaged out' on larger scales. However, because the density varies widely in supersonic turbulence, the dynamic range of scales (and interesting grain sizes) for these fluctuations is much broader than in the subsonic case. Our results are applicable to MCs of essentially all sizes and densities, but we note how Lorentz forces and other physics (neglected here) may change them in some regimes. We discuss the potentially dramatic consequences for star formation, dust growth and destruction, and dust-based observations of MCs.
Dust emission from comets at large heliocentric distances. I - The case of comet Bowell /1980b/
NASA Technical Reports Server (NTRS)
Houpis, H. L. F.; Mendis, D. A.
1981-01-01
Alternative processes of dust emission from comets at large heliocentric distances are considered, in order to explain the dust coma observed in comet Bowell (1980b) at a heliocentric distance as large as 7.17 AU. It is shown that the electrostatic blow-off of dust from a charged, H2O-dominated nucleus having a layer of loose, fine dust may be the formation process of the dust coma, with the coma size expected from the process being comparable to the observed value and the dust grain size being equal to or less than 0.4 microns in size. The upper limit for the total mass in the coma is 3.9 x 10 to the 8th g, and the spatial extension less than 10,000 km. The observed activity may alternatively be due to dust entrainment by the sublimating gas from a CO2-dominated nucleus.
Dust Destruction Rates and Lifetimes in the Magellanic Clouds
NASA Technical Reports Server (NTRS)
Temim, Tea; Dwek, Eli; Tchernyshyov, Kirill; Boyer, Martha L.; Meixner, Margaret; Gall, Christa; Roman-Duval, Julia
2015-01-01
The nature, composition, abundance, and size distribution of dust in galaxies is determined by the rate at which it is created in the different stellar sources and destroyed by interstellar shocks. Because of their extensive wavelength coverage, proximity, and nearly face-on geometry, the Magellanic Clouds (MCs) provide a unique opportunity to study these processes in great detail. In this paper we use the complete sample of supernova remnants (SNRs) in the MCs to calculate the lifetime and destruction efficiencies of silicate and carbon dust in these galaxies. We find dust lifetimes of 22+/-13 Myr (30+/-17 Myr) for silicate (carbon) grains in the LMC, and 54 +/- 32 Myr (72 +/- 43 Myr) for silicate (carbon) grains in the SMC. The significantly shorter lifetimes in the MCs, as compared to the Milky Way, are explained as the combined effect of their lower total dust mass, and the fact that the dust-destroying isolated SNe in the MCs seem to be preferentially occurring in regions with higher than average dust-to-gas (D2G) mass ratios. We also calculate the supernova rate and the current star formation rate in the MCs, and use them to derive maximum dust injection rates by asymptotic giant branch (AGB) stars and core collapse supernovae (CCSNe). We find that the injection rates are an order of magnitude lower than the dust destruction rates by the SNRs. This supports the conclusion that, unless the dust destruction rates have been considerably overestimated, most of the dust must be reconstituted from surviving grains in dense molecular clouds. More generally, we also discuss the dependence of the dust destruction rate on the local D2G mass ratio and the ambient gas density and metallicity, as well as the application of our results to other galaxies and dust evolution models.
Self-confinement of finite dust clusters in isotropic plasmas.
Miloshevsky, G V; Hassanein, A
2012-05-01
Finite two-dimensional dust clusters are systems of a small number of charged grains. The self-confinement of dust clusters in isotropic plasmas is studied using the particle-in-cell method. The energetically favorable configurations of grains in plasma are found that are due to the kinetic effects of plasma ions and electrons. The self-confinement phenomenon is attributed to the change in the plasma composition within a dust cluster resulting in grain attraction mediated by plasma ions. This is a self-consistent state of a dust cluster in which grain's repulsion is compensated by the reduced charge and floating potential on grains, overlapped ion clouds, and depleted electrons within a cluster. The common potential well is formed trapping dust clusters in the confined state. These results provide both valuable insights and a different perspective to the classical view on the formation of boundary-free dust clusters in isotropic plasmas.
Infrared emission from isolated dust clouds in the presence of very small dust grains
NASA Technical Reports Server (NTRS)
Lis, Dariusz C.; Leung, Chun M.
1991-01-01
Models of the effects of small grain-generated temperature fluctuations on the IR spectrum and surface brightness of externally heated interstellar dust clouds are presently constructed on the basis of a continuum radiation transport computer code which encompasses the transient heating of small dust grains. The models assume a constant fractional abundance of large and small grains throughout the given cloud. A comparison of model results with IRAS observations indicates that the observed 12-25 micron band emissions are associated with about 10-A radius grains, while the 60-100 micron emission is primarily due to large grains which are heated under the equilibrium conditions.
Hypervelocity Dust Injection for Plasma Diagnostic Applications
NASA Astrophysics Data System (ADS)
Ticos, Catalin
2005-10-01
Hypervelocity micron-size dust grain injection was proposed for high-temperature magnetized plasma diagnosis. Multiple dust grains are launched simultaneously into high temperature plasmas at several km/s or more. The hypervelocity dust grains are ablated by the electron and ion fluxes. Fast imaging of the resulting luminous plumes attached to each grain is expected to yield local magnetic field vectors. Combination of multiple local magnetic field vectors reproduces 2D or even 3D maps of the internal magnetic field topology. Key features of HDI are: (1) a high spatial resolution, due to a relatively small transverse size of the elongated tail, and (2) a small perturbation level, as the dust grains introduce negligible number of particles compared to the plasma particle inventory. The latter advantage, however, could be seriously compromised if the gas load from the accelerator has an unobstructed access to the diagnosed plasma. Construction of a HDI diagnostic for National Spherical Torus Experiment (NSTX), which includes a coaxial plasma gun for dust grain acceleration, is underway. Hydrogen and deuterium gas discharges inside accelerator are created by a ˜ 1 mF capacitor bank pre-charged up to 10 kV. The diagnostic apparatus also comprises a dust dispenser for pre-loading the accelerator with dust grains, and an imaging system that has a high spatial and temporal resolution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yasuda, Yuki; Kozasa, Takashi, E-mail: yuki@antares-a.sci.hokudai.ac.jp
2012-02-01
We investigate the formation of silicon carbide (SiC) grains in the framework of dust-driven wind around pulsating carbon-rich asymptotic giant branch (C-rich AGB) stars to reveal not only the amount but also the size distribution. Two cases are considered for the nucleation process: one is the local thermal equilibrium (LTE) case where the vibration temperature of SiC clusters T{sub v} is equal to the gas temperature as usual, and another is the non-LTE case in which T{sub v} is assumed to be the same as the temperature of small SiC grains. The results of the hydrodynamical calculations for a modelmore » with stellar parameters of mass M{sub *} = 1.0 M{sub Sun }, luminosity L{sub *} = 10{sup 4} L{sub Sun }, effective temperature T{sub eff} = 2600 K, C/O ratio = 1.4, and pulsation period P = 650 days show the following: in the LTE case, SiC grains condense in accelerated outflowing gas after the formation of carbon grains, and the resulting averaged mass ratio of SiC to carbon grains of {approx}10{sup -8} is too small to reproduce the value of 0.01-0.3, which is inferred from the radiative transfer models. On the other hand, in the non-LTE case, the formation region of the SiC grains is more internal and/or almost identical to that of the carbon grains due to the so-called inverse greenhouse effect. The mass ratio of SiC to carbon grains averaged at the outer boundary ranges from 0.098 to 0.23 for the sticking probability {alpha}{sub s} = 0.1-1.0. The size distributions with the peak at {approx}0.2-0.3 {mu}m in radius cover the range of size derived from the analysis of the presolar SiC grains. Thus, the difference between the temperatures of the small cluster and gas plays a crucial role in the formation process of SiC grains around C-rich AGB stars, and this aspect should be explored for the formation process of dust grains in astrophysical environments.« less
ANALYSIS OF THE INSTABILITY DUE TO GAS–DUST FRICTION IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadmehri, Mohsen, E-mail: m.shadmehri@gu.ac.ir
2016-02-01
We study the stability of a dust layer in a gaseous disk subject to linear axisymmetric perturbations. Instead of considering single-size particles, however, the population of dust particles is assumed to consist of two grain species. Dust grains exchange momentum with the gas via the drag force and their self-gravity is also considered. We show that the presence of two grain sizes can increase the efficiency of the linear growth of drag-driven instability in the protoplanetary disks (PPDs). A second dust phase with a small mass, compared to the first dust phase, would reduce the growth timescale by a factormore » of two or more, especially when its coupling to the gas is weak. This means that once a certain amount of large dust particles form, even though it is much smaller than that of small dust particles, the dust layer becomes more unstable and dust clumping is accelerated. Thus, the presence of dust particles of various sizes must be considered in studies of dust clumping in PPDs where both large and small dust grains are present.« less
The Effects of Grain Size and Temperature Distributions on the Formation of Interstellar Ice Mantles
NASA Astrophysics Data System (ADS)
Pauly, Tyler; Garrod, Robin T.
2016-02-01
Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry of dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface-gas interactions.
Sun, Yan-Wei; Li, Sheng-Yu; Xu, Xin-Wen; Zhang, Jian-Guo; Li, Ying
2009-08-01
By using mcirolysimeter, a laboratory simulation experiment was conducted to study the effects of the grain size and thickness of dust deposits on the soil water evaporation and salt movement in the hinterland of the Taklimakan Desert. Under the same initial soil water content and deposition thickness condition, finer-textured (<0.063 mm) deposits promoted soil water evaporation, deeper soil desiccation, and surface soil salt accumulation, while coarse-textured (0.063-2 mm) deposits inhibited soil water evaporation and decreased deeper soil water loss and surface soil salt accumulation. The inhibition effect of the grain size of dust deposits on soil water evaporation had an inflection point at the grain size 0.20 mm, i. e., increased with increasing grain size when the grain size was 0.063-0.20 mm but decreased with increasing grain size when the grain size was > 0.20 mm. With the increasing thickness of dust deposits, its inhibition effect on soil water evaporation increased, and there existed a logarithmic relationship between the dust deposits thickness and water evaporation. Surface soil salt accumulation had a negative correlation with dust deposits thickness. In sum, the dust deposits in study area could affect the stability of arid desert ecosystem.
Comparison of Morphologies of Apollo 17 Dust Particles with Lunar Simulant, JSC-1
NASA Technical Reports Server (NTRS)
Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Kihm, Kenneth D.; Day, James D. M.
2005-01-01
Lunar dust (< 20 microns) makes up approx.20 wt.% of the lunar soil. Because of the abrasive and adhering nature of lunar soil, a detailed knowledge of the morphology (size, shape and abundance) of lunar dust is important for dust mitigation on the Moon. This represents a critical step towards the establishment of long-term human presence on the Moon (Taylor et al. 2005). Machinery design for in-situ resource utilization (ISRU) on the Moon also requires detailed information on dust morphology and general physical/chemical characteristics. Here, we report a morphological study of Apollo 17 dust sample 70051 and compare it to lunar soil stimulant, JSC-1. W e have obtained SEM images of dust grains from sample 70051 soil (Fig. 1). The dust grains imaged are composed of fragments of minerals, rocks, agglutinates and glass. Most particles consist largely of agglutinitic impact glass with their typical vesicular textures (fine bubbles). All grains show sub-angular to angular shapes, commonly with sharp edges, common for crushed glass fragments. There are mainly four textures: (1) ropey-textured pieces (typical for agglutinates), (2) angular shards, (3) blocky bits, and (4) Swiss-cheese grains. This last type with its high concentration of submicron bubbles, occurs on all scales. Submicron cracks are also present in most grains. Dust-sized grains of lunar soil simulant, JSC-1, were also studied. JSC-1 is a basaltic tuff with relatively high glass content (approx.50%; McKay et al. 1994). It was initially chosen in the early 90s to approximate the geotechnical properties of the average lunar soil (Klosky et al. 1996). JSC-1 dust grains also show angular blocky and shard textures (Fig. 2), similar to those of lunar dust. However, the JSC-1 grains lack the Swiss-cheese textured particles, as well as submicron cracks and bubbles in most grains.
The Role of Grain Surface Reactions in the Chemistry of Star Forming Regions
NASA Technical Reports Server (NTRS)
Kress, M. E.; Tielens, A. G. G. M.; Roberge, W. G.
1998-01-01
The importance of reactions at the surfaces of dust grains has long been recognized to be one of the two main chemical processes that form molecules in cold, dark interstellar clouds where simple, saturated (fully-hydrogenated) molecules such as H2 water, methanol, H2CO, H2S, ammonia and CH4 are present in quantities far too high to be consistent with their extremely low gas phase formation rates. In cold dark regions of interstellar space, dust grains provide a substrate onto which gas-phase species can accrete and react. Grains provide a "third body" or a sink for the energy released in the exothermic reactions that form chemical bonds. In essence, the surfaces of dust grains open up alternative reaction pathways to form observed molecules whose abundances cannot be explained with gas-phase chemistry alone. This concept is taken one step further in this work: instead of merely acting as a substrate onto which radicals and molecules may physically adsorb, some grains may actively participate in the reaction itself, forming chemical bonds with the accreting species. Until recently, surface chemical reactions had not been thought to be important in warm circumstellar media because adspecies rapidly desorb from grains at very low temperatures; thus, the residence times of molecules and radicals on the surface of grains at all but the lowest temperatures are far too short to allow these reactions to occur. However, if the adspecies could adsorb more strongly, via a true chemical bond with surfaces of some dust grains, then grain surface reactions will play an important role in warm circumstellar regions as well. In this work, the surface-catalyzed reaction CO + 3 H2 yields CH4 + H2O is studied in the context that it may be very effective at converting the inorganic molecule CO into the simplest organic compound, methane. H2 and CO are the most abundant molecules in space, and the reaction converting them to methane, while kinetically inhibited in the gas phase under most astrophysical conditions, is catalyzed by iron, an abundant constituent of interstellar dust. At temperatures between 600 and 1000 K, which occur in the outflows from red giants and near luminous young stars, this reaction readily proceeds in the presence of an iron catalyst. Iron is one of the more abundant elements composing interstellar dust. Its abundance relative to hydrogen is almost that of silicon, and both of these heavy elements are primarily locked up in dust at all but the hottest regions of interstellar space.
Kieffer, Hugh H.; Titus, Timothy N.; Mullins, Kevin F.; Christensen, Philip R.
2000-01-01
Thermal Emission Spectrometer (TES) observations of the recession phase of Mars' south polar cap are used to quantitatively map this recession in both thermal and visual appearance. Geographically nonuniform behavior interior to the cap is characterized by defining several small regions which exemplify the range of behavior. For most of the cap, while temperatures remain near the CO2 frost point, albedos slowly increase with the seasonal rise of the Sun, then drop rapidly as frost patches disappear over a period of ∼20 days. A “Cryptic” region remains dark and mottled throughout its cold period. TES observations are compared with first-order theoretical spectra of solid CO2 frost with admixtures of dust and H2O. The TES spectra indicate that the Cryptic region has much larger grained solid CO2 than the rest of the cap and that the solid CO2 here may be in the form of a slab. The Mountains of Mitchel remain cold and bright well after other areas at comparable latitude, apparently as a result of unusually small size of the CO2 frost grains; we found little evidence for a significant presence of H2O. Although CO2 grain size may be the major difference between these regions, incorporated dust is also required to match the observations; a self-cleaning process carries away the smaller dust grains. Comparisons with Viking observations indicate little difference in the seasonal cycle 12 Martian years later. The observed radiation balance indicates CO2 sublimation budgets of up to 1250 kg m−2. Regional atmospheric dust is common; localized dust clouds are seen near the edge of the cap prior to the onset of a regional dust storm and interior to the cap during the storm.
Enhancing the Scientific Return from HST Imaging of Debris Disks
NASA Astrophysics Data System (ADS)
Weinberger, Alycia
2016-10-01
We propose realistic modeling of scattering of light by small aggregate dust grains that will enable us to interpret visible to near-infrared imaging of debris disks. We will determine if disk colors, phase functions, and polarizations place unique constraints on the composition of debris dust. Ongoing collisions of planetesimals generate dust; therefore, the dust provides unique information on compositions of the parent bodies. These exosolar analogs of asteroids and comets can bear clues to the history of a planetary system including migration and thermal processing. Because directly imaged debris disks are cold, they have no solid state emission features. Grain scattering properties as a function of wavelength are our only tool to reveal their compositions. Solar system interplanetary dust particles are fluffy aggregates, but most previous work on debris disk composition relied on Mie theory, i.e. assumed compact spherical grains. Mie calculations do not reproduce the observed colors and phase functions observed from debris disks. The few more complex calculations that exist do not explore the range of compositions and sizes relevant to debris disk dust. In particular, we expect porosity to help distinguish between cometary-like parent bodies, which are fluffy due to high volatile content and low collisional velocities, and asteroidal-like parent bodies that are compacted.
Experimental Study of Dust Grain Charging
NASA Technical Reports Server (NTRS)
Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.
1999-01-01
The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.
Role of Surface Chemistry in Grain Adhesion and Dissipation during Collisions of Silica Nanograins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quadery, Abrar H.; Tucker, William C.; Dove, Adrienne R.
2017-08-01
The accretion of dust grains to form larger objects, including planetesimals, is a central problem in planetary science. It is generally thought that weak van der Waals interactions play a role in accretion at small scales where gravitational attraction is negligible. However, it is likely that in many instances, chemical reactions also play an important role, and the particular chemical environment on the surface could determine the outcomes of dust grain collisions. Using atomic-scale simulations of collisional aggregation of nanometer-sized silica (SiO{sub 2}) grains, we demonstrate that surface hydroxylation can act to weaken adhesive forces and reduce the ability ofmore » mineral grains to dissipate kinetic energy during collisions. The results suggest that surface passivation of dangling bonds, which generally is quite complete in an Earth environment, should tend to render mineral grains less likely to adhere during collisions. It is shown that during collisions, interactions scale with interparticle distance in a manner consistent with the formation of strong chemical bonds. Finally, it is demonstrated that in the case of collisions of nanometer-scale grains with no angular momentum, adhesion can occur even for relative velocities of several kilometers per second. These results have significant implications for early planet formation processes, potentially expanding the range of collision velocities over which larger dust grains can form.« less
Wool and grain dusts stimulate TNF secretion by alveolar macrophages in vitro.
Brown, D M; Donaldson, K
1996-01-01
OBJECTIVE: The aim of the study was to investigate the ability of two organic dusts, wool and grain, and their soluble leachates to stimulate secretion of tumour necrosis factor (TNF) by rat alveolar macrophages with special reference to the role of lipopolysaccharide (LPS). METHODS: Rat alveolar macrophages were isolated by bronchoalveolar lavage (BAL) and treated in vitro with whole dust, dust leachates, and a standard LPS preparation. TNF production was measured in supernatants with the L929 cell line bioassay. RESULTS: Both wool and grain dust samples were capable of stimulating TNF release from rat alveolar macrophages in a dose-dependent manner. The standard LPS preparation caused a dose-dependent secretion of TNF. Leachates prepared from the dusts contained LPS and also caused TNF release but leachable LPS could not account for the TNF release and it was clear that non-LPS leachable activity was present in the grain dust and that wool dust particles themselves were capable of causing release of TNF. The role of LPS in wool dust leachates was further investigated by treating peritoneal macrophages from two strains of mice, LPS responders (C3H) and LPS non-responders (C3H/HEJ), with LPS. The non-responder mouse macrophages produced very low concentrations of TNF in response to the wool dust leachates compared with the responders. CONCLUSIONS: LPS and other unidentified leachable substances present on the surface of grain dust, and to a lesser extent on wool dust, are a trigger for TNF release by lung macrophages. Wool dust particles themselves stimulate TNF. TNF release from macrophages could contribute to enhancement of inflammatory responses and symptoms of bronchitis and breathlessness in workers exposed to organic dusts such as wool and grain. PMID:8758033
Wool and grain dusts stimulate TNF secretion by alveolar macrophages in vitro.
Brown, D M; Donaldson, K
1996-06-01
The aim of the study was to investigate the ability of two organic dusts, wool and grain, and their soluble leachates to stimulate secretion of tumour necrosis factor (TNF) by rat alveolar macrophages with special reference to the role of lipopolysaccharide (LPS). Rat alveolar macrophages were isolated by bronchoalveolar lavage (BAL) and treated in vitro with whole dust, dust leachates, and a standard LPS preparation. TNF production was measured in supernatants with the L929 cell line bioassay. Both wool and grain dust samples were capable of stimulating TNF release from rat alveolar macrophages in a dose-dependent manner. The standard LPS preparation caused a dose-dependent secretion of TNF. Leachates prepared from the dusts contained LPS and also caused TNF release but leachable LPS could not account for the TNF release and it was clear that non-LPS leachable activity was present in the grain dust and that wool dust particles themselves were capable of causing release of TNF. The role of LPS in wool dust leachates was further investigated by treating peritoneal macrophages from two strains of mice, LPS responders (C3H) and LPS non-responders (C3H/HEJ), with LPS. The non-responder mouse macrophages produced very low concentrations of TNF in response to the wool dust leachates compared with the responders. LPS and other unidentified leachable substances present on the surface of grain dust, and to a lesser extent on wool dust, are a trigger for TNF release by lung macrophages. Wool dust particles themselves stimulate TNF. TNF release from macrophages could contribute to enhancement of inflammatory responses and symptoms of bronchitis and breathlessness in workers exposed to organic dusts such as wool and grain.
Young Debris Disks With Newly Discovered Emission Features
NASA Astrophysics Data System (ADS)
Ballering, N.
2014-04-01
We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90
Becklake, M; Broder, I; Chan-Yeung, M; Dosman, J A; Ernst, P; Herbert, F A; Kennedy, S M; Warren, P W
1996-11-15
To assess the appropriateness of the current Canadian standards for exposure to grain dust in the workplace. The current permissible exposure limit of 10 mg of total grain dust per cubic metre of air (expressed as mg/m3) as an 8-hour time-weighted average exposure, or a lower permissible exposure limit. Acute symptoms of grain-dust exposure, such as cough, phlegm production, wheezing and dyspnea, similar chronic symptoms, and spirometric deficits revealing obstructive or restrictive disease. Articles published from 1924 to December 1993 were identified from Index Medicus and the bibliographies of pertinent articles. Subsequent articles published from 1994 (when the recommendations were approved by the Canadian Thoracic Society Standards Committee) to June 1996 were retrieved through a search of MEDLINE, and modification of the recommendations was not found to be necessary. Studies of interest were those that linked measurements of total grain dust levels to the development of acute and chronic respiratory symptoms and changes in lung function in exposed workers. Papers on the effects of grain dust on workers in feed mills were not included because other nutrients such as animal products may have been added to the grain. Unpublished reports (e.g., to Labour Canada) were included as sources of information. A high value was placed on minimizing the biological harm that grain dust has on the lungs of grain workers. A permissible exposure limit of 5 mg/m3 would control the short-term effects of exposure to grain dust on workers. Evidence is insufficient to determine what level is needed to prevent long-term effects. The economic implications of implementing a lower permissible exposure limit have not been evaluated. The current Canadian standards for grain-dust exposure should be reviewed by Labour Canada and the grain industry. A permissible exposure level of 5 mg/m3 is recommended to control short-term effects. Further measurements that link the levels of exposure to respiratory health effects in workers across Canada should be collected to establish an exposure-response relation and possible regional differences in the effects of grain dust. There has been no external review of these recommendations. However, the American Conference of Governmental Industrial Hygienists has recommended an 8-hour average exposure limit of 4 mg/m3 for wheat, oats and barley.
Eolian Dust and the Origin of Sedimentary Chert
Cecil, C. Blaine
2004-01-01
This paper proposes an alternative model for the primary source of silica contained in bedded sedimentary chert. The proposed model is derived from three principal observations as follows: (1) eolian processes in warm-arid climates produce copious amounts of highly reactive fine-grained quartz particles (dust), (2) eolian processes in warm-arid climates export enormous quantities of quartzose dust to marine environments, and (3) bedded sedimentary cherts generally occur in marine strata that were deposited in warm-arid paleoclimates where dust was a potential source of silica. An empirical integration of these observations suggests that eolian dust best explains both the primary and predominant source of silica for most bedded sedimentary cherts.
7 CFR 800.96 - Weighing procedures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... laws. (3) Dust. If dust is removed during the handling of grain, the weight certificate shall not be adjusted to reflect the weight of the removed dust. (4) Commingled carriers. If grain from two or more... Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD...
EXPLORING THE ROLE OF SUB-MICRON-SIZED DUST GRAINS IN THE ATMOSPHERES OF RED L0–L6 DWARFS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hiranaka, Kay; Cruz, Kelle L.; Baldassare, Vivienne F.
We examine the hypothesis that the red near-infrared colors of some L dwarfs could be explained by a “dust haze” of small particles in their upper atmospheres. This dust haze would exist in conjunction with the clouds found in dwarfs with more typical colors. We developed a model that uses Mie theory and the Hansen particle size distributions to reproduce the extinction due to the proposed dust haze. We apply our method to 23 young L dwarfs and 23 red field L dwarfs. We constrain the properties of the dust haze including particle size distribution and column density using Markovmore » Chain Monte Carlo methods. We find that sub-micron-range silicate grains reproduce the observed reddening. Current brown dwarf atmosphere models include large-grain (1–100 μ m) dust clouds but not sub-micron dust grains. Our results provide a strong proof of concept and motivate a combination of large and small dust grains in brown dwarf atmosphere models.« less
The Evolution of Dust in the Multiphase ISM: Grain Destruction Processes
NASA Technical Reports Server (NTRS)
Wolfire, Mark
1999-01-01
This proposal covered year one of a long term project in which we acquired the necessary hardware and softwaxe needed to calculate grain destruction processes in the interstellar medium (ISM). The long term goal of this research is to develop a model for the dust evolution in the ISM capable of explaining observations of elemental depletions, the grain size distribution, and the emission characteristics of the ISM from the X-ray through the FIR. We purchased a SUN Ultra 10 workstation and peripheral devices including an Exabyte Tape drive, HP Laser Printer, and Seagate External Hard Disk. The PI installed the hardware and Solaris operating system on the workstation and integrated the hardware into the network. Software was also purchased to enable connections to the workstation from a PC (Hummingbird Exceed). Additional freeware required to carry out the proposed program was installed on the system including compilers (g77, gcc, g++), editors (emacs), a markup language (LaTeX), and display programs (WIP, XV, SAOtng). We have also successfully modified the required plot files to work with our system which display the results of grain processing.
PARTITIONING TUNGSTEN BETWEEN MATRIX PRECURSORS AND CHONDRULE PRECURSORS THROUGH RELATIVE SETTLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hubbard, Alexander, E-mail: ahubbard@amnh.org
2016-08-01
Recent studies of chondrites have found a tungsten isotopic anomaly between chondrules and matrix. Given the refractory nature of tungsten, this implies that W was carried into the solar nebula by at least two distinct families of pre-solar grains. The observed chondrule/matrix split requires that the distinct families were kept separate during the dust coagulation process, and that the two families of grain interacted with the chondrule formation mechanism differently. We take the co-existence of different families of solids in the same general orbital region at the chondrule-precursor size as given, and explore the requirements for them to have interactedmore » with the chondrule formation process at significantly different rates. We show that this sorting of families of solids into chondrule- and matrix-destined dust had to have been at least as powerful a sorting mechanism as the relative settling of aerodynamically distinct grains at least two scale heights above the midplane. The requirement that the chondrule formation mechanism was correlated in some fashion with a dust-grain sorting mechanism argues strongly for spatially localized chondrule formation mechanisms such as turbulent dissipation in non-thermally ionized disk surface layers, and argues against volume-filling mechanisms such as planetesimal bow shocks.« less
NASA Technical Reports Server (NTRS)
Schaffer, L.; Burns, J. A.
1995-01-01
Dust grains in planetary rings acquire stochastically fluctuating electric charges as they orbit through any corotating magnetospheric plasma. Here we investigate the nature of this stochastic charging and calculate its effect on the Lorentz resonance (LR). First we model grain charging as a Markov process, where the transition probabilities are identified as the ensemble-averaged charging fluxes due to plasma pickup and photoemission. We determine the distribution function P(t;N), giving the probability that a grain has N excess charges at time t. The autocorrelation function tau(sub q) for the strochastic charge process can be approximated by a Fokker-Planck treatment of the evolution equations for P(t; N). We calculate the mean square response to the stochastic fluctuations in the Lorentz force. We find that transport in phase space is very small compared to the resonant increase in amplitudes due to the mean charge, over the timescale that the oscillator is resonantly pumped up. Therefore the stochastic charge variations cannot break the resonant interaction; locally, the Lorentz resonance is a robust mechanism for the shaping of etheral dust ring systems. Slightly stronger bounds on plasma parameters are required when we consider the longer transit times between Lorentz resonances.
Cosmological simulation with dust formation and destruction
NASA Astrophysics Data System (ADS)
Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh
2018-06-01
To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.
NASA Astrophysics Data System (ADS)
Rotundi, Alessandra; Della Corte, Vincenzo; Fulle, Marco; Ferrari, Marco; Sordini, Roberto; Ivanovski, Stavro; Accolla, Mario; Lucarelli, Francesca; Zakharov, Vladimir; Mazzotta Epifani, Elena; López-Moreno, José J.; Rodríguez, Julio; Colangeli, Luigi; Palumbo, Pasquale; Bussoletti, Ezio; Crifo, Jean-Francois; Esposito, Francesca; Green, Simon F.; Grün, Eberhard; Lamy, Philippe L.
2015-04-01
(21) ESA-ESAC, Camino Bajo del Castillo, s/n., Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, Spagna, (22) Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany, (23) Center of Studies and Activities for Space (CISAS), University of Padova, I-35131 Padova, Italy, (24) Department of Physics and Astronomy, University of Padova, I-35131 Padova, Italy Comets are the most primitive bodies in the solar system. They retain a cosmo-chemical record of conditions in the solar nebula when the planets were forming, 4.5 billion years ago. While accurate measurements of the gas loss rate from comets are possible under favorable conditions even from Earth, estimates of the dust loss rate so far have been much more uncertain. Multi-parametric models are needed to extract global dust parameters from the dust features of comets (e.g. coma, tails and trails) observed from ground and Earth orbiting telescopes, and it is often difficult to establish the uniqueness of these model results. Critical measurements for understanding the process of accretion and the refractory to volatiles ratio in the solar nebula are being obtained by the Grain Impact Analyzer and Dust Accumulator (GIADA) experiment onboard ESA's Rosetta spacecraft, now orbiting comet 67P/Churyumov-Gerasimenko (67P/CG). GIADA measures the mass, momentum and velocity of individual grains, providing the dust loss rate over three orders of magnitude in mass for grains from tens to hundreds of microns in diameter. GIADA consists of three subsystems: 1) the Grain Detection System (GDS) to detect dust grains as they pass through a laser curtain, 2) the Impact Sensor (IS) to measure grain momentum derived from the impact on a plate connected to five piezoelectric sensors, and 3) the Mi-croBalances System (MBS); five quartz crystal microbalances in roughly orthogonal directions providing the cumu-lative dust flux of grains smaller than 10 microns. GDS provides data on grain speed and its optical cross section. The IS grain momentum measurement, when combined with the GDS detection time, provides a direct measurement of grain speed and mass. These combined measurements characterize single grain dust dynamics in the coma of 67P/CG. The first grain was detected on 1 August 2014 at 814 km from the comet nucleus. Between then and 13 Septem-ber 2014 GIADA detected 35 grains ranging in mass from ~ 5 x 10-10 to 8 x 10-8 kg. Including complementary data from the OSIRIS narrow angle camera, the dust mass loss was calculated over an additional three orders of magni-tude in mass, extending the ejected dust grain sizes up to 2 cm. Combined with data from the MIRO and the ROSINA instruments onboard Rosetta we find a dust/gas mass ratio of 4 +/- 2 averaged over the sunlit nucleus sur-face. The dust to gas ratio may change as the comet approaches closer to the Sun. Acknowledgments: GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF- Oss. Astr. Capodimonte, in collabo-ration with the Inst. de Astrofisica de Andalucia, Selex-ES, FI and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with the support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developed from a PI proposal from the University of Kent; sci. & tech. contribution were pro-vided by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their outstanding work. Science support provided was by NASA through the US Rosetta Project managed by the Jet Propulsion Laboratory/California Institute of Technology. GIADA calibrated data will be available through ESA's PSA web site(www.rssd.esa.int/index.php?project=PSA&page=in dex). We would like to thank Angioletta Coradini for her contribution as a GIADA Co-I. We thank the MIRO, OSIRIS and ROSINA teams for sharing their early results with us.
Dust Grain Charge in the Lunar Environment
NASA Astrophysics Data System (ADS)
Vaverka, Jakub; Richterova, Ivana; Vysinka, Marek; Pavlu, Jiri; Safrankova, Jana; Nemecek, Zdenek
2014-05-01
Interaction of a lunar surface with solar wind and magnetosphere plasmas leads to it charging by several processes as photoemission, a collection of primary particles and secondary electron emission. Nevertheless, charging of the lunar surface is complicated by a presence of crustal magnetic anomalies with can generate a "mini-magnetosphere" capable for more or less complete shielding the surface. On the other hand, shielding of solar light and plasma particles by rocks and craters can also locally influence the surface potential as well as a presence of a plasma wake strongly changes this potential at the night side of the Moon. A typical surface potential varies from slightly positive (dayside) to negative values of the order of several hundred of volts (night side). At the night side, negative potentials can reach -4 kV during solar energetic particle (SEP) events. Recent measurements of the surface potential by Lunar Prospector and Artemis spacecraft have shown surprisingly high negative dayside surface potentials (-500 V) during the magnetotail crossings as well as the positive surface potential higher than 100 V. One possible explanation is its non-monotonic profile above a surface where the potential minimum is formed by the space charge. Dust grains presented in this complicated environment are also charged by similar processes as the lunar surface. A strong dependence of the secondary electron yield on the grain size can significantly influence dust charging mainly in the Earth's plasma sheet where an equilibrium grain potential can by different than the surface potential and can reach even the opposite sign. This process can lead to levitation of dust above a surface observed by the Surveyor spacecraft.
Do s-Process Enhanced Planetary Nebulae Have Unusual Dust Emission Spectra?
NASA Astrophysics Data System (ADS)
Dinerstein, Harriet; Sellgren, Kris; Sterling, Nicholas
2006-05-01
We propose to obtain IRS observations of the mid-infrared dust emission of a sample of Galactic planetary nebulae (PNs) which are known to have enrichments of elements produced in the precursor star by slow neutron-capture nucleosynthesis (the "s-process"). These enhanced abundances result from captures of free neutrons by Fe-peak nuclei following by convective mixing during the AGB; this "third dredge-up" is also responsible for increasing the surface abundance of carbon. Since PNs are the descendants of AGB stars and are often C-rich, it is not surprising that we find substantial enrichments of s-process products such as Ge, Se, and Kr in some PNs. Despite their low initial abundances, 1e-9 to 1e-10 times H, modest enrichments of neutron-capture elements can have observable effects. The spectral type S, a transitional class between O-rich and C-rich AGB stars, is characterized by prominent ZrO bands; Zr is produced in the s-process. We have attempted, without success, to detect gas-phase Zr in PNs. However, Zr is highly refractory. It can condense into ZrO2 or be incorporated into high-temperature rocky condensates in O-rich environments, while in C-rich environments it may form metallic carbides (i.e. ZrC, an analog of TiC). Indeed, Zr-Mo carbide inclusions found in some meteoritic presolar grains are thought to originate in the atmospheres of C-rich AGB stars. Other refractory s-process products (e.g. Sr, Ba) may also be incorporated into grains. High-quality Spitzer spectra of the dust emission in a set of PNs with known s-process enhancements - determined by us from gas-phase measurements of undepleted elements - will be valuable for comparison with laboratory spectroscopy of grain analogs. These comparisons will help determine whether the dredge-up of n-capture products affects the dust chemistry of PNs and may offer some new insights into the dust composition.
A COMPACT CONCENTRATION OF LARGE GRAINS IN THE HD 142527 PROTOPLANETARY DUST TRAP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casassus, Simon; Marino, Sebastian; Pérez, Sebastian
2015-10-20
A pathway to the formation of planetesimals, and eventually giant planets, may occur in concentrations of dust grains trapped in pressure maxima. Dramatic crescent-shaped dust concentrations have been seen in recent radio images at submillimeter wavelengths. These disk asymmetries could represent the initial phases of planet formation in the dust trap scenario, provided that grain sizes are spatially segregated. A testable prediction of azimuthal dust trapping is that progressively larger grains should be more sharply confined and should follow a distribution that is markedly different from the gas. However, gas tracers such as {sup 12}CO and the infrared emission frommore » small grains are both very optically thick where the submillimeter continuum originates, so previous observations have been unable to test the trapping predictions or to identify compact concentrations of larger grains required for planet formation by core accretion. Here we report multifrequency observations of HD 142527, from 34 to 700 GHz, that reveal a compact concentration of grains approaching centimeter sizes, with a few Earth masses, embedded in a large-scale crescent of smaller, submillimeter-sized particles. The emission peaks at wavelengths shorter than ∼1 mm are optically thick and trace the temperature structure resulting from shadows cast by the inner regions. Given this temperature structure, we infer that the largest dust grains are concentrated in the 34 GHz clump. We conclude that dust trapping is efficient enough for grains observable at centimeter wavelengths to lead to compact concentrations.« less
Near-infrared and optical studies of the highly obscured nova V1831 Aquilae (Nova Aquilae 2015)
NASA Astrophysics Data System (ADS)
Banerjee, D. P. K.; Srivastava, Mudit K.; Ashok, N. M.; Munari, U.; Hambsch, F.-J.; Righetti, G. L.; Maitan, A.
2018-01-01
Near-infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust-forming phases during the first ∼90 d after its discovery. The nova is highly reddened due to interstellar extinction. Based solely on the nature of the NIR spectrum, we are able to classify the nova to be of the Fe II class. The distance and extinction to the nova are estimated to be 6.1 ± 0.5 kpc and Av ∼ 9.02, respectively. Lower limits of the electron density, emission measure and ionized ejecta mass are made from a Case B analysis of the NIR Brackett lines, while the neutral gas mass is estimated from the optical [O I] lines. We discuss the cause of the rapid strengthening of the He I 1.0830-μm line during the early stages. V1831 Aql formed a modest amount of dust fairly early (∼19.2 d after discovery); the dust shell is not seen to be optically thick. Estimates of the dust temperature, dust mass and grain size are made. Dust formation commences around day 19.2 at a condensation temperature of 1461 ± 15 K, suggestive of a carbon composition, following which the temperature is seen to decrease gradually to 950 K. The dust mass shows a rapid initial increase, which we interpret as being due to an increase in the number of grains, followed by a period of constancy, suggesting the absence of grain destruction processes during this latter time. A discussion of the evolution of these parameters is made, including certain peculiarities seen in the grain radius evolution.
Sullivan, R.; Arvidson, R.; Bell, J.F.; Gellert, Ralf; Golombek, M.; Greeley, R.; Herkenhoff, K.; Johnson, J.; Thompson, S.; Whelley, P.; Wray, J.
2008-01-01
The ripple field known as 'El Dorado' was a unique stop on Spirit's traverse where dust-raising, active mafic sand ripples and larger inactive coarse-grained ripples interact, illuminating several long-standing issues of Martian dust mobility, sand mobility, and the origin of transverse aeolian ridges. Strong regional wind events endured by Spirit caused perceptible migration of ripple crests in deposits SSE of El Dorado, erasure of tracks in sandy areas, and changes to dust mantling the site. Localized thermal vortices swept across El Dorado, leaving paths of reduced dust but without perceptibly damaging nearly cohesionless sandy ripple crests. From orbit, winds responsible for frequently raising clay-sized dust into the atmosphere do not seem to significantly affect dunes composed of (more easily entrained) sand-sized particles, a long-standing paradox. This disparity between dust mobilization and sand mobilization on Mars is due largely to two factors: (1) dust occurs on the surface as fragile, low-density, sand-sized aggregates that are easily entrained and disrupted, compared with clay-sized air fall particles; and (2) induration of regolith is pervasive. Light-toned bed forms investigated at Gusev are coarse-grained ripples, an interpretation we propose for many of the smallest linear, light-toned bed forms of uncertain origin seen in high-resolution orbital images across Mars. On Earth, wind can organize bimodal or poorly sorted loose sediment into coarse-grained ripples. Coarse-grained ripples could be relatively common on Mars because development of durable, well-sorted sediments analogous to terrestrial aeolian quartz sand deposits is restricted by the lack of free quartz and limited hydraulic sediment processing. Copyright 2008 by the American Geophysical Union.
Coagulation of dust grains in the plasma of an RF discharge in argon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankelevich, Yu. A.; Olevanov, M. A.; Pal', A. F.
2009-03-15
Results are presented from experimental studies of coagulation of dust grains of different sizes injected into a low-temperature plasma of an RF discharge in argon. A theoretical model describing the formation of dust clusters in a low-temperature plasma is developed and applied to interpret the results of experiments on the coagulation of dust grains having large negative charges. The grain size at which coagulation under the given plasma conditions is possible is estimated using the developed theory. The theoretical results are compared with the experimental data.
Chemistry in the circumstellar medium. Unveiling the dust formation zone
NASA Astrophysics Data System (ADS)
Millar, T. J.
2008-01-01
The growth of dust grains in the inner regions of late-type stars is shrouded in mystery due to the difficulty of understanding the growth of heterogeneous particles from simple atoms and molecules and the lack of observational data. This article reviews the molecular processes important in circumstellar envelopes and discusses how ALMA might be used to probe the dust formation zone either directly or indirectly.
Chromospheric dust formation, stellar masers and mass loss
NASA Technical Reports Server (NTRS)
Stencel, R. E.
1986-01-01
A multistep scenario which describes a plausible mass loss mechanism associated with red giant and related stars is outlined. The process involves triggering a condensation instability in an extended chromosphere, leading to the formation of cool, dense clouds which are conducive to the formation of molecules and dust grains. Once formed, the dust can be driven away from the star by radiation pressure. Consistency with various observed phenomena is discussed.
NASA Astrophysics Data System (ADS)
Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Bernhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara
2016-10-01
We present a new approach aimed at constraining the typical size and optical properties of carbon dust grains in circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC). To achieve this goal, we apply our recent dust growth description, coupled with a radiative transfer code to the CSEs of C-stars evolving along the thermally pulsing asymptotic giant branch, for which we compute spectra and colours. Then, we compare our modelled colours in the near- and mid-infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing several data sets of optical constants for carbon dust available in the literature. Different assumptions adopted in our dust scheme change the typical size of the carbon grains produced. We constrain carbon dust properties by selecting the combination of grain size and optical constants which best reproduce several colours in the NIR and MIR at the same time. The different choices of optical properties and grain size lead to differences in the NIR and MIR colours greater than 2 mag in some cases. We conclude that the complete set of observed NIR and MIR colours are best reproduced by small grains, with sizes between ˜0.035 and ˜0.12 μm, rather than by large grains between ˜0.2 and 0.7 μm. The inability of large grains to reproduce NIR and MIR colours seems independent of the adopted optical data set. We also find a possible trend of the grain size with mass-loss and/or carbon excess in the CSEs of these stars.
Simulating STARDUST: Reproducing Impacts of Interstellar Dust in the Laboratory
NASA Astrophysics Data System (ADS)
Postberg, F.; Srama, R.; Hillier, J. K.; Sestak, S.; Green, S. F.; Trieloff, M.; Grün, E.
2008-09-01
Our experiments are carried out to support the analysis of interstellar dust grains, ISDGs, brought to earth by the STARDUST mission. Since the very first investigations, it has turned out that the major problem of STARDUST particle analysis is the modification (partly even the destruction) during capture when particles impact the spacecraft collectors with a velocity of up to 20 km/s. While it is possible to identify, extract, and analyse cometary grains larger than a few microns in aerogel and on metal collector plates, the STARDUST team is not yet ready for the identification, extraction, and analysis of sub-micron sized ISDGs with impact speeds of up to 20 km/s. Reconstructing the original particle properties requires a simulation of this impact capture process. Moreover, due to the lack of laboratory studies of high speed impacts of micron scale dust into interstellar STARDUST flight spares, the selection of criteria for the identification of track candidates is entirely subjective. Simulation of such impact processes is attempted with funds of the FRONTIER program within the framework of the Heidelberg University initiative of excellence. The dust accelerator at the MPI Kernphysik is a facility unique in the world to perform such experiments. A critical point is the production of cometary and interstellar dust analogue material and its acceleration to very high speeds of 20 km/s, which has never before been performed in laboratory experiments. Up to now only conductive material was successfully accelerated by the 2 MV Van de Graaf generator of the dust accelerator facility. Typical projectile materials are Iron, Aluminium, Carbon, Copper, Silver, and the conducting hydrocarbon Latex. Ongoing research now enables the acceleration of any kind of rocky planetary and interstellar dust analogues (Hillier et al. 2008, in prep.). The first batch of dust samples produced with the new method consists of micron and submicron SiO2 grains. Those were successfully accelerated and provided impacts with speeds of over 20 km/s. Impact signals as well as high resolution impact ionisation mass spectra - which reflect the grain's composition - were evaluated. Thus, the tests allow studying of dynamic properties as well as a compositional analysis of the grains. The next step - the production and testing of meteoritic dust material - is already in progress. On basis of our successful experiments, we will comprehensively analyse and compare (in cooperation with the STARDUST team) both the initial starting material and the impact modified material, either captured by aerogel or metal foils, as well as the particle-target interaction along capture tracks. These experiments will be performed on a variety of possible starting materials, with varying major, minor and trace elements. The investigations will allow to reconstruct the initial particle mass, speed, chemical and mineralogical composition of particles before capture, with important implications for the nature of interstellar matter and early solar system processes. Furthermore, the impact spectra we obtain from our in-situ dust analyser with the same projectiles will be included in a data base for comparison with spectra obtained by the dust analyser CIDA onboard the STARDUST spacecraft.
Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255
NASA Technical Reports Server (NTRS)
Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Menard, Francois; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu;
2017-01-01
We present H-band (1.6 micron) scattered light observations of the transitional disk RX J1615.3-3255, located in the approx. 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 +/- 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 m continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.
Radial decoupling of small and large dust grains in the transitional disk RX J1615.3-3255
NASA Astrophysics Data System (ADS)
Kooistra, Robin; Kamp, Inga; Fukagawa, Misato; Ménard, François; Momose, Munetake; Tsukagoshi, Takashi; Kudo, Tomoyuki; Kusakabe, Nobuhiko; Hashimoto, Jun; Abe, Lyu; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph C.; Egner, Sebastian E.; Feldt, Markus; Goto, Miwa; Grady, Carol A.; Guyon, Olivier; Hayano, Yutaka; Hayashi, Masahiko; Hayashi, Saeko S.; Henning, Thomas; Hodapp, Klaus W.; Ishii, Miki; Iye, Masanori; Janson, Markus; Kandori, Ryo; Knapp, Gillian R.; Kuzuhara, Masayuki; Kwon, Jungmi; Matsuo, Taro; McElwain, Michael W.; Miyama, Shoken; Morino, Jun-Ichi; Moro-Martin, Amaya; Nishimura, Tetsuo; Pyo, Tae-Soo; Serabyn, Eugene; Suenaga, Takuya; Suto, Hiroshi; Suzuki, Ryuji; Takahashi, Yasuhiro H.; Takami, Michihiro; Takato, Naruhisa; Terada, Hiroshi; Thalmann, Christian; Tomono, Daigo; Turner, Edwin L.; Watanabe, Makoto; Wisniewski, John; Yamada, Toru; Takami, Hideki; Usuda, Tomonori; Tamura, Motohide; Currie, Thayne; Akiyama, Eiji; Mayama, Satoshi; Follette, Katherine B.; Nakagawa, Takao
2017-01-01
We present H-band (1.6 μm) scattered light observations of the transitional disk RX J1615.3-3255, located in the 1 Myr old Lupus association. From a polarized intensity image, taken with the HiCIAO instrument of the Subaru Telescope, we deduce the position angle and the inclination angle of the disk. The disk is found to extend out to 68 ± 12 AU in scattered light and no clear structure is observed. Our inner working angle of 24 AU does not allow us to detect a central decrease in intensity similar to that seen at 30 AU in the 880 μm continuum observations. We compare the observations with multiple disk models based on the spectral energy distribution (SED) and submm interferometry and find that an inner rim of the outer disk at 30 AU containing small silicate grains produces a polarized intensity signal which is an order of magnitude larger than observed. We show that a model in which the small dust grains extend smoothly into the cavity found for large grains is closer to the actual H-band observations. A comparison of models with different dust size distributions suggests that the dust in the disk might have undergone significant processing compared to the interstellar medium.
NASA Astrophysics Data System (ADS)
Behery, E. E.
2016-11-01
The head-on collision of two dust acoustic solitons (DASs) in a nonextensive plasma with positive or negative dust grains fluid including the effect of dust size distribution (DSD) is studied. The phase shifts for the two solitons due to the collision are derived by applying the extended Poincaré-Lighthill-Kuo (PLK) method. The influences of the power law DSD and the nonextensivity of plasma particles on the characteristic properties of the head-on collision of DASs are analyzed. It is found that the phase shifts can vanish, only for the case of positive dust grains, for certain values and ranges of the dust grain radius and the entropic index of ions (qi) . Also, they undergo a cutoff in the range of qi>1 for the subextensive distribution. A brief discussion of possible applications in laboratory and space plasmas is included.
Indirect Charged Particle Detection: Concepts and a Classroom Demonstration
NASA Astrophysics Data System (ADS)
Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew
2013-11-01
We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have large speeds relative to the probes or satellites that encounter them. Development and testing of instruments that look for dust in space therefore depends critically on the availability of fast, well-characterized dust grains in the laboratory. One challenge for the experimentalist is to precisely measure the speed and mass of laboratory dust particles without disturbing them. Detection systems currently in use exploit the well-known effect of image charge to register the passage of dust grains without changing their speed or mass. We describe the principles of image charge detection and provide a simple classroom demonstration of the technique using soup cans and pith balls.
Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains
NASA Technical Reports Server (NTRS)
Yorke, H.; Suttner, G.; Lin, D.
1999-01-01
Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and due to corresponding changes in the medium's opacity significantly influence the evolution during early phase of star formation.
Dust Coagulation in Infalling Protostellar Envelopes I. Compact Grains
NASA Technical Reports Server (NTRS)
Yorke, H.; Lin, D.; Suttner, G.
1999-01-01
Dust plays a key role in the optical, thermodynamic and gas dynamical behavior of collapsing molecular cores. Because of relative velocities of the individual dust grains, coagulation and shattering can modify the grain size distribution and -- due to corresponding changes in the medium's opacity significantly -- influence the evolution during early phases of star formation.
NASA Astrophysics Data System (ADS)
Blum, Jürgen
2018-03-01
After 25 years of laboratory research on protoplanetary dust agglomeration, a consistent picture of the various processes that involve colliding dust aggregates has emerged. Besides sticking, bouncing and fragmentation, other effects, like, e.g., erosion or mass transfer, have now been extensively studied. Coagulation simulations consistently show that μm-sized dust grains can grow to mm- to cm-sized aggregates before they encounter the bouncing barrier, whereas sub-μm-sized water-ice particles can directly grow to planetesimal sizes. For siliceous materials, other processes have to be responsible for turning the dust aggregates into planetesimals. In this article, these processes are discussed, the physical properties of the emerging dusty or icy planetesimals are presented and compared to empirical evidence from within and without the Solar System. In conclusion, the formation of planetesimals by a gravitational collapse of dust "pebbles" seems the most likely.
NASA Astrophysics Data System (ADS)
Katushkina, O. A.; Alexashov, D. B.; Izmodenov, V. V.; Gvaramadze, V. V.
2017-02-01
High-resolution mid-infrared observations of astrospheres show that many of them have filamentary (cirrus-like) structure. Using numerical models of dust dynamics in astrospheres, we suggest that their filamentary structure might be related to specific spatial distribution of the interstellar dust around the stars, caused by a gyrorotation of charged dust grains in the interstellar magnetic field. Our numerical model describes the dust dynamics in astrospheres under an influence of the Lorentz force and assumption of a constant dust charge. Calculations are performed for the dust grains with different sizes separately. It is shown that non-monotonic spatial dust distribution (viewed as filaments) appears for dust grains with the period of gyromotion comparable with the characteristic time-scale of the dust motion in the astrosphere. Numerical modelling demonstrates that the number of filaments depends on charge-to-mass ratio of dust.
COLLISIONAL GROOMING MODELS OF THE KUIPER BELT DUST CLOUD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchner, Marc J.; Stark, Christopher C., E-mail: Marc.Kuchner@nasa.go, E-mail: starkc@umd.ed
2010-10-15
We modeled the three-dimensional structure of the Kuiper Belt (KB) dust cloud at four different dust production rates, incorporating both planet-dust interactions and grain-grain collisions using the collisional grooming algorithm. Simulated images of a model with a face-on optical depth of {approx}10{sup -4} primarily show an azimuthally symmetric ring at 40-47 AU in submillimeter and infrared wavelengths; this ring is associated with the cold classical KB. For models with lower optical depths (10{sup -6} and 10{sup -7}), synthetic infrared images show that the ring widens and a gap opens in the ring at the location of Neptune; this feature ismore » caused by trapping of dust grains in Neptune's mean motion resonances. At low optical depths, a secondary ring also appears associated with the hole cleared in the center of the disk by Saturn. Our simulations, which incorporate 25 different grain sizes, illustrate that grain-grain collisions are important in sculpting today's KB dust, and probably other aspects of the solar system dust complex; collisions erase all signs of azimuthal asymmetry from the submillimeter image of the disk at every dust level we considered. The model images switch from being dominated by resonantly trapped small grains ('transport dominated') to being dominated by the birth ring ('collision dominated') when the optical depth reaches a critical value of {tau} {approx} v/c, where v is the local Keplerian speed.« less
Dorribo, Victor; Wild, Pascal; Pralong, Jacques A; Danuser, Brigitta; Reboux, Gabriel; Krief, Peggy; Niculita-Hirzel, Hélène
2015-01-01
Occupational exposure to grain dust causes respiratory symptoms and pathologies. To decrease these effects, major changes have occurred in the grain processing industry in the last twenty years. However, there are no data on the effects of these changes on workers' respiratory health. The aim of this study was to evaluate the respiratory health of grain workers and farmers involved in different steps of the processing industry of wheat, the most frequently used cereal in Europe, fifteen years after major improvements in collective protective equipment due to mechanisation. Information on estimated personal exposure to wheat dust was collected from 87 workers exposed to wheat dust and from 62 controls. Lung function (FEV1, FVC, and PEF), exhaled nitrogen monoxide (FENO) and respiratory symptoms were assessed after the period of highest exposure to wheat during the year. Linear regression models were used to explore the associations between exposure indices and respiratory effects. Acute symptoms - cough, sneezing, runny nose, scratchy throat - were significantly more frequent in exposed workers than in controls. Increased mean exposure level, increased cumulative exposure and chronic exposure to more than 6 mg.m (-3) of inhaled wheat dust were significantly associated with decreased spirometric parameters, including FEV1 and PEF (40 ml and 123 ml.s (-1) ), FEV1 and FVC (0.4 ml and 0.5 ml per 100 h.mg.m (-3) ), FEV1 and FVC (20 ml and 20 ml per 100 h at >6 mg.m (-3) ). However, no increase in FENO was associated with increased exposure indices. The lung functions of wheat-related workers are still affected by their cumulative exposure to wheat dust, despite improvements in the use of collective protective equipment.
NASA Astrophysics Data System (ADS)
El-Taibany, W. F.; El-Siragy, N. M.; Behery, E. E.; Elbendary, A. A.; Taha, R. M.
2018-05-01
The propagation characteristics of dust acoustic waves (DAWs) in a dusty plasma consisting of variable size dust grains, hybrid Cairns-Tsallis-distributed electrons, and nonthermal ions are studied. The charging of the dust grains is described by the orbital-motion-limited theory and the size of the dust grains obeys the power law dust size distribution. To describe the nonlinear propagation of the DAWs, a Zakharov-Kuznetsov equation is derived using a reductive perturbation method. It is found that the nonthermal and nonextensive parameters influence the main properties of DAWs. Moreover, our results reveal that the rarefactive waves can propagate mainly in the proposed plasma model while compressive waves can be detected for a very small range of the distribution parameters of plasma species, and the DAWs are faster and wider for smaller size dust grains. Applications of the present results to dusty plasma observations are briefly discussed.
Becklake, M; Broder, I; Chan-Yeung, M; Dosman, J A; Ernst, P; Herbert, F A; Kennedy, S M; Warren, P W
1996-01-01
OBJECTIVE: To assess the appropriateness of the current Canadian standards for exposure to grain dust in the workplace. OPTIONS: The current permissible exposure limit of 10 mg of total grain dust per cubic metre of air (expressed as mg/m3) as an 8-hour time-weighted average exposure, or a lower permissible exposure limit. OUTCOMES: Acute symptoms of grain-dust exposure, such as cough, phlegm production, wheezing and dyspnea, similar chronic symptoms, and spirometric deficits revealing obstructive or restrictive disease. EVIDENCE: Articles published from 1924 to December 1993 were identified from Index Medicus and the bibliographies of pertinent articles. Subsequent articles published from 1994 (when the recommendations were approved by the Canadian Thoracic Society Standards Committee) to June 1996 were retrieved through a search of MEDLINE, and modification of the recommendations was not found to be necessary. Studies of interest were those that linked measurements of total grain dust levels to the development of acute and chronic respiratory symptoms and changes in lung function in exposed workers. Papers on the effects of grain dust on workers in feed mills were not included because other nutrients such as animal products may have been added to the grain. Unpublished reports (e.g., to Labour Canada) were included as sources of information. VALUES: A high value was placed on minimizing the biological harm that grain dust has on the lungs of grain workers. BENEFITS, HARMS AND COSTS: A permissible exposure limit of 5 mg/m3 would control the short-term effects of exposure to grain dust on workers. Evidence is insufficient to determine what level is needed to prevent long-term effects. The economic implications of implementing a lower permissible exposure limit have not been evaluated. RECOMMENDATIONS: The current Canadian standards for grain-dust exposure should be reviewed by Labour Canada and the grain industry. A permissible exposure level of 5 mg/m3 is recommended to control short-term effects. Further measurements that link the levels of exposure to respiratory health effects in workers across Canada should be collected to establish an exposure-response relation and possible regional differences in the effects of grain dust. VALIDATION: There has been no external review of these recommendations. However, the American Conference of Governmental Industrial Hygienists has recommended an 8-hour average exposure limit of 4 mg/m3 for wheat, oats and barley. PMID:8943927
Silicate dust in a Vega-excess system
NASA Technical Reports Server (NTRS)
Skinner, C. J.; Barlow, M. J.; Justtanont, K.
1992-01-01
The 10-micron spectrum of the K5V star SAO 179815 (= HD 98800) is presented, and conclusively demonstrates the presence of small silicate dust grains around this star. The 9.7-micron silicate dust feature is unusually broad and shallow in this system. This, together with the slow fall-off of flux at longer wavelengths, constrains the size and density distributions of dust grains in models of the disk. It is found that there must be a significant population of small grains, as well as a population of large grains in order to explain all the observed properties of the disk.
Particle Simulations on Plasma and Dust Environment near Lunar Vertical Holes
NASA Astrophysics Data System (ADS)
Miyake, Y.; Funaki, Y.; Nishino, M. N.
2016-12-01
The Japanese lunar orbiter KAGUYA has revealed the existence of vertical holes on the Moon, which have spatial scales of tens of meters and are possible lava tube skylights. The hole structure has recently received particular attention, because the structure is regarded as evidence for past existence of underground lava flows. Furthermore, the holes have high potential as locations for constructing future lunar bases, because of fewer extra-lunar rays/particles and micrometeorites reaching the hole bottoms. In this sense, these holes are not only of significance in selenology, but are also interesting from the viewpoint of plasma environments. The dayside electrostatic environment near the lunar surface is governed by interactions among the solar wind plasma, photoelectrons, and the charged lunar surface, providing topologically complex boundaries to the plasma. Thus we applied three-dimensional, massively-parallelized, particle-in-cell simulations to the near-hole environment on the Moon. This year we have introduced a horizontal cavern opened at the vertical wall of the hole, assuming the presence of a subsurface lave tube. We will show some preliminary results on the surface potential and its nearly plasma environments. We also started to study the dynamics of submicron-sized charged dust grains around the distinctive landscape. We particularly focus on an effect of a stochastic charging process of such small dust grains. Because of their small surface areas, the dusts will get/lose one elementary charge infrequently, and thus charge amount owned by each dust should be a stochastic variable unlike a widely-known spacecraft charging process. We develop a numerical model of such a charging process, which will be embedded into the test particle analysis of the dust dynamics. We report some results from our simulations on the dust charging process and dynamics around the lunar hole.
NASA Astrophysics Data System (ADS)
Tsytovich, V. N.; Gusein-zade, N. G.; Ignatov, A. M.
2017-10-01
The second part of the review on dust structures (the first part was published in Plasma Phys. Rep. 39, 515 (2013)) is devoted to experimental and theoretical studies on the stability of structures and their formation from the initially uniform dusty plasma components. The applicability limits of theoretical results and the role played by nonlinearity in the screening of dust grains are considered. The importance of nonlinearity is demonstrated by using numerous laboratory observations of planar clusters and volumetric dust structures. The simplest compact agglomerates of dust grains in the form of stable planar clusters are discussed. The universal character of instability resulting in the structurization of an initially uniform dusty plasma is shown. The fundamental correlations described in the first part of the review, supplemented with effects of dust inertia and dust friction by the neutral gas, are use to analyze structurization instability. The history of the development of theoretical ideas on the physics of the cluster formation for different types of interaction between dust grains is described.
NASA Astrophysics Data System (ADS)
Jin, Chichuan; Ponti, Gabriele; Haberl, Frank; Smith, Randall
2017-07-01
AX J1745.6-2901 is an X-ray binary located at only 1.45 arcmin from Sgr A⋆, showcasing a strong X-ray dust-scattering halo. We combine Chandra and XMM-Newton observations to study the halo around this X-ray binary. Our study shows two major thick dust layers along the line of sight (LOS) towards AX J1745.6-2901. The LOS position and NH of these two layers depend on the dust grain models with different grain size distributions and abundances. But for all the 19 dust grain models considered, dust layer-1 is consistently found to be within a fractional distance of 0.11 (mean value: 0.05) to AX J1745.6-2901 and contains only (19-34) per cent (mean value: 26 per cent) of the total LOS dust. The remaining dust is contained in layer-2, which is distributed from the Earth up to a mean fractional distance of 0.64. A significant separation between the two layers is found for all the dust grain models, with a mean fractional distance of 0.31. Besides, an extended wing component is discovered in the halo, which implies a higher fraction of dust grains with typical sizes ≲590 Å than considered in current dust grain models. Assuming AX J1745.6-2901 is 8 kpc away, dust layer-2 would be located in the Galactic disc several kpc away from the Galactic Centre (GC). The dust scattering halo biases the observed spectrum of AX J1745.6-2901 severely in both spectral shape and flux, and also introduces a strong dependence on the size of the instrumental point spread function and the source extraction region. We build xspec models to account for this spectral bias, which allow us to recover the intrinsic spectrum of AX J1745.6-2901 free from dust-scattering opacity. If dust layer-2 also intervenes along the LOS to Sgr A⋆ and other nearby GC sources, a significant spectral correction for the dust-scattering opacity would be necessary for all these GC sources.
Mid-infrared imaging- and spectro-polarimetric subarcsecond observations of NGC 1068
NASA Astrophysics Data System (ADS)
Lopez-Rodriguez, E.; Packham, C.; Roche, P. F.; Alonso-Herrero, A.; Díaz-Santos, T.; Nikutta, R.; González-Martín, O.; Álvarez, C. A.; Esquej, P.; Espinosa, J. M. Rodríguez; Perlman, E.; Ramos Almeida, C.; Telesco, C. M.
2016-06-01
We present subarcsecond 7.5-13 μm imaging- and spectro-polarimetric observations of NGC 1068 using CanariCam on the 10.4-m Gran Telescopio CANARIAS. At all wavelengths, we find: (1) A 90 × 60 pc extended polarized feature in the northern ionization cone, with a uniform ˜44° polarization angle. Its polarization arises from dust and gas emission in the ionization cone, heated by the active nucleus and jet, and further extinguished by aligned dust grains in the host galaxy. The polarization spectrum of the jet-molecular cloud interaction at ˜24 pc from the core is highly polarized, and does not show a silicate feature, suggesting that the dust grains are different from those in the interstellar medium. (2) A southern polarized feature at ˜9.6 pc from the core. Its polarization arises from a dust emission component extinguished by a large concentration of dust in the galaxy disc. We cannot distinguish between dust emission from magnetically aligned dust grains directly heated by the jet close to the core, and aligned dust grains in the dusty obscuring material surrounding the central engine. Silicate-like grains reproduce the polarized dust emission in this feature, suggesting different dust compositions in both ionization cones. (3) An upper limit of polarization degree of 0.3 per cent in the core. Based on our polarization model, the expected polarization of the obscuring dusty material is ≲0.1 per cent in the 8-13 μm wavelength range. This low polarization may be arising from the passage of radiation through aligned dust grains in the shielded edges of the clumps.
The dust scattering halo of Cygnus X-3
NASA Astrophysics Data System (ADS)
Corrales, L. R.; Paerels, F.
2015-10-01
Dust grains scatter X-ray light through small angles, producing a diffuse halo image around bright X-ray point sources situated behind a large amount of interstellar material. We present analytic solutions to the integral for the dust scattering intensity, which allow for a Bayesian analysis of the scattering halo around Cygnus X-3. Fitting the optically thin 4-6 keV halo surface brightness profile yields the dust grain size and spatial distribution. We assume a power-law distribution of grain sizes (n ∝ a-p) and fit for p, the grain radius cut-off amax, and dust mass column. We find that a p ≈ 3.5 dust grain size distribution with amax ≈ 0.2 μm fits the halo profile relatively well, whether the dust is distributed uniformly along the line of sight or in clumps. We find that a model consisting of two dust screens, representative of foreground spiral arms, requires the foreground Perseus arm to contain 80 per cent of the total dust mass. The remaining 20 per cent of the dust, which may be associated with the outer spiral arm of the Milky Way, is located within 1 kpc of Cyg X-3. Regardless of which model was used, we found τ_sca ˜ 2 E_keV^{-2}. We examine the energy resolved haloes of Cyg X-3 from 1 to 6 keV and find that there is a sharp drop in scattering halo intensity when E < 2-3 keV, which cannot be explained with multiple scattering effects. We hypothesize that this may be caused by large dust grains or material with unique dielectric properties, causing the scattering cross-section to depart from the Rayleigh-Gans approximation that is used most often in X-ray scattering studies. The foreground Cyg OB2 association, which contains several evolved stars with large extinction values, is a likely culprit for grains of unique size or composition.
Common Warm Dust Temperatures Around Main Sequence Stars
NASA Technical Reports Server (NTRS)
Morales, Farisa; Rieke, George; Werner, Michael; Stapelfeldt, Karl; Bryden, Geoffrey; Su, Kate
2011-01-01
We compare the properties of warm dust emission from a sample of main-sequence A-type stars (B8-A7) to those of dust around solar-type stars (F5-KO) with similar Spitzer Space Telescope Infrared Spectrograph/MIPS data and similar ages. Both samples include stars with sources with infrared spectral energy distributions that show evidence of multiple components. Over the range of stellar types considered, we obtain nearly the same characteristic dust temperatures (∼ 190 K and ∼60 K for the inner and outer dust components, respectively)-slightly above the ice evaporation temperature for the inner belts. The warm inner dust temperature is readily explained if populations of small grains are being released by sublimation of ice from icy planetesimals. Evaporation of low-eccentricity icy bodies at ∼ 150 K can deposit particles into an inner/warm belt, where the small grains are heated to dust Temperatures of -190 K. Alternatively, enhanced collisional processing of an asteroid belt-like system of parent planetesimals just interior to the snow line may account for the observed uniformity in dust temperature. The similarity in temperature of the warmer dust across our B8-KO stellar sample strongly suggests that dust-producing planetesimals are not found at similar radial locations around all stars, but that dust production is favored at a characteristic temperature horizon.
A Secondary Ion Mass Analyzer for Remote Surface Composition Analysis of the Galilean Moons
NASA Technical Reports Server (NTRS)
Krueger, H.; Srama, R.; Johnson, T. V.; Henkel, H.; vonHoerner, H.; Koch, A.; Horanyi, M.; Gruen, E.; Kissel, J.; Krueger, F.
2003-01-01
Galileo in-situ dust measurements have shown that the Galilean moons are surrounded by tenuous dust clouds formed by collisional ejecta from their icy surfaces, kicked up by impacts of interplanetary micrometeoroids. The majority of the ejecta dust particles have been sensed at altitudes below five between 0.5 and 1 micron, just above the detector threshold, indicating a size distribution decreasing towards bigger particles. their parent bodies. They carry information about the properties of the surface from which they have been kicked up. In particular, these grains may carry organic compounds and other chemicals of biological relevance if they exist on the icy Galilean moons. In-situ analysis of the grain composition with a sophisticated dust analyzer instrument flying on a Jupiter Icy Moons Orbiter can provide important information about geochemical and geophysical processes during the evolutionary histories of these moons which are not accessible with other techniques from an orbiter spacecraft. Thus, spacecraft-based in-situ dust measurements can be used as a diagnostic tool for the analysis of the surface composition of the moons. This way, the in-situ measurements turn into a remote sensing technique by using the dust instrument like a telescope for surface investigation. An instrument capable of very high resolution composition analysis of dust particles is the Cometary Secondary Ion Mass Analyzer (COSIMA). The instrument was originally developed for the Comet Rendezvous and Asteroid Flyby (CRAF) mission and has now been built for ESA'S comet orbiter Rosetta. Dust particles are collected on a target and are later located by an optical microscope camera. A pulsed primary indium ion gun partially ionizes the dust grains. The generated secondary ions are accelerated in an electric field and travel through a reflectron-type time-of-flight ion mass spectrometer.
Carbonaceous Components in the Comet Halley Dust
NASA Technical Reports Server (NTRS)
Fomenkova, M. N.; Chang, S.; Mukhin, L. M.
1994-01-01
Cometary grains containing large amounts of carbon and/or organic matter (CHON) were discovered by in situ measurements of comet Halley dust composition during VEGA and GIOTTO flyby missions. In this paper, we report the classification of these cometary, grains by means of cluster analysis, discuss the resulting compositional groups, and compare them with substances observed or hypothesized in meteorites, interplanetary dust particles, and the interstellar medium. Grains dominated by carbon and/or organic matter (CHON grains) represent approx. 22% of the total population of measured cometary dust particles. They, usually contain a minor abundance of rock-forming elements as well. Grains having organic material are relatively more abundant in the vicinity of the nucleus than in the outer regions of the coma, which suggests decomposition of the organics in the coma environment. The majority of comet Halley organic particles are multicomponent mixtures of carbon phases and organic compounds. Possibly, the cometary CHON grains may be related to kerogen material of an interstellar origin in carbonaceous meteorites. Pure carbon grains, hydrocarbons and polymers of cyanopolyynes, and multi-carbon monoxides are present in cometary dust as compositionally simple and distinctive components among a variety of others. There is no clear evidence of significant presence of pure formaldehyde or HCN polymers in Halley dust particles. The diversity of types of cometary organic compounds is consistent with the inter-stellar dust model of comets and probably reflects differences in composition of precursor dust. Preservation of this heterogeneity among submicron particles suggest the gentle formation of cometary, nucleus by aggregation of interstellar dust in the protosolar nebula without complete mixing or chemical homogenization at the submicron level.
Migration of tungsten dust in tokamaks: role of dust-wall collisions
NASA Astrophysics Data System (ADS)
Ratynskaia, S.; Vignitchouk, L.; Tolias, P.; Bykov, I.; Bergsåker, H.; Litnovsky, A.; den Harder, N.; Lazzaro, E.
2013-12-01
The modelling of a controlled tungsten dust injection experiment in TEXTOR by the dust dynamics code MIGRAINe is reported. The code, in addition to the standard dust-plasma interaction processes, also encompasses major mechanical aspects of dust-surface collisions. The use of analytical expressions for the restitution coefficients as functions of the dust radius and impact velocity allows us to account for the sticking and rebound phenomena that define which parts of the dust size distribution can migrate efficiently. The experiment provided unambiguous evidence of long-distance dust migration; artificially introduced tungsten dust particles were collected 120° toroidally away from the injection point, but also a selectivity in the permissible size of transported grains was observed. The main experimental results are reproduced by modelling.
Trichothecene mycotoxins and their determinants in settled dust related to grain production.
Nordby, Karl-Christian; Halstensen, Anne Straumfors; Elen, Oleif; Clasen, Per-Erik; Langseth, Wenche; Kristensen, Petter; Eduard, Wijnand
2004-01-01
We hypothesise that inhalant exposure to mycotoxins causes developmental outcomes and certain hormone-related cancers that are associated with grain farming in an epidemiological study. The aim of the present study was to identify and validate determinants of measured trichothecene mycotoxins in grain dust as work environmental trichothecene exposure indicators. Settled grain dust was collected in 92 Norwegian farms during seasons of 1999 and 2000. Production characteristics and climatic data were studied as determinants of trichothecenes in settled dust samples obtained during the production of barley (N = 59), oats (N = 32), and spring wheat (N = 13). Median concentrations of trichothecenes in grain dust were <20, 54, and < 50 mg/kg (ranges < 20-340, < 30-2400, and < 50-1200) for deoxynivalenol (DON), HT-2 toxin (HT-2) and T-2 toxin (T-2) respectively. Late blight potato rot (fungal) forecasts have been broadcast in Norway to help prevent this potato disease. Fungal forecasts representing wet, temperate, and humid meteorological conditions were identified as strong determinants of trichothecene mycotoxins in settled grain dust in this study. Differences in cereal species, production properties and districts contributed less to explain mycotoxin concentrations. Fungal forecasts are validated as indicators of mycotoxin exposure of grain farmers and their use in epidemiological studies may be warranted.
[The epidemiological validation of the MPEL for grain dust in the atmosphere].
Pinigin, M A; Cherepov, E M; Safiulin, A A; Petrova, I V; Mukhambetova, L Kh; Osipova, E M; Veselov, A P
1998-01-01
The use of calculating and gravimetric methods for examining the grain dust pollution of the ambient air at the site of an elevator determined the maximum single, mean daily, and mean annual concentrations at different distances from the source of dust emission. The mean ratio of these concentrations was 12.1:4.3:1, respectively. The calculated concentration-effect and concentration-time relationships provided evidence for the maximum single, mean daily, and mean annual allowable concentrations for grain dust in the ambient air.
Atomistic and infrared study of CO-water amorphous ice onto olivine dust grain
NASA Astrophysics Data System (ADS)
Escamilla-Roa, Elizabeth; Moreno, Fernando; López-Moreno, J. Juan; Sainz-Díaz, C. Ignacio
2017-01-01
This work is a study of CO and H2O molecules as adsorbates that interact on the surface of olivine dust grains. Olivine (forsterite) is present on the Earth, planetary dust, in the interstellar medium (ISM) and in particular in comets. The composition of amorphous ice is very important for the interpretation of processes that occur in the solar system and the ISM. Dust particles in ISM are composed of a heterogeneous mixture of amorphous or crystalline silicates (e.g. olivine) organic material, carbon, and other minor constituents. These dust grains are embedded in a matrix of ices, such as H2O, CO, CO2, NH3, and CH4. We consider that any amorphous ice will interact and grow faster on dust grain surfaces. In this work we explore the adsorption of CO-H2O amorphous ice onto several (100) forsterite surfaces (dipolar and non-dipolar), by using first principle calculations based on density functional theory (DFT). These models are applied to two possible situations: i) adsorption of CO molecules mixed into an amorphous ice matrix (gas mixture) and adsorbed directly onto the forsterite surface. This interaction has lower adsorption energy than polar molecules (H2O and NH3) adsorbed on this surface; ii) adsorption of CO when the surface has previously been covered by amorphous water ice (onion model). In this case the calculations show that adsorption energy is low, indicating that this interaction is weak and therefore the CO can be desorbed with a small increase of temperature. Vibration spectroscopy for the most stable complex was also studied and the frequencies were in good agreement with experimental frequency values.
NASA Astrophysics Data System (ADS)
Nanni, Ambra; Marigo, Paola; Groenewegen, Martin A. T.; Aringer, Berhard; Girardi, Léo; Pastorelli, Giada; Bressan, Alessandro; Bladh, Sara
2016-07-01
We present our recent investigation aimed at constraining the typical size and optical properties of carbon dust grains in Circumstellar envelopes (CSEs) of carbon-rich stars (C-stars) in the Small Magellanic Cloud (SMC).We applied our recent dust growth model, coupled with a radiative transfer code, to the dusty CSEs of C-stars along the TP-AGB phase, for which we computed spectra and colors. We then compared our modeled colors in the Near and Mid Infrared (NIR and MIR) bands with the observed ones, testing different assumptions in our dust scheme and employing different optical constants data sets for carbon dust. We constrained the optical properties of carbon dust by identifying the combinations of typical grain size and optical constants data set which simultaneously reproduce several colors in the NIR and MIR wavelengths. In particular, the different choices of optical properties and grain size lead to differences in the NIR and MIR colors greater than two magnitudes in some cases. We concluded that the complete set of selected NIR and MIR colors are best reproduced by small grains, with sizes between 0.06 and 0.1 mum, rather than by large grains of 0.2-0.4 mum. The inability of large grains to reproduce NIR and MIR colors is found to be independent of the adopted optical data set and the deviations between models and observations tend to increase for increasing grain sizes. We also find a possible trend of the typical grain size with mss-loss and/or carbon-excess in the CSEs of these stars.The work presented is preparatory to future studies aimed at calibrating the TP-AGB phase through resolved stellar populations in the framework of the STARKEY project.
Park, H S; Jung, K S
1998-03-01
There have been few reports suggesting involvement of neutrophils in induction of bronchoconstriction after inhalation of grain dust. To understand the role of neutrophils in pathogenesis of grain dust-induced asthma. We observed serum neutrophil chemotactic activity during grain dust-bronchoprovocation tests in six asthmatic subjects with positive bronchial challenges (group I). They were compared with those of six symptomatic subjects from the same workplace with negative bronchial challenges (group II). After grain dust inhalation, serum neutrophil chemotactic activity significantly increased at 30 minutes (P = .028), and then decreased to baseline level at 240 minutes (P = .028) in five subjects of group I having isolated early asthmatic responses. Enhanced neutrophil chemotactic activity was persistent for up to 240 minutes in one asthmatic subject having both early and late asthmatic responses. There was, however, no significant change in serum neutrophil chemotactic activity during bronchial challenges in subjects of group II. Pre-incubation of sera with anti-interleukin-8 (IL-8) antibody did not affect the neutrophil chemotactic activity results of group I subjects. These results suggest that enhanced neutrophil chemotactic activity distinct from IL-8 may contribute to significant bronchoconstriction induced by grain dust.
DustEM: Dust extinction and emission modelling
NASA Astrophysics Data System (ADS)
Compiègne, M.; Verstraete, L.; Jones, A.; Bernard, J.-P.; Boulanger, F.; Flagey, N.; Le Bourlot, J.; Paradis, D.; Ysard, N.
2013-07-01
DustEM computes the extinction and the emission of interstellar dust grains heated by photons. It is written in Fortran 95 and is jointly developed by IAS and CESR. The dust emission is calculated in the optically thin limit (no radiative transfer) and the default spectral range is 40 to 108 nm. The code is designed so dust properties can easily be changed and mixed and to allow for the inclusion of new grain physics.
Laboratory Studies on the Charging of Dust Grains in a Plasma
NASA Astrophysics Data System (ADS)
Xu, Wenjun
1993-01-01
The charging of dust grains by the surrounding plasma is studied in a dusty plasma device (DPD) (Xu, W., B. Song, R. L. Merlino, and N. D'Angelo, Rev. Sci. Instrum., 63, 5266, 1992). The dusty plasma device consists of a rotating-drum dust dispersal device used in conjunction with an existing Q-machine, to produce extended, steady state, magnetized plasma columns. The dust density in the dust chamber is controlled by the drum rotation speed. The device is capable of generating a dusty plasma in which as much as about 90% of the negative charge is attached to the dust grains of 1-10mu m size. Measurements of the dust parameter eta, the percentage of negative charge on free electrons in the dusty plasma, are presented. The dust parameter eta is found to depend on the rotational speed of the dust chamber, plasma density and the type and size of different dust. The dust parameter eta is calculated from a pair of Langmuir curves taken with and without dust under the same conditions. The operation of the dust chamber as described above has been confirmed by the agreement between the measurements of eta and the direct mechanical measurements consisting of weighing dust samples collected within the rotation dust chamber, at different rotation rates. By varying the ratio d/lambda_ {rm D} between the intergrain distance and the plasma Debye length, the effects predicted by Goertz and Ip (Goertz, C. K., and W-H. Ip, Geophys. Res. Lett., 11, 349, 1984), and subsequently reanalyzed in a more general fashion by Whipple et al. (Whipple, E. C., T. G. Northrop, and D. A. Mendis, J. Geophys. Rev., 90, 7405, 1985), as "isolated" dust grains become "closely packed" grains, have been demonstrated experimentally (Xu, W., N. D'Angelo, and R. L. Merlino, J. Geophys. Rev., 98, 7843, 1993). Similar results are presented and compared for two types of dust, kaolin and Al_2O _3, which have been studied in the experiment.
Shen, Zhenyao; Liu, Jin; Aini, Guzhanuer; Gong, Yongwei
2016-02-01
The deposition of pollutants on impervious surfaces is a serious problem associated with rapid urbanization, which results in non-point-source pollution. Characterizing the build-up and wash-off processes of pollutants in urban catchments is essential for urban planners. In this paper, the spatial variation and particle-size distributions of five heavy metals and two nutrients in surface dust were analyzed, and the runoff water first-flush effect (FF30) and event-mean concentrations (EMCs) of 10 common constituents were characterized. The relationships between runoff variables and stormwater characteristics were examined from three typical urban impervious surfaces in Beijing, China. Dust on road surfaces with smaller grain sizes had higher pollutant concentrations, whereas concentrations of Mn, Zn, Fe, and TP in roof surface dust increased with grain size. Particles with grain sizes of 38-74 and 125-300 μm contributed most to the total pollutant load in roads, while particles with the smallest grain sizes (<38 μm) contributed most on roofs (23.46-41.71 %). Event-mean concentrations (EMCs) and FF30 values for most runoff pollutants tended to be higher on roofs than on roads. The maximum intensity (I max) and the antecedent dry days (ADD) were critical parameters for EMCs in roads, while ADD was the only dominant parameter for EMCs on our studied roof. The rainfall intensity (RI) and maximum intensity (I max) were found to be the parameters with the strongest correlation to the first-flush effect on both roads and roofs. Significant correlations of total suspended solids (TSS) concentration in runoff with grain-size fractions of surface dust indicated that coarser particles (74-300 μm) are most likely to contribute to the solid-phase pollutants, and finer particles (<38 μm) are likely the main source of dissolved pollutants.
NASA Astrophysics Data System (ADS)
Chang, Qiang; Herbst, Eric
2016-03-01
The recent discovery of methyl formate and dimethyl ether in the gas phase of cold cores with temperatures as cold as 10 K challenges our previous astrochemical models concerning the formation of complex organic molecules (COMs). The strong correlation between the abundances and distributions of methyl formate and dimethyl ether further shows that current astrochemical models may be missing important chemical processes in cold astronomical sources. We investigate a scenario in which COMs and the methoxy radical can be formed on dust grains via a so-called chain reaction mechanism, in a similar manner to CO2. A unified gas-grain microscopic-macroscopic Monte Carlo approach with both normal and interstitial sites for icy grain mantles is used to perform the chemical simulations. Reactive desorption with varying degrees of efficiency is included to enhance the nonthermal desorption of species formed on cold dust grains. In addition, varying degrees of efficiency for the surface formation of methoxy are also included. The observed abundances of a variety of organic molecules in cold cores can be reproduced in our models. The strong correlation between the abundances of methyl formate and dimethyl ether in cold cores can also be explained. Nondiffusive chemical reactions on dust grain surfaces may play a key role in the formation of some COMs.
Studies on plasma profiles and its effect on dust charging in hydrogen plasma
NASA Astrophysics Data System (ADS)
Kakati, B.; Kausik, S. S.; Saikia, B. K.; Bandyopadhay, M.
2010-02-01
Plasma profiles and its influence on dust charging are studied in hydrogen plasma. The plasma is produced in a high vacuum device by a hot cathode discharge method and is confined by a cusped magnetic field cage. A cylindrical Espion advanced Langmuir probe having 0.15 mm diameter and 10.0 mm length is used to study the plasma parameters for various discharge conditions. Optimum operational discharge parameters in terms of charging of the dust grains are studied. The charge on the surface of the dust particle is calculated from the capacitance model and the current by the dust grains is measured by the combination of a Faraday cup and an electrometer. Unlike our previous experiments in which dust grains were produced in-situ, here a dust dropper is used to drop the dust particles into the plasma.
Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyazaki, Yoshinori; Korenaga, Jun
We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a largemore » temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.« less
Effects of Chemistry on Vertical Dust Motion in Early Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Miyazaki, Yoshinori; Korenaga, Jun
2017-11-01
We propose the possibility of a new phenomenon affecting the settling of dust grains at the terrestrial region in early protoplanetary disks. Sinking dust grains evaporate in a hot inner region during the early stage of disk evolution, and the effects of condensation and evaporation on vertical dust settling can be significant. A 1D dust settling model considering both physical and chemical aspects is presented in this paper. Modeling results show that dust grains evaporate as they descend into the hotter interior and form a condensation front, above which dust-composing major elements, Mg, Si, and Fe, accumulate, creating a large temperature gradient. Repeated evaporation at the front inhibits grain growth, and small grain sizes elevate the opacity away from the midplane. Self-consistent calculations, including radiative heat transfer and condensation theory, suggest that the mid-disk temperature could be high enough for silicates to remain evaporated longer than previous estimates. The formation of a condensation front leads to contrasting settling behaviors between highly refractory elements, such as Al and Ca, and moderately refractory elements, such as Mg, Si, and Fe, suggesting that elemental abundance in planetesimals may not be a simple function of volatility.
Featured Image: Making Dust in the Lab
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-12-01
This remarkable photograph (which spans only 10 m across; click for a full view) reveals what happens when you form dust grains in a laboratory under conditions similar to those of interstellar space. The cosmic life cycle of dust grains is not well understood we know that in the interstellar medium (ISM), dust is destroyed at a higher rate than it is produced by stellar sources. Since the amount of dust in the ISM stays constant, however, there must be additional sources of dust production besides stars. A team of scientists led by Daniele Fulvio (Pontifical Catholic University of Rio de Janeiro and the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena) have now studied formation mechanisms of dust grains in the lab by mimicking low-temperature ISM conditions and exploring how, under these conditions, carbonaceous materials condense from gas phase to form dust grains. To read more about their results and see additional images, check out the paper below.CitationDaniele Fulvio et al 2017 ApJS 233 14. doi:10.3847/1538-4365/aa9224
Formation of Cosmic Carbon Dust Analogues in Plasma Reactors
NASA Technical Reports Server (NTRS)
Salama, Farid
2016-01-01
Cosmic carbon dust analogs are produced, processed and analyzed in the laboratory using NASA's COSmIC (COSmIC Simulation Chamber) Facility. These experiments can be used to derive information on the most efficient molecular precursors in the chemical pathways that eventually lead to the formation of carbonaceous grains in the stellar envelopes of carbon stars.
Grain Surface Chemistry and the Composition of Interstellar Ices
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.
2006-01-01
Submicron sized dust grains are an important component of the interstellar medium. In particular they provide surface where active chemistry can take place. At the low temperatures (-10 K) of the interstellar medium, colliding gas phase species will stick, diffuse, react, and form an icy mantle on these dust grains. This talk will review the principles of grain surface chemistry and delineate important grain surface routes, focusing on reactions involving H, D, and O among each other and with molecules such as CO. Interstellar ice mantles can be studied through the fundamental vibrations of molecular species in the mid-infrared spectra of sources embedded in or located behind dense molecular clouds. Analysis of this type of data has provided a complex view of the composition of these ices and the processes involved. Specifically, besides grain surface chemistry, the composition of interstellar ices is also affected by thermal processing due to nearby newly formed stars. This leads to segregation between different ice components as well as outgassing. The latter results in the formation of a so-called Hot Core region with a gas phase composition dominated by evaporated mantle species. Studies of such regions provide thus a different view on the ice composition and the chemical processes involved. Interstellar ices can also be processed by FUV photons and high energy cosmic ray ions. Cosmic ray processing likely dominates the return of accreted species to the gas phase where further gas phase reactions can take place. These different chemical routes towards molecular complexity in molecular clouds and particularly regions of star formation will be discussed.
OUTWARD MOTION OF POROUS DUST AGGREGATES BY STELLAR RADIATION PRESSURE IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tazaki, Ryo; Nomura, Hideko, E-mail: rtazaki@kusastro.kyoto-u.ac.jp
2015-02-01
We study the dust motion at the surface layer of protoplanetary disks. Dust grains in the surface layer migrate outward owing to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study we calculate the mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates, in contrast tomore » homogeneous and spherical compact grains, for which radiation pressure efficiency becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 μm is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-aluminum-rich inclusions are hardly transported to the outer region by stellar radiation pressure, whereas porous dust aggregates like chondritic-porous interplanetary dust particles are efficiently transported to the comet formation region. Crystalline silicates are possibly transported in porous dust aggregates by stellar radiation pressure from the inner hot region to the outer cold cometary region in the protosolar nebula.« less
Comet C/2013 US10 (CATALINA) - Dust in the Infrared with SOFIA
NASA Astrophysics Data System (ADS)
Woodward, Charles E.; Kelley, Michael S. P.; Harker, David E.; Russell, Ray W.; Kim, Daryl L.; Sitko, Michael L.; Wooden, Diane H.
2018-01-01
One of the major goals of modern astronomy is the "search for origins'' from the big bang to the development of intelligence. A key process in developing our understanding of these origins is how planetary systems are created from dusty disks around stars and evolve into planets with water and other molecules. Traces of primordial materials, and their least-processed products, are found in the outermost regions of the solar system -- the realm of comets -- in the form of ices of volatile materials (H2O, NH3, CO, CH4, and other more rare species), and more refractory dust grains. There is considerable evidence that in the cold regions where cometary material formed, existing comet bodies were mixed with refractory material processed at much higher temperatures. Remote sensing observation of comets provides a means to study the properties of this dust material to characterize the nature of refactory comet grains. These include observations of both the re-radiated thermal (spectrophotometric) and scattered light (spectrophotometric and polarimetric). The former technique provides our most direct link to the composition (mineral content) of the grains.Here we report our post-perihelion (TP = 2015 Nov 15.721 UT) infrared 2 to 31 micron spectrophotometric observations and dust thermal model analyses of comet C/2013 US10 (Catalina), a dynamically new Oort Cloud comet -- 1/aorg [reciprocal original semimajor axis ] = 0.00005339 -- conducted at two contemporaneous observational epochs near close Earth approach (Δ ≈ 0.93 AU) with NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) complemented by observations from the NASA Infrared Telescope Facility (IRTF).
Hill, Hugh G. M.; Grady, Carol A.; Nuth, Joseph A.; Hallenbeck, Susan L.; Sitko, Michael L.
2001-01-01
Understanding dynamic conditions in the Solar Nebula is the key to prediction of the material to be found in comets. We suggest that a dynamic, large-scale circulation pattern brings processed dust and gas from the inner nebula back out into the region of cometesimal formation—extending possibly hundreds of astronomical units (AU) from the sun—and that the composition of comets is determined by a chemical reaction network closely coupled to the dynamic transport of dust and gas in the system. This scenario is supported by laboratory studies of Mg silicates and the astronomical data for comets and for protoplanetary disks associated with young stars, which demonstrate that annealing of nebular silicates must occur in conjunction with a large-scale circulation. Mass recycling of dust should have a significant effect on the chemical kinetics of the outer nebula by introducing reduced, gas-phase species produced in the higher temperature and pressure environment of the inner nebula, along with freshly processed grains with “clean” catalytic surfaces to the region of cometesimal formation. Because comets probably form throughout the lifetime of the Solar Nebula and processed (crystalline) grains are not immediately available for incorporation into the first generation of comets, an increasing fraction of dust incorporated into a growing comet should be crystalline olivine and this fraction can serve as a crude chronometer of the relative ages of comets. The formation and evolution of key organic and biogenic molecules in comets are potentially of great consequence to astrobiology. PMID:11226213
NASA Technical Reports Server (NTRS)
Nuth, J. A.; Brearley, A. J.; Scott, E. R. D.
2004-01-01
Comets, fine-grained matrices of chondrites, and chondritic interplanetary dust particles (IDPs) are each composed of both crystalline and amorphous silicates. The primitive solar nebula, in which comets and asteroids accreted, was formed from the collapsed core of a Giant Molecular Cloud, that, in turn, condensed from materials present in the interstellar medium (ISM). Despite observations that reveal the presence of crystalline magnesium silicate minerals in the shells of very high mass-loss-rate stars [1,2], typical silicate grains in the ISM are most likely to be amorphous, given their relatively long residence time in such a high radiation environment. An upper limit of 3% crystalline grains can be derived from their non-detection in spectra of ISM solids [3]. If the vast majority of grains that enter the primitive solar nebula are amorphous, then the observation of crystalline dust in comets and primitive chondrite matrices indicates the action of specific processes required to transform the amorphous starting materials into the crystals that are observed.
Dust cloud evolution in sub-stellar atmospheres via plasma deposition and plasma sputtering
NASA Astrophysics Data System (ADS)
Stark, C. R.; Diver, D. A.
2018-04-01
Context. In contemporary sub-stellar model atmospheres, dust growth occurs through neutral gas-phase surface chemistry. Recently, there has been a growing body of theoretical and observational evidence suggesting that ionisation processes can also occur. As a result, atmospheres are populated by regions composed of plasma, gas and dust, and the consequent influence of plasma processes on dust evolution is enhanced. Aim. This paper aims to introduce a new model of dust growth and destruction in sub-stellar atmospheres via plasma deposition and plasma sputtering. Methods: Using example sub-stellar atmospheres from DRIFT-PHOENIX, we have compared plasma deposition and sputtering timescales to those from neutral gas-phase surface chemistry to ascertain their regimes of influence. We calculated the plasma sputtering yield and discuss the circumstances where plasma sputtering dominates over deposition. Results: Within the highest dust density cloud regions, plasma deposition and sputtering dominates over neutral gas-phase surface chemistry if the degree of ionisation is ≳10-4. Loosely bound grains with surface binding energies of the order of 0.1-1 eV are susceptible to destruction through plasma sputtering for feasible degrees of ionisation and electron temperatures; whereas, strong crystalline grains with binding energies of the order 10 eV are resistant to sputtering. Conclusions: The mathematical framework outlined sets the foundation for the inclusion of plasma deposition and plasma sputtering in global dust cloud formation models of sub-stellar atmospheres.
NASA Astrophysics Data System (ADS)
Wickramasinghe, Chandra
After initially challenging the dirty-ice theory of interstellar grains, Fred Hoyle and the present author proposed carbon (graphite) grains, mixtures of refractory grains, organic polymers, biochemicals and finally bacterial grains as models of interstellar dust. The present contribution summarizes this trend and reviews the main arguments supporting a modern version of panspermia.
What if chondritic porous interplanetary dust particles are not the real McCoy
NASA Astrophysics Data System (ADS)
Rietmeijer, Frans J. M.
To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for sampling device and curation of samples for CNSRM.
What if chondritic porous interplanetary dust particles are not the real McCoy
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1989-01-01
To select a target comet for a Comet Nucleus Sample Return Mission (CNSRM) it is necessary to have an experimental data base to evaluate the extent of diversity and similarity of comets. For example, the physical properties (e.g., low density) of chondritic porous (CP) interplanetary dust particles (IDPs) are believed to resemble these properties of cometary dust although it is yet to be demonstrated that the porous structure of CP IDPs is inherent to presolar dust particles stored in comet nuclei. Porous structures of IDPs could conceivably form during sublimation at the surface of active comet nuclei. Porous structures are also obtained during annealing of amorphous Mg-SiO smokes which initially forms porous aggregates of olivine + platey tridymite and which, upon continued annealing, react to fluffy enstatite aggregates. It is therefore uncertain that CP IDPs are entirely composed of unmetamorphosed presolar dust. Conceivably, new minerals and textures may form in situ in nuclei of active comets as a function of their individual thermal history. Unmetamorphosed comet dust is probably structurally amorphous. Thermal annealing of this dust can produce ultra fine-grained minerals and this ultrafine grain size of CP IDPs should be considered in assessments of aqueous alterations that could affect presolar dust in comet nuclei between 200 and 400 K. Devitrification and hydration may occur in situ in ice-dust mixtures and the mantle of active comet nuclei. Devitrification, or uncontrolled crystallization, of amorphous precursor dust can produce a range of chemical compositions of ultrafine-grained minerals and (non-equilibrium) mineral assemblages and textures in dust contained in comet nuclei as a function of period and trajectory of orbit and number of perihelion passages (not considering internal heating). Thus, experimental data on relevant processes and reaction rates between 200 and 400 K are needed in order to evaluate comet selection, penetration depth for sampling device and curation of samples for CNSRM.
Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains
NASA Astrophysics Data System (ADS)
Muñoz, O.; Moreno, F.; Vargas-Martín, F.; Guirado, D.; Escobar-Cerezo, J.; Min, M.; Hovenier, J. W.
2017-09-01
We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (I) soft forward peaks and (II) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.
``Particle traps'' at planet gap edges in disks: effects of grain growth and fragmentation
NASA Astrophysics Data System (ADS)
Gonzalez, J.-F.; Laibe, G.; Maddison, S. T.; Pinte, C.; Ménard, F.
2014-12-01
We model the dust evolution in protoplanetary disks (PPD) with 3D, Smoothed Particle Hydrodynamics (SPH), two-phase (gas+dust) hydrodynamical simulations. The gas+dust dynamics, where aerodynamic drag leads to the vertical settling and radial migration of grains, is consistently treated. In a previous work, we characterized the spatial distribution of non-growing dust grains of different sizes in a disk containing a gap-opening planet and investigated the gap's detectability with ALMA. Here we take into account the effects of grain growth and fragmentation and study their impact on the distribution of solids in the disk. We show that rapid grain growth in the ``particle traps'' at the edges of planet gaps are strongly affected by fragmentation. We discuss the consequences for ALMA and NOEMA observations.
Infrared dust and millimeter-wave carbon monoxide emission in the Orion region
NASA Technical Reports Server (NTRS)
Bally, John; Langer, William D.; Liu, Weihong
1991-01-01
The far-infrared dust emission seen by the IRAS satellite in the Orion region is analyzed as a function of the local radiation field intensity, and the dust temperature and opacity are compared with (C-12)O and (C-13)O emission. The infrared radiation is interpreted within the framework of a single-component large grain model and a multicomponent grain model consisting of subpopulations of grains with size-dependent temperatures. A strong dependence of the 100-micron optical depth derived is found using the large grain model on the average line-of-sight dust temperature and radiation field. In the hot environment surrounding high-luminosity sources and H II regions, all dust along the line-of-sight radiates at 100 microns, and the dust-to-gas ratio, based on the 100-micron opacity and I(/C-13/O), appears to be in agreement with the standard value, about 1 percent by mass. A relationship is found between the inferred dust-to-gas ratio and the radiation field intensity responsible for heating the dust which can be used to estimate the gas column density from the dust opacity derived from the 60- and 100-micron IRAS fluxes.
NASA Technical Reports Server (NTRS)
Ragot, B. R.; Kahler, S. W.
2003-01-01
The density of interplanetary dust increases sunward to reach its maximum in the F corona, where its scattered white-light emission dominates that of the electron K corona above about 3 Solar Radius. The dust will interact with both the particles and fields of antisunward propagating coronal mass ejections (CMEs). To understand the effects of the CME/dust interactions we consider the dominant forces, with and without CMEs. acting on the dust in the 3-5 Solar Radius region. Dust grain orbits are then computed to compare the drift rates from 5 to 3 Solar Radius. for periods of minimum and maximum solar activity, where a simple CME model is adopted to distinguish between the two periods. The ion-drag force, even in the quiet solar wind, reduces the drift time by a significant factor from its value estimated with the Poynting-Robertson drag force alone. The ion-drag effects of CMEs result in even shorter drift times of the large (greater than or approx. 3 microns) dust grains. hence faster depletion rates and lower dust-pain densities, at solar maxima. If dominated by thermal emission, the near-infrared brightness will thus display solar cycle variations close to the dust plane of symmetry. While trapping the smallest of the grains, the CME magnetic fields also scatter the grains of intermediate size (0.1-3 microns) in latitude. If light scattering by small grains close to the Sun dominates the optical brightness. the scattering by the CME magnetic fields will result in a solar cycle variation of the optical brightness distribution not exceeding 100% at high latitudes, with a higher isotropy reached at solar maxima. A good degree of latitudinal isotropy is already reached at low solar activity since the magnetic fields of the quiet solar wind so close to the Sun are able to scatter the small (less than or approx. 3 microns) grains up to the polar regions in only a few days or less, producing strong perturbations of their trajectories in less than half their orbital periods. Finally, we consider possible observable consequences of individual CME/dust interactions. We show that the dust grains very likely have no observable effect on the dynamics of CMEs. The effect of an individual CME on the dust grains, however, might serve as a forecasting tool for the directions and amplitudes of the magnetic fields within the CME.
Tangni, E K; Pussemier, L
2006-02-01
Crop storage should be carried out under hygienic conditions to ensure safe products, but sometimes grain dust which has settled from previous storage may be left over and incorporated to the following stored grains. This paper describes the results obtained using a lab model developed in order to assess the impact of grain dust incorporation for its direct contribution as a contaminant but also as an inoculum in stored wheat. Settled grain dust (4 samples) released from Belgian grain storages were collected and analysed by HPLC for ergosterol, ochratoxin A (OTA) and citrinin (CIT) content. For OTA and for ergosterol, there was a high degree of variability in concentrations found in the dust samples (from 17.3-318 ng g(-1) and from 39-823 microg g(-1), respectively) whilst for CIT, the range was less significant (from 137-344 ng g(-1)). Incorporation of grain dust into wheat storage contributed to an increase in the concentrations of mycotoxins in the stored grain. Dust acts as a contaminant and as an inoculum. According to these two ways, patterns of mycotoxin generation vary with the nature of the mycotoxin, the mycotoxigenic potential of dust and the water activity of the wheat. OTA and CIT showed a very versatile image when considering the amounts of toxins produced under the selected experimental conditions. The development of a robust tool to forecast the mycotoxigenicity of dust was based on the determination of ergosterol content as a general marker of fungal biomass. Present results suggest that this predictive tool would only be valid for predicting the contamination level of CIT and OTA at reasonable moisture content (14-20%). The potential risk of having highly contaminated batches from stock to stock may thus occur and this paper discusses possible pathways leading to OTA and CIT contamination either under wet or dry storage conditions. We therefore, recommend taking precautionary measures not only by controlling and maintaining moisture at a reasonable level during storage of the raw materials but also by paying more attention to the cleaning of the stores before loading in the new harvests.
AKARI observations of dust processing in merger galaxies: NGC2782 and NGC7727
NASA Astrophysics Data System (ADS)
Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Ohsawa, Ryou; Mori, Tamami; Wu, Ronin; Kaneda, Hidehiro
2015-08-01
Dust grains are the major reservoir of heavy elements and play significant roles in the thermal balance and chemistry in the interstellar medium. Where dust grains are formed and how they evolve in the ISM are one of the key issues for the understanding of the material evolution in the Universe. Although theoretical studies have been made, very little is so far known observationally about the lifecycle of dust grains in the ISM and that associated with Galactic scale events. The lifecycle of very small carbonaceous grains that contain polycyclic aromatic hydrocarbons (PAHs) or PAH-like atomic groups are of particular interest because they emit distinct band emission in the near- to mid-infrared region and they are thought to be most vulnerable to environmental conditions. PAHs may be formed in carbon-rich stars, while recent AKARI observations suggest that they may be formed by fragmentation of large carbonaceous grains in shocks in a supernova remnant or a galactic wind (Onaka et al. 2010, A&A, 514, 15; Seok et al. 2012, ApJ, 744, 160).Here we report results of AKARI observations of two mergers. NGC2782 (Arp 215) and NGC7727 (Arp 222). NGC2782 is a merger of 200Myr old. It shows a very long western tail of HI gas by a tidal interaction and the eastern tail that consists mainly of stellar components without an appreciable amount of gas and is thought to be a relic of the colliding low-mass galaxy whose gas component has been stripped off Smith 1994, AJ, 107, 1695. We found significant emission at the 7 μm band of the IRC onboard AKARI, which must come from PAH 6.2 and 7.7 μm bands, in the eastern tail. Based on dust model fitting, we found a low abundance of ~10nm size dust despite of the presence of PAHs, suggesting that PAHs may be formed from fragmentation of ~10nm carbonaceous dust grains. NGC7727 is a 1.2Gyr old merger and shows a SED similar to the NGC2782 tail in the northern tail of the merger event product, suggesting also the formation of PAHs from fragmentation. The observations of both galaxies indicate that PAHs can survive in violent events. We discuss these results in relation to the PAH formation and destruction.
LADEE Search for a Dust Exosphere: A Historical Perspective
NASA Technical Reports Server (NTRS)
Glenar, D. A.; Stubbs, T. J.; Elphic, R.
2014-01-01
The LADEE search for exospheric dust is strongly motivated by putative detections of forward-scattered sunlight from exospheric dust grains which were observed during the Apollo era. This dust population, if it exists, has been associated with charging and transport of dust near the terminators. It is likely that the concentration of these dust grains is governed by a saltation mechanism originated by micrometeoroid impacts, which are the source of the more tenuous ejecta cloud.
Wurm; Blum
2000-01-20
We experimentally studied the shape of dust grains grown in a cluster-cluster type of aggregation (CCA) and derived characteristic axial ratios to describe the nonsphericity. CCAs might be described by an axial ratio rhoCCA=rg,max&solm0;rg,min approximately 2.0 in the limit of large aggregates, where rg,min and rg,max describe the minimum and maximum radius of gyration, while small aggregates show a somewhat larger value in their mean axial ratio up to rhoCCA approximately 3.0 but rapidly decrease to the limit rhoCCA approximately 2.0. The axial ratios for large aggregates are in agreement with the general findings of different authors for axial ratios of interstellar dust grains that are generally described by rods or spheroids. Beyond this kind of agreement, our approach does not necessarily require a special shape for individual dust grains but rather offers a physical process to generate nonsphericity. Although the simple shapes might be sufficient for first-order applications and are easier to handle analytically, our results offer a firm ground of special axial ratios for rods or spheroids on a more physical basis apart from any ad hoc assumptions. We also find an alignment of the aggregates during sedimentation in a gas along the drift axis leading to an axial ratio of rhoCCA,align=1.21+/-0.02 with respect to the drift axis and an axis perpendicular to this drift. This result is directly applicable to dust grains in protoplanetary disks and planetary atmospheres.
Observations of dusty plasmas with magnetized dust grains
NASA Astrophysics Data System (ADS)
Luo, Q.-Z.; D'Angelo, N.
2000-11-01
We report a newly observed phenomenon in a dusty plasma device of the \\mbox{Q-machine} type. At low plasma densities the time required by the plasma to return to its no-dust conditions, after the dust dispenser is turned off, can be as long as many tens of seconds or longer. A tentative interpretation of this observation in terms of magnetized dust grains is advanced. It appears that an important loss mechanism of fine dust grains is by ion drag along the magnetic field lines. The effect of ion drag is somewhat counteracted by the -µ∇B force present when the magnetic field has a mirror geometry.
NASA Astrophysics Data System (ADS)
Wang, Leibin; Jia, Jia; Li, Guoqiang; Li, Zaijun; Wang, Xin; Chen, Fahu
2018-04-01
The desert and semi-desert region of arid central Asia is one of the most important areas of middle-latitude dust emission and deposition in the Northern Hemisphere. Marine isotope stage 2 (MIS 2) was the latest and one of the most representative intervals of dust emission from the region, and it is especially important for research into processes of dust transportation and deposition. Here, we report the results of an optically stimulated luminescence study of the Hoalin section in southern Tajikistan, which was deposited during MIS 2. The fine-grained quartz single aliquot regeneration (SAR) approach was used and its reliability was verified by internal checks. In addition, grain-size analyses, calculated dust accumulation rates (DARs) and mass accumulation rates (MARs) were used to reconstruct the pattern of climate change during MIS 2. The mean DAR for southern Tajikistan during MIS 2 was 0.43 m/ka, and the corresponding average MAR was 673 g/cm2/a for a non-river-terrace site, which is higher than the average MARs estimated for the central and southern Chinese Loess Plateau (CLP). In contrast to previous suggestions, the high dust DARs and MARs during the LGM indicate a 'cold-dry' climatic pattern, rather than a 'cold-humid' pattern. Our results also confirm that the patterns of high dust emission and deposition during the LGM in the mid-latitude arid zone of Asia were synchronous.
A note on dust grain charging in space plasmas
NASA Technical Reports Server (NTRS)
Rosenberg, M.; Mendis, D. A.
1992-01-01
Central to the study of dust-plasma interactions in the solar system is the electrostatic charging of dust grains. While previous calculations have generally assumed that the distributions of electrons and ions in the plasma are Maxwellian, most space plasmas are observed to have non-Maxwellian tails and can often be fit by a generalized Lorentzian (kappa) distribution. Here we use such a distribution to reevaluate the grain potential, under the condition that the dominant currents to the grain are due to electron and ion collection, as is the case in certain regions of space. The magnitude of the grain potential is found to be larger than that in a Maxwellian plasma as long as the electrons are described by a kappa distribution: this enhancement increased with ion mass and decreasing electron kappa. The modification of the grain potential in generalized Lorentzian plasmas has implications for both the physics (e.g., grain growth and disruption) and the dynamics of dust in space plasmas. These are also briefly discussed.
Interstellar Dust in the Heliosheath: Tentative Discovery of the Magnetic Wall of the Heliosphere
NASA Astrophysics Data System (ADS)
Frisch, P. C.
2005-12-01
The evident identification of interstellar dust grains entrained in the magnetic wall of the heliosphere is reported. It is shown that the distribution of dust grains causing the weak polarization of light from nearby stars is consistent with polarization by small charged interstellar dust grains captured in the heliosphere magnetic wall (Tinbergen 1982, Frisch 2005). There is an offset between the deflected small charged polarizing dust grains, radius less than 0.2 microns, and the undeflected large grain population, radius larger than 0.2 microns. The region of maximum polarization is towards ecliptic coordinates lambda,beta = 295,0 deg, which is offset along the ecliptic longitude by about 35 deg from the heliosphere nose and extends to low ecliptic latitudes where the heliosphere magnetic wall is expected. An offset is also found between the best aligned dust grains, near lambda=281 deg to 220 deg, and the upwind direction of the undeflected inflow of large grains seen by Ulysses and Galileo. In the aligned-grain region, the polarization strength anti-correlates with ecliptic latitude, indicating that the magnetic wall was predominantly at negative ecliptic latitudes when these data were acquired. These data are consistent with model predictions for an interstellar magnetic field which is tilted by 60 deg with respect to the ecliptic plane, and parallel to the galactic plane. References: Tinbergen, 1982: AA, v105, p53; Frisch, 2005: to appear in ApJL.
Trajectories and distribution of interstellar dust grains in the heliosphere
Slavin, Jonathan D.; Frisch, Priscilla C.; Müller, Hans-Reinhard; ...
2012-11-01
The solar wind carves a bubble in the surrounding interstellar medium (ISM) known as the heliosphere. Charged interstellar dust grains (ISDG) encountering the heliosphere may be diverted around the heliopause or penetrate it depending on their charge-to-mass ratio. Here, we present new calculations of trajectories of ISDG in the heliosphere, and the dust density distributions that result. We include up-to-date grain charging calculations using a realistic UV radiation field and full three-dimensional magnetohydrodynamic fluid + kinetic models for the heliosphere. Models with two different (constant) polarities for the solar wind magnetic field (SWMF) are used, with the grain trajectory calculationsmore » done separately for each polarity. Small grains a gr ≲ 0.01 μm are completely excluded from the inner heliosphere. Large grains, a gr ≳ 1.0 μm, pass into the inner solar system and are concentrated near the Sun by its gravity. Trajectories of intermediate size grains depend strongly on the SWMF polarity. When the field has magnetic north pointing to ecliptic north, the field de-focuses the grains resulting in low densities in the inner heliosphere, while for the opposite polarity the dust is focused near the Sun. The ISDG density outside the heliosphere inferred from applying the model results to in situ dust measurements is inconsistent with local ISM depletion data for both SWMF polarities but is bracketed by them. Our result points to the need to include the time variation in the SWMF polarity during grain propagation. This provides valuable insights for interpretation of the in situ dust observations from Ulysses.« less
The role of endotoxin in grain dust-induced lung disease.
Schwartz, D A; Thorne, P S; Yagla, S J; Burmeister, L F; Olenchock, S A; Watt, J L; Quinn, T J
1995-08-01
To identify the role of endotoxin in grain dust-induced lung disease, we conducted a population-based, cross-sectional investigation among grain handlers and postal workers. The study subjects were selected by randomly sampling all grain facilities and post offices within 100 miles of Iowa City. Our study population consisted of 410 grain workers and 201 postal workers. Grain workers were found to be exposed to higher concentrations of airborne dust (p = 0.0001) and endotoxin (p = 0.0001) when compared with postal workers. Grain workers had a significantly higher prevalence of work-related (cough, phlegm, wheezing, chest tightness, and dyspnea) and chronic (usual cough or phlegm production) respiratory symptoms than postal workers. Moreover, after controlling for age, gender, and cigarette smoking status, work-related respiratory symptoms were strongly associated with the concentration of endotoxin in the bioaerosol in the work setting. The concentration of total dust in the bioaerosol was marginally related to these respiratory problems. After controlling for age, gender, and cigarette smoking status, grain workers were found to have reduced spirometric measures of airflow (FEV1, FEV1/FVC, and FEF25-75) and enhanced airway reactivity to inhaled histamine when compared with postal workers. Although the total dust concentration in the work environment appeared to have little effect on these measures of airflow obstruction, higher concentrations of endotoxin in the bioaerosol were associated with diminished measures of airflow and enhanced bronchial reactivity. Our results indicate that the concentration of endotoxin in the bioaerosol may be particularly important in the development of grain dust-induced lung disease.
Halstensen, Anne Straumfors; Nordby, Karl-Christian; Eduard, Wijnand; Klemsdal, Sonja Sletner
2006-12-01
Inhalation of immunomodulating mycotoxins produced by Fusarium spp. that are commonly found in grain dust may imply health risks for grain farmers. Airborne Fusarium and mycotoxin exposure levels are mainly unknown due to difficulties in identifying Fusarium and mycotoxins in personal aerosol samples. We used a novel real-time PCR method to quantify the fungal trichodiene synthase gene (tri5) and DNA specific to F. langsethiae and F. avenaceum in airborne and settled grain dust, determined the personal inhalant exposure level to toxigenic Fusarium during various activities, and evaluated whether quantitative measurements of Fusarium-DNA could predict trichothecene levels in grain dust. Airborne Fusarium-DNA was detected in personal samples even from short tasks (10-60 min). The median Fusarium-DNA level was significantly higher in settled than in airborne grain dust (p < 0.001), and only the F. langsethiae-DNA levels correlated significantly in settled and airborne dust (r(s) = 0.20, p = 0.003). Both F. langsethiae-DNA and tri5-DNA were associated with HT-2 and T-2 toxins (r(s) = 0.24-0.71, p < 0.05 to p < 00.01) in settled dust, and could thus be suitable as indicators for HT-2 and T-2. The median personal inhalant exposure to specific toxigenic Fusarium spp. was less than 1 genome m(-3), but the exposure ranged from 0-10(5) genomes m(-3). This study is the first to apply real-time PCR on personal samples of inhalable grain dust for the quantification of tri5 and species-specific Fusarium-DNA, which may have potential for risk assessments of inhaled trichothecenes.
Injurious effects of wool and grain dusts on alveolar epithelial cells and macrophages in vitro.
Brown, D M; Donaldson, K
1991-01-01
Epidemiological studies of workers in wool textile mills have shown a direct relation between the concentration of wool dust in the air and respiratory symptoms. Injurious effects of wool dust on the bronchial epithelium could be important in causing inflammation and irritation. A pulmonary epithelial cell line in vitro was therefore used to study the toxic effects of wool dust. Cells of the A549 epithelial cell line were labelled with 51Cr and treated with whole wool dusts and extracts of wool, after which injury was assessed. Also, the effects of grain dust, which also causes a form of airway obstruction, were studied. The epithelial injury was assessed by measuring 51Cr release from cells as an indication of lysis, and by monitoring cells which had detached from the substratum. No significant injury to A549 cells was caused by culture with any of the dusts collected from the air but surface "ledge" dust caused significant lysis at some doses. Quartz, used as a toxic control dust, caused significant lysis at the highest concentration of 100 micrograms/well. To determine whether any injurious material was soluble the dusts were incubated in saline and extracts collected. No extracts caused significant injury to epithelial cells. A similar lack of toxicity was found when 51Cr labelled control alveolar macrophages were targets for injury. Significant release of radiolabel was evident when macrophages were exposed to quartz at concentrations of 10 and 20 micrograms/well, there being no significant injury with either wool or grain dusts. These data suggest that neither wool nor grain dust produce direct injury to epithelial cells, and further studies are necessary to explain inflammation leading to respiratory symptoms in wool and grain workers. PMID:2015211
The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander
NASA Astrophysics Data System (ADS)
Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.
1999-09-01
In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic properties, (7) particle hardness, (8) particle magnetic properties, (9) bulk dust geochemistry (solubility, reactivity, ionic and mineral species). All of these quantities are needed in order for the human exploration program to make assessments of hazards on Mars, and to better enable the production on earth, of soil/dust simulants that can act as realistic test materials in terms of those properties that render dust a contaminant.Such properties include the small grain size that enables penetration of space-suit joints, mechanical interfaces and bearings, seals, etc., and presents difficulty for filtration systems. Size also plays a critical role in the potential for lung disease in long-term habitats. The properties of grain shape and hardness are important parameters in determining the abrasiveness of dust as it enters mechanical systems, or bombards helmet visors and habitat windows in dust-laden winds. Adhesive electrostatic and magnetic properties of dust will be prime causes of contamination of space suits and equipment. Contamination causes mechanical malfunction, tracking of dirt into habitats, "piggybacking" of toxins on dust into habitats, changes in albedo and efficiency of solar arrays and heat exchangers, and changes in electrical conductivity of suit surfaces and other materials that may have specific safety requirements regarding electrical conductivity. Other potentially hazardous properties of dust include the possibility of high solubility of some component grains (rendering them reactive), and toxicity of some materials --grains of superoxidants and heavy metals (there is always the slim, but not inconceivable possibility of biogenic components such as spores). Because Mars has no active surface aqueous regime, volcanic emissions, meteoritic debris, weathering products, and photochemical products of Mars have nowhere to go except reside in the surface; there are few mechanical or chemical (buffering) processes to remove the accumulation of eons. From a planetology perspective, there are many enigmatic issues relating to dust and the aeolian regime in general. MECA will be able to address many questions in this area. For example, if MECA determines a particular particle size distribution (size and sorting values), it will be possible to make inferences about the origin of the dust - - is it all aeolian, or a more primitive residue of weathering, volcanic emissions, and meteoritic gardening? Trenching with the Lander/MECA robot arm will enable local stratigraphy to be determined in terms of depositional rates, amounts and cyclicity in dust storms and/or local aeolian transport. Grain shape will betray the origin of the dust fragments as being the product of recent or ancient weathering, or the comminution products of aeolian transport --the dust-silt ratio might be a measure of aeolian comminution energy. Additional information is contained in the original.
The MECA Payload as a Dust Analysis Laboratory on the MSP 2001 Lander
NASA Technical Reports Server (NTRS)
Marshall, J.; Anderson, M.; Buehler, M.; Frant, M.; Fuerstenau, S.; Hecht, M.; Keller, U.; Markiewicz, W.; Meloy, T.; Pike, T.
1999-01-01
In a companion abstract, the "Mars Environmental Compatibility Assessment" (MECA) payload for Mars Surveyor Program 2001 (MSP 2001) is described in terms of its capabilities for addressing exobiology on Mars. Here we describe how the same payload elements perform in terms of gathering data about surface dust on the planet. An understanding of the origin and properties of dust is important to both human exploration and planetary geology. The MECA instrument is specifically designed for soil/dust investigations: it is a multifunctional laboratory equipped to assess particulate properties with wet chemistry, camera imagery, optical microscopy (potentially with LTV fluorescence capability), atomic force microscopy (AFM; potentially with mineral-discrimination capabilities), electrometry, active & passive external materials-test panels, mineral hardness testing, and electrostatic & magnetic materials testing. Additionally, evaluation of soil chemical and physical properties as a function of depth down to about 50 cm will be facilitated by the Lander/MECA robot arm on which the camera (RAC) and electrometer are mounted. Types of data being sought for the dust include: (1) general textural and grain-size characterization of the soil as a whole --for example, is the soil essentially dust with other components or is it a clast-supported material in which dust resides only in the clast interstices, (2) size frequency distribution for dust particles in the range 0.01 to 10.00 microns, (3) particle-shape distribution of the soil components and of the fine dust fraction in particular, (4) soil fabric such as grain clustering into clods, aggregates, and cemented/indurated grain amalgamations, as well as related porosity, cohesiveness, and other mechanical soil properties, (5) cohesive relationship that dust has to certain types of rocks and minerals as a clue to which soil materials may be prime hosts for dust "piggybacking", (6) particle, aggregate, and bulk soil electrostatic properties, (7) particle hardness, (8) particle magnetic properties, (9) bulk dust geochemistry (solubility, reactivity, ionic and mineral species). All of these quantities are needed in order for the human exploration program to make assessments of hazards on Mars, and to better enable the production on earth, of soil/dust simulants that can act as realistic test materials in terms of those properties that render dust a contaminant.Such properties include the small grain size that enables penetration of space-suit joints, mechanical interfaces and bearings, seals, etc., and presents difficulty for filtration systems. Size also plays a critical role in the potential for lung disease in long-term habitats. The properties of grain shape and hardness are important parameters in determining the abrasiveness of dust as it enters mechanical systems, or bombards helmet visors and habitat windows in dust-laden winds. Adhesive electrostatic and magnetic properties of dust will be prime causes of contamination of space suits and equipment. Contamination causes mechanical malfunction, tracking of dirt into habitats, "piggybacking" of toxins on dust into habitats, changes in albedo and efficiency of solar arrays and heat exchangers, and changes in electrical conductivity of suit surfaces and other materials that may have specific safety requirements regarding electrical conductivity. Other potentially hazardous properties of dust include the possibility of high solubility of some component grains (rendering them reactive), and toxicity of some materials --grains of superoxidants and heavy metals (there is always the slim, but not inconceivable possibility of biogenic components such as spores). Because Mars has no active surface aqueous regime, volcanic emissions, meteoritic debris, weathering products, and photochemical products of Mars have nowhere to go except reside in the surface; there are few mechanical or chemical (buffering) processes to remove the accumulation of eons. From a planetology perspective, there are many enigmatic issues relating to dust and the aeolian regime in general. MECA will be able to address many questions in this area. For example, if MECA determines a particular particle size distribution (size and sorting values), it will be possible to make inferences about the origin of the dust - - is it all aeolian, or a more primitive residue of weathering, volcanic emissions, and meteoritic gardening? Trenching with the Lander/MECA robot arm will enable local stratigraphy to be determined in terms of depositional rates, amounts and cyclicity in dust storms and/or local aeolian transport. Grain shape will betray the origin of the dust fragments as being the product of recent or ancient weathering, or the comminution products of aeolian transport --the dust-silt ratio might be a measure of aeolian comminution energy. Additional information is contained in the original.
Variations between Dust and Gas in the Diffuse Interstellar Medium. III. Changes in Dust Properties
NASA Astrophysics Data System (ADS)
Reach, William T.; Bernard, Jean-Philippe; Jarrett, Thomas H.; Heiles, Carl
2017-12-01
We study infrared emission of 17 isolated, diffuse clouds with masses of order {10}2 {M}ȯ to test the hypothesis that grain property variations cause the apparently low gas-to-dust ratios that have been measured in those clouds. Maps of the clouds were constructed from Wide-field Infrared Survey Explorer (WISE) data and directly compared with the maps of dust optical depth from Planck. The mid-infrared emission per unit dust optical depth has a significant trend toward lower values at higher optical depths. The trend can be quantitatively explained by the extinction of starlight within the clouds. The relative amounts of polycyclic aromatic hydrocarbon and very small grains traced by WISE, compared with large grains tracked by Planck, are consistent with being constant. The temperature of the large grains significantly decreases for clouds with larger dust optical depth; this trend is partially due to dust property variations, but is primarily due to extinction of starlight. We updated the prediction for molecular hydrogen column density, taking into account variations in dust properties, and find it can explain the observed dust optical depth per unit gas column density. Thus, the low gas-to-dust ratios in the clouds are most likely due to “dark gas” that is molecular hydrogen.
Understanding the dust properties in nearby galaxies
NASA Astrophysics Data System (ADS)
Decleir, Marjorie; Baes, Maarten; De Looze, Ilse; Camps, Peter
2018-04-01
Dust is a crucial component in the interstellar medium of galaxies. It regulates several physical and chemical processes. Dust grains are also efficient at absorbing and scattering ultraviolet/optical photons and then re-radiating the absorbed energy in the infrared/submm wavelength range. The spatial distribution and properties of dust in galaxies can hence be investigated in two complementary ways: by its attenuation effects at short wavelengths, and by its thermal emission at long wavelengths. Both approaches have their advantages and challenges. In this contribution, we discuss a number of recent interesting results on interstellar dust in nearby galaxies, obtained by our research group at Ghent University.
Composition and Mineralogy of Martian Soils
NASA Astrophysics Data System (ADS)
Bell, J. F.
2007-05-01
The soils of Mars--the fine-grained, porous, uppermost layer of the planet's regolith--appear to have been created by a combination of physical and chemical weathering processes that can provide insights about the evolution of the martian surface and climate. Remote sensing and in situ measurements and analyses of soils from five different landing sites have revealed both surprising similarities and important (sometimes unexpected) differences among soils across the planet. Among the similarities are the ubiquitous presence and homogeneity of "dust" at widely-separated landing sites. Dust is the finest-grained (less than 5 microns) fraction of the soil, and the fact that it is easily suspended and transported by dust devils and dust storms explains its ubiquity. The reddish color and small size of dust particles had been cited as evidence for its origin as perhaps physically or chemically comminuted and heavily-oxidized (ferric) secondary weathering products. New results from the MER Sprit and Opportunity missions, however, indicate that dust grains may instead be volumetrically mostly unoxidized (ferrous) material, with visual color properties imparted by only a thin rind or coating of ferric oxides/oxyhydroxides. Another fine-grained global-scale unit is dark, silt- to sand-sized soils that occur in dunes, drifts, and ripples. Dark sands exhibit rather homogeneous composition and mineralogy (dominated by olivine and pyroxene) across the landing sites, suggesting that they, too, are globally-transported materials. Examples of the kinds of variability detected in martian soils are the hematite-rich spherules, sulfur/jarosite-rich outcrop- derived soils, and basaltic clastic fragments encountered in Meridiani Planum, the hematite, goethite, and ferric- sulfate bearing soils encountered in Gusev crater, and crusted/armored soils and rinds encountered at both Viking and both MER sites. Much of the observed martian soil variability may result from the action of local-scale weathering processes and/or reflect the diversity of local precursor bedrock sources. This presentation will provide an overview of what we know about the composition and mineralogy of martian soils, will review current models for martian soil formation in light of the currently-available data, and will describe ways that these models might be tested with ongoing and future Mars surface exploration missions.
NASA Astrophysics Data System (ADS)
Muro-Arena, G. A.; Dominik, C.; Waters, L. B. F. M.; Min, M.; Klarmann, L.; Ginski, C.; Isella, A.; Benisty, M.; Pohl, A.; Garufi, A.; Hagelberg, J.; Langlois, M.; Menard, F.; Pinte, C.; Sezestre, E.; van der Plas, G.; Villenave, M.; Delboulbé, A.; Magnard, Y.; Möller-Nilsson, O.; Pragt, J.; Rabou, P.; Roelfsema, R.
2018-06-01
Context. Multiwavelength observations are indispensable in studying disk geometry and dust evolution processes in protoplanetary disks. Aims: We aim to construct a three-dimensional model of HD 163296 that is capable of reproducing simultaneously new observations of the disk surface in scattered light with the SPHERE instrument and thermal emission continuum observations of the disk midplane with ALMA. We want to determine why the spectral energy distribution of HD 163296 is intermediary between the otherwise well-separated group I and group II Herbig stars. Methods: The disk was modeled using the Monte Carlo radiative transfer code MCMax3D. The radial dust surface density profile was modeled after the ALMA observations, while the polarized scattered light observations were used to constrain the inclination of the inner disk component and turbulence and grain growth in the outer disk. Results: While three rings are observed in the disk midplane in millimeter thermal emission at 80, 124, and 200 AU, only the innermost of these is observed in polarized scattered light, indicating a lack of small dust grains on the surface of the outer disk. We provide two models that are capable of explaining this difference. The first model uses increased settling in the outer disk as a mechanism to bring the small dust grains on the surface of the disk closer to the midplane and into the shadow cast by the first ring. The second model uses depletion of the smallest dust grains in the outer disk as a mechanism for decreasing the optical depth at optical and near-infrared wavelengths. In the region outside the fragmentation-dominated regime, such depletion is expected from state-of-the-art dust evolution models. We studied the effect of creating an artificial inner cavity in our models, and conclude that HD 163296 might be a precursor to typical group I sources.
Laboratory Studies of the Optical Properties and Condensation Processes of Cosmic Dust Particles
NASA Technical Reports Server (NTRS)
Abbas, Mian M.; Craven, Paul D.; Spann, James F.; Tankosic, Dragana; Six, N. Frank (Technical Monitor)
2002-01-01
A laboratory facility for levitating single isolated dust particles in an electrodynamics balance has been developing at NASA/Marshall Space Flight Center for conducting a variety of experimental, of astrophysical interest. The objective of this research is to employ this innovative experimental technique for studies of the physical and optical properties of the analogs of cosmic grains of 0.2-10 micron size in a chamber with controlled pressure/temperatures simulating astrophysical environments. In particular, we will carry out three classes of experiments to investigate the microphysics of the analogs of interstellar and interplanetary dust grains. (1) Charge characteristics of micron size single dust grains to determine the photoelectric efficiencies, yields, and equilibrium potentials when exposed to UV radiation. These measurements will provide the much-needed photoelectric emission data relating to individual particles as opposed to that for the bulk materials available so far. (2) Infrared optical properties of dust particles obtained by irradiating the particles with radiation from tunable infrared diode lasers and measuring the scattered radiation. Specifically, the complex refractive indices, the extinction coefficients, the scattering phase functions, and the polarization properties of single dust grains of interest in interstellar environments, in the 1-25 micron spectral region will be determined. (3) Condensation experiments to investigate the deposition of volatile gases on colder nucleated particles in dense interstellar clouds and lower planetary atmospheres. The increase in the mass or m/q ratio due to condensation on the particle will be monitored as a function of the dust particle temperature and the partial pressure of the injected volatile gas. The measured data wild permit determination of the sticking efficiencies of volatile gases of astrophysical interest. Preliminary results based on photoelectric emission experiments on 0.2-6.6 micron size silica particles exposed to UV radiation in the 120-200 nm spectral region will be presented.
INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx
The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results aremore » based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.« less
NASA Technical Reports Server (NTRS)
Greenberg, J. M. (Editor); Van De Hulst, H. C.
1973-01-01
Theoretical studies and observations of interstellar dust are described in papers dealing with the passive properties of dust grains, their physical and chemical activities in the interstellar medium, and their interactions in association with stars. The papers are grouped according to the principal topics of (1) extinction and polarization, (2) diffuse interstellar features, (3) dust around and in close association with stars, (4) reflection nebulae and other aspects of dust scattering properties, (5) alignment mechanisms, (6) distribution of molecules and processes of molecule formation, (7) radiation effects on dust, (8) physical and chemical interactions of dust with the ambient medium, and (9) gas and dust in H II regions. Individual items are announced in this issue.
Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations
NASA Astrophysics Data System (ADS)
Meier, Patrick; Motschmann, Uwe; Schmidt, Jürgen; Spahn, Frank; Hill, Thomas W.; Dong, Yaxue; Jones, Geraint H.; Kriegel, Hendrik
2015-12-01
Negatively and positively charged nano-sized ice grains were detected in the Enceladus plume by the Cassini Plasma Spectrometer (CAPS). However, no data for uncharged grains, and thus for the total amount of dust, are available. In this paper we estimate this population of uncharged grains based on a model of stochastic charging in thermodynamic equilibrium and on the assumption of quasi-neutrality in the plasma-dust system. This estimation is improved upon by combining simulations of the dust component of the plume and simulations for the plasma environment into one self-consistent model. Calibration of this model with CAPS data provides a total dust production rate of about 12 kg s-1, including larger dust grains up to a few microns in size. We find that the fraction of charged grains dominates over that of the uncharged grains. Moreover, our model reproduces densities of both negatively and positively charged nanograins measured by Cassini CAPS. In Enceladus' plume ion densities up to ~104cm-3 are required by the self-consistent model, resulting in an electron depletion of about 50% in the plasma, because electrons are attached to the negatively charged nanograins. These ion densities correspond to effective ionization rates of about 10-7s-1, which are about two orders of magnitude higher than expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Dong-Ning; Yang, Yang; Yan, Qiang
Theoretical studies are carried out for ion acoustic solitons in multicomponent nonuniform plasma considering the dust size distribution. The Korteweg−de Vries equation for ion acoustic solitons is given by using the reductive perturbation technique. Two special dust size distributions are considered. The dependences of the width and amplitude of solitons on dust size parameters are shown. It is found that the properties of a solitary wave depend on the shape of the size distribution function of dust grains.
Comet C2012 S1 (ISON)s Carbon-rich and Micron-size-dominated Coma Dust
NASA Technical Reports Server (NTRS)
Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.;
2014-01-01
Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (rh approx.1.15 AU, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a narrow size distribution dominated by approx. micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 microns and by a silicate feature strength of approx.1.1 and an 8-13microns continuum greybody color temperature of approx. 275-280 K (using Tbb ? r-0.5 h and Tbb approx. 260-265 K from Subaru COMICS, 2013-Oct-19 UT)[1,2]. N-band spectra of comet ISON with the BASS instrument on the NASA IRTF (2013-Nov-11-12 UT) show a silicate feature strength of approx. 1.1 and an 11.2microns forsterite peak.[3] Our thermal models yield constraints the dust composition as well as grain size distribution parameters: slope, peak grain size, porosity. Specifically, ISON's dust has a low silicate-to- amorphous carbon ratio (approx. 1:9), and the coma size distribution has a steep slope (N4.5) such that the coma is dominated by micron-sized, moderately porous, carbon-rich dust grains. The N-band continuum color temperature implies submicronto micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the size distribution to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A proxy for the dust production rate is f? approx.1500 cm, akin to Af?. ISON has a moderate-to-low dust-to-gas ratio. Comet ISON's dust grain size distribution does not appear similar to the few well-studied long-period Nearly Isotropic Comets (NICs), namely C/1995 O1 (Hale-Bopp) and C/2001 Q4 (NEAT) that had smaller and/or more highly porous grains and larger sizes, or C/2007 N4 (Lulin) and C/2006 P1 (McNaught) that had large and/or compact grains. Radial transport to comet-forming disk distances (= 20 AU) is easier for smaller grains (=1 micron) than for larger grains (approx. 20 microns like Stardust terminal particles). The presence of predominantly micron-sized and smaller grains suggests comet ISON may have formed either earlier in disk evolution whereby larger grains did not have the time to be transported to distances beyond Neptune, or the comet formed so far out in the disk that larger grains did not traverse such large radial distances. The high carbon-content of ISON's refractory dust appears to be complimented by the presence of limitedlifetime organic (CHON-like) grain materials: preliminary analyses of near-IR and high-resolution optical spectra indicate that gas-phase daughter molecules C2, CN, and CH were more abundant than their parent molecules (C2H2, C2H6, measured in the near- IR). Dust composition as well as grain size distribution parameters (slope, peak grain size, and porosity) give clues to comet origins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hashimoto, J.; Wisniewski, J.; Tsukagoshi, T.
The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum atmore » 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.« less
NASA Technical Reports Server (NTRS)
Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.;
2015-01-01
The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.
Rapid formation of large dust grains in the luminous supernova 2010jl.
Gall, Christa; Hjorth, Jens; Watson, Darach; Dwek, Eli; Maund, Justyn R; Fox, Ori; Leloudas, Giorgos; Malesani, Daniele; Day-Jones, Avril C
2014-07-17
The origin of dust in galaxies is still a mystery. The majority of the refractory elements are produced in supernova explosions, but it is unclear how and where dust grains condense and grow, and how they avoid destruction in the harsh environments of star-forming galaxies. The recent detection of 0.1 to 0.5 solar masses of dust in nearby supernova remnants suggests in situ dust formation, while other observations reveal very little dust in supernovae in the first few years after explosion. Observations of the spectral evolution of the bright SN 2010jl have been interpreted as pre-existing dust, dust formation or no dust at all. Here we report the rapid (40 to 240 days) formation of dust in its dense circumstellar medium. The wavelength-dependent extinction of this dust reveals the presence of very large (exceeding one micrometre) grains, which resist destruction. At later times (500 to 900 days), the near-infrared thermal emission shows an accelerated growth in dust mass, marking the transition of the dust source from the circumstellar medium to the ejecta. This provides the link between the early and late dust mass evolution in supernovae with dense circumstellar media.
Marchand, Geneviève; Gardette, Marie; Nguyen, Kiet; Amano, Valérie; Neesham-Grenon, Eve; Debia, Maximilien
2017-08-01
Longshoremen are exposed to large amounts of grain dust while loading of grain into the holds of vessels. Grain dust inhalation has been linked to respiratory diseases such as chronic bronchitis, hypersensitivity, pneumonitis, and toxic pneumonitis. Our objective was to characterize the exposure of longshoremen to inhalable and total dust, endotoxins, and cultivable bacteria and fungi during the loading of grain in a vessel's hold at the Port of Montreal in order to assess the potential health risks. Sampling campaigns were conducted during the loading of two different types of grain (wheat and corn). Environmental samples of microorganisms (bacteria, fungus, and actinomycetes) were taken near the top opening of the ship's holds while personal breathing zone measurements of dust and endotoxins were sampled during the worker's 5-hour shifts. Our study show that all measurements are above the recommendations with concentration going up to 390 mg m-3 of total dust, 89 mg m-3 of inhalable fraction, 550 000 EU m-3 of endotoxins, 20 000 CFU m-3 of bacteria, 61 000 CFU m-3 of fungus and 2500 CFU m-3 of actinomycetes. In conclusion, longshoremen are exposed to very high levels of dust and of microorganisms and their components during grain loading work. Protective equipment needs to be enforced for all workers during such tasks in order to reduce their exposure. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.
Attractive potential around a thermionically emitting microparticle.
Delzanno, G L; Lapenta, G; Rosenberg, M
2004-01-23
We present a simulation study of the charging of a dust grain immersed in a plasma, considering the effect of thermionic electron emission from the grain. It is shown that the orbit motion limited theory is no longer reliable when electron emission becomes large: screening can no longer be treated within the Debye-Huckel approach and an attractive potential well can form, leading to the possibility of attractive forces on other grains with the same polarity. We suggest to perform laboratory experiments where emitting dust grains could be used to create nonconventional dust crystals or macromolecules.
NASA Technical Reports Server (NTRS)
Zinner, Ernst
1991-01-01
A survey of microanalytical measurements on interplanetary dust particles (IDPs) and interstellar dust grains from primitive meteorites is presented. Ion-microprobe mass spectrometry with its capability to determine isotopic compositions of many elements on a micron spatial scale has played a special role. Examples are measurements of H, N, and O isotopes and refractory trace elements in IDPs; C, N, Mg, and Si isotopes in interstellar SiC grains; and C and N isotopes and H, N, Al, and Si concentrations in interstellar graphite grains.
Airborne microorganisms associated with grain handling.
Swan, J R; Crook, B
1998-01-01
There is substantial evidence that workers handling grain develop allergic respiratory symptoms. Microbiological contaminants are likely to be a significant contributing factor. Worker's exposure to microorganisms contaminating grain dust in the UK was therefore examined. Aerobiological studies were made when grain was being handled on farms and also during bulk handling of grain in dockside terminals. A quantitative and qualitative microbiological examination of the airborne grain dust was carried out. Samples of airborne grain dust were collected and viable bacteria, fungi and actinomycetes were grown, isolated and identified. It was found that workers handling grain or working close to grain at farms and docks were frequently exposed to more than 1 million bacteria and fungi per m3 air, and that airborne bacteria and fungi exceeded 10(4) per m3 air in all areas sampled. The qualitative examination of the samples showed that the predominant microorganisms present differed between freshly harvested grain and stored grain, but not between different types of grain.
Experimental Phase Functions of Millimeter-sized Cosmic Dust Grains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz, O.; Moreno, F.; Guirado, D.
We present the experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz, and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3° to 170°. The measured phase functions show two well-defined regions: (i) soft forward peaks and (ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions is in agreement with the observed phase functions of the Fomalhaut and HR 4796A dust rings. Furthermore » computations and measurements (including polarization) for millimeter-sized grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.« less
Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bakhtiyari-Ramezani, M., E-mail: mahdiyeh.bakhtiyari@gmail.com; Alinejad, N., E-mail: nalinezhad@aeoi.org.ir; Mahmoodi, J., E-mail: mahmoodi@qom.ac.ir
2015-11-15
In the fusion devices, ions, H atoms, and H{sub 2} molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H{sub 2} molecules, and desorption of the recombined H{sub 2} molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.
Diffusion coefficients of Fokker-Planck equation for rotating dust grains in a fusion plasma
NASA Astrophysics Data System (ADS)
Bakhtiyari-Ramezani, M.; Mahmoodi, J.; Alinejad, N.
2015-11-01
In the fusion devices, ions, H atoms, and H2 molecules collide with dust grains and exert stochastic torques which lead to small variations in angular momentum of the grain. By considering adsorption of the colliding particles, thermal desorption of H atoms and normal H2 molecules, and desorption of the recombined H2 molecules from the surface of an oblate spheroidal grain, we obtain diffusion coefficients of the Fokker-Planck equation for the distribution function of fluctuating angular momentum. Torque coefficients corresponding to the recombination mechanism show that the nonspherical dust grains may rotate with a suprathermal angular velocity.
Characteristics of the Dust-Plasma Interaction Near Enceladus' South Pole
NASA Technical Reports Server (NTRS)
Shafiq, Muhammad; Wahlund, J.-E.; Morooka, M. W; Kurth, W. S.; Farrell, W. M.
2010-01-01
We present RPWS Langmuir probe data from the third Enceladus flyby (E3) showing (he presence of dusty plasma near Enceladus' South Pole. There is a sharp rise in both the electron and ion number densities when the spacecraft traverses through Enceladus plume. The ion density near Enceladus is found to increase abruptly from about 10(exp 2) cm (exp -3) before the closest approach to 10(exp 5) cm (exp -3) just 30 s after the closest approach, an amount two orders of magnitude higher than the electron density. Assuming that the inconsistency between the electron and ion number densities is due to the presence of dust particles that are collecting the missing electron charges, we present dusty plasma characteristics down to sub-micron particle sizes. By assuming a differential dust number density for a range in dust sizes and by making use of Langmuir probe data, the dust densities for certain lower limits in dust size distribution were estimated. In order to achieve the dust densities of micrometer and larger sized grains comparable to the ones reported in the literature. we show that the power law size distribution must hold down to at least 0.03 micron such that the total differential number density is dominated by the smallest sub-micron sized grains. The total dust number density in Enceladus' plume is of the order of l0(exp 2) cm(exp -3) reducing to 1 cm(exp -3) in the E- ring. The dust density for micrometer and larger sized grains is estimated to be about 10(exp -4) cm(exp -3) in the plume while it is about 10(exp -6) - 10(exp -7) cm(exp -3) in the E-ring. Dust charge for micron sized grains is estimated to be about eight thousand electron charges reducing to below one hundred electron charges for 0.03 micron sized grains. The effective dusty plasma Debye length is estimated and compared with intergrain distance as well as the electron Debye length. The maximum dust charging time of 1.4 h is found for 0.03 11mmicron sized grains just 1 min before the closest approach. The charging time decreases substantially in the plume where it is only a fraction of a second for 1 micron sized grains, 1 s for 0.l micron sized grains and about 10 s for 0.03 micron sized grains.
Sigurdarson, Sigurdur T; O'Shaughnessy, Patrick T; Watt, Janet A; Kline, Joel N
2004-10-01
Ammonia and endotoxin-rich dust are present in high concentrations in swine confinement facilities; exposure to this environment is linked to workers' respiratory problems. We hypothesized that experimental exposure to ammonia and dust would impair pulmonary function, and that these exposures would be synergistic. We exposed six normal subjects and eight subjects with mild asthma to ammonia (16-25 ppm) and/or endotoxin-rich grain dust (4 mg/m3). Pulmonary function and exhaled NOx were measured before and after exposure. There was no significant change in pulmonary function in the normal subjects following any of the exposure conditions. Among asthmatics, a significant transient decrease in FEV1 was induced by grain dust, but was not altered by ammonia; increased bronchial hyperreactivity was also noted in this group. In a vulnerable population, exposure to grain dust results in transient airflow obstruction. Short-term exposure to ammonia does not increase this response.
The Mineralogy of Circumstellar Silicates Preserved in Cometary Dust
NASA Technical Reports Server (NTRS)
Keller, L. P.; Messenger, S.
2010-01-01
Interplanetary dust particles (IDPs) contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula. Cometary IDPs have remained relatively unaltered since their accretion because of the lack of parent body thermal and aqueous alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these particles because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars. Five circumstellar grains have been identified including three amorphous silicate grains and two polycrystalline aggregates. All of these grains are between 0.2 and 0.5 micrometers in size. The isotopic compositions of all five presolar silicate grains fall within the range of presolar oxides and silicates, having large (17)O-enrichments and normal (18)O/(16)O ratios (Group 1 grains from AGB and RG stars). The amorphous silicates are chemically heterogeneous and contain nanophase FeNi metal and FeS grains in a Mg-silicate matrix. Two of the amorphous silicate grains are aggregates with subgrains showing variable Mg/Si ratios in chemical maps. The polycrystalline grains show annealed textures (equilibrium grains boundaries, uniform Mg/Fe ratios), and consist of 50-100 nm enstatite and pyrrhotite grains with lesser forsterite. One of the polycrystalline aggregates contains a subgrain of diopside. The polycrystalline aggregates form by subsolidus annealing of amorphous precursors. The bulk compositions of the five grains span a wide range in Mg/Si ratios from 0.4 to 1.2 (avg. 0.86). The average Fe/Si (0.40) and S/Si (0.21) ratios show a much narrower range of values and are approximately 50% of their solar abundances. The latter observation may indicate a decoupling of the silicate and sulfide components in grains that condense in stellar outflows. The amorphous silicate grains described here were not extensively affected by irradiation, sputtering, or thermal processing and may represent relatively pristine circumstellar grains. They are strong candidates for the "dirty silicates" in astronomical observations of circumstellar dust shells. The polycrystalline grains were originally amorphous silicate grains that were likely annealed in the early solar nebula but the processing was not sufficient to erase their anomalous oxygen isotopic compositions.
Astronomy in Denver: Spatial distributions of dust properties via far-IR broadband map with HerPlaNS
NASA Astrophysics Data System (ADS)
Asano, Kentaro; Ueta, Toshiya; Ladjal, Djazia; Exter, Katrina; Otsuka, Masaaki; HerPlaNS Consortium
2018-06-01
We present the results of our analyses on dust properties in all of Galactic planetary nebulae based on 5-band broadband images in the far-IR taken with the Herschel Space Observatory.By fitting surface brightness distributions of dust thermal emission at 70, 160, 250, 350 and 500 microns with a single-temperature modified black body function, we derive spatially resolved maps of the dust emissivity power-law index (beta) and dust temperature (Td), as well as the column density.We find that circumstellar dust grains in PNe occupy a specific region in the beta-Td space, which is distinct from that occupied by dust grains in the Interstellar Matter (ISM) and star forming regions (SFRs). Unlike those in the ISM and SFRs, dust grains in PNe exhibit little variation in beta while a large spread in Td, suggesting rather homogeneous dust properties.This work is part of the Herschel Planetary Nebula Survey Plus (HerPlaNS+) supported by the NASA Astrophysics Data Analysis Program.
Hyperdust : An advanced in-situ detection and chemical analysis of microparticles in space
NASA Astrophysics Data System (ADS)
Sternovsky, Z.; Gruen, E.; Horanyi, M.; Kempf, S.; Maute, K.; Srama, R.
2014-12-01
Interplanetary dust that originates from comets and asteroids may be in different stages of Solar System evolution. Atmosphereless planetary bodies, e.g., planetary satellites, asteroids, or Kuiper belt objects are enshrouded in clouds of dust released by meteoroid impacts or by volcanism. The ejecta grains are samples from the surface of these objects and their analysis can be performed from orbit or flyby to determine the surface composition, interior structure and ongoing geochemical processes. Early dust mass spectrometers on the Halley missions had sufficient mass resolution in order to provide important cosmochemical information in the near-comet high dust flux environment. The Ulysses dust detector discovered interstellar grains within the planetary system (Gruen et al. A&A, 1994) and its twin detector on Galileo discovered the tenuous dust clouds around the Galilean satellites (Krueger et al., Icarus, 2003). The similar-sized Cosmic Dust Analyzer onboard the Cassini mission combined a highly sensitive dust detector with a low-mass resolution mass spectrometer. Compositional dust measurements from this instrument probed the deep interior of Saturn's Enceladus satellite (Postberg et al., Nature, 2009). Based on this experience new instrumentation was developed that combined the best attributes of all these predecessors and exceeded their capabilities in accurate trajectory determination. The Hyperdust instrument is a combination of a Dust Trajectory Sensor (DTS) together with an analyzer for the chemical composition of dust particles in space. Dust particles' trajectories are determined by the measurement of induced electric signals. Large area chemical analyzers of 0.1 m2 sensitive area have been tested at a dust accelerator and it was demonstrated that they have sufficient mass resolution to resolve ions with atomic mass number >100. The Hyperdust instrument is capable of distinguishing interstellar and interplanetary grains based on their trajectory composition information. In orbit or flyby near airless planetary bodies the instrument can map the surface compositional down to a spatial resolution of ~10 km. The Hyperdust instrument is currently being developed to TRL 6 funded by NASA's MatISSE program to be a low-mass, high performance instrument for future in-situ exploration.
Cosmic dust analog simulation in a microgravity environment: The STARDUST program
NASA Technical Reports Server (NTRS)
Ferguson, F.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Carotenuto, L.; Colangeli, L.; Dell'aversana, P.; Mele, F.; Mennella, V.
1995-01-01
We have undertaken a project called STARDUST which is a collaboration with Italian and American investigators. The goals of this program are to study the condensation and coagulation of refractory materials from the vapor and to study the properties of the resulting grains as analogs to cosmic dust particles. To reduce thermal convective currents and to develop valuable experience in designing an experiment for the Gas-Grain Simulation Facility aboard Space Station, Freedom we have built and flown a new chamber to study these processes under periods of microgravity available on NASA's KC-135 Research Aircraft. Preliminary results from flights with magnesium and zinc are discussed.
NASA Technical Reports Server (NTRS)
Marshall, J.; Weislogel, M.; Jacobson, T.
1999-01-01
The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single gain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three- dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction. Electrostatic forces are generally under-estimated for their role in causing agglomeration of dispersed grains in particulate clouds, or their role in affecting the internal frictional relationships in packed granular masses. We believe that electrostatic, in particular dipole-mediated processes, are pervasive and probably affect, at some level, everything from astrophysical-scale granular systems such as interstellar nebulae, protoplanetary dust and debris disks, planetary-scale systems such as debris palls from meteorite impact, volcanic eruptions, and aeolian dust storms, all the way to industrial-scale systems in mining, powder and grain processing, pharmaceuticals, and smoke-stack technologies. NASA must concern itself with the electrostatic behavior of dust and sand on Mars because of its potentially critical importance to human exploration. The motion and adhesion of martian surface materials will affect the design and performance of spacesuits, habitats, processing plants, solar panels, and any externally exposed equipment such as surface rovers or communication and weather stations. Additionally, the adhesion of dust and sand could greatly enhance contact with the potentially toxic components of the martian soil.
PROBING THE ROLE OF CARBON IN ULTRAVIOLET EXTINCTION ALONG GALACTIC SIGHT LINES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parvathi, V. S.; Babu, B. R. S.; Sofia, U. J.
2012-11-20
We report previously undetermined interstellar gas and dust-phase carbon abundances along 15 Galactic sight lines based on archival data of the strong 1334.5323 A transition observed with the Space Telescope Imaging Spectrograph. These are combined with previously reported carbon measurements along six sight lines to produce a complete sample of interstellar C II measurements determined with the 1334 A transition. Our data set includes a variety of Galactic disk environments characterized by different extinctions and samples paths ranging over three orders of magnitude in average density of hydrogen ((n(H))). Our data support the idea that dust, specifically carbon-based grains, aremore » processed in the neutral interstellar medium. We, however, do not find that the abundance of carbon in dust or the grain-size distribution is related to the strength of the 2175 A bump. This is surprising, given that many current models have polycyclic aromatic hydrocarbons as the bump-producing dust.« less
Influence of Non-Maxwellian Particles on Dust Acoustic Waves in a Dusty Magnetized Plasma
NASA Astrophysics Data System (ADS)
M. Nouri, Kadijani; Zareamoghaddam, H.
2013-11-01
In this paper an investigation into dust acoustic solitary waves (DASWs) in the presence of superthermal electrons and ions in a magnetized plasma with cold dust grains and trapped electrons is discussed. The dynamic of both electrons and ions is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are studied by hydrodynamic equations. The basic set of fluid equations is reduced to modified Korteweg-de Vries (mKdV) equation using Reductive Perturbation Theory (RPT). Two types of solitary waves, fast and slow dust acoustic soliton (DAS) exist in this plasma. Calculations reveal that compressive solitary structures are possibly propagated in the plasma where dust grains are negatively (or positively) charged. The properties of DASs are also investigated numerically.
Late formation of silicon carbide in type II supernovae
Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua
2018-01-01
We have found that individual presolar silicon carbide (SiC) dust grains from supernovae show a positive correlation between 49Ti and 28Si excesses, which is attributed to the radioactive decay of the short-lived (t½ = 330 days) 49V to 49Ti in the inner highly 28Si-rich Si/S zone. The 49V-49Ti chronometer shows that these supernova SiC dust grains formed at least 2 years after their parent stars exploded. This result supports recent dust condensation calculations that predict a delayed formation of carbonaceous and SiC grains in supernovae. The astronomical observation of continuous buildup of dust in supernovae over several years can, therefore, be interpreted as a growing addition of C-rich dust to the dust reservoir in supernovae. PMID:29376119
NASA Astrophysics Data System (ADS)
Flandes, Alberto
2004-08-01
The Dust ballerina skirt is a set of well defined streams composed of nanometric sized dust particles that escape from the Jovian system and may be accelerated up to >=200 km/s. The source of this dust is Jupiter's moon Io, the most volcanically active body in the Solar system. The escape of dust grains from Jupiter requires first the escape of these grains from Io. This work is basically devoted to explain this escape given that the driving of dust particles to great heights and later injection into the ionosphere of Io may give the particles an equilibrium potential that allow the magnetic field to accelerate them away from Io. The grain sizes obtained through this study match very well to the values required for the particles to escape from the Jovian system.
Decay instability of an electron plasma wave in a dusty plasma
NASA Astrophysics Data System (ADS)
Amin, M. R.; Ferdous, T.; Salimullah, M.
1996-03-01
The parametric decay instability of an electron plasma wave in a homogeneous, unmagnetized, hot and collisionless dusty plasma has been investigated analytically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the charged dust grains introduces a background inhomogeneous electric field that significantly influences the dispersive properties of the plasma and the decay process. The growth rate of the decay instability through the usual ion-acoustic mode is modified, and depends upon the dust perturbation parameter μi, dust correlation length q0, and the related ion motion. However, the decay process of the electron plasma wave through the ultralow frequency dust mode, excited due to the presence of the dust particles, is more efficient than the decay through the usual ion-acoustic mode in the dusty plasma.
THE JCMT GOULD BELT SURVEY: EVIDENCE FOR DUST GRAIN EVOLUTION IN PERSEUS STAR-FORMING CLUMPS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Michael Chun-Yuan; Francesco, J. Di; Johnstone, D.
2016-07-20
The dust emissivity spectral index, β , is a critical parameter for deriving the mass and temperature of star-forming structures and, consequently, their gravitational stability. The β value is dependent on various dust grain properties, such as size, porosity, and surface composition, and is expected to vary as dust grains evolve. Here we present β , dust temperature, and optical depth maps of the star-forming clumps in the Perseus Molecular Cloud determined from fitting spectral energy distributions to combined Herschel and JCMT observations in the 160, 250, 350, 500, and 850 μ m bands. Most of the derived β andmore » dust temperature values fall within the ranges of 1.0–2.7 and 8–20 K, respectively. In Perseus, we find the β distribution differs significantly from clump to clump, indicative of grain growth. Furthermore, we also see significant localized β variations within individual clumps and find low- β regions correlate with local temperature peaks, hinting at the possible origins of low- β grains. Throughout Perseus, we also see indications of heating from B stars and embedded protostars, as well evidence of outflows shaping the local landscape.« less
A STUDY OF DUST AND GAS AT MARS FROM COMET C/2013 A1 (SIDING SPRING)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelley, Michael S. P.; Farnham, Tony L.; Bodewits, Dennis
Although the nucleus of comet C/2013 A1 (Siding Spring) will safely pass Mars in 2014 October, the dust in the coma and tail will more closely approach the planet. Using a dynamical model of comet dust, we estimate the impact fluence. Based on our nominal model no impacts are expected at Mars. Relaxing our nominal model's parameters, the fluence is no greater than ∼10{sup –7} grains m{sup –2} for grain radii larger than 10 μm. Mars-orbiting spacecraft are unlikely to be impacted by large dust grains, but Mars may receive as many as ∼10{sup 7} grains, or ∼100 kg of total dust.more » We also estimate the flux of impacting gas molecules commonly observed in comet comae.« less
Baur, X; Preisser, A; Wegner, R
2003-06-01
The actual literature as well as two case reports described in detail show that grain dust induces asthmatic reactions and ODTS which are obviously not of allergic origin. For diagnosis occupational-type exposure tests are decisive whereas allergological testing usually is not. Endotoxins which are present in the grain dust samples in high concentrations have to be regarded as the major causative components. To avoid irreversible lung function impairment a comprehensive early diagnosis is necessary. Generally, a remarkable reduction of exposure to dust with high levels of airborne endotoxin in agriculture has to be achieved since in many workplaces corresponding exposures are still rather high.
Massin, N; Bohadana, A B; Wild, P; Kolopp-Sarda, M N; Toamain, J P
1995-06-01
Our goal was to assess the relation between dust exposure levels and the respiratory health status of workers in grain and flour mills in eastern France. We studied 118 male workers from 11 mills and 164 unexposed male controls. Dust concentration was measured by personal sampling methods. Outcome variables included respiratory symptoms, routine pulmonary function tests, and indices of airway responsiveness to methacholine. A great within- and between-area variability of inhalable dust concentration was found in all mills. A dose-response relationship was observed between dust exposure levels and chronic respiratory symptoms, suggesting that exposure to grain and flour dust may lead to chronic bronchitis. A significant relation was found between dust exposure and airway hyper-responsiveness; this finding is important since it has been hypothesized that the latter abnormality may lead to or be a predisposing factor in subsequent chronic, irreversible airflow obstruction.
Shotgun Pyrosequencing Metagenomic Analyses of Dusts from Swine Confinement and Grain Facilities
Boissy, Robert J.; Romberger, Debra J.; Roughead, William A.; Weissenburger-Moser, Lisa; Poole, Jill A.; LeVan, Tricia D.
2014-01-01
Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses used for such studies must be carefully designed to avoid the potential contribution of non-microbial DNA, e.g. from resident mammals. PMID:24748147
Shotgun pyrosequencing metagenomic analyses of dusts from swine confinement and grain facilities.
Boissy, Robert J; Romberger, Debra J; Roughead, William A; Weissenburger-Moser, Lisa; Poole, Jill A; LeVan, Tricia D
2014-01-01
Inhalation of agricultural dusts causes inflammatory reactions and symptoms such as headache, fever, and malaise, which can progress to chronic airway inflammation and associated diseases, e.g. asthma, chronic bronchitis, chronic obstructive pulmonary disease, and hypersensitivity pneumonitis. Although in many agricultural environments feed particles are the major constituent of these dusts, the inflammatory responses that they provoke are likely attributable to particle-associated bacteria, archaebacteria, fungi, and viruses. In this study, we performed shotgun pyrosequencing metagenomic analyses of DNA from dusts from swine confinement facilities or grain elevators, with comparisons to dusts from pet-free households. DNA sequence alignment showed that 19% or 62% of shotgun pyrosequencing metagenomic DNA sequence reads from swine facility or household dusts, respectively, were of swine or human origin, respectively. In contrast only 2% of such reads from grain elevator dust were of mammalian origin. These metagenomic shotgun reads of mammalian origin were excluded from our analyses of agricultural dust microbiota. The ten most prevalent bacterial taxa identified in swine facility compared to grain elevator or household dust were comprised of 75%, 16%, and 42% gram-positive organisms, respectively. Four of the top five swine facility dust genera were assignable (Clostridium, Lactobacillus, Ruminococcus, and Eubacterium, ranging from 4% to 19% relative abundance). The relative abundances of these four genera were lower in dust from grain elevators or pet-free households. These analyses also highlighted the predominance in swine facility dust of Firmicutes (70%) at the phylum level, Clostridia (44%) at the Class level, and Clostridiales at the Order level (41%). In summary, shotgun pyrosequencing metagenomic analyses of agricultural dusts show that they differ qualitatively and quantitatively at the level of microbial taxa present, and that the bioinformatic analyses used for such studies must be carefully designed to avoid the potential contribution of non-microbial DNA, e.g. from resident mammals.
Longitudinal decline in lung function measurements among Saskatchewan grain workers.
Pahwa, Punam; Senthilselvan, Ambikaipakan; McDuffie, Helen H; Dosman, James A
2003-04-01
To evaluate the relationship between the long term effects of grain dust and decline in lung function among grain elevator workers in Saskatchewan, studied over a 15-year period. The Grain Dust Medical Surveillance Program was started by Labour Canada in 1978 and longitudinally studied the respiratory health of Canadian grain elevator workers over a 15-year period (1978 to 1993). Data on respiratory symptoms and pulmonary function tests (forced expiratory volume in 1 s [FEV1], forced vital capacity [FVC]) were collected once every three years; each three-year interval was called a 'cycle'. Data from Saskatchewan were analyzed for this report. A transitional model using the generalized estimating equations approach was fitted using a SAS macro to predict the annual decline in FEV1 and FVC. Previous lung function, as one of the covariates in the transitional model, played an important role. Significant predictors of FEV1 were previous FEV1, base height, weight, years in the grain industry, current smoking status, cycle II, cycle III and cycle V. Significant predictors of FVC were previous FVC, base height, weight, years in the grain industry, cycle II, cycle III and cycle IV. The estimated annual decline in FEV1 and FVC increased according to length of time in the grain industry among nonsmoking, ex-smoking and smoking grain elevator workers. Lung function values improved after dust control, and yearly declines in FEV1 and FVC after dust control were smaller compared with yearly losses before dust control.
FORMULATION OF NON-STEADY-STATE DUST FORMATION PROCESS IN ASTROPHYSICAL ENVIRONMENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozawa, Takaya; Kozasa, Takashi, E-mail: takaya.nozawa@ipmu.jp
2013-10-10
The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO{sub 3} grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f{sub con,{sub ∞}}, and average radius a{sub ave,{sub ∞}} of newly formed grainsmore » in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule τ{sub coll} is much smaller than the timescale τ{sub sat} with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lower f{sub con,{sub ∞}} and a larger a{sub ave,{sub ∞}}. Examining the results of calculations, we reveal that the steady-state nucleation rate is applicable if the cooling gas satisfies Λ ≡ τ{sub sat}/τ{sub coll} ∼> 30 during the formation of dust, and find that f{sub con,{sub ∞}} and a{sub ave,{sub ∞}} are uniquely determined by Λ{sub on} at the onset time t{sub on} of dust formation. The approximation formulae for f{sub con,{sub ∞}} and a{sub ave,{sub ∞}} as a function of Λ{sub on} could be useful in estimating the mass and typical size of newly formed grains from observed or model-predicted physical properties not only in supernova ejecta but also in mass-loss winds from evolved stars.« less
Neurogenic plasma exudation mediates grain dust-induced tissue injury in vivo.
Gao, X P; Von Essen, S; Rubinstein, I
1997-02-01
The purpose of this study was to determine whether an aqueous extract of grain sorghum dust (GDE) elicits neurogenic plasma exudation in the oral mucosa in vivo. Using intravital microscopy, we found that GDE elicited significant, concentration-dependent leaky site formation and an increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass 70 kDa) from the hamster cheek pouch (P < 0.05). The selective, nonpeptide neurokinin(1) (substance P) receptor antagonists, CP-96,345 and RP-67580, but not the 2R,3R enantiomer CP-96,344, significantly attenuated GDE-induced leaky site formation and increase in clearance of FITC-dextran (P < 0.05). Indomethacin had no significant effects on GDE-induced responses. CP-96,345 had no significant effects of adenosine-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch. We conclude that GDE elicits neurogenic plasma exudation from the oral mucosa in vivo. We suggest that this process is one mechanism whereby grain sorghum dust elicits immediate oral mucosa inflammation in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Kavita; Sharma, Suresh C.
2015-02-15
An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.
Enhanced dust emissivity power-law index along the western H α filament of NGC 1569
NASA Astrophysics Data System (ADS)
Suzuki, T.; Kaneda, H.; Onaka, T.; Yamagishi, M.; Ishihara, D.; Kokusho, T.; Tsuchikawa, T.
2018-07-01
We used a data set from AKARI and Herschel images at wavelengths from 7 to 500 μm to catch the evidence of dust processing in galactic winds in NGC 1569. Images show a diffuse infrared (IR) emission extending from the galactic disc into the halo region. The most prominent filamentary structure seen in the diffuse IR emission is spatially in good agreement with the western H α filament (western arm). The spatial distribution of the F350/F500 map shows high values in regions around the super-star clusters (SSCs) and towards the western arm, which are not found in the F250/F350 map. The colour-colour diagram of F250/F350-F350/F500 indicates high values of the emissivity power-law index (βc) of the cold dust component in those regions. From a spectral decomposition analysis on a pixel-by-pixel basis, a βc map shows values ranging from ˜1 to ˜2 over the whole galaxy. In particular, high βc values of ˜2 are observed only in the regions indicated by the colour-colour diagram. Since the average cold dust temperature in NGC 1569 is ˜30 K, βc < 2.0 in the far-IR and sub-mm region theoretically suggests emission from amorphous grains, while βc = 2.0 suggests that from crystal grains. Given that the enhanced βc regions are spatially confined by the H I ridge that is considered to be a birthplace of the SSCs, the spatial coincidences may indicate that dust grains around the SSCs are grains of relatively high crystallinity injected by massive stars originating from starburst activities and that those grains are blown away along the H I ridge and thus the western arm.
NASA Astrophysics Data System (ADS)
Helling, Ch.; Woitke, P.; Thi, W.-F.
2008-07-01
Aims: Brown dwarfs are covered by dust cloud layers which cause inhomogeneous surface features and move below the observable τ = 1 level during the object's evolution. The cloud layers have a strong influence on the structure and spectral appearance of brown dwarfs and extra-solar planets, e.g. by providing high local opacities and by removing condensable elements from the atmosphere causing a sub-solar metalicity in the atmosphere. We aim at understanding the formation of cloud layers in quasi-static substellar atmospheres that consist of dirty grains composed of numerous small islands of different solid condensates. Methods: The time-dependent description is a kinetic model describing nucleation, growth and evaporation. It is extended to treat gravitational settling and is applied to the static-stationary case of substellar model atmospheres. From the solution of the dust moments, we determine the grain size distribution function approximately which, together with the calculated material volume fractions, provides the basis for applying effective medium theory and Mie theory to calculate the opacities of the composite dust grains. Results: The cloud particles in brown dwarfs and hot giant-gas planets are found to be small in the high atmospheric layers (a ≈ 0.01 μm), and are composed of a rich mixture of all considered condensates, in particular MgSiO3[s], Mg2SiO4[s] and SiO2[s]. As the particles settle downward, they increase in size and reach several 100 μm in the deepest layers. The more volatile parts of the grains evaporate and the particles stepwise purify to form composite particles of high-temperature condensates in the deeper layers, mainly made of Fe[s] and Al2O3[s]. The gas phase abundances of the elements involved in the dust formation process vary by orders of magnitudes throughout the atmosphere. The grain size distribution is found to be relatively broad in the upper atmospheric layers but strongly peaked in the deeper layers. This reflects the cessation of the nucleation process at intermediate heights. The spectral appearance of the cloud layers in the mid IR (7-20 μm) is close to a grey body with only weak broad features of a few percent, mainly caused by MgSiO3[s], and Mg2SiO4[s]. These features are, nevertheless, a fingerprint of the dust in the higher atmospheric layers that can be probed by observations. Conclusions: Our models predict that the gas phase depletion is much weaker than phase-equilibrium calculations in the high atmospheric layers. Because of the low densities, the dust formation process is incomplete there, which results in considerable amounts of left-over elements that might produce stronger and broader neutral metallic lines.
Light Scattering by Lunar Exospheric Dust: What could be Learned from LRO LAMP and LADEE UVS?
NASA Astrophysics Data System (ADS)
Glenar, D. A.; Stubbs, T. J.; Richard, D. T.; Stern, S. A.; Retherford, K. D.; Gladstone, R.; Feldman, P. D.; Colaprete, A.; Delory, G. T.
2011-12-01
Two complementary spectrometers, namely the Lunar Reconnaissance Orbiter, Lyman Alpha Mapping Project (LAMP) and the planned Lunar Atmosphere and Dust Environment Explorer (LADEE) Ultraviolet Explorer (UVS) will carry out sensitive searches for high altitude exospheric dust, via detection of scattered sunlight. The combined spectral coverage of these instruments extends from far-UV to near-IR wavelengths. Over this wavelength range, grain size parameter (X=2πr/λ, with r the grain radius and λ the wavelength) changes dramatically, which makes broad wavelength coverage a good diagnostic of grain size. Utilizing different pointing geometries, both LAMP and UVS are able to observe dust over a range of scattering angles, as well as measure the dust vertical profile via limb measurements at multiple tangent heights. We summarize several categories of information that can be inferred from the data sets, using broadband simulations of horizon glow as observed at the limb. Grain scattering properties used in these simulations were computed for multiple grain shapes using Discrete-Dipole theory. Some cautionary remarks are included regarding the use of Mie theory to interpret scattering measurements.
NASA Astrophysics Data System (ADS)
Błęcka, M. I.; Rinaldi, G.; Fink, U.; Capacioni, F.; Tozzi, G. P.
2013-09-01
The work we present deals with the spectrometric measurements of the VIRTIS instrument part of the payload of the Rosetta mission to the Comet 67P/Churyumov-Gerasimenko. This spectrometer will monitor (VIRTIS M channel: 0.25μm - 0.98μm; Δκ=20cm-1 ; 0.980 - 5.0 μm; Δκ=5cm-1; VIRTIS H channel: 2.0 μm- 5.0 μm ; Δκ=5cm-1) the nucleus and the coma in order to provide a picture of coma's composition, the production of gas and dust, and the structure and variation of mineralogy of the nucleus surface. The dust is an important constituent of cometary environment and is always present on the surface of the nucleus and in the coma. The cometary spectra are strongly affected by the processes taking place in the coma and by the structure, composition and the spatial distribution of cometary solid particles. The particles of the dust, illuminated by solar light, scatter, absorb and emit radiation. The reflected and emitted radiation are transmitted through the coma region before being collected by instruments such as VIRTIS. The reflection, absorption, scattering, and emission processes in the coma depend on the Comet-Sun geometry. In the VIRTIS team we have initiated and effort to simulate the dust radiance using several radiative transfer models (see Rinaldi et al, this issue). In the present paper, which is the continuation of our previous works (e.g. AGU fall meeting 2011, EGU 2012, EPSC2012 -abstracts), we are mainly concentrated on the influence of optical parameters of dust on spectra we expect from the VIRTIS/Rosetta measurements. To this purposes the equation of radiative transfer in limb geometry through the assembly of various dust grains and gases is solved. The number density distribution of the dust grains around the coma and their size distribution are drawn from recent theoretical models (e.g.Tenishev et.al.2011). A few phenomenological scattering phase functions are taken into account. We have assumed in the simulation the presence on the surface of H2O ice, in which are embedded dust grains of various mineralogies. These grains, when freed by the gas sublimation, were considered as the main constituent of the dusty coma. At the beginning the particles are spherical. Such an assumption would be reasonable in many cases. We have confined ourselves to the compact dust particles only. But it should be noted here that fluffy grains would have different optical properties and their presence would lead to different conclusions. The main purposes of the paper are: 1) discussion of the influence of the mineralogical composition of cometary dust including mixtures with ices, the size distributions and optical parameters - using the various possible phase functions, extinction and symmetry factors 2) influence of cometary activity on parameters of the coma and then the signal to be measured by the VIRTIS spectrometer at various distances from the Sun (3.7AU; 3.5AU; 3.0AU; 1.24AU).
Working Group on Circumstellar/Interstellar Relationships
NASA Technical Reports Server (NTRS)
Glassgold, A. E.
1986-01-01
Stars of various types are believed to be the main source of interstellar (IS) dust grans. The most important confirmed source is evolved giant and supergiant stars. Supernovae also contribute to the mass loss. The differences between circumstellar (CS) and IS dust were reviewed using the following topics: alteration of CS dust grains, size distribution, space observation of CS and IS dust, comparison of infrared spectra, isotopic signatures, Magellanic clouds and nearby galaxies, life cycles of dust grains, and physical and chemical data.
Deflection of the local interstellar dust flow by solar radiation pressure
NASA Technical Reports Server (NTRS)
Landgraf, M.; Augustsson, K.; Grun, E.; Gustafson, B. A.
1999-01-01
Interstellar dust grains intercepted by the dust detectors on the Ulysses and Galileo spacecrafts at heliocentric distances from 2 to 4 astronomical units show a deficit of grains with masses from 1 x 10(-17) to 3 x 10(-16) kilograms relative to grains intercepted outside 4 astronomical units. To divert grains out of the 2- to 4-astronomical unit region, the solar radiation pressure must be 1.4 to 1.8 times the force of solar gravity. These figures are consistent with the optical properties of spherical or elongated grains that consist of astronomical silicates or organic refractory material. Pure graphite grains with diameters of 0.2 to 0.4 micrometer experience a solar radiation pressure force as much as twice the force of solar gravity.
Studies on Charge Variation and Waves in Dusty Plasmas
NASA Astrophysics Data System (ADS)
Kausik, Siddhartha Sankar
Plasma and dust grains are both ubiquitous ingredients of the universe. The interplay between them has opened up a new and fascinating research domain, that of dusty plasmas, which contain macroscopic particles of solid matter besides the usual plasma constituents. The research in dusty plasmas received a major boost in the early eighties with Voyager spacecraft observation on the formation of Saturn rings. Dusty plasmas are defined as partially or fully-ionized gases that contain micron-sized particles of electrically charged solid material, either dielectric or conducting. The physics of dusty plasmas has recently been studied intensively because of its importance for a number of applications in space and laboratory plasmas. This thesis presents the experimental studies on charge variation and waves in dusty plasmas. The experimental observations are carried out in two different experimental devices. Three different sets of experiments are carried out in two different experimental devices. Three different sets of experiments are carried out to study the dust charge variation in a filament discharge argon plasma. The dust grains used in these experiments are grains of silver. In another get of experiment, dust acoustic waves are studied in a de glow discharge argon plasma. Alumina dust grains are sprinkled in this experiment. The diagnostic tools used in these experiments are Langmuir probe and Faraday cup. The instruments used in these experiments are electrometer, He-Ne laser and charge coupled device (CCD) camera. Langmuir probe is used to measure plasma parameters, while Faraday cup and electrometer are used to measure very low current (~pA) carried by a collimated dust beam. He-Ne laser illuminates the dust grains and CCD camera is used to capture the images of dust acoustic waves. Silver dust grains are produced in the dust chamber by gas-evaporation technique. Due to differential pressure maintained between the dust and plasma chambers, the dust grains move upward in the form of a collimated beam. Argon plasma is produced in an experimental setup consisting of a dust chamber, a plasma chamber and a diagnostic chamber (also called deflection chamber) by striking a discharge between incandescent tungsten filaments and the magnetic cage, which is grounded. Plasma thus produced is confined by a full line cusped magnetic field confinement system consisting of a cylindrically shaped cage made up of stainless steel channels filled up with cube shaped having 1.2 kG field strength at its surface.
Grain Temperature and Infrared Emission from Carbon Dust of Mixed Composition
NASA Astrophysics Data System (ADS)
Bartlett, S.; Duley, W. W.
1996-06-01
The equilibrium temperature of carbonaceous dust grains whose composition is consistent with IR spectra of diffuse cloud and dense cloud dust has been calculated using random covalent network (RCN) solutions for amorphous dust having a mixed graphite, diamond, and polymeric hydrocarbon composition. An effective medium approximation has been adopted to describe optical and thermal constants for dust compositions consistent with IR absorption spectra. A small amount of sp2 hybridized carbon in the form of aromatic rings is found to have a significant effect in reducing equilibrium temperature in dust with high diamond/polymer content. This formalism has also been used to calculate nonequilibrium emission spectra of very small grains (VSGs) subjected to stochastic heating in the interstellar radiation field. Such grains are found to emit strongly in sharp IR bands associated with C-H bonds at 3.4 μm and longer wavelengths. The effect of varying graphite/diamond/hydrocarbon composition on nonequilibrium emission by VSGs can also be described using this formalism. The ratio of emission at 12 and 25 μm is found to be high for VSGs with a large fraction of diamond or polymeric hydrocarbon but decreases dramatically for dust with a large sp2 aromatic component.
Effect of confining wall potential on charged collimated dust beam in low-pressure plasma
NASA Astrophysics Data System (ADS)
Kausik, S. S.; Kakati, B.; Saikia, B. K.
2013-05-01
The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.
Nonlinear properties of small amplitude dust ion acoustic solitary waves
NASA Astrophysics Data System (ADS)
Ghosh, Samiran; Sarkar, S.; Khan, Manoranjan; Gupta, M. R.
2000-09-01
In this paper some nonlinear characteristics of small amplitude dust ion acoustic solitary wave in three component dusty plasma consisting of electrons, ions, and dust grains have been studied. Simultaneously, the charge fluctuation dynamics of the dust grains under the assumption that the dust charging time scale is much smaller than the dust hydrodynamic time scale has been considered here. The ion dust collision has also been incorporated. It has been seen that a damped Korteweg-de Vries (KdV) equation governs the nonlinear dust ion acoustic wave. The damping arises due to ion dust collision, under the assumption that the ion hydrodynamical time scale is much smaller than that of the ion dust collision. Numerical investigations reveal that the dust ion acoustic wave admits only a positive potential, i.e., compressive soliton.
Indirect Charged Particle Detection: Concepts and a Classroom Demonstration
ERIC Educational Resources Information Center
Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew
2013-01-01
We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…
The determination of cloud masses and dust characteristics from submillimetre thermal emission
NASA Technical Reports Server (NTRS)
Hildebrand, R. H.
1983-01-01
The principles by which the dust and masses and total masses of interstellar clouds and certain characteristics of interstellar dust grains can be derived from observations of far infrared and submillimeter thermal emission are reviewed. To the extent possible, the discussion will be independent of particular grain models.
NASA Astrophysics Data System (ADS)
Parveen, Shahida; Mahmood, Shahzad; Adnan, Muhammad; Qamar, Anisa
2016-09-01
The head on collision between two dust ion acoustic (DIA) solitary waves, propagating in opposite directions, is studied in an unmagnetized plasma constituting adiabatic ions, static dust charged (positively/negatively) grains, and non-inertial kappa distributed electrons. In the linear limit, the dispersion relation of the dust ion acoustic (DIA) solitary wave is obtained using the Fourier analysis. For studying characteristic head-on collision of DIA solitons, the extended Poincaré-Lighthill-Kuo method is employed to obtain Korteweg-de Vries (KdV) equations with quadratic nonlinearities and investigated the phase shifts in their trajectories after the interaction. It is revealed that only compressive solitary waves can exist for the positive dust charged concentrations while for negative dust charge concentrations both the compressive and rarefactive solitons can propagate in such dusty plasma. It is found that for specific sets of plasma parameters, the coefficient of nonlinearity disappears in the KdV equation for the negative dust charged grains. Therefore, the modified Korteweg-de Vries (mKdV) equations with cubic nonlinearity coefficient, and their corresponding phase shift and trajectories, are also derived for negative dust charged grains plasma at critical composition. The effects of different plasma parameters such as superthermality, concentration of positively/negatively static dust charged grains, and ion to electron temperature ratio on the colliding soliton profiles and their corresponding phase shifts are parametrically examined.
NASA Technical Reports Server (NTRS)
Hamilton, Douglas P.
1993-01-01
The orbital dynamics of micrometer-sized dust grains is explored numerically and analytically, treating the strongest perturbation forces acting on close circumplanetary dust grains: higher-order gravity, radiation pressure, and the electromagnetic force. The appropriate orbit-average equations are derived and applied to the E ring. Arguments are made for the existence of azimuthal and vertical asymmetries in the E ring. New understanding of the dynamics of E ring dust grains is applied to problems of the ring's breadth and height. The possibility for further ground-based and spacecraft observations is considered.
Dust in the Small Magellanic Cloud
NASA Technical Reports Server (NTRS)
Rodrigues, C. V.; Coyne, G. V.; Magalhaes, A. M.
1995-01-01
We discuss simultaneous dust model fits to our extinction and polarization data for the Small Magellanic Cloud (SMC) using existing dust models. Dust model fits to the wavelength dependent polarization are possible for stars with small lambda(sub max). They generally imply size distributions which are narrower and have smaller average sizes compared to those in the Galaxy. The best fits for the extinction curves are obtained with a power law size distribution. The typical, monotonic SMC extinction curve can be well fit with graphite and silicate grains if a small fraction of the SMC carbon is locked up in the grains. Amorphous carbon and silicate grains also fit the data well.
Modelling of the sublimation of icy grains in the coma of comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Gicquel, A.; Vincent, J.-B.; Shi, X.; Sierks, H.; Rose, M.; Güttler, C.; Tubiana, C.
2015-10-01
The ESA (European Space Agency) Rosetta spacecraft was launched on 2 March 2004, to reach comet 67P/Churyumov-Gerasimenko in August 2014. Since March 2014, images of the nucleus and the coma (gas and dust) of the comet have been acquired by the OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) camera system [1] using both, the wide angle camera (WAC) and the narrow angle camera (NAC). The orbiter will be maintained in the vicinity of the comet until perihelion (Rh=1.3 AU) or even until Rh=1.8 AU post-perihelion (December 2015). Nineteen months of uninterrupted, close-up observations of the gas and dust coma will be obtained and will help to characterize the evolution of comet gas and dust activity during its approach to the Sun. Indeed, for the first time, we will follow the development of a comet's coma from a close distance. Also the study of the dust-gas interaction in the coma will highlight the sublimation of icy grains. Even if the sublimation of icy grains is known, it is not yet integrated in a complete dust-gas model. We are using the Direct Simulation Monte Carlo (DSMC) method to study the gas flow close to the nucleus. The code called PI-DSMC (www.pidsmc. com) can simulate millions of molecules for multiple species.When the gas flow is simulated, we inject the dust particle with a zero velocity and we take into account the 3 forces acting on the grains in a cometary environment (drag force, gravity and radiative pressure). We used the DLL (Dynamic Link Library) model to integrate the sublimation of icy grains in the gas flowand allow studying the effect of the additional gas on the dust particle trajectories. For a quantitative analysis of the sublimation of icy, outflowing grains we will consider an ensemble of grains of various radii with different compositions [2] The evolution of the grains, once they are ejected into the coma, depends on their initial size, their composition and the heliocentric distance (because the temperature of the grain is higher close to the Sun). The grain temperatures will be derived by assuming equilibrium between the energy absorbed from the Sun, the energy re-radiated in the infrared, and the cooling by sublimation. We will use Mie theory [3, 4] to compute the scattering properties of an assumed grain (grain size, shape and composition, including mineralogy and porosity). We follow the evolution of grains until the icy layer sublimates completely. Once ejected in the gas flow, the generated molecules have no preferred direction. First results highlighted that the sublimation has a significant influence on the dust trajectories and generates a gas cloud that moves with the velocity of the icy grains. Our model can produce artificial images for a wide range of parameters, including outgassing rate, surface temperature, dust properties and sublimation of icy grains. The results of this model will be compared to the images obtained with OSIRIS camera and to the published data from other instruments.
NASA Astrophysics Data System (ADS)
Rietmeijer, Frans J. M.
1997-03-01
Chondritic porous (CP) interplanetary dust particles (IDPs) can be described as 'cosmic sediments'. It should be possible to recognize in these IDPs the 4500 Myrs old solar nebula dusts. The studies of unaltered chondritic IDPs show that their matrices are a mixture of three different principal components (PCs) that also describe variable C/Si ratios of chondritic IDPs. Among others, PCs include polyphase units (PUs) that are amorphous to holocrystalline, both ultrafine- and coarse-grained, ferromagnesiosilica(te) materials with minor Al and Ca. The properties of PCs and their alteration products define the physical and chemical processes that produced and altered these components. PCs are also cornerstones of IDP classification. For example, the bulk composition of ultrafine-grained PCs can be reconstructed using the 'butterfly method' and also allows an evaluation of the metamorphic signatures, (e.g., dynamic pyrometamorphism), in chondritic IDPs.
NASA Astrophysics Data System (ADS)
Pedraza, A.; Kingsley, C.; Marchitto, T. M., Jr.; Lora, J. M.; Pollen, A.; Vollmer, T.; Leithold, E. L.; Mitchell, J.; Tripati, A. K.; Bhattacharya, A.
2017-12-01
Mineral dust accumulation is often causally associated with aridity. However, the relation might not be as straightforward. Consideration of grain sizes and geochemical fingerprinting of the coarse grain fraction will clearly have an impact on how we interpret the sedimentary record of mineral dust in depositional environments e.g. coarse grain fractions of mineral dust would most certainly be transported over relatively short distances and as such in depositional environments, the depositional rate of coarse grains must be determined in order to reliably understand erosional patterns associated with meteorological events (such as frequency of intense wind events such as tornadoes), climatological phenomenon (such as regional droughts) as well as more recently land-use changes. In this study we separate the two size fractions of mineral dust accumulation- fine fraction (typically <4 microns) and coarse fraction (typically >25 microns using grain size analysis from well-studied cores collected from several lake sites distributed across the western southwestern and the Great Plain regions; furthermore we use trace element analysis in each size fraction to identify contributing source regions. We find evidence that the coarser-grain size fraction in the studied lake cores could be of regional origin (and not just local in orgin);. the coarser fraction also appears to be related to intense meteorological events (i.e., the occurrence of cyclones). Analysis is underway to understand the impact of land-use changes on coarse grain fraction
Electrostatics of Granular Material (EGM): Space Station Experiment
NASA Technical Reports Server (NTRS)
Marshall, J.; Sauke, T.; Farrell, W.
2000-01-01
Aggregates were observed to form very suddenly in a lab-contained dust cloud, transforming (within seconds) an opaque monodispersed cloud into a clear volume containing rapidly-settling, long hair-like aggregates. The implications of such a "phase change" led to a series of experiments progressing from the lab, to KC-135, followed by micro-g flights on USML-1 and USML-2, and now EGM slated for Space Station. We attribute the sudden "collapse" of a cloud to the effect of dipoles. This has significant ramifications for all types of cloud systems, and additionally implicates dipoles in the processes of cohesion and adhesion of granular matter. Notably, there is the inference that like-charged grains need not necessarily repel if they are close enough together: attraction or repulsion depends on intergranular distance (the dipole being more powerful at short range), and the D/M ratio for each grain, where D is the dipole moment and M is the net charge. We discovered that these ideas about dipoles, the likely pervasiveness of them in granular material, the significance of the D/M ratio, and the idea of mixed charges on individual grains resulting from tribological processes --are not universally recognized in electrostatics, granular material studies, and aerosol science, despite some early seminal work in the literature, and despite commercial applications of dipoles in such modern uses as "Krazy Glue", housecleaning dust cloths, and photocopying. The overarching goal of EGM is to empirically prove that (triboelectrically) charged dielectric grains of material have dipole moments that provide an "always attractive" intergranular force as a result of both positive and negative charges residing on the surfaces of individual grains. Microgravity is required for this experiment because sand grains can be suspended as a cloud for protracted periods, the grains are free to rotate to express their electrostatic character, and Coulombic forces are unmasked. Suspended grains will be "interrogated" by applied electrical fields. In one module, grains will be immersed in an inhomogeneous electric field and allowed to be attracted towards or repelled from the central electrode of the module: part of the grain's speed will be a function of its net charge (monopole), part will be a function of the dipole. Observed grain position vs. time will provide a curve that can be deconvolved into the dipole and monopole forces responsible, since both have distinctive radial dependencies. In a second approach, the inhomogeneous field will be alternated at low frequency (e.g., every 5-10 seconds) so that the grains are alternately attracted and repelled from the center of the field. The resulting "zigzag" grain motion will gradually drift inwards, then suddenly change to a unidirectional inward path when a critical radial distance is encountered (a sort of "Coulombic event horizon") at which the dipole strength supersedes the monopole strength --thus proving the presence of a dipole, while also quantifying the D/M ratio. In a second module, an homogeneous electric field eliminates dipole effects (both Coulombic and induced) to provide calibration of the monopole and to more readily evaluate net charge statistical variance. In both modules, the e-fields will be exponentially step-ramped in voltage during the experiment, so that the field "nominalizes" grain speed while spreading the response time --effectively forcing each grain to "wait its turn" to be measured. In addition to rigorously quantifying M, D, and the D/M ratio for many hundreds of grains, the experiment will also observe gross electrometric and RF discharge phenomena associated with grain activity. The parameter space will encompass grain charging levels (via intentional triboelectrification), grain size, cloud density, and material type. Results will prove or disprove the dipole hypothesis. In either case, light will be shed on the role of electrostatic forces in governing granular systems. Knowledge so gained can be applied to natural clouds such as protostellar and protoplanetary dust and debris systems, planetary rings, planetary dust palls and aerosols created by volcanic, impact, aeolian, firestorm, or nuclear winter processes. The data are also directly applicable to adhesion, cohesion, transport, dispersion, and collection of granular materials in industrial, agricultural, pharmaceutical applications, and in fields as diverse as dust contamination of space suits on Mars and crop spraying on Earth.
Modeling dust emission in the Magellanic Clouds with Spitzer and Herschel
NASA Astrophysics Data System (ADS)
Chastenet, Jérémy; Bot, Caroline; Gordon, Karl D.; Bocchio, Marco; Roman-Duval, Julia; Jones, Anthony P.; Ysard, Nathalie
2017-05-01
Context. Dust modeling is crucial to infer dust properties and budget for galaxy studies. However, there are systematic disparities between dust grain models that result in corresponding systematic differences in the inferred dust properties of galaxies. Quantifying these systematics requires a consistent fitting analysis. Aims: We compare the output dust parameters and assess the differences between two dust grain models, the DustEM model and THEMIS. In this study, we use a single fitting method applied to all the models to extract a coherent and unique statistical analysis. Methods: We fit the models to the dust emission seen by Spitzer and Herschel in the Small and Large Magellanic Clouds (SMC and LMC). The observations cover the infrared (IR) spectrum from a few microns to the sub-millimeter range. For each fitted pixel, we calculate the full n-D likelihood based on a previously described method. The free parameters are both environmental (U, the interstellar radiation field strength; αISRF, power-law coefficient for a multi-U environment; Ω∗, the starlight strength) and intrinsic to the model (YI: abundances of the grain species I; αsCM20, coefficient in the small carbon grain size distribution). Results: Fractional residuals of five different sets of parameters show that fitting THEMIS brings a more accurate reproduction of the observations than the DustEM model. However, independent variations of the dust species show strong model-dependencies. We find that the abundance of silicates can only be constrained to an upper-limit and that the silicate/carbon ratio is different than that seen in our Galaxy. In the LMC, our fits result in dust masses slightly lower than those found in the literature, by a factor lower than 2. In the SMC, we find dust masses in agreement with previous studies.
NASA Technical Reports Server (NTRS)
Westphal, Andrew J.; Butterworth, Anna L.; Snead, Christopher J.; Craig, Nahide; Anderson, David; Jones, Steven M.; Brownlee, Donald E.; Farnsworth, Richard; Zolensky, Michael E.
2005-01-01
In January 2006, the Stardust mission will return the first samples from a solid solar system body beyond the Moon. Stardust was in the news in January 2004, when it encountered comet Wild2 and captured a sample of cometary dust. But Stardust carries an equally important payload: the first samples of contemporary interstellar dust ever collected. Although it is known that interstellar (IS) dust penetrates into the inner solar system [2, 3], to date not even a single contemporary interstellar dust particle has been captured and analyzed in the laboratory. Stardust uses aerogel collectors to capture dust samples. Identification of interstellar dust impacts in the Stardust Interstellar Dust Collector probably cannot be automated, but will require the expertise of the human eye. However, the labor required for visual scanning of the entire collector would exceed the resources of any reasonably-sized research group. We are developing a project to recruit the public in the search for interstellar dust, based in part on the wildly popular SETI@home project, which has five million subscribers. We call the project Stardust@home. Using sophisticated chemical separation techniques, certain types of refractory ancient IS particles (so-called presolar grains) have been isolated from primitive meteorites (e.g., [4] ). Recently, presolar grains have been identified in Interplanetary Dust Particles[6]. Because these grains are not isolated chemically, but are recognized only by their unusual isotopic compositions, they are probably less biased than presolar grains isolated from meteorites. However, it is entirely possible that the typical interstellar dust particle is isotopically solar in composition. The Stardust collection of interstellar dust will be the first truly unbiased one.
A Simple Mechanism for Fractionating Oxygen Isotopes in the Solar Nebula
NASA Technical Reports Server (NTRS)
Nuth, Joseph A., III; Johnson, N. M.
2009-01-01
Lightning in the Solar Nebula is caused by the tribo-electric charging of dust grains carried by massive turbulent flows and driven by the accretion energy in the disk: it has long been one agent assumed responsible for the formation of chondrules. The degree to which charge separation can occur is dependent upon a number of factors, including the concentration of radioactive sources and the total level of ionization in the nebula, and these factors determine the maximum energy likely to be released by a single bolt. While chondrule formation requires a massive discharge, even a small lightning bolt can vaporize grains in the ionized discharge channel. Experimental studies have shown that silica, iron silicate and iron oxide grains formed from a high voltage discharge in hydrogen rich gas containing some oxygen produces solids that are enriched in O-17 and O-18 relative to the composition of the starting gas. Vaporization of silicates produces SiO, metal and free oxygen atoms in each discharge and these species will immediately begin to recondense from the hot plasma. Freshly condensed grains are incrementally enriched in heavy oxygen while the gas is enriched in O-16. Repeated evaporation and condensation of silicates in continuously occurring lightning discharges will monotonically increase the fractionation of oxygen isotopes between the O-17 and O-18 rich dust and the O-16 rich gas. The first mass independently fractionated refractory oxide particles were produced in the lab following the condensation of a flowing gas mixture containing variable amounts of hydrogen, silane, pentacarbonyl iron and oxygen that passed through a high voltage discharge powered by a Tesla coil. While the exact chemical pathway is still uncertain, the most probable reaction mechanisms involve oxidation of the growing refractory clusters by O3, OH or O atoms. This model has some interesting consequences for chemical processes in the early solar nebula. Chemical fractionation of recondensed dust evaporated via lightning discharges should be strongly time dependent. At earlier times, the accretion rate is maximal, thus driving strong turbulence, energetic grain-grain collisions, tribo-electric charging and charge separation, leading to frequent, powerful lightning discharges. As the accretion rate diminishes, turbulence decreases and lightning discharges will become both less powerful and less frequent, thus decreasing the rate of dust-gas fractionation. The most rapid increase in the formation of O-16 poor dust will occur early in nebular history. Generation of fractionated dust should be distributed throughout the inner disk. Once condensed, grain dispersal would average out any significant isotopic anomalies within the inner disk.
Underestimated role of the secondary electron emission in the space
NASA Astrophysics Data System (ADS)
Nemecek, Zdenek; Richterova, Ivana; Safrankova, Jana; Pavlu, Jiri; Vaverka, Jakub; Nouzak, Libor
2016-07-01
Secondary electron emission (SEE) is one of many processes that charges surfaces of bodies immersed into a plasma. Until present, a majority of considerations in theories and experiments is based on the sixty year old description of an interaction of planar metallic surfaces with electrons, thus the effects of a surface curvature, roughness, presence of clusters as well as an influence of the material conductance on different aspects of this interaction are neglected. Dust grains or their clusters can be frequently found in many space environments - interstellar clouds, atmospheres of planets, tails of comets or planetary rings are only typical examples. The grains are exposed to electrons of different energies and they can acquire positive or negative charge during this interaction. We review the progress in experimental investigations and computer simulations of the SEE from samples relevant to space that was achieved in course of the last decade. We present a systematic study of well-defined systems that starts from spherical grains of various diameters and materials, and it continues with clusters consisting of different numbers of small spherical grains that can be considered as examples of real irregularly shaped space grains. The charges acquired by investigated objects as well as their secondary emission yields are calculated using the SEE model. We show that (1) the charge and surface potential of clusters exposed to the electron beam are influenced by the number of grains and by their geometry within a particular cluster, (2) the model results are in an excellent agreement with the experiment, and (3) there is a large difference between charging of a cluster levitating in the free space and that attached to a planar surface. The calculation provides a reduction of the secondary electron emission yield of the surface covered by dust clusters by a factor up to 1.5 with respect to the yield of a smooth surface. (4) These results are applied on charging of the lunar surface and the dust grains levitating above it, and it is shown that the SEE is more important for isolated dust grains than for the lunar surface covered by them.
Dust in brown dwarfs. III. Formation and structure of quasi-static cloud layers
NASA Astrophysics Data System (ADS)
Woitke, P.; Helling, Ch.
2004-01-01
In this paper, first solutions of the dust moment equations developed in (Woitke & Helling \\cite{wh2003a}) for the description of dust formation and precipitation in brown dwarf and giant gas planet atmospheres are presented. We consider the special case of a static brown dwarf atmosphere, where dust particles continuously nucleate from the gas phase, grow by the accretion of molecules, settle gravitationally and re-evaporate thermally. Mixing by convective overshoot is assumed to replenish the atmosphere with condensable elements, which is necessary to counterbalance the loss of condensable elements by dust formation and gravitational settling (no dust without mixing). Applying a kinetic description of the relevant microphysical and chemical processes for TiO2-grains, the model makes predictions about the large-scale stratification of dust in the atmosphere, the depletion of molecules from the gas phase, the supersaturation of the gas in the atmosphere as well as the mean size and the mass fraction of dust grains as function of depth. Our results suggest that the presence of relevant amounts of dust is restricted to a layer, where the upper boundary (cloud deck) is related to the requirement of a minimum mixing activity (mixing time-scale τmix ≈ 10 6 s) and the lower boundary (cloud base) is determined by the thermodynamical stability of the grains. The nucleation occurs around the cloud deck where the gas is cool, strongly depleted, but nevertheless highly supersaturated (S ≫ 1). These particles settle gravitationally and populate the warmer layers below, where the in situ formation (nucleation) is ineffective or even not possible. During their descent, the particles grow and reach mean radii of ≈30 \\mum ... 400 \\mum at the cloud base, but the majority of the particles in the cloud layer remains much smaller. Finally, the dust grains sink into layers which are sufficiently hot to cause their thermal evaporation. Hence, an effective transport mechanism for condensable elements exists in brown dwarfs, which depletes the gas above and enriches the gas below the cloud base of a considered solid/liquid material. The dust-to-gas mass fraction in the cloud layer results to be approximately given by the mass fraction of condensable elements in the gas being mixed up. Only for artificially reduced mixing we find a self-regulation mechanism that approximately installs phase equilibrium (S ≈ 1) in a limited region around the cloud base.
NASA Technical Reports Server (NTRS)
Mackinnon, Ian D. R.; Rietmeijer, Frans J. M.; Mckay, David S.
1987-01-01
In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a variety of AEM techniques. Identification of over 250 individual grains within one chondritic porous (CP) IDP shows that most phases could be formed by low temperature processes and that heating of the IDP during atmospheric entry is minimal and less than 600 C. In a review of the mineralogy of IDPs, it was suggested that the occurrence of other silicates such as enstatite whiskers is consistent with the formation in an early turbulent period of the solar nebula. Experimental confirmation of fundamental chemical and physical processes in a stellar environment, such as vapor phase condensation, nucleation, and growth by annealing, is an important aspect of astrophysical models for the evolution of the Solar System. A detailed comparison of chondritic IDP and carbonaceous chondrite mineralogies shows significant differences between the types of silicate minerals as well as the predominant oxides.
Interstellar Silicon Depletion and the Ultraviolet Extinction
NASA Astrophysics Data System (ADS)
Mishra, Ajay; Li, Aigen
2018-01-01
Spinning small silicate grains were recently invoked to account for the Galactic foreground anomalous microwave emission. These grains, if present, will absorb starlight in the far ultraviolet (UV). There is also renewed interest in attributing the enigmatic 2175 Å interstellar extinction bump to small silicates. To probe the role of silicon in the UV extinction, we explore the relations between the amount of silicon required to be locked up in silicates [Si/H]dust and the 2175 Å bump or the far-UV extinction rise, based on an analysis of the extinction curves along 46 Galactic sightlines for which the gas-phase silicon abundance [Si/H]gas is known. We derive [Si/H]dust either from [Si/H]ISM - [Si/H]gas or from the Kramers- Kronig relation which relates the wavelength-integrated extinction to the total dust volume, where [Si/H]ISM is the interstellar silicon reference abundance and taken to be that of proto-Sun or B stars. We also derive [Si/H]dust from fi�tting the observed extinction curves with a mixture of amorphous silicates and graphitic grains. We fi�nd that in all three cases [Si/H]dust shows no correlation with the 2175 Å bump, while the carbon depletion [C/H]dust tends to correlate with the 2175 Å bump. This supports carbon grains instead of silicates as the possible carrier of the 2175 Å bump. We also �find that neither [Si/H]dust nor [C/H]dust alone correlates with the far-UV extinction, suggesting that the far-UV extinction is a combined effect of small carbon grains and silicates.
Interstellar Silicon Depletion and the Ultraviolet Extinction
NASA Astrophysics Data System (ADS)
Mishra, Ajay; Li, Aigen
2017-12-01
Spinning small silicate grains were recently invoked to account for the Galactic foreground anomalous microwave emission. These grains, if present, will absorb starlight in the far-ultraviolet (UV). There is also renewed interest in attributing the enigmatic 2175 \\mathringA interstellar extinction bump to small silicates. To probe the role of silicon in the UV extinction, we explore the relations between the amount of silicon required to be locked up in silicates {[{Si}/{{H}}]}{dust} and the 2175 \\mathringA bump or the far-UV extinction rise, based on an analysis of the extinction curves along 46 Galactic sightlines for which the gas-phase silicon abundance {[{Si}/{{H}}]}{gas} is known. We derive {[{Si}/{{H}}]}{dust} either from {[{Si}/{{H}}]}{ISM}‑{[{Si}/{{H}}]}{gas} or from the Kramers–Kronig relation, which relates the wavelength-integrated extinction to the total dust volume, where {[{Si}/{{H}}]}{ISM} is the interstellar silicon reference abundance and taken to be that of proto-Sun or B stars. We also derive {[{Si}/{{H}}]}{dust} from fitting the observed extinction curves with a mixture of amorphous silicates and graphitic grains. We find that in all three cases {[{Si}/{{H}}]}{dust} shows no correlation with the 2175 \\mathringA bump, while the carbon depletion {[{{C}}/{{H}}]}{dust} tends to correlate with the 2175 \\mathringA bump. This supports carbon grains instead of silicates as the possible carriers of the 2175 \\mathringA bump. We also find that neither {[{Si}/{{H}}]}{dust} nor {[{{C}}/{{H}}]}{dust} alone correlates with the far-UV extinction, suggesting that the far-UV extinction is a combined effect of small carbon grains and silicates.
Electron beam analysis of particulate cometary material
NASA Technical Reports Server (NTRS)
Bradley, John
1989-01-01
Electron microscopy will be useful for characterization of inorganic dust grains in returned comet nucleus samples. The choice of instrument(s) will depend primarily on the nature of the samples, but ultimately a variety of electron-beam methods could be employed. Scanning and analytical (transmission) electron microscopy are the logical choise for morphological, mineralogical, and bulk chemical analyses of dust grains removed from ices. It may also be possible to examine unmelted ice/dust mixtures using an environmental scanning electron microscope equipped with a cryo-transfer unit and a cold stage. Electron microscopic observations of comet nuclei might include: (1) porosities of dust grains; (2) morphologies and microstructures of individual mineral grains; (3) relative abundances of olivine, pyroxene, and glass; and (4) the presence of phases that might have resulted from aqueous alteration (layer silicates, carbonates, sulfates).
Dust models compatible with Planck intensity and polarization data in translucent lines of sight
NASA Astrophysics Data System (ADS)
Guillet, V.; Fanciullo, L.; Verstraete, L.; Boulanger, F.; Jones, A. P.; Miville-Deschênes, M.-A.; Ysard, N.; Levrier, F.; Alves, M.
2018-02-01
Context. Current dust models are challenged by the dust properties inferred from the analysis of Planck observations in total and polarized emission. Aims: We propose new dust models compatible with polarized and unpolarized data in extinction and emission for translucent lines of sight (0.5 < AV < 2.5). Methods: We amended the DustEM tool to model polarized extinction and emission. We fit the spectral dependence of the mean extinction, polarized extinction, total and polarized spectral energy distributions (SEDs) with polycyclic aromatic hydrocarbons, astrosilicate and amorphous carbon (a-C) grains. The astrosilicate population is aligned along the magnetic field lines, while the a-C population may be aligned or not. Results: With their current optical properties, oblate astrosilicate grains are not emissive enough to reproduce the emission to extinction polarization ratio P353/pV derived with Planck data. Successful models are those using prolate astrosilicate grains with an elongation a/b = 3 and an inclusion of 20% porosity. The spectral dependence of the polarized SED is steeper in our models than in the data. Models perform slightly better when a-C grains are aligned. A small (6%) volume inclusion of a-C in the astrosilicate matrix removes the need for porosity and perfect grain alignment, and improves the fit to the polarized SED. Conclusions: Dust models based on astrosilicates can be reconciled with data by adapting the shape of grains and adding inclusions of porosity or a-C in the astrosilicate matrix.
Spectrophotometry of Dust in Comet Hale-Bopp
NASA Technical Reports Server (NTRS)
Witteborn, Fred C. (Technical Monitor)
1997-01-01
Comets, such as Hale-Bopp (C/1995 O1), are frozen reservoirs of primitive solar nebula dust grains and ices. Analysis of the composition of cometary dust grains from infrared spectroscopic techniques permits an estimation of the types of organic and inorganic materials that constituted the early primitive solar nebula. In addition, the cometary bombardment of the Earth (approximately 3.5 Gy ago) supplied the water for the oceans and brought organic materials to Earth which may have been biogenic. Spectroscopic observations of comet Hale-Bopp suggest the possible presence of organic hydrocarbon species, silicate and olivine dust grains, and water ice. Spectroscopy near 3 microns obtained in Nov 1996 r=2.393 AU, delta=3.034 AU) shows a feature which we attribute to PAH emission. The spatial morphology of the 3.28 microns PAH feature is also presented. Optical and infrared spectrophotometric observations of comets convey valuable information about the spatial distribution and properties of dust and gas within the inner coma. In the optical and NIR shortward of 2 microns, the observed light is primarily scattered sunlight from the dust grains. At longer wavelengths, particularly in the 10 gm window, thermal emission from these grains dominates the radiation allowing an accurate estimate of grain sizes and chemical composition. Here we present an initial analysis of spectra taken with the NASA HIFOGS at 7-14 microns as part of a multiwavelength temporal study of the "comet of the century".
COMPACT DUST CONCENTRATION IN THE MWC 758 PROTOPLANETARY DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marino, S.; Casassus, S.; Perez, S.
2015-11-01
The formation of planetesimals requires that primordial dust grains grow from micron- to kilometer-sized bodies. Dust traps caused by gas pressure maxima have been proposed as regions where grains can concentrate and grow fast enough to form planetesimals, before radially migrating onto the star. We report new VLA Ka and Ku observations of the protoplanetary disk around the Herbig Ae/Be star MWC 758. The Ka image shows a compact emission region in the outer disk, indicating a strong concentration of big dust grains. Tracing smaller grains, archival ALMA data in band 7 continuum shows extended disk emission with an intensitymore » maximum to the northwest of the central star, which matches the VLA clump position. The compactness of the Ka emission is expected in the context of dust trapping, as big grains are trapped more easily than smaller grains in gas pressure maxima. We develop a nonaxisymmetric parametric model inspired by a steady-state vortex solution with parameters adequately selected to reproduce the observations, including the spectral energy distribution. Finally, we compare the radio continuum with SPHERE scattered light data. The ALMA continuum spatially coincides with a spiral-like feature seen in scattered light, while the VLA clump is offset from the scattered light maximum. Moreover, the ALMA map shows a decrement that matches a region devoid of scattered polarized emission. Continuum observations at a different wavelength are necessary to conclude whether the VLA-ALMA difference is an opacity or a real dust segregation.« less
Nicholls, P. J.
1970-01-01
Nicholls, P. J. (1970).Brit. J. industr. Med.,27, 179-180. Histamine in cereal dusts. It has been found that workers exposed to cereal grain dusts may experience acute mild respiratory distress. An attempt has been made to explain this observation by examining the pharmacological activity of aqueous extracts of several cereal dusts from the holds of cargo ships. Histamine, but no other active agent, was found in the samples. It is unlikely that the concentration of histamine in these dusts is sufficient to cause respiratory distress in dockers unloading cereal grain cargoes. PMID:5428638
The magnetized sheath of a dusty plasma with grains size distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ou, Jing, E-mail: ouj@ipp.ac.cn; Gan, Chunyun; Lin, Binbin
2015-05-15
The structure of a plasma sheath in the presence of dust grains size distribution (DGSD) is investigated in the multi-fluid framework. It is shown that effect of the dust grains with different sizes on the sheath structure is a collective behavior. The spatial distributions of electric potential, the electron and ion densities and velocities, and the dust grains surface potential are strongly affected by DGSD. The dynamics of dust grains with different sizes in the sheath depend on not only DGSD but also their radius. By comparison of the sheath structure, it is found that under the same expected valuemore » of DGSD condition, the sheath length is longer in the case of lognormal distribution than that in the case of uniform distribution. In two cases of normal and lognormal distributions, the sheath length is almost equal for the small variance of DGSD, and then the difference of sheath length increases gradually with increase in the variance.« less
NASA Technical Reports Server (NTRS)
Nguyen, A. N.; Keller, L. P.; Messenger, S.; Rahman, Z.
2017-01-01
Spectroscopic observations of the circumstellar envelopes of evolved O-rich stars indicate the dust is mostly amorphous silicate with olivine-like compositions. Spectral modeling suggests these grains are Fe-rich [Mg/(Mg+Fe) 0.5], but it is not known whether the Fe is distributed within the silicate matrix or exists as metal inclusions. In contrast, the crystalline silicates are inferred to be extremely Mg-rich [Mg/(Mg+Fe) > 0.95]. The mineralogies and chemical compositions of dust in supernova (SN) remnants are not as well constrained, but abundant silicates of olivine-like and enstatite-like compositions have been fit to the infrared emission features. Silicates in the interstellar medium (ISM) are >99% amor-phous and Fe-bearing. The dearth of crystalline silicates in the ISM requires that some amorphization or destruction mechanisms process these grains.
Combustibility Determination for Cotton Gin Dust and Almond Huller Dust.
Hughs, Sidney E; Wakelyn, Phillip J
2017-04-26
It has been documented that some dusts generated while processing agricultural products, such as grain and sugar, can constitute combustible dust hazards. After a catastrophic dust explosion in a sugar refinery in 2008, the Occupational Safety and Health Administration (OSHA) initiated action to develop a mandatory standard to comprehensively address the fire and explosion hazards of combustible dusts. Cotton fiber and related materials from cotton ginning, in loose form, can support smoldering combustion if ignited by an outside source. However, dust fires and other more hazardous events, such as dust explosions, are unknown in the cotton ginning industry. Dust material that accumulates inside cotton gins and almond huller plants during normal processing was collected for testing to determine combustibility. Cotton gin dust is composed of greater than 50% inert inorganic mineral dust (ash content), while almond huller dust is composed of at least 7% inert inorganic material. Inorganic mineral dust is not a combustible dust. The collected samples of cotton gin dust and almond huller dust were sieved to a known particle size range for testing to determine combustibility potential. Combustibility testing was conducted on the cotton gin dust and almond huller dust samples using the UN test for combustibility suggested in NFPA 652.. This testing indicated that neither the cotton gin dust nor the almond huller dust should be considered combustible dusts (i.e., not a Division 4.1 flammable hazard per 49 CFR 173.124). Copyright© by the American Society of Agricultural Engineers.
Electron density modification in ionospheric E layer by inserting fine dust particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misra, Shikha, E-mail: shikhamish@gmail.com; Mishra, S. K.
2015-02-15
In this paper, we have developed the kinetics of E-region ionospheric plasma comprising of fine dust grains and shown that the electron density in E-layer can purposely be reduced/enhanced up to desired level by inserting fine dust particles of appropriate physical/material properties; this may certainly be promising for preferred rf-signal processing through these layers. The analytical formulation is based on average charge theory and includes the number and energy balance of the plasma constituents along with charge balance over dust particles. The effect of varying number density, work function, and photo-efficiency of dust particles on ionospheric plasma density at differentmore » altitude in E-layer has been critically examined and presented graphically.« less
A new hybrid particle/fluid model for cometary dust
NASA Astrophysics Data System (ADS)
Shou, Y.; Combi, M. R.; Tenishev, V.; Toth, G.; Hansen, K. C.; Huang, Z.; Gombosi, T. I.; Fougere, N.; Rubin, M.
2017-12-01
Cometary dust grains, which originate from comets, are believed to contain clues to the formation and the evolution of comets. They also play an important role in shaping the cometary environment, as they are able to decelerate and heat the gas through collisions, carry charges and interact with the plasma environment, and possibly sublimate gases. Therefore, the loss rate and behavior of dust grains are of interest to scientists. Currently, mainly two types of numerical dust models exist: particle models and fluid models have been developed. Particle models, which keep track of the positions and velocities of all gas and dust particles, allow crossing dust trajectories and a more accurate description of returning dust grains than the fluid model. However, in order to compute the gas drag force, the particle model needs to follow more gas particles than dust particles. A fluid model is usually more computationally efficient and is often used to provide simulations on larger spatial and temporal scales. In this work, a new hybrid model is developed to combine the advantages of both particle and fluid models. In the new approach a fluid model based on the University of Michigan BATSRUS code computes the gas properties, and feeds the gas drag force to the particle model, which is based on the Adaptive Mesh Particle Simulator (AMPS) code, to calculate the motion of dust grains. The coupling is done via the Space Weather Modeling Framework (SWMF). In addition to the capability of simulating the long-term dust phenomena, the model can also designate small active regions on the nucleus for comparison with the temporary fine dust features in observations. With the assistance of the newly developed model, the effect of viewing angles on observed dust jet shapes and the transportation of heavy dust grains from the southern to the northern hemisphere of comet 67P/Churyumov-Gerasimenko will be studied and compared with Rosetta mission images. Preliminary results will be presented. Support from contracts JPL #1266314 and #1266313 from the US Rosetta Project and grant NNX14AG84G from the NASA Planetary Atmospheres Program are gratefully acknowledged.
Composition, structure, and chemistry of interstellar dust
NASA Technical Reports Server (NTRS)
Tielens, A. G. G. M.; Allamandola, L. J.
1987-01-01
Different dust components present in the interstellar medium (IM) such as amorphous carbon, polycyclic aromatic hydrocarbons, and those IM components which are organic refractory grains and icy grain mantles are discussed as well as their relative importance. The physical properties of grain surface chemistry are discussed with attention given to the surface structure of materials, the adsorption energy and residence time of species on a grain surface, and the sticking probability. Consideration is also given to the contribution of grains to the gas-phase composition of molecular clouds.
Effects of road dust on the growth characteristics of Sophora japonica L. seedlings.
Bao, Le; Qu, Laiye; Ma, Keming; Lin, Lin
2016-08-01
Road dust is one of the most common pollutants and causes a series of negative effects on plant physiology. Dust's impacts on plants can be regarded as a combination of load, composition and grain size impacts on plants; however, there is a lack of integrated dust effect studies involving these three aspects. In our study, Sophora japonica seedlings were artificially dusted with road dust collected from the road surface of Beijing so that we could study the impacts of this dust on nitrogen/carbon allocation, biomass allocation and photosynthetic pigments from the three aspects of composition, load and grain size. The results showed that the growth characteristics of S. japonica seedlings were mostly influenced by dust composition and load. Leaf N, root-shoot ratio and chlorophyll a/b were significantly affected by dust composition and load; leaf C/N, shoot biomass, total chlorophyll and carotenoid were significantly affected by dust load; stem N and stem C/N were significantly affected by dust composition; while the dust grain size alone did not affect any of the growth characteristics. Road dust did influence the growth characteristics more extensively than loam. Therefore, a higher dust load could increase the differences between road dust and loam treatments. The elements in dust are well correlated to the shoot N, shoot C/N, and root-shoot ratio of S. japonica seedlings. This knowledge could benefit the management of urban green spaces. Copyright © 2016. Published by Elsevier B.V.
H2O grain size and the amount of dust in Mars' residual north polar cap
NASA Technical Reports Server (NTRS)
Kieffer, Hugh H.
1990-01-01
In Mars' north polar cap, the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 microns or more. Ice of this granularity containing 30 percent fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be 'old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain.
Effect of Ion Streaming on Diffusion of Dust Grains in Dissipative System
NASA Astrophysics Data System (ADS)
Begum, M.; Das, N.
2018-01-01
The presence of strong electric fields in the sheath region of laboratory complex plasma induces an ion drift and perturbs the field around dust grains. The downstream focusing of ions leads to the formation of oscillatory kind of attractive wake potential which superimpose with the normal Debye-Hückel (DH) potential. The structural properties of complex plasma and diffusion coefficient of dust grains in the presence of such a wake potential have been investigated using Langevin dynamics simulation in the subsonic regime of ion flow. The study reveals that the diffusion of dust grains is strongly affected by the ion flow, so that the diffusion changes its character in the wake potential to the DH potential dominant regimes. The dependence of the diffusion coefficient on the parameters, such as the neutral pressure, dust grain size, ion flow velocity, and Coulomb coupling parameter, have been calculated for the subsonic regime by using the Green-Kubo expression, which is based on the integrated velocity autocorrelation function. It is found that the diffusion and the structural property of the system is intimately connected with the interaction potential and significantly get affected in the presence of ion flow in the subsonic regime.
Aspergillus candidus: a respiratory hazard associated with grain dust.
Krysinska-Traczyk, E; Dutkiewicz, J
2000-01-01
The concentration of Aspergillus candidus in samples of grain dust and of air polluted with grain dust was found to be large (respectively 3.0 x 10(5) - 3.0 x 10(9) cfu/g and 5.0 x 10(3) - 6.47 x 10(5) cfu/m(3)) and proved to be significantly greater compared to samples of other organic dusts (p<0.001). Rabbits exposed to long-term inhalation of the cell extract of A. candidus revealed a positive cellular and humoral response, demonstrated by the significant (p<0.01) inhibition of leukocyte migration in the presence of specific antigen and by production of precipitins against antigen of the fungus. The inhibition of leukocyte migration was even stronger in another group of rabbits exposed twice to the inhalation of live A. candidus spores. A group of grain workers reacted significantly more frequently to extract of A. candidus in the leukocyte migration inhibition test (p<0.01) and precipitation test (p<0.05), compared to the control group not exposed to organic dusts. It was concluded that Aspergillus candidus, because of its common occurrence and strong immunomodulating properties, poses an important occupational hazard for grain handling workers
H2O grain size and the amount of dust in Mars' residual North polar cap
Kieffer, H.H.
1990-01-01
In Mars' north polar cap the probable composition of material residual from the annual condensation cycle is a mixture of fine dust and H2O grains of comparable size and abundance. However, metamorphism of such material will gradually lower its albedo by increasing the size of the H2O grains only. If the cap is undergoing net annual sublimation (as inferred from water vapor observations), late summer observations should be of old ice with H2O grain sizes of 100 ??m or more. Ice of this granularity containing 30% fine dust has a reflectivity similar to that of dust alone; the observed albedo and computed ice grain size imply dust concentrations of 1 part per 1000 or less. The brightness of the icy areas conflicts with what would be expected for a residual cap deposited by an annual cycle similar to that observed by Viking and aged for thousands of years. The residual cap surface cannot be "old dirty' ice. It could be old, coarse, and clean; or it could be young, fine, and dirty. This brings into question both the source of the late summer water vapor and the formation rate of laminated terrain. -Author
NASA Astrophysics Data System (ADS)
Liou, K. N.; Takano, Y.; He, C.; Yang, P.; Leung, L. R.; Gu, Y.; Lee, W. L.
2014-06-01
A stochastic approach has been developed to model the positions of BC (black carbon)/dust internally mixed with two snow grain types: hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine BC/dust single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), the action of internal mixing absorbs substantially more light than external mixing. The snow grain shape effect on absorption is relatively small, but its effect on asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions of BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2-5 µm) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 µm, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo substantially more than external mixing and that the snow grain shape plays a critical role in snow albedo calculations through its forward scattering strength. Also, multiple inclusion of BC/dust significantly reduces snow albedo as compared to an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization involving contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountain/snow topography.
Induction of histamine release in vitro from rat peritoneal mast cells by extracts of grain dust.
Warren, C P; Holford-Strevens, V
1986-01-01
The ability of extracts of grain dust and wheat to induce histamine release from rat peritoneal cells was investigated. Some grain dusts, with a high endotoxin content, were found to produce cytotoxic histamine release. Extract of wheat dust, with a low endotoxin release, produced noncytotoxic histamine release from peritoneal cells but not from purified mast cells. This reaction was dependent on the presence of phosphatidyl serine. The agent did not appear to be a lectin because histamine release was not enhanced by passive sensitization of mast cells with IgE. The activity occurred only over a narrow range of concentrations of the extract of wheat. The cause was unclear. PMID:2423321
Structuring in complex plasma for nonlinearly screened dust particles
NASA Astrophysics Data System (ADS)
Tsytovich, Vadim; Gusein-zade, Namik
2014-03-01
An explanation is proposed for the recently discovered effect of spontaneous dusty plasma structuring (and the appearance of compact dust structures) under conditions of nonlinear dust screening. Physical processes are considered that make homogenous dusty plasma universally unstable and lead to the appearance of structures. It is shown for the first time that the efficiency of structuring increases substantially in the presence of plasma flows caused by the charging of nonlinearly screened dust grains. General results are obtained for arbitrary nonlinear screening, and special attention is paid to the model of nonlinear screening often used since 1964. The growth rate of structuring instability is derived. It is shown that, in the case of nonlinear screening, the structuring has a threshold determined by the friction of grains against the neutral gas. The theoretically obtained threshold agrees with recent experimental observations. The dispersion relation for dusty plasma structuring is shown to be similar to the dispersion relation for gravitational instability with an effective gravitational constant. The effective dust attraction caused by this instability is shown to be collective, and the dependence of the effective gravitational constant on the dust-to-ion density ratio is found explicitly for the first time. It is demonstrated that the proposed method of calculation of dust attraction by using the effective gravitational constant is the most efficient and straightforward. Understanding of the role of nonlinear screening gives deeper physical grounds for the theoretical interpretation of the observed phenomenon of dust crystal formation in complex plasmas.
Spectral softening in the X-RAY afterglow of GRB 130925A as predicted by the dust scattering model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Yi-Nan; Shao, Lang, E-mail: lshao@hebtu.edu.cn
2014-07-01
Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a ≤ 0.1 μm) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximationmore » may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.« less
Spectral Softening in the X-Ray Afterglow of GRB 130925A as Predicted by the Dust Scattering Model
NASA Astrophysics Data System (ADS)
Zhao, Yi-Nan; Shao, Lang
2014-07-01
Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a <= 0.1 μm) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximation may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.
Dust-trapping Rossby vortices in protoplanetary disks
NASA Astrophysics Data System (ADS)
Meheut, H.; Meliani, Z.; Varniere, P.; Benz, W.
2012-09-01
Context. One of the most challenging steps in planet formation theory is the one leading to the formation of planetesimals of kilometre size. A promising scenario involves the existence of vortices able to concentrate a large amount of dust and grains in their centres. Up to now this scenario has mostly been studied in 2D razor thin disks. A 3D study including, simultaneously, the formation and resulting dust concentration of the vortices with vertical settling, is still missing. Aims: The Rossby wave instability self-consistently forms 3D vortices, which have the unique quality of presenting a large-scale vertical velocity in their centre. Here we aim to study how this newly discovered effect can alter the dynamic evolution of the dust. Methods: We performed global 3D simulations of the RWI in a radially and vertically stratified disk using the code MPI-AMRVAC. After the growth phase of the instability, the gas and solid phases are modelled by a bi-fluid approach, where the dust is considered as a fluid without pressure. Both the drag force of the gas on the dust and the back reaction of the dust on the gas are included. Multiple grain sizes from 1 mm to 5 cm are used with a constant density distribution. Results: We obtain in a short timescale a high concentration of the largest grains in the vortices. Indeed, in 3 rotations the dust-to-gas density ratio grows from 10-2 to unity leading to a concentration of mass up to that of Mars in one vortex. The presence of the radial drift is also at the origin of a dust pile-up at the radius of the vortices. Lastly, the vertical velocity of the gas in the vortex causes the sedimentation process to be reversed, the mm size dust is lifted and higher concentrations are obtained in the upper layer than in the midplane. Conclusions: The Rossby wave instability is a promising mechanism for planetesimal formation, and the results presented here can be of particular interest in the context of future observations of protoplanetary disks.
Krysińska-Traczyk, Ewa; Perkowski, Juliusz; Kostecki, Marian; Dutkiewicz, Jacek; Kiecana, Irena
2003-01-01
The studies to determine the level of filamentous fungi and mycotoxins were carried out in samples of grain and grain dust during threshing of cereals by a combine harvester. High concentration of fungi was noted in grain and grain dust samples, it ranged from 5.0 to 520.0 cfu/g.10(3) and from 275.0 to 2825.0 cfu/g.10(3), respectively Allergizing and toxigenic fungi of Alternaria, Geotrichum, Cladosporium, Penicillium, Aspergillus and Fusarium species were observed in the study samples of grain and grain dust. In the samples of wheat grain, mycotoxins were also noted: moniliformin (MON), deoxynivalenol (DON) and ochratoxin A (OTA); their concentrations ranged from 0.025 to 0.088 microgram/g; 0.015-0.068 microgram/g; and from 0.0004 to 0.0008 microgram/g, respectively. The level of mycotoxins in the grain dust samples was within the range of 0.025-0.149 microgram/g-MON; 0.015-0.215 microgram/g-DON; 0.015-0.360 microgram/g-NIV; and 0.0004-0.0012 microgram/g-OTA. A significant correlation was observed between the occurrence of fungi of Fusarium species and the concentration of pathologic mycotoxins. The results confirm a considerable occupational risk among farmers engaged in grain threshing due to inhalation of pathogenic species of filamentous fungi and mycotoxins.
Size and density sorting of dust grains in SPH simulations of protoplanetary discs
NASA Astrophysics Data System (ADS)
Pignatale, F. C.; Gonzalez, J.-F.; Cuello, Nicolas; Bourdon, Bernard; Fitoussi, Caroline
2017-07-01
The size and density of dust grains determine their response to gas drag in protoplanetary discs. Aerodynamical (size × density) sorting is one of the proposed mechanisms to explain the grain properties and chemical fractionation of chondrites. However, the efficiency of aerodynamical sorting and the location in the disc in which it could occur are still unknown. Although the effects of grain sizes and growth in discs have been widely studied, a simultaneous analysis including dust composition is missing. In this work, we present the dynamical evolution and growth of multicomponent dust in a protoplanetary disc using a 3D, two-fluid (gas+dust) smoothed particle hydrodynamics code. We find that the dust vertical settling is characterized by two phases: a density-driven phase that leads to a vertical chemical sorting of dust and a size-driven phase that enhances the amount of lighter material in the mid-plane. We also see an efficient radial chemical sorting of the dust at large scales. We find that dust particles are aerodynamically sorted in the inner disc. The disc becomes sub-solar in its Fe/Si ratio on the surface since the early stage of evolution but sub-solar Fe/Si can be also found in the outer disc-mid-plane at late stages. Aggregates in the disc mimic the physical and chemical properties of chondrites, suggesting that aerodynamical sorting played an important role in determining their final structure.
Davis, Andrew M
2011-11-29
Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars.
Davis, Andrew M.
2011-01-01
Primitive meteorites, interplanetary dust particles, and comets contain dust grains that formed around stars that lived their lives before the solar system formed. These remarkable objects have been intensively studied since their discovery a little over twenty years ago and they provide samples of other stars that can be studied in the laboratory in exquisite detail with modern analytical tools. The properties of stardust grains are used to constrain models of nucleosynthesis in red giant stars and supernovae, the dominant sources of dust grains that are recycled into the interstellar medium by stars. PMID:22106261
NASA Technical Reports Server (NTRS)
Hanner, Martha
1988-01-01
The optical properties of small grains provide the link between the infrared observations presented in Chapter 1 and the dust composition described in Chapter 3. In this session, the optical properties were discussed from the viewpoint of modeling the emission from the dust coma and the scattering in order to draw inference about the dust size distribution and composition. The optical properties are applied to the analysis of the infrared data in several ways, and these different uses should be kept in mind when judging the validity of the methods for applying optical constants to real grains.
NASA Technical Reports Server (NTRS)
Robertson, P. C.
1978-01-01
Abstracts of 25 papers relating to condensation processes in the early solar system are presented. Special emphasis is given to the transition of an initial vapor phase in the space medium, the characterization of condensation environments, and condensation processes in the space medium. The question of whether some fraction of the solar system solids (particularly exemplified by meteoritic solids) may be interstellar grains that gathered in the region of the proto-sun, rather than being products of local condensation is addressed.
Dust grains and gas in the circumstellar envelopes around luminous red giant stars
NASA Technical Reports Server (NTRS)
Zuckerman, B.; Dyck, H. M.
1986-01-01
Far-infrared color-color diagrams have been constructed for over 100 of the brightest evolved stars in the IRAS Point Source Catalog. The diagrams are used to deduce average values of the dust grain emissivity index (p) between 12 and 100 microns. Grains in C-rich and O-rich environments have similar values of p between 12 and 25 microns and between 60 and 100 microns, but between 25 and 60 microns p is larger by approximately 0.4 for the O-rich stars. Dust grains in envelopes around S-type stars seem to have 25 to 60 micron emissivities more nearly like grains in O-rich rather than C-rich environments. CO and HCN emissions from various stars are used to reclassify several stars as oxygen or carbon rich.
Dust as a versatile matter for high-temperature plasma diagnostic.
Wang, Zhehui; Ticos, Catalin M
2008-10-01
Dust varies from a few nanometers to a fraction of a millimeter in size. Dust also offers essentially unlimited choices in material composition and structure. The potential of dust for high-temperature plasma diagnostic is largely unfulfilled yet. The principles of dust spectroscopy to measure internal magnetic field, microparticle tracer velocimetry to measure plasma flow, and dust photometry to measure heat flux are described. Two main components of the different dust diagnostics are a dust injector and a dust imaging system. The dust injector delivers a certain number of dust grains into a plasma. The imaging system collects and selectively detects certain photons resulted from dust-plasma interaction. One piece of dust gives the local plasma quantity, a collection of dust grains together reveals either two-dimensional (using only one or two imaging cameras) or three-dimensional (using two or more imaging cameras) structures of the measured quantity. A generic conceptual design suitable for all three types of dust diagnostics is presented.
The temperature of large dust grains in molecular clouds
NASA Technical Reports Server (NTRS)
Clark, F. O.; Laureijs, R. J.; Prusti, T.
1991-01-01
The temperature of the large dust grains is calculated from three molecular clouds ranging in visual extinction from 2.5 to 8 mag, by comparing maps of either extinction derived from star counts or gas column density derived from molecular observations to I(100). Both techniques show the dust temperature declining into clouds. The two techniques do not agree in absolute scale.
Ultraviolet interstellar linear polarization. I - Applicability of current dust grain models
NASA Technical Reports Server (NTRS)
Wolff, Michael J.; Clayton, Geoffrey C.; Meade, Marilyn R.
1993-01-01
UV spectropolarimetric observations yielding data on the wavelength-dependence of interstellar polarization along eight lines of sight facilitate the evaluation of dust grain models previously used to fit the extinction and polarization in the visible and IR. These models pertain to bare silicate/graphite grains, silicate cores with organic refractory mantles, silicate cores with amorphous carbon mantles, and composite grains. The eight lines-of-sight show three different interstellar polarization dependences.
Size and density distribution of very small dust grains in the Barnard 5 cloud
NASA Technical Reports Server (NTRS)
Lis, Dariusz C.; Leung, Chun Ming
1991-01-01
The effects of the temperature fluctuations in small graphite grains on the energy spectrum and the IR surface brightness of an isolated dust cloud heated externally by the interstellar radiation field were investigated using a series of models based on a radiation transport computer code. This code treats self-consistently the thermal coupling between the transient heating of very small dust grains and the equilibrium heating of conventional large grains. The model results were compared with the IRAS observations of the Barnard 5 (B5) cloud, showing that the 25-micron emission of the cloud must be produced by small grains with a 6-10 A radius, which also contribute about 50 percent to the observed 12-micron emission. The remaining 12 micron flux may be produced by the polycyclic aromatic hydrocarbons. The 60-and 100-micron radiation is dominated by emission from large grains heated under equilibrium conditions.
NASA Astrophysics Data System (ADS)
Ballabio, G.; Dipierro, G.; Veronesi, B.; Lodato, G.; Hutchison, M.; Laibe, G.; Price, D. J.
2018-06-01
We describe a new implementation of the one-fluid method in the SPH code PHANTOM to simulate the dynamics of dust grains in gas protoplanetary discs. We revise and extend previously developed algorithms by computing the evolution of a new fluid quantity that produces a more accurate and numerically controlled evolution of the dust dynamics. Moreover, by limiting the stopping time of uncoupled grains that violate the assumptions of the terminal velocity approximation, we avoid fatal numerical errors in mass conservation. We test and validate our new algorithm by running 3D SPH simulations of a large range of disc models with tightly and marginally coupled grains.
Lunar Airborne Dust Toxicity Hazard Assessments (Invited)
NASA Astrophysics Data System (ADS)
Cooper, B. L.; McKay, D. S.; Taylor, L. A.; Wallace, W. T.; James, J.; Riofrio, L.; Gonzalez, C. P.
2009-12-01
The Lunar Airborne Dust Toxicity Assessment Group (LADTAG) is developing data to set the permissible limits for human exposure to lunar dust. This standard will guide the design of airlocks and ports for EVA, as well as the requirements for filtering and monitoring the atmosphere in habitable vehicles, rovers and other modules. LADTAG’s recommendation for permissible exposure limits will be delivered to the Constellation Program in late 2010. The current worst-case exposure limit of 0.05 mg/m3, estimated by LADTAG in 2006, reflects the concern that lunar dust may be as toxic as quartz dust. Freshly-ground quartz is known to be more toxic than un-ground quartz dust. Our research has shown that the surfaces of lunar soil grains can be more readily activated by grinding than quartz. Activation was measured by the amount of free radicals generated—activated simulants generate Reactive Oxygen Species (ROS) i.e., production of hydroxyl free radicals. Of the various influences in the lunar environment, micrometeorite bombardment probably creates the most long-lasting reactivity on the surfaces of grains, although solar wind impingement and short-wavelength UV radiation also contribute. The comminution process creates fractured surfaces with unsatisfied bonds. When these grains are inhaled and carried into the lungs, they will react with lung surfactant and cells, potentially causing tissue damage and disease. Tests on lunar simulants have shown that dissolution and leaching of metals can occur when the grains are exposed to water—the primary component of lung fluid. However, simulants may behave differently than actual lunar soils. Rodent toxicity testing will be done using the respirable fraction of actual lunar soils (particles with physical size of less than 2.5 micrometers). We are currently separating the fine material from the coarser material that comprises >95% of the mass of each soil sample. Dry sieving is not practical in this size range, so a new system was developed for this task. The dust separation system includes a fluidized bed, an elutriation flask, and a cyclone. The product dust is collected on a membrane filter with 0.45 micrometer pore size. Collection and separation efficiencies, and particle size distribution measurements of the material retained in the various components are tracked as development and tests proceed. Calculations show that respirable-sized particles, if released in a habitat, would remain suspended in the air for extended periods of time. Without active dust control, most of this fine dust would end up in the crew’s lungs. Dust exposure standards, similar to those established for quartz on Earth, will determine the design, mass, power, and cost of dust control systems incorporated into lunar habitats and pressurized rovers.
Nonlinear dust-lattice waves: a modified Toda lattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cramer, N. F.
Charged dust grains in a plasma interact with a Coulomb potential, but also with an exponential component to the potential, due to Debye shielding in the background plasma. Here we investigate large-amplitude oscillations and waves in dust-lattices, employing techniques used in Toda lattice analysis. The lattice consists of a linear chain of particles, or a periodic ring as occurs in experimentally observed dust particle clusters. The particle motion has a triangular waveform, and chaotic motion for large amplitude motion of a grain.
Dust discs around low-mass main-sequence stars
NASA Technical Reports Server (NTRS)
Wolstencroft, R. D.; Walker, Helen J.
1988-01-01
The current understanding of the formation of circumstellar disks as a natural accompaniment to the process of low-mass star formation is examined. Models of the thermal emission from the dust disks around the prototype stars Alpha Lyr, Alpha PsA, Beta Pic, and Epsilon Eri are discussed, which indicate that the central regions of three of these disks are almost devoid of dust within radii ranging between 17 and 26 AU, with the temperature of the hottest zone lying between about 115 and 210 K. One possible explanation of the dust-free zones is the presence of a planet at the inner boundary of each cloud which sweeps up grains crossing its orbit.
Condensation onto grains in the outflows from mass-losing red giants
NASA Technical Reports Server (NTRS)
Jura, M.; Morris, M.
1985-01-01
In the outflows from red giants, grains are formed which are driven by radiation pressure. For the development of a model of the outflows, a detailed understanding of the interaction between the gas and dust is critical. The present investigation is concerned with condensation processes which occur after the grains nucleate near the stars. A physical process considered results from the cooling of the grains as they flow away from the star. Molecules which initially do not condense onto the grains can do so far from the star. It is shown that for some species this effect can be quite important in determining their gas-phase abundances in the outer circumstellar envelope. One of the major motivations of this investigation was provided by the desire to understand the physical conditions and molecular abundances in the outflows from the considered stars.
Pahwa, Punam; Nakagawa, Kazuko; Koehncke, Niels; McDuffie, Helen H
2009-01-01
Longitudinal declines in pulmonary function are associated with individuals experiencing occupational exposure to organic dusts in combination with lifestyle factors such as cigarette smoking and with genetic factors, and interactions between these factors. To investigate the relationship between polymorphism of genes encoding Tumor Necrosis Factor Alpha (TNF-alpha) and longitudinal lung function decline in grain workers exposed to grain dust. Male grain handlers who participated in the Saskatchewan Grain Workers Surveillance Program from 2002 through 2005 provided demographic, occupational, lifestyle, and respiratory symptoms information as well as pulmonary function measurements and DNA for genotyping. Marginal models using the generalized estimating equations approach were fitted by using a SAS PROC GENMOD to predict the annual decline in Forced Expired Volume in one second (FEV(1)) and Forced Vital Capacity (FVC). Smoking intensity contributed to the decline in FEV(1.)Among *1/*1 homozygotes and *1/*2 heterozygotes, grain workers with <10 years in the grain industry had significantly lower FEV(1)declines compared to those of the other two exposure groups (>10 and < or =20 years, and >20 years in the grain industry). The annual declines in FEV(1)for grain workers who were either *1/*1 homozygote or *1/*2 heterozygote and had been in the grain industry for <10 years were lower by comparison to those of grain workers who were *2/*2 genotype and had been in the industry for <10 years. This research demonstrates that years in the grain industry is an effect modifier between TNF-alpha 308 genotype and longitudinal decline in FEV(1)in male subjects exposed to grain dust.
Some insights on the dust properties of nearby galaxies, as seen with Herschel
NASA Astrophysics Data System (ADS)
Galliano, Frédéric
2017-12-01
Nearby galaxies are particularly relevant laboratories to study dust evolution due to the diversity of physical conditions they harbor and to the wealth of data at our disposal. In this paper, we review several recent advances in this field, mainly based on Herschel observations. We first discuss the problems linked with our ignorance of grain emissivities, and show that it can be constrained in some cases. New models are starting to incorporate these constraints. We then present methodological issues encountered when fitting spectral energy distributions, leading to biases in derived dust properties, and some attempts to solve them. Subsequently, we review studies scrutinizing dust evolution: (i) from a global point of view, inferring long term cosmic dust evolution; (ii) from a local point of view, looking for indices of dust processing in the ISM.
The concept of a facility for cosmic dust research on the International Space Station
NASA Technical Reports Server (NTRS)
Blum, Juergen; Cabane, Michel; Fonda, Mark; Giovane, Frank; Gustafson, Bo A. S.; Keller, Horst U.; Markiewicz, Wojciech J.; Levasseur-Regourd, Any-Chantal; Worms, Jean-Claude; Nuth, Joseph A.;
1996-01-01
A proposal for the development of a permanently operating facility for the experimental investigation of cosmic dust-related phenomena onboard the International Space Station (ISS) is presented. Potential applications for this facility are the convection-free nucleation of dust grains, studies of coagulation and aggregation phenomena in a microgravity environment, investigations of heat transport through, and dust emissions from, high-porosity cometary analogs, and experiments on the interaction of very fluffy dust grains with electromagnetic radiation and with low pressure gas flows. Possible extensions of such a facility are towards aerosol science and colloidal plasma research.
MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas
NASA Astrophysics Data System (ADS)
Hutchison, Mark; Price, Daniel J.; Laibe, Guillaume
2018-05-01
We present a new algorithm, MULTIGRAIN, for modelling the dynamics of an entire population of small dust grains immersed in gas, typical of conditions that are found in molecular clouds and protoplanetary discs. The MULTIGRAIN method is more accurate than single-phase simulations because the gas experiences a backreaction from each dust phase and communicates this change to the other phases, thereby indirectly coupling the dust phases together. The MULTIGRAIN method is fast, explicit and low storage, requiring only an array of dust fractions and their derivatives defined for each resolution element.
On the evolution of Saturn's 'Spokes' - Theory
NASA Technical Reports Server (NTRS)
Morfill, G. E.; Gruen, E.; Goertz, C. K.; Johnson, T. V.
1983-01-01
Starting with the assumption that negatively charged micron-sized dust grains may be elevated above Saturn's ring plane by plasma interactions, the subsequent evolution of the system is discussed. The discharge of the fine dust by solar UV radiation produces a cloud of electrons which moves adiabatically in Saturn's dipolar magnetic field. The electron cloud is absorbed by the ring after one bounce, alters the local ring potential significantly, and reduces the local Debye length. As a result, more micron-sized dust particles may be elevated above the ring plane and the spoke grows. This process continues until the electron cloud has dissipated.
Insights into H2 formation in space from ab initio molecular dynamics
Casolo, Simone; Tantardini, Gian Franco; Martinazzo, Rocco
2013-01-01
Hydrogen formation is a key process for the physics and the chemistry of interstellar clouds. Molecular hydrogen is believed to form on the carbonaceous surface of dust grains, and several mechanisms have been invoked to explain its abundance in different regions of space, from cold interstellar clouds to warm photon-dominated regions. Here, we investigate direct (Eley–Rideal) recombination including lattice dynamics, surface corrugation, and competing H-dimers formation by means of ab initio molecular dynamics. We find that Eley–Rideal reaction dominates at energies relevant for the interstellar medium and alone may explain observations if the possibility of facile sticking at special sites (edges, point defects, etc.) on the surface of the dust grains is taken into account. PMID:23572584
Comet C/2012 S1 (ISON)'s carbon-rich and micron-size-dominated coma dust
NASA Astrophysics Data System (ADS)
Wooden, D.; De Buizer, J.; Kelley, M.; Sitko, M.; Woodward, C.; Harker, D.; Reach, W.; Russell, R.; Kim, D.; Yanamadra-Fisher, P.; Lisse, C.; de Pater, I.; Gehrz, R.; Kolokolova, L.
2014-07-01
Comet C/2012 S1 (ISON) was unique in that it was a dynamically new comet derived from the Nearly Isotropic Oort cloud reservoir of comets with a sun-grazing orbit. We present thermal models for comet ISON (r_h ˜ 1.15 au, 2013-Oct-25 11:30 UT) that reveal comet ISON's dust was carbon-rich and dominated by a steep (and therefor narrow) grain size distribution (GSD) dominated by ˜ micron-sized grains. We constrained the models by our SOFIA FORCAST photometry at 11.1, 19.7 and 31.5 μ m and by a silicate feature strength of ˜1.1 and an 8-13 μ m continuum greybody color temperature of ˜275-280 K (using T_{bb}∝ {r}_h^{-0.5} and T_{bb}˜260-265 K from Subaru+COMICS, 2013-Oct-19 UT) [1,2]. Spectra of comet ISON with IRTF+BASS (2013-Nov-11-12 UT) also show a silicate feature strength of ˜1.1 as well as an 11.2 μ m forsterite peak [3]. Our thermal models [6], which employ 0.1-1000 μ m grains, yield constraints for the dust composition as well as GSD parameters of slope, peak grain size, porosity: ISON's dust has a low silicate-to-amorphous carbon ratio (˜1:9), the GSD has a steep slope (N≃4.5), a peak grain radius of ˜0.7 μ m, and moderately porous grains. Specifically, the 8-13 μ m continuum color temperature implies submicron- to micron-size grains and the steep fall off of the SOFIA far-IR photometry requires the GSD to have fewer relative numbers of larger and cooler grains compared to smaller and hotter grains. A IR proxy for the dust production rate is ɛ f ρ ˜ 1500 cm [4], which is akin to but larger than Afρ in scattered light (2013-Oct-20 UT, Afρ=796 cm(±5 %) in V-band from Swift) [5]. Also, ISON had a moderate-to-low dust-to-gas ratio [6]. Comet ISON's dust composition and GSD properties are distinct from the few well-studied long-period Nearly Isotropic Comets (NICs) that all had 'typical' GSD slopes (3.4≤N≤3.7) and silicate-to-amorphous carbon ratios ≫1 as well as the following properties: C/1995 O1 (Hale-Bopp)[7,8,9,10] and C/2001 Q4 (NEAT)[11] had smaller and highly porous grains, whereas C/2007 N4 (Lulin)[12] and C/2006 P1 (McNaught)[13] had larger and compact porous grains. Radial transport to comet-forming disk distances (≥ 20 au) is easier for smaller grains than for larger grains (≤ 1 μ m vs.˜20 μ m-like Stardust terminal particles) [14]. Perhaps Comet ISON formed either earlier in disk evolution whereby larger grains did not have the time to be transported to distances beyond Neptune, or the comet formed so far out in the disk that larger grains did not traverse such large radial distances. The high carbon-content of ISON's refractory dust appears to be complimented by the presence of limited-lifetime organic (CHON-like) grain materials: preliminary analyses of near-IR and high-resolution optical spectra indicate that gas-phase daughter molecules C_2, CN, and CH were more abundant than their parent molecules (HCN, C_2H_2, C_2H_6, measured in the near-IR) [15]. Dust composition as well as grain size distribution parameters (slope, peak grain size, and porosity) give clues to comet origins [16,17].
Tentative Identification of Interstellar Dust in the Magnetic Wall of the Heliosphere
NASA Astrophysics Data System (ADS)
Frisch, P. C.
2006-06-01
Data showing that light from nearby stars, <40 pc, is weakly polarized are consistent with the capture and alignment of dust grains in the magnetic wall of the heliosphere. These data, from Tinbergen (1982) and Piirola (1977), were acquired during the solar minimum of the mid-1970's when the magnetic wall was expected to form at negative ecliptic latitudes because the solar magnetic polarity was north-pole-positive. The polarization is seen primarily at negative ecliptic latitudes, consistent with the expected magnetic wall position. The interstellar magnetic field direction at the Sun is derived from these data. The small dust grains most likely to cause the polarization are also the grains excluded from the heliosphere by small gyroradii, <100 AU. The direction of maximum polarization is offset by ˜ 20 --40 deg. from the inflow direction of the large grains that are gravitationally focused in the heliosphere tail. Interstellar dust grains in and near the heliosphere form a potential contaminant of the cosmic microwave background signal, which should then be identifiable because the spatial behavior of these grains depends on the phase of the 22 year solar magnetic activity cycle. The author would like to thank NASA for supporting her research.
GIADA On-Board Rosetta: Early Dust Grain Detections and Dust Coma Characterization of Comet 67P/C-G
NASA Astrophysics Data System (ADS)
Rotundi, A.; Della Corte, V.; Accolla, M.; Ferrari, M.; Ivanovski, S.; Lucarelli, F.; Mazzotta Epifani, E.; Sordini, R.; Palumbo, P.; Colangeli, L.; Lopez-Moreno, J. J.; Rodriguez, J.; Fulle, M.; Bussoletti, E.; Crifo, J. F.; Esposito, F.; Green, S.; Grün, E.; Lamy, P. L.; McDonnell, T.; Mennella, V.; Molina, A.; Moreno, F.; Ortiz, J. L.; Palomba, E.; Perrin, J. M.; Rodrigo, R.; Weissman, P. R.; Zakharov, V.; Zarnecki, J.
2014-12-01
GIADA (Grain Impact Analyzer and Dust Accumulator) flying on-board Rosetta is devoted to study the cometary dust environment of 67P/Churiumov-Gerasimenko. GIADA is composed of 3 sub-systems: the GDS (Grain Detection System), based on grain detection through light scattering; an IS (Impact Sensor), giving momentum measurement detecting the impact on a sensed plate connected with 5 piezoelectric sensors; the MBS (MicroBalances System), constituted of 5 Quartz Crystal Microbalances (QCMs), giving cumulative deposited dust mass by measuring the variations of the sensors' frequency. The combination of the measurements performed by these 3 subsystems provides: the number, the mass, the momentum and the velocity distribution of dust grains emitted from the cometary nucleus.No prior in situ dust dynamical measurements at these close distances from the nucleus and starting from such large heliocentric distances are available up to date. We present here the first results obtained from the beginning of the Rosetta scientific phase. We will report dust grains early detection at about 800 km from the nucleus in August 2014 and the following measurements that allowed us characterizing the 67P/C-G dust environment at distances less than 100 km from the nucleus and single grains dynamical properties. Acknowledgements. GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF-Oss. Astr. Capodimonte, IT, in collaboration with the Inst. de Astrofisica de Andalucia, ES, Selex-ES s.p.a. and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with a support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developped from a PI proposal supported by the University of Kent; sci. & tech. contribution given by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their outstanding work. Science support provided by NASA through the US Rosetta Project managed by JPL/California Institute of Technology. GIADA calibrated data will be available through the ESA's PSA web site (www.rssd.esa.int/index.php?project=PSA&page=index). Thanks Angioletta.
Straumfors, Anne; Heldal, Kari Kulvik; Eduard, Wijnand; Wouters, Inge M; Ellingsen, Dag G; Skogstad, Marit
2016-01-01
Objective We have studied cross-shift respiratory responses of several individual bioaerosol components of the dust in the grain and feed industry in Norway. Methods Cross-shift changes in lung function and nasal congestion, as well as in respiratory and systemic symptoms of 56 exposed workers and 36 referents, were recorded on the same day as full-shift exposure to the inhalable aerosol fraction was assessed. Exposure–response associations were investigated by regression analysis. Results The workers were exposed on average to 1.0 mg/m3 of grain dust, 440 EU/m3 of endotoxin, 6 µg/m3 of β-1,3-glucans, 17×104/m3 of bacteria and 4×104/m3 of fungal spores during work. The exposure was associated with higher prevalence of self-reported eye and airway symptoms, which were related to the individual microbial components in a complex manner. Fatigue and nose symptoms were strongest associated with fungal spores, cough with or without phlegm was associated with grain dust and fungal spores equally strong and wheeze/tight chest/dyspnoea was strongest associated with grain dust. Bioaerosol exposure did not lead to cross-shift lung function decline, but several microbial components had influence on nose congestion. Conclusions Exposure to fungal spores and dust showed stronger associations with respiratory symptoms and fatigue than endotoxin exposure. The associations with dust suggest that there are other components in dust than the ones studied that induce these effects. PMID:27473330
A New 3D Map of Milky Way Dust
NASA Astrophysics Data System (ADS)
Green, Gregory Maurice; Schlafly, Edward; Finkbeiner, Douglas
2018-01-01
Interstellar dust is an important foreground for observations across a wide range of wavelengths. Dust grains scatter and absorb UV, optical and near-infrared light. These processes heat dust grains, causing them to radiate in the far-infrared. As a tracer of mass in the interstellar medium, dust correlates strongly with diffuse gamma-ray emission generated by cosmic-ray pion production. Thus, while dust makes up just 1% of the mass of the interstellar medium, it plays an outsize role in our efforts to address questions as diverse as the chemical evolution of the Milky Way galaxy and the existence of primordial B-mode polarizations in the CMB.We present a new 3D map of Milky Way dust, covering three-quarters of the sky (δ > -30°). The map is based on high-quality photometry of more than 800 million stars observed by Pan-STARRS 1, with matched photometry from 2MASS for approximately 200 million stars. We infer the distribution of dust vs. distance along sightlines with a typical angular scale of 6'. Out of the midplane of the Galaxy, our map agrees well with 2D maps based on far-infrared dust emission. After accounting for a 15% difference in scale, we find a mean scatter of approximately 10% between our map and the Planck 2D dust map, out to a depth of 0.8 mag in E(r-z). Our map can be downloaded at http://argonaut.skymaps.info.In order to extend our map, we have surveyed the southern Galactic plane with DECam, which is mounted on the 4m Blanco telescope on Cerro Tololo. The resulting survey, the Dark Energy Camera Plane Survey (DECaPS), is now publicly available. See Edward Schlafly's poster for more information on DECaPS.
Vegetable dust and airway disease: inflammatory mechanisms.
Cooper, J A; Buck, M G; Gee, J B
1986-01-01
Exposure to cotton or grain dust causes an obstructive bronchitis in certain subjects, mechanisms of which are poorly understood. A difficulty encountered in discerning mechanisms of this airway disease is the lack of knowledge of the active components of these dusts. Clinical features suggest common but not exact mechanisms of the airway disease associated with these vegetable dusts. Human and animal studies show evidence of acellular and cellular inflammatory mechanisms of the bronchoconstriction and inflammation associated with these disorders. Potential cellular sources include alveolar macrophages, polymorphonuclear leukocytes, mast cells, basophils, eosinophils and lymphocytes. Acellular origins include the complement and humoral antibody systems, both of which have been implicated, although their pathogenic role in grain or cotton dust disorders is uncertain. In this review we critically address potential inflammatory mechanisms of airway alterations resulting from cotton or grain dust exposure. General mechanisms of bronchoconstriction are first presented, then specific studies dealing with either of the two dusts are discussed. We believe this area of research may be fruitful in dissecting mechanisms of bronchoconstriction and airway inflammation, especially as more human studies are undertaken. PMID:3519205
Coordinated STEM/FIB/NanoSIMS Analyses of Presolar Silicates in Comet Dust and Primitive Meteorites
NASA Technical Reports Server (NTRS)
Keller, Lindsay; Nguyen, A.; Rahman, Z.; Messenger, S.
2012-01-01
Silicate grains were among the most abundant mineralogical building blocks of our Solar System. These grains were the detritus from earlier generations of stars that have been recycled in the early solar nebula. Rare sub-micrometer survivors of this processing have been identified in meteorites, micrometeorites and interplanetary dust particles (IDPs). These silicate grains are recognized as presolar in origin because of their extremely anomalous isotopic compositions that reflect nucleosynthetic processes in their stellar sources (evolved stars, novae and supernovae). We perform coordinated chemical, mineralogical and isotopic studies of these grains to determine their origins and histories. We examine the complex mineralogy and petrography of presolar silicates using imaging, diffraction and chemical data obtained from thin sections with the JSC JEOL 2500 field-emission STEM equipped with a Noran thin window energy dispersive x-ray (EDX) spectrometer and a Gatan Tridiem GIF. Quantitative element x-ray maps (spectrum images) are acquired by rastering a 4 nm incident probe whose dwell time is minimized to avoid beam damage and element diffusion during mapping. Successive image layers are acquired and combined in order to achieve approx 1% counting statistics for major elements. The IDP samples are prepared by ultramicrotomy of particles embedded in epoxy or elemental sulfur. After EDX mapping, the sections are subjected to C, N, and O isotopic imaging with the JSC NanoSIMS 50L ion microprobe. We prepare sections of some meteorite grains using the JSC FEI Quanta 3D focused ion beam (FIB) instrument. The specimen surface is protected from the FIB milling process by layers of electron beam-deposited C and Pt followed by an ion-deposited Pt layer. We also use the FIB to preferentially remove surrounding grains to reduce the background in subsequent NanoSIMS measurements. For mineralogical studies, we again employ the FIB instrument to deposit a protective cap over the grain of interest and then extract the grain and thin it to electron transparency for TEM analysis.
The Influence of Abrasion on Martian Dust Grains: Evidence from a Study of Antigorite Grains
NASA Technical Reports Server (NTRS)
Bishop, Janice L.; Drief, Ahmed; Dyar, M. Darby
2003-01-01
Grinding was shown to greatly affect the structure and a number of properties of antigorite grains in a study by Drief and Nieto. Grinding is likely to influence the structure of most clay mineral grains and has been shown recently to influence the structure of kaolinite. The antigorite structure includes curved waves of layered silicate as shown by D dony et al.. Our study was performed in order to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. This project includes a combination of SEM, reflectance spectroscopy and Moessbauer spectroscopy.
Expelled grains from an unseen parent body around AU Microscopii
NASA Astrophysics Data System (ADS)
Sezestre, É.; Augereau, J.-C.; Boccaletti, A.; Thébault, P.
2017-11-01
Context. Recent observations of the edge-on debris disk of AU Mic have revealed asymmetric, fast outward-moving arch-like structures above the disk midplane. Although asymmetries are frequent in debris disks, no model can readily explain the characteristics of these features. Aims: We present a model aiming to reproduce the dynamics of these structures, more specifically their high projected speeds and their apparent position. We test the hypothesis of dust emitted by a point source and then expelled from the system by the strong stellar wind of this young M-type star. In this model we make the assumption that the dust grains follow the same dynamics as the structures, I.e., they are not local density enhancements. Methods: We perform numerical simulations of test particle trajectories to explore the available parameter space, in particular the radial location R0 of the dust producing parent body and the size of the dust grains as parameterized by the value of β (ratio of stellar wind and radiation pressure forces over gravitation). We consider the cases of a static and of an orbiting parent body. Results: We find that for all considered scenarios (static or moving parent body), there is always a set of (R0,β) parameters able to fit the observed features. The common characteristics of these solutions is that they all require a high value of β, of around 6. This means that the star is probably very active, and the grains composing the structures are submicronic in order for observable grains to reach such high β values. We find that the location of the hypothetical parent body is closer in than the planetesimal belt, around 8 ± 2 au (orbiting case) or 28 ± 7 au (static case). A nearly periodic process of dust emission appears, of 2 yr in the orbiting scenarios and 7 yr in the static case. Conclusions: We show that the scenario of sequential dust releases by an unseen point-source parent body is able to explain the radial behavior of the observed structures. We predict the evolution of the structures to help future observations discriminate between the different parent body configurations that have been considered. In the orbiting parent body scenario, we expect new structures to appear on the northwest side of the disk in the coming years.
Fluffy dust forms icy planetesimals by static compression
NASA Astrophysics Data System (ADS)
Kataoka, Akimasa; Tanaka, Hidekazu; Okuzumi, Satoshi; Wada, Koji
2013-09-01
Context. Several barriers have been proposed in planetesimal formation theory: bouncing, fragmentation, and radial drift problems. Understanding the structure evolution of dust aggregates is a key in planetesimal formation. Dust grains become fluffy by coagulation in protoplanetary disks. However, once they are fluffy, they are not sufficiently compressed by collisional compression to form compact planetesimals. Aims: We aim to reveal the pathway of dust structure evolution from dust grains to compact planetesimals. Methods: Using the compressive strength formula, we analytically investigate how fluffy dust aggregates are compressed by static compression due to ram pressure of the disk gas and self-gravity of the aggregates in protoplanetary disks. Results: We reveal the pathway of the porosity evolution from dust grains via fluffy aggregates to form planetesimals, circumventing the barriers in planetesimal formation. The aggregates are compressed by the disk gas to a density of 10-3 g/cm3 in coagulation, which is more compact than is the case with collisional compression. Then, they are compressed more by self-gravity to 10-1 g/cm3 when the radius is 10 km. Although the gas compression decelerates the growth, the aggregates grow rapidly enough to avoid the radial drift barrier when the orbital radius is ≲6 AU in a typical disk. Conclusions: We propose a fluffy dust growth scenario from grains to planetesimals. It enables icy planetesimal formation in a wide range beyond the snowline in protoplanetary disks. This result proposes a concrete initial condition of planetesimals for the later stages of the planet formation.
NASA Technical Reports Server (NTRS)
Kuntz, Kip; Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.
2011-01-01
Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lnnar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however. the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.
NASA Technical Reports Server (NTRS)
Collier, Michael R.; Stubbs, Timothy J.; Farrell, William M.
2011-01-01
Shadowed regions on the lunar surface acquire a negative potential. In particular, shadowed craters can have a negative potential with respect to the surrounding lunar regolith in sunlight, especially near the terminator regions. Here we analyze the motion of a positively charged lunar dust grain in the presence of a shadowed crater at a negative potential in vacuum. Previous models describing the transport of charged lunar dust close to the surface have typically been limited to one-dimensional motion in the vertical direction, e.g. electrostatic levitation; however, the electric fields in the vicinity of shadowed craters will also have significant components in the horizontal directions. We propose a model that includes both the horizontal and vertical motion of charged dust grains near shadowed craters. We show that the dust grains execute oscillatory trajectories and present an expression for the period of oscillation drawing an analogy to the motion of a pendulum.
The Tranisiting Dust of Boyajian's Star
NASA Astrophysics Data System (ADS)
Bodman, Eva; Ellis, Tyler G.; Boyajian, Tabetha S.; Wright, Jason
2018-06-01
From May to October of 2017, Boyajian's Star displayed four days-long dips in observed flux, which are referred to as “Elsie,” “Celeste,” “Skara Brae,” and “Angkor” (Boyajian et al. 2018). This Elsie family dip event was monitored with the Las Cumbres Observatory in three bands, B, r', and i'. Looking at each dip individually, we analyze the multi-band photometry for wavelength dependency in dip depth to constrain properties of the transiting material. We find that all of the dips show non-grey extinction and are consistent with optically thin dust. Interpreting the dips as transiting dust clouds, we constrain the properties of the dust grains and find that the average grain radius is <1 micron, assuming silicate composition. This wavelength dependency and grain size is inconsistent with observed properties of the long-term “secular” dimming (Meng et al. 2017), suggesting that the dust causing the dips is from a separate population.
Aeolian Environments of Iceland
NASA Astrophysics Data System (ADS)
Arnalds, Olafur; Olafsson, Haraldur; Dagsson Waldhauserová, Pavla
2017-04-01
Iceland has the largest area of volcaniclastic sandy desert on Earth or 22,000 km2. The sand has been mostly produced by glacio-fluvial processes, leaving behind fine-grained unstable sediments which are later re-distributed by repeated aeolian events. Volcanic eruptions add to this pool of unstable sediments, often from subglacial eruptions. Icelandic desert surfaces are divided into sand fields, sandy lavas and sandy lag gravel, each with separate aeolian surface characteristics such as threshold velocities. Storms are frequent due to Iceland's location on the North Atlantic Storm track. Dry winds occur on the leeward sides of mountains and glaciers, in spite of the high moisture content of the Atlantic cyclones. Surface winds often move hundreds to more than 1000 kg m-1 per annum, and more than 10,000 kg m-1 have been measured in a single storm. Desertification occurs when aeolian processes push sand fronts and have thus destroyed many previously fully vegetated ecosystems since the time of the settlement of Iceland in the late ninth century. There are about 135 dust events per annum, ranging from minor storms to >300,000 t of dust emitted in single storms. Dust can be generated from all the major sandy areas of Iceland; however the amount of finer particles that become dust varies with the surfaces. There are areas that produce more dust by far compared to the general sandy deserts; they have therefore been termed "dust plume areas" or "dust hot-spots". They are characterized by repeated charging of fine sediments with a relatively high proportion of finer (silty) materials which, upon repeated wind erosion become sorted downwind from the sources with loss of silt (dust) and an increasing saltation component (sand). Dust production is on the order of 30-40 million tons annually, some travelling over 1000 km and deposited on land and sea. Dust deposited on deserts tends to be re-suspended during subsequent storms. High PM10 concentrations occur during major dust storms. They are more frequent in the wake of volcanic eruptions, such as after the Eyjafjallajökull 2010 eruption. Airborne dust affects human health, with negative effects enhanced by the tubular morphology of the grains, and the basaltic composition with its high metal content. Dust deposition on snow and glaciers intensifies melting. Moreover, the dust production probably also influences atmospheric conditions and parameters that affect climate change.
The Enigma of Lunar Dust Transport
NASA Technical Reports Server (NTRS)
Farrell, W. M.; Stubbs, T. J.; Vondrak, R. R.; Delory, G. T.; Halekas, J. S.
2011-01-01
We will review the highly contrasting points of view regarding the ability of fine dust grains to become transported in the near-space lunar environment. While Surveyor and Apollo camera images suggest the presence of a horizon glow that has been provocatively interpreted as levitated and/or lofted dust, there is contrasting geological evidence to indicate that surface regolith has not been moved in a substantial way. While electric forces have been suggested as a driver for grain dynamics, recent detailed modeling of near-surface non-monotonic potentials would suggest grains could not get to large heights. While lofting models require submicron grains to hold/contain 100's of elementary charges, it can be shown analytical1y that a grain residing on a flat surface would have an extremely low probability of having even a single electron on its surface, Can these diametrically opposing viewpoints be reconciled? We will review the pros and cons on both sides. and suggest that the UVS and LDEX instrument on LADEE will provide key new insights on dust transport at the Moon.
Light scattering by low-density agglomerates of micron-sized grains with the PROGRA2 experiment
NASA Astrophysics Data System (ADS)
Hadamcik, E.; Renard, J.-B.; Lasue, J.; Levasseur-Regourd, A. C.; Blum, J.; Schraepler, R.
2007-07-01
This work was carried out with the PROGRA2 experiment, specifically developed to measure the angular dependence of the polarization of light scattered by dust particles. The samples are small agglomerates of micron-sized grains and huge, low number density agglomerates of the same grains. The constituent grains (spherical or irregularly shaped) are made of different non-absorbing and absorbing materials. The small agglomerates, in a size range of a few microns, are lifted by an air draught. The huge centimeter-sized agglomerates, produced by random ballistic deposition of the grains, are deposited on a flat surface. The phase curves obtained for monodisperse, micron-sized spheres in agglomerates are obviously not comparable to the ‘smooth’ phase curves obtained by remote observations of cometary dust or asteroidal regoliths but they are used for comparison with numerical calculations to a better understanding of the light scattering processes. The phase curves obtained for irregular grains in agglomerates are similar to those obtained by remote observations, with a negative branch at phase angles smaller than 20° and a maximum polarization decreasing with increasing albedo. These results, coupled with remote observations in the solar system, should provide a better understanding of the physical properties of solid particles and their variation in cometary comae and asteroidal regoliths.
Chemical evolution of the gas in C-type shocks in dark clouds
NASA Astrophysics Data System (ADS)
Nesterenok, A. V.
2018-07-01
A magnetohydrodynamic model of a steady, transverse C-type shock in a dense molecular cloud is presented. A complete gas-grain chemical network is taken into account: the gas-phase chemistry, the adsorption of gas species on dust grains, various desorption mechanisms, the grain surface chemistry, the ion neutralization on dust grains, the sputtering of grain mantles. The population densities of energy levels of ions CI, CII and OI and molecules H2, CO, H2O are computed in parallel with the dynamical and chemical rate equations. The large velocity gradient approximation is used in the line radiative transfer calculations. The simulations consist of two steps: (i) modelling of the chemical and thermal evolution of a static molecular cloud and (ii) shock simulations. A comparison is made with the results of publicly available models of similar physical systems. The focus of the paper is on the chemical processing of gas material and ice mantles of dust grains by the shock. Sputtering of ice mantles takes place in the shock region close to the temperature peak of the neutral gas. At high shock speeds, molecules ejected from ice mantles are effectively destroyed in hot gas, and their survival time is low—of the order of dozens of years. After a passage of high-speed C-type shock, a zone of high abundance of atomic hydrogen appears in the cooling postshock gas that triggers formation of complex organic species such as methanol. It is shown that abundances of some complex organic molecules (COMs) in the postshock region can be much higher than in the preshock gas. These results are important for interpretation of observations of COMs in protostellar outflows.
DUST AND GAS IN THE DISK OF HL TAURI: SURFACE DENSITY, DUST SETTLING, AND DUST-TO-GAS RATIO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinte, C.; Ménard, F.; Dent, W. R. F.
The recent ALMA observations of the disk surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor of 10 in the main gaps compared to the surrounding rings. Ring masses range from 10–100 M{sub ⊕} in dust, and we find that each of the deepest gaps is consistent with the removal of up to 40 M{sub ⊕} of dust. If this material has accumulatedmore » into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimeter grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA—well separated and showing a high degree of contrast with the bright rings over all azimuths—indicates that the millimeter dust disk is geometrically thin (scale height ≈1 AU at 100 AU) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few 10{sup −4}. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO{sup +} and CO emission is consistent with gas in Keplerian motion around a 1.7 M{sub ⊙} star at radii from ≤10–120 AU.« less
NASA Astrophysics Data System (ADS)
Gehrz, R. D.; Evans, A.; Woodward, C. E.; Helton, L. A.; Banerjee, D. P. K.; Srivastava, M. K.; Ashok, N. M.; Joshi, V.; Eyres, S. P. S.; Krautter, Joachim; Kuin, N. P. M.; Page, K. L.; Osborne, J. P.; Schwarz, G. J.; Shenoy, D. P.; Shore, S. N.; Starrfield, S. G.; Wagner, R. M.
2018-05-01
We present 5–28 μm SOFIA FORECAST spectroscopy complemented by panchromatic X-ray through infrared observations of the CO nova V5668 Sgr documenting the formation and destruction of dust during ∼500 days following outburst. Dust condensation commenced by 82 days after outburst at a temperature of ∼1090 K. The condensation temperature indicates that the condensate was amorphous carbon. There was a gradual decrease of the grain size and dust mass during the recovery phase. Absolute parameter values given here are for an assumed distance of 1.2 kpc. We conclude that the maximum mass of dust produced was 1.2 × 10‑7 M ⊙ if the dust was amorphous carbon. The average grain radius grew to a maximum of ∼2.9 μm at a temperature of ∼720 K around day 113 when the shell visual optical depth was τ v ∼ 5.4. Maximum grain growth was followed by a period of grain destruction. X-rays were detected with Swift from day 95 to beyond day 500. The Swift X-ray count rate due to the hot white dwarf peaked around day 220, when its spectrum was that of a kT = 35 eV blackbody. The temperature, together with the supersoft X-ray turn-on and turn-off times, suggests a white dwarf mass of ∼1.1 M ⊙. We show that the X-ray fluence was sufficient to destroy the dust. Our data show that the post-dust event X-ray brightening is not due to dust destruction, which certainly occurred, as the dust is optically thin to X-rays.
The Lunar dusty plasmas -levitation and transport.
NASA Astrophysics Data System (ADS)
Atamaniuk, Barbara; Rothkaehl, Hanna
Lunar dust can exhibit unusual behavior -due to electron photoemission via solar-UV radiation the lunar surface represents a complex plasma -"dusty plasma". The dust grains and lunar surface are electrostatically charged by the Moon's interaction with the local plasma environ-ment and the photoemission of electrons due to solar UV and X-rays. This effect causes the like-charged surface and dust particles to repel each other, and creates a near-surface electric field. Lunar dust must be treated as a dusty plasma. Using analytic (kinetic (Vlasov) and magnetohydrodynamic theory ) and numerical modeling we show physical processes related to levitation and transport dusty plasma on the Moon. These dust grains could affect the lunar environment for radio wave and plasma diagnostics and interfere with exploration activities. References: 1. Wilson T.L. (1992), in Analysis of Interplanetary Dust, M. Zolensky et al. AIP Conf.Proc. 310, 33-44 (AIP, NY), 2.Wilson T.L."LUNAR DUST AND DUSTY PLASMA PHYSICS".40th Lunar and Planetary Science Conference (2009), 3. Grün E., et al.(1993),Nature 363, 144. 4. Morfill G. and Grün E.(1979), Planet. Space Sci.. 27, 1269, 1283, 5. Manka R. and Michel F. (1971), Proc. 2nd Lun. Sci. Conf. 2, 1717 (MIT Press, Cambridge). 6. Manka R. et al.(1973), Lun. Sci.-III, 504. 7. Barbara Atamaniuk "Kinetic Description of Localized Plasma Structure in Dusty Plasmas". Czechoslovak Journal of Physics Vol.54 C 2004
On the Outer Edges of Protoplanetary Dust Disks
NASA Astrophysics Data System (ADS)
Birnstiel, Tilman; Andrews, Sean M.
2014-01-01
The expectation that aerodynamic drag will force the solids in a gas-rich protoplanetary disk to spiral in toward the host star on short timescales is one of the fundamental problems in planet formation theory. The nominal efficiency of this radial drift process is in conflict with observations, suggesting that an empirical calibration of solid transport mechanisms in a disk is highly desirable. However, the fact that both radial drift and grain growth produce a similar particle size segregation in a disk (such that larger particles are preferentially concentrated closer to the star) makes it difficult to disentangle a clear signature of drift alone. We highlight a new approach, by showing that radial drift leaves a distinctive "fingerprint" in the dust surface density profile that is directly accessible to current observational facilities. Using an analytical framework for dust evolution, we demonstrate that the combined effects of drift and (viscous) gas drag naturally produce a sharp outer edge in the dust distribution (or, equivalently, a sharp decrease in the dust-to-gas mass ratio). This edge feature forms during the earliest phase in the evolution of disk solids, before grain growth in the outer disk has made much progress, and is preserved over longer timescales when both growth and transport effects are more substantial. The key features of these analytical models are reproduced in detailed numerical simulations, and are qualitatively consistent with recent millimeter-wave observations that find gas/dust size discrepancies and steep declines in dust continuum emission in the outer regions of protoplanetary disks.
Assessment of velocity/trajectory measurement technologies during a particle capture event
NASA Technical Reports Server (NTRS)
Tanner, William G.; Maag, Carl R.; Alexander, W. M.; Stephenson, Stepheni
1994-01-01
Since the early 1960s, the means to measure the time of flight (TOF) of dust grain within a mechanical detection array has existed, first in the laboratory and then in space experiments. Laboratory hypervelocity dust particle accelerators have used electrostatic detection of charge on accelerated particles for TOF and particle mass detections. These laboratory studies have led to the development of ultra-thin-film sensors that have been used for TOF measurements in dust particle space experiments. The prototypes for such devices were ultra-thin-film capacitors that were used in the OGO series of satellites. The main goal of the experimental work to be described is the development of the capability to determine the velocity vector or trajectory of a dust grain traversing an integrated dust detection array. The results of these studies have shown that the capability of detecting the charge liberated by hypervelocity dust grains with diameters in the micrometer range can be detected. Based on these results, detection systems have been designed to provide a precise analysis of the physical and dynamic properties of micrometer and submicrometer dust grains, namely the design verification unit (DVU). Through unique combinations of in situ detection systems, direct measurements of particle surface charge, velocity, momentum, kinetic energy, and trajectory have been achieved. From these measurements, the remaining physical parameters of mass, size, and density can be determined.
Mineral abundances of comet 17P/Holmes derived from the mid-infrared spectrum
NASA Astrophysics Data System (ADS)
Shinnaka, Yoshiharu; Yamaguchi, MItsuru; Ootsubo, Takafumi; Kawakita, Hideyo; Sakon, Itsuki; Honda, Mitsuhiko; Watanabe, Jun-ichi
2017-10-01
Dust grains of crystalline silicate, which is rarely presented in an interstellar space, were found in cometary nuclei (Messenger et al. 1996, LPI, 27, 867; Wooden et al. 1999, ApJ, 517, 1058, references therein). It is thought that these crystalline silicates had formed by annealing or condensations of amorphous grains near the Sun in the solar nebula, and incorporated into a cometary nucleus in a cold region (farther than formation regions of the crystalline silicates) by radial transportation in the solar nebula. It is considered that transportation mechanisms to outside of the solar nebula were turbulent and/or X-wind. An abundance of the crystalline dust grains was therefore expected to be smaller as far from the Sun (Gail, 2001, A&A, 378, 192; Bockelée-Morvan et al. 2002, A&A, 384, 1107). Namely, the abundance ratio of the crystalline silicate in cometary dust grains relates a degree of mass transportation and a distance from the Sun when cometary nucleus formed in the Solar nebula. The mass ratio of crystalline silicates of dust grains is determined from by Si-O stretching vibrational bands of silicate grains around 10 μm using difference of spectral band features between crystalline and amorphous grains. We present the crystalline-to-amorphous mass ratio of silicate grains in the comet 17P/Holmes by using the thermal emission mode of the dust grains (Ootsubo et al. 2007, P&SS, 55, 1044) applied to the mid-infrared spectra of the comet. These spectra were taken by the COMICS mounted on the Subaru Telescope on 2007 October 25, 26, 27 and 28 immediately after the great outburst of the comet (started on October 23). We discuss about formation conditions of the nucleus of the comet based on the derived mass ratio of silicate grains of the comet.
NASA Astrophysics Data System (ADS)
Raack, J.; Dennis, R.; Balme, M. R.; Taj-Eddine, K.; Ori, G. G.
2017-12-01
Dust devils are small vertical convective vortices which occur on Earth and Mars [1] but their internal structure is almost unknown. Here we report on in situ samples of two active dust devils in the Sahara Desert in southern Morocco [2]. For the sampling we used a 4 m high aluminium pipe with sampling areas made of removable adhesive tape. We took samples between 0.1-4 m with a sampling interval of 0.5 m and between 0.5-2 m with an interval of 0.25 m, respectively. The maximum diameter of all particles of the different sampling heights were then measured using an optical microscope to gain vertical grain size distributions and relative particle loads. Our measurements imply that both dust devils have a general comparable internal structure despite their different strengths and dimensions which indicates that the dust devils probably represents the surficial grain size distribution they move over. The particle sizes within the dust devils decrease nearly exponential with height which is comparable to results by [3]. Furthermore, our results show that about 80-90 % of the total particle load were lifted only within the first meter, which is a direct evidence for the existence of a sand skirt. If we assume that grains with a diameter <31 μm can go into suspension [4], our results show that only less than 0.1 wt% can be entrained into the atmosphere. Although this amount seems very low, these values represent between 60 and 70 % of all lifted particles due to the small grain sizes and their low weight. On Mars, the amount of lifted particles will be general higher as the dust coverage is larger [5], although the atmosphere can only suspend smaller grain sizes ( <20 μm) [6] compared to Earth. During our field campaign we observed numerous larger dust devils each day which were up to several hundred meters tall and had diameters of several tens of meters. This implies a much higher input of fine grained material into the atmosphere (which will have an influence on the climate, weather, and human health [7]) compared to the relative small dust devils sampled during our field campaign. [1] Thomas and Gierasch (1985) Science 230 [2] Raack et al. (2017) Astrobiology [3] Oke et al. (2007) J. Arid Environ. 71 [4] Balme and Greeley (2006) Rev. Geophys. 44 [5] Christensen (1986) JGR 91 [6] Newman et al. (2002) JGR 107 [7] Gillette and Sinclair (1990) Atmos. Environ. 24
Spatially resolving the dust properties and submillimetre excess in M 33
NASA Astrophysics Data System (ADS)
Relaño, M.; De Looze, I.; Kennicutt, R. C.; Lisenfeld, U.; Dariush, A.; Verley, S.; Braine, J.; Tabatabaei, F.; Kramer, C.; Boquien, M.; Xilouris, M.; Gratier, P.
2018-05-01
Context. The relative abundance of the dust grain types in the interstellar medium is directly linked to physical quantities that trace the evolution of galaxies. Because of the poor spatial resolution of the infrared and submillimetre data, we are able to study the dependence of the resolved infrared spectral energy distribution (SED) across regions of the interstellar medium (ISM) with different physical properties in just a few objects. Aims: We aim to study the dust properties of the whole disc of M 33 at spatial scales of 170 pc. This analysis allows us to infer how the relative dust grain abundance changes with the conditions of the ISM, study the existence of a submillimetre excess and look for trends of the gas-to-dust mass ratio (GDR) with other physical properties of the galaxy. Methods: For each pixel in the disc of M 33 we have fitted the infrared SED using a physically motivated dust model that assumes an emissivity index β close to two. We applied a Bayesian statistical method to fit the individual SEDs and derived the best output values from the study of the probability density function of each parameter. We derived the relative amount of the different dust grains in the model, the total dust mass, and the strength of the interstellar radiation field (ISRF) heating the dust at each spatial location. Results: The relative abundance of very small grains tends to increase, and for big grains to decrease, at high values of Hα luminosity. This shows that the dust grains are modified inside the star-forming regions, in agreement with a theoretical framework of dust evolution under different physical conditions. The radial dependence of the GDR is consistent with the shallow metallicity gradient observed in this galaxy. The strength of the ISRF derived in our model correlates with the star formation rate in the galaxy in a pixel by pixel basis. Although this is expected, it is the first time that a correlation between the two quantities has been reported. We have produced a map of submillimetre excess in the 500 μm SPIRE band for the disc of M 33. The excess can be as high as 50% and increases at large galactocentric distances. We further studied the relation of the excess with other physical properties of the galaxy and find that the excess is prominent in zones of diffuse ISM outside the main star-forming regions, where the molecular gas and dust surface density are low.
Dust exposure in workers from grain storage facilities in Costa Rica.
Rodríguez-Zamora, María G; Medina-Escobar, Lourdes; Mora, Glend; Zock, Jan-Paul; van Wendel de Joode, Berna; Mora, Ana M
2017-08-01
About 12 million workers are involved in the production of basic grains in Central America. However, few studies in the region have examined the occupational factors associated with inhalable dust exposure. (i) To assess the exposure to inhalable dust in workers from rice, maize, and wheat storage facilities in Costa Rica; (ii) to examine the occupational factors associated with this exposure; and (iii) to measure concentrations of respirable and thoracic particles in different areas of the storage facilities. We measured inhalable (<100μm) dust concentrations in 176 personal samples collected from 136 workers of eight grain storage facilities in Costa Rica. We also measured respirable (<4μm) and thoracic (<10μm) dust particles in several areas of the storage facilities. Geometric mean (GM) and geometric standard deviation (GSD) inhalable dust concentrations were 2.0mg/m 3 and 7.8 (range=<0.2-275.4mg/m 3 ). Personal inhalable dust concentrations were associated with job category [GM for category/GM for administrative staff and other workers (95% CI)=4.4 (2.6, 7.2) for packing; 20.4 (12.3, 34.7) for dehulling; 109.6 (50.1, 234.4) for unloading in flat bed sheds; 24.0 (14.5, 39.8) for unloading in pits; and 31.6 (18.6, 52.5) for drying], and cleaning task [15.8 (95% CI: 10.0, 26.3) in workers who cleaned in addition to their regular tasks]. Higher area concentrations of thoracic dust particles were found in wheat (GM and GSD=4.3mg/m 3 and 4.5) and maize (3.0mg/m 3 and 3.9) storage facilities, and in grain drying (2.3mg/m 3 and 3.1) and unloading (1.5mg/m 3 and 4.8) areas. Operators of grain storage facilities showed elevated inhalable dust concentrations, mostly above international exposure limits. Better engineering and administrative controls are needed. Copyright © 2017 Elsevier GmbH. All rights reserved.
Pneumatic System for Concentration of Micrometer-Size Lunar Soil
NASA Technical Reports Server (NTRS)
McKay, David; Cooper, Bonnie
2012-01-01
A report describes a size-sorting method to separate and concentrate micrometer- size dust from a broad size range of particles without using sieves, fluids, or other processes that may modify the composition or the surface properties of the dust. The system consists of four processing units connected in series by tubing. Samples of dry particulates such as lunar soil are introduced into the first unit, a fluidized bed. The flow of introduced nitrogen fluidizes the particulates and preferentially moves the finer grain sizes on to the next unit, a flat plate impactor, followed by a cyclone separator, followed by a Nuclepore polycarbonate filter to collect the dust. By varying the gas flow rate and the sizes of various orifices in the system, the size of the final and intermediate particles can be varied to provide the desired products. The dust can be collected from the filter. In addition, electron microscope grids can be placed on the Nuclepore filter for direct sampling followed by electron microscope characterization of the dust without further handling.
Secondary electron emission and its role in the space environment
NASA Astrophysics Data System (ADS)
Němeček, Z.; Pavlů, J.; Richterová, I.; Šafránková, J.; Vaverka, J.
2018-01-01
The role of dust in the space environment is of increasing interest in recent years and also the fast development of fusion devices with a magnetic confinement brought new issues in the plasma-surface interaction. Among other processes, secondary electron emission plays an important role for dust charging in interplanetary space and its importance increases at and above the surfaces of airless bodies like planets, moons, comets or asteroids. A similar situation can be found in many industrial applications where the dust is a final product or an unintentional impurity. The present paper reviews the progress in laboratory investigations of the secondary emission process as well as an evolution of the modeling of the interaction of energetic electrons with dust grains of different materials and sizes. The results of the model are discussed in view of latest laboratory simulations and they are finally applied on the estimation of an interaction of the solar wind and magnetospheric plasmas with the dust attached to or levitating above the lunar surface.
Tracing Water Vapor and Ice During Dust Growth
NASA Astrophysics Data System (ADS)
Krijt, Sebastiaan; Ciesla, Fred J.; Bergin, Edwin A.
2016-12-01
The processes that govern the evolution of dust and water (in the form of vapor or ice) in protoplanetary disks are intimately connected. We have developed a model that simulates dust coagulation, dust dynamics (settling, turbulent mixing), vapor diffusion, and condensation/sublimation of volatiles onto grains in a vertical column of a protoplanetary disk. We employ the model to study how dust growth and dynamics influence the vertical distribution of water vapor and water ice in the region just outside the radial snowline. Our main finding is that coagulation (boosted by the enhanced stickiness of icy grains) and the ensuing vertical settling of solids results in water vapor being depleted, but not totally removed, from the region above the snowline on a timescale commensurate with the vertical turbulent mixing timescale. Depending on the strength of the turbulence and the temperature, the depletion can reach factors of up to ˜50 in the disk atmosphere. In our isothermal column, this vapor depletion results in the vertical snowline moving closer to the midplane (by up to 2 gas scale heights) and the gas-phase {{C}}/{{O}} ratio above the vertical snowline increasing. Our findings illustrate the importance of dynamical effects and the need for understanding coevolutionary dynamics of gas and solids in planet-forming environments.
Wave processes in dusty plasma near the Moon’s surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozova, T. I.; Kopnin, S. I.; Popel, S. I., E-mail: popel@iki.rssi.ru
2015-10-15
A plasma—dust system in the near-surface layer on the illuminated side of the Moon is described. The system involves photoelectrons, solar-wind electrons and ions, neutrals, and charged dust grains. Linear and nonlinear waves in the plasma near the Moon’s surface are discussed. It is noticed that the velocity distribution of photoelectrons can be represented as a superposition of two distribution functions characterized by different electron temperatures: lower energy electrons are knocked out of lunar regolith by photons with energies close to the work function of regolith, whereas higher energy electrons are knocked out by photons corresponding to the peak atmore » 10.2 eV in the solar radiation spectrum. The anisotropy of the electron velocity distribution function is distorted due to the solar wind motion with respect to photoelectrons and dust grains, which leads to the development of instability and excitation of high-frequency oscillations with frequencies in the range of Langmuir and electromagnetic waves. In addition, dust acoustic waves can be excited, e.g., near the lunar terminator. Solutions in the form of dust acoustic solitons corresponding to the parameters of the dust—plasma system in the near-surface layer of the illuminated Moon’s surface are found. Ranges of possible Mach numbers and soliton amplitudes are determined.« less
NASA Technical Reports Server (NTRS)
Liffman, Kurt
1990-01-01
The effects of catastrophic collisional fragmentation and diffuse medium accretion on a the interstellar dust system are computed using a Monte Carlo computer model. The Monte Carlo code has as its basis an analytic solution of the bulk chemical evolution of a two-phase interstellar medium, described by Liffman and Clayton (1989). The model is subjected to numerous different interstellar processes as it transfers from one interstellar phase to another. Collisional fragmentation was found to be the dominant physical process that shapes the size spectrum of interstellar dust. It was found that, in the diffuse cloud phase, 90 percent of the refractory material is locked up in the dust grains, primarily due to accretion in the molecular medium. This result is consistent with the observed depletions of silicon. Depletions were found to be affected only slightly by diffuse cloud accretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovino, S.; Banerjee, R.; Grassi, T.
Understanding the formation of the extremely metal-poor star SDSS J102915+172927 is of fundamental importance to improve our knowledge on the transition between the first and second generation of stars in the universe. In this paper, we perform three-dimensional cosmological hydrodynamical simulations of dust-enriched halos during the early stages of the collapse process including a detailed treatment of the dust physics. We employ the astrochemistry package krome coupled with the hydrodynamical code enzo assuming grain-size distributions produced by the explosion of core-collapse supernovae (SNe) of 20 and 35 M {sub ⊙} primordial stars, which are suitable to reproduce the chemical patternmore » of the SDSS J102915+172927 star. We find that the dust mass yield produced from Population III SNe explosions is the most important factor that drives the thermal evolution and the dynamical properties of the halos. Hence, for the specific distributions relevant in this context, the composition, the dust optical properties, and the size range have only minor effects on the results due to similar cooling functions. We also show that the critical dust mass to enable fragmentation provided by semi-analytical models should be revised, as we obtain values one order of magnitude larger. This determines the transition from disk fragmentation to a more filamentary fragmentation mode, and suggests that likely more than one single SN event or efficient dust growth should be invoked to get such high dust content.« less
Interpreting the evolution of galaxy colours from z = 8 to 5
NASA Astrophysics Data System (ADS)
Mancini, Mattia; Schneider, Raffaella; Graziani, Luca; Valiante, Rosa; Dayal, Pratika; Maio, Umberto; Ciardi, Benedetta
2016-11-01
We attempt to interpret existing data on the evolution of the UV luminosity function and UV colours, β, of galaxies at 5 ≤ z ≤ 8, to improve our understanding of their dust content and interstellar medium properties. To this aim, we post-process the results of a cosmological hydrodynamical simulation with a chemical evolution model, which includes dust formation by supernovae and intermediate-mass stars, dust destruction in supernova shocks, and grain growth by accretion of gas-phase elements in dense gas. We find that observations require a steep, Small Magellanic Cloud-like extinction curve and a clumpy dust distribution, where stellar populations younger than 15 Myr are still embedded in their dusty natal clouds. Investigating the scatter in the colour distribution and stellar mass, we find that the observed trends can be explained by the presence of two populations: younger, less massive galaxies where dust enrichment is mainly due to stellar sources, and massive, more chemically evolved ones, where efficient grain growth provides the dominant contribution to the total dust mass. Computing the IR-excess-UV colour relation, we find that all but the dustiest model galaxies follow a relation shallower than the Meurer et al. one, usually adopted to correct the observed UV luminosities of high-z galaxies for the effects of dust extinction. As a result, their total star formation rates might have been overestimated. Our study illustrates the importance to incorporate a proper treatment of dust in simulations of high-z galaxies, and that massive, dusty, UV-faint galaxies might have already appeared at z ≲ 7.
Size Segregation and Number Density Enhancement of Particles in Accretion Disk Eddies
NASA Technical Reports Server (NTRS)
Klahr, H. H.; Henning, Th.
1996-01-01
We investigate the conditions for trapping solid dust particles in eddies and discuss the behavior of particles in a non-laminar protoplanetary accretion disk. We considered particle sizes from small dust grains to larger objects, 10(exp -4) cm less than a(sub p) less than 10(exp 2) cm. Independent of the source of turbulence, one can expect eddies to exist in the gas flow of a accretion disk, in the form of randomly occurring turbulent features or as convective cells. Due to the centrifugal force, solid particles are driven out of an eddy. It will be shown that this process is inhibited by the gravitational force induced by the protostar. Because of the mass dependence of the friction time, a given eddy becomes a trap for particles of a characteristic size and causes a local change in the dust density. Thus, the size distribution of the grains is no longer spatially homogeneous on small scales. Our general estimates do not depend on special turbulence or convection models. We calculate the maximal inhomogeneity due to this process. The strongest effect was observed for mm-sized particles, which can be concentrated by a factor of 100 within only 100 years.
NASA Astrophysics Data System (ADS)
Westphal, A. J.; Bradley, J. P.
2004-12-01
Interplanetary dust particles (IDPs) contain enigmatic submicron components called GEMS (glass with embedded metal and sulfides). The compositions and structures of GEMS indicate that they have been processed by exposure to ionizing radiation, but details of the actual irradiation environment(s) have remained elusive. Here we propose a mechanism and astrophysical site for GEMS formation that explains for the first time the following key properties of GEMS: they are stoichiometrically enriched in oxygen and systematically depleted in S, Mg, Ca, and Fe (relative to solar abundances); most have normal (solar) oxygen isotopic compositions; they exhibit a strikingly narrow size distribution (0.1-0.5 μm diameter); and some of them contain ``relict'' crystals within their silicate glass matrices. We show that the compositions, size distribution, and survival of relict crystals are inconsistent with amorphization by particles accelerated by diffusive shock acceleration. Instead, we propose that GEMS are formed from crystalline grains that condense in stellar outflows from massive stars in OB associations, are accelerated in encounters with frequent supernova shocks inside the associated superbubble (SB), and are implanted with atoms from the hot gas in the SB interior. We thus reverse the usual roles of target and projectile. Rather than being bombarded at rest by energetic ions, grains are accelerated and bombarded by a nearly monovelocity beam of atoms as viewed in their rest frame. Meyer, Drury, and Ellison have proposed that Galactic cosmic rays (GCRs) originate from ions sputtered from such accelerated dust grains. We suggest that GEMS are surviving members of a population of fast grains that constitute the long-sought source material for GCRs. Thus, representatives of the GCR source material may have been awaiting discovery in cosmic dust labs for the last 30 yr.
Extracting lunar dust parameters from image charge signals produced by the Lunar Dust Experiment
NASA Astrophysics Data System (ADS)
Stanley, J.; Kempf, S.; Horanyi, M.; Szalay, J.
2015-12-01
The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) is an impact ionization dust detector used to characterize the lunar dust exosphere generated by the impacts of large interplanetary particles and meteor streams (Horanyi et al., 2015). In addition to the mass and speed of these lofted particles, LDEX is sensitive to their charge. The resulting signatures of impact events therefore provide valuable information about not only the ambient plasma environment, but also the speed vectors of these dust grains. Here, impact events produced from LDEX's calibration at the Dust Accelerator Laboratory are analyzed using an image charge model derived from the electrostatic simulation program, Coulomb. We show that parameters such as dust grain speed, size, charge, and position of entry into LDEX can be recovered and applied to data collected during LADEE's seven-month mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.
The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focusmore » our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease with the luminosity, which may be suggestive of the disk's stirring level increasing toward earlier-type stars. The dust opacity index β ranges between zero and two, and the size distribution index q varies between three and five for all the disks in the sample.« less
10 years of Cassini/VIMS observations at Titan
NASA Astrophysics Data System (ADS)
Sotin, C.; Brown, R. H.; Baines, K. H.; Barnes, J.; Buratti, B. J.; Clark, R. N.; Jaumann, R.; LeMouelic, S.; Nicholson, P. D.; Rodriguez, S.; Soderblom, J.; Soderblom, L.; Stephan, K.
2014-04-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liou, K. N.; Takano, Y.; He, Cenlin
2014-06-27
A stochastic approach to model the positions of BC/dust internally mixed with two snow-grain types has been developed, including hexagonal plate/column (convex) and Koch snowflake (concave). Subsequently, light absorption and scattering analysis can be followed by means of an improved geometric-optics approach coupled with Monte Carlo photon tracing to determine their single-scattering properties. For a given shape (plate, Koch snowflake, spheroid, or sphere), internal mixing absorbs more light than external mixing. The snow-grain shape effect on absorption is relatively small, but its effect on the asymmetry factor is substantial. Due to a greater probability of intercepting photons, multiple inclusions ofmore » BC/dust exhibit a larger absorption than an equal-volume single inclusion. The spectral absorption (0.2 – 5 um) for snow grains internally mixed with BC/dust is confined to wavelengths shorter than about 1.4 um, beyond which ice absorption predominates. Based on the single-scattering properties determined from stochastic and light absorption parameterizations and using the adding/doubling method for spectral radiative transfer, we find that internal mixing reduces snow albedo more than external mixing and that the snow-grain shape plays a critical role in snow albedo calculations through the asymmetry factor. Also, snow albedo reduces more in the case of multiple inclusion of BC/dust compared to that of an equal-volume single sphere. For application to land/snow models, we propose a two-layer spectral snow parameterization containing contaminated fresh snow on top of old snow for investigating and understanding the climatic impact of multiple BC/dust internal mixing associated with snow grain metamorphism, particularly over mountains/snow topography.« less
The Impact Ejecta Environment of Near Earth Asteroids
NASA Astrophysics Data System (ADS)
Szalay, Jamey R.; Horányi, Mihály
2016-10-01
Impact ejecta production is a ubiquitous process that occurs on all airless bodies throughout the solar system. Unlike the Moon, which retains a large fraction of its ejecta, asteroids primarily shed their ejecta into the interplanetary dust population. These grains carry valuable information about the chemical compositions of their parent bodies that can be measured via in situ dust detection. Here, we use recent Lunar Atmosphere and Dust Environment Explorer/Lunar Dust Experiment measurements of the lunar dust cloud to calculate the dust ejecta distribution for any airless body near 1 au. We expect this dust distribution to be highly asymmetric, due to non-isotropic impacting fluxes. We predict that flybys near these asteroids would collect many times more dust impacts by transiting the apex side of the body compared to its anti-apex side. While these results are valid for bodies at 1 au, they can be used to qualitatively infer the ejecta environment for all solar-orbiting airless bodies.
High negative charge of a dust particle in a hot cathode discharge.
Arnas, C; Mikikian, M; Doveil, F
1999-12-01
Dust particle levitation experiments in a plasma produced by a hot filament discharge, operating at low argon pressure, are presented. The basic characteristics of a dust grain trapped in a plate sheath edge in these experimental conditions are reported. Taking into account the sheath potential profiles measured with a differential emissive probe diagnostic, the forces applied to an isolated dust grain can be determined. Two different experimental methods yield approximately the same value for the dust charge. The observed high negative charge is mainly due to the contribution of the primary electrons emitted by the filaments as predicted by a simple model.
Disk Masses for Embedded Class I Protostars in the Taurus Molecular Cloud
NASA Astrophysics Data System (ADS)
Sheehan, Patrick D.; Eisner, Josh A.
2017-12-01
Class I protostars are thought to represent an early stage in the lifetime of protoplanetary disks, when they are still embedded in their natal envelope. Here we measure the disk masses of 10 Class I protostars in the Taurus Molecular Cloud to constrain the initial mass budget for forming planets in disks. We use radiative transfer modeling to produce synthetic protostar observations and fit the models to a multi-wavelength data set using a Markov Chain Monte Carlo fitting procedure. We fit these models simultaneously to our new Combined Array for Research in Millimeter-wave Astronomy 1.3 mm observations that are sensitive to the wide range of spatial scales that are expected from protostellar disks and envelopes so as to be able to distinguish each component, as well as broadband spectral energy distributions compiled from the literature. We find a median disk mass of 0.018 {M}ȯ on average, more massive than the Taurus Class II disks, which have median disk mass of ∼ 0.0025 {M}ȯ . This decrease in disk mass can be explained if dust grains have grown by a factor of 75 in grain size, indicating that by the Class II stage, at a few Myr, a significant amount of dust grain processing has occurred. However, there is evidence that significant dust processing has occurred even during the Class I stage, so it is likely that the initial mass budget is higher than the value quoted here.
GIADA on-board Rosetta: comet 67P/C-G dust coma characterization
NASA Astrophysics Data System (ADS)
Rotundi, Alessandra; Della Corte, Vincenzo; Fulle, Marco; Sordini, Roberto; Ivanovski, Stavro; Accolla, Mario; Ferrari, Marco; Lucarelli, Francesca; Zakharov, Vladimir; Mazzotta Epifani, Elena; López-Moreno, José J.; Rodríguez, Julio; Colangeli, Luigi; Palumbo, Pasquale; Bussoletti, Ezio; Crifo, Jean-Francois; Esposito, Francesca; Green, Simon F.; Grün, Eberhard; Lamy, Philippe L.
2015-04-01
21ESA-ESAC, Camino Bajo del Castillo, s/n., Urb. Villafranca del Castillo, 28692 Villanueva de la Cañada, Madrid, Spagna GIADA consists of three subsystems: 1) the Grain Detection System (GDS) to detect dust grains as they pass through a laser curtain, 2) the Impact Sensor (IS) to measure grain momentum derived from the impact on a plate connected to five piezoelectric sensors, and 3) the MicroBalances System (MBS); five quartz crystal microbalances in roughly orthogonal directions providing the cumulative dust flux of grains smaller than 10 microns. GDS provides data on grain speed and its optical cross section. The IS grain momentum measurement, when combined with the GDS detection time, provides a direct measurement of grain speed and mass. These combined measurements characterize single grain dust dynamics in the coma of 67P/CG. No prior in situ dust dynamical measurements at these close distances from the nucleus and starting from such high heliocentric distances are available up to date. We present here the results obtained by GIADA, which began operating in continuous mode on 18 July 2014 when the comet was at a heliocentric distance of 3.7 AU. The first grain detection occurred when the spacecraft was 814 km from the nucleus on 1 August 2014. From August the 1st up to December the 11th, GIADA detected more than 800 grains, for which the 3D spatial distribution was determined. About 700 out of 800 are GDS only detections: "dust clouds", i.e. slow dust grains (≈ 0.5 m/s) crossing the laser curtain very close in time (e.g. 129 grains in 11 s), probably fluffy grains. IS only detections are about 70, i.e. ≈ 1/10 of the GDS only. This ratio is quite different from what we got for the early detections (August - September) when the ration was ≈ 3, suggesting the presence of different types of particle (bigger, brighter, less dense).The combined GDS+IS detections, i.e. measured by both the GDS and IS detectors, are about 70 and allowed us to extract the complete set of dust grain parameters, i.e., mass, speed, and geometrical cross-section. These detections allowed us to constraint the grain density. The GIADA detections type was studied as a function of the observational geometrical configuration. Acknowledgments: GIADA was built by a consortium led by the Univ. Napoli "Parthenope" & INAF- Oss. Astr. Capodimonte, in collaboration with the Inst. de Astrofisica de Andalucia, Selex-ES, FI and SENER. GIADA is presently managed & operated by Ist. di Astrofisica e Planetologia Spaziali-INAF, IT. GIADA was funded and managed by the Agenzia Spaziale Italiana, IT, with the support of the Spanish Ministry of Education and Science MEC, ES. GIADA was developed from a PI proposal from the University of Kent; sci. & tech. contribution were provided by CISAS, IT, Lab. d'Astr. Spat., FR, and Institutions from UK, IT, FR, DE and USA. We thank the RSGS/ESAC, RMOC/ESOC & Rosetta Project/ESTEC for their outstanding work. Science support provided was by NASA through the US Rosetta Project managed by the Jet Propulsion Laboratory/California Institute of Technology. GIADA calibrated data will be available through ESA's PSA web site (www.rssd.esa.int/index.php?project=PSA&page=in dex). We would like to thank Angioletta Coradini for her contribution as a GIADA Co-I.
NASA Astrophysics Data System (ADS)
Schrader, Devin L.; Nagashima, Kazuhide; Waitukaitis, Scott R.; Davidson, Jemma; McCoy, Timothy J.; Connolly, Harold C.; Lauretta, Dante S.
2018-02-01
By investigating the in situ chemical and O-isotope compositions of olivine in lightly sintered dust agglomerates from the early Solar System, we constrain their origins and the retention of dust in the protoplanetary disk. The grain sizes of silicates in these agglomeratic olivine (AO) chondrules indicate that the grain sizes of chondrule precursors in the Renazzo-like carbonaceous (CR) chondrites ranged from <1 to 80 μm. We infer this grain size range to be equivalent to the size range for dust in the early Solar System. AO chondrules may contain, but are not solely composed of, recycled fragments of earlier formed chondrules. They also contain 16O-rich olivine related to amoeboid olivine aggregates and represent the best record of chondrule-precursor materials. AO chondrules contain one or more large grains, sometimes similar to FeO-poor (type I) and/or FeO-rich (type II) chondrules, while others contain a type II chondrule core. These morphologies are consistent with particle agglomeration by electrostatic charging of grains during collision, a process that may explain solid agglomeration in the protoplanetary disk in the micrometer size regime. The petrographic, isotopic, and chemical compositions of AO chondrules are consistent with chondrule formation by large-scale shocks, bow shocks, and current sheets. The petrographic, isotopic, and chemical similarities between AO chondrules in CR chondrites and chondrule-like objects from comet 81P/Wild 2 indicate that comets contain AO chondrules. We infer that these AO chondrules likely formed in the inner Solar System and migrated to the comet forming region at least 3 Ma after the formation of the first Solar System solids. Observations made in this study imply that the protoplanetary disk retained a dusty disk at least ∼3.7 Ma after the formation of the first Solar System solids, longer than half of the dusty accretion disks observed around other stars.
Trajectories of charged dust grains in the cometary environment
NASA Astrophysics Data System (ADS)
Horanyi, M.; Mendis, D. A.
1985-07-01
Using a simple model of the particles and fields environment of a comet, the trajectories of the smallest (micron- and submicron-sized) dust grains that are expected to be released from a cometary nucleus are calculated. It is shown that electromagnetic forces play a crucial role in the dynamics of these particles. The present calculations indicate not only the asymmetry of the sunward dust envelopes that have been suggested earlier by other authors, but they also indicate the possible existence of wavy dust features far down the tail, reminiscent of the peculiar wavy dust feature observed in the dust tail of Comet Ikeya-Seki 1965f. The importance of these findings in studying the lower end of the cometary dust mass spectrum during the forthcoming fly-by missions to Comet Halley is underscored.
Time Dependent Models of Grain Formation Around Carbon Stars
NASA Technical Reports Server (NTRS)
Egan, M. P.; Shipman, R. F.
1996-01-01
Carbon-rich Asymptotic Giant Branch stars are sites of dust formation and undergo mass loss at rates ranging from 10(exp -7) to 10(exp -4) solar mass/yr. The state-of-the-art in modeling these processes is time-dependent models which simultaneously solve the grain formation and gas dynamics problem. We present results from such a model, which also includes an exact solution of the radiative transfer within the system.
NASA Technical Reports Server (NTRS)
Chokshi, Arati; Tielens, Alexander G. G. M.; Hollenbach, David
1989-01-01
Coagulation is an important mechanism in the growth of interstellar and interplanetary dust particles. The microphysics of the coagulation process was theoretically analyzed as a function of the physical properties of the coagulating grains, i.e., their size, relative velocities, temperature, elastic properties, and the van der Waal interaction. Numerical calculations of collisions between linear chains provide the wave energy in individual particles and the spectrum of the mechanical vibrations set up in colliding particles. Sticking probabilities are then calculated using simple estimates for elastic deformation energies and for the attenuation of the wave energy due to absorption and scattering processes.
The onset of planet formation in brown dwarf disks.
Apai, Dániel; Pascucci, Ilaria; Bouwman, Jeroen; Natta, Antonella; Henning, Thomas; Dullemond, Cornelis P
2005-11-04
The onset of planet formation in protoplanetary disks is marked by the growth and crystallization of sub-micrometer-sized dust grains accompanied by dust settling toward the disk mid-plane. Here, we present infrared spectra of disks around brown dwarfs and brown dwarf candidates. We show that all three processes occur in such cool disks in a way similar or identical to that in disks around low- and intermediate-mass stars. These results indicate that the onset of planet formation extends to disks around brown dwarfs, suggesting that planet formation is a robust process occurring in most young circumstellar disks.
How micron-sized dust particles determine the chemistry of our Universe
Dulieu, François; Congiu, Emanuele; Noble, Jennifer; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Minissale, Marco; Cazaux, Stéphanie
2013-01-01
In the environments where stars and planets form, about one percent of the mass is in the form of micro-meter sized particles known as dust. However small and insignificant these dust grains may seem, they are responsible for the production of the simplest (H2) to the most complex (amino-acids) molecules observed in our Universe. Dust particles are recognized as powerful nano-factories that produce chemical species. However, the mechanism that converts species on dust to gas species remains elusive. Here we report experimental evidence that species forming on interstellar dust analogs can be directly released into the gas. This process, entitled chemical desorption (fig. 1), can dominate over the chemistry due to the gas phase by more than ten orders of magnitude. It also determines which species remain on the surface and are available to participate in the subsequent complex chemistry that forms the molecules necessary for the emergence of life. PMID:23439221
NASA Technical Reports Server (NTRS)
Efimov, Yu. S.
1989-01-01
R CrB stars are classical examples of stars where dust envelope formation takes place. Dust envelope formation was detected around the Kuwano-Honda object (PU Vul) in 1980 to 1981 when the star's brightness fell to 8(sup m). Such envelopes are also formed at nova outbursts. The process of dust envelope formation leads to appreciable variations in optical characteristics, which are seen in specific color and polarization variations in the course of light fading and the appearance of IR radiation. It is shown that the model of a circumstellar dust envelope with aligned particles of changing size can be successfully applied to explain most phenomena observed at the time of light minima for a number of eruptive stars. The polarization may arise in a nonspherical dust envelope or be produced by alignment of nonspherical particles.
NASA Technical Reports Server (NTRS)
Rietmeijer, F. J. M.
1989-01-01
Olivine-rich chondritic interplanetary dust particles (IDPs) are an important subset of fluffy chondritic IDPs collected in the earth's stratosphere. Particles in this subset are characterized by a matrix of nonporous, ultrafine-grained granular units. Euhedral single crystals, crystals fragments, and platey single crystals occur dispersed in the matrix. Analytical electron microscopy of granular units reveals predominant magnesium-rich olivines and FeNi-sulfides embedded in amorphous carbonaceous matrix material. The variable ratio of ultrafine-grained minerals vs. carbonaceous matrix material in granular units support variable C/Si ratios, and some fraction of sulfur is associated with carbonaceous matrix material. The high Mg/(Mg+Fe) ratios in granular units is similar to this distribution in P/Comet Halley dust. The chondritic composition of fine-grained, polycrystalline IDPs gradually breaks down into nonchondritic, and ultimately, single mineral compositions as a function of decreased particle mass. The relationship between particle mass and composition in the matrix of olivine-rich chondritic IDPs is comparable with the relationship inferred for P/Comet Halley dust.
Akhter, S R; Ikezaki, H; Gao, X P; Rubinstein, I
1999-05-01
The purpose of this study was to determine whether dexamethasone attenuates grain sorghum dust extract-induced increase in macromolecular efflux from the in situ hamster cheek pouch and, if so, whether this response is specific. By using intravital microscopy, we found that an aqueous extract of grain sorghum dust elicited significant, concentration-dependent leaky site formation and increase in clearance of FITC-labeled dextran (FITC-dextran; mol mass, 70 kDa) from the in situ hamster cheek pouch (P < 0.05). This response was significantly attenuated by dexamethasone (10 mg/kg iv). Dexamethasone also attenuated substance P-induced leaky site formation and increase in clearance of FITC-dextran from the cheek pouch but had no significant effects on adenosine-induced responses. Dexamethasone had no significant effects on arteriolar diameter in the cheek pouch. On balance, these data indicate that dexamethasone attenuates grain sorghum dust extract- and substance P-induced increases in macromolecular efflux from the in situ hamster cheek pouch in a specific fashion.
Constraints on the structure of hot exozodiacal dust belts
NASA Astrophysics Data System (ADS)
Kirchschlager, Florian; Wolf, Sebastian; Krivov, Alexander V.; Mutschke, Harald; Brunngräber, Robert
2017-05-01
Recent interferometric surveys of nearby main-sequence stars show a faint but significant near-infrared excess in roughly two dozen systems, I.e. around 10-30 per cent of stars surveyed. This excess is attributed to dust located in the immediate vicinity of the star, the origin of which is highly debated. We used previously published interferometric observations to constrain the properties and distribution of this hot dust. Considering both scattered radiation and thermal re-emission, we modelled the observed excess in nine of these systems. We find that grains have to be sufficiently absorbing to be consistent with the observed excess, while dielectric grains with pure silicate compositions fail to reproduce the observations. The dust should be located within ˜0.01-1 au from the star depending on its luminosity. Furthermore, we find a significant trend for the disc radius to increase with the stellar luminosity. The dust grains are determined to be below 0.2-0.5 μm, but above 0.02-0.15 μm in radius. The dust masses amount to (0.2-3.5) × 10- 9 M⊕. The near-infrared excess is probably dominated by thermal re-emission, though a contribution of scattered light up to 35 per cent cannot be completely excluded. The polarization degree predicted by our models is always below 5 per cent, and for grains smaller than ˜ 0.2 {μm even below 1 per cent. We also modelled the observed near-infrared excess of another 10 systems with poorer data in the mid-infrared. The basic results for these systems appear qualitatively similar, yet the constraints on the dust location and the grain sizes are weaker.
NASA Technical Reports Server (NTRS)
Rodrigues, C. V.; Magalhaes, A. M.; Coyne, G. V.
1995-01-01
We study the dust in the Small Magellanic Cloud using our polarization and extinction data (Paper 1) and existing dust models. The data suggest that the monotonic SMC extinction curve is related to values of lambda(sub max), the wavelength of maximum polarization, which are on the average smaller than the mean for the Galaxy. On the other hand, AZV 456, a star with an extinction similar to that for the Galaxy, shows a value of lambda(sub max) similar to the mean for the Galaxy. We discuss simultaneous dust model fits to extinction and polarization. Fits to the wavelength dependent polarization data are possible for stars with small lambda(sub max). In general, they imply dust size distributions which are narrower and have smaller mean sizes compared to typical size distributions for the Galaxy. However, stars with lambda(sub max) close to the Galactic norm, which also have a narrower polarization curve, cannot be fit adequately. This holds true for all of the dust models considered. The best fits to the extinction curves are obtained with a power law size distribution by assuming that the cylindrical and spherical silicate grains have a volume distribution which is continuous from the smaller spheres to the larger cylinders. The size distribution for the cylinders is taken from the fit to the polarization. The 'typical', monotonic SMC extinction curve can be fit well with graphite and silicate grains if a small fraction of the SMC carbon is locked up in the grain. However, amorphous carbon and silicate grains also fit the data well. AZV456, which has an extinction curve similar to that for the Galaxy, has a UV bump which is too blue to be fit by spherical graphite grains.
Straumfors, Anne; Heldal, Kari Kulvik; Eduard, Wijnand; Wouters, Inge M; Ellingsen, Dag G; Skogstad, Marit
2016-10-01
We have studied cross-shift respiratory responses of several individual bioaerosol components of the dust in the grain and feed industry in Norway. Cross-shift changes in lung function and nasal congestion, as well as in respiratory and systemic symptoms of 56 exposed workers and 36 referents, were recorded on the same day as full-shift exposure to the inhalable aerosol fraction was assessed. Exposure-response associations were investigated by regression analysis. The workers were exposed on average to 1.0 mg/m(3) of grain dust, 440 EU/m(3) of endotoxin, 6 µg/m(3) of β-1,3-glucans, 17×10(4)/m(3) of bacteria and 4×10(4)/m(3) of fungal spores during work. The exposure was associated with higher prevalence of self-reported eye and airway symptoms, which were related to the individual microbial components in a complex manner. Fatigue and nose symptoms were strongest associated with fungal spores, cough with or without phlegm was associated with grain dust and fungal spores equally strong and wheeze/tight chest/dyspnoea was strongest associated with grain dust. Bioaerosol exposure did not lead to cross-shift lung function decline, but several microbial components had influence on nose congestion. Exposure to fungal spores and dust showed stronger associations with respiratory symptoms and fatigue than endotoxin exposure. The associations with dust suggest that there are other components in dust than the ones studied that induce these effects. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
The effect of dust lifting process on the electrical properties of the atmosphere
NASA Astrophysics Data System (ADS)
Esposito, Francesca; Molinaro, Roberto; Ionut Popa, Ciprian; Molfese, Cesare; Cozzolino, Fabio; Marty, Laurent; Taj-Eddine, Kamal; Di Achille, Gaetano; Silvestro, Simone; Ori, Gian Gabriele
2015-04-01
Airborne dust and aerosol particles affect climate by absorbing and scattering thermal and solar radiation and acting as condensation nuclei for the formation of clouds. So, they strongly influence the atmospheric thermal structure, balance and circulation. On Earth and Mars, this 'climate forcing' is one of the most uncertain processes in climate change predictions. Wind-driven blowing of sand and dust is also responsible for shaping planetary surfaces through the formation of sand dunes and ripples, the erosion of rocks, and the creation and transport of soil particles. These processes are not confined to Earth, but occur also on Mars, Venus and Titan. It is clear that the knowledge of the atmospheric dust properties and the mechanisms of dust settling and raising into the atmosphere are important to understand planetary climate and surface evolution. On Mars the physical processes responsible for dust injection into the atmosphere are still poorly understood, but they likely involve saltation as on Earth. Saltation is a process where large sand grains are forced by the wind to move in ballistic trajectories on the soil surface. During these hops they hit dust particles, that are well bound to the soil due to interparticle cohesive forces, thus transferring to them the momentum necessary to be entrained into the atmosphere. Recently, it has been shown that this process is also responsible to generate strong electric fields in the atmosphere up to 100-150 kV/m. This enhanced electric force acts as a feedback in the dust lifting process, lowering the threshold of the wind friction velocity u* necessary to initiate sand saltation. It is an important aspect of dust lifting process that need to be well characterized and modeled. Even if literature reports several measurements of E-fields in dust devils events, very few reports deal with atmospheric electric properties during dust storms or isolated gusts. We present here preliminary results of an intense field test campaign we performed in the West Sahara during the 2013 and 2014 dust storm seasons. We collected a statistical meaningful set of data characterizing relationship between dust lifting and atmospheric E-field that had never been achieved so far.
Near-infrared scattering as a dust diagnostic
NASA Astrophysics Data System (ADS)
Saajasto, Mika; Juvela, Mika; Malinen, Johanna
2018-06-01
Context. Regarding the evolution of dust grains from diffuse regions of space to dense molecular cloud cores, many questions remain open. Scattering at near-infrared wavelengths, or "cloudshine", can provide information on cloud structure, dust properties, and the radiation field that is complementary to mid-infrared "coreshine" and observations of dust emission at longer wavelengths. Aims: We examine the possibility of using near-infrared scattering to constrain the local radiation field and the dust properties, the scattering and absorption efficiency, the size distribution of the grains, and the maximum grain size. Methods: We use radiative transfer modelling to examine the constraints provided by the J, H, and K bands in combination with mid-infrared surface brightness at 3.6 μm. We use spherical one-dimensional and elliptical three-dimensional cloud models to study the observable effects of different grain size distributions with varying absorption and scattering properties. As an example, we analyse observations of a molecular cloud in Taurus, TMC-1N. Results: The observed surface brightness ratios of the bands change when the dust properties are changed. However, even a change of ±10% in the surface brightness of one band changes the estimated power-law exponent of the size distribution γ by up to 30% and the estimated strength of the radiation field KISRF by up to 60%. The maximum grain size Amax and γ are always strongly anti-correlated. For example, overestimating the surface brightness by 10% changes the estimated radiation field strength by 20% and the exponent of the size distribution by 15%. The analysis of our synthetic observations indicates that the relative uncertainty of the parameter distributions are on average Amax, γ 25%, and the deviation between the estimated and correct values ΔQ < 15%. For the TMC-1N observations, a maximum grain size Amax > 1.5μm and a size distribution with γ > 4.0 have high probability. The mass weighted average grain size is ⟨am⟩ = 0.113μm. Conclusions: We show that scattered infrared light can be used to derive meaningful limits for the dust parameters. However, errors in the surface brightness data can result in considerable uncertainties on the derived parameters.
Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons
NASA Astrophysics Data System (ADS)
Ahmadi, Abrishami S.; Nouri, Kadijani M.
2014-06-01
In this work, the effects of superthermal and trapped electrons on the oblique propagation of nonlinear dust-acoustic waves in a magnetized dusty (complex) plasma are investigated. The dynamic of electrons is simulated by the generalized Lorentzian (κ) distribution function (DF). The dust grains are cold and their dynamics are simulated by hydrodynamic equations. Using the standard reductive perturbation technique (RPT) a nonlinear modified Korteweg-de Vries (mKdV) equation is derived. Two types of solitary waves; fast and slow dust acoustic solitons, exist in this plasma. Calculations reveal that compressive solitary structures are likely to propagate in this plasma where dust grains are negatively (or positively) charged. The properties of dust acoustic solitons (DASs) are also investigated numerically.
Evolution of Icy Dust Grains in the Vicinity of a Cometary Nucleus
NASA Astrophysics Data System (ADS)
Hilchenbach, M.
2009-12-01
From late 2014 onwards, ESA's cornerstone mission ROSETTA will orbit the comet 67P/Churyumov-Gerasimenko. One instrument, COSIMA, will collect cometary dust grains and analyze the grains via secondary mass spectrometry. Models of the evolution of icy dust, accelerated by drag forces of subliming gas and exposed to solar radiation, should set constrains on the detection limits of the COSIMA instrument for volatile icy components. A straightforward modeling approach is applied as a baseline for the observational planing schedule of the instrument operations in the years 2014/2015 as ROSETTA escorts the comet nucleus up to perihelion and beyond.
Alignment of dust grains in ionized regions
NASA Technical Reports Server (NTRS)
Anderson, Nels; Watson, William D.
1993-01-01
The rate at which charged dust grains in a plasma are torqued by passing ions and electrons is calculated. When photo-emission of electrons is not important, attraction of ions by the grain monopole potential increases the rate at which the grains' spins are dealigned by nearly an order of magnitude. Consequently, the energy density of the magnetic field required to align grains in an H II region may be increased by about an order of magnitude. In contrast, electric dipole and quadrupole moments are unlikely to produce large dealignment rates for grains of modest length-to-width ratio. Nonetheless, for positively charged grains these higher-order moments likely prevent monopole repulsion of ions from reducing the dealignment rate far below that for neutral grains. The presence of positive grain charge therefore does not greatly facilitate grain alignment in an H II region.
Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623
NASA Astrophysics Data System (ADS)
Sadavoy, Sarah I.; Myers, Philip C.; Stephens, Ian W.; Tobin, John; Commerçon, Benoît; Henning, Thomas; Looney, Leslie; Kwon, Woojin; Segura-Cox, Dominique; Harris, Robert
2018-06-01
We present high-resolution (∼30 au) ALMA Band 6 dust polarization observations of VLA 1623. The VLA 1623 data resolve compact ∼40 au inner disks around the two protobinary sources, VLA 1623-A and VLA 1623-B, and also an extended ∼180 au ring of dust around VLA 1623-A. This dust ring was previously identified as a large disk in lower-resolution observations. We detect highly structured dust polarization toward the inner disks and the extended ring with typical polarization fractions ≈1.7% and ≈2.4%, respectively. The two components also show distinct polarization morphologies. The inner disks have uniform polarization angles aligned with their minor axes. This morphology is consistent with expectations from dust scattering. By contrast, the extended dust ring has an azimuthal polarization morphology not previously seen in lower-resolution observations. We find that our observations are well-fit by a static, oblate spheroid model with a flux-frozen, poloidal magnetic field. We propose that the polarization traces magnetic grain alignment likely from flux freezing on large scales and magnetic diffusion on small scales. Alternatively, the azimuthal polarization may be attributed to grain alignment by the anisotropic radiation field. If the grains are radiatively aligned, then our observations indicate that large (∼100 μm) dust grains grow quickly at large angular extents. Finally, we identify significant proper motion of VLA 1623 using our observations and those in the literature. This result indicates that the proper motion of nearby systems must be corrected for when combining ALMA data from different epochs.
NASA Astrophysics Data System (ADS)
Capria, M. T.; Ivanovski, S.; Zakharov, W.; Capaccioni, F.; Filacchione, G.; De Sanctis, M. C.; Rotundi, A.; Della Corte, V.; Longobardo, A.; Palomba, E.; Colangeli, L.; Bockelee-Morvan, D.; Erard, S.; Leyrat, C.
2016-11-01
The imaging spectrometer VIRTIS and the dust analyzer GIADA, onboard Rosetta, made an extensive observation of the dust particles in the coma of the comet 67P/Churyumov-Gerasimenko. From the analysis of GIADA data, two different kind of particles have been revealed, compact and fluffy with different compositions and dynamical properties. Compact particles are characterized by densities of about 10E3 kg/m3, while fluffy particles have an almost fractal nature, with densities less than 1 kg/m3. In this work we present the initial results of a model linking the dust flux distribution, as obtained from a theoretical thermal nucleus model, with a model describing the dynamics of aspherical grains in the coma. The results are discussed in the context of the latest observations from VIRTIS and GIADA instruments. The 2D nucleus thermal model, when applied to the real shape of the comet, provides the size distribution and physical properties of the emitted grains at different times and location on the surface. The thermal model can simulate grains of various size distribution, composition and physical properties. This information is used as an input for the dust dynamical model that follows the emitted particles in the coma. The main source of heating is the solar illumination. In the dust dynamical model, the grain trajectory of emitted particles remains in a plane perpendicular to the rotational axis and the direction of illumination is taken to be in the same plane (i.e. does not cause transversal forces). The dust particles are assumed to be isothermal convex bodies and temperature changes only induce modest changes in the aerodynamic force (twice higher temperature changes aerodynamic force less than 30%). This study reviews the theoretical values at which temperature difference starts to play a role on the dynamics. We discuss to what extent the particle's temperature affects the terminal velocities of the dust grains in the 67P coma in dependence on their mass and temperature constrained by the observations.
NASA Astrophysics Data System (ADS)
Capria, Maria Teresa; Ivanovski, Stavro; Zakharov, Vladimir; Capaccioni, Fabrizio; Filacchione, Gianrico; De Sanctis, Maria Cristina; rotundi, alessandra; della corte, vincenzo; Longobardo, Andrea; Palomba, Ernesto; colangeli, luigi; Bockelee-Morvan, Dominique; Érard, Stéphane; Leyrat, Cedric; VIRTIS, GIADA
2016-10-01
The imaging spectrometer VIRTIS and the dust analyzer GIADA, onboard Rosetta, made an extensive observation of the dust particles in the coma of the comet 67P/Churyumov-Gerasimenko. From the analysis of GIADA data, two different kind of particles have been revealed, compact and fluffy with different compositions and dynamical properties. Compact particles are characterized by densities of about 103 kg/m3, while fluffy particles have an almost fractal nature, with densities less than 1 kg/m3.In this work we present the initial results of a model linking the dust flux distribution, as obtained from a theoretical thermal nucleus model, with a model describing the dynamics of aspherical grains in the coma. The results are discussed in the context of the latest observations from VIRTIS and GIADA instruments.The 2D nucleus thermal model, when applied to the real shape of the comet, provides the size distribution and physical properties of the emitted grains at different times and location on the surface. The thermal model can simulate grains of various size distribution, composition and physical properties. This information is used as an input for the dust dynamical model that follows the emitted particles in the coma. The main source of heating is the solar illumination. In the dust dynamical model, the grain trajectory of emitted particles remains in a plane perpendicular to the rotational axis and the direction of illumination is taken to be in the same plane (i.e. does not cause transversal forces). The dust particles are assumed to be isothermal convex bodies and temperature changes only induce modest changes in the aerodynamic force (twice higher temperature changes aerodynamic force less than ~30%). This study reviews the theoretical values at which temperature difference starts to play a role on the dynamics. We discuss to what extent the particle's temperature affects the terminal velocities of the dust grains in the 67P coma in dependence on their mass and temperature constrained by the observations.
Infrared photometric behavior and opposition effect of Mars
NASA Technical Reports Server (NTRS)
Erard, S.; Bibring, J-P.; Drossart, P.
1992-01-01
Although the instrument wasn't designed for this purpose, data from the imaging spectrometer ISM may be used for studying photometric variations of Mars reflectance, that are related to the surface materials and aerosols physical properties. ISM flew aboard the Phobos-2 spacecraft which orbited Mars from January to March, 1989. About 40,000 spectra were acquired in 128 channels ranging from 0.76 to 3.16 micro-m, with a spatial resolution of 25 km and a signal-to-noise ratio ranging up to 1000. Analysis of the results leads to the following conclusions: width variations of the opposition surge can be related to differences in porosity or grain size distribution on the various domains, with little or no effect from suspended dust. As the biggest effects are observed on dark and bright materials, intermediate behaviors on average-bright regions cannot result from a mixing process, but are more likely to come from either cementation processes or modification of the grain size distribution under the influence of wind, which under Martian conditions preferentially removes the biggest particles. Thus, a surface dust consisting in big bright and small dark grains could explain the observations.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Tilley, David A.; Rettig, Terrence; Brittain, Sean D.
2009-07-01
In this paper, we have used the RIEMANN code for computational astrophysics to study the interaction of a realistic distribution of dust grains with gas at specific radial locations in a vertically stratified protostellar accretion disc. The disc was modelled to have the density and temperature of a minimum mass solar nebula, and shearing box simulations at radii of 0.3 and 10 au are reported here. The disc was driven to a fully developed turbulence via the magnetorotational instability (MRI). The simulations span three gas scaleheights about the disc's midplane. We find that the inclusion of standard dust-to-gas ratios does not have any significant effect on the MRI even when the dust sediments to the midplane of the accretion disc. The density distribution of the dust of all sizes reached a Gaussian profile within two scaleheights of the disc's midplane. The vertical scaleheights of these Gaussian profiles are shown to be proportional to the reciprocal of the square root of the dust radius when large spherical dust grains are considered. This result is consistent with theoretical expectation. The largest two families of dust in one of our simulations show a strong tendency to settle to the midplane of the accretion disc. The large dust tends to organize itself into elongated clumps of high density. The dynamics of these clumps is shown to be consistent with a streaming instability. The streaming instability is seen to be very vigorous and persistent once it forms. Each stream of high-density dust displays a reduced rms velocity dispersion. The velocity directions within the streams are also aligned relative to the mean shear, providing further evidence that we are witnessing a streaming instability. The densest clumpings of large dust are shown to form where the streams intersect. We have also shown that the mean free path and collision time for dust that participates in the streaming instability are reduced by almost two orders of magnitude relative to the average mean free paths and collision times. The rms velocities between the grains also need to fall below a minimum threshold in order for the grains to stick and we show that a small amount of the large dust in our 10 au simulation should have a propensity for grain coalescence. The results of our simulations are likely to be useful for those who model spectral energy distributions of protostellar discs and also for those who model dust coagulation and growth.
Chemical Composition of the Semi-Volatile Grains of Comet 67P/Churyumov-Gerasimenko
NASA Astrophysics Data System (ADS)
Wurz, P.; Altwegg, K.; Balsiger, H. R.; Berthelier, J. J.; De Keyser, J.; Fiethe, B.; Fuselier, S. A.; Gasc, S.; Gombosi, T. I.; Korth, A.; Mall, U.; Reme, H.; Rubin, M.; Tzou, C. Y.
2017-12-01
Rosetta was in orbit of comet 67P/Churyumov-Gerasimenko from August 2014 to September 2016. On board is the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) experiment that has been continuously collecting data on the chemical composition and activity of the coma from 3.5 AU to pericentre at 1.24 AU and out again to 3.5 AU. ROSINA consists of two mass spectrometers, the Double Focusing Mass Spectrometer (DFMS) and the Reflectron-type Time-Of-Flight (RTOF), as well as the COmet Pressure Sensor (COPS). ROSINA recorded the neutral gas and thermal plasma in the comet's coma. The two mass spectrometers have high dynamic ranges and complement each other with high mass resolution, and high time resolution and large mass range. COPS measures total gas densities, bulk velocities, and gas temperatures. Occasionally, a dust grain of cometary origin enters the ion source of a ROSINA instrument where the volatile part evaporates since these ion sources are hot. The release of volatiles from cometary dust grains was observed with all three ROSINA instruments on several occasions. Because the volatile content of such a dust grain is completely evaporated after a few seconds, the RTOF instrument is best suited for the investigation of its chemical composition since complete mass spectra are recorded during this time. During the mission 9 dust grains were observed with RTOF during the October 2014 to July 2016 time period. It is estimated that these grains contain about 10-15 g of volatiles. The mass spectra were interpreted with a set of 75 molecules, with the major groups of chemical species being hydrocarbons, oxygenated hydrocarbons, nitrogen-bearing molecules, sulphur-bearing molecules, halogenated molecules and others. About 70% of these grains are depleted in water compared to the comet coma, thus, can be considered as semi-volatile dust grains, and the other about 30% are water grains. The chemical composition varies considerably from grain to grain, indicating large chemical heterogeneity at these scales. In contrast, the elemental abundances vary much less.
The Entry of Nano-dust Particles into the Terrestrial Magnetosphere
NASA Astrophysics Data System (ADS)
Horanyi, M.; Juhasz, A.
2016-12-01
Nano-dust particles have been suggested to be responsible for spurious antenna signals on several spacecraft near 1 AU. Most of these tiny motes are generated in the solar vicinity where the collision-rate between larger inward migrating dust particles increases generating copious amounts of smaller dust grains. The vast majority of the dust grains is predicted to be lost to the Sun, but a fraction of them can be expelled by radiation pressure, and the solar wind plasma flow. Particles in the nano-meter size range can be incorporated in the solar wind, and arrive near 1 AU with characteristic speeds of approximately 400 km/s. Larger, but still submicron sized particles, that are expelled by radiation pressure, represent the so-called beta-meteoroid population. Both of these populations of dust particles can be detected by dedicated dust instruments near 1 AU. A fraction of these particles can also penetrate the terrestrial magnetosphere and possibly bombard spacecraft orbiting the Earth. This talk will explore the dynamics of nano-grains and beta-meteoroids entering the magnetosphere, and predict their spatial, mass and speed distributions as function of solar wind conditions.
Dust in the Quasar Wind (Artist Concept)
NASA Technical Reports Server (NTRS)
2007-01-01
Dusty grains -- including tiny specks of the minerals found in the gemstones peridot, sapphires and rubies -- can be seen blowing in the winds of a quasar, or active black hole, in this artist's concept. The quasar is at the center of a distant galaxy. Astronomers using NASA's Spitzer Space Telescope found evidence that such quasar winds might have forged these dusty particles in the very early universe. The findings are another clue in an ongoing cosmic mystery: where did all the dust in our young universe come from? Dust is crucial for efficient star formation as it allows the giant clouds where stars are born to cool quickly and collapse into new stars. Once a star has formed, dust is also needed to make planets and living creatures. Dust has been seen as far back as when the universe was less than a tenth of its current age, but how did it get there? Most dust in our current epoch forms in the winds of evolved stars that did not exist when the universe was young. Theorists had predicted that winds from quasars growing in the centers of distant galaxies might be a source of this dust. While the environment close to a quasar is too hot for large molecules like dust grains to survive, dust has been found in the cooler, outer regions. Astronomers now have evidence that dust is created in these outer winds. Using Spitzer's infrared spectrograph instrument, scientists found a wealth of dust grains in a quasar called PG2112+059 located at the center of a galaxy 8 billion light-years away. The grains - including corundum (sapphires and rubies); forsterite (peridot); and periclase (naturally occurring in marble) - are not typically found in galaxies without quasars, suggesting they might have been freshly formed in the quasar's winds.Interaction of adhered metallic dust with transient plasma heat loads
NASA Astrophysics Data System (ADS)
Ratynskaia, S.; Tolias, P.; Bykov, I.; Rudakov, D.; De Angeli, M.; Vignitchouk, L.; Ripamonti, D.; Riva, G.; Bardin, S.; van der Meiden, H.; Vernimmen, J.; Bystrov, K.; De Temmerman, G.
2016-06-01
The first study of the interaction of metallic dust (tungsten, aluminum) adhered on tungsten substrates with transient plasma heat loads is presented. Experiments were carried out in the Pilot-PSI linear device with transient heat fluxes up to 550 MW m-2 and in the DIII-D divertor tokamak. The central role of the dust-substrate contact area in heat conduction is highlighted and confirmed by heat transfer simulations. The experiments provide evidence of the occurrence of wetting-induced coagulation, a novel growth mechanism where cluster melting accompanied by droplet wetting leads to the formation of larger grains. The physical processes behind this mechanism are elucidated. The remobilization activity of the newly formed dust and the survivability of tungsten dust on hot surfaces are documented and discussed in the light of implications for ITER.
Gas Heating, Chemistry and Photoevaporation in Protostellar Disks
NASA Technical Reports Server (NTRS)
Hollenbach, David
2004-01-01
We model the thermal balance, the chemistry, and the radiative transfer in dusty disks orbiting young, low mass stars. These models are motivated by observations of infrared and ultraviolet transitions of H2 from protoplanetary disks, as well as millimeter and submillimeter observations of other molecules such as CO, and infrared continuum observations of the dust. The dust grains are heated primarily by the stellar radiation and the infrared radiation field produced by the dust itself. The gas is heated by collisions with warmer dust grains, X-rays from the region close to the stellar surface, UV pumping of hydrogen molecules, and the grain photoelectric heating mechanism initiated by UV photons from the central star. We treat cases where the gas to dust ratio is high, because the dust has settled to the midplane and coagulated into relatively large objects. We discuss situations in which the infrared emission from H2 can be detected, and how the comparison of the observations with our models can deduce physical parameters such as the mass and the density and temperature distribution of the gas.
Presence of specific IgG antibody to grain dust does not go with respiratory symptoms.
Park, H. S.; Suh, C. H.; Nahm, D. H.; Kim, H. Y.
1999-01-01
A high prevalence of work-related symptoms in relation to grain dust exposure has been reported in grain dust workers, but the role of the specific IgG antibody is unknown. To study the possible role of specific IgG (sIgG) and specific IgG4 (sIgG4) in the development of work-related symptoms, sIgG and sIgG4 subclass antibodies against grain dust antigens were determined by ELISA in sera from 43 workers and 27 non-exposed controls. They were compared with results of specific IgE antibodies, exposure intensity and the presence of respiratory symptoms. SIgG and sIgG4 antibodies were detectable in almost all sera of exposed workers, and the prevalence were significantly higher than those of controls (p<0.05). Higher sIgG4 was noted in workers with specific IgE (p<0.05). The correlation between sIgG and exposure duration was significant (p<0.05). There was no association between the prevalence of sIgG and sIgG4 and the presence of respiratory symptoms, or work stations. In conclusion, these results suggest that the existence of sIgG and sIgG4 might represent a response to grain dust exposure and may unlikely play a role in the etiology of respiratory symptoms. PMID:10102522
Presence of specific IgG antibody to grain dust does not go with respiratory symptoms.
Park, H S; Suh, C H; Nahm, D H; Kim, H Y
1999-02-01
A high prevalence of work-related symptoms in relation to grain dust exposure has been reported in grain dust workers, but the role of the specific IgG antibody is unknown. To study the possible role of specific IgG (sIgG) and specific IgG4 (sIgG4) in the development of work-related symptoms, sIgG and sIgG4 subclass antibodies against grain dust antigens were determined by ELISA in sera from 43 workers and 27 non-exposed controls. They were compared with results of specific IgE antibodies, exposure intensity and the presence of respiratory symptoms. SIgG and sIgG4 antibodies were detectable in almost all sera of exposed workers, and the prevalence were significantly higher than those of controls (p<0.05). Higher sIgG4 was noted in workers with specific IgE (p<0.05). The correlation between sIgG and exposure duration was significant (p<0.05). There was no association between the prevalence of sIgG and sIgG4 and the presence of respiratory symptoms, or work stations. In conclusion, these results suggest that the existence of sIgG and sIgG4 might represent a response to grain dust exposure and may unlikely play a role in the etiology of respiratory symptoms.
Observational Evidence for Mixing and Dust Condensation in Core-Collapse Supernovae
NASA Technical Reports Server (NTRS)
Wooden, Diane; Young, Richard E. (Technical Monitor)
1997-01-01
Recent findings of isotopic anomalies of Ca-44 (the decay product of Ti-44) and the enhanced ratio of Si-28/Si-30 in SiC grains X, TiC subgrains, and graphite dust grains within primitive meteorites provides strong evidence that these presolar grains came from core-collapse supernovae. The chemical composition of the presolar grains requires macroscopic mixing of newly nucleo-synthesized elements from explosive silicon burning at the innermost zone of the ejects to higher velocities where C exists and where C/O > 1 in either the outer edge of the oxygen zone or in the He-C zone. To date, the only core-collapse supernova observed to form dust is the brightest supernova of the past four centuries, SN1987A in the Large Magellanic Cloud. Observations of SN1987A confirm large scale macroscopic mixing occurs in the explosions of massive stars. Rayleigh-Taylor instabilities macroscopically mix most of the ejects into regions which are still chemically homogeneous and which cool with different time scales. Only small clumps in the ejects are microscopically mixed. Observations show that dust condensed in the ejects of SN1987A after approx.500 days in the Fe-rich gas. Neither silicates nor SiC grains were seen in the dust emission spectrum of SN1987A. SN1987A, the Rosetta Stone of core-collapse supernovae, shows that while the mixing required to explain presolar grains occurs, the rapid cooling of the Fe zone and the sustained high temperatures of the O-Si, O-C, and He-C zones favor the formation of iron-rich rather than oxygen- or carbon-rich grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr; Canadian Institute for Theoretical Astrophysics, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8; Institute of Theoretical Physics, Goethe Universität Frankfurt, D-60438 Frankfurt am Main
Recent photometric and polarimetric observations of Type Ia supernovae (SNe Ia) show unusually low total-to-selective extinction ratios ( R {sub V} < 2) and wavelengths of maximum polarization ( λ{sub max} < 0.4 μ m) for several SNe Ia, which indicates peculiar properties of interstellar (IS) dust in the SN-hosted galaxies and/or the presence of circumstellar (CS) dust. In this paper, we use an inversion technique to infer the best-fit grain size distribution and the alignment function of interstellar grains along the lines of sight toward four SNe Ia with anomalous extinction and polarization data (SN 1986G, SN 2006X, SNmore » 2008fp, and SN 2014J). We find that to reproduce low values of R{sub V}, a significant enhancement in the mass of small grains of radius a < 0.1 μ m is required. For SN 2014J, a simultaneous fit to its observed extinction and polarization is unsuccessful if all the data are attributed to IS dust (model 1), but a good fit is obtained when accounting for the contribution of CS dust (model 2). For SN 2008fp, our best-fit results for model 1 show that in order to reproduce an extreme value of λ{sub max} ∼ 0.15 μ m, small silicate grains must be aligned as efficiently as big grains. For this case, we suggest that strong radiation from the SN can induce efficient alignment of small grains in a nearby intervening molecular cloud via the radiative torque (RAT) mechanism. The resulting time dependence polarization from this RAT alignment model can be tested by observing at ultraviolet wavelengths.« less
Self-consistent Simulation of Microparticle and Ion Wakefield Configuration
NASA Astrophysics Data System (ADS)
Sanford, Dustin; Brooks, Beau; Ellis, Naoki; Matthews, Lorin; Hyde, Truell
2017-10-01
In a complex plasma, positively charged ions often have a directed flow with respect to the negatively charged dust grains. The resulting interaction between the dust and the flowing plasma creates an ion wakefield downstream from the dust particles, with the resulting positive space region modifying the interaction between the grains and contributing to the observed dynamics and equilibrium structure of the system. Here we present a proof of concept method that uses a molecular dynamics simulation to model the ion wakefield allowing the dynamics of the dust particles to be determined self-consistently. The trajectory of each ion is calculated including the forces from all other ions, which are treated as ``Yukawa particles'' and shielded from thermal electrons and the forces of the charged dust particles. Both the dust grain charge and the wakefield structure are also self-consistently determined for various particle configurations. The resultant wakefield potentials are then used to provide dynamic simulations of dust particle pairs. These results will be employed to analyze the formation and dynamics of field-aligned chains in CASPER's PK4 experiment onboard the International Space Station, allowing examination of extended dust chains without the masking force of gravity. This work was supported by the National Science Foundation under Grants PHY-1414523 and PHY-1740203.
The Search for Interstellar Sulfide Grains
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Messenger, Scott
2010-01-01
The lifecycle of sulfur in the galaxy is poorly understood. Fe-sulfide grains are abundant in early solar system materials (e.g. meteorites and comets) and S is highly depleted from the gas phase in cold, dense molecular cloud environments. In stark contrast, sulfur is essentially undepleted from the gas phase in the diffuse interstellar medium, indicating that little sulfur is incorporated into solid grains in this environment. It is widely believed that sulfur is not a component of interstellar dust grains. This is a rather puzzling observation unless Fe-sulfides are not produced in significant quantities in stellar outflows, or their lifetime in the ISM is very short due to rapid destruction. Fe sulfide grains are ubiquitous in cometary samples where they are the dominant host of sulfur. The Fe-sulfides (primarily pyrrhotite; Fe(1-x)S) are common, both as discrete 0.5-10 micron-sized grains and as fine (5-10 nm) nanophase inclusions within amorphous silicate grains. Cometary dust particles contain high abundances of well-preserved presolar silicates and organic matter and we have suggested that they should contain presolar sulfides as well. This hypothesis is supported by the observation of abundant Fe-sulfides grains in dust around pre- and post-main sequence stars inferred from astronomical spectra showing a broad 23 micron IR feature due to FeS. Fe-sulfide grains also occur as inclusions in bona fide circumstellar amorphous silicate grains and as inclusions within deuterium-rich organic matter in cometary dust samples. Our irradiation experiments show that FeS is far more resistant to radiation damage than silicates. Consequently, we expect that Fe sulfide stardust should be as abundant as silicate stardust in solar system materials.
Comet Dust: The Story of Planet Formation as Told by the Tiniest of Particles
NASA Technical Reports Server (NTRS)
Wooden, D. H.
2005-01-01
Our planetary system formed out of a gas-rich disk-shaped nebula with the early Sun at its center. Many small icy bodies were consumed by the formation of the giant planets. However, many km-size icy bodies were tossed out of the giant-planet region to the cold, distant reaches of our solar system. Comets remained in their places of cold storage until perturbed into orbits that carry them into the inner solar system where they pass relatively close to the Sun. Comets are warmed by the Sun and shed material from their outer layers. The ices and gases shed by comets reveal simple and complex organic molecules were present at the time and in the region of the formation of the giant planets. Where the Earth was forming was too hot and had too intense sunlight for many of these ices and molecules to survive. The dust shed by comets tells us that some stardust survived unaltered but much of the dust was heated and crystallized before becoming part of the comet. Therefore, comet dust grains tell of large radial migrations from the cold outer reaches near Neptune into the hot regions near the forming Sun, and then back out to the cold regions where icy comets were accreting and forming. On 2005 July 4, the NASA Deep Impact Mission hit a comet and ejected primitive materials fiom its interior. These materials were not released into the comet s coma during normal activity. Despite the many passages of this comet close to the Sun, these primitive volatile gases and dust grains survived in its interior. Comet dust grains show that cold and hot materials were mixed into the same tiny particle very early in the formation of the solar system, and these aggregate dust grains never saw high temperatures again. The survival of primitive materials in comet nuclei suggests comets could have delivered organic molecules and primitive dust grains to early Earth.
Escape mechanisms of dust in Io
NASA Astrophysics Data System (ADS)
Flandes, A.
The injection of material into the jovian magnetosphere through Io's volcanic activity makes possible the formation of structures such as the plasma torus and the dust ballerina skirt. Io's high temperature volcanism produces spectacular plumes, but even the tallest plumes, as those of Pelen Patera, will not produce enough energy to defeat the gravitational attraction of Io. The fact is that dust escapes from Io, which implies that a second mechanism is acting on the grains. Grains brought to the top of the highest plumes by the volcanic forces are still under Io's gravitational pull, but need only a minimum charge (~10-1 4 C) so that the Lorentz force due to the Jovian magnetic field equilibrates this attraction. In the volcanic vents, the escape velocity of the ejected material and its own density produces enough collisions to create charges. On top of the highest plumes (~500km) charged grains are exposed to the plasma torus that co-rotates rigidly with Jupiter and, due to the relative velocity among Io and the torus, the grains will be dragged away from Io. As it is well known, these dust grains will also be dragged away from Jupiter.
Caltech water-ice dusty plasma: preliminary results
NASA Astrophysics Data System (ADS)
Bellan, Paul; Chai, Kilbyoung
2013-10-01
A water-ice dusty plasma laboratory experiment has begun operation at Caltech. As in Ref., a 1-5 watt parallel-plate 13.56 MHz rf discharge plasma has LN2-cooled electrodes that cool the neutral background gas to cryogenic temperatures. However, instead of creating water vapor by in-situ deuterium-oxygen bonding, here the neutral gas is argon and water vapor is added in a controlled fashion. Ice grains spontaneously form after a few seconds. Photography with a HeNe line filter of a sheet of HeNe laser light sheet illuminating a cross section of dust grains shows a large scale whorl pattern composed of concentric sub-whorls having wave-like spatially varying intensity. Each sub-whorl is composed of very evenly separated fine-scale stream-lines indicating that the ice grains move in self-organized lanes like automobiles on a multi-line highway. HeNe laser extinction together with an estimate of dust density from the intergrain spacing in photographs indicates a 5 micron nominal dust grain radius. HeNe laser diffraction patterns indicate the ice dust grains are large and ellipsoidal at low pressure (200 mT) but small and spheroidal at high pressure (>600 mT). Supported by USDOE.
Destruction of Interstellar Dust in Evolving Supernova Remnant Shock Waves
NASA Technical Reports Server (NTRS)
Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.
2015-01-01
Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al. (1996), we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities 200 km s(exp -1) for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of approximately 2 compared to those of Jones et al. (1996), who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of approximately 3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of approximately 2-3 Gyr. These increases, while not able resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step towards understanding the origin, and evolution of dust in the ISM.
PROPERTIES OF DUST GRAINS PROBED WITH EXTINCTION CURVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozawa, Takaya; Fukugita, Masataka
Modern data of the extinction curve from the ultraviolet to the near-infrared are revisited to study properties of dust grains in the Milky Way (MW) and the Small Magellanic Cloud (SMC). We confirm that the graphite-silicate mixture of grains yields the observed extinction curve with the simple power-law distribution of the grain size but with a cutoff at some maximal size: the parameters are tightly constrained to be q = 3.5 {+-} 0.2 for the size distribution a {sup -q} and the maximum radius a{sub max} = 0.24 {+-} 0.05 {mu}m, for both MW and SMC. The abundance of grains,more » and hence the elemental abundance, is constrained from the reddening versus hydrogen column density, E(B - V)/N{sub H}. If we take the solar elemental abundance as the standard for the MW, >56% of carbon should be in graphite dust, while it is <40% in the SMC using its available abundance estimate. This disparity and the relative abundance of C to Si explain the difference of the two curves. We find that 50%-60% of carbon may not necessarily be in graphite but in the amorphous or glassy phase. Iron may also be in the metallic phase or up to {approx}80% in magnetite rather than in silicates, so that the Mg/Fe ratio in astronomical olivine is arbitrary. With these substitutions, the parameters of the grain size remain unchanged. The mass density of dust grains relative to hydrogen is {rho}{sub dust}/{rho}{sub H}= 1 / (120{sup +10}{sub -16}) for the MW and 1 / (760{sup +70}{sub -90}) for the SMC under the elemental abundance constraints. We underline the importance of the wavelength dependence of the extinction curve in the near-infrared in constructing the dust model: if A{sub {lambda}}{proportional_to}{lambda}{sup -{gamma}} with {gamma} {approx_equal} 1.6, the power-law grain-size model fails, whereas it works if {gamma} {approx_equal} 1.8-2.0.« less
Dust grains from the heart of supernovae
NASA Astrophysics Data System (ADS)
Bocchio, M.; Marassi, S.; Schneider, R.; Bianchi, S.; Limongi, M.; Chieffi, A.
2016-03-01
Dust grains are classically thought to form in the winds of asymptotic giant branch (AGB) stars. However, there is increasing evidence today for dust formation in supernovae (SNe). To establish the relative importance of these two classes of stellar sources of dust, it is important to know the fraction of freshly formed dust in SN ejecta that is able to survive the passage of the reverse shock and be injected in the interstellar medium. With this aim, we have developed a new code, GRASH_Rev, that allows following the dynamics of dust grains in the shocked SN ejecta and computing the time evolution of the mass, composition, and size distribution of the grains. We considered four well-studied SNe in the Milky Way and Large Magellanic Cloud: SN 1987A, CasA, the Crab nebula, and N49. These sources have been observed with both Spitzer and Herschel, and the multiwavelength data allow a better assessment the mass of warm and cold dust associated with the ejecta. For each SN, we first identified the best explosion model, using the mass and metallicity of the progenitor star, the mass of 56Ni, the explosion energy, and the circumstellar medium density inferred from the data. We then ran a recently developed dust formation model to compute the properties of freshly formed dust. Starting from these input models, GRASH_Rev self-consistently follows the dynamics of the grains, considering the effects of the forward and reverse shock, and allows predicting the time evolution of the dust mass, composition, and size distribution in the shocked and unshocked regions of the ejecta. All the simulated models aagree well with observations. Our study suggests that SN 1987A is too young for the reverse shock to have affected the dust mass. Hence the observed dust mass of 0.7-0.9 M⊙ in this source can be safely considered as indicative of the mass of freshly formed dust in SN ejecta. Conversely, in the other three SNe, the reverse shock has already destroyed between 10-40% of the initial dust mass. However, the largest dust mass destruction is predicted to occur between 103 and 105 yr after the explosions. Since the oldest SN in the sample has an estimated age of 4800 yr, current observations can only provide an upper limit to the mass of SN dust that will enrich the interstellar medium, the so-called effective dust yields. We find that only between 1-8% of the currently observed mass will survive, resulting in an average SN effective dust yield of (1.55 ± 1.48) × 10-2M⊙. This agrees well with the values adopted in chemical evolution models that consider the effect of the SN reverse shock. We discuss the astrophysical implications of our results for dust enrichment in local galaxies and at high redshift.
Excess longitudinal decline in lung function in grain farmers.
Senthilselvan, Ambikaipakan; Chénard, Liliane; Grover, Vaneeta; Kirychuk, Shelley P; Hagel, Louise; Ulmer, Kendra; Hurst, Thomas S; Dosman, James A
2010-04-01
Workers in intensive agricultural operations are exposed to dust and endotoxin that are associated with respiratory effects. The authors investigated the longitudinal changes in lung function in male grain farmers. In this study, male grain farmers (n = 263) and male nonfarming control subjects (n = 261) studies initially in 1990/91 were followed-up in 1994/95 and 2003/04. After controlling for potential confounders, grain farmers had an excess annual decline of 9.2 ml/year (95% confidence interval [CI]: 2.7, 15.8, p = .006) in forced vital capacity (FVC) in comparison to control. Long-term exposure to grain dust and other substances in lifetime grain farmers results in progressive loss in lung function.
NASA Technical Reports Server (NTRS)
Mcdonnell, J. A. M.; Evans, G. C.; Evans, S. T.; Alexander, W. M.; Burton, W. M.; Firth, J. G.; Bussoletti, E.; Grard, R. J. L.; Hanner, M. S.; Sekanina, Z.
1987-01-01
Analyses are presented of Giotto's Dust Impact Detection System experiment measurements of dust grains incident on the Giotto dust shield along its trajectory through the coma of comet P/Halley on March 13 and 14, 1986. Ground-based CCD imagery of the inner coma dust continuum at the time of the encounter are used to derive the area of grains intercepted by Giotto. Data obtained at large masses show clear evidence of a decrease in the mass distribution index at these masses within the coma; it is shown that such a value of the mass index can furnish sufficient mass for consistency with an observed deceleration.
COMPARTMENTALIZATION OF THE INFLAMMATORY RESPONSE TO INHALED GRAIN DUST
Interleukin (IL)-1beta, IL-6, IL-8, tumor necrosis factor (TNF)-alpha, and the secreted form of the IL-1 receptor antagonist (sIL-1RA) are involved in the inflammatory response to inhaled grain dust. Previously, we found considerable production of these cytokines in the lower...
The dynamics of submicron-sized dust particles lost from Phobos
NASA Technical Reports Server (NTRS)
Horanyi, M.; Tatrallyay, M.; Juhasz, A.; Luhmann, J. G.
1991-01-01
The dynamics of submicron-sized dielectric particles lost from the Martian moon Phobos are studied in connection with the possible detection of dust by the Phobos 2 spacecraft. The motion of these small dust grains is influenced not only by gravity but also by solar radiation pressure and electromagnetic forces. The plasma environment of Mars is described by applying a hybrid gasdynamic-cometary model. Some of the submicron-sized grains ejected at speeds on the order of a few tens meters per second can stay in orbit around Mars for several months forming a nonuniform and time-dependent dust halo.
Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft
NASA Technical Reports Server (NTRS)
Gruen, E.; Zook, H. A.; Baguhl, M.; Balogh, A.; Bame, S. J.; Fechtig, H.; Forsyth, R.; Hanner, M. S.; Horanyi, M.; Kissel, J.
1993-01-01
Within 1 AU from Jupiter, the dust detector aboard the Ulysses spacecraft during the flyby on February 8, 1992 recorded periodic bursts of submicron dust particles with durations ranging from several hours to two days and occurring at about monthly intervals. These particles arrived at Ulysses in collimate streams radiating from close to the line-of-sight direction to Jupiter, suggesting a Jovian origin for the periodic bursts. Ulysses also detected a flux of micron-sized dust particles moving in high-velocity retrograde orbits. These grains are identified here as being of interstellar origin.
Highlights and discoveries of the Cosmic Dust Analyser (CDA) during its 15 years of exploration
NASA Astrophysics Data System (ADS)
Srama, R.; Moragas-Klostermeyer, G.; Kempf, S.; Postberg, F.; Albin, T.; Auer, S.; Altobelli, N.; Beckmann, U.; Bugiel, S.; Burton, M.; Economou, T.; Fliege, K.; Grande, M.; Gruen, E.; Guglielmino, M.; Hillier, J. K.; Schilling, A.; Schmidt, J.; Seiss, M.; Spahn, F.; Sterken, V.; Trieloff, M.
2014-04-01
The interplanetary space probe Cassini/Huygens reached Saturn in July 2004 after seven years of cruise phase. Today, the German-lead Cosmic Dust Analyser (CDA) is operated continuously for 10 years in orbit around Saturn. During the cruise phase CDA measured the interstellar dust flux at one AU distance from the Sun, the charge and composition of interplanetary dust grains and the composition of the Jovian nanodust streams. The first discovery of CDA related to Saturn was the measurement of nanometer sized dust particles ejected by its magnetosphere to interplanetary space with speeds higher than 100 km/s. Their origin and composition was analysed and an their dynamical studies showed a strong link to the conditions of the solar wind plasma flow. A recent surprising result was, that stream particles stem from the interior of Enceladus. Since 2004 CDA measured millions of dust impacts characterizing the dust environment of Saturn. The instrument showed strong evidence for ice geysers located at the south pole of Saturn's moon Enceladus in 2005. Later, a detailed compositional analysis of the salt-rich water ice grains in Saturn's E ring system lead to the discovery of liquid water below the icy crust connected to an ocean at depth feeding the icy jets. CDA was even capable to derive a spatially resolved compositional profile of the plume during close Enceladus flybys. A determination of the dust-magnetosphere interaction and the discovery of the extended E ring allowed the definition of a dynamical dust model of Saturn's E ring describing the observed properties. The measured dust density profiles in the dense E ring revealed geometric asymmetries. Cassini performed shadow crossings in the ring plane and dust grain charges were measured in shadow regions delivering important data for dust-plasma interaction studies. In the last years, dedicated measurement campaigns were executed by CDA to monitor the flux of interplanetary and interstellar dust particles reaching Saturn. Currently, the composition of interstellar grains and the meteoroid flux into the Saturnian system are in analysis.
NASA Astrophysics Data System (ADS)
Ysard, N.; Köhler, M.; Jones, A.; Miville-Deschênes, M.-A.; Abergel, A.; Fanciullo, L.
2015-05-01
Context. The Planck-HFI all-sky survey from 353 to 857 GHz combined with the IRAS data at 100 μm (3000 GHz, IRIS version of the data) show that the dust properties vary from line of sight to line of sight in the diffuse interstellar medium (ISM) at high Galactic latitude (1019 ≤ NH ≤ 2.5 × 1020 H/cm2, for a sky coverage of ~12%). Aims: These observations contradict the usual thinking of uniform dust properties, even in the most diffuse areas of the sky. Thus, our aim is to explain these variations with changes in the ISM properties and with evolution of the grain properties. Methods: Our starting point is the latest core-mantle dust model. This model consists of small aromatic-rich carbon grains, larger amorphous carbonaceous grains with an aliphatic-rich core and an aromatic-rich mantle, and amorphous silicates (mixture of olivine and pyroxene types) with Fe/FeS nano-inclusions covered by aromatic-rich carbon mantles. We explore whether variations in the radiation field or in the gas density distribution in the diffuse ISM could explain the observed variations. The dust properties are also varied in terms of their mantle thickness, metallic nano-inclusions, carbon abundance locked in the grains, and size distributions. Results: We show that variations in the radiation field intensity and gas density distribution cannot explain variations observed with Planck-HFI but that radiation fields harder than the standard ISRF may participate in creating part of the observed variations. We further show that variations in the mantle thickness on the grains coupled with changes in their size distributions can reproduce most of the observations. We concurrently put a limit on the mantle thickness of the silicates, which should not exceed ~ 10 to 15 nm, and find that aromatic-rich mantles are definitely needed for the carbonaceous grain population with a thickness of at least 5 to 7.5 nm. We also find that changes in the carbon cosmic abundance included in the grains could explain part of the variations in dust observations. Finally, we show that varying the composition of metallic nano-inclusions in the silicates cannot account for the variations, at the same time showing that the amount of FeS they contain cannot be > 50% by volume. Conclusions: With small variations in the dust properties, we are able to explain most of the variations in the dust emission observed by Planck-HFI in the diffuse ISM. We also find that the small realistic changes in the dust properties that we consider almost perfectly match the anti-correlation and scatter in the observed β - T relation.
The Chemical Composition and Gas-to-Dust Mass Ratio of Nearby Interstellar Matter
NASA Technical Reports Server (NTRS)
Frisch, Priscilla C.; Slavin, Jonathan D.
2003-01-01
We use recent results on interstellar gas toward nearby stars and interstellar by-products within the solar system to select among the equilibrium radiative transfer models of the nearest interstellar material presented in Slavin & Frisch. For the assumption that O/H - 400 parts per million, models 2 and 8 are found to yield good fits to available data on interstellar material inside and outside of the heliosphere, with the exception of the Ne abundance in the pickup ion and anomalous cosmic-ray populations. For these models, the interstellar medium (ISM) at the entry point to the heliosphere has n(H(sup 0)) = 0.202-0.208/cu cm, n(He(sup 0) = 0.0137-0.0152/cu cm, and ionizations X(H) = 0.29-0.30, X(He) = 0.47-0.51. These best models suggest that the chemical composition of the nearby ISM is approx.60%-70% subsolar if S is undepleted. Both H(0) and H(+) need to be included when evaluating abundances of ions found in warm diffuse clouds. Models 2 and 8 yield an H filtration factor of approx.0.46. Gas-to-dust mass ratios for the ISM toward epsilon CMa are R(sub gd) = 178-183 for solar abundances of Holweger or R(sub gd) = 611-657 for an interstellar abundance standard 70% solar. Direct observations of dust grains in the solar system by Ulysses and Galileo yield R(sub gd) appr0x. 115 for models 2 and 8, supporting earlier results (Frisch and coworkers). If the local ISM abundances are subsolar, then gas and dust are decoupled over small spatial scales. The inferred variation in R(sub gd) over parsec length scales is consistent with the fact that the ISM near the Sun is part of a dynamically active cluster of cloudlets flowing away from the Sco-Cen association. Observations toward stars within approx.500 pc show that R(sub gd) correlates with the percentage of the dust mass that is carried by iron, suggesting that an Fe-rich grain core (by mass) remains after grain destruction. Evidently large dust grains (>10(exp -13) g) and small dust grains (<10(exp -13) g) are not well mixed over parsec length spatial scales in the ISM. It also appears that very small C-dominated dust grains have been destroyed in the ISM within several parsecs of the Sun, since C appears to be essentially undepleted. However, if gas-dust coupling breaks down over the cloud lifetime, the missing mass arguments applied here to determine R(sub gd) and dust grain mineralogy are not appropriate.
The origin and evolution of dust in interstellar and circumstellar environments
NASA Technical Reports Server (NTRS)
Whittet, Douglas C. B.; Leung, Chun M.
1993-01-01
This status report covers the period from the commencement of the research program on 1 Jul. 1992 through 30 Apr. 1993. Progress is reported for research in the following areas: (1) grain formation in circumstellar envelopes; (2) photochemistry in circumstellar envelopes; (3) modeling ice features in circumstellar envelopes; (4) episodic dust formation in circumstellar envelopes; (5) grain evolution in the diffuse interstellar medium; and (6) grain evolution in dense molecular clouds.
Scattered, extinguished, emitted: Three views of the dust in Perseus
NASA Astrophysics Data System (ADS)
Foster, Jonathan Bruce
Dust in star-forming regions is both a blessing and a curse. By shrouding young stars it inhibits our study of their birth, yet without dust we would have an impoverished view of the structure of the molecular cloud before it collapses to form a protostar--the initial conditions of the problem of star formation. Though less than 1% of the mass of a molecular cloud, dust is a reliable tracer of the invisible H 2 which makes up the vast majority of the material. Other molecules can trace the H 2 distribution, and are useful in the appropriate regime, but all are confounded by the complications of chemistry, excitation conditions, and depletion, processes which have little effect on dust. Interpreting observations of dust is not entirely straightforward. We do not have a comprehensive theory of dust which explains the size distribution and mineralogical composition of dust in the diverse environments where it is present, from the diffuse ISM to the proto-planetary disks around young stars. Lacking such a theory, it is surprising that models of dust are nonetheless able to reproduce many of the observational constraints imposed upon them. Among these constraints are direct capture of dust grains, spectral features, extinction of background light, scattering, and thermal emission. In this thesis I (1) describe a method to use scattered ambient galactic light to map dense cores with unprecedented high resolution; (2) extend near-infrared extinction mapping by incorporating background galaxies; (3) demonstrate a relation between column density and changes in the extinction law, which is evidence of grain growth; (4) report on a study using NH 3 temperatures to more precisely interpret a thermal emission map at 1.1-mm; and (5) apply all these different techniques to a single starless region in order to compare them and learn something both about dust and the initial conditions of star formation.
Interstellar and Solar Nebula Materials in Cometary Dust
NASA Technical Reports Server (NTRS)
Messenger, Scott; Nakamura-Messenger, Keiko; Keller, Lindsay; Nguyen, Ann; Clemett, Simon
2017-01-01
Laboratory studies of cometary dust collected in the stratosphere and returned from comet 81P/Wild 2 by the Stardust spacecraft have revealed ancient interstellar grains and molecular cloud organic matter that record a range of astrophysical processes and the first steps of planetary formation. Presolar materials are rarer meteorites owing to high temperature processing in the solar nebula and hydrothermal alteration on their asteroidal parent bodies. The greater preservation of presolar materials in comets is attributed to their low accretion temperatures and limited planetary processing. Yet, comets also contain a large complement of high temperature materials from the inner Solar System. Owing to the limited and biased sampling of comets to date, the proportions of interstellar and Solar System materials within them remains highly uncertain. Interstellar materials are identified by coordinated isotopic, mineralogical, and chemical measurements at the scale of individual grains. Chondritic porous interplanetary dust particles (CP IDPs) that likely derive from comets are made up of 0.1 - 10 micron-sized silicates, Fe-Ni-sulfides, oxides, and other phases bound by organic material. As much as 1% of the silicates are interstellar grains that have exotic isotopic compositions imparted by nucleosynthetic processes in their parent stars. Crystalline silicates in CP IDPs dominantly have normal isotopic compositions and probably formed in the Solar System. 81P samples include isotopically normal refractory minerals that resemble Ca-Al rich inclusions and chondrules common in meteorites. The origins of sub-micron amorphous silicates in IDPs are not certain, but at least a few % of them are interstellar grains. The remainder have isotopic compositions consistent with Solar System origins and elemental compositions that are inconsistent with interstellar grain properties, thus favoring formation in the solar nebula [4]. The organic component in comets and primitive meteorites has large enrichments in D/H and N-15/N-14 relative to terrestrial materials. These isotopic signatures are probably due to low temperature chemical processes in cold molecular clouds or the outermost reaches of the protoplanetary disk. The greatest isotopic anomalies are found in sub-micron organic nanoglobules that show chemical signatures of interstellar chemistry. The observation that cometary dust is mostly composed of isotopically normal minerals within isotopically anomalous organic matter is difficult to reconcile with the formation models of each component. The mineral component likely formed in high temperature processes in the inner Solar System, while the organic fraction shows isotopic and chemical signatures of formation near 10 K. Studying more primitive remnants of the Solar System starting materials would help in resolving this paradox. Comets formed across a vast expanse of the outer disk under differing thermal and collisional regimes, and some are likely to be better preserved than others. Finding truly pristine aggregates of presolar materials may require return of a pristine sample of comet nucleus material.
Characterizing the Variable Dust Permeability of Planet-induced Gaps
NASA Astrophysics Data System (ADS)
Weber, Philipp; Benítez-Llambay, Pablo; Gressel, Oliver; Krapp, Leonardo; Pessah, Martin E.
2018-02-01
Aerodynamic theory predicts that dust grains in protoplanetary disks will drift radially inward on comparatively short timescales. In this context, it has long been known that the presence of a gap opened by a planet can significantly alter the dust dynamics. In this paper, we carry out a systematic study employing long-term numerical simulations aimed at characterizing the critical particle size for retention outside a gap as a function of particle size, as well as various key parameters defining the protoplanetary disk model. To this end, we perform multifluid hydrodynamical simulations in two dimensions, including different dust species, which we treat as pressureless fluids. We initialize the dust outside of the planet’s orbit and study under which conditions dust grains are able to cross the gap carved by the planet. In agreement with previous work, we find that the permeability of the gap depends both on dust dynamical properties and the gas disk structure: while small dust follows the viscously accreting gas through the gap, dust grains approaching a critical size are progressively filtered out. Moreover, we introduce and compute a depletion factor that enables us to quantify the way in which higher viscosity, smaller planet mass, or a more massive disk can shift this critical size to larger values. Our results indicate that gap-opening planets may act to deplete the inner reaches of protoplanetary disks of large dust grains—potentially limiting the accretion of solids onto forming terrestrial planets.
The size distribution of interstellar grains
NASA Technical Reports Server (NTRS)
Witt, Adolf N.
1987-01-01
Three major areas involving interstellar grains were investigated. First, studies were performed of scattering in reflection nebulae with the goal of deriving scattering characteristics of dust grains such as the albedo and the phase function asymmetry throughout the visible and the ultraviolet. Secondly, studies were performed of the wavelength dependence of interstellar extinction designed to demonstrate the wide range of grain size distributions naturally occurring in individual clouds in different parts of the galaxy. And thirdly, studies were also performed of the ultraviolet powered emission of dust grains in the 0.5 to 1.0 micron wavelength range in reflection nebulae. Findings considered of major importance are highlighted.
The electrostatics of a dusty plasma
NASA Technical Reports Server (NTRS)
Whipple, E. C.; Mendis, D. A.; Northrop, T. G.
1986-01-01
The potential distribution in a plasma containing dust grains were derived where the Debye length can be larger or smaller than the average intergrain spacing. Three models were treated for the grain-plasma system, with the assumption that the system of dust and plasma is charge-neutral: a permeable grain model, an impermeable grain model, and a capacitor model that does not require the nearest neighbor approximation of the other two models. A gauge-invariant form of Poisson's equation was used which is linearized about the average potential in the system. The charging currents to a grain are functions of the difference between the grain potential and this average potential. Expressions were obtained for the equilibrium potential of the grain and for the gauge-invariant capacitance between the grain and the plasma. The charge on a grain is determined by the product of this capacitance and the grain-plasma potential difference.
Carbon stardust: From soot to diamonds
NASA Technical Reports Server (NTRS)
Tielens, Alexander G. G. M.
1990-01-01
The formation of carbon dust in the outflow from stars and the subsequent evolution of this so called stardust in the interstellar medium is reviewed. The chemical and physical processes that play a role in carbon stardust formation are very similar to those occurring in sooting flames. Based upon extensive laboratory studies of the latter, the structure and physical and chemical properties of carbon soot are reviewed and possible chemical pathways towards carbon stardust are discussed. Grain-grain collisions behind strong interstellar shocks provide the high pressures required to transform graphite and amorphous carbon grains into diamond. This process is examined and the properties of shock-synthesized diamonds are reviewed. Finally, the interrelationship between carbon stardust and carbonaceous meteorites is briefly discussed.
Post, W; Heederik, D; Houba, R
1998-05-01
To follow up workers in the grain processing and animal feed industry five years after an initial survey, and to monitor exposures to organic dust and endotoxin and changes in prevalence of respiratory symptoms and lung function. Outcome measures in the present survey were decline in lung function over five years, rapid annual decline in forced expiratory volume in one second (FEV1) above 90 ml.s-1, and loss to follow up. Among 140 workers included in the longitudinal analysis, annual decline in FEV1 and maximal mid-expiratory flow (MMEF) were significantly related to occupational exposure to dust and endotoxin in the grain processing and animal feed industry. Assuming a cumulative exposure over a working life of 40 years with an exposure of 5 mg.m-3, the estimated effect on the FEV1 would be a decline of 157 ml.s-1 (95% CI 13 to 300)--that is, about 4% of the group mean FEV1 and 473 ml.s-1 (95% CI 127 to 800) of the MMEF (about 12%). Workers with a dust exposure > 4 mg.m-3 or endotoxin concentrations > 20 ng.m-3 at the 1986-8 survey had significantly higher risk of rapid decline in FEV1 (odds ratio (OR) 3.3, 95% CI 1.02 to 10.3). The relations between occupational exposure and decline in lung function in this study occurred, despite the selection through the healthy worker effect that occurred as well. Increasing working years was related to decreasing annual decline in FEV1 and fewer people with rapid decline in FEV1 (OR 0.04, 95% CI 0 to 0.61 for over 20 v < 5 working years in the grain processing and animal feed industry). The presence of respiratory symptoms at baseline was a strong predictor of subsequent loss to follow up. Baseline lung function was not found to be predictive of subsequent loss to follow up. However, among workers lost to follow up the number of working years was more strongly negatively related to baseline lung function than among the workers who were studied longitudinally. The existence of the healthy worker effect implies that an exposure-response relation in the grain processing and animal feed industry may well be underestimated. This should be taken into account when health based recommended limit values are to be developed.
Post, W.; Heederik, D.; Houba, R.
1998-01-01
OBJECTIVES: To follow up workers in the grain processing and animal feed industry five years after an initial survey, and to monitor exposures to organic dust and endotoxin and changes in prevalence of respiratory symptoms and lung function. METHODS: Outcome measures in the present survey were decline in lung function over five years, rapid annual decline in forced expiratory volume in one second (FEV1) above 90 ml.s-1, and loss to follow up. RESULTS: Among 140 workers included in the longitudinal analysis, annual decline in FEV1 and maximal mid- expiratory flow (MMEF) were significantly related to occupational exposure to dust and endotoxin in the grain processing and animal feed industry. Assuming a cumulative exposure over a working life of 40 years with an exposure of 5 mg.m-3, the estimated effect on the FEV1 would be a decline of 157 ml.s-1 (95% CI 13 to 300)--that is, about 4% of the group mean FEV1 and 473 ml.s-1 (95% CI 127 to 800) of the MMEF (about 12%). Workers with a dust exposure > 4 mg.m-3 or endotoxin concentrations > 20 ng.m-3 at the 1986-8 survey had significantly higher risk of rapid decline in FEV1 (odds ratio (OR) 3.3, 95% CI 1.02 to 10.3). The relations between occupational exposure and decline in lung function in this study occurred, despite the selection through the healthy worker effect that occurred as well. Increasing working years was related to decreasing annual decline in FEV1 and fewer people with rapid decline in FEV1 (OR 0.04, 95% CI 0 to 0.61 for over 20 v < 5 working years in the grain processing and animal feed industry). The presence of respiratory symptoms at baseline was a strong predictor of subsequent loss to follow up. Baseline lung function was not found to be predictive of subsequent loss to follow up. However, among workers lost to follow up the number of working years was more strongly negatively related to baseline lung function than among the workers who were studied longitudinally. CONCLUSIONS: The existence of the healthy worker effect implies that an exposure-response relation in the grain processing and animal feed industry may well be underestimated. This should be taken into account when health based recommended limit values are to be developed. PMID:9764113
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsytovich, Vadim, E-mail: tsytov@lpi.ru; Max Planck Institute for Extraterrestrial Physics, Garching; Gusein-zade, Namik
Dust structuring is a natural and universal process in complex plasmas. The scattering of electromagnetic waves by dust structures is governed by the factor of coherency, i.e., the total number of coherent electrons in a single structure. In the present paper, we consider how the factor of coherency changes due to additional pulse electron heating and show that it obeys a hysteresis. After the end of the pulse heating, the scattering intensity differs substantially from that before heating. There are three necessary conditions for scattering hysteresis: first, the radiation wavelength should be larger than the pattern (structure) size; second, themore » total number of coherent electrons confined by the structure should be large; and third, the heating pulse duration should be shorter than the characteristic time of dust structure formation. We present the results of numerical calculations using existing models of self-consistent dust structures with either positively or negatively charged dust grains. It is shown that, depending on the grain charge and the ionization rate, two types of hysteresis are possible: one with a final increase of the scattering and the other with a final decrease of the scattering. It is suggested that the hysteresis of coherent scattering can be used as a tool in laboratory experiments and that it can be a basic mechanism explaining the observed hysteresis in radar scattering by noctilucent clouds during active experiments on electron heating in mesosphere.« less
Scientists Detect Radio Emission from Rapidly Rotating Cosmic Dust Grains
NASA Astrophysics Data System (ADS)
2001-11-01
Astronomers have made the first tentative observations of a long-speculated, but never before detected, source of natural radio waves in interstellar space. Data from the National Science Foundation's 140 Foot Radio Telescope at the National Radio Astronomy Observatory in Green Bank, W.Va., show the faint, tell-tale signals of what appear to be dust grains spinning billions of times each second. This discovery eventually could yield a powerful new tool for understanding the interstellar medium - the immense clouds of gas and dust that populate interstellar space. The NRAO 140 Foot Radio Telescope The NRAO 140-Foot Radio Telescope "What we believe we have found," said Douglas P. Finkbeiner of Princeton University's Department of Astrophysics, "is the first hard evidence for electric dipole emission from rapidly rotating dust grains. If our studies are confirmed, it will be the first new source of continuum emission to be conclusively identified in the interstellar medium in nearly the past 20 years." Finkbeiner believes that these emissions have the potential in the future of revealing new and exciting information about the interstellar medium; they also may help to refine future studies of the Cosmic Microwave Background Radiation. The results from this study, which took place in spring 1999, were accepted for publication in Astrophysical Journal. Other contributors to this paper include David J. Schlegel, department of astrophysics, Princeton University; Curtis Frank, department of astronomy, University of Maryland; and Carl Heiles, department of astronomy, University of California at Berkeley. "The idea of dust grains emitting radiation by rotating is not new," comments Finkbeiner, "but to date it has been somewhat speculative." Scientists first proposed in 1957 that dust grains could emit radio signals, if they were caused to rotate rapidly enough. It was believed, however, that these radio emissions would be negligibly small - too weak to be of any impact to current radio astronomy research, and the idea was largely forgotten. In the 1990s this perception began to change when scientists and engineers designed sensitive instruments to detect the faint afterglow of the Big Bang, which is seen in the Universe as the Cosmic Microwave Background Radiation. While making detailed maps of this faint and cold radiation, scientists also detected signals at approximately the same wavelength and intensity as the background radiation, but clearly emanating from within the Milky Way's galactic plane. The researchers expected to detect some emission from the Milky Way, but what they encountered was much brighter than anticipated. This discovery caused some concern among researchers because of the need to have a very clear "window" on the Universe to study the background radiation in great detail. If there were a source of radio emission in our own galactic "back yard," then studies of the microwave background radiation would need to recognize these emissions and correct for them. "We want to be clear, however, that nothing we have found invalidates the current interpretation of the Cosmic Microwave Background Radiation," assured Finkbeiner. "Nobody has done anything wrong in neglecting these signals - so far." Scientists considered several plausible mechanisms for this anomalous emission, but these theories failed to explain the observed spatial distribution of this emission across the sky. This predicament prompted theorists to rethink the spinning dust idea, leading to a 1998 model by Bruce Draine (Princeton University) and Alex Lazarian (University of Wisconsin), which proposed rotational dust-grain emission as an important mechanism. Draine and Lazarian assumed that small dust grains, perhaps having no more than 100 atoms each, would populate many interstellar dust clouds in the Galaxy. Each grain would have a small electric dipole and would therefore react to the charged ions that race through the clouds at tremendous speeds. As an ion either strikes or passes near a dust grains, the grain would "spin up," reaching speeds of up to one trillion revolutions per minute, causing it to radiate. The rate of rotation of these dust grains directly correlates to the frequencies at which they radiate. For example, a dust grain rotating 10 billion times each second would emit radio waves at 10 gigahertz (GHz). In looking for this elusive signal, the researchers narrowed their search to 10 dust clouds within the Milky Way Galaxy. These specific clouds were selected because their location and properties would help to eliminate other possibilities for these emissions. "Our goal was to find those areas within the Milky Way Galaxy that would help us rule out other sources of emission," said Finkbeiner. "By selected these specific targets, we believe that the signals we received are very indicative of rapidly rotating dust grains." The researchers emphasize, however, that additional observations will be required to confirm their results, and other potential emission mechanisms have not been ruled out. Particularly, it is possible that a portion of this radiation is due to the presence of ferro-magnetic minerals within the dust grains. Additional studies with more sensitive equipment will be necessary to confirm these results conclusively. "What we think is the most intriguing, however," said Finkbeiner, "is that with further advances in radio astronomy, the faint emissions from rotating dust grains may reveal previously unknown details about the dynamics of the interstellar medium. By detecting and understanding this emission we also hope to give astronomers a tool to greatly refine future studies of the Cosmic Microwave Background Radiation." The NSF's 140 Foot Radio Telescope now is decommissioned after a long and highly productive career. Research will continue on the newly commissioned Robert C. Byrd Green Bank Telescope, which is the world's largest fully steerable radio telescope. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.
Gaps and rings carved by vortices in protoplanetary dust
NASA Astrophysics Data System (ADS)
Barge, Pierre; Ricci, Luca; Carilli, Christopher Luke; Previn-Ratnasingam, Rathish
2017-09-01
Context. Large-scale vortices in protoplanetary disks are thought to form and survive for long periods of time. Hence, they can significantly change the global disk evolution and particularly the distribution of the solid particles embedded in the gas, possibly explaining asymmetries and dust concentrations recently observed at submillimeter and millimeter wavelengths. Aims: We investigate the spatial distribution of dust grains using a simple model of protoplanetary disk hosted by a giant gaseous vortex. We explore the dependence of the results on grain size and deduce possible consequences and predictions for observations of the dust thermal emission at submillimeter and millimeter wavelengths. Methods: Global 2D simulations with a bi-fluid code are used to follow the evolution of a single population of solid particles aerodynamically coupled to the gas. Possible observational signatures of the dust thermal emission are obtained using simulators of ALMA and Nest Generation Very Large Array (ngVLA) observations. Results: We find that a giant vortex not only captures dust grains with Stokes number St< 1 but can also affect the distribution of larger grains (with St 1) carving a gap associated with a ring composed of incompletely trapped particles. The results are presented for different particle sizes and associated with their possible signatures in disk observations. Conclusions: Gap clearing in the dust spatial distribution could be due to the interaction with a giant gaseous vortex and their associated spiral waves without the gravitational assistance of a planet. Hence, strong dust concentrations at short sub-mm wavelengths associated with a gap and an irregular ring at longer mm and cm wavelengths could indicate the presence of an unseen gaseous vortex.
Corey, P; Hutcheon, M; Broder, I; Mintz, S
1982-01-01
The purpose of this study was to determine whether grain handlers underwent work-related changes in their pulmonary function and, if so, to examine the dose-effect relationships with dust exposure. The pulmonary function of grain handlers was measured at the beginning and end of work shifts over a period of one week, during which their exposure to dust was measured daily. The results showed changes indicative of a within-day obstructive change, in addition to a small restrictive defect occurring over the course of a week. Civic outside labourers who were examined as a control group showed a similar within-week obstructive change without any associated restriction of lung volume. The data on the grain handlers were also used to examine the dose-effect relationships of dust exposure, both on baseline pulmonary function and on within-day changes in these measurements. The baseline flow rates of workers who did not wear a mask were found to vary inversely with their average exposure to respirable dust. In addition, the flow rates underwent a within-day decrease that varied directly with their corresponding exposure to respirable dust and was unrelated to mask wearing. The median of the slopes for this relationship indicated that 50% of the subjects had a decrease of at least 923 ml/s in the value of their Vmax50%VC for each 1 mg/m3 increase in the concentration of respirable dust. Non-respirable dust did not have a measurable effect either on the baseline or the within-day changes in pulmonary function. The acute changes were unaffected by age, duration of employment, or extent of smoking. PMID:7138793
Hydrocarbons in the ISM: Their Evolution and the Grain-to-Molecule Transition
NASA Astrophysics Data System (ADS)
Jones, Anthony P.
The evolution of hydrocarbon grains in the ISM is determined, principally, by the effects of photo-processing (annealing) which lead to a progressive loss of hydrogen from the structure and an associated 'graphitisation' of the material. Eventually this 'graphitisation' results in a low-density, highly aromatic material that can disaggregate into its aromatic-rich molecular components. These changes are followed through the use of an extended random covalent network (RCN) model for the hydrocarbon structure. This type of 'top down' process could be a significant source of the large molecular infrared band carriers in photon dominated regions. On the basis of this simple model there should thus be a relationship between the small grain and large molecule infrared emission bands across, and within, astrophysical boundaries such as photo-dissociation regions. 1. Introduction Carbon is the most abundant dust-forming element in the ISM and a large fraction of this carbon is in the form of grains comprised, principally, of hydrocarbon materials, including those where the hydrogen content is minimal. Interstellar hydrocarbon grains include: graphite, hydrogenated amorphous aliphatic and/or aromatic hydrocarbons (a-C, a-C:H) and (nano)diamond. These hydrocarbon dusts play a pivotal role in determining, amongst other things, the interstellar extinction, the dust thermal emission and the photo-electric heating of the gas in the ISM. 2. Hydrocarbon grains in the ISM Hydrocarbon grains are formed in the circumstellar shells around C-rich evolved stars, in supernova ejecta and also in the ISM itself via accretion and solid-state chemistry. The physical and chemical properties of hydrocarbon grains are indeed complex and vary in response to the ambient conditions (density, temperature, radiation field, ...). For example they can undergo both chemical and physical processing (growth and changes in chemical composition through accretion and reaction, erosion via inertial or chemi-sputtering, photo-darkening or 'graphitisation', photo-disruption in intense radiation fields and fragmentation in interstellar shock waves). Recently, using laboratory simulations of carbon dust analogues, Dartois, Muñoz Caro, Deboffle, et al. (2004,2005) have shown that hydrogen-rich (> 50 atomic % H) hydrocarbon solids can explain the observed interstellar absorption bands at 3.4, 6.85 and 7.25 μm. They also show that the thermal annealing of this material is accompanied by an increase in the aromatic component, i.e., a 'graphitisation'. Such a transformation and evolution of interstellar hydrocarbons was proposed by Duley, Jones & Williams (1989) and Jones, Duley & Wiliams (1990). This photon-driven process, acting on the hydrogen-rich hydrocarbon grains in the ISM that originate predominantly from carbon-rich evolved stars, will lead to a progressive loss of hydrogen and an associated 'graphitisation' and 'openingup' of the structure. The end point of the 'graphitisation' process is then a low-density material that will disaggregate into its constituent aromatic molecular components and the necessarily-associated sp3 and sp2 carbon and hydrogen atom bridging structures, e.g., Duley (2000), Petrie, Stranger & Duley (2003). In this work we follow the 'graphitisation' process using a random covalent network (RCN) approach that extends the work of Jones (1990). To summarise, the RCN model characterises a series of hydrocarbons based upon the sp3/sp2 carbon atom ratio (R) and the atomic fraction of hydrogen (XH) within the material. This model allows an essentially one-parameter determination of the a-C:H structure and a prediction of the major infrared bands. We find that the large hydrocarbon grains, with temperatures in equilibrium with the local radiation field, will be rather hydrogen-rich and that the smaller grains, which undergo stochastic heating to high temperatures, will be converted into hydrogen-poorer and more graphitic materials. The photo-fragmentation of the smaller aromatic grains can be an important source of molecular aromatic species. The infrared spectrum of a given RCN hydrocarbon depends, principally, upon only its hydrogen content XH. The spectra predicted from this RCN model can then be compared with the interstellar absorption and emission bands in the 32 μm range. The compositional changes of a-C:H, and its constituent 'molecular' components, can then be mapped across a given region. 3. Conclusions The physics and chemistry of hydrocarbon grains is complex. Interstellar hydrocarbon grains will be a mixture of many different forms arising from many different sources and modified in many different regions of the ISM. Nevertheless, we can appreciate how this complex material evolves chemically, structurally and physically as a function of the ambient conditions through the use of a rather simple, and extended, RCN model. The transition/evolution of hydrocarbons in the ISM is, generally, from hydrogen-rich a-C:H, in the form of large grains formed around evolved stars, through to smaller, hydrogen-poor, low-density, aromatic a-C:H materials. The subsequent photo-fragmentation of the small aromatic grains could then be the origin of the aromatic emission band carriers within the ISM. We find that the spectral and physical properties of hydrocarbons in the ISM vary in a systematic way across, and also within, astrophysical environments. However, the history of the particles, prior to their incorporation into a given region, could also play a major role in determining their physical properties in that region. Thus, the evolution of hydrocarbon grains in the ISM will be size-, time- and history-dependent. It is therefore necessary that dust models take into account this complexity in predicting the properties of hydrocarbons in the ISM.
Artist rendering of dust grains colliding at low speeds
NASA Technical Reports Server (NTRS)
2003-01-01
Clues to the formation of planets and planetary rings -- like Saturn's dazzling ring system -- may be found by studying how dust grains interact as they collide at low speeds. To study the question of low-speed dust collisions, NASA sponsored the COLLisions Into Dust Experiment (COLLIDE) at the University of Colorado. It was designed to spring-launch marble-size projectiles into trays of powder similar to space or lunar dust. COLLIDE-1 (1998) discovered that collisions below a certain energy threshold eject no material. COLLIDE-2 was designed to identify where the threshold is. In COLLIDE-2, scientists nudged small projectiles into dust beds and recorded how the dust splashed outward (video frame at top; artist's rendering at bottom). The slowest impactor ejected no material and stuck in the target. The faster impactors produced ejecta; some rebounded while others stuck in the target.
Investigations of Wind/WAVES Dust Impacts
NASA Astrophysics Data System (ADS)
St Cyr, O. C.; Wilson, L. B., III; Rockcliffe, K.; Mills, A.; Nieves-Chinchilla, T.; Adrian, M. L.; Malaspina, D.
2017-12-01
The Wind spacecraft launched in November 1994 with a primary goal to observe and understand the interaction between the solar wind and Earth's magnetosphere. The waveform capture detector, TDS, of the radio and plasma wave investigation, WAVES [Bougeret et al., 1995], onboard Wind incidentally detected micron-sized dust as electric field pulses from the recollection of the impact plasma clouds (an unintended objective). TDS has detected over 100,000 dust impacts spanning almost two solar cycles; a dataset of these impacts has been created and was described in Malaspina & Wilson [2016]. The spacecraft continues to collect data about plasma, energetic particles, and interplanetary dust impacts. Here we report on two investigations recently conducted on the Wind/WAVES TDS database of dust impacts. One possible source of dust particles is the annually-recurring meteor showers. Using the nine major showers defined by the American Meteor Society, we compared dust count rates before, during, and after the peak of the showers using averaging windows of varying duration. However, we found no statistically significant change in the dust count rates due to major meteor showers. This appears to be an expected result since smaller grains, like the micron particles that Wind is sensitive to, are affected by electromagnetic interactions and Poynting-Robertson drag, and so are scattered away from their initial orbits. Larger grains tend to be more gravitationally dominated and stay on the initial trajectory of the parent body so that only the largest dust grains (those that create streaks as they burn up in the atmosphere) are left in the orbit of the parent body. Ragot and Kahler [2003] predicted that coronal mass ejections (CMEs) near the Sun could effectively scatter dust grains of comparable size to those observed by Wind. Thus, we examined the dust count rates immediately before, during, and after the passage of the 350 interplanetary CMEs observed by Wind over its 20+ year lifetime. We found a statistically significant and consistent trend of count rate deficits during the ICMEs compared to the periods immediately before and after the ICMEs. These preliminary results suggest that ICMEs may scatter micron-sized dust, or that they may exclude it during their initiation.
Animal model of grain worker's lung.
Stepner, N; Broder, I; Baumal, R
1986-01-01
We examined the light microscopic changes in the lungs of rabbits exposed to grain dust for variable periods of time, to determine whether an animal model of grain worker's lung could be developed. Experimental animals were exposed to grain dust at a concentration of 20 mg/m3 for 7 hr/day, 5 days/week, for up to 6 months. The lungs of these rabbits demonstrated a granulomatous interstitial pneumonitis associated with exudation of mononuclear cells into the alveoli and conducting airways. These changes appeared within 5 days of the onset of exposure and reached a peak at 3 weeks but were sustained through the longest exposure interval. No abnormalities were observed in the lungs of control rabbits. These results show three points of consistency with those obtained in epidemiologic studies of grain elevator workers. First, the rapid appearance of the experimental changes suggests that the mechanism of tissue injury may not be immunologic. Second, the occurrence of the histopathologic alterations in the interstitium, alveoli, and airways corresponds with the combined restrictive and obstructive ventilatory defect described in the human epidemiologic studies. Third, the absence of lung fibrosis in rabbits exposed to dust for 6 months suggests that the pneumonitis is reversible. Thus this experimental model shows promise of helping to clarify the nature and mechanism of the adverse pulmonary effects of grain dust. Images FIGURE 1. FIGURE 2. PMID:3709485
Pellissier, Loïc; Oppliger, Anne; Hirzel, Alexandre H.; Savova-Bianchi, Dessislava; Mbayo, Guilain; Mascher, Fabio; Kellenberger, Stefan
2016-01-01
Chronic exposure to airborne fungi has been associated with different respiratory symptoms and pathologies in occupational populations, such as grain workers. However, the homogeneity in the fungal species composition of these bioaerosols on a large geographical scale and the different drivers that shape these fungal communities remain unclear. In this study, the diversity of fungi in grain dust and in the aerosols released during harvesting was determined across 96 sites at a geographical scale of 560 km2 along an elevation gradient of 500 m by tag-encoded 454 pyrosequencing of the internal transcribed spacer (ITS) sequences. Associations between the structure of fungal communities in the grain dust and different abiotic (farming system, soil characteristics, and geographic and climatic parameters) and biotic (wheat cultivar and previous crop culture) factors were explored. These analyses revealed a strong relationship between the airborne and grain dust fungal communities and showed the presence of allergenic and mycotoxigenic species in most samples, which highlights the potential contribution of these fungal species to work-related respiratory symptoms of grain workers. The farming system was the major driver of the alpha and beta phylogenetic diversity values of fungal communities. In addition, elevation and soil CaCO3 concentrations shaped the alpha diversity, whereas wheat cultivar, cropping history, and the number of freezing days per year shaped the taxonomic beta diversity of these communities. PMID:26826229
Accurate Modeling of X-ray Extinction by Interstellar Grains
NASA Astrophysics Data System (ADS)
Hoffman, John; Draine, B. T.
2016-02-01
Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.
Modeling the Anomalous Microwave Emission with Spinning Nanoparticles: No PAHs Required
NASA Astrophysics Data System (ADS)
Hensley, Brandon S.; Draine, B. T.
2017-02-01
In light of recent observational results indicating an apparent lack of correlation between the anomalous microwave emission (AME) and mid-infrared emission from polycyclic aromatic hydrocarbons, we assess whether rotational emission from spinning silicate and/or iron nanoparticles could account for the observed AME without violating observational constraints on interstellar abundances, ultraviolet extinction, and infrared emission. By modifying the SpDust code to compute the rotational emission from these grains, we find that nanosilicate grains could account for the entirety of the observed AME, whereas iron grains could be responsible for only a fraction, even for extreme assumptions on the amount of interstellar iron concentrated in ultrasmall iron nanoparticles. Given the added complexity of contributions from multiple grain populations to the total spinning dust emission, as well as existing uncertainties due to the poorly constrained grain size, charge, and dipole moment distributions, we discuss generic, carrier-independent predictions of spinning dust theory and observational tests that could help identify the AME carrier(s).
Grain sorghum dust increases macromolecular efflux from the in situ nasal mucosa.
Gao, X P
1998-04-01
The purpose of this study was to determine whether an aqueous extract of grain sorghum dust increases macromolecular efflux from the nasal mucosa in vivo and, if so, whether this response is mediated, in part, by substance P. Suffusion of grain sorghum dust extract on the in situ nasal mucosa of anesthetized hamsters elicits a significant increase in clearance of fluorescein isothiocyanate-labeled dextran (FITC-dextran; mol mass, 70 kDa; P < 0.05). This response is significantly attenuated by CP-96345 and RP-67580, two selective, but structurally distinct, nonpeptide neurokinin 1 (substance P)-receptor antagonists, but not by CP-96344, the 2R,3R enantiomer of CP-96345 (P < 0.05). CP-96345 has no significant effects on adenosine-induced increase in clearance of FITC-dextran from the in situ nasal mucosa. CP-96345 and RP-67580, but not CP-96344, significantly attenuate substance P-induced increases in clearance of FITC-dextran from the in situ nasal mucosa (P < 0.05). Collectively, these data suggest that grain sorghum dust elicits neurogenic plasma exudation from the in situ nasal mucosa.
Dust grain characterization — Direct measurement of light scattering
NASA Astrophysics Data System (ADS)
BartoÅ, P.; Pavlů, J.
2018-01-01
Dust grains play a key role in dusty plasma since they interact with the plasma we can use them to study plasma itself. The grains are illuminated by visible light (e.g., a laser sheet) and the situation is captured with camera. Despite of simplicity, light scattering on similar-to-wavelength sized grains is complex phenomenon. Interaction of the electromagnetic wave with material has to be computed with respect to Maxwell equations — analytic solution is nowadays available only for several selected shapes like sphere, coated sphere, or infinite cylinder. Moreover, material constants needed for computations are usually unknown. For computation result verification and material constant determination, we designed and developed a device directly measuring light scattering profiles. Single dust grains are trapped in the ultrasonic field (so called "acoustic levitation") and illuminated by the laser beam. Scattered light is then measured by a photodiode mounted on rotating platform. Synchronous detection is employed for a noise reduction. This setup brings several benefits against conventional methods: (1) it works in the free air, (2) the measured grain is captured for a long time, and (3) the grain could be of arbitrary shape.
Possible contemporary evaporites formation at the Martian Northern Polar Cap
NASA Astrophysics Data System (ADS)
Losiak, Anna; Czechowski, Leszek
Evaporitic minerals are abundant on the surface of Mars (e.g., Wentworth et al. 2005, Velbel 2012, Clark and Van Hart 1981, Wang et al. 2006, Kuzmin et al. 2009), especially within the Circumpolar Dune Field and on the Northern Ice Cap itself (e.g., Langevin et al., 2005, Roach et al. 2007, Horgan et al. 2009, Masse et al. 2010, 2012). Most of their proposed formation mechanisms require significant amounts of liquid water and are thus not possible under current Martian conditions (Arvidson et al. 2006, Andrews-Hanna et al. 2007, Fishbaugh et al. 2007, Szynkiewicz et al. 2010). Some authors have considered the potential role of ice and ice- or snowmelt-related alteration in the weathering of Martian materials (e.g., Catling et al. 2006, Zolotov and Mironenko 2007, Niles and Michalski 2009, Masse et al. 2010). However, none of those studies discussed details of the process leading to the formation of the evaporites or the timing of the processes. The aim of this paper is to model numerically if the current radiant heating is sufficient to melt a thin layer of ice surrounding a single dust grain exposed within the south facing side of the Martian North Polar Cap trench. The results of our initial study suggest that for dust grains with basaltic properties and ice with low values of coefficient of heat conduction, and solar constant = 492 W/m2 liquid water may exist below a dust grain for up to 4 hours a sol. This suggest that contemporary evaporites formation on Martian Polar Cap is possible.
Dusty Plasmas on the Lunar Surface
NASA Astrophysics Data System (ADS)
Horanyi, M.; Andersson, L.; Colwell, J.; Ergun, R.; Gruen, E.; McClintock, B.; Peterson, W. K.; Robertson, S.; Sternovsky, Z.; Wang, X.
2006-12-01
The electrostatic levitation and transport of lunar dust remains one of the most interesting and controversial science issues from the Apollo era. This issue is also of great engineering importance in designing human habitats and protecting optical and mechanical devices. As function of time and location, the lunar surface is exposed to solar wind plasma, UV radiation, and/or the plasma environment of our magnetosphere. Dust grains on the lunar surface collect an electrostatic charge; alter the large-scale surface charge density distribution, ?and subsequently develop an interface region to the background plasma and radiation. There are several in situ and remote sensing observations that indicate that dusty plasma processes are likely to be responsible for the mobilization and transport of lunar soil. These processes are relevant to: a) understanding the lunar surface environment; b) develop dust mitigation strategies; c) to understand the basic physical processes involved in the birth and collapse of dust loaded plasma sheaths. This talk will focus on the dusty plasma processes on the lunar surface. We will review the existing body of observations, and will also consider future opportunities for the combination of in situ and remote sensing observations. Our goals are to characterize: a) the temporal variation of the spatial and size distributions of the levitated/transported dust; and b) the surface plasma environment
Respiratory profiles of grain handlers and sedentary workers.
Herbert, F. A.; Woytowich, V.; Schram, E.; Baldwin, D.
1981-01-01
During 1978, grain handlers employed at three large inland grain terminals were studied along with an equal number of office workers matched for sex, age and smoking history. Respiratory symptoms and spirometric abnormalities were no more frequent in 16 grain handlers who were non-smokers than in their controls. However, 20 grain handlers who were smokers complained significantly more (P less than 0.01) of grade 1 dyspnea and had significantly lower ratios of forced expiratory volume in the first second to forced vital capacity (P less than 0.05) than their controls. Only 3% of the grain handlers were sensitive to grain dust, and 18% were found to be atopic but to have good lung function. A family history of asthma or allergic rhinitis was no more frequent in the grain handlers than in the control subjects. We conclude that the combination of cigarette smoking and exposure to grain dust causes a deterioration in lung function. PMID:7260809
NASA Technical Reports Server (NTRS)
Bishop, Janice L.; Drief, Ahmed; Dyar, Darby
2003-01-01
Clays, if present on Mars, have been illusive. Determining whether or not clay minerals and other aqueous alteration species are present on Mars provides key information about the extent and duration of aqueous processes on Mars. The purpose of this study is to characterize in detail changes in the mineral grains resulting from grinding and to assess the influence of physical processes on clay minerals on the surface of Mars. Physical alteration through grinding was shown to greatly affect the structure and a number of properties of antigorite and kaolinite. This project builds on an initial study and includes a combination of SEM, HRTEM, reflectance and M ssbauer spectroscopies. Grain size was found to decrease, as expected, with grinding. In addition, nanophase carbonate, Si-OH and iron oxide species were formed.
Von Essen, S G; O'Neill, D P; McGranaghan, S; Olenchock, S A; Rennard, S I
1995-11-01
To determine if inhalation of grain sorghum dust in the laboratory would cause neutrophilic upper and lower respiratory tract inflammation in human volunteers, as well as systemic signs of illness. Prospective. University of Nebraska Medical Center. Thirty normal volunteers. Inhalation challenge with 20 mL of a nebulized solution of filter-sterilized grain sorghum dust extract (GSDE). One group received prednisone, 20 mg for 2 days, prior to the challenge. Bronchoscopy with bronchoalveolar lavage (BAL) was performed 24 h after challenge, with samples collected as bronchial and alveolar fractions. Findings included visible signs of airways inflammation, quantified as the bronchitis index. The percentage of bronchial neutrophils was significantly increased in those challenged with GSDE vs the control solution, Hanks' balanced salt solution (40.3 +/- 4.5% vs 14.3 +/- 5.1%, p < or = .01). Similar findings were seen in the alveolar fraction. Pretreatment with corticosteroids did not prevent the rise in neutrophils recovered by BAL. Peripheral blood neutrophils were also increased in volunteers challenged with the grain dust extract. To explain the increase in peripheral blood neutrophil counts, the capacity of the peripheral blood neutrophils to migrate in chemotaxis experiments was examined. The results demonstrate an increase in peripheral blood neutrophils and an increase in chemotactic responsiveness. Inhalation challenge with a grain dust extract causes respiratory tract inflammation and a peripheral blood neutrophilia. One reason for this may be an increase in activated peripheral blood neutrophils.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arneson, R. A.; Gehrz, R. D.; Woodward, C. E.
We present a SOFIA FORCAST grism spectroscopic survey to examine the mineralogy of the circumstellar dust in a sample of post-asymptotic giant branch (post-AGB) yellow supergiants that are believed to be the precursors of planetary nebulae. Our mineralogical model of each star indicates the presence of both carbon-rich and oxygen-rich dust species—contrary to simple dredge-up models—with a majority of the dust in the form of amorphous carbon and graphite. The oxygen-rich dust is primarily in the form of amorphous silicates. The spectra do not exhibit any prominent crystalline silicate emission features. For most of the systems, our analysis suggests thatmore » the grains are relatively large and have undergone significant processing, supporting the hypothesis that the dust is confined to a Keplerian disk and that we are viewing the heavily processed, central regions of the disk from a nearly face-on orientation. These results help to determine the physical properties of the post-AGB circumstellar environment and to constrain models of post-AGB mass loss and planetary nebula formation.« less
NASA Astrophysics Data System (ADS)
Pinilla, P.; Klarmann, L.; Birnstiel, T.; Benisty, M.; Dominik, C.; Dullemond, C. P.
2016-01-01
Context. Transition disks are circumstellar disks that show evidence of a dust cavity, which may be related to dynamical clearing by embedded planet(s). Most of these objects show signs of significant accretion, indicating that the inner disks are not truly empty, but that gas is still streaming through to the star. A subset of transition disks, sometimes called pre-transition disks, also shows a strong near-infrared excess, interpreted as an optically thick dusty belt located close to the dust sublimation radius within the first astronomical unit. Aims: We study the conditions for the survival and maintenance of such an inner disk in the case where a massive planet opens a gap in the disk. In this scenario, the planet filters out large dust grains that are trapped at the outer edge of the gap, while the inner regions of the disk may or may not be replenished with small grains. Methods: We combined hydrodynamical simulations of planet-disk interactions with dust evolution models that include coagulation and fragmentation of dust grains over a large range of radii and derived observational properties using radiative transfer calculations. We studied the role of the snow line in the survival of the inner disk of transition disks. Results: Inside the snow line, the lack of ice mantles in dust particles decreases the sticking efficiency between grains. As a consequence, particles fragment at lower collision velocities than in regions beyond the snow line. This effect allows small particles to be maintained for up to a few Myr within the first astronomical unit. These particles are closely coupled to the gas and do not drift significantly with respect to the gas. For lower mass planets (1 MJup), the pre-transition appearance can be maintained even longer because dust still trickles through the gap created by the planet, moves invisibly and quickly in the form of relatively large grains through the gap, and becomes visible again as it fragments and gets slowed down inside of the snow line. Conclusions: The global study of dust evolution of a disk with an embedded planet, including the changes of the dust aerodynamics near the snow line, can explain the concentration of millimetre-sized particles in the outer disk and the survival of the dust in the inner disk if a large dust trap is present in the outer disk. This behaviour solves the conundrum of the combination of both near-infrared excess and ring-like millimetre emission observed in several transition disks.
Dust, Abundances, and the Evolution of Novae
NASA Astrophysics Data System (ADS)
Woodward, Charles; Bode, Michael; Evans, Anuerin; Geballe, Thomas; Gehrz, Robert; Helton, Andrew; Krautter, Joachim; Lynch, David; Ness, Jan-Uwe; Rudy, Richard; Schwarz, Greg; Shore, Steve; Starrfield, Sumner; Truran, James; Vanlandingham, Karen; Wagner, R. Mark
2008-03-01
Evolved stars are the engines of energy production and chemical evolution in our Universe. They deposit radiative and mechanical energy into their environments. They enrich the ambient ISM with elements synthesized in their interiors and dust grains condensed in their atmospheres. Classical novae (CNe) contribute to this cycle of chemical enrichment through explosive nucleosynthesis and the violent ejection of material dredged from the white dwarf progenitor and mixed with the accreted surface layers. Our capstone study of 10 CNe will provide an ensemble of objects, well-populated in CNe parameter space (fast, slow, 'coronal', dusty) for detailed photoionization modeling and analysis. CNe are laboratories in which several poorly-understood astrophysical processes (e.g., mass transfer, thermonuclear runaway, optically thick winds, common envelope evolution, molecule and grain formation, coronal emission) may be observed. With Spitzer's unique wavelength coverage and point-source sensitivity we can: (i) investigate the in situ formation, astromineralogy, and processing of nova dust, (ii) determine the ejecta elemental abundances resulting from thermonuclear runaway, (iii) constrain the correlation of ejecta mass with progenitor type, (iv) measure the bolometric luminosity of the outburst, and (v) characterize the kinematics and structure of the ejected envelopes. Extensive ground-based and space-based (Chandra, Swift, XMM-Newton) programs led by team CoIs will complement Spitzer CNe observations.
Deuterated methanol map towards L1544
NASA Astrophysics Data System (ADS)
Chacón-Tanarro, A.; Caselli, P.; Bizzocchi, L.; Pineda, J. E.; Spezzano, S.; Giuliano, B. M.; Lattanzi, V.; Punanova, A.
Pre-stellar cores are self-gravitating starless dense cores with clear signs of contraction and chemical evolution (Crapsi et al. 2005), considered to represent the initial conditions in the process of star formation (Caselli & Ceccarelli 2012). Theoretical studies predict that CO is one of the precursors of complex organic molecules (COMs) during this cold and dense phase (Tielens et al. 1982; Watanabe et al. 2002). Moreover, when CO starts to deplete onto dust grains (at densities of a few 104 cm-3), the formation of deuterated species is enhanced, as CO accelerates the destruction of important precursors of deuterated molecules (Dalgarno & Lepp 1984). Here, we present the CH_2DOH/CH_3OH column density map toward the pre-stellar core L1544 (Chacón-Tanarro et al., in prep.), taken with the IRAM 30 m antenna. The results are compared with the C17O (1-0) distribution across L1544. As methanol is formed on dust grains via hydrogenation of frozen-out CO, this work allows us to measure the deuteration on surfaces and compared it with gas phase deuteration, as well as CO freeze-out and dust properties. This is important to shed light on the basic chemical processes just before the formation of a stellar system.
Skórska, C; Mackiewicz, B; Dutkiewicz, J; Krysińska-Traczyk, E; Milanowski, J; Feltovich, H; Lange, J; Thorne, P
1998-01-01
Medical examinations were performed in a group of 76 Polish farmers heavily exposed to grain dust during harvesting and threshing, and in a group of 63 healthy urban dwellers not exposed to organic dusts (controls). The examinations included: interview concerning the occurrence of respiratory disorders and work-related symptoms, physical examination, lung function tests, and allergological tests comprising skin prick test with 4 microbial antigens associated with grain dust and agar-gel precipitation test with 12 microbial antigens. As many as 34 farmers (44.7%) reported the occurrence of work-related symptoms during harvesting and threshing. The most common was dry cough reported by 20 individuals (26.3%). Dyspnoea was reported by 15 farmers (19.7%), tiredness by 12 (15.7%), chest tightness by 8 (10.5%), plugging of nose and hoarseness by 5 each (6. 5%). No control subjects reported these work-related symptoms. The mean spirometric values in the examined group of farmers were within the normal range, but a significant post-shift decrease of these values was observed after work with grain. The farmers showed a frequency of the positive early skin reactions to environmental allergens in the range of 10.8 - 45.5%, and a frequency of positive precipitin reactions in range of 3.9 - 40.8%. The control group responded to the majority of allergens with a significantly lower frequency of positive results compared to the farmers. The obtained results showed a high response of grain farmers to inhalant microbial allergens and indicate a potential risk of occupational respiratory diseases (such as allergic alveolitis, asthma, Organic Dust Toxic Syndrome) among this population
A survey of dusty plasma physics
NASA Astrophysics Data System (ADS)
Shukla, P. K.
2001-05-01
Two omnipresent ingredients of the Universe are plasmas and charged dust. The interplay between these two has opened up a new and fascinating research area, that of dusty plasmas, which are ubiquitous in different parts of our solar system, namely planetary rings, circumsolar dust rings, the interplanetary medium, cometary comae and tails, as well as in interstellar molecular clouds, etc. Dusty plasmas also occur in noctilucent clouds in the arctic troposphere and mesosphere, cloud-to-ground lightening in thunderstorms containing smoke-contaminated air over the United States, in the flame of a humble candle, as well as in microelectronic processing devices, in low-temperature laboratory discharges, and in tokamaks. Dusty plasma physics has appeared as one of the most rapidly growing fields of science, besides the field of the Bose-Einstein condensate, as demonstrated by the number of published papers in scientific journals and conference proceedings. In fact, it is a truly interdisciplinary science because it has many potential applications in astrophysics (viz. in understanding the formation of dust clusters and structures, instabilities of interstellar molecular clouds and star formation, decoupling of magnetic fields from plasmas, etc.) as well as in the planetary magnetospheres of our solar system [viz. Saturn (particularly, the physics of spokes and braids in the B and F rings), Jupiter, Uranus, Neptune, and Mars] and in strongly coupled laboratory dusty plasmas. Since a dusty plasma system involves the charging and dynamics of massive charged dust grains, it can be characterized as a complex plasma system providing new physics insights. In this paper, the basic physics of dusty plasmas as well as numerous collective processes are discussed. The focus will be on theoretical and experimental observations of charging processes, waves and instabilities, associated forces, the dynamics of rotating and elongated dust grains, and some nonlinear structures (such as dust ion-acoustic shocks, Mach cones, dust voids, vortices, etc). The latter are typical in astrophysical settings and in several laboratory experiments. It appears that collective processes in a complex dusty plasma would have excellent future perspectives in the twenty-first century, because they have not only potential applications in interplanetary space environments, or in understanding the physics of our universe, but also in advancing our scientific knowledge in multidisciplinary areas of science.
NASA Technical Reports Server (NTRS)
Russell, Ray W.
1988-01-01
Laboratory studies related to cometary grains and the nuclei of comets can be broken down into three areas which relate to understanding the spectral properties, the formation mechanisms, and the evolution of grains and nuclei: (1) Spectral studies to be used in the interpretation of cometary spectra; (2) Sample preparation experiments which may shed light on the physical nature and history of cometary grains and nuclei by exploring the effects on grain emissivities resulting from the ways in which the samples are created; and (3) Grain processing experiments which should provide insight on the interaction of cometary grains with the environment in the immediate vicinity of the cometary nucleus as the comet travels from the Oort cloud through perihelion, and perhaps even suggestions regarding the relationship between interstellar grains and cometary matter. A summary is presented with a different view of lab experiments than is found in the literature, concentrating on measurement techniques and sample preparations especially relevant to cometary dust.
Desorption from interstellar grains
NASA Technical Reports Server (NTRS)
Leger, A.; Jura, M.; Omont, A.
1985-01-01
Different desorption mechanisms from interstellar grains are considered to resolve the conflict between the observed presence of gaseous species in molecular clouds and their expected depletion onto grains. The physics of desorption is discussed with particular reference to the process of grain heating and the specific heat of the dust material. Impulsive heating by X-rays and cosmic rays is addressed. Spot heating of the grains by cosmic rays and how this can lead to desorption of mantles from very large grains is considered. It is concluded that CO depletion on grains will be small in regions with A(V) less than five from the cloud surface and n(H) less than 10,000, in agreement with observations and in contrast to expectations from pure thermal equilibrium. Even in very dense and obscured regions and in the absence of internal ultraviolet sources, the classical evaporation of CO or N2 and O2-rich mantles by cosmic rays is important.